vdev.c revision 219089
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/fm/fs/zfs.h>
28#include <sys/spa.h>
29#include <sys/spa_impl.h>
30#include <sys/dmu.h>
31#include <sys/dmu_tx.h>
32#include <sys/vdev_impl.h>
33#include <sys/uberblock_impl.h>
34#include <sys/metaslab.h>
35#include <sys/metaslab_impl.h>
36#include <sys/space_map.h>
37#include <sys/zio.h>
38#include <sys/zap.h>
39#include <sys/fs/zfs.h>
40#include <sys/arc.h>
41#include <sys/zil.h>
42#include <sys/dsl_scan.h>
43
44SYSCTL_DECL(_vfs_zfs);
45SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
46
47/*
48 * Virtual device management.
49 */
50
51static vdev_ops_t *vdev_ops_table[] = {
52	&vdev_root_ops,
53	&vdev_raidz_ops,
54	&vdev_mirror_ops,
55	&vdev_replacing_ops,
56	&vdev_spare_ops,
57#ifdef _KERNEL
58	&vdev_geom_ops,
59#else
60	&vdev_disk_ops,
61#endif
62	&vdev_file_ops,
63	&vdev_missing_ops,
64	&vdev_hole_ops,
65	NULL
66};
67
68/* maximum scrub/resilver I/O queue per leaf vdev */
69int zfs_scrub_limit = 10;
70
71TUNABLE_INT("vfs.zfs.scrub_limit", &zfs_scrub_limit);
72SYSCTL_INT(_vfs_zfs, OID_AUTO, scrub_limit, CTLFLAG_RDTUN, &zfs_scrub_limit, 0,
73    "Maximum scrub/resilver I/O queue");
74
75/*
76 * Given a vdev type, return the appropriate ops vector.
77 */
78static vdev_ops_t *
79vdev_getops(const char *type)
80{
81	vdev_ops_t *ops, **opspp;
82
83	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
84		if (strcmp(ops->vdev_op_type, type) == 0)
85			break;
86
87	return (ops);
88}
89
90/*
91 * Default asize function: return the MAX of psize with the asize of
92 * all children.  This is what's used by anything other than RAID-Z.
93 */
94uint64_t
95vdev_default_asize(vdev_t *vd, uint64_t psize)
96{
97	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
98	uint64_t csize;
99
100	for (int c = 0; c < vd->vdev_children; c++) {
101		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
102		asize = MAX(asize, csize);
103	}
104
105	return (asize);
106}
107
108/*
109 * Get the minimum allocatable size. We define the allocatable size as
110 * the vdev's asize rounded to the nearest metaslab. This allows us to
111 * replace or attach devices which don't have the same physical size but
112 * can still satisfy the same number of allocations.
113 */
114uint64_t
115vdev_get_min_asize(vdev_t *vd)
116{
117	vdev_t *pvd = vd->vdev_parent;
118
119	/*
120	 * The our parent is NULL (inactive spare or cache) or is the root,
121	 * just return our own asize.
122	 */
123	if (pvd == NULL)
124		return (vd->vdev_asize);
125
126	/*
127	 * The top-level vdev just returns the allocatable size rounded
128	 * to the nearest metaslab.
129	 */
130	if (vd == vd->vdev_top)
131		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
132
133	/*
134	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
135	 * so each child must provide at least 1/Nth of its asize.
136	 */
137	if (pvd->vdev_ops == &vdev_raidz_ops)
138		return (pvd->vdev_min_asize / pvd->vdev_children);
139
140	return (pvd->vdev_min_asize);
141}
142
143void
144vdev_set_min_asize(vdev_t *vd)
145{
146	vd->vdev_min_asize = vdev_get_min_asize(vd);
147
148	for (int c = 0; c < vd->vdev_children; c++)
149		vdev_set_min_asize(vd->vdev_child[c]);
150}
151
152vdev_t *
153vdev_lookup_top(spa_t *spa, uint64_t vdev)
154{
155	vdev_t *rvd = spa->spa_root_vdev;
156
157	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
158
159	if (vdev < rvd->vdev_children) {
160		ASSERT(rvd->vdev_child[vdev] != NULL);
161		return (rvd->vdev_child[vdev]);
162	}
163
164	return (NULL);
165}
166
167vdev_t *
168vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
169{
170	vdev_t *mvd;
171
172	if (vd->vdev_guid == guid)
173		return (vd);
174
175	for (int c = 0; c < vd->vdev_children; c++)
176		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
177		    NULL)
178			return (mvd);
179
180	return (NULL);
181}
182
183void
184vdev_add_child(vdev_t *pvd, vdev_t *cvd)
185{
186	size_t oldsize, newsize;
187	uint64_t id = cvd->vdev_id;
188	vdev_t **newchild;
189
190	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
191	ASSERT(cvd->vdev_parent == NULL);
192
193	cvd->vdev_parent = pvd;
194
195	if (pvd == NULL)
196		return;
197
198	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
199
200	oldsize = pvd->vdev_children * sizeof (vdev_t *);
201	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
202	newsize = pvd->vdev_children * sizeof (vdev_t *);
203
204	newchild = kmem_zalloc(newsize, KM_SLEEP);
205	if (pvd->vdev_child != NULL) {
206		bcopy(pvd->vdev_child, newchild, oldsize);
207		kmem_free(pvd->vdev_child, oldsize);
208	}
209
210	pvd->vdev_child = newchild;
211	pvd->vdev_child[id] = cvd;
212
213	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
214	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
215
216	/*
217	 * Walk up all ancestors to update guid sum.
218	 */
219	for (; pvd != NULL; pvd = pvd->vdev_parent)
220		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
221}
222
223void
224vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
225{
226	int c;
227	uint_t id = cvd->vdev_id;
228
229	ASSERT(cvd->vdev_parent == pvd);
230
231	if (pvd == NULL)
232		return;
233
234	ASSERT(id < pvd->vdev_children);
235	ASSERT(pvd->vdev_child[id] == cvd);
236
237	pvd->vdev_child[id] = NULL;
238	cvd->vdev_parent = NULL;
239
240	for (c = 0; c < pvd->vdev_children; c++)
241		if (pvd->vdev_child[c])
242			break;
243
244	if (c == pvd->vdev_children) {
245		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
246		pvd->vdev_child = NULL;
247		pvd->vdev_children = 0;
248	}
249
250	/*
251	 * Walk up all ancestors to update guid sum.
252	 */
253	for (; pvd != NULL; pvd = pvd->vdev_parent)
254		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
255}
256
257/*
258 * Remove any holes in the child array.
259 */
260void
261vdev_compact_children(vdev_t *pvd)
262{
263	vdev_t **newchild, *cvd;
264	int oldc = pvd->vdev_children;
265	int newc;
266
267	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
268
269	for (int c = newc = 0; c < oldc; c++)
270		if (pvd->vdev_child[c])
271			newc++;
272
273	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
274
275	for (int c = newc = 0; c < oldc; c++) {
276		if ((cvd = pvd->vdev_child[c]) != NULL) {
277			newchild[newc] = cvd;
278			cvd->vdev_id = newc++;
279		}
280	}
281
282	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
283	pvd->vdev_child = newchild;
284	pvd->vdev_children = newc;
285}
286
287/*
288 * Allocate and minimally initialize a vdev_t.
289 */
290vdev_t *
291vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
292{
293	vdev_t *vd;
294
295	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
296
297	if (spa->spa_root_vdev == NULL) {
298		ASSERT(ops == &vdev_root_ops);
299		spa->spa_root_vdev = vd;
300	}
301
302	if (guid == 0 && ops != &vdev_hole_ops) {
303		if (spa->spa_root_vdev == vd) {
304			/*
305			 * The root vdev's guid will also be the pool guid,
306			 * which must be unique among all pools.
307			 */
308			guid = spa_generate_guid(NULL);
309		} else {
310			/*
311			 * Any other vdev's guid must be unique within the pool.
312			 */
313			guid = spa_generate_guid(spa);
314		}
315		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
316	}
317
318	vd->vdev_spa = spa;
319	vd->vdev_id = id;
320	vd->vdev_guid = guid;
321	vd->vdev_guid_sum = guid;
322	vd->vdev_ops = ops;
323	vd->vdev_state = VDEV_STATE_CLOSED;
324	vd->vdev_ishole = (ops == &vdev_hole_ops);
325
326	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
327	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
328	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
329	for (int t = 0; t < DTL_TYPES; t++) {
330		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
331		    &vd->vdev_dtl_lock);
332	}
333	txg_list_create(&vd->vdev_ms_list,
334	    offsetof(struct metaslab, ms_txg_node));
335	txg_list_create(&vd->vdev_dtl_list,
336	    offsetof(struct vdev, vdev_dtl_node));
337	vd->vdev_stat.vs_timestamp = gethrtime();
338	vdev_queue_init(vd);
339	vdev_cache_init(vd);
340
341	return (vd);
342}
343
344/*
345 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
346 * creating a new vdev or loading an existing one - the behavior is slightly
347 * different for each case.
348 */
349int
350vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
351    int alloctype)
352{
353	vdev_ops_t *ops;
354	char *type;
355	uint64_t guid = 0, islog, nparity;
356	vdev_t *vd;
357
358	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
359
360	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
361		return (EINVAL);
362
363	if ((ops = vdev_getops(type)) == NULL)
364		return (EINVAL);
365
366	/*
367	 * If this is a load, get the vdev guid from the nvlist.
368	 * Otherwise, vdev_alloc_common() will generate one for us.
369	 */
370	if (alloctype == VDEV_ALLOC_LOAD) {
371		uint64_t label_id;
372
373		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
374		    label_id != id)
375			return (EINVAL);
376
377		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378			return (EINVAL);
379	} else if (alloctype == VDEV_ALLOC_SPARE) {
380		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381			return (EINVAL);
382	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
383		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384			return (EINVAL);
385	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
386		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
387			return (EINVAL);
388	}
389
390	/*
391	 * The first allocated vdev must be of type 'root'.
392	 */
393	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
394		return (EINVAL);
395
396	/*
397	 * Determine whether we're a log vdev.
398	 */
399	islog = 0;
400	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
401	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
402		return (ENOTSUP);
403
404	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
405		return (ENOTSUP);
406
407	/*
408	 * Set the nparity property for RAID-Z vdevs.
409	 */
410	nparity = -1ULL;
411	if (ops == &vdev_raidz_ops) {
412		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
413		    &nparity) == 0) {
414			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
415				return (EINVAL);
416			/*
417			 * Previous versions could only support 1 or 2 parity
418			 * device.
419			 */
420			if (nparity > 1 &&
421			    spa_version(spa) < SPA_VERSION_RAIDZ2)
422				return (ENOTSUP);
423			if (nparity > 2 &&
424			    spa_version(spa) < SPA_VERSION_RAIDZ3)
425				return (ENOTSUP);
426		} else {
427			/*
428			 * We require the parity to be specified for SPAs that
429			 * support multiple parity levels.
430			 */
431			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
432				return (EINVAL);
433			/*
434			 * Otherwise, we default to 1 parity device for RAID-Z.
435			 */
436			nparity = 1;
437		}
438	} else {
439		nparity = 0;
440	}
441	ASSERT(nparity != -1ULL);
442
443	vd = vdev_alloc_common(spa, id, guid, ops);
444
445	vd->vdev_islog = islog;
446	vd->vdev_nparity = nparity;
447
448	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
449		vd->vdev_path = spa_strdup(vd->vdev_path);
450	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
451		vd->vdev_devid = spa_strdup(vd->vdev_devid);
452	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
453	    &vd->vdev_physpath) == 0)
454		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
455	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
456		vd->vdev_fru = spa_strdup(vd->vdev_fru);
457
458	/*
459	 * Set the whole_disk property.  If it's not specified, leave the value
460	 * as -1.
