vdev.c revision 262081
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/spa_impl.h>
33#include <sys/dmu.h>
34#include <sys/dmu_tx.h>
35#include <sys/vdev_impl.h>
36#include <sys/uberblock_impl.h>
37#include <sys/metaslab.h>
38#include <sys/metaslab_impl.h>
39#include <sys/space_map.h>
40#include <sys/zio.h>
41#include <sys/zap.h>
42#include <sys/fs/zfs.h>
43#include <sys/arc.h>
44#include <sys/zil.h>
45#include <sys/dsl_scan.h>
46#include <sys/trim_map.h>
47
48SYSCTL_DECL(_vfs_zfs);
49SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
50
51/*
52 * Virtual device management.
53 */
54
55/**
56 * The limit for ZFS to automatically increase a top-level vdev's ashift
57 * from logical ashift to physical ashift.
58 *
59 * Example: one or more 512B emulation child vdevs
60 *          child->vdev_ashift = 9 (512 bytes)
61 *          child->vdev_physical_ashift = 12 (4096 bytes)
62 *          zfs_max_auto_ashift = 11 (2048 bytes)
63 *
64 * On pool creation or the addition of a new top-leve vdev, ZFS will
65 * bump the ashift of the top-level vdev to 2048.
66 *
67 * Example: one or more 512B emulation child vdevs
68 *          child->vdev_ashift = 9 (512 bytes)
69 *          child->vdev_physical_ashift = 12 (4096 bytes)
70 *          zfs_max_auto_ashift = 13 (8192 bytes)
71 *
72 * On pool creation or the addition of a new top-leve vdev, ZFS will
73 * bump the ashift of the top-level vdev to 4096.
74 */
75static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
76
77static int
78sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
79{
80	uint64_t val;
81	int err;
82
83	val = zfs_max_auto_ashift;
84	err = sysctl_handle_64(oidp, &val, 0, req);
85	if (err != 0 || req->newptr == NULL)
86		return (err);
87
88	if (val > SPA_MAXASHIFT)
89		val = SPA_MAXASHIFT;
90
91	zfs_max_auto_ashift = val;
92
93	return (0);
94}
95SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
96    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
97    sysctl_vfs_zfs_max_auto_ashift, "QU",
98    "Cap on logical -> physical ashift adjustment on new top-level vdevs.");
99
100static vdev_ops_t *vdev_ops_table[] = {
101	&vdev_root_ops,
102	&vdev_raidz_ops,
103	&vdev_mirror_ops,
104	&vdev_replacing_ops,
105	&vdev_spare_ops,
106#ifdef _KERNEL
107	&vdev_geom_ops,
108#else
109	&vdev_disk_ops,
110#endif
111	&vdev_file_ops,
112	&vdev_missing_ops,
113	&vdev_hole_ops,
114	NULL
115};
116
117
118/*
119 * Given a vdev type, return the appropriate ops vector.
120 */
121static vdev_ops_t *
122vdev_getops(const char *type)
123{
124	vdev_ops_t *ops, **opspp;
125
126	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
127		if (strcmp(ops->vdev_op_type, type) == 0)
128			break;
129
130	return (ops);
131}
132
133/*
134 * Default asize function: return the MAX of psize with the asize of
135 * all children.  This is what's used by anything other than RAID-Z.
136 */
137uint64_t
138vdev_default_asize(vdev_t *vd, uint64_t psize)
139{
140	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
141	uint64_t csize;
142
143	for (int c = 0; c < vd->vdev_children; c++) {
144		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
145		asize = MAX(asize, csize);
146	}
147
148	return (asize);
149}
150
151/*
152 * Get the minimum allocatable size. We define the allocatable size as
153 * the vdev's asize rounded to the nearest metaslab. This allows us to
154 * replace or attach devices which don't have the same physical size but
155 * can still satisfy the same number of allocations.
156 */
157uint64_t
158vdev_get_min_asize(vdev_t *vd)
159{
160	vdev_t *pvd = vd->vdev_parent;
161
162	/*
163	 * If our parent is NULL (inactive spare or cache) or is the root,
164	 * just return our own asize.
165	 */
166	if (pvd == NULL)
167		return (vd->vdev_asize);
168
169	/*
170	 * The top-level vdev just returns the allocatable size rounded
171	 * to the nearest metaslab.
172	 */
173	if (vd == vd->vdev_top)
174		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
175
176	/*
177	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
178	 * so each child must provide at least 1/Nth of its asize.
179	 */
180	if (pvd->vdev_ops == &vdev_raidz_ops)
181		return (pvd->vdev_min_asize / pvd->vdev_children);
182
183	return (pvd->vdev_min_asize);
184}
185
186void
187vdev_set_min_asize(vdev_t *vd)
188{
189	vd->vdev_min_asize = vdev_get_min_asize(vd);
190
191	for (int c = 0; c < vd->vdev_children; c++)
192		vdev_set_min_asize(vd->vdev_child[c]);
193}
194
195vdev_t *
196vdev_lookup_top(spa_t *spa, uint64_t vdev)
197{
198	vdev_t *rvd = spa->spa_root_vdev;
199
200	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
201
202	if (vdev < rvd->vdev_children) {
203		ASSERT(rvd->vdev_child[vdev] != NULL);
204		return (rvd->vdev_child[vdev]);
205	}
206
207	return (NULL);
208}
209
210vdev_t *
211vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
212{
213	vdev_t *mvd;
214
215	if (vd->vdev_guid == guid)
216		return (vd);
217
218	for (int c = 0; c < vd->vdev_children; c++)
219		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
220		    NULL)
221			return (mvd);
222
223	return (NULL);
224}
225
226void
227vdev_add_child(vdev_t *pvd, vdev_t *cvd)
228{
229	size_t oldsize, newsize;
230	uint64_t id = cvd->vdev_id;
231	vdev_t **newchild;
232
233	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
234	ASSERT(cvd->vdev_parent == NULL);
235
236	cvd->vdev_parent = pvd;
237
238	if (pvd == NULL)
239		return;
240
241	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
242
243	oldsize = pvd->vdev_children * sizeof (vdev_t *);
244	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
245	newsize = pvd->vdev_children * sizeof (vdev_t *);
246
247	newchild = kmem_zalloc(newsize, KM_SLEEP);
248	if (pvd->vdev_child != NULL) {
249		bcopy(pvd->vdev_child, newchild, oldsize);
250		kmem_free(pvd->vdev_child, oldsize);
251	}
252
253	pvd->vdev_child = newchild;
254	pvd->vdev_child[id] = cvd;
255
256	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
257	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
258
259	/*
260	 * Walk up all ancestors to update guid sum.
261	 */
262	for (; pvd != NULL; pvd = pvd->vdev_parent)
263		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
264}
265
266void
267vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
268{
269	int c;
270	uint_t id = cvd->vdev_id;
271
272	ASSERT(cvd->vdev_parent == pvd);
273
274	if (pvd == NULL)
275		return;
276
277	ASSERT(id < pvd->vdev_children);
278	ASSERT(pvd->vdev_child[id] == cvd);
279
280	pvd->vdev_child[id] = NULL;
281	cvd->vdev_parent = NULL;
282
283	for (c = 0; c < pvd->vdev_children; c++)
284		if (pvd->vdev_child[c])
285			break;
286
287	if (c == pvd->vdev_children) {
288		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
289		pvd->vdev_child = NULL;
290		pvd->vdev_children = 0;
291	}
292
293	/*
294	 * Walk up all ancestors to update guid sum.
295	 */
296	for (; pvd != NULL; pvd = pvd->vdev_parent)
297		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
298}
299
300/*
301 * Remove any holes in the child array.
302 */
303void
304vdev_compact_children(vdev_t *pvd)
305{
306	vdev_t **newchild, *cvd;
307	int oldc = pvd->vdev_children;
308	int newc;
309
310	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
311
312	for (int c = newc = 0; c < oldc; c++)
313		if (pvd->vdev_child[c])
314			newc++;
315
316	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
317
318	for (int c = newc = 0; c < oldc; c++) {
319		if ((cvd = pvd->vdev_child[c]) != NULL) {
320			newchild[newc] = cvd;
321			cvd->vdev_id = newc++;
322		}
323	}
324
325	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
326	pvd->vdev_child = newchild;
327	pvd->vdev_children = newc;
328}
329
330/*
331 * Allocate and minimally initialize a vdev_t.
332 */
333vdev_t *
334vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
335{
336	vdev_t *vd;
337
338	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
339
340	if (spa->spa_root_vdev == NULL) {
341		ASSERT(ops == &vdev_root_ops);
342		spa->spa_root_vdev = vd;
343		spa->spa_load_guid = spa_generate_guid(NULL);
344	}
345
346	if (guid == 0 && ops != &vdev_hole_ops) {
347		if (spa->spa_root_vdev == vd) {
348			/*
349			 * The root vdev's guid will also be the pool guid,
350			 * which must be unique among all pools.
351			 */
352			guid = spa_generate_guid(NULL);
353		} else {
354			/*
355			 * Any other vdev's guid must be unique within the pool.
356			 */
357			guid = spa_generate_guid(spa);
358		}
359		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
360	}
361
362	vd->vdev_spa = spa;
363	vd->vdev_id = id;
364	vd->vdev_guid = guid;
365	vd->vdev_guid_sum = guid;
366	vd->vdev_ops = ops;
367	vd->vdev_state = VDEV_STATE_CLOSED;
368	vd->vdev_ishole = (ops == &vdev_hole_ops);
369
370	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
371	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
372	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
373	for (int t = 0; t < DTL_TYPES; t++) {
374		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
375		    &vd->vdev_dtl_lock);
376	}
377	txg_list_create(&vd->vdev_ms_list,
378	    offsetof(struct metaslab, ms_txg_node));
379	txg_list_create(&vd->vdev_dtl_list,
380	    offsetof(struct vdev, vdev_dtl_node));
381	vd->vdev_stat.vs_timestamp = gethrtime();
382	vdev_queue_init(vd);
383	vdev_cache_init(vd);
384
385	return (vd);
386}
387
388/*
389 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
390 * creating a new vdev or loading an existing one - the behavior is slightly
391 * different for each case.
392 */
393int
394vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
395    int alloctype)
396{
397	vdev_ops_t *ops;
398	char *type;
399	uint64_t guid = 0, islog, nparity;
400	vdev_t *vd;
401
402	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
403
404	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
405		return (SET_ERROR(EINVAL));
406
407	if ((ops = vdev_getops(type)) == NULL)
408		return (SET_ERROR(EINVAL));
409
410	/*
411	 * If this is a load, get the vdev guid from the nvlist.
412	 * Otherwise, vdev_alloc_common() will generate one for us.
413	 */
414	if (alloctype == VDEV_ALLOC_LOAD) {
415		uint64_t label_id;
416
417		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
418		    label_id != id)
419			return (SET_ERROR(EINVAL));
420
421		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
422			return (SET_ERROR(EINVAL));
423	} else if (alloctype == VDEV_ALLOC_SPARE) {
424		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
425			return (SET_ERROR(EINVAL));
426	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
427		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
428			return (SET_ERROR(EINVAL));
429	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
430		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
431			return (SET_ERROR(EINVAL));
432	}
433
434	/*
435	 * The first allocated vdev must be of type 'root'.
436	 */
437	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
438		return (SET_ERROR(EINVAL));
439
440	/*
441	 * Determine whether we're a log vdev.
442	 */
443	islog = 0;
444	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
445	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
446		return (SET_ERROR(ENOTSUP));
447
448	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
449		return (SET_ERROR(ENOTSUP));
450
451	/*
452	 * Set the nparity property for RAID-Z vdevs.
453	 */
454	nparity = -1ULL;
455	if (ops == &vdev_raidz_ops) {
456		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
457		    &nparity) == 0) {
458			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
459				return (SET_ERROR(EINVAL));
460			/*
461			 * Previous versions could only support 1 or 2 parity
462			 * device.
463			 */
464			if (nparity > 1 &&
465			    spa_version(spa) < SPA_VERSION_RAIDZ2)
466				return (SET_ERROR(ENOTSUP));
467			if (nparity > 2 &&
468			    spa_version(spa) < SPA_VERSION_RAIDZ3)
469				return (SET_ERROR(ENOTSUP));
470		} else {
471			/*
472			 * We require the parity to be specified for SPAs that
473			 * support multiple parity levels.
