zfs_dir.c revision 189967
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/types.h>
27#include <sys/param.h>
28#include <sys/time.h>
29#include <sys/systm.h>
30#include <sys/sysmacros.h>
31#include <sys/resource.h>
32#include <sys/vfs.h>
33#include <sys/vnode.h>
34#include <sys/file.h>
35#include <sys/kmem.h>
36#include <sys/uio.h>
37#include <sys/cmn_err.h>
38#include <sys/errno.h>
39#include <sys/stat.h>
40#include <sys/unistd.h>
41#include <sys/sunddi.h>
42#include <sys/random.h>
43#include <sys/policy.h>
44#include <sys/kcondvar.h>
45#include <sys/callb.h>
46#include <sys/smp.h>
47#include <sys/zfs_dir.h>
48#include <sys/zfs_acl.h>
49#include <sys/fs/zfs.h>
50#include <sys/zap.h>
51#include <sys/dmu.h>
52#include <sys/atomic.h>
53#include <sys/zfs_ctldir.h>
54#include <sys/zfs_fuid.h>
55#include <sys/dnlc.h>
56#include <sys/extdirent.h>
57
58/*
59 * zfs_match_find() is used by zfs_dirent_lock() to peform zap lookups
60 * of names after deciding which is the appropriate lookup interface.
61 */
62static int
63zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, char *name, boolean_t exact,
64    boolean_t update, int *deflags, pathname_t *rpnp, uint64_t *zoid)
65{
66	int error;
67
68	if (zfsvfs->z_norm) {
69		matchtype_t mt = MT_FIRST;
70		boolean_t conflict = B_FALSE;
71		size_t bufsz = 0;
72		char *buf = NULL;
73
74		if (rpnp) {
75			buf = rpnp->pn_buf;
76			bufsz = rpnp->pn_bufsize;
77		}
78		if (exact)
79			mt = MT_EXACT;
80		/*
81		 * In the non-mixed case we only expect there would ever
82		 * be one match, but we need to use the normalizing lookup.
83		 */
84		error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
85		    zoid, mt, buf, bufsz, &conflict);
86		if (!error && deflags)
87			*deflags = conflict ? ED_CASE_CONFLICT : 0;
88	} else {
89		error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
90	}
91	*zoid = ZFS_DIRENT_OBJ(*zoid);
92
93	if (error == ENOENT && update)
94		dnlc_update(ZTOV(dzp), name, DNLC_NO_VNODE);
95
96	return (error);
97}
98
99/*
100 * Lock a directory entry.  A dirlock on <dzp, name> protects that name
101 * in dzp's directory zap object.  As long as you hold a dirlock, you can
102 * assume two things: (1) dzp cannot be reaped, and (2) no other thread
103 * can change the zap entry for (i.e. link or unlink) this name.
104 *
105 * Input arguments:
106 *	dzp	- znode for directory
107 *	name	- name of entry to lock
108 *	flag	- ZNEW: if the entry already exists, fail with EEXIST.
109 *		  ZEXISTS: if the entry does not exist, fail with ENOENT.
110 *		  ZSHARED: allow concurrent access with other ZSHARED callers.
111 *		  ZXATTR: we want dzp's xattr directory
112 *		  ZCILOOK: On a mixed sensitivity file system,
113 *			   this lookup should be case-insensitive.
114 *		  ZCIEXACT: On a purely case-insensitive file system,
115 *			    this lookup should be case-sensitive.
116 *		  ZRENAMING: we are locking for renaming, force narrow locks
117 *
118 * Output arguments:
119 *	zpp	- pointer to the znode for the entry (NULL if there isn't one)
120 *	dlpp	- pointer to the dirlock for this entry (NULL on error)
121 *      direntflags - (case-insensitive lookup only)
122 *		flags if multiple case-sensitive matches exist in directory
123 *      realpnp     - (case-insensitive lookup only)
124 *		actual name matched within the directory
125 *
126 * Return value: 0 on success or errno on failure.
127 *
128 * NOTE: Always checks for, and rejects, '.' and '..'.
129 * NOTE: For case-insensitive file systems we take wide locks (see below),
130 *	 but return znode pointers to a single match.