461	 */
462	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
463	    &vd->vdev_wholedisk) != 0)
464		vd->vdev_wholedisk = -1ULL;
465
466	/*
467	 * Look for the 'not present' flag.  This will only be set if the device
468	 * was not present at the time of import.
469	 */
470	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
471	    &vd->vdev_not_present);
472
473	/*
474	 * Get the alignment requirement.
475	 */
476	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
477
478	/*
479	 * Retrieve the vdev creation time.
480	 */
481	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
482	    &vd->vdev_crtxg);
483
484	/*
485	 * If we're a top-level vdev, try to load the allocation parameters.
486	 */
487	if (parent && !parent->vdev_parent &&
488	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
489		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
490		    &vd->vdev_ms_array);
491		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
492		    &vd->vdev_ms_shift);
493		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
494		    &vd->vdev_asize);
495		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
496		    &vd->vdev_removing);
497	}
498
499	if (parent && !parent->vdev_parent) {
500		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
501		    alloctype == VDEV_ALLOC_ADD ||
502		    alloctype == VDEV_ALLOC_SPLIT ||
503		    alloctype == VDEV_ALLOC_ROOTPOOL);
504		vd->vdev_mg = metaslab_group_create(islog ?
505		    spa_log_class(spa) : spa_normal_class(spa), vd);
506	}
507
508	/*
509	 * If we're a leaf vdev, try to load the DTL object and other state.
510	 */
511	if (vd->vdev_ops->vdev_op_leaf &&
512	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
513	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
514		if (alloctype == VDEV_ALLOC_LOAD) {
515			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
516			    &vd->vdev_dtl_smo.smo_object);
517			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
518			    &vd->vdev_unspare);
519		}
520
521		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
522			uint64_t spare = 0;
523
524			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
525			    &spare) == 0 && spare)
526				spa_spare_add(vd);
527		}
528
529		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
530		    &vd->vdev_offline);
531
532		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
533		    &vd->vdev_resilvering);
534
535		/*
536		 * When importing a pool, we want to ignore the persistent fault
537		 * state, as the diagnosis made on another system may not be
538		 * valid in the current context.  Local vdevs will
539		 * remain in the faulted state.
540		 */
541		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
542			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
543			    &vd->vdev_faulted);
544			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
545			    &vd->vdev_degraded);
546			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
547			    &vd->vdev_removed);
548
549			if (vd->vdev_faulted || vd->vdev_degraded) {
550				char *aux;
551
552				vd->vdev_label_aux =
553				    VDEV_AUX_ERR_EXCEEDED;
554				if (nvlist_lookup_string(nv,
555				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
556				    strcmp(aux, "external") == 0)
557					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
558			}
559		}
560	}
561
562	/*
563	 * Add ourselves to the parent's list of children.
564	 */
565	vdev_add_child(parent, vd);
566
567	*vdp = vd;
568
569	return (0);
570}
571
572void
573vdev_free(vdev_t *vd)
574{
575	spa_t *spa = vd->vdev_spa;
576
577	/*
578	 * vdev_free() implies closing the vdev first.  This is simpler than
579	 * trying to ensure complicated semantics for all callers.
580	 */
581	vdev_close(vd);
582
583	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
584	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
585
586	/*
587	 * Free all children.
588	 */
589	for (int c = 0; c < vd->vdev_children; c++)
590		vdev_free(vd->vdev_child[c]);
591
592	ASSERT(vd->vdev_child == NULL);
593	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
594
595	/*
596	 * Discard allocation state.
597	 */
598	if (vd->vdev_mg != NULL) {
599		vdev_metaslab_fini(vd);
600		metaslab_group_destroy(vd->vdev_mg);
601	}
602
603	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
604	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
605	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
606
607	/*
608	 * Remove this vdev from its parent's child list.
609	 */
610	vdev_remove_child(vd->vdev_parent, vd);
611
612	ASSERT(vd->vdev_parent == NULL);
613
614	/*
615	 * Clean up vdev structure.
616	 */
617	vdev_queue_fini(vd);
618	vdev_cache_fini(vd);
619
620	if (vd->vdev_path)
621		spa_strfree(vd->vdev_path);
622	if (vd->vdev_devid)
623		spa_strfree(vd->vdev_devid);
624	if (vd->vdev_physpath)
625		spa_strfree(vd->vdev_physpath);
626	if (vd->vdev_fru)
627		spa_strfree(vd->vdev_fru);
628
629	if (vd->vdev_isspare)
630		spa_spare_remove(vd);
631	if (vd->vdev_isl2cache)
632		spa_l2cache_remove(vd);
633
634	txg_list_destroy(&vd->vdev_ms_list);
635	txg_list_destroy(&vd->vdev_dtl_list);
636
637	mutex_enter(&vd->vdev_dtl_lock);
638	for (int t = 0; t < DTL_TYPES; t++) {
639		space_map_unload(&vd->vdev_dtl[t]);
640		space_map_destroy(&vd->vdev_dtl[t]);
641	}
642	mutex_exit(&vd->vdev_dtl_lock);
643
644	mutex_destroy(&vd->vdev_dtl_lock);
645	mutex_destroy(&vd->vdev_stat_lock);
646	mutex_destroy(&vd->vdev_probe_lock);
647
648	if (vd == spa->spa_root_vdev)
649		spa->spa_root_vdev = NULL;
650
651	kmem_free(vd, sizeof (vdev_t));
652}
653
654/*
655 * Transfer top-level vdev state from svd to tvd.
656 */
657static void
658vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659{
660	spa_t *spa = svd->vdev_spa;
661	metaslab_t *msp;
662	vdev_t *vd;
663	int t;
664
665	ASSERT(tvd == tvd->vdev_top);
666
667	tvd->vdev_ms_array = svd->vdev_ms_array;
668	tvd->vdev_ms_shift = svd->vdev_ms_shift;
669	tvd->vdev_ms_count = svd->vdev_ms_count;
670
671	svd->vdev_ms_array = 0;
672	svd->vdev_ms_shift = 0;
673	svd->vdev_ms_count = 0;
674
675	tvd->vdev_mg = svd->vdev_mg;
676	tvd->vdev_ms = svd->vdev_ms;
677
678	svd->vdev_mg = NULL;
679	svd->vdev_ms = NULL;
680
681	if (tvd->vdev_mg != NULL)
682		tvd->vdev_mg->mg_vd = tvd;
683
684	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
685	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
686	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
687
688	svd->vdev_stat.vs_alloc = 0;
689	svd->vdev_stat.vs_space = 0;
690	svd->vdev_stat.vs_dspace = 0;
691
692	for (t = 0; t < TXG_SIZE; t++) {
693		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
694			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
695		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
696			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
697		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
698			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
699	}
700
701	if (list_link_active(&svd->vdev_config_dirty_node)) {
702		vdev_config_clean(svd);
703		vdev_config_dirty(tvd);
704	}
705
706	if (list_link_active(&svd->vdev_state_dirty_node)) {
707		vdev_state_clean(svd);
708		vdev_state_dirty(tvd);
709	}
710
711	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
712	svd->vdev_deflate_ratio = 0;
713
714	tvd->vdev_islog = svd->vdev_islog;
715	svd->vdev_islog = 0;
716}
717
718static void
719vdev_top_update(vdev_t *tvd, vdev_t *vd)
720{
721	if (vd == NULL)
722		return;
723
724	vd->vdev_top = tvd;
725
726	for (int c = 0; c < vd->vdev_children; c++)
727		vdev_top_update(tvd, vd->vdev_child[c]);
728}
729
730/*
731 * Add a mirror/replacing vdev above an existing vdev.
732 */
733vdev_t *
734vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
735{
736	spa_t *spa = cvd->vdev_spa;
737	vdev_t *pvd = cvd->vdev_parent;
738	vdev_t *mvd;
739
740	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
741
742	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
743
744	mvd->vdev_asize = cvd->vdev_asize;
745	mvd->vdev_min_asize = cvd->vdev_min_asize;
746	mvd->vdev_ashift = cvd->vdev_ashift;
747	mvd->vdev_state = cvd->vdev_state;
748	mvd->vdev_crtxg = cvd->vdev_crtxg;
749
750	vdev_remove_child(pvd, cvd);
751	vdev_add_child(pvd, mvd);
752	cvd->vdev_id = mvd->vdev_children;
753	vdev_add_child(mvd, cvd);
754	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
755
756	if (mvd == mvd->vdev_top)
757		vdev_top_transfer(cvd, mvd);
758
759	return (mvd);
760}
761
762/*
763 * Remove a 1-way mirror/replacing vdev from the tree.
764 */
765void
766vdev_remove_parent(vdev_t *cvd)
767{
768	vdev_t *mvd = cvd->vdev_parent;
769	vdev_t *pvd = mvd->vdev_parent;
770
771	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
772
773	ASSERT(mvd->vdev_children == 1);
774	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
775	    mvd->vdev_ops == &vdev_replacing_ops ||
776	    mvd->vdev_ops == &vdev_spare_ops);
777	cvd->vdev_ashift = mvd->vdev_ashift;
778
779	vdev_remove_child(mvd, cvd);
780	vdev_remove_child(pvd, mvd);
781
782	/*
783	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
784	 * Otherwise, we could have detached an offline device, and when we
785	 * go to import the pool we'll think we have two top-level vdevs,
786	 * instead of a different version of the same top-level vdev.
787	 */
788	if (mvd->vdev_top == mvd) {
789		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
790		cvd->vdev_orig_guid = cvd->vdev_guid;
791		cvd->vdev_guid += guid_delta;
792		cvd->vdev_guid_sum += guid_delta;
793	}
794	cvd->vdev_id = mvd->vdev_id;
795	vdev_add_child(pvd, cvd);
796	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
797
798	if (cvd == cvd->vdev_top)
799		vdev_top_transfer(mvd, cvd);
800
801	ASSERT(mvd->vdev_children == 0);
802	vdev_free(mvd);
803}
804
805int
806vdev_metaslab_init(vdev_t *vd, uint64_t txg)
807{
808	spa_t *spa = vd->vdev_spa;
809	objset_t *mos = spa->spa_meta_objset;
810	uint64_t m;
811	uint64_t oldc = vd->vdev_ms_count;
812	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
813	metaslab_t **mspp;
814	int error;
815
816	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
817
818	/*
819	 * This vdev is not being allocated from yet or is a hole.
820	 */
821	if (vd->vdev_ms_shift == 0)
822		return (0);
823
824	ASSERT(!vd->vdev_ishole);
825
826	/*
827	 * Compute the raidz-deflation ratio.  Note, we hard-code
828	 * in 128k (1 << 17) because it is the current "typical" blocksize.
829	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
830	 * or we will inconsistently account for existing bp's.
831	 */
832	vd->vdev_deflate_ratio = (1 << 17) /
833	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
834
835	ASSERT(oldc <= newc);
836
837	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
838
839	if (oldc != 0) {
840		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
841		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
842	}
843
844	vd->vdev_ms = mspp;
845	vd->vdev_ms_count = newc;
846
847	for (m = oldc; m < newc; m++) {
848		space_map_obj_t smo = { 0, 0, 0 };
849		if (txg == 0) {
850			uint64_t object = 0;
851			error = dmu_read(mos, vd->vdev_ms_array,
852			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
853			    DMU_READ_PREFETCH);
854			if (error)
855				return (error);
856			if (object != 0) {
857				dmu_buf_t *db;
858				error = dmu_bonus_hold(mos, object, FTAG, &db);
859				if (error)
860					return (error);
861				ASSERT3U(db->db_size, >=, sizeof (smo));
862				bcopy(db->db_data, &smo, sizeof (smo));
863				ASSERT3U(smo.smo_object, ==, object);
864				dmu_buf_rele(db, FTAG);
865			}
866		}
867		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
868		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
869	}
870
871	if (txg == 0)
872		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
873
874	/*
875	 * If the vdev is being removed we don't activate
876	 * the metaslabs since we want to ensure that no new
877	 * allocations are performed on this device.