474			 */
475			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
476				return (SET_ERROR(EINVAL));
477			/*
478			 * Otherwise, we default to 1 parity device for RAID-Z.
479			 */
480			nparity = 1;
481		}
482	} else {
483		nparity = 0;
484	}
485	ASSERT(nparity != -1ULL);
486
487	vd = vdev_alloc_common(spa, id, guid, ops);
488
489	vd->vdev_islog = islog;
490	vd->vdev_nparity = nparity;
491
492	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
493		vd->vdev_path = spa_strdup(vd->vdev_path);
494	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
495		vd->vdev_devid = spa_strdup(vd->vdev_devid);
496	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
497	    &vd->vdev_physpath) == 0)
498		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
499	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
500		vd->vdev_fru = spa_strdup(vd->vdev_fru);
501
502	/*
503	 * Set the whole_disk property.  If it's not specified, leave the value
504	 * as -1.
505	 */
506	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
507	    &vd->vdev_wholedisk) != 0)
508		vd->vdev_wholedisk = -1ULL;
509
510	/*
511	 * Look for the 'not present' flag.  This will only be set if the device
512	 * was not present at the time of import.
513	 */
514	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
515	    &vd->vdev_not_present);
516
517	/*
518	 * Get the alignment requirement.
519	 */
520	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
521
522	/*
523	 * Retrieve the vdev creation time.
524	 */
525	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
526	    &vd->vdev_crtxg);
527
528	/*
529	 * If we're a top-level vdev, try to load the allocation parameters.
530	 */
531	if (parent && !parent->vdev_parent &&
532	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
533		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
534		    &vd->vdev_ms_array);
535		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
536		    &vd->vdev_ms_shift);
537		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
538		    &vd->vdev_asize);
539		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
540		    &vd->vdev_removing);
541	}
542
543	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
544		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
545		    alloctype == VDEV_ALLOC_ADD ||
546		    alloctype == VDEV_ALLOC_SPLIT ||
547		    alloctype == VDEV_ALLOC_ROOTPOOL);
548		vd->vdev_mg = metaslab_group_create(islog ?
549		    spa_log_class(spa) : spa_normal_class(spa), vd);
550	}
551
552	/*
553	 * If we're a leaf vdev, try to load the DTL object and other state.
554	 */
555	if (vd->vdev_ops->vdev_op_leaf &&
556	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
557	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
558		if (alloctype == VDEV_ALLOC_LOAD) {
559			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
560			    &vd->vdev_dtl_smo.smo_object);
561			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
562			    &vd->vdev_unspare);
563		}
564
565		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
566			uint64_t spare = 0;
567
568			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
569			    &spare) == 0 && spare)
570				spa_spare_add(vd);
571		}
572
573		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
574		    &vd->vdev_offline);
575
576		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
577		    &vd->vdev_resilvering);
578
579		/*
580		 * When importing a pool, we want to ignore the persistent fault
581		 * state, as the diagnosis made on another system may not be
582		 * valid in the current context.  Local vdevs will
583		 * remain in the faulted state.
584		 */
585		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
586			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
587			    &vd->vdev_faulted);
588			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
589			    &vd->vdev_degraded);
590			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
591			    &vd->vdev_removed);
592
593			if (vd->vdev_faulted || vd->vdev_degraded) {
594				char *aux;
595
596				vd->vdev_label_aux =
597				    VDEV_AUX_ERR_EXCEEDED;
598				if (nvlist_lookup_string(nv,
599				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
600				    strcmp(aux, "external") == 0)
601					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
602			}
603		}
604	}
605
606	/*
607	 * Add ourselves to the parent's list of children.
608	 */
609	vdev_add_child(parent, vd);
610
611	*vdp = vd;
612
613	return (0);
614}
615
616void
617vdev_free(vdev_t *vd)
618{
619	spa_t *spa = vd->vdev_spa;
620
621	/*
622	 * vdev_free() implies closing the vdev first.  This is simpler than
623	 * trying to ensure complicated semantics for all callers.
624	 */
625	vdev_close(vd);
626
627	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
628	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
629
630	/*
631	 * Free all children.
632	 */
633	for (int c = 0; c < vd->vdev_children; c++)
634		vdev_free(vd->vdev_child[c]);
635
636	ASSERT(vd->vdev_child == NULL);
637	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
638
639	/*
640	 * Discard allocation state.
641	 */
642	if (vd->vdev_mg != NULL) {
643		vdev_metaslab_fini(vd);
644		metaslab_group_destroy(vd->vdev_mg);
645	}
646
647	ASSERT0(vd->vdev_stat.vs_space);
648	ASSERT0(vd->vdev_stat.vs_dspace);
649	ASSERT0(vd->vdev_stat.vs_alloc);
650
651	/*
652	 * Remove this vdev from its parent's child list.
653	 */
654	vdev_remove_child(vd->vdev_parent, vd);
655
656	ASSERT(vd->vdev_parent == NULL);
657
658	/*
659	 * Clean up vdev structure.
660	 */
661	vdev_queue_fini(vd);
662	vdev_cache_fini(vd);
663
664	if (vd->vdev_path)
665		spa_strfree(vd->vdev_path);
666	if (vd->vdev_devid)
667		spa_strfree(vd->vdev_devid);
668	if (vd->vdev_physpath)
669		spa_strfree(vd->vdev_physpath);
670	if (vd->vdev_fru)
671		spa_strfree(vd->vdev_fru);
672
673	if (vd->vdev_isspare)
674		spa_spare_remove(vd);
675	if (vd->vdev_isl2cache)
676		spa_l2cache_remove(vd);
677
678	txg_list_destroy(&vd->vdev_ms_list);
679	txg_list_destroy(&vd->vdev_dtl_list);
680
681	mutex_enter(&vd->vdev_dtl_lock);
682	for (int t = 0; t < DTL_TYPES; t++) {
683		space_map_unload(&vd->vdev_dtl[t]);
684		space_map_destroy(&vd->vdev_dtl[t]);
685	}
686	mutex_exit(&vd->vdev_dtl_lock);
687
688	mutex_destroy(&vd->vdev_dtl_lock);
689	mutex_destroy(&vd->vdev_stat_lock);
690	mutex_destroy(&vd->vdev_probe_lock);
691
692	if (vd == spa->spa_root_vdev)
693		spa->spa_root_vdev = NULL;
694
695	kmem_free(vd, sizeof (vdev_t));
696}
697
698/*
699 * Transfer top-level vdev state from svd to tvd.
700 */
701static void
702vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
703{
704	spa_t *spa = svd->vdev_spa;
705	metaslab_t *msp;
706	vdev_t *vd;
707	int t;
708
709	ASSERT(tvd == tvd->vdev_top);
710
711	tvd->vdev_ms_array = svd->vdev_ms_array;
712	tvd->vdev_ms_shift = svd->vdev_ms_shift;
713	tvd->vdev_ms_count = svd->vdev_ms_count;
714
715	svd->vdev_ms_array = 0;
716	svd->vdev_ms_shift = 0;
717	svd->vdev_ms_count = 0;
718
719	if (tvd->vdev_mg)
720		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
721	tvd->vdev_mg = svd->vdev_mg;
722	tvd->vdev_ms = svd->vdev_ms;
723
724	svd->vdev_mg = NULL;
725	svd->vdev_ms = NULL;
726
727	if (tvd->vdev_mg != NULL)
728		tvd->vdev_mg->mg_vd = tvd;
729
730	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
731	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
732	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
733
734	svd->vdev_stat.vs_alloc = 0;
735	svd->vdev_stat.vs_space = 0;
736	svd->vdev_stat.vs_dspace = 0;
737
738	for (t = 0; t < TXG_SIZE; t++) {
739		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
740			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
741		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
742			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
743		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
744			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
745	}
746
747	if (list_link_active(&svd->vdev_config_dirty_node)) {
748		vdev_config_clean(svd);
749		vdev_config_dirty(tvd);
750	}
751
752	if (list_link_active(&svd->vdev_state_dirty_node)) {
753		vdev_state_clean(svd);
754		vdev_state_dirty(tvd);
755	}
756
757	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
758	svd->vdev_deflate_ratio = 0;
759
760	tvd->vdev_islog = svd->vdev_islog;
761	svd->vdev_islog = 0;
762}
763
764static void
765vdev_top_update(vdev_t *tvd, vdev_t *vd)
766{
767	if (vd == NULL)
768		return;
769
770	vd->vdev_top = tvd;
771
772	for (int c = 0; c < vd->vdev_children; c++)
773		vdev_top_update(tvd, vd->vdev_child[c]);
774}
775
776/*
777 * Add a mirror/replacing vdev above an existing vdev.
778 */
779vdev_t *
780vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
781{
782	spa_t *spa = cvd->vdev_spa;
783	vdev_t *pvd = cvd->vdev_parent;
784	vdev_t *mvd;
785
786	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
787
788	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
789
790	mvd->vdev_asize = cvd->vdev_asize;
791	mvd->vdev_min_asize = cvd->vdev_min_asize;
792	mvd->vdev_max_asize = cvd->vdev_max_asize;
793	mvd->vdev_ashift = cvd->vdev_ashift;
794	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
795	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
796	mvd->vdev_state = cvd->vdev_state;
797	mvd->vdev_crtxg = cvd->vdev_crtxg;
798
799	vdev_remove_child(pvd, cvd);
800	vdev_add_child(pvd, mvd);
801	cvd->vdev_id = mvd->vdev_children;
802	vdev_add_child(mvd, cvd);
803	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
804
805	if (mvd == mvd->vdev_top)
806		vdev_top_transfer(cvd, mvd);
807
808	return (mvd);
809}
810
811/*
812 * Remove a 1-way mirror/replacing vdev from the tree.
813 */
814void
815vdev_remove_parent(vdev_t *cvd)
816{
817	vdev_t *mvd = cvd->vdev_parent;
818	vdev_t *pvd = mvd->vdev_parent;
819
820	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
821
822	ASSERT(mvd->vdev_children == 1);
823	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
824	    mvd->vdev_ops == &vdev_replacing_ops ||
825	    mvd->vdev_ops == &vdev_spare_ops);
826	cvd->vdev_ashift = mvd->vdev_ashift;
827	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
828	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
829
830	vdev_remove_child(mvd, cvd);
831	vdev_remove_child(pvd, mvd);
832
833	/*
834	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
835	 * Otherwise, we could have detached an offline device, and when we
836	 * go to import the pool we'll think we have two top-level vdevs,
837	 * instead of a different version of the same top-level vdev.
838	 */
839	if (mvd->vdev_top == mvd) {
840		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
841		cvd->vdev_orig_guid = cvd->vdev_guid;
842		cvd->vdev_guid += guid_delta;
843		cvd->vdev_guid_sum += guid_delta;
844	}
845	cvd->vdev_id = mvd->vdev_id;
846	vdev_add_child(pvd, cvd);
847	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
848
849	if (cvd == cvd->vdev_top)
850		vdev_top_transfer(mvd, cvd);
851
852	ASSERT(mvd->vdev_children == 0);
853	vdev_free(mvd);
854}
855
856int
857vdev_metaslab_init(vdev_t *vd, uint64_t txg)
858{
859	spa_t *spa = vd->vdev_spa;
860	objset_t *mos = spa->spa_meta_objset;
861	uint64_t m;
862	uint64_t oldc = vd->vdev_ms_count;
863	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
864	metaslab_t **mspp;
865	int error;
866
867	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
868
869	/*
870	 * This vdev is not being allocated from yet or is a hole.
871	 */
872	if (vd->vdev_ms_shift == 0)
873		return (0);
874
875	ASSERT(!vd->vdev_ishole);
876
877	/*
878	 * Compute the raidz-deflation ratio.  Note, we hard-code
879	 * in 128k (1 << 17) because it is the current "typical" blocksize.
880	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
881	 * or we will inconsistently account for existing bp's.
