vdev.c revision 193163
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/fm/fs/zfs.h>
29#include <sys/spa.h>
30#include <sys/spa_impl.h>
31#include <sys/dmu.h>
32#include <sys/dmu_tx.h>
33#include <sys/vdev_impl.h>
34#include <sys/uberblock_impl.h>
35#include <sys/metaslab.h>
36#include <sys/metaslab_impl.h>
37#include <sys/space_map.h>
38#include <sys/zio.h>
39#include <sys/zap.h>
40#include <sys/fs/zfs.h>
41#include <sys/arc.h>
42
43SYSCTL_DECL(_vfs_zfs);
44SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
45
46/*
47 * Virtual device management.
48 */
49
50static vdev_ops_t *vdev_ops_table[] = {
51	&vdev_root_ops,
52	&vdev_raidz_ops,
53	&vdev_mirror_ops,
54	&vdev_replacing_ops,
55	&vdev_spare_ops,
56#ifdef _KERNEL
57	&vdev_geom_ops,
58#else
59	&vdev_disk_ops,
60#endif
61	&vdev_file_ops,
62	&vdev_missing_ops,
63	NULL
64};
65
66/* maximum scrub/resilver I/O queue per leaf vdev */
67int zfs_scrub_limit = 10;
68
69TUNABLE_INT("vfs.zfs.scrub_limit", &zfs_scrub_limit);
70SYSCTL_INT(_vfs_zfs, OID_AUTO, scrub_limit, CTLFLAG_RDTUN, &zfs_scrub_limit, 0,
71    "Maximum scrub/resilver I/O queue");
72
73/*
74 * Given a vdev type, return the appropriate ops vector.
75 */
76static vdev_ops_t *
77vdev_getops(const char *type)
78{
79	vdev_ops_t *ops, **opspp;
80
81	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82		if (strcmp(ops->vdev_op_type, type) == 0)
83			break;
84
85	return (ops);
86}
87
88/*
89 * Default asize function: return the MAX of psize with the asize of
90 * all children.  This is what's used by anything other than RAID-Z.
91 */
92uint64_t
93vdev_default_asize(vdev_t *vd, uint64_t psize)
94{
95	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96	uint64_t csize;
97	uint64_t c;
98
99	for (c = 0; c < vd->vdev_children; c++) {
100		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
101		asize = MAX(asize, csize);
102	}
103
104	return (asize);
105}
106
107/*
108 * Get the replaceable or attachable device size.
109 * If the parent is a mirror or raidz, the replaceable size is the minimum
110 * psize of all its children. For the rest, just return our own psize.
111 *
112 * e.g.
113 *			psize	rsize
114 * root			-	-
115 *	mirror/raidz	-	-
116 *	    disk1	20g	20g
117 *	    disk2 	40g	20g
118 *	disk3 		80g	80g
119 */
120uint64_t
121vdev_get_rsize(vdev_t *vd)
122{
123	vdev_t *pvd, *cvd;
124	uint64_t c, rsize;
125
126	pvd = vd->vdev_parent;
127
128	/*
129	 * If our parent is NULL or the root, just return our own psize.
130	 */
131	if (pvd == NULL || pvd->vdev_parent == NULL)
132		return (vd->vdev_psize);
133
134	rsize = 0;
135
136	for (c = 0; c < pvd->vdev_children; c++) {
137		cvd = pvd->vdev_child[c];
138		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
139	}
140
141	return (rsize);
142}
143
144vdev_t *
145vdev_lookup_top(spa_t *spa, uint64_t vdev)
146{
147	vdev_t *rvd = spa->spa_root_vdev;
148
149	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
150
151	if (vdev < rvd->vdev_children) {
152		ASSERT(rvd->vdev_child[vdev] != NULL);
153		return (rvd->vdev_child[vdev]);
154	}
155
156	return (NULL);
157}
158
159vdev_t *
160vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
161{
162	int c;
163	vdev_t *mvd;
164
165	if (vd->vdev_guid == guid)
166		return (vd);
167
168	for (c = 0; c < vd->vdev_children; c++)
169		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
170		    NULL)
171			return (mvd);
172
173	return (NULL);
174}
175
176void
177vdev_add_child(vdev_t *pvd, vdev_t *cvd)
178{
179	size_t oldsize, newsize;
180	uint64_t id = cvd->vdev_id;
181	vdev_t **newchild;
182
183	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
184	ASSERT(cvd->vdev_parent == NULL);
185
186	cvd->vdev_parent = pvd;
187
188	if (pvd == NULL)
189		return;
190
191	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
192
193	oldsize = pvd->vdev_children * sizeof (vdev_t *);
194	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
195	newsize = pvd->vdev_children * sizeof (vdev_t *);
196
197	newchild = kmem_zalloc(newsize, KM_SLEEP);
198	if (pvd->vdev_child != NULL) {
199		bcopy(pvd->vdev_child, newchild, oldsize);
200		kmem_free(pvd->vdev_child, oldsize);
201	}
202
203	pvd->vdev_child = newchild;
204	pvd->vdev_child[id] = cvd;
205
206	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
207	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
208
209	/*
210	 * Walk up all ancestors to update guid sum.
211	 */
212	for (; pvd != NULL; pvd = pvd->vdev_parent)
213		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
214
215	if (cvd->vdev_ops->vdev_op_leaf)
216		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
217}
218
219void
220vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
221{
222	int c;
223	uint_t id = cvd->vdev_id;
224
225	ASSERT(cvd->vdev_parent == pvd);
226
227	if (pvd == NULL)
228		return;
229
230	ASSERT(id < pvd->vdev_children);
231	ASSERT(pvd->vdev_child[id] == cvd);
232
233	pvd->vdev_child[id] = NULL;
234	cvd->vdev_parent = NULL;
235
236	for (c = 0; c < pvd->vdev_children; c++)
237		if (pvd->vdev_child[c])
238			break;
239
240	if (c == pvd->vdev_children) {
241		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
242		pvd->vdev_child = NULL;
243		pvd->vdev_children = 0;
244	}
245
246	/*
247	 * Walk up all ancestors to update guid sum.
248	 */
249	for (; pvd != NULL; pvd = pvd->vdev_parent)
250		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
251
252	if (cvd->vdev_ops->vdev_op_leaf)
253		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
254}
255
256/*
257 * Remove any holes in the child array.
258 */
259void
260vdev_compact_children(vdev_t *pvd)
261{
262	vdev_t **newchild, *cvd;
263	int oldc = pvd->vdev_children;
264	int newc, c;
265
266	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
267
268	for (c = newc = 0; c < oldc; c++)
269		if (pvd->vdev_child[c])
270			newc++;
271
272	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
273
274	for (c = newc = 0; c < oldc; c++) {
275		if ((cvd = pvd->vdev_child[c]) != NULL) {
276			newchild[newc] = cvd;
277			cvd->vdev_id = newc++;
278		}
279	}
280
281	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
282	pvd->vdev_child = newchild;
283	pvd->vdev_children = newc;
284}
285
286/*
287 * Allocate and minimally initialize a vdev_t.
288 */
289static vdev_t *
290vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
291{
292	vdev_t *vd;
293
294	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
295
296	if (spa->spa_root_vdev == NULL) {
297		ASSERT(ops == &vdev_root_ops);
298		spa->spa_root_vdev = vd;
299	}
300
301	if (guid == 0) {
302		if (spa->spa_root_vdev == vd) {
303			/*
304			 * The root vdev's guid will also be the pool guid,
305			 * which must be unique among all pools.
306			 */
307			while (guid == 0 || spa_guid_exists(guid, 0))
308				guid = spa_get_random(-1ULL);
309		} else {
310			/*
311			 * Any other vdev's guid must be unique within the pool.