878	 */
879	if (oldc == 0 && !vd->vdev_removing)
880		metaslab_group_activate(vd->vdev_mg);
881
882	if (txg == 0)
883		spa_config_exit(spa, SCL_ALLOC, FTAG);
884
885	return (0);
886}
887
888void
889vdev_metaslab_fini(vdev_t *vd)
890{
891	uint64_t m;
892	uint64_t count = vd->vdev_ms_count;
893
894	if (vd->vdev_ms != NULL) {
895		metaslab_group_passivate(vd->vdev_mg);
896		for (m = 0; m < count; m++)
897			if (vd->vdev_ms[m] != NULL)
898				metaslab_fini(vd->vdev_ms[m]);
899		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
900		vd->vdev_ms = NULL;
901	}
902}
903
904typedef struct vdev_probe_stats {
905	boolean_t	vps_readable;
906	boolean_t	vps_writeable;
907	int		vps_flags;
908} vdev_probe_stats_t;
909
910static void
911vdev_probe_done(zio_t *zio)
912{
913	spa_t *spa = zio->io_spa;
914	vdev_t *vd = zio->io_vd;
915	vdev_probe_stats_t *vps = zio->io_private;
916
917	ASSERT(vd->vdev_probe_zio != NULL);
918
919	if (zio->io_type == ZIO_TYPE_READ) {
920		if (zio->io_error == 0)
921			vps->vps_readable = 1;
922		if (zio->io_error == 0 && spa_writeable(spa)) {
923			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
924			    zio->io_offset, zio->io_size, zio->io_data,
925			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
926			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
927		} else {
928			zio_buf_free(zio->io_data, zio->io_size);
929		}
930	} else if (zio->io_type == ZIO_TYPE_WRITE) {
931		if (zio->io_error == 0)
932			vps->vps_writeable = 1;
933		zio_buf_free(zio->io_data, zio->io_size);
934	} else if (zio->io_type == ZIO_TYPE_NULL) {
935		zio_t *pio;
936
937		vd->vdev_cant_read |= !vps->vps_readable;
938		vd->vdev_cant_write |= !vps->vps_writeable;
939
940		if (vdev_readable(vd) &&
941		    (vdev_writeable(vd) || !spa_writeable(spa))) {
942			zio->io_error = 0;
943		} else {
944			ASSERT(zio->io_error != 0);
945			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
946			    spa, vd, NULL, 0, 0);
947			zio->io_error = ENXIO;
948		}
949
950		mutex_enter(&vd->vdev_probe_lock);
951		ASSERT(vd->vdev_probe_zio == zio);
952		vd->vdev_probe_zio = NULL;
953		mutex_exit(&vd->vdev_probe_lock);
954
955		while ((pio = zio_walk_parents(zio)) != NULL)
956			if (!vdev_accessible(vd, pio))
957				pio->io_error = ENXIO;
958
959		kmem_free(vps, sizeof (*vps));
960	}
961}
962
963/*
964 * Determine whether this device is accessible by reading and writing
965 * to several known locations: the pad regions of each vdev label
966 * but the first (which we leave alone in case it contains a VTOC).
967 */
968zio_t *
969vdev_probe(vdev_t *vd, zio_t *zio)
970{
971	spa_t *spa = vd->vdev_spa;
972	vdev_probe_stats_t *vps = NULL;
973	zio_t *pio;
974
975	ASSERT(vd->vdev_ops->vdev_op_leaf);
976
977	/*
978	 * Don't probe the probe.
979	 */
980	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
981		return (NULL);
982
983	/*
984	 * To prevent 'probe storms' when a device fails, we create
985	 * just one probe i/o at a time.  All zios that want to probe
986	 * this vdev will become parents of the probe io.
987	 */
988	mutex_enter(&vd->vdev_probe_lock);
989
990	if ((pio = vd->vdev_probe_zio) == NULL) {
991		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
992
993		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
994		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
995		    ZIO_FLAG_TRYHARD;
996
997		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
998			/*
999			 * vdev_cant_read and vdev_cant_write can only
1000			 * transition from TRUE to FALSE when we have the
1001			 * SCL_ZIO lock as writer; otherwise they can only
1002			 * transition from FALSE to TRUE.  This ensures that
1003			 * any zio looking at these values can assume that
1004			 * failures persist for the life of the I/O.  That's
1005			 * important because when a device has intermittent
1006			 * connectivity problems, we want to ensure that
1007			 * they're ascribed to the device (ENXIO) and not
1008			 * the zio (EIO).
1009			 *
1010			 * Since we hold SCL_ZIO as writer here, clear both
1011			 * values so the probe can reevaluate from first
1012			 * principles.
1013			 */
1014			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1015			vd->vdev_cant_read = B_FALSE;
1016			vd->vdev_cant_write = B_FALSE;
1017		}
1018
1019		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1020		    vdev_probe_done, vps,
1021		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1022
1023		/*
1024		 * We can't change the vdev state in this context, so we
1025		 * kick off an async task to do it on our behalf.
1026		 */
1027		if (zio != NULL) {
1028			vd->vdev_probe_wanted = B_TRUE;
1029			spa_async_request(spa, SPA_ASYNC_PROBE);
1030		}
1031	}
1032
1033	if (zio != NULL)
1034		zio_add_child(zio, pio);
1035
1036	mutex_exit(&vd->vdev_probe_lock);
1037
1038	if (vps == NULL) {
1039		ASSERT(zio != NULL);
1040		return (NULL);
1041	}
1042
1043	for (int l = 1; l < VDEV_LABELS; l++) {
1044		zio_nowait(zio_read_phys(pio, vd,
1045		    vdev_label_offset(vd->vdev_psize, l,
1046		    offsetof(vdev_label_t, vl_pad2)),
1047		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1048		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1049		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1050	}
1051
1052	if (zio == NULL)
1053		return (pio);
1054
1055	zio_nowait(pio);
1056	return (NULL);
1057}
1058
1059static void
1060vdev_open_child(void *arg)
1061{
1062	vdev_t *vd = arg;
1063
1064	vd->vdev_open_thread = curthread;
1065	vd->vdev_open_error = vdev_open(vd);
1066	vd->vdev_open_thread = NULL;
1067}
1068
1069boolean_t
1070vdev_uses_zvols(vdev_t *vd)
1071{
1072	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1073	    strlen(ZVOL_DIR)) == 0)
1074		return (B_TRUE);
1075	for (int c = 0; c < vd->vdev_children; c++)
1076		if (vdev_uses_zvols(vd->vdev_child[c]))
1077			return (B_TRUE);
1078	return (B_FALSE);
1079}
1080
1081void
1082vdev_open_children(vdev_t *vd)
1083{
1084	taskq_t *tq;
1085	int children = vd->vdev_children;
1086
1087	/*
1088	 * in order to handle pools on top of zvols, do the opens
1089	 * in a single thread so that the same thread holds the
1090	 * spa_namespace_lock
1091	 */
1092	if (B_TRUE || vdev_uses_zvols(vd)) {
1093		for (int c = 0; c < children; c++)
1094			vd->vdev_child[c]->vdev_open_error =
1095			    vdev_open(vd->vdev_child[c]);
1096		return;
1097	}
1098	tq = taskq_create("vdev_open", children, minclsyspri,
1099	    children, children, TASKQ_PREPOPULATE);
1100
1101	for (int c = 0; c < children; c++)
1102		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1103		    TQ_SLEEP) != 0);
1104
1105	taskq_destroy(tq);
1106}
1107
1108/*
1109 * Prepare a virtual device for access.
1110 */
1111int
1112vdev_open(vdev_t *vd)
1113{
1114	spa_t *spa = vd->vdev_spa;
1115	int error;
1116	uint64_t osize = 0;
1117	uint64_t asize, psize;
1118	uint64_t ashift = 0;
1119
1120	ASSERT(vd->vdev_open_thread == curthread ||
1121	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1122	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1123	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1124	    vd->vdev_state == VDEV_STATE_OFFLINE);
1125
1126	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1127	vd->vdev_cant_read = B_FALSE;
1128	vd->vdev_cant_write = B_FALSE;
1129	vd->vdev_min_asize = vdev_get_min_asize(vd);
1130
1131	/*
1132	 * If this vdev is not removed, check its fault status.  If it's
1133	 * faulted, bail out of the open.
1134	 */
1135	if (!vd->vdev_removed && vd->vdev_faulted) {
1136		ASSERT(vd->vdev_children == 0);
1137		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1138		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1139		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1140		    vd->vdev_label_aux);
1141		return (ENXIO);
1142	} else if (vd->vdev_offline) {
1143		ASSERT(vd->vdev_children == 0);
1144		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1145		return (ENXIO);
1146	}
1147
1148	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1149
1150	/*
1151	 * Reset the vdev_reopening flag so that we actually close
1152	 * the vdev on error.
1153	 */
1154	vd->vdev_reopening = B_FALSE;
1155	if (zio_injection_enabled && error == 0)
1156		error = zio_handle_device_injection(vd, NULL, ENXIO);
1157
1158	if (error) {
1159		if (vd->vdev_removed &&
1160		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1161			vd->vdev_removed = B_FALSE;
1162
1163		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1164		    vd->vdev_stat.vs_aux);
1165		return (error);
1166	}
1167
1168	vd->vdev_removed = B_FALSE;
1169
1170	/*
1171	 * Recheck the faulted flag now that we have confirmed that
1172	 * the vdev is accessible.  If we're faulted, bail.
1173	 */
1174	if (vd->vdev_faulted) {
1175		ASSERT(vd->vdev_children == 0);
1176		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1177		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1178		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1179		    vd->vdev_label_aux);
1180		return (ENXIO);
1181	}
1182
1183	if (vd->vdev_degraded) {
1184		ASSERT(vd->vdev_children == 0);
1185		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1186		    VDEV_AUX_ERR_EXCEEDED);
1187	} else {
1188		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1189	}
1190
1191	/*
1192	 * For hole or missing vdevs we just return success.
1193	 */
1194	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1195		return (0);
1196
1197	for (int c = 0; c < vd->vdev_children; c++) {
1198		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1199			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1200			    VDEV_AUX_NONE);
1201			break;
1202		}
1203	}
1204
1205	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1206
1207	if (vd->vdev_children == 0) {
1208		if (osize < SPA_MINDEVSIZE) {
1209			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1210			    VDEV_AUX_TOO_SMALL);
1211			return (EOVERFLOW);
1212		}
1213		psize = osize;
1214		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1215	} else {
1216		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1217		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1218			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1219			    VDEV_AUX_TOO_SMALL);
1220			return (EOVERFLOW);
1221		}
1222		psize = 0;
1223		asize = osize;
1224	}
1225
1226	vd->vdev_psize = psize;
1227
1228	/*
1229	 * Make sure the allocatable size hasn't shrunk.
1230	 */
1231	if (asize < vd->vdev_min_asize) {
1232		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233		    VDEV_AUX_BAD_LABEL);
1234		return (EINVAL);
1235	}
1236
1237	if (vd->vdev_asize == 0) {
1238		/*
1239		 * This is the first-ever open, so use the computed values.