882	 */
883	vd->vdev_deflate_ratio = (1 << 17) /
884	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
885
886	ASSERT(oldc <= newc);
887
888	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
889
890	if (oldc != 0) {
891		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
892		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
893	}
894
895	vd->vdev_ms = mspp;
896	vd->vdev_ms_count = newc;
897
898	for (m = oldc; m < newc; m++) {
899		space_map_obj_t smo = { 0, 0, 0 };
900		if (txg == 0) {
901			uint64_t object = 0;
902			error = dmu_read(mos, vd->vdev_ms_array,
903			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
904			    DMU_READ_PREFETCH);
905			if (error)
906				return (error);
907			if (object != 0) {
908				dmu_buf_t *db;
909				error = dmu_bonus_hold(mos, object, FTAG, &db);
910				if (error)
911					return (error);
912				ASSERT3U(db->db_size, >=, sizeof (smo));
913				bcopy(db->db_data, &smo, sizeof (smo));
914				ASSERT3U(smo.smo_object, ==, object);
915				dmu_buf_rele(db, FTAG);
916			}
917		}
918		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
919		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
920	}
921
922	if (txg == 0)
923		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
924
925	/*
926	 * If the vdev is being removed we don't activate
927	 * the metaslabs since we want to ensure that no new
928	 * allocations are performed on this device.
929	 */
930	if (oldc == 0 && !vd->vdev_removing)
931		metaslab_group_activate(vd->vdev_mg);
932
933	if (txg == 0)
934		spa_config_exit(spa, SCL_ALLOC, FTAG);
935
936	return (0);
937}
938
939void
940vdev_metaslab_fini(vdev_t *vd)
941{
942	uint64_t m;
943	uint64_t count = vd->vdev_ms_count;
944
945	if (vd->vdev_ms != NULL) {
946		metaslab_group_passivate(vd->vdev_mg);
947		for (m = 0; m < count; m++)
948			if (vd->vdev_ms[m] != NULL)
949				metaslab_fini(vd->vdev_ms[m]);
950		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
951		vd->vdev_ms = NULL;
952	}
953}
954
955typedef struct vdev_probe_stats {
956	boolean_t	vps_readable;
957	boolean_t	vps_writeable;
958	int		vps_flags;
959} vdev_probe_stats_t;
960
961static void
962vdev_probe_done(zio_t *zio)
963{
964	spa_t *spa = zio->io_spa;
965	vdev_t *vd = zio->io_vd;
966	vdev_probe_stats_t *vps = zio->io_private;
967
968	ASSERT(vd->vdev_probe_zio != NULL);
969
970	if (zio->io_type == ZIO_TYPE_READ) {
971		if (zio->io_error == 0)
972			vps->vps_readable = 1;
973		if (zio->io_error == 0 && spa_writeable(spa)) {
974			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
975			    zio->io_offset, zio->io_size, zio->io_data,
976			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
977			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
978		} else {
979			zio_buf_free(zio->io_data, zio->io_size);
980		}
981	} else if (zio->io_type == ZIO_TYPE_WRITE) {
982		if (zio->io_error == 0)
983			vps->vps_writeable = 1;
984		zio_buf_free(zio->io_data, zio->io_size);
985	} else if (zio->io_type == ZIO_TYPE_NULL) {
986		zio_t *pio;
987
988		vd->vdev_cant_read |= !vps->vps_readable;
989		vd->vdev_cant_write |= !vps->vps_writeable;
990
991		if (vdev_readable(vd) &&
992		    (vdev_writeable(vd) || !spa_writeable(spa))) {
993			zio->io_error = 0;
994		} else {
995			ASSERT(zio->io_error != 0);
996			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
997			    spa, vd, NULL, 0, 0);
998			zio->io_error = SET_ERROR(ENXIO);
999		}
1000
1001		mutex_enter(&vd->vdev_probe_lock);
1002		ASSERT(vd->vdev_probe_zio == zio);
1003		vd->vdev_probe_zio = NULL;
1004		mutex_exit(&vd->vdev_probe_lock);
1005
1006		while ((pio = zio_walk_parents(zio)) != NULL)
1007			if (!vdev_accessible(vd, pio))
1008				pio->io_error = SET_ERROR(ENXIO);
1009
1010		kmem_free(vps, sizeof (*vps));
1011	}
1012}
1013
1014/*
1015 * Determine whether this device is accessible.
1016 *
1017 * Read and write to several known locations: the pad regions of each
1018 * vdev label but the first, which we leave alone in case it contains
1019 * a VTOC.
1020 */
1021zio_t *
1022vdev_probe(vdev_t *vd, zio_t *zio)
1023{
1024	spa_t *spa = vd->vdev_spa;
1025	vdev_probe_stats_t *vps = NULL;
1026	zio_t *pio;
1027
1028	ASSERT(vd->vdev_ops->vdev_op_leaf);
1029
1030	/*
1031	 * Don't probe the probe.
1032	 */
1033	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1034		return (NULL);
1035
1036	/*
1037	 * To prevent 'probe storms' when a device fails, we create
1038	 * just one probe i/o at a time.  All zios that want to probe
1039	 * this vdev will become parents of the probe io.
1040	 */
1041	mutex_enter(&vd->vdev_probe_lock);
1042
1043	if ((pio = vd->vdev_probe_zio) == NULL) {
1044		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1045
1046		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1047		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1048		    ZIO_FLAG_TRYHARD;
1049
1050		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1051			/*
1052			 * vdev_cant_read and vdev_cant_write can only
1053			 * transition from TRUE to FALSE when we have the
1054			 * SCL_ZIO lock as writer; otherwise they can only
1055			 * transition from FALSE to TRUE.  This ensures that
1056			 * any zio looking at these values can assume that
1057			 * failures persist for the life of the I/O.  That's
1058			 * important because when a device has intermittent
1059			 * connectivity problems, we want to ensure that
1060			 * they're ascribed to the device (ENXIO) and not
1061			 * the zio (EIO).
1062			 *
1063			 * Since we hold SCL_ZIO as writer here, clear both
1064			 * values so the probe can reevaluate from first
1065			 * principles.
1066			 */
1067			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1068			vd->vdev_cant_read = B_FALSE;
1069			vd->vdev_cant_write = B_FALSE;
1070		}
1071
1072		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1073		    vdev_probe_done, vps,
1074		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1075
1076		/*
1077		 * We can't change the vdev state in this context, so we
1078		 * kick off an async task to do it on our behalf.
1079		 */
1080		if (zio != NULL) {
1081			vd->vdev_probe_wanted = B_TRUE;
1082			spa_async_request(spa, SPA_ASYNC_PROBE);
1083		}
1084	}
1085
1086	if (zio != NULL)
1087		zio_add_child(zio, pio);
1088
1089	mutex_exit(&vd->vdev_probe_lock);
1090
1091	if (vps == NULL) {
1092		ASSERT(zio != NULL);
1093		return (NULL);
1094	}
1095
1096	for (int l = 1; l < VDEV_LABELS; l++) {
1097		zio_nowait(zio_read_phys(pio, vd,
1098		    vdev_label_offset(vd->vdev_psize, l,
1099		    offsetof(vdev_label_t, vl_pad2)),
1100		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1101		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1102		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1103	}
1104
1105	if (zio == NULL)
1106		return (pio);
1107
1108	zio_nowait(pio);
1109	return (NULL);
1110}
1111
1112static void
1113vdev_open_child(void *arg)
1114{
1115	vdev_t *vd = arg;
1116
1117	vd->vdev_open_thread = curthread;
1118	vd->vdev_open_error = vdev_open(vd);
1119	vd->vdev_open_thread = NULL;
1120}
1121
1122boolean_t
1123vdev_uses_zvols(vdev_t *vd)
1124{
1125	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1126	    strlen(ZVOL_DIR)) == 0)
1127		return (B_TRUE);
1128	for (int c = 0; c < vd->vdev_children; c++)
1129		if (vdev_uses_zvols(vd->vdev_child[c]))
1130			return (B_TRUE);
1131	return (B_FALSE);
1132}
1133
1134void
1135vdev_open_children(vdev_t *vd)
1136{
1137	taskq_t *tq;
1138	int children = vd->vdev_children;
1139
1140	/*
1141	 * in order to handle pools on top of zvols, do the opens
1142	 * in a single thread so that the same thread holds the
1143	 * spa_namespace_lock
1144	 */
1145	if (B_TRUE || vdev_uses_zvols(vd)) {
1146		for (int c = 0; c < children; c++)
1147			vd->vdev_child[c]->vdev_open_error =
1148			    vdev_open(vd->vdev_child[c]);
1149		return;
1150	}
1151	tq = taskq_create("vdev_open", children, minclsyspri,
1152	    children, children, TASKQ_PREPOPULATE);
1153
1154	for (int c = 0; c < children; c++)
1155		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1156		    TQ_SLEEP) != 0);
1157
1158	taskq_destroy(tq);
1159}
1160
1161/*
1162 * Prepare a virtual device for access.
1163 */
1164int
1165vdev_open(vdev_t *vd)
1166{
1167	spa_t *spa = vd->vdev_spa;
1168	int error;
1169	uint64_t osize = 0;
1170	uint64_t max_osize = 0;
1171	uint64_t asize, max_asize, psize;
1172	uint64_t logical_ashift = 0;
1173	uint64_t physical_ashift = 0;
1174
1175	ASSERT(vd->vdev_open_thread == curthread ||
1176	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1177	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1178	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1179	    vd->vdev_state == VDEV_STATE_OFFLINE);
1180
1181	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1182	vd->vdev_cant_read = B_FALSE;
1183	vd->vdev_cant_write = B_FALSE;
1184	vd->vdev_min_asize = vdev_get_min_asize(vd);
1185
1186	/*
1187	 * If this vdev is not removed, check its fault status.  If it's
1188	 * faulted, bail out of the open.
1189	 */
1190	if (!vd->vdev_removed && vd->vdev_faulted) {
1191		ASSERT(vd->vdev_children == 0);
1192		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1193		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1194		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1195		    vd->vdev_label_aux);
1196		return (SET_ERROR(ENXIO));
1197	} else if (vd->vdev_offline) {
1198		ASSERT(vd->vdev_children == 0);
1199		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1200		return (SET_ERROR(ENXIO));
1201	}
1202
1203	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1204	    &logical_ashift, &physical_ashift);
1205
1206	/*
1207	 * Reset the vdev_reopening flag so that we actually close
1208	 * the vdev on error.
1209	 */
1210	vd->vdev_reopening = B_FALSE;
1211	if (zio_injection_enabled && error == 0)
1212		error = zio_handle_device_injection(vd, NULL, ENXIO);
1213
1214	if (error) {
1215		if (vd->vdev_removed &&
1216		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1217			vd->vdev_removed = B_FALSE;
1218
1219		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1220		    vd->vdev_stat.vs_aux);
1221		return (error);
1222	}
1223
1224	vd->vdev_removed = B_FALSE;
1225
1226	/*
1227	 * Recheck the faulted flag now that we have confirmed that
1228	 * the vdev is accessible.  If we're faulted, bail.
1229	 */
1230	if (vd->vdev_faulted) {
1231		ASSERT(vd->vdev_children == 0);
1232		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1233		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1234		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1235		    vd->vdev_label_aux);
1236		return (SET_ERROR(ENXIO));
1237	}
1238
1239	if (vd->vdev_degraded) {
1240		ASSERT(vd->vdev_children == 0);
1241		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1242		    VDEV_AUX_ERR_EXCEEDED);
1243	} else {
1244		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1245	}
1246
1247	/*
1248	 * For hole or missing vdevs we just return success.
1249	 */
1250	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1251		return (0);
1252
1253	if (vd->vdev_ops->vdev_op_leaf) {
1254		vd->vdev_notrim = B_FALSE;
1255		trim_map_create(vd);
1256	}
1257
1258	for (int c = 0; c < vd->vdev_children; c++) {
1259		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1260			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1261			    VDEV_AUX_NONE);
1262			break;
1263		}
1264	}
1265
1266	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1267	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1268
1269	if (vd->vdev_children == 0) {
1270		if (osize < SPA_MINDEVSIZE) {
1271			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1272			    VDEV_AUX_TOO_SMALL);
1273			return (SET_ERROR(EOVERFLOW));
1274		}
1275		psize = osize;
1276		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1277		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1278		    VDEV_LABEL_END_SIZE);
1279	} else {
1280		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1281		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1282			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1283			    VDEV_AUX_TOO_SMALL);
1284			return (SET_ERROR(EOVERFLOW));
1285		}
1286		psize = 0;
1287		asize = osize;
1288		max_asize = max_osize;
1289	}
1290
1291	vd->vdev_psize = psize;
1292
1293	/*
1294	 * Make sure the allocatable size hasn't shrunk.