131 */
132int
133zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name, znode_t **zpp,
134    int flag, int *direntflags, pathname_t *realpnp)
135{
136	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
137	zfs_dirlock_t	*dl;
138	boolean_t	update;
139	boolean_t	exact;
140	uint64_t	zoid;
141	vnode_t		*vp = NULL;
142	int		error = 0;
143	int		cmpflags;
144
145	*zpp = NULL;
146	*dlpp = NULL;
147
148	/*
149	 * Verify that we are not trying to lock '.', '..', or '.zfs'
150	 */
151	if (name[0] == '.' &&
152	    (name[1] == '\0' || (name[1] == '.' && name[2] == '\0')) ||
153	    zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0)
154		return (EEXIST);
155
156	/*
157	 * Case sensitivity and normalization preferences are set when
158	 * the file system is created.  These are stored in the
159	 * zfsvfs->z_case and zfsvfs->z_norm fields.  These choices
160	 * affect what vnodes can be cached in the DNLC, how we
161	 * perform zap lookups, and the "width" of our dirlocks.
162	 *
163	 * A normal dirlock locks a single name.  Note that with
164	 * normalization a name can be composed multiple ways, but
165	 * when normalized, these names all compare equal.  A wide
166	 * dirlock locks multiple names.  We need these when the file
167	 * system is supporting mixed-mode access.  It is sometimes
168	 * necessary to lock all case permutations of file name at
169	 * once so that simultaneous case-insensitive/case-sensitive
170	 * behaves as rationally as possible.
171	 */
172
173	/*
174	 * Decide if exact matches should be requested when performing
175	 * a zap lookup on file systems supporting case-insensitive
176	 * access.
177	 */
178	exact =
179	    ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE) && (flag & ZCIEXACT)) ||
180	    ((zfsvfs->z_case == ZFS_CASE_MIXED) && !(flag & ZCILOOK));
181
182	/*
183	 * Only look in or update the DNLC if we are looking for the
184	 * name on a file system that does not require normalization
185	 * or case folding.  We can also look there if we happen to be
186	 * on a non-normalizing, mixed sensitivity file system IF we
187	 * are looking for the exact name.
188	 *
189	 * Maybe can add TO-UPPERed version of name to dnlc in ci-only
190	 * case for performance improvement?
191	 */
192	update = !zfsvfs->z_norm ||
193	    ((zfsvfs->z_case == ZFS_CASE_MIXED) &&
194	    !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK));
195
196	/*
197	 * ZRENAMING indicates we are in a situation where we should
198	 * take narrow locks regardless of the file system's
199	 * preferences for normalizing and case folding.  This will
200	 * prevent us deadlocking trying to grab the same wide lock
201	 * twice if the two names happen to be case-insensitive
202	 * matches.
203	 */
204	if (flag & ZRENAMING)
205		cmpflags = 0;
206	else
207		cmpflags = zfsvfs->z_norm;
208
209	/*
210	 * Wait until there are no locks on this name.
211	 */
212	rw_enter(&dzp->z_name_lock, RW_READER);
213	mutex_enter(&dzp->z_lock);
214	for (;;) {
215		if (dzp->z_unlinked) {
216			mutex_exit(&dzp->z_lock);
217			rw_exit(&dzp->z_name_lock);
218			return (ENOENT);
219		}
220		for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) {
221			if ((u8_strcmp(name, dl->dl_name, 0, cmpflags,
222			    U8_UNICODE_LATEST, &error) == 0) || error != 0)
223				break;
224		}
225		if (error != 0) {
226			mutex_exit(&dzp->z_lock);
227			rw_exit(&dzp->z_name_lock);
228			return (ENOENT);
229		}
230		if (dl == NULL)	{
231			/*
232			 * Allocate a new dirlock and add it to the list.
233			 */
234			dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP);
235			cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL);
236			dl->dl_name = name;
237			dl->dl_sharecnt = 0;
238			dl->dl_namesize = 0;
239			dl->dl_dzp = dzp;
240			dl->dl_next = dzp->z_dirlocks;
241			dzp->z_dirlocks = dl;
242			break;
243		}
244		if ((flag & ZSHARED) && dl->dl_sharecnt != 0)
245			break;
246		cv_wait(&dl->dl_cv, &dzp->z_lock);
247	}
248
249	if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) {
250		/*
251		 * We're the second shared reference to dl.  Make a copy of
252		 * dl_name in case the first thread goes away before we do.