1240		 * For testing purposes, a higher ashift can be requested.
1241		 */
1242		vd->vdev_asize = asize;
1243		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1244	} else {
1245		/*
1246		 * Make sure the alignment requirement hasn't increased.
1247		 */
1248		if (ashift > vd->vdev_top->vdev_ashift) {
1249			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1250			    VDEV_AUX_BAD_LABEL);
1251			return (EINVAL);
1252		}
1253	}
1254
1255	/*
1256	 * If all children are healthy and the asize has increased,
1257	 * then we've experienced dynamic LUN growth.  If automatic
1258	 * expansion is enabled then use the additional space.
1259	 */
1260	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1261	    (vd->vdev_expanding || spa->spa_autoexpand))
1262		vd->vdev_asize = asize;
1263
1264	vdev_set_min_asize(vd);
1265
1266	/*
1267	 * Ensure we can issue some IO before declaring the
1268	 * vdev open for business.
1269	 */
1270	if (vd->vdev_ops->vdev_op_leaf &&
1271	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1272		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1273		    VDEV_AUX_ERR_EXCEEDED);
1274		return (error);
1275	}
1276
1277	/*
1278	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1279	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1280	 * since this would just restart the scrub we are already doing.
1281	 */
1282	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1283	    vdev_resilver_needed(vd, NULL, NULL))
1284		spa_async_request(spa, SPA_ASYNC_RESILVER);
1285
1286	return (0);
1287}
1288
1289/*
1290 * Called once the vdevs are all opened, this routine validates the label
1291 * contents.  This needs to be done before vdev_load() so that we don't
1292 * inadvertently do repair I/Os to the wrong device.
1293 *
1294 * This function will only return failure if one of the vdevs indicates that it
1295 * has since been destroyed or exported.  This is only possible if
1296 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1297 * will be updated but the function will return 0.
1298 */
1299int
1300vdev_validate(vdev_t *vd)
1301{
1302	spa_t *spa = vd->vdev_spa;
1303	nvlist_t *label;
1304	uint64_t guid = 0, top_guid;
1305	uint64_t state;
1306
1307	for (int c = 0; c < vd->vdev_children; c++)
1308		if (vdev_validate(vd->vdev_child[c]) != 0)
1309			return (EBADF);
1310
1311	/*
1312	 * If the device has already failed, or was marked offline, don't do
1313	 * any further validation.  Otherwise, label I/O will fail and we will
1314	 * overwrite the previous state.
1315	 */
1316	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1317		uint64_t aux_guid = 0;
1318		nvlist_t *nvl;
1319
1320		if ((label = vdev_label_read_config(vd)) == NULL) {
1321			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1322			    VDEV_AUX_BAD_LABEL);
1323			return (0);
1324		}
1325
1326		/*
1327		 * Determine if this vdev has been split off into another
1328		 * pool.  If so, then refuse to open it.
1329		 */
1330		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1331		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1332			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1333			    VDEV_AUX_SPLIT_POOL);
1334			nvlist_free(label);
1335			return (0);
1336		}
1337
1338		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1339		    &guid) != 0 || guid != spa_guid(spa)) {
1340			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1341			    VDEV_AUX_CORRUPT_DATA);
1342			nvlist_free(label);
1343			return (0);
1344		}
1345
1346		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1347		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1348		    &aux_guid) != 0)
1349			aux_guid = 0;
1350
1351		/*
1352		 * If this vdev just became a top-level vdev because its
1353		 * sibling was detached, it will have adopted the parent's
1354		 * vdev guid -- but the label may or may not be on disk yet.
1355		 * Fortunately, either version of the label will have the
1356		 * same top guid, so if we're a top-level vdev, we can
1357		 * safely compare to that instead.
1358		 *
1359		 * If we split this vdev off instead, then we also check the
1360		 * original pool's guid.  We don't want to consider the vdev
1361		 * corrupt if it is partway through a split operation.
1362		 */
1363		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1364		    &guid) != 0 ||
1365		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1366		    &top_guid) != 0 ||
1367		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1368		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1369			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1370			    VDEV_AUX_CORRUPT_DATA);
1371			nvlist_free(label);
1372			return (0);
1373		}
1374
1375		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1376		    &state) != 0) {
1377			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1378			    VDEV_AUX_CORRUPT_DATA);
1379			nvlist_free(label);
1380			return (0);
1381		}
1382
1383		nvlist_free(label);
1384
1385		/*
1386		 * If this is a verbatim import, no need to check the
1387		 * state of the pool.
1388		 */
1389		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1390		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1391		    state != POOL_STATE_ACTIVE)
1392			return (EBADF);
1393
1394		/*
1395		 * If we were able to open and validate a vdev that was
1396		 * previously marked permanently unavailable, clear that state
1397		 * now.
1398		 */
1399		if (vd->vdev_not_present)
1400			vd->vdev_not_present = 0;
1401	}
1402
1403	return (0);
1404}
1405
1406/*
1407 * Close a virtual device.
1408 */
1409void
1410vdev_close(vdev_t *vd)
1411{
1412	spa_t *spa = vd->vdev_spa;
1413	vdev_t *pvd = vd->vdev_parent;
1414
1415	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1416
1417	/*
1418	 * If our parent is reopening, then we are as well, unless we are
1419	 * going offline.
1420	 */
1421	if (pvd != NULL && pvd->vdev_reopening)
1422		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1423
1424	vd->vdev_ops->vdev_op_close(vd);
1425
1426	vdev_cache_purge(vd);
1427
1428	/*
1429	 * We record the previous state before we close it, so that if we are
1430	 * doing a reopen(), we don't generate FMA ereports if we notice that
1431	 * it's still faulted.
1432	 */
1433	vd->vdev_prevstate = vd->vdev_state;
1434
1435	if (vd->vdev_offline)
1436		vd->vdev_state = VDEV_STATE_OFFLINE;
1437	else
1438		vd->vdev_state = VDEV_STATE_CLOSED;
1439	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1440}
1441
1442void
1443vdev_hold(vdev_t *vd)
1444{
1445	spa_t *spa = vd->vdev_spa;
1446
1447	ASSERT(spa_is_root(spa));
1448	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1449		return;
1450
1451	for (int c = 0; c < vd->vdev_children; c++)
1452		vdev_hold(vd->vdev_child[c]);
1453
1454	if (vd->vdev_ops->vdev_op_leaf)
1455		vd->vdev_ops->vdev_op_hold(vd);
1456}
1457
1458void
1459vdev_rele(vdev_t *vd)
1460{
1461	spa_t *spa = vd->vdev_spa;
1462
1463	ASSERT(spa_is_root(spa));
1464	for (int c = 0; c < vd->vdev_children; c++)
1465		vdev_rele(vd->vdev_child[c]);
1466
1467	if (vd->vdev_ops->vdev_op_leaf)
1468		vd->vdev_ops->vdev_op_rele(vd);
1469}
1470
1471/*
1472 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1473 * reopen leaf vdevs which had previously been opened as they might deadlock
1474 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1475 * If the leaf has never been opened then open it, as usual.
1476 */
1477void
1478vdev_reopen(vdev_t *vd)
1479{
1480	spa_t *spa = vd->vdev_spa;
1481
1482	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1483
1484	/* set the reopening flag unless we're taking the vdev offline */
1485	vd->vdev_reopening = !vd->vdev_offline;
1486	vdev_close(vd);
1487	(void) vdev_open(vd);
1488
1489	/*
1490	 * Call vdev_validate() here to make sure we have the same device.
1491	 * Otherwise, a device with an invalid label could be successfully
1492	 * opened in response to vdev_reopen().
1493	 */
1494	if (vd->vdev_aux) {
1495		(void) vdev_validate_aux(vd);
1496		if (vdev_readable(vd) && vdev_writeable(vd) &&
1497		    vd->vdev_aux == &spa->spa_l2cache &&
1498		    !l2arc_vdev_present(vd))
1499			l2arc_add_vdev(spa, vd);
1500	} else {
1501		(void) vdev_validate(vd);
1502	}
1503
1504	/*
1505	 * Reassess parent vdev's health.
1506	 */
1507	vdev_propagate_state(vd);
1508}
1509
1510int
1511vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1512{
1513	int error;
1514
1515	/*
1516	 * Normally, partial opens (e.g. of a mirror) are allowed.
1517	 * For a create, however, we want to fail the request if
1518	 * there are any components we can't open.
1519	 */
1520	error = vdev_open(vd);
1521
1522	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1523		vdev_close(vd);
1524		return (error ? error : ENXIO);
1525	}
1526
1527	/*
1528	 * Recursively initialize all labels.
1529	 */
1530	if ((error = vdev_label_init(vd, txg, isreplacing ?
1531	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1532		vdev_close(vd);
1533		return (error);
1534	}
1535
1536	return (0);
1537}
1538
1539void
1540vdev_metaslab_set_size(vdev_t *vd)
1541{
1542	/*
1543	 * Aim for roughly 200 metaslabs per vdev.
1544	 */
1545	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1546	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1547}
1548
1549void
1550vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1551{
1552	ASSERT(vd == vd->vdev_top);
1553	ASSERT(!vd->vdev_ishole);
1554	ASSERT(ISP2(flags));
1555	ASSERT(spa_writeable(vd->vdev_spa));
1556
1557	if (flags & VDD_METASLAB)
1558		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1559
1560	if (flags & VDD_DTL)
1561		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1562
1563	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1564}
1565
1566/*
1567 * DTLs.
1568 *
1569 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1570 * the vdev has less than perfect replication.  There are four kinds of DTL:
1571 *
1572 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1573 *
1574 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1575 *
1576 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1577 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1578 *	txgs that was scrubbed.
1579 *
1580 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1581 *	persistent errors or just some device being offline.
1582 *	Unlike the other three, the DTL_OUTAGE map is not generally
1583 *	maintained; it's only computed when needed, typically to
1584 *	determine whether a device can be detached.
1585 *
1586 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1587 * either has the data or it doesn't.
1588 *
1589 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1590 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1591 * if any child is less than fully replicated, then so is its parent.
1592 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1593 * comprising only those txgs which appear in 'maxfaults' or more children;
1594 * those are the txgs we don't have enough replication to read.  For example,
1595 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1596 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1597 * two child DTL_MISSING maps.
1598 *
1599 * It should be clear from the above that to compute the DTLs and outage maps
1600 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1601 * Therefore, that is all we keep on disk.  When loading the pool, or after
1602 * a configuration change, we generate all other DTLs from first principles.
1603 */
1604void
1605vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1606{
1607	space_map_t *sm = &vd->vdev_dtl[t];
1608
1609	ASSERT(t < DTL_TYPES);
1610	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1611	ASSERT(spa_writeable(vd->vdev_spa));
1612
1613	mutex_enter(sm->sm_lock);
1614	if (!space_map_contains(sm, txg, size))
1615		space_map_add(sm, txg, size);
1616	mutex_exit(sm->sm_lock);
1617}
1618
1619boolean_t
1620vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1621{
1622	space_map_t *sm = &vd->vdev_dtl[t];
1623	boolean_t dirty = B_FALSE;
1624
1625	ASSERT(t < DTL_TYPES);
1626	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1627
1628	mutex_enter(sm->sm_lock);
1629	if (sm->sm_space != 0)
1630		dirty = space_map_contains(sm, txg, size);
1631	mutex_exit(sm->sm_lock);
1632
1633	return (dirty);
1634}
1635
1636boolean_t
1637vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1638{
1639	space_map_t *sm = &vd->vdev_dtl[t];
1640	boolean_t empty;
1641
1642	mutex_enter(sm->sm_lock);
1643	empty = (sm->sm_space == 0);
1644	mutex_exit(sm->sm_lock);
1645
1646	return (empty);
1647}
1648
1649/*
1650 * Reassess DTLs after a config change or scrub completion.