312			 */
313			while (guid == 0 ||
314			    spa_guid_exists(spa_guid(spa), guid))
315				guid = spa_get_random(-1ULL);
316		}
317		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
318	}
319
320	vd->vdev_spa = spa;
321	vd->vdev_id = id;
322	vd->vdev_guid = guid;
323	vd->vdev_guid_sum = guid;
324	vd->vdev_ops = ops;
325	vd->vdev_state = VDEV_STATE_CLOSED;
326
327	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
328	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
329	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
330	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
331	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
332	txg_list_create(&vd->vdev_ms_list,
333	    offsetof(struct metaslab, ms_txg_node));
334	txg_list_create(&vd->vdev_dtl_list,
335	    offsetof(struct vdev, vdev_dtl_node));
336	vd->vdev_stat.vs_timestamp = gethrtime();
337	vdev_queue_init(vd);
338	vdev_cache_init(vd);
339
340	return (vd);
341}
342
343/*
344 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345 * creating a new vdev or loading an existing one - the behavior is slightly
346 * different for each case.
347 */
348int
349vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350    int alloctype)
351{
352	vdev_ops_t *ops;
353	char *type;
354	uint64_t guid = 0, islog, nparity;
355	vdev_t *vd;
356
357	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360		return (EINVAL);
361
362	if ((ops = vdev_getops(type)) == NULL)
363		return (EINVAL);
364
365	/*
366	 * If this is a load, get the vdev guid from the nvlist.
367	 * Otherwise, vdev_alloc_common() will generate one for us.
368	 */
369	if (alloctype == VDEV_ALLOC_LOAD) {
370		uint64_t label_id;
371
372		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373		    label_id != id)
374			return (EINVAL);
375
376		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377			return (EINVAL);
378	} else if (alloctype == VDEV_ALLOC_SPARE) {
379		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380			return (EINVAL);
381	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
382		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383			return (EINVAL);
384	}
385
386	/*
387	 * The first allocated vdev must be of type 'root'.
388	 */
389	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
390		return (EINVAL);
391
392	/*
393	 * Determine whether we're a log vdev.
394	 */
395	islog = 0;
396	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
397	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
398		return (ENOTSUP);
399
400	/*
401	 * Set the nparity property for RAID-Z vdevs.
402	 */
403	nparity = -1ULL;
404	if (ops == &vdev_raidz_ops) {
405		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
406		    &nparity) == 0) {
407			/*
408			 * Currently, we can only support 2 parity devices.
409			 */
410			if (nparity == 0 || nparity > 2)
411				return (EINVAL);
412			/*
413			 * Older versions can only support 1 parity device.
414			 */
415			if (nparity == 2 &&
416			    spa_version(spa) < SPA_VERSION_RAID6)
417				return (ENOTSUP);
418		} else {
419			/*
420			 * We require the parity to be specified for SPAs that
421			 * support multiple parity levels.
422			 */
423			if (spa_version(spa) >= SPA_VERSION_RAID6)
424				return (EINVAL);
425			/*
426			 * Otherwise, we default to 1 parity device for RAID-Z.
427			 */
428			nparity = 1;
429		}
430	} else {
431		nparity = 0;
432	}
433	ASSERT(nparity != -1ULL);
434
435	vd = vdev_alloc_common(spa, id, guid, ops);
436
437	vd->vdev_islog = islog;
438	vd->vdev_nparity = nparity;
439
440	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441		vd->vdev_path = spa_strdup(vd->vdev_path);
442	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443		vd->vdev_devid = spa_strdup(vd->vdev_devid);
444	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445	    &vd->vdev_physpath) == 0)
446		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447
448	/*
449	 * Set the whole_disk property.  If it's not specified, leave the value
450	 * as -1.
451	 */
452	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
453	    &vd->vdev_wholedisk) != 0)
454		vd->vdev_wholedisk = -1ULL;
455
456	/*
457	 * Look for the 'not present' flag.  This will only be set if the device
458	 * was not present at the time of import.
459	 */
460	if (!spa->spa_import_faulted)
461		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
462		    &vd->vdev_not_present);
463
464	/*
465	 * Get the alignment requirement.
466	 */
467	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
468
469	/*
470	 * If we're a top-level vdev, try to load the allocation parameters.
471	 */
472	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
473		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
474		    &vd->vdev_ms_array);
475		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
476		    &vd->vdev_ms_shift);
477		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
478		    &vd->vdev_asize);
479	}
480
481	/*
482	 * If we're a leaf vdev, try to load the DTL object and other state.
483	 */
484	if (vd->vdev_ops->vdev_op_leaf &&
485	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
486		if (alloctype == VDEV_ALLOC_LOAD) {
487			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
488			    &vd->vdev_dtl.smo_object);
489			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
490			    &vd->vdev_unspare);
491		}
492		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
493		    &vd->vdev_offline);
494
495		/*
496		 * When importing a pool, we want to ignore the persistent fault
497		 * state, as the diagnosis made on another system may not be
498		 * valid in the current context.
499		 */
500		if (spa->spa_load_state == SPA_LOAD_OPEN) {
501			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
502			    &vd->vdev_faulted);
503			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
504			    &vd->vdev_degraded);
505			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
506			    &vd->vdev_removed);
507		}
508	}
509
510	/*
511	 * Add ourselves to the parent's list of children.
512	 */
513	vdev_add_child(parent, vd);
514
515	*vdp = vd;
516
517	return (0);
518}
519
520void
521vdev_free(vdev_t *vd)
522{
523	int c;
524	spa_t *spa = vd->vdev_spa;
525
526	/*
527	 * vdev_free() implies closing the vdev first.  This is simpler than
528	 * trying to ensure complicated semantics for all callers.
529	 */
530	vdev_close(vd);
531
532	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
533
534	/*
535	 * Free all children.
536	 */
537	for (c = 0; c < vd->vdev_children; c++)
538		vdev_free(vd->vdev_child[c]);
539
540	ASSERT(vd->vdev_child == NULL);
541	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
542
543	/*
544	 * Discard allocation state.
545	 */
546	if (vd == vd->vdev_top)
547		vdev_metaslab_fini(vd);
548
549	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
550	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
551	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
552
553	/*
554	 * Remove this vdev from its parent's child list.
555	 */
556	vdev_remove_child(vd->vdev_parent, vd);
557
558	ASSERT(vd->vdev_parent == NULL);
559
560	/*
561	 * Clean up vdev structure.
562	 */
563	vdev_queue_fini(vd);
564	vdev_cache_fini(vd);
565
566	if (vd->vdev_path)
567		spa_strfree(vd->vdev_path);
568	if (vd->vdev_devid)
569		spa_strfree(vd->vdev_devid);
570	if (vd->vdev_physpath)
571		spa_strfree(vd->vdev_physpath);
572
573	if (vd->vdev_isspare)
574		spa_spare_remove(vd);
575	if (vd->vdev_isl2cache)
576		spa_l2cache_remove(vd);
577
578	txg_list_destroy(&vd->vdev_ms_list);
579	txg_list_destroy(&vd->vdev_dtl_list);
580	mutex_enter(&vd->vdev_dtl_lock);
581	space_map_unload(&vd->vdev_dtl_map);
582	space_map_destroy(&vd->vdev_dtl_map);
583	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
584	space_map_destroy(&vd->vdev_dtl_scrub);
585	mutex_exit(&vd->vdev_dtl_lock);
586	mutex_destroy(&vd->vdev_dtl_lock);
587	mutex_destroy(&vd->vdev_stat_lock);
588	mutex_destroy(&vd->vdev_probe_lock);
589
590	if (vd == spa->spa_root_vdev)
591		spa->spa_root_vdev = NULL;
592
593	kmem_free(vd, sizeof (vdev_t));
594}
595
596/*
597 * Transfer top-level vdev state from svd to tvd.