1295	 */
1296	if (asize < vd->vdev_min_asize) {
1297		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1298		    VDEV_AUX_BAD_LABEL);
1299		return (SET_ERROR(EINVAL));
1300	}
1301
1302	vd->vdev_physical_ashift =
1303	    MAX(physical_ashift, vd->vdev_physical_ashift);
1304	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1305	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1306
1307	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1308		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1309		    VDEV_AUX_ASHIFT_TOO_BIG);
1310		return (EINVAL);
1311	}
1312
1313	if (vd->vdev_asize == 0) {
1314		/*
1315		 * This is the first-ever open, so use the computed values.
1316		 * For testing purposes, a higher ashift can be requested.
1317		 */
1318		vd->vdev_asize = asize;
1319		vd->vdev_max_asize = max_asize;
1320	} else {
1321		/*
1322		 * Make sure the alignment requirement hasn't increased.
1323		 */
1324		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1325		    vd->vdev_ops->vdev_op_leaf) {
1326			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1327			    VDEV_AUX_BAD_LABEL);
1328			return (EINVAL);
1329		}
1330		vd->vdev_max_asize = max_asize;
1331	}
1332
1333	/*
1334	 * If all children are healthy and the asize has increased,
1335	 * then we've experienced dynamic LUN growth.  If automatic
1336	 * expansion is enabled then use the additional space.
1337	 */
1338	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1339	    (vd->vdev_expanding || spa->spa_autoexpand))
1340		vd->vdev_asize = asize;
1341
1342	vdev_set_min_asize(vd);
1343
1344	/*
1345	 * Ensure we can issue some IO before declaring the
1346	 * vdev open for business.
1347	 */
1348	if (vd->vdev_ops->vdev_op_leaf &&
1349	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1350		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1351		    VDEV_AUX_ERR_EXCEEDED);
1352		return (error);
1353	}
1354
1355	/*
1356	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1357	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1358	 * since this would just restart the scrub we are already doing.
1359	 */
1360	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1361	    vdev_resilver_needed(vd, NULL, NULL))
1362		spa_async_request(spa, SPA_ASYNC_RESILVER);
1363
1364	return (0);
1365}
1366
1367/*
1368 * Called once the vdevs are all opened, this routine validates the label
1369 * contents.  This needs to be done before vdev_load() so that we don't
1370 * inadvertently do repair I/Os to the wrong device.
1371 *
1372 * If 'strict' is false ignore the spa guid check. This is necessary because
1373 * if the machine crashed during a re-guid the new guid might have been written
1374 * to all of the vdev labels, but not the cached config. The strict check
1375 * will be performed when the pool is opened again using the mos config.
1376 *
1377 * This function will only return failure if one of the vdevs indicates that it
1378 * has since been destroyed or exported.  This is only possible if
1379 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1380 * will be updated but the function will return 0.
1381 */
1382int
1383vdev_validate(vdev_t *vd, boolean_t strict)
1384{
1385	spa_t *spa = vd->vdev_spa;
1386	nvlist_t *label;
1387	uint64_t guid = 0, top_guid;
1388	uint64_t state;
1389
1390	for (int c = 0; c < vd->vdev_children; c++)
1391		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1392			return (SET_ERROR(EBADF));
1393
1394	/*
1395	 * If the device has already failed, or was marked offline, don't do
1396	 * any further validation.  Otherwise, label I/O will fail and we will
1397	 * overwrite the previous state.
1398	 */
1399	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1400		uint64_t aux_guid = 0;
1401		nvlist_t *nvl;
1402		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1403		    spa_last_synced_txg(spa) : -1ULL;
1404
1405		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1406			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1407			    VDEV_AUX_BAD_LABEL);
1408			return (0);
1409		}
1410
1411		/*
1412		 * Determine if this vdev has been split off into another
1413		 * pool.  If so, then refuse to open it.
1414		 */
1415		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1416		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1417			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1418			    VDEV_AUX_SPLIT_POOL);
1419			nvlist_free(label);
1420			return (0);
1421		}
1422
1423		if (strict && (nvlist_lookup_uint64(label,
1424		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1425		    guid != spa_guid(spa))) {
1426			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1427			    VDEV_AUX_CORRUPT_DATA);
1428			nvlist_free(label);
1429			return (0);
1430		}
1431
1432		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1433		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1434		    &aux_guid) != 0)
1435			aux_guid = 0;
1436
1437		/*
1438		 * If this vdev just became a top-level vdev because its
1439		 * sibling was detached, it will have adopted the parent's
1440		 * vdev guid -- but the label may or may not be on disk yet.
1441		 * Fortunately, either version of the label will have the
1442		 * same top guid, so if we're a top-level vdev, we can
1443		 * safely compare to that instead.
1444		 *
1445		 * If we split this vdev off instead, then we also check the
1446		 * original pool's guid.  We don't want to consider the vdev
1447		 * corrupt if it is partway through a split operation.
1448		 */
1449		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1450		    &guid) != 0 ||
1451		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1452		    &top_guid) != 0 ||
1453		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1454		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1455			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1456			    VDEV_AUX_CORRUPT_DATA);
1457			nvlist_free(label);
1458			return (0);
1459		}
1460
1461		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1462		    &state) != 0) {
1463			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1464			    VDEV_AUX_CORRUPT_DATA);
1465			nvlist_free(label);
1466			return (0);
1467		}
1468
1469		nvlist_free(label);
1470
1471		/*
1472		 * If this is a verbatim import, no need to check the
1473		 * state of the pool.
1474		 */
1475		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1476		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1477		    state != POOL_STATE_ACTIVE)
1478			return (SET_ERROR(EBADF));
1479
1480		/*
1481		 * If we were able to open and validate a vdev that was
1482		 * previously marked permanently unavailable, clear that state
1483		 * now.
1484		 */
1485		if (vd->vdev_not_present)
1486			vd->vdev_not_present = 0;
1487	}
1488
1489	return (0);
1490}
1491
1492/*
1493 * Close a virtual device.
1494 */
1495void
1496vdev_close(vdev_t *vd)
1497{
1498	spa_t *spa = vd->vdev_spa;
1499	vdev_t *pvd = vd->vdev_parent;
1500
1501	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1502
1503	/*
1504	 * If our parent is reopening, then we are as well, unless we are
1505	 * going offline.
1506	 */
1507	if (pvd != NULL && pvd->vdev_reopening)
1508		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1509
1510	vd->vdev_ops->vdev_op_close(vd);
1511
1512	vdev_cache_purge(vd);
1513
1514	if (vd->vdev_ops->vdev_op_leaf)
1515		trim_map_destroy(vd);
1516
1517	/*
1518	 * We record the previous state before we close it, so that if we are
1519	 * doing a reopen(), we don't generate FMA ereports if we notice that
1520	 * it's still faulted.
1521	 */
1522	vd->vdev_prevstate = vd->vdev_state;
1523
1524	if (vd->vdev_offline)
1525		vd->vdev_state = VDEV_STATE_OFFLINE;
1526	else
1527		vd->vdev_state = VDEV_STATE_CLOSED;
1528	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1529}
1530
1531void
1532vdev_hold(vdev_t *vd)
1533{
1534	spa_t *spa = vd->vdev_spa;
1535
1536	ASSERT(spa_is_root(spa));
1537	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1538		return;
1539
1540	for (int c = 0; c < vd->vdev_children; c++)
1541		vdev_hold(vd->vdev_child[c]);
1542
1543	if (vd->vdev_ops->vdev_op_leaf)
1544		vd->vdev_ops->vdev_op_hold(vd);
1545}
1546
1547void
1548vdev_rele(vdev_t *vd)
1549{
1550	spa_t *spa = vd->vdev_spa;
1551
1552	ASSERT(spa_is_root(spa));
1553	for (int c = 0; c < vd->vdev_children; c++)
1554		vdev_rele(vd->vdev_child[c]);
1555
1556	if (vd->vdev_ops->vdev_op_leaf)
1557		vd->vdev_ops->vdev_op_rele(vd);
1558}
1559
1560/*
1561 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1562 * reopen leaf vdevs which had previously been opened as they might deadlock
1563 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1564 * If the leaf has never been opened then open it, as usual.
1565 */
1566void
1567vdev_reopen(vdev_t *vd)
1568{
1569	spa_t *spa = vd->vdev_spa;
1570
1571	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1572
1573	/* set the reopening flag unless we're taking the vdev offline */
1574	vd->vdev_reopening = !vd->vdev_offline;
1575	vdev_close(vd);
1576	(void) vdev_open(vd);
1577
1578	/*
1579	 * Call vdev_validate() here to make sure we have the same device.
1580	 * Otherwise, a device with an invalid label could be successfully
1581	 * opened in response to vdev_reopen().
1582	 */
1583	if (vd->vdev_aux) {
1584		(void) vdev_validate_aux(vd);
1585		if (vdev_readable(vd) && vdev_writeable(vd) &&
1586		    vd->vdev_aux == &spa->spa_l2cache &&
1587		    !l2arc_vdev_present(vd))
1588			l2arc_add_vdev(spa, vd);
1589	} else {
1590		(void) vdev_validate(vd, B_TRUE);
1591	}
1592
1593	/*
1594	 * Reassess parent vdev's health.
1595	 */
1596	vdev_propagate_state(vd);
1597}
1598
1599int
1600vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1601{
1602	int error;
1603
1604	/*
1605	 * Normally, partial opens (e.g. of a mirror) are allowed.
1606	 * For a create, however, we want to fail the request if
1607	 * there are any components we can't open.
1608	 */
1609	error = vdev_open(vd);
1610
1611	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1612		vdev_close(vd);
1613		return (error ? error : ENXIO);
1614	}
1615
1616	/*
1617	 * Recursively initialize all labels.
1618	 */
1619	if ((error = vdev_label_init(vd, txg, isreplacing ?
1620	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1621		vdev_close(vd);
1622		return (error);
1623	}
1624
1625	return (0);
1626}
1627
1628void
1629vdev_metaslab_set_size(vdev_t *vd)
1630{
1631	/*
1632	 * Aim for roughly 200 metaslabs per vdev.
1633	 */
1634	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1635	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1636}
1637
1638/*
1639 * Maximize performance by inflating the configured ashift for
1640 * top level vdevs to be as close to the physical ashift as
1641 * possible without exceeding the administrator specified
1642 * limit.
1643 */
1644void
1645vdev_ashift_optimize(vdev_t *vd)
1646{
1647	if (vd == vd->vdev_top &&
1648	    (vd->vdev_ashift < vd->vdev_physical_ashift) &&
1649	    (vd->vdev_ashift < zfs_max_auto_ashift)) {
1650		vd->vdev_ashift = MIN(zfs_max_auto_ashift,
1651		    vd->vdev_physical_ashift);
1652	}
1653}
1654
1655void
1656vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1657{
1658	ASSERT(vd == vd->vdev_top);
1659	ASSERT(!vd->vdev_ishole);
1660	ASSERT(ISP2(flags));
1661	ASSERT(spa_writeable(vd->vdev_spa));
1662
1663	if (flags & VDD_METASLAB)
1664		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1665
1666	if (flags & VDD_DTL)
1667		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1668
1669	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1670}
1671
1672/*
1673 * DTLs.
1674 *
1675 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1676 * the vdev has less than perfect replication.  There are four kinds of DTL:
1677 *
1678 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1679 *
1680 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1681 *
1682 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1683 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1684 *	txgs that was scrubbed.
1685 *
1686 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1687 *	persistent errors or just some device being offline.
1688 *	Unlike the other three, the DTL_OUTAGE map is not generally
1689 *	maintained; it's only computed when needed, typically to
1690 *	determine whether a device can be detached.
1691 *
1692 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1693 * either has the data or it doesn't.
1694 *
1695 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1696 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1697 * if any child is less than fully replicated, then so is its parent.
1698 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1699 * comprising only those txgs which appear in 'maxfaults' or more children;
1700 * those are the txgs we don't have enough replication to read.  For example,
1701 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1702 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1703 * two child DTL_MISSING maps.
1704 *
1705 * It should be clear from the above that to compute the DTLs and outage maps
1706 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1707 * Therefore, that is all we keep on disk.  When loading the pool, or after
1708 * a configuration change, we generate all other DTLs from first principles.