1651 */
1652void
1653vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1654{
1655	spa_t *spa = vd->vdev_spa;
1656	avl_tree_t reftree;
1657	int minref;
1658
1659	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1660
1661	for (int c = 0; c < vd->vdev_children; c++)
1662		vdev_dtl_reassess(vd->vdev_child[c], txg,
1663		    scrub_txg, scrub_done);
1664
1665	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1666		return;
1667
1668	if (vd->vdev_ops->vdev_op_leaf) {
1669		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1670
1671		mutex_enter(&vd->vdev_dtl_lock);
1672		if (scrub_txg != 0 &&
1673		    (spa->spa_scrub_started ||
1674		    (scn && scn->scn_phys.scn_errors == 0))) {
1675			/*
1676			 * We completed a scrub up to scrub_txg.  If we
1677			 * did it without rebooting, then the scrub dtl
1678			 * will be valid, so excise the old region and
1679			 * fold in the scrub dtl.  Otherwise, leave the
1680			 * dtl as-is if there was an error.
1681			 *
1682			 * There's little trick here: to excise the beginning
1683			 * of the DTL_MISSING map, we put it into a reference
1684			 * tree and then add a segment with refcnt -1 that
1685			 * covers the range [0, scrub_txg).  This means
1686			 * that each txg in that range has refcnt -1 or 0.
1687			 * We then add DTL_SCRUB with a refcnt of 2, so that
1688			 * entries in the range [0, scrub_txg) will have a
1689			 * positive refcnt -- either 1 or 2.  We then convert
1690			 * the reference tree into the new DTL_MISSING map.
1691			 */
1692			space_map_ref_create(&reftree);
1693			space_map_ref_add_map(&reftree,
1694			    &vd->vdev_dtl[DTL_MISSING], 1);
1695			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1696			space_map_ref_add_map(&reftree,
1697			    &vd->vdev_dtl[DTL_SCRUB], 2);
1698			space_map_ref_generate_map(&reftree,
1699			    &vd->vdev_dtl[DTL_MISSING], 1);
1700			space_map_ref_destroy(&reftree);
1701		}
1702		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1703		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1704		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1705		if (scrub_done)
1706			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1707		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1708		if (!vdev_readable(vd))
1709			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1710		else
1711			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1712			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1713		mutex_exit(&vd->vdev_dtl_lock);
1714
1715		if (txg != 0)
1716			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1717		return;
1718	}
1719
1720	mutex_enter(&vd->vdev_dtl_lock);
1721	for (int t = 0; t < DTL_TYPES; t++) {
1722		/* account for child's outage in parent's missing map */
1723		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1724		if (t == DTL_SCRUB)
1725			continue;			/* leaf vdevs only */
1726		if (t == DTL_PARTIAL)
1727			minref = 1;			/* i.e. non-zero */
1728		else if (vd->vdev_nparity != 0)
1729			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1730		else
1731			minref = vd->vdev_children;	/* any kind of mirror */
1732		space_map_ref_create(&reftree);
1733		for (int c = 0; c < vd->vdev_children; c++) {
1734			vdev_t *cvd = vd->vdev_child[c];
1735			mutex_enter(&cvd->vdev_dtl_lock);
1736			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1737			mutex_exit(&cvd->vdev_dtl_lock);
1738		}
1739		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1740		space_map_ref_destroy(&reftree);
1741	}
1742	mutex_exit(&vd->vdev_dtl_lock);
1743}
1744
1745static int
1746vdev_dtl_load(vdev_t *vd)
1747{
1748	spa_t *spa = vd->vdev_spa;
1749	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1750	objset_t *mos = spa->spa_meta_objset;
1751	dmu_buf_t *db;
1752	int error;
1753
1754	ASSERT(vd->vdev_children == 0);
1755
1756	if (smo->smo_object == 0)
1757		return (0);
1758
1759	ASSERT(!vd->vdev_ishole);
1760
1761	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1762		return (error);
1763
1764	ASSERT3U(db->db_size, >=, sizeof (*smo));
1765	bcopy(db->db_data, smo, sizeof (*smo));
1766	dmu_buf_rele(db, FTAG);
1767
1768	mutex_enter(&vd->vdev_dtl_lock);
1769	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1770	    NULL, SM_ALLOC, smo, mos);
1771	mutex_exit(&vd->vdev_dtl_lock);
1772
1773	return (error);
1774}
1775
1776void
1777vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1778{
1779	spa_t *spa = vd->vdev_spa;
1780	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1781	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1782	objset_t *mos = spa->spa_meta_objset;
1783	space_map_t smsync;
1784	kmutex_t smlock;
1785	dmu_buf_t *db;
1786	dmu_tx_t *tx;
1787
1788	ASSERT(!vd->vdev_ishole);
1789
1790	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1791
1792	if (vd->vdev_detached) {
1793		if (smo->smo_object != 0) {
1794			int err = dmu_object_free(mos, smo->smo_object, tx);
1795			ASSERT3U(err, ==, 0);
1796			smo->smo_object = 0;
1797		}
1798		dmu_tx_commit(tx);
1799		return;
1800	}
1801
1802	if (smo->smo_object == 0) {
1803		ASSERT(smo->smo_objsize == 0);
1804		ASSERT(smo->smo_alloc == 0);
1805		smo->smo_object = dmu_object_alloc(mos,
1806		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1807		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1808		ASSERT(smo->smo_object != 0);
1809		vdev_config_dirty(vd->vdev_top);
1810	}
1811
1812	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1813
1814	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1815	    &smlock);
1816
1817	mutex_enter(&smlock);
1818
1819	mutex_enter(&vd->vdev_dtl_lock);
1820	space_map_walk(sm, space_map_add, &smsync);
1821	mutex_exit(&vd->vdev_dtl_lock);
1822
1823	space_map_truncate(smo, mos, tx);
1824	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1825
1826	space_map_destroy(&smsync);
1827
1828	mutex_exit(&smlock);
1829	mutex_destroy(&smlock);
1830
1831	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1832	dmu_buf_will_dirty(db, tx);
1833	ASSERT3U(db->db_size, >=, sizeof (*smo));
1834	bcopy(smo, db->db_data, sizeof (*smo));
1835	dmu_buf_rele(db, FTAG);
1836
1837	dmu_tx_commit(tx);
1838}
1839
1840/*
1841 * Determine whether the specified vdev can be offlined/detached/removed
1842 * without losing data.
1843 */
1844boolean_t
1845vdev_dtl_required(vdev_t *vd)
1846{
1847	spa_t *spa = vd->vdev_spa;
1848	vdev_t *tvd = vd->vdev_top;
1849	uint8_t cant_read = vd->vdev_cant_read;
1850	boolean_t required;
1851
1852	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1853
1854	if (vd == spa->spa_root_vdev || vd == tvd)
1855		return (B_TRUE);
1856
1857	/*
1858	 * Temporarily mark the device as unreadable, and then determine
1859	 * whether this results in any DTL outages in the top-level vdev.
1860	 * If not, we can safely offline/detach/remove the device.
1861	 */
1862	vd->vdev_cant_read = B_TRUE;
1863	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1864	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1865	vd->vdev_cant_read = cant_read;
1866	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1867
1868	if (!required && zio_injection_enabled)
1869		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1870
1871	return (required);
1872}
1873
1874/*
1875 * Determine if resilver is needed, and if so the txg range.
1876 */
1877boolean_t
1878vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1879{
1880	boolean_t needed = B_FALSE;
1881	uint64_t thismin = UINT64_MAX;
1882	uint64_t thismax = 0;
1883
1884	if (vd->vdev_children == 0) {
1885		mutex_enter(&vd->vdev_dtl_lock);
1886		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1887		    vdev_writeable(vd)) {
1888			space_seg_t *ss;
1889
1890			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1891			thismin = ss->ss_start - 1;
1892			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1893			thismax = ss->ss_end;
1894			needed = B_TRUE;
1895		}
1896		mutex_exit(&vd->vdev_dtl_lock);
1897	} else {
1898		for (int c = 0; c < vd->vdev_children; c++) {
1899			vdev_t *cvd = vd->vdev_child[c];
1900			uint64_t cmin, cmax;
1901
1902			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1903				thismin = MIN(thismin, cmin);
1904				thismax = MAX(thismax, cmax);
1905				needed = B_TRUE;
1906			}
1907		}
1908	}
1909
1910	if (needed && minp) {
1911		*minp = thismin;
1912		*maxp = thismax;
1913	}
1914	return (needed);
1915}
1916
1917void
1918vdev_load(vdev_t *vd)
1919{
1920	/*
1921	 * Recursively load all children.
1922	 */
1923	for (int c = 0; c < vd->vdev_children; c++)
1924		vdev_load(vd->vdev_child[c]);
1925
1926	/*
1927	 * If this is a top-level vdev, initialize its metaslabs.
1928	 */
1929	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1930	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1931	    vdev_metaslab_init(vd, 0) != 0))
1932		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1933		    VDEV_AUX_CORRUPT_DATA);
1934
1935	/*
1936	 * If this is a leaf vdev, load its DTL.
1937	 */
1938	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1939		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1940		    VDEV_AUX_CORRUPT_DATA);
1941}
1942
1943/*
1944 * The special vdev case is used for hot spares and l2cache devices.  Its
1945 * sole purpose it to set the vdev state for the associated vdev.  To do this,
1946 * we make sure that we can open the underlying device, then try to read the
1947 * label, and make sure that the label is sane and that it hasn't been
1948 * repurposed to another pool.
1949 */
1950int
1951vdev_validate_aux(vdev_t *vd)
1952{
1953	nvlist_t *label;
1954	uint64_t guid, version;
1955	uint64_t state;
1956
1957	if (!vdev_readable(vd))
1958		return (0);
1959
1960	if ((label = vdev_label_read_config(vd)) == NULL) {
1961		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1962		    VDEV_AUX_CORRUPT_DATA);
1963		return (-1);
1964	}
1965
1966	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1967	    version > SPA_VERSION ||
1968	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1969	    guid != vd->vdev_guid ||
1970	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1971		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1972		    VDEV_AUX_CORRUPT_DATA);
1973		nvlist_free(label);
1974		return (-1);
1975	}
1976
1977	/*
1978	 * We don't actually check the pool state here.  If it's in fact in
1979	 * use by another pool, we update this fact on the fly when requested.