253		 * Note that we initialize the new name before storing its
254		 * pointer into dl_name, because the first thread may load
255		 * dl->dl_name at any time.  He'll either see the old value,
256		 * which is his, or the new shared copy; either is OK.
257		 */
258		dl->dl_namesize = strlen(dl->dl_name) + 1;
259		name = kmem_alloc(dl->dl_namesize, KM_SLEEP);
260		bcopy(dl->dl_name, name, dl->dl_namesize);
261		dl->dl_name = name;
262	}
263
264	mutex_exit(&dzp->z_lock);
265
266	/*
267	 * We have a dirlock on the name.  (Note that it is the dirlock,
268	 * not the dzp's z_lock, that protects the name in the zap object.)
269	 * See if there's an object by this name; if so, put a hold on it.
270	 */
271	if (flag & ZXATTR) {
272		zoid = dzp->z_phys->zp_xattr;
273		error = (zoid == 0 ? ENOENT : 0);
274	} else {
275		if (update)
276			vp = dnlc_lookup(ZTOV(dzp), name);
277		if (vp == DNLC_NO_VNODE) {
278			VN_RELE(vp);
279			error = ENOENT;
280		} else if (vp) {
281			if (flag & ZNEW) {
282				zfs_dirent_unlock(dl);
283				VN_RELE(vp);
284				return (EEXIST);
285			}
286			*dlpp = dl;
287			*zpp = VTOZ(vp);
288			return (0);
289		} else {
290			error = zfs_match_find(zfsvfs, dzp, name, exact,
291			    update, direntflags, realpnp, &zoid);
292		}
293	}
294	if (error) {
295		if (error != ENOENT || (flag & ZEXISTS)) {
296			zfs_dirent_unlock(dl);
297			return (error);
298		}
299	} else {
300		if (flag & ZNEW) {
301			zfs_dirent_unlock(dl);
302			return (EEXIST);
303		}
304		error = zfs_zget(zfsvfs, zoid, zpp);
305		if (error) {
306			zfs_dirent_unlock(dl);
307			return (error);
308		}
309		if (!(flag & ZXATTR) && update)
310			dnlc_update(ZTOV(dzp), name, ZTOV(*zpp));
311	}
312
313	*dlpp = dl;
314
315	return (0);
316}
317
318/*
319 * Unlock this directory entry and wake anyone who was waiting for it.
320 */
321void
322zfs_dirent_unlock(zfs_dirlock_t *dl)
323{
324	znode_t *dzp = dl->dl_dzp;
325	zfs_dirlock_t **prev_dl, *cur_dl;
326
327	mutex_enter(&dzp->z_lock);
328	rw_exit(&dzp->z_name_lock);
329	if (dl->dl_sharecnt > 1) {
330		dl->dl_sharecnt--;
331		mutex_exit(&dzp->z_lock);
332		return;
333	}
334	prev_dl = &dzp->z_dirlocks;
335	while ((cur_dl = *prev_dl) != dl)
336		prev_dl = &cur_dl->dl_next;
337	*prev_dl = dl->dl_next;
338	cv_broadcast(&dl->dl_cv);
339	mutex_exit(&dzp->z_lock);
340
341	if (dl->dl_namesize != 0)
342		kmem_free(dl->dl_name, dl->dl_namesize);
343	cv_destroy(&dl->dl_cv);
344	kmem_free(dl, sizeof (*dl));
345}
346
347/*
348 * Look up an entry in a directory.
349 *
350 * NOTE: '.' and '..' are handled as special cases because
351 *	no directory entries are actually stored for them.  If this is
352 *	the root of a filesystem, then '.zfs' is also treated as a
353 *	special pseudo-directory.
354 */
355int
356zfs_dirlook(znode_t *dzp, char *name, vnode_t **vpp, int flags,
357    int *deflg, pathname_t *rpnp)
358{
359	zfs_dirlock_t *dl;
360	znode_t *zp;
361	int error = 0;
362
363	if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
364		*vpp = ZTOV(dzp);
365		VN_HOLD(*vpp);
366	} else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
367		zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
368		/*
369		 * If we are a snapshot mounted under .zfs, return
370		 * the vp for the snapshot directory.