1709 */
1710void
1711vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1712{
1713	space_map_t *sm = &vd->vdev_dtl[t];
1714
1715	ASSERT(t < DTL_TYPES);
1716	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1717	ASSERT(spa_writeable(vd->vdev_spa));
1718
1719	mutex_enter(sm->sm_lock);
1720	if (!space_map_contains(sm, txg, size))
1721		space_map_add(sm, txg, size);
1722	mutex_exit(sm->sm_lock);
1723}
1724
1725boolean_t
1726vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1727{
1728	space_map_t *sm = &vd->vdev_dtl[t];
1729	boolean_t dirty = B_FALSE;
1730
1731	ASSERT(t < DTL_TYPES);
1732	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1733
1734	mutex_enter(sm->sm_lock);
1735	if (sm->sm_space != 0)
1736		dirty = space_map_contains(sm, txg, size);
1737	mutex_exit(sm->sm_lock);
1738
1739	return (dirty);
1740}
1741
1742boolean_t
1743vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1744{
1745	space_map_t *sm = &vd->vdev_dtl[t];
1746	boolean_t empty;
1747
1748	mutex_enter(sm->sm_lock);
1749	empty = (sm->sm_space == 0);
1750	mutex_exit(sm->sm_lock);
1751
1752	return (empty);
1753}
1754
1755/*
1756 * Reassess DTLs after a config change or scrub completion.
1757 */
1758void
1759vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1760{
1761	spa_t *spa = vd->vdev_spa;
1762	avl_tree_t reftree;
1763	int minref;
1764
1765	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1766
1767	for (int c = 0; c < vd->vdev_children; c++)
1768		vdev_dtl_reassess(vd->vdev_child[c], txg,
1769		    scrub_txg, scrub_done);
1770
1771	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1772		return;
1773
1774	if (vd->vdev_ops->vdev_op_leaf) {
1775		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1776
1777		mutex_enter(&vd->vdev_dtl_lock);
1778		if (scrub_txg != 0 &&
1779		    (spa->spa_scrub_started ||
1780		    (scn && scn->scn_phys.scn_errors == 0))) {
1781			/*
1782			 * We completed a scrub up to scrub_txg.  If we
1783			 * did it without rebooting, then the scrub dtl
1784			 * will be valid, so excise the old region and
1785			 * fold in the scrub dtl.  Otherwise, leave the
1786			 * dtl as-is if there was an error.
1787			 *
1788			 * There's little trick here: to excise the beginning
1789			 * of the DTL_MISSING map, we put it into a reference
1790			 * tree and then add a segment with refcnt -1 that
1791			 * covers the range [0, scrub_txg).  This means
1792			 * that each txg in that range has refcnt -1 or 0.
1793			 * We then add DTL_SCRUB with a refcnt of 2, so that
1794			 * entries in the range [0, scrub_txg) will have a
1795			 * positive refcnt -- either 1 or 2.  We then convert
1796			 * the reference tree into the new DTL_MISSING map.
1797			 */
1798			space_map_ref_create(&reftree);
1799			space_map_ref_add_map(&reftree,
1800			    &vd->vdev_dtl[DTL_MISSING], 1);
1801			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1802			space_map_ref_add_map(&reftree,
1803			    &vd->vdev_dtl[DTL_SCRUB], 2);
1804			space_map_ref_generate_map(&reftree,
1805			    &vd->vdev_dtl[DTL_MISSING], 1);
1806			space_map_ref_destroy(&reftree);
1807		}
1808		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1809		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1810		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1811		if (scrub_done)
1812			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1813		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1814		if (!vdev_readable(vd))
1815			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1816		else
1817			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1818			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1819		mutex_exit(&vd->vdev_dtl_lock);
1820
1821		if (txg != 0)
1822			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1823		return;
1824	}
1825
1826	mutex_enter(&vd->vdev_dtl_lock);
1827	for (int t = 0; t < DTL_TYPES; t++) {
1828		/* account for child's outage in parent's missing map */
1829		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1830		if (t == DTL_SCRUB)
1831			continue;			/* leaf vdevs only */
1832		if (t == DTL_PARTIAL)
1833			minref = 1;			/* i.e. non-zero */
1834		else if (vd->vdev_nparity != 0)
1835			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1836		else
1837			minref = vd->vdev_children;	/* any kind of mirror */
1838		space_map_ref_create(&reftree);
1839		for (int c = 0; c < vd->vdev_children; c++) {
1840			vdev_t *cvd = vd->vdev_child[c];
1841			mutex_enter(&cvd->vdev_dtl_lock);
1842			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1843			mutex_exit(&cvd->vdev_dtl_lock);
1844		}
1845		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1846		space_map_ref_destroy(&reftree);
1847	}
1848	mutex_exit(&vd->vdev_dtl_lock);
1849}
1850
1851static int
1852vdev_dtl_load(vdev_t *vd)
1853{
1854	spa_t *spa = vd->vdev_spa;
1855	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1856	objset_t *mos = spa->spa_meta_objset;
1857	dmu_buf_t *db;
1858	int error;
1859
1860	ASSERT(vd->vdev_children == 0);
1861
1862	if (smo->smo_object == 0)
1863		return (0);
1864
1865	ASSERT(!vd->vdev_ishole);
1866
1867	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1868		return (error);
1869
1870	ASSERT3U(db->db_size, >=, sizeof (*smo));
1871	bcopy(db->db_data, smo, sizeof (*smo));
1872	dmu_buf_rele(db, FTAG);
1873
1874	mutex_enter(&vd->vdev_dtl_lock);
1875	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1876	    NULL, SM_ALLOC, smo, mos);
1877	mutex_exit(&vd->vdev_dtl_lock);
1878
1879	return (error);
1880}
1881
1882void
1883vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1884{
1885	spa_t *spa = vd->vdev_spa;
1886	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1887	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1888	objset_t *mos = spa->spa_meta_objset;
1889	space_map_t smsync;
1890	kmutex_t smlock;
1891	dmu_buf_t *db;
1892	dmu_tx_t *tx;
1893
1894	ASSERT(!vd->vdev_ishole);
1895
1896	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1897
1898	if (vd->vdev_detached) {
1899		if (smo->smo_object != 0) {
1900			int err = dmu_object_free(mos, smo->smo_object, tx);
1901			ASSERT0(err);
1902			smo->smo_object = 0;
1903		}
1904		dmu_tx_commit(tx);
1905		return;
1906	}
1907
1908	if (smo->smo_object == 0) {
1909		ASSERT(smo->smo_objsize == 0);
1910		ASSERT(smo->smo_alloc == 0);
1911		smo->smo_object = dmu_object_alloc(mos,
1912		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1913		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1914		ASSERT(smo->smo_object != 0);
1915		vdev_config_dirty(vd->vdev_top);
1916	}
1917
1918	bzero(&smlock, sizeof (smlock));
1919	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1920
1921	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1922	    &smlock);
1923
1924	mutex_enter(&smlock);
1925
1926	mutex_enter(&vd->vdev_dtl_lock);
1927	space_map_walk(sm, space_map_add, &smsync);
1928	mutex_exit(&vd->vdev_dtl_lock);
1929
1930	space_map_truncate(smo, mos, tx);
1931	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1932	space_map_vacate(&smsync, NULL, NULL);
1933
1934	space_map_destroy(&smsync);
1935
1936	mutex_exit(&smlock);
1937	mutex_destroy(&smlock);
1938
1939	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1940	dmu_buf_will_dirty(db, tx);
1941	ASSERT3U(db->db_size, >=, sizeof (*smo));
1942	bcopy(smo, db->db_data, sizeof (*smo));
1943	dmu_buf_rele(db, FTAG);
1944
1945	dmu_tx_commit(tx);
1946}
1947
1948/*
1949 * Determine whether the specified vdev can be offlined/detached/removed
1950 * without losing data.
1951 */
1952boolean_t
1953vdev_dtl_required(vdev_t *vd)
1954{
1955	spa_t *spa = vd->vdev_spa;
1956	vdev_t *tvd = vd->vdev_top;
1957	uint8_t cant_read = vd->vdev_cant_read;
1958	boolean_t required;
1959
1960	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1961
1962	if (vd == spa->spa_root_vdev || vd == tvd)
1963		return (B_TRUE);
1964
1965	/*
1966	 * Temporarily mark the device as unreadable, and then determine
1967	 * whether this results in any DTL outages in the top-level vdev.
1968	 * If not, we can safely offline/detach/remove the device.
1969	 */
1970	vd->vdev_cant_read = B_TRUE;
1971	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1972	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1973	vd->vdev_cant_read = cant_read;
1974	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1975
1976	if (!required && zio_injection_enabled)
1977		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1978
1979	return (required);
1980}
1981
1982/*
1983 * Determine if resilver is needed, and if so the txg range.
1984 */
1985boolean_t
1986vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1987{
1988	boolean_t needed = B_FALSE;
1989	uint64_t thismin = UINT64_MAX;
1990	uint64_t thismax = 0;
1991
1992	if (vd->vdev_children == 0) {
1993		mutex_enter(&vd->vdev_dtl_lock);
1994		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1995		    vdev_writeable(vd)) {
1996			space_seg_t *ss;
1997
1998			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1999			thismin = ss->ss_start - 1;
2000			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
2001			thismax = ss->ss_end;
2002			needed = B_TRUE;
2003		}
2004		mutex_exit(&vd->vdev_dtl_lock);
2005	} else {
2006		for (int c = 0; c < vd->vdev_children; c++) {
2007			vdev_t *cvd = vd->vdev_child[c];
2008			uint64_t cmin, cmax;
2009
2010			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2011				thismin = MIN(thismin, cmin);
2012				thismax = MAX(thismax, cmax);
2013				needed = B_TRUE;
2014			}
2015		}
2016	}
2017
2018	if (needed && minp) {
2019		*minp = thismin;
2020		*maxp = thismax;
2021	}
2022	return (needed);
2023}
2024
2025void
2026vdev_load(vdev_t *vd)
2027{
2028	/*
2029	 * Recursively load all children.
2030	 */
2031	for (int c = 0; c < vd->vdev_children; c++)
2032		vdev_load(vd->vdev_child[c]);
2033
2034	/*
2035	 * If this is a top-level vdev, initialize its metaslabs.
2036	 */
2037	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2038	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2039	    vdev_metaslab_init(vd, 0) != 0))
2040		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2041		    VDEV_AUX_CORRUPT_DATA);
2042
2043	/*
2044	 * If this is a leaf vdev, load its DTL.
2045	 */
2046	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2047		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2048		    VDEV_AUX_CORRUPT_DATA);
2049}
2050
2051/*
2052 * The special vdev case is used for hot spares and l2cache devices.  Its
2053 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2054 * we make sure that we can open the underlying device, then try to read the
2055 * label, and make sure that the label is sane and that it hasn't been
2056 * repurposed to another pool.
2057 */
2058int
2059vdev_validate_aux(vdev_t *vd)
2060{
2061	nvlist_t *label;
2062	uint64_t guid, version;
2063	uint64_t state;
2064
2065	if (!vdev_readable(vd))
2066		return (0);
2067
2068	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2069		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2070		    VDEV_AUX_CORRUPT_DATA);
2071		return (-1);
2072	}
2073
2074	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2075	    !SPA_VERSION_IS_SUPPORTED(version) ||
2076	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2077	    guid != vd->vdev_guid ||
2078	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2079		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2080		    VDEV_AUX_CORRUPT_DATA);
2081		nvlist_free(label);
2082		return (-1);
2083	}
2084
2085	/*
2086	 * We don't actually check the pool state here.  If it's in fact in
2087	 * use by another pool, we update this fact on the fly when requested.