1980	 */
1981	nvlist_free(label);
1982	return (0);
1983}
1984
1985void
1986vdev_remove(vdev_t *vd, uint64_t txg)
1987{
1988	spa_t *spa = vd->vdev_spa;
1989	objset_t *mos = spa->spa_meta_objset;
1990	dmu_tx_t *tx;
1991
1992	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1993
1994	if (vd->vdev_dtl_smo.smo_object) {
1995		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1996		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1997		vd->vdev_dtl_smo.smo_object = 0;
1998	}
1999
2000	if (vd->vdev_ms != NULL) {
2001		for (int m = 0; m < vd->vdev_ms_count; m++) {
2002			metaslab_t *msp = vd->vdev_ms[m];
2003
2004			if (msp == NULL || msp->ms_smo.smo_object == 0)
2005				continue;
2006
2007			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2008			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2009			msp->ms_smo.smo_object = 0;
2010		}
2011	}
2012
2013	if (vd->vdev_ms_array) {
2014		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2015		vd->vdev_ms_array = 0;
2016		vd->vdev_ms_shift = 0;
2017	}
2018	dmu_tx_commit(tx);
2019}
2020
2021void
2022vdev_sync_done(vdev_t *vd, uint64_t txg)
2023{
2024	metaslab_t *msp;
2025	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2026
2027	ASSERT(!vd->vdev_ishole);
2028
2029	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2030		metaslab_sync_done(msp, txg);
2031
2032	if (reassess)
2033		metaslab_sync_reassess(vd->vdev_mg);
2034}
2035
2036void
2037vdev_sync(vdev_t *vd, uint64_t txg)
2038{
2039	spa_t *spa = vd->vdev_spa;
2040	vdev_t *lvd;
2041	metaslab_t *msp;
2042	dmu_tx_t *tx;
2043
2044	ASSERT(!vd->vdev_ishole);
2045
2046	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2047		ASSERT(vd == vd->vdev_top);
2048		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2049		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2050		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2051		ASSERT(vd->vdev_ms_array != 0);
2052		vdev_config_dirty(vd);
2053		dmu_tx_commit(tx);
2054	}
2055
2056	/*
2057	 * Remove the metadata associated with this vdev once it's empty.
2058	 */
2059	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2060		vdev_remove(vd, txg);
2061
2062	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2063		metaslab_sync(msp, txg);
2064		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2065	}
2066
2067	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2068		vdev_dtl_sync(lvd, txg);
2069
2070	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2071}
2072
2073uint64_t
2074vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2075{
2076	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2077}
2078
2079/*
2080 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2081 * not be opened, and no I/O is attempted.
2082 */
2083int
2084vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2085{
2086	vdev_t *vd, *tvd;
2087
2088	spa_vdev_state_enter(spa, SCL_NONE);
2089
2090	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2091		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2092
2093	if (!vd->vdev_ops->vdev_op_leaf)
2094		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2095
2096	tvd = vd->vdev_top;
2097
2098	/*
2099	 * We don't directly use the aux state here, but if we do a
2100	 * vdev_reopen(), we need this value to be present to remember why we
2101	 * were faulted.
2102	 */
2103	vd->vdev_label_aux = aux;
2104
2105	/*
2106	 * Faulted state takes precedence over degraded.
2107	 */
2108	vd->vdev_delayed_close = B_FALSE;
2109	vd->vdev_faulted = 1ULL;
2110	vd->vdev_degraded = 0ULL;
2111	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2112
2113	/*
2114	 * If this device has the only valid copy of the data, then
2115	 * back off and simply mark the vdev as degraded instead.
2116	 */
2117	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2118		vd->vdev_degraded = 1ULL;
2119		vd->vdev_faulted = 0ULL;
2120
2121		/*
2122		 * If we reopen the device and it's not dead, only then do we
2123		 * mark it degraded.
2124		 */
2125		vdev_reopen(tvd);
2126
2127		if (vdev_readable(vd))
2128			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2129	}
2130
2131	return (spa_vdev_state_exit(spa, vd, 0));
2132}
2133
2134/*
2135 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2136 * user that something is wrong.  The vdev continues to operate as normal as far
2137 * as I/O is concerned.
2138 */
2139int
2140vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2141{
2142	vdev_t *vd;
2143
2144	spa_vdev_state_enter(spa, SCL_NONE);
2145
2146	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2147		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2148
2149	if (!vd->vdev_ops->vdev_op_leaf)
2150		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2151
2152	/*
2153	 * If the vdev is already faulted, then don't do anything.
2154	 */
2155	if (vd->vdev_faulted || vd->vdev_degraded)
2156		return (spa_vdev_state_exit(spa, NULL, 0));
2157
2158	vd->vdev_degraded = 1ULL;
2159	if (!vdev_is_dead(vd))
2160		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2161		    aux);
2162
2163	return (spa_vdev_state_exit(spa, vd, 0));
2164}
2165
2166/*
2167 * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2168 * any attached spare device should be detached when the device finishes
2169 * resilvering.  Second, the online should be treated like a 'test' online case,
2170 * so no FMA events are generated if the device fails to open.
2171 */
2172int
2173vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2174{
2175	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2176
2177	spa_vdev_state_enter(spa, SCL_NONE);
2178
2179	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2180		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2181
2182	if (!vd->vdev_ops->vdev_op_leaf)
2183		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2184
2185	tvd = vd->vdev_top;
2186	vd->vdev_offline = B_FALSE;
2187	vd->vdev_tmpoffline = B_FALSE;
2188	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2189	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2190
2191	/* XXX - L2ARC 1.0 does not support expansion */
2192	if (!vd->vdev_aux) {
2193		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2194			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2195	}
2196
2197	vdev_reopen(tvd);
2198	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2199
2200	if (!vd->vdev_aux) {
2201		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2202			pvd->vdev_expanding = B_FALSE;
2203	}
2204
2205	if (newstate)
2206		*newstate = vd->vdev_state;
2207	if ((flags & ZFS_ONLINE_UNSPARE) &&
2208	    !vdev_is_dead(vd) && vd->vdev_parent &&
2209	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2210	    vd->vdev_parent->vdev_child[0] == vd)
2211		vd->vdev_unspare = B_TRUE;
2212
2213	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2214
2215		/* XXX - L2ARC 1.0 does not support expansion */
2216		if (vd->vdev_aux)
2217			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2218		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2219	}
2220	return (spa_vdev_state_exit(spa, vd, 0));
2221}
2222
2223static int
2224vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2225{
2226	vdev_t *vd, *tvd;
2227	int error = 0;
2228	uint64_t generation;
2229	metaslab_group_t *mg;
2230
2231top:
2232	spa_vdev_state_enter(spa, SCL_ALLOC);
2233
2234	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2235		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2236
2237	if (!vd->vdev_ops->vdev_op_leaf)
2238		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2239
2240	tvd = vd->vdev_top;
2241	mg = tvd->vdev_mg;
2242	generation = spa->spa_config_generation + 1;
2243
2244	/*
2245	 * If the device isn't already offline, try to offline it.
2246	 */
2247	if (!vd->vdev_offline) {
2248		/*
2249		 * If this device has the only valid copy of some data,
2250		 * don't allow it to be offlined. Log devices are always
2251		 * expendable.
2252		 */
2253		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2254		    vdev_dtl_required(vd))
2255			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2256
2257		/*
2258		 * If the top-level is a slog and it has had allocations
2259		 * then proceed.  We check that the vdev's metaslab group
2260		 * is not NULL since it's possible that we may have just
2261		 * added this vdev but not yet initialized its metaslabs.
2262		 */
2263		if (tvd->vdev_islog && mg != NULL) {
2264			/*
2265			 * Prevent any future allocations.
2266			 */
2267			metaslab_group_passivate(mg);
2268			(void) spa_vdev_state_exit(spa, vd, 0);
2269
2270			error = spa_offline_log(spa);
2271
2272			spa_vdev_state_enter(spa, SCL_ALLOC);
2273
2274			/*
2275			 * Check to see if the config has changed.
2276			 */
2277			if (error || generation != spa->spa_config_generation) {
2278				metaslab_group_activate(mg);
2279				if (error)
2280					return (spa_vdev_state_exit(spa,
2281					    vd, error));
2282				(void) spa_vdev_state_exit(spa, vd, 0);
2283				goto top;
2284			}
2285			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2286		}
2287
2288		/*
2289		 * Offline this device and reopen its top-level vdev.
2290		 * If the top-level vdev is a log device then just offline
2291		 * it. Otherwise, if this action results in the top-level
2292		 * vdev becoming unusable, undo it and fail the request.
2293		 */
2294		vd->vdev_offline = B_TRUE;
2295		vdev_reopen(tvd);
2296
2297		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2298		    vdev_is_dead(tvd)) {
2299			vd->vdev_offline = B_FALSE;
2300			vdev_reopen(tvd);
2301			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2302		}
2303
2304		/*
2305		 * Add the device back into the metaslab rotor so that
2306		 * once we online the device it's open for business.
2307		 */
2308		if (tvd->vdev_islog && mg != NULL)
2309			metaslab_group_activate(mg);
2310	}
2311
2312	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2313
2314	return (spa_vdev_state_exit(spa, vd, 0));
2315}
2316
2317int
2318vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2319{
2320	int error;
2321
2322	mutex_enter(&spa->spa_vdev_top_lock);
2323	error = vdev_offline_locked(spa, guid, flags);
2324	mutex_exit(&spa->spa_vdev_top_lock);
2325
2326	return (error);
2327}
2328
2329/*
2330 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2331 * vdev_offline(), we assume the spa config is locked.  We also clear all
2332 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2333 */
2334void
2335vdev_clear(spa_t *spa, vdev_t *vd)
2336{
2337	vdev_t *rvd = spa->spa_root_vdev;
2338
2339	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2340
2341	if (vd == NULL)
2342		vd = rvd;
2343
2344	vd->vdev_stat.vs_read_errors = 0;
2345	vd->vdev_stat.vs_write_errors = 0;
2346	vd->vdev_stat.vs_checksum_errors = 0;
2347
2348	for (int c = 0; c < vd->vdev_children; c++)
2349		vdev_clear(spa, vd->vdev_child[c]);
2350
2351	/*
2352	 * If we're in the FAULTED state or have experienced failed I/O, then
2353	 * clear the persistent state and attempt to reopen the device.  We
2354	 * also mark the vdev config dirty, so that the new faulted state is
2355	 * written out to disk.
2356	 */
2357	if (vd->vdev_faulted || vd->vdev_degraded ||
2358	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2359
2360		/*
2361		 * When reopening in reponse to a clear event, it may be due to
2362		 * a fmadm repair request.  In this case, if the device is
2363		 * still broken, we want to still post the ereport again.
2364		 */
2365		vd->vdev_forcefault = B_TRUE;
2366
2367		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2368		vd->vdev_cant_read = B_FALSE;
2369		vd->vdev_cant_write = B_FALSE;
2370
2371		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2372
2373		vd->vdev_forcefault = B_FALSE;
2374
2375		if (vd != rvd && vdev_writeable(vd->vdev_top))
2376			vdev_state_dirty(vd->vdev_top);
2377
2378		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2379			spa_async_request(spa, SPA_ASYNC_RESILVER);
2380
2381		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2382	}
2383
2384	/*
2385	 * When clearing a FMA-diagnosed fault, we always want to
2386	 * unspare the device, as we assume that the original spare was
2387	 * done in response to the FMA fault.
2388	 */
2389	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2390	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2391	    vd->vdev_parent->vdev_child[0] == vd)
2392		vd->vdev_unspare = B_TRUE;
2393}
2394
2395boolean_t
2396vdev_is_dead(vdev_t *vd)
2397{
2398	/*
2399	 * Holes and missing devices are always considered "dead".
2400	 * This simplifies the code since we don't have to check for
2401	 * these types of devices in the various code paths.
2402	 * Instead we rely on the fact that we skip over dead devices
2403	 * before issuing I/O to them.
2404	 */
2405	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2406	    vd->vdev_ops == &vdev_missing_ops);
2407}
2408
2409boolean_t
2410vdev_readable(vdev_t *vd)
2411{
2412	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2413}
2414
2415boolean_t
2416vdev_writeable(vdev_t *vd)
2417{
2418	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2419}
2420
2421boolean_t
2422vdev_allocatable(vdev_t *vd)
2423{
2424	uint64_t state = vd->vdev_state;
2425
2426	/*
2427	 * We currently allow allocations from vdevs which may be in the
2428	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2429	 * fails to reopen then we'll catch it later when we're holding
2430	 * the proper locks.  Note that we have to get the vdev state
2431	 * in a local variable because although it changes atomically,
2432	 * we're asking two separate questions about it.