598 */
599static void
600vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
601{
602	spa_t *spa = svd->vdev_spa;
603	metaslab_t *msp;
604	vdev_t *vd;
605	int t;
606
607	ASSERT(tvd == tvd->vdev_top);
608
609	tvd->vdev_ms_array = svd->vdev_ms_array;
610	tvd->vdev_ms_shift = svd->vdev_ms_shift;
611	tvd->vdev_ms_count = svd->vdev_ms_count;
612
613	svd->vdev_ms_array = 0;
614	svd->vdev_ms_shift = 0;
615	svd->vdev_ms_count = 0;
616
617	tvd->vdev_mg = svd->vdev_mg;
618	tvd->vdev_ms = svd->vdev_ms;
619
620	svd->vdev_mg = NULL;
621	svd->vdev_ms = NULL;
622
623	if (tvd->vdev_mg != NULL)
624		tvd->vdev_mg->mg_vd = tvd;
625
626	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
627	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
628	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
629
630	svd->vdev_stat.vs_alloc = 0;
631	svd->vdev_stat.vs_space = 0;
632	svd->vdev_stat.vs_dspace = 0;
633
634	for (t = 0; t < TXG_SIZE; t++) {
635		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
636			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
637		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
638			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
639		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
640			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
641	}
642
643	if (list_link_active(&svd->vdev_config_dirty_node)) {
644		vdev_config_clean(svd);
645		vdev_config_dirty(tvd);
646	}
647
648	if (list_link_active(&svd->vdev_state_dirty_node)) {
649		vdev_state_clean(svd);
650		vdev_state_dirty(tvd);
651	}
652
653	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
654	svd->vdev_deflate_ratio = 0;
655
656	tvd->vdev_islog = svd->vdev_islog;
657	svd->vdev_islog = 0;
658}
659
660static void
661vdev_top_update(vdev_t *tvd, vdev_t *vd)
662{
663	int c;
664
665	if (vd == NULL)
666		return;
667
668	vd->vdev_top = tvd;
669
670	for (c = 0; c < vd->vdev_children; c++)
671		vdev_top_update(tvd, vd->vdev_child[c]);
672}
673
674/*
675 * Add a mirror/replacing vdev above an existing vdev.
676 */
677vdev_t *
678vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
679{
680	spa_t *spa = cvd->vdev_spa;
681	vdev_t *pvd = cvd->vdev_parent;
682	vdev_t *mvd;
683
684	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
685
686	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
687
688	mvd->vdev_asize = cvd->vdev_asize;
689	mvd->vdev_ashift = cvd->vdev_ashift;
690	mvd->vdev_state = cvd->vdev_state;
691
692	vdev_remove_child(pvd, cvd);
693	vdev_add_child(pvd, mvd);
694	cvd->vdev_id = mvd->vdev_children;
695	vdev_add_child(mvd, cvd);
696	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
697
698	if (mvd == mvd->vdev_top)
699		vdev_top_transfer(cvd, mvd);
700
701	return (mvd);
702}
703
704/*
705 * Remove a 1-way mirror/replacing vdev from the tree.
706 */
707void
708vdev_remove_parent(vdev_t *cvd)
709{
710	vdev_t *mvd = cvd->vdev_parent;
711	vdev_t *pvd = mvd->vdev_parent;
712
713	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
714
715	ASSERT(mvd->vdev_children == 1);
716	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
717	    mvd->vdev_ops == &vdev_replacing_ops ||
718	    mvd->vdev_ops == &vdev_spare_ops);
719	cvd->vdev_ashift = mvd->vdev_ashift;
720
721	vdev_remove_child(mvd, cvd);
722	vdev_remove_child(pvd, mvd);
723	/*
724	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
725	 * Otherwise, we could have detached an offline device, and when we
726	 * go to import the pool we'll think we have two top-level vdevs,
727	 * instead of a different version of the same top-level vdev.
728	 */
729	if (mvd->vdev_top == mvd)
730		cvd->vdev_guid = cvd->vdev_guid_sum = mvd->vdev_guid;
731	cvd->vdev_id = mvd->vdev_id;
732	vdev_add_child(pvd, cvd);
733	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
734
735	if (cvd == cvd->vdev_top)
736		vdev_top_transfer(mvd, cvd);
737
738	ASSERT(mvd->vdev_children == 0);
739	vdev_free(mvd);
740}
741
742int
743vdev_metaslab_init(vdev_t *vd, uint64_t txg)
744{
745	spa_t *spa = vd->vdev_spa;
746	objset_t *mos = spa->spa_meta_objset;
747	metaslab_class_t *mc;
748	uint64_t m;
749	uint64_t oldc = vd->vdev_ms_count;
750	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
751	metaslab_t **mspp;
752	int error;
753
754	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
755		return (0);
756
757	ASSERT(oldc <= newc);
758
759	if (vd->vdev_islog)
760		mc = spa->spa_log_class;
761	else
762		mc = spa->spa_normal_class;
763
764	if (vd->vdev_mg == NULL)
765		vd->vdev_mg = metaslab_group_create(mc, vd);
766
767	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
768
769	if (oldc != 0) {
770		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
771		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
772	}
773
774	vd->vdev_ms = mspp;
775	vd->vdev_ms_count = newc;
776
777	for (m = oldc; m < newc; m++) {
778		space_map_obj_t smo = { 0, 0, 0 };
779		if (txg == 0) {
780			uint64_t object = 0;
781			error = dmu_read(mos, vd->vdev_ms_array,
782			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
783			if (error)
784				return (error);
785			if (object != 0) {
786				dmu_buf_t *db;
787				error = dmu_bonus_hold(mos, object, FTAG, &db);
788				if (error)
789					return (error);
790				ASSERT3U(db->db_size, >=, sizeof (smo));
791				bcopy(db->db_data, &smo, sizeof (smo));
792				ASSERT3U(smo.smo_object, ==, object);
793				dmu_buf_rele(db, FTAG);
794			}
795		}
796		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
797		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
798	}
799
800	return (0);
801}
802
803void
804vdev_metaslab_fini(vdev_t *vd)
805{
806	uint64_t m;
807	uint64_t count = vd->vdev_ms_count;
808
809	if (vd->vdev_ms != NULL) {
810		for (m = 0; m < count; m++)
811			if (vd->vdev_ms[m] != NULL)
812				metaslab_fini(vd->vdev_ms[m]);
813		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
814		vd->vdev_ms = NULL;
815	}
816}
817
818typedef struct vdev_probe_stats {
819	boolean_t	vps_readable;
820	boolean_t	vps_writeable;
821	int		vps_flags;
822	zio_t		*vps_root;
823	vdev_t		*vps_vd;
824} vdev_probe_stats_t;
825
826static void
827vdev_probe_done(zio_t *zio)
828{
829	vdev_probe_stats_t *vps = zio->io_private;
830	vdev_t *vd = vps->vps_vd;
831
832	if (zio->io_type == ZIO_TYPE_READ) {
833		ASSERT(zio->io_vd == vd);
834		if (zio->io_error == 0)
835			vps->vps_readable = 1;
836		if (zio->io_error == 0 && (spa_mode & FWRITE)) {
837			zio_nowait(zio_write_phys(vps->vps_root, vd,
838			    zio->io_offset, zio->io_size, zio->io_data,
839			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
840			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
841		} else {
842			zio_buf_free(zio->io_data, zio->io_size);
843		}
844	} else if (zio->io_type == ZIO_TYPE_WRITE) {
845		ASSERT(zio->io_vd == vd);
846		if (zio->io_error == 0)
847			vps->vps_writeable = 1;
848		zio_buf_free(zio->io_data, zio->io_size);
849	} else if (zio->io_type == ZIO_TYPE_NULL) {
850		ASSERT(zio->io_vd == NULL);
851		ASSERT(zio == vps->vps_root);
852
853		vd->vdev_cant_read |= !vps->vps_readable;
854		vd->vdev_cant_write |= !vps->vps_writeable;
855
856		if (vdev_readable(vd) &&
857		    (vdev_writeable(vd) || !(spa_mode & FWRITE))) {
858			zio->io_error = 0;
859		} else {
860			ASSERT(zio->io_error != 0);
861			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
862			    zio->io_spa, vd, NULL, 0, 0);
863			zio->io_error = ENXIO;
864		}
865		kmem_free(vps, sizeof (*vps));
866	}
867}
868
869/*
870 * Determine whether this device is accessible by reading and writing
871 * to several known locations: the pad regions of each vdev label
872 * but the first (which we leave alone in case it contains a VTOC).