2088	 */
2089	nvlist_free(label);
2090	return (0);
2091}
2092
2093void
2094vdev_remove(vdev_t *vd, uint64_t txg)
2095{
2096	spa_t *spa = vd->vdev_spa;
2097	objset_t *mos = spa->spa_meta_objset;
2098	dmu_tx_t *tx;
2099
2100	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2101
2102	if (vd->vdev_dtl_smo.smo_object) {
2103		ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2104		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2105		vd->vdev_dtl_smo.smo_object = 0;
2106	}
2107
2108	if (vd->vdev_ms != NULL) {
2109		for (int m = 0; m < vd->vdev_ms_count; m++) {
2110			metaslab_t *msp = vd->vdev_ms[m];
2111
2112			if (msp == NULL || msp->ms_smo.smo_object == 0)
2113				continue;
2114
2115			ASSERT0(msp->ms_smo.smo_alloc);
2116			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2117			msp->ms_smo.smo_object = 0;
2118		}
2119	}
2120
2121	if (vd->vdev_ms_array) {
2122		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2123		vd->vdev_ms_array = 0;
2124		vd->vdev_ms_shift = 0;
2125	}
2126	dmu_tx_commit(tx);
2127}
2128
2129void
2130vdev_sync_done(vdev_t *vd, uint64_t txg)
2131{
2132	metaslab_t *msp;
2133	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2134
2135	ASSERT(!vd->vdev_ishole);
2136
2137	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2138		metaslab_sync_done(msp, txg);
2139
2140	if (reassess)
2141		metaslab_sync_reassess(vd->vdev_mg);
2142}
2143
2144void
2145vdev_sync(vdev_t *vd, uint64_t txg)
2146{
2147	spa_t *spa = vd->vdev_spa;
2148	vdev_t *lvd;
2149	metaslab_t *msp;
2150	dmu_tx_t *tx;
2151
2152	ASSERT(!vd->vdev_ishole);
2153
2154	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2155		ASSERT(vd == vd->vdev_top);
2156		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2157		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2158		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2159		ASSERT(vd->vdev_ms_array != 0);
2160		vdev_config_dirty(vd);
2161		dmu_tx_commit(tx);
2162	}
2163
2164	/*
2165	 * Remove the metadata associated with this vdev once it's empty.
2166	 */
2167	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2168		vdev_remove(vd, txg);
2169
2170	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2171		metaslab_sync(msp, txg);
2172		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2173	}
2174
2175	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2176		vdev_dtl_sync(lvd, txg);
2177
2178	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2179}
2180
2181uint64_t
2182vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2183{
2184	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2185}
2186
2187/*
2188 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2189 * not be opened, and no I/O is attempted.
2190 */
2191int
2192vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2193{
2194	vdev_t *vd, *tvd;
2195
2196	spa_vdev_state_enter(spa, SCL_NONE);
2197
2198	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2199		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2200
2201	if (!vd->vdev_ops->vdev_op_leaf)
2202		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2203
2204	tvd = vd->vdev_top;
2205
2206	/*
2207	 * We don't directly use the aux state here, but if we do a
2208	 * vdev_reopen(), we need this value to be present to remember why we
2209	 * were faulted.
2210	 */
2211	vd->vdev_label_aux = aux;
2212
2213	/*
2214	 * Faulted state takes precedence over degraded.
2215	 */
2216	vd->vdev_delayed_close = B_FALSE;
2217	vd->vdev_faulted = 1ULL;
2218	vd->vdev_degraded = 0ULL;
2219	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2220
2221	/*
2222	 * If this device has the only valid copy of the data, then
2223	 * back off and simply mark the vdev as degraded instead.
2224	 */
2225	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2226		vd->vdev_degraded = 1ULL;
2227		vd->vdev_faulted = 0ULL;
2228
2229		/*
2230		 * If we reopen the device and it's not dead, only then do we
2231		 * mark it degraded.
2232		 */
2233		vdev_reopen(tvd);
2234
2235		if (vdev_readable(vd))
2236			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2237	}
2238
2239	return (spa_vdev_state_exit(spa, vd, 0));
2240}
2241
2242/*
2243 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2244 * user that something is wrong.  The vdev continues to operate as normal as far
2245 * as I/O is concerned.
2246 */
2247int
2248vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2249{
2250	vdev_t *vd;
2251
2252	spa_vdev_state_enter(spa, SCL_NONE);
2253
2254	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2255		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2256
2257	if (!vd->vdev_ops->vdev_op_leaf)
2258		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2259
2260	/*
2261	 * If the vdev is already faulted, then don't do anything.
2262	 */
2263	if (vd->vdev_faulted || vd->vdev_degraded)
2264		return (spa_vdev_state_exit(spa, NULL, 0));
2265
2266	vd->vdev_degraded = 1ULL;
2267	if (!vdev_is_dead(vd))
2268		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2269		    aux);
2270
2271	return (spa_vdev_state_exit(spa, vd, 0));
2272}
2273
2274/*
2275 * Online the given vdev.
2276 *
2277 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2278 * spare device should be detached when the device finishes resilvering.
2279 * Second, the online should be treated like a 'test' online case, so no FMA
2280 * events are generated if the device fails to open.
2281 */
2282int
2283vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2284{
2285	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2286
2287	spa_vdev_state_enter(spa, SCL_NONE);
2288
2289	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2290		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2291
2292	if (!vd->vdev_ops->vdev_op_leaf)
2293		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2294
2295	tvd = vd->vdev_top;
2296	vd->vdev_offline = B_FALSE;
2297	vd->vdev_tmpoffline = B_FALSE;
2298	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2299	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2300
2301	/* XXX - L2ARC 1.0 does not support expansion */
2302	if (!vd->vdev_aux) {
2303		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2304			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2305	}
2306
2307	vdev_reopen(tvd);
2308	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2309
2310	if (!vd->vdev_aux) {
2311		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2312			pvd->vdev_expanding = B_FALSE;
2313	}
2314
2315	if (newstate)
2316		*newstate = vd->vdev_state;
2317	if ((flags & ZFS_ONLINE_UNSPARE) &&
2318	    !vdev_is_dead(vd) && vd->vdev_parent &&
2319	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2320	    vd->vdev_parent->vdev_child[0] == vd)
2321		vd->vdev_unspare = B_TRUE;
2322
2323	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2324
2325		/* XXX - L2ARC 1.0 does not support expansion */
2326		if (vd->vdev_aux)
2327			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2328		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2329	}
2330	return (spa_vdev_state_exit(spa, vd, 0));
2331}
2332
2333static int
2334vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2335{
2336	vdev_t *vd, *tvd;
2337	int error = 0;
2338	uint64_t generation;
2339	metaslab_group_t *mg;
2340
2341top:
2342	spa_vdev_state_enter(spa, SCL_ALLOC);
2343
2344	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2345		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2346
2347	if (!vd->vdev_ops->vdev_op_leaf)
2348		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2349
2350	tvd = vd->vdev_top;
2351	mg = tvd->vdev_mg;
2352	generation = spa->spa_config_generation + 1;
2353
2354	/*
2355	 * If the device isn't already offline, try to offline it.
2356	 */
2357	if (!vd->vdev_offline) {
2358		/*
2359		 * If this device has the only valid copy of some data,
2360		 * don't allow it to be offlined. Log devices are always
2361		 * expendable.
2362		 */
2363		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2364		    vdev_dtl_required(vd))
2365			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2366
2367		/*
2368		 * If the top-level is a slog and it has had allocations
2369		 * then proceed.  We check that the vdev's metaslab group
2370		 * is not NULL since it's possible that we may have just
2371		 * added this vdev but not yet initialized its metaslabs.
2372		 */
2373		if (tvd->vdev_islog && mg != NULL) {
2374			/*
2375			 * Prevent any future allocations.
2376			 */
2377			metaslab_group_passivate(mg);
2378			(void) spa_vdev_state_exit(spa, vd, 0);
2379
2380			error = spa_offline_log(spa);
2381
2382			spa_vdev_state_enter(spa, SCL_ALLOC);
2383
2384			/*
2385			 * Check to see if the config has changed.
2386			 */
2387			if (error || generation != spa->spa_config_generation) {
2388				metaslab_group_activate(mg);
2389				if (error)
2390					return (spa_vdev_state_exit(spa,
2391					    vd, error));
2392				(void) spa_vdev_state_exit(spa, vd, 0);
2393				goto top;
2394			}
2395			ASSERT0(tvd->vdev_stat.vs_alloc);
2396		}
2397
2398		/*
2399		 * Offline this device and reopen its top-level vdev.
2400		 * If the top-level vdev is a log device then just offline
2401		 * it. Otherwise, if this action results in the top-level
2402		 * vdev becoming unusable, undo it and fail the request.
2403		 */
2404		vd->vdev_offline = B_TRUE;
2405		vdev_reopen(tvd);
2406
2407		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2408		    vdev_is_dead(tvd)) {
2409			vd->vdev_offline = B_FALSE;
2410			vdev_reopen(tvd);
2411			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2412		}
2413
2414		/*
2415		 * Add the device back into the metaslab rotor so that
2416		 * once we online the device it's open for business.
2417		 */
2418		if (tvd->vdev_islog && mg != NULL)
2419			metaslab_group_activate(mg);
2420	}
2421
2422	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2423
2424	return (spa_vdev_state_exit(spa, vd, 0));
2425}
2426
2427int
2428vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2429{
2430	int error;
2431
2432	mutex_enter(&spa->spa_vdev_top_lock);
2433	error = vdev_offline_locked(spa, guid, flags);
2434	mutex_exit(&spa->spa_vdev_top_lock);
2435
2436	return (error);
2437}
2438
2439/*
2440 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2441 * vdev_offline(), we assume the spa config is locked.  We also clear all
2442 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2443 */
2444void
2445vdev_clear(spa_t *spa, vdev_t *vd)
2446{
2447	vdev_t *rvd = spa->spa_root_vdev;
2448
2449	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2450
2451	if (vd == NULL)
2452		vd = rvd;
2453
2454	vd->vdev_stat.vs_read_errors = 0;
2455	vd->vdev_stat.vs_write_errors = 0;
2456	vd->vdev_stat.vs_checksum_errors = 0;
2457
2458	for (int c = 0; c < vd->vdev_children; c++)
2459		vdev_clear(spa, vd->vdev_child[c]);
2460
2461	if (vd == rvd) {
2462		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2463			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2464
2465		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2466			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2467	}
2468
2469	/*
2470	 * If we're in the FAULTED state or have experienced failed I/O, then
2471	 * clear the persistent state and attempt to reopen the device.  We
2472	 * also mark the vdev config dirty, so that the new faulted state is
2473	 * written out to disk.
2474	 */
2475	if (vd->vdev_faulted || vd->vdev_degraded ||
2476	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2477
2478		/*
2479		 * When reopening in reponse to a clear event, it may be due to
2480		 * a fmadm repair request.  In this case, if the device is
2481		 * still broken, we want to still post the ereport again.
2482		 */
2483		vd->vdev_forcefault = B_TRUE;
2484
2485		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2486		vd->vdev_cant_read = B_FALSE;
2487		vd->vdev_cant_write = B_FALSE;
2488
2489		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2490
2491		vd->vdev_forcefault = B_FALSE;
2492
2493		if (vd != rvd && vdev_writeable(vd->vdev_top))
2494			vdev_state_dirty(vd->vdev_top);
2495
2496		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2497			spa_async_request(spa, SPA_ASYNC_RESILVER);
2498
2499		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2500	}
2501
2502	/*
2503	 * When clearing a FMA-diagnosed fault, we always want to
2504	 * unspare the device, as we assume that the original spare was
2505	 * done in response to the FMA fault.
2506	 */
2507	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2508	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2509	    vd->vdev_parent->vdev_child[0] == vd)
2510		vd->vdev_unspare = B_TRUE;
2511}
2512
2513boolean_t
2514vdev_is_dead(vdev_t *vd)
2515{
2516	/*
2517	 * Holes and missing devices are always considered "dead".
2518	 * This simplifies the code since we don't have to check for
2519	 * these types of devices in the various code paths.
2520	 * Instead we rely on the fact that we skip over dead devices
2521	 * before issuing I/O to them.
2522	 */
2523	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2524	    vd->vdev_ops == &vdev_missing_ops);
2525}
2526
2527boolean_t
2528vdev_readable(vdev_t *vd)
2529{
2530	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2531}
2532
2533boolean_t
2534vdev_writeable(vdev_t *vd)
2535{
2536	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2537}
2538
2539boolean_t
2540vdev_allocatable(vdev_t *vd)
2541{
2542	uint64_t state = vd->vdev_state;
2543
2544	/*
2545	 * We currently allow allocations from vdevs which may be in the
2546	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2547	 * fails to reopen then we'll catch it later when we're holding
2548	 * the proper locks.  Note that we have to get the vdev state
2549	 * in a local variable because although it changes atomically,
2550	 * we're asking two separate questions about it.