2433	 */
2434	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2435	    !vd->vdev_cant_write && !vd->vdev_ishole);
2436}
2437
2438boolean_t
2439vdev_accessible(vdev_t *vd, zio_t *zio)
2440{
2441	ASSERT(zio->io_vd == vd);
2442
2443	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2444		return (B_FALSE);
2445
2446	if (zio->io_type == ZIO_TYPE_READ)
2447		return (!vd->vdev_cant_read);
2448
2449	if (zio->io_type == ZIO_TYPE_WRITE)
2450		return (!vd->vdev_cant_write);
2451
2452	return (B_TRUE);
2453}
2454
2455/*
2456 * Get statistics for the given vdev.
2457 */
2458void
2459vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2460{
2461	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2462
2463	mutex_enter(&vd->vdev_stat_lock);
2464	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2465	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2466	vs->vs_state = vd->vdev_state;
2467	vs->vs_rsize = vdev_get_min_asize(vd);
2468	if (vd->vdev_ops->vdev_op_leaf)
2469		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2470	mutex_exit(&vd->vdev_stat_lock);
2471
2472	/*
2473	 * If we're getting stats on the root vdev, aggregate the I/O counts
2474	 * over all top-level vdevs (i.e. the direct children of the root).
2475	 */
2476	if (vd == rvd) {
2477		for (int c = 0; c < rvd->vdev_children; c++) {
2478			vdev_t *cvd = rvd->vdev_child[c];
2479			vdev_stat_t *cvs = &cvd->vdev_stat;
2480
2481			mutex_enter(&vd->vdev_stat_lock);
2482			for (int t = 0; t < ZIO_TYPES; t++) {
2483				vs->vs_ops[t] += cvs->vs_ops[t];
2484				vs->vs_bytes[t] += cvs->vs_bytes[t];
2485			}
2486			cvs->vs_scan_removing = cvd->vdev_removing;
2487			mutex_exit(&vd->vdev_stat_lock);
2488		}
2489	}
2490}
2491
2492void
2493vdev_clear_stats(vdev_t *vd)
2494{
2495	mutex_enter(&vd->vdev_stat_lock);
2496	vd->vdev_stat.vs_space = 0;
2497	vd->vdev_stat.vs_dspace = 0;
2498	vd->vdev_stat.vs_alloc = 0;
2499	mutex_exit(&vd->vdev_stat_lock);
2500}
2501
2502void
2503vdev_scan_stat_init(vdev_t *vd)
2504{
2505	vdev_stat_t *vs = &vd->vdev_stat;
2506
2507	for (int c = 0; c < vd->vdev_children; c++)
2508		vdev_scan_stat_init(vd->vdev_child[c]);
2509
2510	mutex_enter(&vd->vdev_stat_lock);
2511	vs->vs_scan_processed = 0;
2512	mutex_exit(&vd->vdev_stat_lock);
2513}
2514
2515void
2516vdev_stat_update(zio_t *zio, uint64_t psize)
2517{
2518	spa_t *spa = zio->io_spa;
2519	vdev_t *rvd = spa->spa_root_vdev;
2520	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2521	vdev_t *pvd;
2522	uint64_t txg = zio->io_txg;
2523	vdev_stat_t *vs = &vd->vdev_stat;
2524	zio_type_t type = zio->io_type;
2525	int flags = zio->io_flags;
2526
2527	/*
2528	 * If this i/o is a gang leader, it didn't do any actual work.
2529	 */
2530	if (zio->io_gang_tree)
2531		return;
2532
2533	if (zio->io_error == 0) {
2534		/*
2535		 * If this is a root i/o, don't count it -- we've already
2536		 * counted the top-level vdevs, and vdev_get_stats() will
2537		 * aggregate them when asked.  This reduces contention on
2538		 * the root vdev_stat_lock and implicitly handles blocks
2539		 * that compress away to holes, for which there is no i/o.
2540		 * (Holes never create vdev children, so all the counters
2541		 * remain zero, which is what we want.)
2542		 *
2543		 * Note: this only applies to successful i/o (io_error == 0)
2544		 * because unlike i/o counts, errors are not additive.
2545		 * When reading a ditto block, for example, failure of
2546		 * one top-level vdev does not imply a root-level error.
2547		 */
2548		if (vd == rvd)
2549			return;
2550
2551		ASSERT(vd == zio->io_vd);
2552
2553		if (flags & ZIO_FLAG_IO_BYPASS)
2554			return;
2555
2556		mutex_enter(&vd->vdev_stat_lock);
2557
2558		if (flags & ZIO_FLAG_IO_REPAIR) {
2559			if (flags & ZIO_FLAG_SCAN_THREAD) {
2560				dsl_scan_phys_t *scn_phys =
2561				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2562				uint64_t *processed = &scn_phys->scn_processed;
2563
2564				/* XXX cleanup? */
2565				if (vd->vdev_ops->vdev_op_leaf)
2566					atomic_add_64(processed, psize);
2567				vs->vs_scan_processed += psize;
2568			}
2569
2570			if (flags & ZIO_FLAG_SELF_HEAL)
2571				vs->vs_self_healed += psize;
2572		}
2573
2574		vs->vs_ops[type]++;
2575		vs->vs_bytes[type] += psize;
2576
2577		mutex_exit(&vd->vdev_stat_lock);
2578		return;
2579	}
2580
2581	if (flags & ZIO_FLAG_SPECULATIVE)
2582		return;
2583
2584	/*
2585	 * If this is an I/O error that is going to be retried, then ignore the
2586	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2587	 * hard errors, when in reality they can happen for any number of
2588	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2589	 */
2590	if (zio->io_error == EIO &&
2591	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2592		return;
2593
2594	/*
2595	 * Intent logs writes won't propagate their error to the root
2596	 * I/O so don't mark these types of failures as pool-level
2597	 * errors.
2598	 */
2599	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2600		return;
2601
2602	mutex_enter(&vd->vdev_stat_lock);
2603	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2604		if (zio->io_error == ECKSUM)
2605			vs->vs_checksum_errors++;
2606		else
2607			vs->vs_read_errors++;
2608	}
2609	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2610		vs->vs_write_errors++;
2611	mutex_exit(&vd->vdev_stat_lock);
2612
2613	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2614	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2615	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2616	    spa->spa_claiming)) {
2617		/*
2618		 * This is either a normal write (not a repair), or it's
2619		 * a repair induced by the scrub thread, or it's a repair
2620		 * made by zil_claim() during spa_load() in the first txg.
2621		 * In the normal case, we commit the DTL change in the same
2622		 * txg as the block was born.  In the scrub-induced repair
2623		 * case, we know that scrubs run in first-pass syncing context,
2624		 * so we commit the DTL change in spa_syncing_txg(spa).
2625		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2626		 *
2627		 * We currently do not make DTL entries for failed spontaneous
2628		 * self-healing writes triggered by normal (non-scrubbing)
2629		 * reads, because we have no transactional context in which to
2630		 * do so -- and it's not clear that it'd be desirable anyway.
2631		 */
2632		if (vd->vdev_ops->vdev_op_leaf) {
2633			uint64_t commit_txg = txg;
2634			if (flags & ZIO_FLAG_SCAN_THREAD) {
2635				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2636				ASSERT(spa_sync_pass(spa) == 1);
2637				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2638				commit_txg = spa_syncing_txg(spa);
2639			} else if (spa->spa_claiming) {
2640				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2641				commit_txg = spa_first_txg(spa);
2642			}
2643			ASSERT(commit_txg >= spa_syncing_txg(spa));
2644			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2645				return;
2646			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2647				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2648			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2649		}
2650		if (vd != rvd)
2651			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2652	}
2653}
2654
2655/*
2656 * Update the in-core space usage stats for this vdev, its metaslab class,
2657 * and the root vdev.
2658 */
2659void
2660vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2661    int64_t space_delta)
2662{
2663	int64_t dspace_delta = space_delta;
2664	spa_t *spa = vd->vdev_spa;
2665	vdev_t *rvd = spa->spa_root_vdev;
2666	metaslab_group_t *mg = vd->vdev_mg;
2667	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2668
2669	ASSERT(vd == vd->vdev_top);
2670
2671	/*
2672	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2673	 * factor.  We must calculate this here and not at the root vdev
2674	 * because the root vdev's psize-to-asize is simply the max of its
2675	 * childrens', thus not accurate enough for us.
2676	 */
2677	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2678	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2679	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2680	    vd->vdev_deflate_ratio;
2681
2682	mutex_enter(&vd->vdev_stat_lock);
2683	vd->vdev_stat.vs_alloc += alloc_delta;
2684	vd->vdev_stat.vs_space += space_delta;
2685	vd->vdev_stat.vs_dspace += dspace_delta;
2686	mutex_exit(&vd->vdev_stat_lock);
2687
2688	if (mc == spa_normal_class(spa)) {
2689		mutex_enter(&rvd->vdev_stat_lock);
2690		rvd->vdev_stat.vs_alloc += alloc_delta;
2691		rvd->vdev_stat.vs_space += space_delta;
2692		rvd->vdev_stat.vs_dspace += dspace_delta;
2693		mutex_exit(&rvd->vdev_stat_lock);
2694	}
2695
2696	if (mc != NULL) {
2697		ASSERT(rvd == vd->vdev_parent);
2698		ASSERT(vd->vdev_ms_count != 0);
2699
2700		metaslab_class_space_update(mc,
2701		    alloc_delta, defer_delta, space_delta, dspace_delta);
2702	}
2703}
2704
2705/*
2706 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2707 * so that it will be written out next time the vdev configuration is synced.
2708 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2709 */
2710void
2711vdev_config_dirty(vdev_t *vd)
2712{
2713	spa_t *spa = vd->vdev_spa;
2714	vdev_t *rvd = spa->spa_root_vdev;
2715	int c;
2716
2717	ASSERT(spa_writeable(spa));
2718
2719	/*
2720	 * If this is an aux vdev (as with l2cache and spare devices), then we
2721	 * update the vdev config manually and set the sync flag.
2722	 */
2723	if (vd->vdev_aux != NULL) {
2724		spa_aux_vdev_t *sav = vd->vdev_aux;
2725		nvlist_t **aux;
2726		uint_t naux;
2727
2728		for (c = 0; c < sav->sav_count; c++) {
2729			if (sav->sav_vdevs[c] == vd)
2730				break;
2731		}
2732
2733		if (c == sav->sav_count) {
2734			/*
2735			 * We're being removed.  There's nothing more to do.
2736			 */
2737			ASSERT(sav->sav_sync == B_TRUE);
2738			return;
2739		}
2740
2741		sav->sav_sync = B_TRUE;
2742
2743		if (nvlist_lookup_nvlist_array(sav->sav_config,
2744		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2745			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2746			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2747		}
2748
2749		ASSERT(c < naux);
2750
2751		/*
2752		 * Setting the nvlist in the middle if the array is a little
2753		 * sketchy, but it will work.
2754		 */
2755		nvlist_free(aux[c]);
2756		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2757
2758		return;
2759	}
2760
2761	/*
2762	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2763	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2764	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2765	 * so this is sufficient to ensure mutual exclusion.