873 */
874zio_t *
875vdev_probe(vdev_t *vd, zio_t *pio)
876{
877	spa_t *spa = vd->vdev_spa;
878	vdev_probe_stats_t *vps;
879	zio_t *zio;
880
881	vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
882
883	vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
884	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY;
885
886	if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
887		/*
888		 * vdev_cant_read and vdev_cant_write can only transition
889		 * from TRUE to FALSE when we have the SCL_ZIO lock as writer;
890		 * otherwise they can only transition from FALSE to TRUE.
891		 * This ensures that any zio looking at these values can
892		 * assume that failures persist for the life of the I/O.
893		 * That's important because when a device has intermittent
894		 * connectivity problems, we want to ensure that they're
895		 * ascribed to the device (ENXIO) and not the zio (EIO).
896		 *
897		 * Since we hold SCL_ZIO as writer here, clear both values
898		 * so the probe can reevaluate from first principles.
899		 */
900		vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
901		vd->vdev_cant_read = B_FALSE;
902		vd->vdev_cant_write = B_FALSE;
903	}
904
905	ASSERT(vd->vdev_ops->vdev_op_leaf);
906
907	zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags);
908
909	vps->vps_root = zio;
910	vps->vps_vd = vd;
911
912	for (int l = 1; l < VDEV_LABELS; l++) {
913		zio_nowait(zio_read_phys(zio, vd,
914		    vdev_label_offset(vd->vdev_psize, l,
915		    offsetof(vdev_label_t, vl_pad)),
916		    VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
917		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
918		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
919	}
920
921	return (zio);
922}
923
924/*
925 * Prepare a virtual device for access.
926 */
927int
928vdev_open(vdev_t *vd)
929{
930	int error;
931	int c;
932	uint64_t osize = 0;
933	uint64_t asize, psize;
934	uint64_t ashift = 0;
935
936	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
937	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
938	    vd->vdev_state == VDEV_STATE_OFFLINE);
939
940	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
941
942	if (!vd->vdev_removed && vd->vdev_faulted) {
943		ASSERT(vd->vdev_children == 0);
944		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
945		    VDEV_AUX_ERR_EXCEEDED);
946		return (ENXIO);
947	} else if (vd->vdev_offline) {
948		ASSERT(vd->vdev_children == 0);
949		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
950		return (ENXIO);
951	}
952
953	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
954
955	if (zio_injection_enabled && error == 0)
956		error = zio_handle_device_injection(vd, ENXIO);
957
958	if (error) {
959		if (vd->vdev_removed &&
960		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
961			vd->vdev_removed = B_FALSE;
962
963		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
964		    vd->vdev_stat.vs_aux);
965		return (error);
966	}
967
968	vd->vdev_removed = B_FALSE;
969
970	if (vd->vdev_degraded) {
971		ASSERT(vd->vdev_children == 0);
972		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
973		    VDEV_AUX_ERR_EXCEEDED);
974	} else {
975		vd->vdev_state = VDEV_STATE_HEALTHY;
976	}
977
978	for (c = 0; c < vd->vdev_children; c++)
979		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
980			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
981			    VDEV_AUX_NONE);
982			break;
983		}
984
985	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
986
987	if (vd->vdev_children == 0) {
988		if (osize < SPA_MINDEVSIZE) {
989			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
990			    VDEV_AUX_TOO_SMALL);
991			return (EOVERFLOW);
992		}
993		psize = osize;
994		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
995	} else {
996		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
997		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
998			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
999			    VDEV_AUX_TOO_SMALL);
1000			return (EOVERFLOW);
1001		}
1002		psize = 0;
1003		asize = osize;
1004	}
1005
1006	vd->vdev_psize = psize;
1007
1008	if (vd->vdev_asize == 0) {
1009		/*
1010		 * This is the first-ever open, so use the computed values.
1011		 * For testing purposes, a higher ashift can be requested.
1012		 */
1013		vd->vdev_asize = asize;
1014		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1015	} else {
1016		/*
1017		 * Make sure the alignment requirement hasn't increased.
1018		 */
1019		if (ashift > vd->vdev_top->vdev_ashift) {
1020			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1021			    VDEV_AUX_BAD_LABEL);
1022			return (EINVAL);
1023		}
1024
1025		/*
1026		 * Make sure the device hasn't shrunk.
1027		 */
1028		if (asize < vd->vdev_asize) {
1029			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1030			    VDEV_AUX_BAD_LABEL);
1031			return (EINVAL);
1032		}
1033
1034		/*
1035		 * If all children are healthy and the asize has increased,
1036		 * then we've experienced dynamic LUN growth.
1037		 */
1038		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1039		    asize > vd->vdev_asize) {
1040			vd->vdev_asize = asize;
1041		}
1042	}
1043
1044	/*
1045	 * Ensure we can issue some IO before declaring the
1046	 * vdev open for business.
1047	 */
1048	if (vd->vdev_ops->vdev_op_leaf &&
1049	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1050		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1051		    VDEV_AUX_IO_FAILURE);
1052		return (error);
1053	}
1054
1055	/*
1056	 * If this is a top-level vdev, compute the raidz-deflation
1057	 * ratio.  Note, we hard-code in 128k (1<<17) because it is the
1058	 * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
1059	 * changes, this algorithm must never change, or we will
1060	 * inconsistently account for existing bp's.
1061	 */
1062	if (vd->vdev_top == vd) {
1063		vd->vdev_deflate_ratio = (1<<17) /
1064		    (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
1065	}
1066
1067	/*
1068	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1069	 * resilver.  But don't do this if we are doing a reopen for a
1070	 * scrub, since this would just restart the scrub we are already
1071	 * doing.
1072	 */
1073	if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) {
1074		mutex_enter(&vd->vdev_dtl_lock);
1075		if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd))
1076			spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER);
1077		mutex_exit(&vd->vdev_dtl_lock);
1078	}
1079
1080	return (0);
1081}
1082
1083/*
1084 * Called once the vdevs are all opened, this routine validates the label
1085 * contents.  This needs to be done before vdev_load() so that we don't
1086 * inadvertently do repair I/Os to the wrong device.
1087 *
1088 * This function will only return failure if one of the vdevs indicates that it
1089 * has since been destroyed or exported.  This is only possible if
1090 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1091 * will be updated but the function will return 0.
1092 */
1093int
1094vdev_validate(vdev_t *vd)
1095{
1096	spa_t *spa = vd->vdev_spa;
1097	int c;
1098	nvlist_t *label;
1099	uint64_t guid, top_guid;
1100	uint64_t state;
1101
1102	for (c = 0; c < vd->vdev_children; c++)
1103		if (vdev_validate(vd->vdev_child[c]) != 0)
1104			return (EBADF);
1105
1106	/*
1107	 * If the device has already failed, or was marked offline, don't do
1108	 * any further validation.  Otherwise, label I/O will fail and we will
1109	 * overwrite the previous state.