371		 */
372		if (dzp->z_phys->zp_parent == dzp->z_id &&
373		    zfsvfs->z_parent != zfsvfs) {
374			error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir,
375			    "snapshot", vpp, NULL, 0, NULL, kcred,
376			    NULL, NULL, NULL);
377			return (error);
378		}
379		rw_enter(&dzp->z_parent_lock, RW_READER);
380		error = zfs_zget(zfsvfs, dzp->z_phys->zp_parent, &zp);
381		if (error == 0)
382			*vpp = ZTOV(zp);
383		rw_exit(&dzp->z_parent_lock);
384	} else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) {
385		*vpp = zfsctl_root(dzp);
386	} else {
387		int zf;
388
389		zf = ZEXISTS | ZSHARED;
390		if (flags & FIGNORECASE)
391			zf |= ZCILOOK;
392
393		error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp);
394		if (error == 0) {
395			*vpp = ZTOV(zp);
396			zfs_dirent_unlock(dl);
397			dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */
398		}
399		rpnp = NULL;
400	}
401
402	if ((flags & FIGNORECASE) && rpnp && !error)
403		(void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize);
404
405	return (error);
406}
407
408/*
409 * unlinked Set (formerly known as the "delete queue") Error Handling
410 *
411 * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
412 * don't specify the name of the entry that we will be manipulating.  We
413 * also fib and say that we won't be adding any new entries to the
414 * unlinked set, even though we might (this is to lower the minimum file
415 * size that can be deleted in a full filesystem).  So on the small
416 * chance that the nlink list is using a fat zap (ie. has more than
417 * 2000 entries), we *may* not pre-read a block that's needed.
418 * Therefore it is remotely possible for some of the assertions
419 * regarding the unlinked set below to fail due to i/o error.  On a
420 * nondebug system, this will result in the space being leaked.
421 */
422void
423zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
424{
425	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
426
427	ASSERT(zp->z_unlinked);
428	ASSERT3U(zp->z_phys->zp_links, ==, 0);
429
430	VERIFY3U(0, ==,
431	    zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
432}
433
434/*
435 * Clean up any znodes that had no links when we either crashed or
436 * (force) umounted the file system.
437 */
438void
439zfs_unlinked_drain(zfsvfs_t *zfsvfs)
440{
441	zap_cursor_t	zc;
442	zap_attribute_t zap;
443	dmu_object_info_t doi;
444	znode_t		*zp;
445	int		error;
446
447	/*
448	 * Interate over the contents of the unlinked set.
449	 */
450	for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj);
451	    zap_cursor_retrieve(&zc, &zap) == 0;
452	    zap_cursor_advance(&zc)) {
453
454		/*
455		 * See what kind of object we have in list
456		 */
457
458		error = dmu_object_info(zfsvfs->z_os,
459		    zap.za_first_integer, &doi);
460		if (error != 0)
461			continue;
462
463		ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) ||
464		    (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS));
465		/*
466		 * We need to re-mark these list entries for deletion,
467		 * so we pull them back into core and set zp->z_unlinked.
468		 */
469		error = zfs_zget(zfsvfs, zap.za_first_integer, &zp);
470
471		/*
472		 * We may pick up znodes that are already marked for deletion.
473		 * This could happen during the purge of an extended attribute
474		 * directory.  All we need to do is skip over them, since they
475		 * are already in the system marked z_unlinked.
476		 */
477		if (error != 0)
478			continue;
479
480		zp->z_unlinked = B_TRUE;
481		VN_RELE(ZTOV(zp));
482	}
483	zap_cursor_fini(&zc);
484}
485
486/*
487 * Delete the entire contents of a directory.  Return a count
488 * of the number of entries that could not be deleted. If we encounter
489 * an error, return a count of at least one so that the directory stays
490 * in the unlinked set.
491 *
492 * NOTE: this function assumes that the directory is inactive,
493 *	so there is no need to lock its entries before deletion.