2551	 */
2552	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2553	    !vd->vdev_cant_write && !vd->vdev_ishole);
2554}
2555
2556boolean_t
2557vdev_accessible(vdev_t *vd, zio_t *zio)
2558{
2559	ASSERT(zio->io_vd == vd);
2560
2561	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2562		return (B_FALSE);
2563
2564	if (zio->io_type == ZIO_TYPE_READ)
2565		return (!vd->vdev_cant_read);
2566
2567	if (zio->io_type == ZIO_TYPE_WRITE)
2568		return (!vd->vdev_cant_write);
2569
2570	return (B_TRUE);
2571}
2572
2573/*
2574 * Get statistics for the given vdev.
2575 */
2576void
2577vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2578{
2579	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2580
2581	mutex_enter(&vd->vdev_stat_lock);
2582	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2583	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2584	vs->vs_state = vd->vdev_state;
2585	vs->vs_rsize = vdev_get_min_asize(vd);
2586	if (vd->vdev_ops->vdev_op_leaf)
2587		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2588	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2589	vs->vs_configured_ashift = vd->vdev_top != NULL
2590	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2591	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2592	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2593	mutex_exit(&vd->vdev_stat_lock);
2594
2595	/*
2596	 * If we're getting stats on the root vdev, aggregate the I/O counts
2597	 * over all top-level vdevs (i.e. the direct children of the root).
2598	 */
2599	if (vd == rvd) {
2600		for (int c = 0; c < rvd->vdev_children; c++) {
2601			vdev_t *cvd = rvd->vdev_child[c];
2602			vdev_stat_t *cvs = &cvd->vdev_stat;
2603
2604			mutex_enter(&vd->vdev_stat_lock);
2605			for (int t = 0; t < ZIO_TYPES; t++) {
2606				vs->vs_ops[t] += cvs->vs_ops[t];
2607				vs->vs_bytes[t] += cvs->vs_bytes[t];
2608			}
2609			cvs->vs_scan_removing = cvd->vdev_removing;
2610			mutex_exit(&vd->vdev_stat_lock);
2611		}
2612	}
2613}
2614
2615void
2616vdev_clear_stats(vdev_t *vd)
2617{
2618	mutex_enter(&vd->vdev_stat_lock);
2619	vd->vdev_stat.vs_space = 0;
2620	vd->vdev_stat.vs_dspace = 0;
2621	vd->vdev_stat.vs_alloc = 0;
2622	mutex_exit(&vd->vdev_stat_lock);
2623}
2624
2625void
2626vdev_scan_stat_init(vdev_t *vd)
2627{
2628	vdev_stat_t *vs = &vd->vdev_stat;
2629
2630	for (int c = 0; c < vd->vdev_children; c++)
2631		vdev_scan_stat_init(vd->vdev_child[c]);
2632
2633	mutex_enter(&vd->vdev_stat_lock);
2634	vs->vs_scan_processed = 0;
2635	mutex_exit(&vd->vdev_stat_lock);
2636}
2637
2638void
2639vdev_stat_update(zio_t *zio, uint64_t psize)
2640{
2641	spa_t *spa = zio->io_spa;
2642	vdev_t *rvd = spa->spa_root_vdev;
2643	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2644	vdev_t *pvd;
2645	uint64_t txg = zio->io_txg;
2646	vdev_stat_t *vs = &vd->vdev_stat;
2647	zio_type_t type = zio->io_type;
2648	int flags = zio->io_flags;
2649
2650	/*
2651	 * If this i/o is a gang leader, it didn't do any actual work.
2652	 */
2653	if (zio->io_gang_tree)
2654		return;
2655
2656	if (zio->io_error == 0) {
2657		/*
2658		 * If this is a root i/o, don't count it -- we've already
2659		 * counted the top-level vdevs, and vdev_get_stats() will
2660		 * aggregate them when asked.  This reduces contention on
2661		 * the root vdev_stat_lock and implicitly handles blocks
2662		 * that compress away to holes, for which there is no i/o.
2663		 * (Holes never create vdev children, so all the counters
2664		 * remain zero, which is what we want.)
2665		 *
2666		 * Note: this only applies to successful i/o (io_error == 0)
2667		 * because unlike i/o counts, errors are not additive.
2668		 * When reading a ditto block, for example, failure of
2669		 * one top-level vdev does not imply a root-level error.
2670		 */
2671		if (vd == rvd)
2672			return;
2673
2674		ASSERT(vd == zio->io_vd);
2675
2676		if (flags & ZIO_FLAG_IO_BYPASS)
2677			return;
2678
2679		mutex_enter(&vd->vdev_stat_lock);
2680
2681		if (flags & ZIO_FLAG_IO_REPAIR) {
2682			if (flags & ZIO_FLAG_SCAN_THREAD) {
2683				dsl_scan_phys_t *scn_phys =
2684				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2685				uint64_t *processed = &scn_phys->scn_processed;
2686
2687				/* XXX cleanup? */
2688				if (vd->vdev_ops->vdev_op_leaf)
2689					atomic_add_64(processed, psize);
2690				vs->vs_scan_processed += psize;
2691			}
2692
2693			if (flags & ZIO_FLAG_SELF_HEAL)
2694				vs->vs_self_healed += psize;
2695		}
2696
2697		vs->vs_ops[type]++;
2698		vs->vs_bytes[type] += psize;
2699
2700		mutex_exit(&vd->vdev_stat_lock);
2701		return;
2702	}
2703
2704	if (flags & ZIO_FLAG_SPECULATIVE)
2705		return;
2706
2707	/*
2708	 * If this is an I/O error that is going to be retried, then ignore the
2709	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2710	 * hard errors, when in reality they can happen for any number of
2711	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2712	 */
2713	if (zio->io_error == EIO &&
2714	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2715		return;
2716
2717	/*
2718	 * Intent logs writes won't propagate their error to the root
2719	 * I/O so don't mark these types of failures as pool-level
2720	 * errors.
2721	 */
2722	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2723		return;
2724
2725	mutex_enter(&vd->vdev_stat_lock);
2726	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2727		if (zio->io_error == ECKSUM)
2728			vs->vs_checksum_errors++;
2729		else
2730			vs->vs_read_errors++;
2731	}
2732	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2733		vs->vs_write_errors++;
2734	mutex_exit(&vd->vdev_stat_lock);
2735
2736	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2737	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2738	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2739	    spa->spa_claiming)) {
2740		/*
2741		 * This is either a normal write (not a repair), or it's
2742		 * a repair induced by the scrub thread, or it's a repair
2743		 * made by zil_claim() during spa_load() in the first txg.
2744		 * In the normal case, we commit the DTL change in the same
2745		 * txg as the block was born.  In the scrub-induced repair
2746		 * case, we know that scrubs run in first-pass syncing context,
2747		 * so we commit the DTL change in spa_syncing_txg(spa).
2748		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2749		 *
2750		 * We currently do not make DTL entries for failed spontaneous
2751		 * self-healing writes triggered by normal (non-scrubbing)
2752		 * reads, because we have no transactional context in which to
2753		 * do so -- and it's not clear that it'd be desirable anyway.
2754		 */
2755		if (vd->vdev_ops->vdev_op_leaf) {
2756			uint64_t commit_txg = txg;
2757			if (flags & ZIO_FLAG_SCAN_THREAD) {
2758				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2759				ASSERT(spa_sync_pass(spa) == 1);
2760				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2761				commit_txg = spa_syncing_txg(spa);
2762			} else if (spa->spa_claiming) {
2763				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2764				commit_txg = spa_first_txg(spa);
2765			}
2766			ASSERT(commit_txg >= spa_syncing_txg(spa));
2767			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2768				return;
2769			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2770				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2771			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2772		}
2773		if (vd != rvd)
2774			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2775	}
2776}
2777
2778/*
2779 * Update the in-core space usage stats for this vdev, its metaslab class,
2780 * and the root vdev.
2781 */
2782void
2783vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2784    int64_t space_delta)
2785{
2786	int64_t dspace_delta = space_delta;
2787	spa_t *spa = vd->vdev_spa;
2788	vdev_t *rvd = spa->spa_root_vdev;
2789	metaslab_group_t *mg = vd->vdev_mg;
2790	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2791
2792	ASSERT(vd == vd->vdev_top);
2793
2794	/*
2795	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2796	 * factor.  We must calculate this here and not at the root vdev
2797	 * because the root vdev's psize-to-asize is simply the max of its
2798	 * childrens', thus not accurate enough for us.
2799	 */
2800	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2801	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2802	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2803	    vd->vdev_deflate_ratio;
2804
2805	mutex_enter(&vd->vdev_stat_lock);
2806	vd->vdev_stat.vs_alloc += alloc_delta;
2807	vd->vdev_stat.vs_space += space_delta;
2808	vd->vdev_stat.vs_dspace += dspace_delta;
2809	mutex_exit(&vd->vdev_stat_lock);
2810
2811	if (mc == spa_normal_class(spa)) {
2812		mutex_enter(&rvd->vdev_stat_lock);
2813		rvd->vdev_stat.vs_alloc += alloc_delta;
2814		rvd->vdev_stat.vs_space += space_delta;
2815		rvd->vdev_stat.vs_dspace += dspace_delta;
2816		mutex_exit(&rvd->vdev_stat_lock);
2817	}
2818
2819	if (mc != NULL) {
2820		ASSERT(rvd == vd->vdev_parent);
2821		ASSERT(vd->vdev_ms_count != 0);
2822
2823		metaslab_class_space_update(mc,
2824		    alloc_delta, defer_delta, space_delta, dspace_delta);
2825	}
2826}
2827
2828/*
2829 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2830 * so that it will be written out next time the vdev configuration is synced.
2831 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2832 */
2833void
2834vdev_config_dirty(vdev_t *vd)
2835{
2836	spa_t *spa = vd->vdev_spa;
2837	vdev_t *rvd = spa->spa_root_vdev;
2838	int c;
2839
2840	ASSERT(spa_writeable(spa));
2841
2842	/*
2843	 * If this is an aux vdev (as with l2cache and spare devices), then we
2844	 * update the vdev config manually and set the sync flag.
2845	 */
2846	if (vd->vdev_aux != NULL) {
2847		spa_aux_vdev_t *sav = vd->vdev_aux;
2848		nvlist_t **aux;
2849		uint_t naux;
2850
2851		for (c = 0; c < sav->sav_count; c++) {
2852			if (sav->sav_vdevs[c] == vd)
2853				break;
2854		}
2855
2856		if (c == sav->sav_count) {
2857			/*
2858			 * We're being removed.  There's nothing more to do.
2859			 */
2860			ASSERT(sav->sav_sync == B_TRUE);
2861			return;
2862		}
2863
2864		sav->sav_sync = B_TRUE;
2865
2866		if (nvlist_lookup_nvlist_array(sav->sav_config,
2867		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2868			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2869			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2870		}
2871
2872		ASSERT(c < naux);
2873
2874		/*
2875		 * Setting the nvlist in the middle if the array is a little
2876		 * sketchy, but it will work.
2877		 */
2878		nvlist_free(aux[c]);
2879		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2880
2881		return;
2882	}
2883
2884	/*
2885	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2886	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2887	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2888	 * so this is sufficient to ensure mutual exclusion.
2889	 */
2890	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2891	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2892	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2893
2894	if (vd == rvd) {
2895		for (c = 0; c < rvd->vdev_children; c++)
2896			vdev_config_dirty(rvd->vdev_child[c]);
2897	} else {
2898		ASSERT(vd == vd->vdev_top);
2899
2900		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2901		    !vd->vdev_ishole)
2902			list_insert_head(&spa->spa_config_dirty_list, vd);
2903	}
2904}
2905
2906void
2907vdev_config_clean(vdev_t *vd)
2908{
2909	spa_t *spa = vd->vdev_spa;
2910
2911	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2912	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2913	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2914
2915	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2916	list_remove(&spa->spa_config_dirty_list, vd);
2917}
2918
2919/*
2920 * Mark a top-level vdev's state as dirty, so that the next pass of
2921 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2922 * the state changes from larger config changes because they require
2923 * much less locking, and are often needed for administrative actions.
2924 */
2925void
2926vdev_state_dirty(vdev_t *vd)
2927{
2928	spa_t *spa = vd->vdev_spa;
2929
2930	ASSERT(spa_writeable(spa));
2931	ASSERT(vd == vd->vdev_top);
2932
2933	/*
2934	 * The state list is protected by the SCL_STATE lock.  The caller
2935	 * must either hold SCL_STATE as writer, or must be the sync thread
2936	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2937	 * so this is sufficient to ensure mutual exclusion.