1110	 */
1111	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1112
1113		if ((label = vdev_label_read_config(vd)) == NULL) {
1114			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1115			    VDEV_AUX_BAD_LABEL);
1116			return (0);
1117		}
1118
1119		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1120		    &guid) != 0 || guid != spa_guid(spa)) {
1121			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1122			    VDEV_AUX_CORRUPT_DATA);
1123			nvlist_free(label);
1124			return (0);
1125		}
1126
1127		/*
1128		 * If this vdev just became a top-level vdev because its
1129		 * sibling was detached, it will have adopted the parent's
1130		 * vdev guid -- but the label may or may not be on disk yet.
1131		 * Fortunately, either version of the label will have the
1132		 * same top guid, so if we're a top-level vdev, we can
1133		 * safely compare to that instead.
1134		 */
1135		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1136		    &guid) != 0 ||
1137		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1138		    &top_guid) != 0 ||
1139		    (vd->vdev_guid != guid &&
1140		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1141			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1142			    VDEV_AUX_CORRUPT_DATA);
1143			nvlist_free(label);
1144			return (0);
1145		}
1146
1147		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1148		    &state) != 0) {
1149			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1150			    VDEV_AUX_CORRUPT_DATA);
1151			nvlist_free(label);
1152			return (0);
1153		}
1154
1155		nvlist_free(label);
1156
1157		if (spa->spa_load_state == SPA_LOAD_OPEN &&
1158		    state != POOL_STATE_ACTIVE)
1159			return (EBADF);
1160
1161		/*
1162		 * If we were able to open and validate a vdev that was
1163		 * previously marked permanently unavailable, clear that state
1164		 * now.
1165		 */
1166		if (vd->vdev_not_present)
1167			vd->vdev_not_present = 0;
1168	}
1169
1170	return (0);
1171}
1172
1173/*
1174 * Close a virtual device.
1175 */
1176void
1177vdev_close(vdev_t *vd)
1178{
1179	vd->vdev_ops->vdev_op_close(vd);
1180
1181	vdev_cache_purge(vd);
1182
1183	/*
1184	 * We record the previous state before we close it, so  that if we are
1185	 * doing a reopen(), we don't generate FMA ereports if we notice that
1186	 * it's still faulted.
1187	 */
1188	vd->vdev_prevstate = vd->vdev_state;
1189
1190	if (vd->vdev_offline)
1191		vd->vdev_state = VDEV_STATE_OFFLINE;
1192	else
1193		vd->vdev_state = VDEV_STATE_CLOSED;
1194	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1195}
1196
1197void
1198vdev_reopen(vdev_t *vd)
1199{
1200	spa_t *spa = vd->vdev_spa;
1201
1202	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1203
1204	vdev_close(vd);
1205	(void) vdev_open(vd);
1206
1207	/*
1208	 * Call vdev_validate() here to make sure we have the same device.
1209	 * Otherwise, a device with an invalid label could be successfully
1210	 * opened in response to vdev_reopen().
1211	 */
1212	if (vd->vdev_aux) {
1213		(void) vdev_validate_aux(vd);
1214		if (vdev_readable(vd) && vdev_writeable(vd) &&
1215		    !l2arc_vdev_present(vd)) {
1216			uint64_t size = vdev_get_rsize(vd);
1217			l2arc_add_vdev(spa, vd,
1218			    VDEV_LABEL_START_SIZE,
1219			    size - VDEV_LABEL_START_SIZE);
1220		}
1221	} else {
1222		(void) vdev_validate(vd);
1223	}
1224
1225	/*
1226	 * Reassess parent vdev's health.
1227	 */
1228	vdev_propagate_state(vd);
1229}
1230
1231int
1232vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1233{
1234	int error;
1235
1236	/*
1237	 * Normally, partial opens (e.g. of a mirror) are allowed.
1238	 * For a create, however, we want to fail the request if
1239	 * there are any components we can't open.
1240	 */
1241	error = vdev_open(vd);
1242
1243	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1244		vdev_close(vd);
1245		return (error ? error : ENXIO);
1246	}
1247
1248	/*
1249	 * Recursively initialize all labels.
1250	 */
1251	if ((error = vdev_label_init(vd, txg, isreplacing ?
1252	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1253		vdev_close(vd);
1254		return (error);
1255	}
1256
1257	return (0);
1258}
1259
1260/*
1261 * The is the latter half of vdev_create().  It is distinct because it
1262 * involves initiating transactions in order to do metaslab creation.
1263 * For creation, we want to try to create all vdevs at once and then undo it
1264 * if anything fails; this is much harder if we have pending transactions.
1265 */
1266void
1267vdev_init(vdev_t *vd, uint64_t txg)
1268{
1269	/*
1270	 * Aim for roughly 200 metaslabs per vdev.
1271	 */
1272	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1273	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1274
1275	/*
1276	 * Initialize the vdev's metaslabs.  This can't fail because
1277	 * there's nothing to read when creating all new metaslabs.
1278	 */
1279	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1280}
1281
1282void
1283vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1284{
1285	ASSERT(vd == vd->vdev_top);
1286	ASSERT(ISP2(flags));
1287
1288	if (flags & VDD_METASLAB)
1289		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1290
1291	if (flags & VDD_DTL)
1292		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1293
1294	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1295}
1296
1297void
1298vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1299{
1300	mutex_enter(sm->sm_lock);
1301	if (!space_map_contains(sm, txg, size))
1302		space_map_add(sm, txg, size);
1303	mutex_exit(sm->sm_lock);
1304}
1305
1306int
1307vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1308{
1309	int dirty;
1310
1311	/*
1312	 * Quick test without the lock -- covers the common case that
1313	 * there are no dirty time segments.
1314	 */
1315	if (sm->sm_space == 0)
1316		return (0);
1317
1318	mutex_enter(sm->sm_lock);
1319	dirty = space_map_contains(sm, txg, size);
1320	mutex_exit(sm->sm_lock);
1321
1322	return (dirty);
1323}
1324
1325/*
1326 * Reassess DTLs after a config change or scrub completion.
1327 */
1328void
1329vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1330{
1331	spa_t *spa = vd->vdev_spa;
1332	int c;
1333
1334	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1335
1336	if (vd->vdev_children == 0) {
1337		mutex_enter(&vd->vdev_dtl_lock);
1338		if (scrub_txg != 0 &&
1339		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1340			/* XXX should check scrub_done? */
1341			/*
1342			 * We completed a scrub up to scrub_txg.  If we
1343			 * did it without rebooting, then the scrub dtl
1344			 * will be valid, so excise the old region and
1345			 * fold in the scrub dtl.  Otherwise, leave the
1346			 * dtl as-is if there was an error.
1347			 */
1348			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1349			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1350		}
1351		if (scrub_done)
1352			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1353		mutex_exit(&vd->vdev_dtl_lock);
1354
1355		if (txg != 0)
1356			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1357		return;
1358	}
1359
1360	/*
1361	 * Make sure the DTLs are always correct under the scrub lock.