494 *	Also, it assumes the directory contents is *only* regular
495 *	files.
496 */
497static int
498zfs_purgedir(znode_t *dzp)
499{
500	zap_cursor_t	zc;
501	zap_attribute_t	zap;
502	znode_t		*xzp;
503	dmu_tx_t	*tx;
504	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
505	zfs_dirlock_t	dl;
506	int skipped = 0;
507	int error;
508
509	for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
510	    (error = zap_cursor_retrieve(&zc, &zap)) == 0;
511	    zap_cursor_advance(&zc)) {
512		error = zfs_zget(zfsvfs,
513		    ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp);
514		if (error) {
515			skipped += 1;
516			continue;
517		}
518
519		ASSERT((ZTOV(xzp)->v_type == VREG) ||
520		    (ZTOV(xzp)->v_type == VLNK));
521
522		tx = dmu_tx_create(zfsvfs->z_os);
523		dmu_tx_hold_bonus(tx, dzp->z_id);
524		dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name);
525		dmu_tx_hold_bonus(tx, xzp->z_id);
526		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
527		error = dmu_tx_assign(tx, TXG_WAIT);
528		if (error) {
529			dmu_tx_abort(tx);
530			VN_RELE(ZTOV(xzp));
531			skipped += 1;
532			continue;
533		}
534		bzero(&dl, sizeof (dl));
535		dl.dl_dzp = dzp;
536		dl.dl_name = zap.za_name;
537
538		error = zfs_link_destroy(&dl, xzp, tx, 0, NULL);
539		if (error)
540			skipped += 1;
541		dmu_tx_commit(tx);
542
543		VN_RELE(ZTOV(xzp));
544	}
545	zap_cursor_fini(&zc);
546	if (error != ENOENT)
547		skipped += 1;
548	return (skipped);
549}
550
551void
552zfs_rmnode(znode_t *zp)
553{
554	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
555	objset_t	*os = zfsvfs->z_os;
556	znode_t		*xzp = NULL;
557	dmu_tx_t	*tx;
558	uint64_t	acl_obj;
559	int		error;
560	int		vfslocked;
561
562	vfslocked = VFS_LOCK_GIANT(zfsvfs->z_vfs);
563
564	ASSERT(zp->z_phys->zp_links == 0);
565
566	/*
567	 * If this is a ZIL replay then leave the object in the unlinked set.
568	 * Otherwise we can get a deadlock, because the delete can be
569	 * quite large and span multiple tx's and txgs, but each replay
570	 * creates a tx to atomically run the replay function and mark the
571	 * replay record as complete. We deadlock trying to start a tx in
572	 * a new txg to further the deletion but can't because the replay
573	 * tx hasn't finished.
574	 *
575	 * We actually delete the object if we get a failure to create an
576	 * object in zil_replay_log_record(), or after calling zil_replay().
577	 */
578	if (zfsvfs->z_assign >= TXG_INITIAL) {
579		zfs_znode_dmu_fini(zp);
580		zfs_znode_free(zp);
581		return;
582	}
583
584	/*
585	 * If this is an attribute directory, purge its contents.
586	 */
587	if (ZTOV(zp) != NULL && ZTOV(zp)->v_type == VDIR &&
588	    (zp->z_phys->zp_flags & ZFS_XATTR)) {
589		if (zfs_purgedir(zp) != 0) {
590			/*
591			 * Not enough space to delete some xattrs.
592			 * Leave it in the unlinked set.
593			 */
594			zfs_znode_dmu_fini(zp);
595			zfs_znode_free(zp);
596			VFS_UNLOCK_GIANT(vfslocked);
597			return;
598		}
599	}
600
601	/*
602	 * Free up all the data in the file.
603	 */
604	error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END);
605	if (error) {
606		/*
607		 * Not enough space.  Leave the file in the unlinked set.
608		 */
609		zfs_znode_dmu_fini(zp);
610		zfs_znode_free(zp);
611		return;
612	}
613
614	/*
615	 * If the file has extended attributes, we're going to unlink
616	 * the xattr dir.
617	 */
618	if (zp->z_phys->zp_xattr) {
619		error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
620		ASSERT(error == 0);
621	}
622
623	acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
624
625	/*
626	 * Set up the final transaction.