2766	 */
2767	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2768	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2769	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2770
2771	if (vd == rvd) {
2772		for (c = 0; c < rvd->vdev_children; c++)
2773			vdev_config_dirty(rvd->vdev_child[c]);
2774	} else {
2775		ASSERT(vd == vd->vdev_top);
2776
2777		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2778		    !vd->vdev_ishole)
2779			list_insert_head(&spa->spa_config_dirty_list, vd);
2780	}
2781}
2782
2783void
2784vdev_config_clean(vdev_t *vd)
2785{
2786	spa_t *spa = vd->vdev_spa;
2787
2788	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2789	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2790	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2791
2792	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2793	list_remove(&spa->spa_config_dirty_list, vd);
2794}
2795
2796/*
2797 * Mark a top-level vdev's state as dirty, so that the next pass of
2798 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2799 * the state changes from larger config changes because they require
2800 * much less locking, and are often needed for administrative actions.
2801 */
2802void
2803vdev_state_dirty(vdev_t *vd)
2804{
2805	spa_t *spa = vd->vdev_spa;
2806
2807	ASSERT(spa_writeable(spa));
2808	ASSERT(vd == vd->vdev_top);
2809
2810	/*
2811	 * The state list is protected by the SCL_STATE lock.  The caller
2812	 * must either hold SCL_STATE as writer, or must be the sync thread
2813	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2814	 * so this is sufficient to ensure mutual exclusion.
2815	 */
2816	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2817	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2818	    spa_config_held(spa, SCL_STATE, RW_READER)));
2819
2820	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2821		list_insert_head(&spa->spa_state_dirty_list, vd);
2822}
2823
2824void
2825vdev_state_clean(vdev_t *vd)
2826{
2827	spa_t *spa = vd->vdev_spa;
2828
2829	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2830	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2831	    spa_config_held(spa, SCL_STATE, RW_READER)));
2832
2833	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2834	list_remove(&spa->spa_state_dirty_list, vd);
2835}
2836
2837/*
2838 * Propagate vdev state up from children to parent.
2839 */
2840void
2841vdev_propagate_state(vdev_t *vd)
2842{
2843	spa_t *spa = vd->vdev_spa;
2844	vdev_t *rvd = spa->spa_root_vdev;
2845	int degraded = 0, faulted = 0;
2846	int corrupted = 0;
2847	vdev_t *child;
2848
2849	if (vd->vdev_children > 0) {
2850		for (int c = 0; c < vd->vdev_children; c++) {
2851			child = vd->vdev_child[c];
2852
2853			/*
2854			 * Don't factor holes into the decision.
2855			 */
2856			if (child->vdev_ishole)
2857				continue;
2858
2859			if (!vdev_readable(child) ||
2860			    (!vdev_writeable(child) && spa_writeable(spa))) {
2861				/*
2862				 * Root special: if there is a top-level log
2863				 * device, treat the root vdev as if it were
2864				 * degraded.
2865				 */
2866				if (child->vdev_islog && vd == rvd)
2867					degraded++;
2868				else
2869					faulted++;
2870			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2871				degraded++;
2872			}
2873
2874			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2875				corrupted++;
2876		}
2877
2878		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2879
2880		/*
2881		 * Root special: if there is a top-level vdev that cannot be
2882		 * opened due to corrupted metadata, then propagate the root
2883		 * vdev's aux state as 'corrupt' rather than 'insufficient
2884		 * replicas'.
2885		 */
2886		if (corrupted && vd == rvd &&
2887		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2888			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2889			    VDEV_AUX_CORRUPT_DATA);
2890	}
2891
2892	if (vd->vdev_parent)
2893		vdev_propagate_state(vd->vdev_parent);
2894}
2895
2896/*
2897 * Set a vdev's state.  If this is during an open, we don't update the parent
2898 * state, because we're in the process of opening children depth-first.
2899 * Otherwise, we propagate the change to the parent.
2900 *
2901 * If this routine places a device in a faulted state, an appropriate ereport is
2902 * generated.
2903 */
2904void
2905vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2906{
2907	uint64_t save_state;
2908	spa_t *spa = vd->vdev_spa;
2909
2910	if (state == vd->vdev_state) {
2911		vd->vdev_stat.vs_aux = aux;
2912		return;
2913	}
2914
2915	save_state = vd->vdev_state;
2916
2917	vd->vdev_state = state;
2918	vd->vdev_stat.vs_aux = aux;
2919
2920	/*
2921	 * If we are setting the vdev state to anything but an open state, then
2922	 * always close the underlying device unless the device has requested
2923	 * a delayed close (i.e. we're about to remove or fault the device).
2924	 * Otherwise, we keep accessible but invalid devices open forever.
2925	 * We don't call vdev_close() itself, because that implies some extra
2926	 * checks (offline, etc) that we don't want here.  This is limited to
2927	 * leaf devices, because otherwise closing the device will affect other
2928	 * children.
2929	 */
2930	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2931	    vd->vdev_ops->vdev_op_leaf)
2932		vd->vdev_ops->vdev_op_close(vd);
2933
2934	/*
2935	 * If we have brought this vdev back into service, we need
2936	 * to notify fmd so that it can gracefully repair any outstanding
2937	 * cases due to a missing device.  We do this in all cases, even those
2938	 * that probably don't correlate to a repaired fault.  This is sure to
2939	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2940	 * this is a transient state it's OK, as the retire agent will
2941	 * double-check the state of the vdev before repairing it.
2942	 */
2943	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2944	    vd->vdev_prevstate != state)
2945		zfs_post_state_change(spa, vd);
2946
2947	if (vd->vdev_removed &&
2948	    state == VDEV_STATE_CANT_OPEN &&
2949	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2950		/*
2951		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2952		 * device was previously marked removed and someone attempted to
2953		 * reopen it.  If this failed due to a nonexistent device, then
2954		 * keep the device in the REMOVED state.  We also let this be if
2955		 * it is one of our special test online cases, which is only
2956		 * attempting to online the device and shouldn't generate an FMA
2957		 * fault.
2958		 */
2959		vd->vdev_state = VDEV_STATE_REMOVED;
2960		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2961	} else if (state == VDEV_STATE_REMOVED) {
2962		vd->vdev_removed = B_TRUE;
2963	} else if (state == VDEV_STATE_CANT_OPEN) {
2964		/*
2965		 * If we fail to open a vdev during an import or recovery, we
2966		 * mark it as "not available", which signifies that it was
2967		 * never there to begin with.  Failure to open such a device
2968		 * is not considered an error.
2969		 */
2970		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2971		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2972		    vd->vdev_ops->vdev_op_leaf)
2973			vd->vdev_not_present = 1;
2974
2975		/*
2976		 * Post the appropriate ereport.  If the 'prevstate' field is
2977		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2978		 * that this is part of a vdev_reopen().  In this case, we don't
2979		 * want to post the ereport if the device was already in the
2980		 * CANT_OPEN state beforehand.
2981		 *
2982		 * If the 'checkremove' flag is set, then this is an attempt to
2983		 * online the device in response to an insertion event.  If we
2984		 * hit this case, then we have detected an insertion event for a
2985		 * faulted or offline device that wasn't in the removed state.
2986		 * In this scenario, we don't post an ereport because we are
2987		 * about to replace the device, or attempt an online with
2988		 * vdev_forcefault, which will generate the fault for us.
2989		 */
2990		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2991		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2992		    vd != spa->spa_root_vdev) {
2993			const char *class;
2994
2995			switch (aux) {
2996			case VDEV_AUX_OPEN_FAILED:
2997				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2998				break;
2999			case VDEV_AUX_CORRUPT_DATA:
3000				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3001				break;
3002			case VDEV_AUX_NO_REPLICAS:
3003				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3004				break;
3005			case VDEV_AUX_BAD_GUID_SUM:
3006				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3007				break;
3008			case VDEV_AUX_TOO_SMALL:
3009				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3010				break;
3011			case VDEV_AUX_BAD_LABEL:
3012				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3013				break;
3014			default:
3015				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3016			}
3017
3018			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3019		}
3020
3021		/* Erase any notion of persistent removed state */
3022		vd->vdev_removed = B_FALSE;
3023	} else {
3024		vd->vdev_removed = B_FALSE;
3025	}
3026
3027	if (!isopen && vd->vdev_parent)
3028		vdev_propagate_state(vd->vdev_parent);
3029}
3030
3031/*
3032 * Check the vdev configuration to ensure that it's capable of supporting
3033 * a root pool.
3034 *
3035 * On Solaris, we do not support RAID-Z or partial configuration.  In
3036 * addition, only a single top-level vdev is allowed and none of the
3037 * leaves can be wholedisks.
3038 *
3039 * For FreeBSD, we can boot from any configuration. There is a
3040 * limitation that the boot filesystem must be either uncompressed or
3041 * compresses with lzjb compression but I'm not sure how to enforce
3042 * that here.
3043 */
3044boolean_t
3045vdev_is_bootable(vdev_t *vd)
3046{
3047#ifdef sun
3048	if (!vd->vdev_ops->vdev_op_leaf) {
3049		char *vdev_type = vd->vdev_ops->vdev_op_type;
3050
3051		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3052		    vd->vdev_children > 1) {
3053			return (B_FALSE);
3054		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3055		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3056			return (B_FALSE);
3057		}
3058	} else if (vd->vdev_wholedisk == 1) {
3059		return (B_FALSE);
3060	}
3061
3062	for (int c = 0; c < vd->vdev_children; c++) {
3063		if (!vdev_is_bootable(vd->vdev_child[c]))
3064			return (B_FALSE);
3065	}
3066#endif	/* sun */
3067	return (B_TRUE);
3068}
3069
3070/*
3071 * Load the state from the original vdev tree (ovd) which
3072 * we've retrieved from the MOS config object. If the original
3073 * vdev was offline or faulted then we transfer that state to the
3074 * device in the current vdev tree (nvd).
3075 */
3076void
3077vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3078{
3079	spa_t *spa = nvd->vdev_spa;
3080
3081	ASSERT(nvd->vdev_top->vdev_islog);
3082	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3083	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3084
3085	for (int c = 0; c < nvd->vdev_children; c++)
3086		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3087
3088	if (nvd->vdev_ops->vdev_op_leaf) {
3089		/*
3090		 * Restore the persistent vdev state
3091		 */
3092		nvd->vdev_offline = ovd->vdev_offline;
3093		nvd->vdev_faulted = ovd->vdev_faulted;
3094		nvd->vdev_degraded = ovd->vdev_degraded;
3095		nvd->vdev_removed = ovd->vdev_removed;
3096	}
3097}
3098
3099/*
3100 * Determine if a log device has valid content.  If the vdev was
3101 * removed or faulted in the MOS config then we know that
3102 * the content on the log device has already been written to the pool.
3103 */
3104boolean_t
3105vdev_log_state_valid(vdev_t *vd)
3106{
3107	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3108	    !vd->vdev_removed)
3109		return (B_TRUE);
3110
3111	for (int c = 0; c < vd->vdev_children; c++)
3112		if (vdev_log_state_valid(vd->vdev_child[c]))
3113			return (B_TRUE);
3114
3115	return (B_FALSE);
3116}
3117
3118/*
3119 * Expand a vdev if possible.
3120 */
3121void
3122vdev_expand(vdev_t *vd, uint64_t txg)
3123{
3124	ASSERT(vd->vdev_top == vd);
3125	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3126
3127	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3128		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3129		vdev_config_dirty(vd);
3130	}
3131}
3132
3133/*
3134 * Split a vdev.
3135 */
3136void
3137vdev_split(vdev_t *vd)
3138{
3139	vdev_t *cvd, *pvd = vd->vdev_parent;
3140
3141	vdev_remove_child(pvd, vd);
3142	vdev_compact_children(pvd);
3143
3144	cvd = pvd->vdev_child[0];
3145	if (pvd->vdev_children == 1) {
3146		vdev_remove_parent(cvd);
3147		cvd->vdev_splitting = B_TRUE;
3148	}
3149	vdev_propagate_state(cvd);
3150}
3151