1362	 */
1363	if (vd == spa->spa_root_vdev)
1364		mutex_enter(&spa->spa_scrub_lock);
1365
1366	mutex_enter(&vd->vdev_dtl_lock);
1367	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1368	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1369	mutex_exit(&vd->vdev_dtl_lock);
1370
1371	for (c = 0; c < vd->vdev_children; c++) {
1372		vdev_t *cvd = vd->vdev_child[c];
1373		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1374		mutex_enter(&vd->vdev_dtl_lock);
1375		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1376		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1377		mutex_exit(&vd->vdev_dtl_lock);
1378	}
1379
1380	if (vd == spa->spa_root_vdev)
1381		mutex_exit(&spa->spa_scrub_lock);
1382}
1383
1384static int
1385vdev_dtl_load(vdev_t *vd)
1386{
1387	spa_t *spa = vd->vdev_spa;
1388	space_map_obj_t *smo = &vd->vdev_dtl;
1389	objset_t *mos = spa->spa_meta_objset;
1390	dmu_buf_t *db;
1391	int error;
1392
1393	ASSERT(vd->vdev_children == 0);
1394
1395	if (smo->smo_object == 0)
1396		return (0);
1397
1398	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1399		return (error);
1400
1401	ASSERT3U(db->db_size, >=, sizeof (*smo));
1402	bcopy(db->db_data, smo, sizeof (*smo));
1403	dmu_buf_rele(db, FTAG);
1404
1405	mutex_enter(&vd->vdev_dtl_lock);
1406	error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1407	mutex_exit(&vd->vdev_dtl_lock);
1408
1409	return (error);
1410}
1411
1412void
1413vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1414{
1415	spa_t *spa = vd->vdev_spa;
1416	space_map_obj_t *smo = &vd->vdev_dtl;
1417	space_map_t *sm = &vd->vdev_dtl_map;
1418	objset_t *mos = spa->spa_meta_objset;
1419	space_map_t smsync;
1420	kmutex_t smlock;
1421	dmu_buf_t *db;
1422	dmu_tx_t *tx;
1423
1424	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1425
1426	if (vd->vdev_detached) {
1427		if (smo->smo_object != 0) {
1428			int err = dmu_object_free(mos, smo->smo_object, tx);
1429			ASSERT3U(err, ==, 0);
1430			smo->smo_object = 0;
1431		}
1432		dmu_tx_commit(tx);
1433		return;
1434	}
1435
1436	if (smo->smo_object == 0) {
1437		ASSERT(smo->smo_objsize == 0);
1438		ASSERT(smo->smo_alloc == 0);
1439		smo->smo_object = dmu_object_alloc(mos,
1440		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1441		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1442		ASSERT(smo->smo_object != 0);
1443		vdev_config_dirty(vd->vdev_top);
1444	}
1445
1446	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1447
1448	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1449	    &smlock);
1450
1451	mutex_enter(&smlock);
1452
1453	mutex_enter(&vd->vdev_dtl_lock);
1454	space_map_walk(sm, space_map_add, &smsync);
1455	mutex_exit(&vd->vdev_dtl_lock);
1456
1457	space_map_truncate(smo, mos, tx);
1458	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1459
1460	space_map_destroy(&smsync);
1461
1462	mutex_exit(&smlock);
1463	mutex_destroy(&smlock);
1464
1465	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1466	dmu_buf_will_dirty(db, tx);
1467	ASSERT3U(db->db_size, >=, sizeof (*smo));
1468	bcopy(smo, db->db_data, sizeof (*smo));
1469	dmu_buf_rele(db, FTAG);
1470
1471	dmu_tx_commit(tx);
1472}
1473
1474/*
1475 * Determine if resilver is needed, and if so the txg range.
1476 */
1477boolean_t
1478vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1479{
1480	boolean_t needed = B_FALSE;
1481	uint64_t thismin = UINT64_MAX;
1482	uint64_t thismax = 0;
1483
1484	if (vd->vdev_children == 0) {
1485		mutex_enter(&vd->vdev_dtl_lock);
1486		if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) {
1487			space_seg_t *ss;
1488
1489			ss = avl_first(&vd->vdev_dtl_map.sm_root);
1490			thismin = ss->ss_start - 1;
1491			ss = avl_last(&vd->vdev_dtl_map.sm_root);
1492			thismax = ss->ss_end;
1493			needed = B_TRUE;
1494		}
1495		mutex_exit(&vd->vdev_dtl_lock);
1496	} else {
1497		int c;
1498		for (c = 0; c < vd->vdev_children; c++) {
1499			vdev_t *cvd = vd->vdev_child[c];
1500			uint64_t cmin, cmax;
1501
1502			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1503				thismin = MIN(thismin, cmin);
1504				thismax = MAX(thismax, cmax);
1505				needed = B_TRUE;
1506			}
1507		}
1508	}
1509
1510	if (needed && minp) {
1511		*minp = thismin;
1512		*maxp = thismax;
1513	}
1514	return (needed);
1515}
1516
1517void
1518vdev_load(vdev_t *vd)
1519{
1520	int c;
1521
1522	/*
1523	 * Recursively load all children.
1524	 */
1525	for (c = 0; c < vd->vdev_children; c++)
1526		vdev_load(vd->vdev_child[c]);
1527
1528	/*
1529	 * If this is a top-level vdev, initialize its metaslabs.
1530	 */
1531	if (vd == vd->vdev_top &&
1532	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1533	    vdev_metaslab_init(vd, 0) != 0))
1534		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1535		    VDEV_AUX_CORRUPT_DATA);
1536
1537	/*
1538	 * If this is a leaf vdev, load its DTL.
1539	 */
1540	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1541		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1542		    VDEV_AUX_CORRUPT_DATA);
1543}
1544
1545/*
1546 * The special vdev case is used for hot spares and l2cache devices.  Its
1547 * sole purpose it to set the vdev state for the associated vdev.  To do this,
1548 * we make sure that we can open the underlying device, then try to read the
1549 * label, and make sure that the label is sane and that it hasn't been
1550 * repurposed to another pool.
1551 */
1552int
1553vdev_validate_aux(vdev_t *vd)
1554{
1555	nvlist_t *label;
1556	uint64_t guid, version;
1557	uint64_t state;
1558
1559	if (!vdev_readable(vd))
1560		return (0);
1561
1562	if ((label = vdev_label_read_config(vd)) == NULL) {
1563		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1564		    VDEV_AUX_CORRUPT_DATA);
1565		return (-1);
1566	}
1567
1568	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1569	    version > SPA_VERSION ||
1570	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1571	    guid != vd->vdev_guid ||
1572	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1573		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1574		    VDEV_AUX_CORRUPT_DATA);
1575		nvlist_free(label);
1576		return (-1);
1577	}
1578
1579	/*
1580	 * We don't actually check the pool state here.  If it's in fact in
1581	 * use by another pool, we update this fact on the fly when requested.
1582	 */
1583	nvlist_free(label);
1584	return (0);
1585}
1586
1587void
1588vdev_sync_done(vdev_t *vd, uint64_t txg)
1589{
1590	metaslab_t *msp;
1591
1592	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1593		metaslab_sync_done(msp, txg);
1594}
1595
1596void
1597vdev_sync(vdev_t *vd, uint64_t txg)
1598{
1599	spa_t *spa = vd->vdev_spa;
1600	vdev_t *lvd;
1601	metaslab_t *msp;
1602	dmu_tx_t *tx;
1603
1604	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1605		ASSERT(vd == vd->vdev_top);
1606		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1607		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1608		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1609		ASSERT(vd->vdev_ms_array != 0);
1610		vdev_config_dirty(vd);
1611		dmu_tx_commit(tx);
1612	}
1613
1614	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1615		metaslab_sync(msp, txg);
1616		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1617	}
1618
1619	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1620		vdev_dtl_sync(lvd, txg);
1621
1622	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1623}
1624
1625uint64_t
1626vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1627{
1628	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1629}
1630
1631/*
1632 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1633 * not be opened, and no I/O is attempted.
1634 */
1635int
1636vdev_fault(spa_t *spa, uint64_t guid)
1637{
1638	vdev_t *vd;
1639
1640	spa_vdev_state_enter(spa);
1641
1642	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1643		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1644
1645	if (!vd->vdev_ops->vdev_op_leaf)
1646		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1647
1648	/*
1649	 * Faulted state takes precedence over degraded.