627	 */
628	tx = dmu_tx_create(os);
629	dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
630	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
631	if (xzp) {
632		dmu_tx_hold_bonus(tx, xzp->z_id);
633		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);
634	}
635	if (acl_obj)
636		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
637	error = dmu_tx_assign(tx, TXG_WAIT);
638	if (error) {
639		/*
640		 * Not enough space to delete the file.  Leave it in the
641		 * unlinked set, leaking it until the fs is remounted (at
642		 * which point we'll call zfs_unlinked_drain() to process it).
643		 */
644		dmu_tx_abort(tx);
645		zfs_znode_dmu_fini(zp);
646		zfs_znode_free(zp);
647		goto out;
648	}
649
650	if (xzp) {
651		dmu_buf_will_dirty(xzp->z_dbuf, tx);
652		mutex_enter(&xzp->z_lock);
653		xzp->z_unlinked = B_TRUE;	/* mark xzp for deletion */
654		xzp->z_phys->zp_links = 0;	/* no more links to it */
655		mutex_exit(&xzp->z_lock);
656		zfs_unlinked_add(xzp, tx);
657	}
658
659	/* Remove this znode from the unlinked set */
660	VERIFY3U(0, ==,
661	    zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
662
663	zfs_znode_delete(zp, tx);
664
665	dmu_tx_commit(tx);
666out:
667	if (xzp)
668		VN_RELE(ZTOV(xzp));
669	VFS_UNLOCK_GIANT(vfslocked);
670}
671
672static uint64_t
673zfs_dirent(znode_t *zp)
674{
675	uint64_t de = zp->z_id;
676	if (zp->z_zfsvfs->z_version >= ZPL_VERSION_DIRENT_TYPE)
677		de |= IFTODT((zp)->z_phys->zp_mode) << 60;
678	return (de);
679}
680
681/*
682 * Link zp into dl.  Can only fail if zp has been unlinked.
683 */
684int
685zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag)
686{
687	znode_t *dzp = dl->dl_dzp;
688	vnode_t *vp = ZTOV(zp);
689	uint64_t value;
690	int zp_is_dir = (vp->v_type == VDIR);
691	int error;
692
693	dmu_buf_will_dirty(zp->z_dbuf, tx);
694	mutex_enter(&zp->z_lock);
695
696	if (!(flag & ZRENAMING)) {
697		if (zp->z_unlinked) {	/* no new links to unlinked zp */
698			ASSERT(!(flag & (ZNEW | ZEXISTS)));
699			mutex_exit(&zp->z_lock);
700			return (ENOENT);
701		}
702		zp->z_phys->zp_links++;
703	}
704	zp->z_phys->zp_parent = dzp->z_id;	/* dzp is now zp's parent */
705
706	if (!(flag & ZNEW))
707		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
708	mutex_exit(&zp->z_lock);
709
710	dmu_buf_will_dirty(dzp->z_dbuf, tx);
711	mutex_enter(&dzp->z_lock);
712	dzp->z_phys->zp_size++;			/* one dirent added */
713	dzp->z_phys->zp_links += zp_is_dir;	/* ".." link from zp */
714	zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx);
715	mutex_exit(&dzp->z_lock);
716
717	value = zfs_dirent(zp);
718	error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name,
719	    8, 1, &value, tx);
720	ASSERT(error == 0);
721
722	dnlc_update(ZTOV(dzp), dl->dl_name, vp);
723
724	return (0);
725}
726
727/*
728 * Unlink zp from dl, and mark zp for deletion if this was the last link.
729 * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST).
730 * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list.
731 * If it's non-NULL, we use it to indicate whether the znode needs deletion,
732 * and it's the caller's job to do it.