2938	 */
2939	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2940	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2941	    spa_config_held(spa, SCL_STATE, RW_READER)));
2942
2943	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2944		list_insert_head(&spa->spa_state_dirty_list, vd);
2945}
2946
2947void
2948vdev_state_clean(vdev_t *vd)
2949{
2950	spa_t *spa = vd->vdev_spa;
2951
2952	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2953	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2954	    spa_config_held(spa, SCL_STATE, RW_READER)));
2955
2956	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2957	list_remove(&spa->spa_state_dirty_list, vd);
2958}
2959
2960/*
2961 * Propagate vdev state up from children to parent.
2962 */
2963void
2964vdev_propagate_state(vdev_t *vd)
2965{
2966	spa_t *spa = vd->vdev_spa;
2967	vdev_t *rvd = spa->spa_root_vdev;
2968	int degraded = 0, faulted = 0;
2969	int corrupted = 0;
2970	vdev_t *child;
2971
2972	if (vd->vdev_children > 0) {
2973		for (int c = 0; c < vd->vdev_children; c++) {
2974			child = vd->vdev_child[c];
2975
2976			/*
2977			 * Don't factor holes into the decision.
2978			 */
2979			if (child->vdev_ishole)
2980				continue;
2981
2982			if (!vdev_readable(child) ||
2983			    (!vdev_writeable(child) && spa_writeable(spa))) {
2984				/*
2985				 * Root special: if there is a top-level log
2986				 * device, treat the root vdev as if it were
2987				 * degraded.
2988				 */
2989				if (child->vdev_islog && vd == rvd)
2990					degraded++;
2991				else
2992					faulted++;
2993			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2994				degraded++;
2995			}
2996
2997			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2998				corrupted++;
2999		}
3000
3001		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3002
3003		/*
3004		 * Root special: if there is a top-level vdev that cannot be
3005		 * opened due to corrupted metadata, then propagate the root
3006		 * vdev's aux state as 'corrupt' rather than 'insufficient
3007		 * replicas'.
3008		 */
3009		if (corrupted && vd == rvd &&
3010		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3011			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3012			    VDEV_AUX_CORRUPT_DATA);
3013	}
3014
3015	if (vd->vdev_parent)
3016		vdev_propagate_state(vd->vdev_parent);
3017}
3018
3019/*
3020 * Set a vdev's state.  If this is during an open, we don't update the parent
3021 * state, because we're in the process of opening children depth-first.
3022 * Otherwise, we propagate the change to the parent.
3023 *
3024 * If this routine places a device in a faulted state, an appropriate ereport is
3025 * generated.
3026 */
3027void
3028vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3029{
3030	uint64_t save_state;
3031	spa_t *spa = vd->vdev_spa;
3032
3033	if (state == vd->vdev_state) {
3034		vd->vdev_stat.vs_aux = aux;
3035		return;
3036	}
3037
3038	save_state = vd->vdev_state;
3039
3040	vd->vdev_state = state;
3041	vd->vdev_stat.vs_aux = aux;
3042
3043	/*
3044	 * If we are setting the vdev state to anything but an open state, then
3045	 * always close the underlying device unless the device has requested
3046	 * a delayed close (i.e. we're about to remove or fault the device).
3047	 * Otherwise, we keep accessible but invalid devices open forever.
3048	 * We don't call vdev_close() itself, because that implies some extra
3049	 * checks (offline, etc) that we don't want here.  This is limited to
3050	 * leaf devices, because otherwise closing the device will affect other
3051	 * children.
3052	 */
3053	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3054	    vd->vdev_ops->vdev_op_leaf)
3055		vd->vdev_ops->vdev_op_close(vd);
3056
3057	/*
3058	 * If we have brought this vdev back into service, we need
3059	 * to notify fmd so that it can gracefully repair any outstanding
3060	 * cases due to a missing device.  We do this in all cases, even those
3061	 * that probably don't correlate to a repaired fault.  This is sure to
3062	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3063	 * this is a transient state it's OK, as the retire agent will
3064	 * double-check the state of the vdev before repairing it.
3065	 */
3066	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3067	    vd->vdev_prevstate != state)
3068		zfs_post_state_change(spa, vd);
3069
3070	if (vd->vdev_removed &&
3071	    state == VDEV_STATE_CANT_OPEN &&
3072	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3073		/*
3074		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3075		 * device was previously marked removed and someone attempted to
3076		 * reopen it.  If this failed due to a nonexistent device, then
3077		 * keep the device in the REMOVED state.  We also let this be if
3078		 * it is one of our special test online cases, which is only
3079		 * attempting to online the device and shouldn't generate an FMA
3080		 * fault.
3081		 */
3082		vd->vdev_state = VDEV_STATE_REMOVED;
3083		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3084	} else if (state == VDEV_STATE_REMOVED) {
3085		vd->vdev_removed = B_TRUE;
3086	} else if (state == VDEV_STATE_CANT_OPEN) {
3087		/*
3088		 * If we fail to open a vdev during an import or recovery, we
3089		 * mark it as "not available", which signifies that it was
3090		 * never there to begin with.  Failure to open such a device
3091		 * is not considered an error.
3092		 */
3093		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3094		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3095		    vd->vdev_ops->vdev_op_leaf)
3096			vd->vdev_not_present = 1;
3097
3098		/*
3099		 * Post the appropriate ereport.  If the 'prevstate' field is
3100		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3101		 * that this is part of a vdev_reopen().  In this case, we don't
3102		 * want to post the ereport if the device was already in the
3103		 * CANT_OPEN state beforehand.
3104		 *
3105		 * If the 'checkremove' flag is set, then this is an attempt to
3106		 * online the device in response to an insertion event.  If we
3107		 * hit this case, then we have detected an insertion event for a
3108		 * faulted or offline device that wasn't in the removed state.
3109		 * In this scenario, we don't post an ereport because we are
3110		 * about to replace the device, or attempt an online with
3111		 * vdev_forcefault, which will generate the fault for us.
3112		 */
3113		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3114		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3115		    vd != spa->spa_root_vdev) {
3116			const char *class;
3117
3118			switch (aux) {
3119			case VDEV_AUX_OPEN_FAILED:
3120				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3121				break;
3122			case VDEV_AUX_CORRUPT_DATA:
3123				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3124				break;
3125			case VDEV_AUX_NO_REPLICAS:
3126				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3127				break;
3128			case VDEV_AUX_BAD_GUID_SUM:
3129				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3130				break;
3131			case VDEV_AUX_TOO_SMALL:
3132				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3133				break;
3134			case VDEV_AUX_BAD_LABEL:
3135				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3136				break;
3137			default:
3138				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3139			}
3140
3141			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3142		}
3143
3144		/* Erase any notion of persistent removed state */
3145		vd->vdev_removed = B_FALSE;
3146	} else {
3147		vd->vdev_removed = B_FALSE;
3148	}
3149
3150	if (!isopen && vd->vdev_parent)
3151		vdev_propagate_state(vd->vdev_parent);
3152}
3153
3154/*
3155 * Check the vdev configuration to ensure that it's capable of supporting
3156 * a root pool.
3157 *
3158 * On Solaris, we do not support RAID-Z or partial configuration.  In
3159 * addition, only a single top-level vdev is allowed and none of the
3160 * leaves can be wholedisks.
3161 *
3162 * For FreeBSD, we can boot from any configuration. There is a
3163 * limitation that the boot filesystem must be either uncompressed or
3164 * compresses with lzjb compression but I'm not sure how to enforce
3165 * that here.
3166 */
3167boolean_t
3168vdev_is_bootable(vdev_t *vd)
3169{
3170#ifdef sun
3171	if (!vd->vdev_ops->vdev_op_leaf) {
3172		char *vdev_type = vd->vdev_ops->vdev_op_type;
3173
3174		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3175		    vd->vdev_children > 1) {
3176			return (B_FALSE);
3177		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3178		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3179			return (B_FALSE);
3180		}
3181	} else if (vd->vdev_wholedisk == 1) {
3182		return (B_FALSE);
3183	}
3184
3185	for (int c = 0; c < vd->vdev_children; c++) {
3186		if (!vdev_is_bootable(vd->vdev_child[c]))
3187			return (B_FALSE);
3188	}
3189#endif	/* sun */
3190	return (B_TRUE);
3191}
3192
3193/*
3194 * Load the state from the original vdev tree (ovd) which
3195 * we've retrieved from the MOS config object. If the original
3196 * vdev was offline or faulted then we transfer that state to the
3197 * device in the current vdev tree (nvd).
3198 */
3199void
3200vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3201{
3202	spa_t *spa = nvd->vdev_spa;
3203
3204	ASSERT(nvd->vdev_top->vdev_islog);
3205	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3206	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3207
3208	for (int c = 0; c < nvd->vdev_children; c++)
3209		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3210
3211	if (nvd->vdev_ops->vdev_op_leaf) {
3212		/*
3213		 * Restore the persistent vdev state
3214		 */
3215		nvd->vdev_offline = ovd->vdev_offline;
3216		nvd->vdev_faulted = ovd->vdev_faulted;
3217		nvd->vdev_degraded = ovd->vdev_degraded;
3218		nvd->vdev_removed = ovd->vdev_removed;
3219	}
3220}
3221
3222/*
3223 * Determine if a log device has valid content.  If the vdev was
3224 * removed or faulted in the MOS config then we know that
3225 * the content on the log device has already been written to the pool.
3226 */
3227boolean_t
3228vdev_log_state_valid(vdev_t *vd)
3229{
3230	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3231	    !vd->vdev_removed)
3232		return (B_TRUE);
3233
3234	for (int c = 0; c < vd->vdev_children; c++)
3235		if (vdev_log_state_valid(vd->vdev_child[c]))
3236			return (B_TRUE);
3237
3238	return (B_FALSE);
3239}
3240
3241/*
3242 * Expand a vdev if possible.
3243 */
3244void
3245vdev_expand(vdev_t *vd, uint64_t txg)
3246{
3247	ASSERT(vd->vdev_top == vd);
3248	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3249
3250	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3251		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3252		vdev_config_dirty(vd);
3253	}
3254}
3255
3256/*
3257 * Split a vdev.
3258 */
3259void
3260vdev_split(vdev_t *vd)
3261{
3262	vdev_t *cvd, *pvd = vd->vdev_parent;
3263
3264	vdev_remove_child(pvd, vd);
3265	vdev_compact_children(pvd);
3266
3267	cvd = pvd->vdev_child[0];
3268	if (pvd->vdev_children == 1) {
3269		vdev_remove_parent(cvd);
3270		cvd->vdev_splitting = B_TRUE;
3271	}
3272	vdev_propagate_state(cvd);
3273}
3274
3275void
3276vdev_deadman(vdev_t *vd)
3277{
3278	for (int c = 0; c < vd->vdev_children; c++) {
3279		vdev_t *cvd = vd->vdev_child[c];
3280
3281		vdev_deadman(cvd);
3282	}
3283
3284	if (vd->vdev_ops->vdev_op_leaf) {
3285		vdev_queue_t *vq = &vd->vdev_queue;
3286
3287		mutex_enter(&vq->vq_lock);
3288		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3289			spa_t *spa = vd->vdev_spa;
3290			zio_t *fio;
3291			uint64_t delta;
3292
3293			/*
3294			 * Look at the head of all the pending queues,
3295			 * if any I/O has been outstanding for longer than
3296			 * the spa_deadman_synctime we panic the system.
3297			 */
3298			fio = avl_first(&vq->vq_active_tree);
3299			delta = gethrtime() - fio->io_timestamp;
3300			if (delta > spa_deadman_synctime(spa)) {
3301				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3302				    "delta %lluns, last io %lluns",
3303				    fio->io_timestamp, delta,
3304				    vq->vq_io_complete_ts);
3305				fm_panic("I/O to pool '%s' appears to be "
3306				    "hung on vdev guid %llu at '%s'.",
3307				    spa_name(spa),
3308				    (long long unsigned int) vd->vdev_guid,
3309				    vd->vdev_path);
3310			}
3311		}
3312		mutex_exit(&vq->vq_lock);
3313	}
3314}
3315