1650	 */
1651	vd->vdev_faulted = 1ULL;
1652	vd->vdev_degraded = 0ULL;
1653	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1654
1655	/*
1656	 * If marking the vdev as faulted cause the top-level vdev to become
1657	 * unavailable, then back off and simply mark the vdev as degraded
1658	 * instead.
1659	 */
1660	if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1661		vd->vdev_degraded = 1ULL;
1662		vd->vdev_faulted = 0ULL;
1663
1664		/*
1665		 * If we reopen the device and it's not dead, only then do we
1666		 * mark it degraded.
1667		 */
1668		vdev_reopen(vd);
1669
1670		if (vdev_readable(vd)) {
1671			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1672			    VDEV_AUX_ERR_EXCEEDED);
1673		}
1674	}
1675
1676	return (spa_vdev_state_exit(spa, vd, 0));
1677}
1678
1679/*
1680 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1681 * user that something is wrong.  The vdev continues to operate as normal as far
1682 * as I/O is concerned.
1683 */
1684int
1685vdev_degrade(spa_t *spa, uint64_t guid)
1686{
1687	vdev_t *vd;
1688
1689	spa_vdev_state_enter(spa);
1690
1691	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1692		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1693
1694	if (!vd->vdev_ops->vdev_op_leaf)
1695		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1696
1697	/*
1698	 * If the vdev is already faulted, then don't do anything.
1699	 */
1700	if (vd->vdev_faulted || vd->vdev_degraded)
1701		return (spa_vdev_state_exit(spa, NULL, 0));
1702
1703	vd->vdev_degraded = 1ULL;
1704	if (!vdev_is_dead(vd))
1705		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1706		    VDEV_AUX_ERR_EXCEEDED);
1707
1708	return (spa_vdev_state_exit(spa, vd, 0));
1709}
1710
1711/*
1712 * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1713 * any attached spare device should be detached when the device finishes
1714 * resilvering.  Second, the online should be treated like a 'test' online case,
1715 * so no FMA events are generated if the device fails to open.
1716 */
1717int
1718vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1719{
1720	vdev_t *vd;
1721
1722	spa_vdev_state_enter(spa);
1723
1724	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1725		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1726
1727	if (!vd->vdev_ops->vdev_op_leaf)
1728		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1729
1730	vd->vdev_offline = B_FALSE;
1731	vd->vdev_tmpoffline = B_FALSE;
1732	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1733	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1734	vdev_reopen(vd->vdev_top);
1735	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1736
1737	if (newstate)
1738		*newstate = vd->vdev_state;
1739	if ((flags & ZFS_ONLINE_UNSPARE) &&
1740	    !vdev_is_dead(vd) && vd->vdev_parent &&
1741	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1742	    vd->vdev_parent->vdev_child[0] == vd)
1743		vd->vdev_unspare = B_TRUE;
1744
1745	(void) spa_vdev_state_exit(spa, vd, 0);
1746
1747	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
1748
1749	return (0);
1750}
1751
1752int
1753vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1754{
1755	vdev_t *vd;
1756
1757	spa_vdev_state_enter(spa);
1758
1759	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1760		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1761
1762	if (!vd->vdev_ops->vdev_op_leaf)
1763		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1764
1765	/*
1766	 * If the device isn't already offline, try to offline it.
1767	 */
1768	if (!vd->vdev_offline) {
1769		/*
1770		 * If this device's top-level vdev has a non-empty DTL,
1771		 * don't allow the device to be offlined.
1772		 *
1773		 * XXX -- make this more precise by allowing the offline
1774		 * as long as the remaining devices don't have any DTL holes.
1775		 */
1776		if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1777			return (spa_vdev_state_exit(spa, NULL, EBUSY));
1778
1779		/*
1780		 * Offline this device and reopen its top-level vdev.
1781		 * If this action results in the top-level vdev becoming
1782		 * unusable, undo it and fail the request.
1783		 */
1784		vd->vdev_offline = B_TRUE;
1785		vdev_reopen(vd->vdev_top);
1786		if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1787			vd->vdev_offline = B_FALSE;
1788			vdev_reopen(vd->vdev_top);
1789			return (spa_vdev_state_exit(spa, NULL, EBUSY));
1790		}
1791	}
1792
1793	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1794
1795	return (spa_vdev_state_exit(spa, vd, 0));
1796}
1797
1798/*
1799 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1800 * vdev_offline(), we assume the spa config is locked.  We also clear all
1801 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1802 */
1803void
1804vdev_clear(spa_t *spa, vdev_t *vd)
1805{
1806	vdev_t *rvd = spa->spa_root_vdev;
1807
1808	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1809
1810	if (vd == NULL)
1811		vd = rvd;
1812
1813	vd->vdev_stat.vs_read_errors = 0;
1814	vd->vdev_stat.vs_write_errors = 0;
1815	vd->vdev_stat.vs_checksum_errors = 0;
1816
1817	for (int c = 0; c < vd->vdev_children; c++)
1818		vdev_clear(spa, vd->vdev_child[c]);
1819
1820	/*
1821	 * If we're in the FAULTED state or have experienced failed I/O, then
1822	 * clear the persistent state and attempt to reopen the device.  We
1823	 * also mark the vdev config dirty, so that the new faulted state is
1824	 * written out to disk.
1825	 */
1826	if (vd->vdev_faulted || vd->vdev_degraded ||
1827	    !vdev_readable(vd) || !vdev_writeable(vd)) {
1828
1829		vd->vdev_faulted = vd->vdev_degraded = 0;
1830		vd->vdev_cant_read = B_FALSE;
1831		vd->vdev_cant_write = B_FALSE;
1832
1833		vdev_reopen(vd);
1834
1835		if (vd != rvd)
1836			vdev_state_dirty(vd->vdev_top);
1837
1838		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
1839			spa_async_request(spa, SPA_ASYNC_RESILVER);
1840
1841		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1842	}
1843}
1844
1845boolean_t
1846vdev_is_dead(vdev_t *vd)
1847{
1848	return (vd->vdev_state < VDEV_STATE_DEGRADED);
1849}
1850
1851boolean_t
1852vdev_readable(vdev_t *vd)
1853{
1854	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
1855}
1856
1857boolean_t
1858vdev_writeable(vdev_t *vd)
1859{
1860	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
1861}
1862
1863boolean_t
1864vdev_accessible(vdev_t *vd, zio_t *zio)
1865{
1866	ASSERT(zio->io_vd == vd);
1867
1868	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
1869		return (B_FALSE);
1870
1871	if (zio->io_type == ZIO_TYPE_READ)
1872		return (!vd->vdev_cant_read);
1873
1874	if (zio->io_type == ZIO_TYPE_WRITE)
1875		return (!vd->vdev_cant_write);
1876
1877	return (B_TRUE);
1878}
1879
1880/*
1881 * Get statistics for the given vdev.
1882 */
1883void
1884vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1885{
1886	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1887
1888	mutex_enter(&vd->vdev_stat_lock);
1889	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1890	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
1891	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1892	vs->vs_state = vd->vdev_state;
1893	vs->vs_rsize = vdev_get_rsize(vd);
1894	mutex_exit(&vd->vdev_stat_lock);
1895
1896	/*
1897	 * If we're getting stats on the root vdev, aggregate the I/O counts
1898	 * over all top-level vdevs (i.e. the direct children of the root).