733 */
734int
735zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag,
736	boolean_t *unlinkedp)
737{
738	znode_t *dzp = dl->dl_dzp;
739	vnode_t *vp = ZTOV(zp);
740	int zp_is_dir = (vp->v_type == VDIR);
741	boolean_t unlinked = B_FALSE;
742	int error;
743
744	dnlc_remove(ZTOV(dzp), dl->dl_name);
745
746	if (!(flag & ZRENAMING)) {
747		dmu_buf_will_dirty(zp->z_dbuf, tx);
748
749		if (vn_vfswlock(vp))		/* prevent new mounts on zp */
750			return (EBUSY);
751
752		if (vn_ismntpt(vp)) {		/* don't remove mount point */
753			vn_vfsunlock(vp);
754			return (EBUSY);
755		}
756
757		mutex_enter(&zp->z_lock);
758		if (zp_is_dir && !zfs_dirempty(zp)) {	/* dir not empty */
759			mutex_exit(&zp->z_lock);
760			vn_vfsunlock(vp);
761			return (ENOTEMPTY);
762		}
763		if (zp->z_phys->zp_links <= zp_is_dir) {
764			zfs_panic_recover("zfs: link count on vnode %p is %u, "
765			    "should be at least %u", zp->z_vnode,
766			    (int)zp->z_phys->zp_links,
767			    zp_is_dir + 1);
768			zp->z_phys->zp_links = zp_is_dir + 1;
769		}
770		if (--zp->z_phys->zp_links == zp_is_dir) {
771			zp->z_unlinked = B_TRUE;
772			zp->z_phys->zp_links = 0;
773			unlinked = B_TRUE;
774		} else {
775			zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
776		}
777		mutex_exit(&zp->z_lock);
778		vn_vfsunlock(vp);
779	}
780
781	dmu_buf_will_dirty(dzp->z_dbuf, tx);
782	mutex_enter(&dzp->z_lock);
783	dzp->z_phys->zp_size--;			/* one dirent removed */
784	dzp->z_phys->zp_links -= zp_is_dir;	/* ".." link from zp */
785	zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx);
786	mutex_exit(&dzp->z_lock);
787
788	if (zp->z_zfsvfs->z_norm) {
789		if (((zp->z_zfsvfs->z_case == ZFS_CASE_INSENSITIVE) &&
790		    (flag & ZCIEXACT)) ||
791		    ((zp->z_zfsvfs->z_case == ZFS_CASE_MIXED) &&
792		    !(flag & ZCILOOK)))
793			error = zap_remove_norm(zp->z_zfsvfs->z_os,
794			    dzp->z_id, dl->dl_name, MT_EXACT, tx);
795		else
796			error = zap_remove_norm(zp->z_zfsvfs->z_os,
797			    dzp->z_id, dl->dl_name, MT_FIRST, tx);
798	} else {
799		error = zap_remove(zp->z_zfsvfs->z_os,
800		    dzp->z_id, dl->dl_name, tx);
801	}
802	ASSERT(error == 0);
803
804	if (unlinkedp != NULL)
805		*unlinkedp = unlinked;
806	else if (unlinked)
807		zfs_unlinked_add(zp, tx);
808
809	return (0);
810}
811
812/*
813 * Indicate whether the directory is empty.  Works with or without z_lock
814 * held, but can only be consider a hint in the latter case.  Returns true
815 * if only "." and ".." remain and there's no work in progress.
816 */
817boolean_t
818zfs_dirempty(znode_t *dzp)
819{
820	return (dzp->z_phys->zp_size == 2 && dzp->z_dirlocks == 0);
821}
822
823int
824zfs_make_xattrdir(znode_t *zp, vattr_t *vap, vnode_t **xvpp, cred_t *cr)
825{
826	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
827	znode_t *xzp;
828	dmu_tx_t *tx;
829	int error;
830	zfs_fuid_info_t *fuidp = NULL;
831
832	*xvpp = NULL;
833
834	if (error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, 0, B_FALSE, cr))
835		return (error);
836
837	tx = dmu_tx_create(zfsvfs->z_os);
838	dmu_tx_hold_bonus(tx, zp->z_id);
839	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
840	if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) {
841		if (zfsvfs->z_fuid_obj == 0) {
842			dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
843			dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
844			    FUID_SIZE_ESTIMATE(zfsvfs));
845			dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
846		} else {
847			dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
848			dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
849			    FUID_SIZE_ESTIMATE(zfsvfs));
850		}
851	}
852	error = dmu_tx_assign(tx, zfsvfs->z_assign);
853	if (error) {
854		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT)
855			dmu_tx_wait(tx);
856		dmu_tx_abort(tx);
857		return (error);
858	}
859	zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, 0, NULL, &fuidp);
860	ASSERT(xzp->z_phys->zp_parent == zp->z_id);
861	dmu_buf_will_dirty(zp->z_dbuf, tx);
862	zp->z_phys->zp_xattr = xzp->z_id;
863
864	(void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp,
865	    xzp, "", NULL, fuidp, vap);
866	if (fuidp)
867		zfs_fuid_info_free(fuidp);
868	dmu_tx_commit(tx);
869
870	*xvpp = ZTOV(xzp);
871
872	return (0);
873}
874
875/*
876 * Return a znode for the extended attribute directory for zp.
877 * ** If the directory does not already exist, it is created **
878 *
879 *	IN:	zp	- znode to obtain attribute directory from
880 *		cr	- credentials of caller
881 *		flags	- flags from the VOP_LOOKUP call
882 *
883 *	OUT:	xzpp	- pointer to extended attribute znode
884 *
885 *	RETURN:	0 on success
886 *		error number on failure
887 */
888int
889zfs_get_xattrdir(znode_t *zp, vnode_t **xvpp, cred_t *cr, int flags)
890{
891	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
892	znode_t		*xzp;
893	zfs_dirlock_t	*dl;
894	vattr_t		va;
895	int		error;
896top:
897	error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL);
898	if (error)
899		return (error);
900
901	if (xzp != NULL) {
902		*xvpp = ZTOV(xzp);
903		zfs_dirent_unlock(dl);
904		return (0);
905	}
906
907	ASSERT(zp->z_phys->zp_xattr == 0);
908
909#ifdef TODO
910	if (!(flags & CREATE_XATTR_DIR)) {
911		zfs_dirent_unlock(dl);
912		return (ENOENT);
913	}
914#endif
915
916	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
917		zfs_dirent_unlock(dl);
918		return (EROFS);
919	}
920
921	/*
922	 * The ability to 'create' files in an attribute
923	 * directory comes from the write_xattr permission on the base file.
924	 *
925	 * The ability to 'search' an attribute directory requires
926	 * read_xattr permission on the base file.
927	 *
928	 * Once in a directory the ability to read/write attributes
929	 * is controlled by the permissions on the attribute file.
930	 */
931	va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID;
932	va.va_type = VDIR;
933	va.va_mode = S_IFDIR | S_ISVTX | 0777;
934	zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid);
935
936	error = zfs_make_xattrdir(zp, &va, xvpp, cr);
937	zfs_dirent_unlock(dl);
938
939	if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
940		/* NB: we already did dmu_tx_wait() if necessary */
941		goto top;
942	}
943	if (error == 0)
944		VOP_UNLOCK(*xvpp, 0);
945
946	return (error);
947}
948
949/*
950 * Decide whether it is okay to remove within a sticky directory.
951 *
952 * In sticky directories, write access is not sufficient;
953 * you can remove entries from a directory only if:
954 *
955 *	you own the directory,
956 *	you own the entry,
957 *	the entry is a plain file and you have write access,
958 *	or you are privileged (checked in secpolicy...).
959 *
960 * The function returns 0 if remove access is granted.
961 */
962int
963zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
964{
965	uid_t  		uid;
966	uid_t		downer;
967	uid_t		fowner;
968	zfsvfs_t	*zfsvfs = zdp->z_zfsvfs;
969
970	if (zdp->z_zfsvfs->z_assign >= TXG_INITIAL)	/* ZIL replay */
971		return (0);
972
973	if ((zdp->z_phys->zp_mode & S_ISVTX) == 0)
974		return (0);
975
976	downer = zfs_fuid_map_id(zfsvfs, zdp->z_phys->zp_uid, cr, ZFS_OWNER);
977	fowner = zfs_fuid_map_id(zfsvfs, zp->z_phys->zp_uid, cr, ZFS_OWNER);
978
979	if ((uid = crgetuid(cr)) == downer || uid == fowner ||
980	    (ZTOV(zp)->v_type == VREG &&
981	    zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0))
982		return (0);
983	else
984		return (secpolicy_vnode_remove(ZTOV(zp), cr));
985}
986