1899	 */
1900	if (vd == rvd) {
1901		for (int c = 0; c < rvd->vdev_children; c++) {
1902			vdev_t *cvd = rvd->vdev_child[c];
1903			vdev_stat_t *cvs = &cvd->vdev_stat;
1904
1905			mutex_enter(&vd->vdev_stat_lock);
1906			for (int t = 0; t < ZIO_TYPES; t++) {
1907				vs->vs_ops[t] += cvs->vs_ops[t];
1908				vs->vs_bytes[t] += cvs->vs_bytes[t];
1909			}
1910			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1911			mutex_exit(&vd->vdev_stat_lock);
1912		}
1913	}
1914}
1915
1916void
1917vdev_clear_stats(vdev_t *vd)
1918{
1919	mutex_enter(&vd->vdev_stat_lock);
1920	vd->vdev_stat.vs_space = 0;
1921	vd->vdev_stat.vs_dspace = 0;
1922	vd->vdev_stat.vs_alloc = 0;
1923	mutex_exit(&vd->vdev_stat_lock);
1924}
1925
1926void
1927vdev_stat_update(zio_t *zio, uint64_t psize)
1928{
1929	vdev_t *rvd = zio->io_spa->spa_root_vdev;
1930	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
1931	vdev_t *pvd;
1932	uint64_t txg = zio->io_txg;
1933	vdev_stat_t *vs = &vd->vdev_stat;
1934	zio_type_t type = zio->io_type;
1935	int flags = zio->io_flags;
1936
1937	/*
1938	 * If this i/o is a gang leader, it didn't do any actual work.
1939	 */
1940	if (zio->io_gang_tree)
1941		return;
1942
1943	if (zio->io_error == 0) {
1944		/*
1945		 * If this is a root i/o, don't count it -- we've already
1946		 * counted the top-level vdevs, and vdev_get_stats() will
1947		 * aggregate them when asked.  This reduces contention on
1948		 * the root vdev_stat_lock and implicitly handles blocks
1949		 * that compress away to holes, for which there is no i/o.
1950		 * (Holes never create vdev children, so all the counters
1951		 * remain zero, which is what we want.)
1952		 *
1953		 * Note: this only applies to successful i/o (io_error == 0)
1954		 * because unlike i/o counts, errors are not additive.
1955		 * When reading a ditto block, for example, failure of
1956		 * one top-level vdev does not imply a root-level error.
1957		 */
1958		if (vd == rvd)
1959			return;
1960
1961		ASSERT(vd == zio->io_vd);
1962		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1963			mutex_enter(&vd->vdev_stat_lock);
1964			vs->vs_ops[type]++;
1965			vs->vs_bytes[type] += psize;
1966			mutex_exit(&vd->vdev_stat_lock);
1967		}
1968		if (flags & ZIO_FLAG_IO_REPAIR) {
1969			ASSERT(zio->io_delegate_list == NULL);
1970			mutex_enter(&vd->vdev_stat_lock);
1971			if (flags & ZIO_FLAG_SCRUB_THREAD)
1972				vs->vs_scrub_repaired += psize;
1973			else
1974				vs->vs_self_healed += psize;
1975			mutex_exit(&vd->vdev_stat_lock);
1976		}
1977		return;
1978	}
1979
1980	if (flags & ZIO_FLAG_SPECULATIVE)
1981		return;
1982
1983	mutex_enter(&vd->vdev_stat_lock);
1984	if (type == ZIO_TYPE_READ) {
1985		if (zio->io_error == ECKSUM)
1986			vs->vs_checksum_errors++;
1987		else
1988			vs->vs_read_errors++;
1989	}
1990	if (type == ZIO_TYPE_WRITE)
1991		vs->vs_write_errors++;
1992	mutex_exit(&vd->vdev_stat_lock);
1993
1994	if (type == ZIO_TYPE_WRITE && txg != 0 && vd->vdev_children == 0) {
1995		if (flags & ZIO_FLAG_SCRUB_THREAD) {
1996			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1997			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1998				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1999		}
2000		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
2001			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
2002				return;
2003			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2004			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
2005				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
2006		}
2007	}
2008}
2009
2010void
2011vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2012{
2013	int c;
2014	vdev_stat_t *vs = &vd->vdev_stat;
2015
2016	for (c = 0; c < vd->vdev_children; c++)
2017		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2018
2019	mutex_enter(&vd->vdev_stat_lock);
2020
2021	if (type == POOL_SCRUB_NONE) {
2022		/*
2023		 * Update completion and end time.  Leave everything else alone
2024		 * so we can report what happened during the previous scrub.
2025		 */
2026		vs->vs_scrub_complete = complete;
2027		vs->vs_scrub_end = gethrestime_sec();
2028	} else {
2029		vs->vs_scrub_type = type;
2030		vs->vs_scrub_complete = 0;
2031		vs->vs_scrub_examined = 0;
2032		vs->vs_scrub_repaired = 0;
2033		vs->vs_scrub_start = gethrestime_sec();
2034		vs->vs_scrub_end = 0;
2035	}
2036
2037	mutex_exit(&vd->vdev_stat_lock);
2038}
2039
2040/*
2041 * Update the in-core space usage stats for this vdev and the root vdev.
2042 */
2043void
2044vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2045    boolean_t update_root)
2046{
2047	int64_t dspace_delta = space_delta;
2048	spa_t *spa = vd->vdev_spa;
2049	vdev_t *rvd = spa->spa_root_vdev;
2050
2051	ASSERT(vd == vd->vdev_top);
2052
2053	/*
2054	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2055	 * factor.  We must calculate this here and not at the root vdev
2056	 * because the root vdev's psize-to-asize is simply the max of its
2057	 * childrens', thus not accurate enough for us.
2058	 */
2059	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2060	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2061	    vd->vdev_deflate_ratio;
2062
2063	mutex_enter(&vd->vdev_stat_lock);
2064	vd->vdev_stat.vs_space += space_delta;
2065	vd->vdev_stat.vs_alloc += alloc_delta;
2066	vd->vdev_stat.vs_dspace += dspace_delta;
2067	mutex_exit(&vd->vdev_stat_lock);
2068
2069	if (update_root) {
2070		ASSERT(rvd == vd->vdev_parent);
2071		ASSERT(vd->vdev_ms_count != 0);
2072
2073		/*
2074		 * Don't count non-normal (e.g. intent log) space as part of
2075		 * the pool's capacity.
2076		 */
2077		if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2078			return;
2079
2080		mutex_enter(&rvd->vdev_stat_lock);
2081		rvd->vdev_stat.vs_space += space_delta;
2082		rvd->vdev_stat.vs_alloc += alloc_delta;
2083		rvd->vdev_stat.vs_dspace += dspace_delta;
2084		mutex_exit(&rvd->vdev_stat_lock);
2085	}
2086}
2087
2088/*
2089 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2090 * so that it will be written out next time the vdev configuration is synced.
2091 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2092 */
2093void
2094vdev_config_dirty(vdev_t *vd)
2095{
2096	spa_t *spa = vd->vdev_spa;
2097	vdev_t *rvd = spa->spa_root_vdev;
2098	int c;
2099
2100	/*
2101	 * If this is an aux vdev (as with l2cache devices), then we update the
2102	 * vdev config manually and set the sync flag.
2103	 */
2104	if (vd->vdev_aux != NULL) {
2105		spa_aux_vdev_t *sav = vd->vdev_aux;
2106		nvlist_t **aux;
2107		uint_t naux;
2108
2109		for (c = 0; c < sav->sav_count; c++) {
2110			if (sav->sav_vdevs[c] == vd)
2111				break;
2112		}
2113
2114		if (c == sav->sav_count) {
2115			/*
2116			 * We're being removed.  There's nothing more to do.
2117			 */
2118			ASSERT(sav->sav_sync == B_TRUE);
2119			return;
2120		}
2121
2122		sav->sav_sync = B_TRUE;
2123
2124		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2125		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2126
2127		ASSERT(c < naux);
2128
2129		/*
2130		 * Setting the nvlist in the middle if the array is a little
2131		 * sketchy, but it will work.
2132		 */
2133		nvlist_free(aux[c]);
2134		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2135
2136		return;
2137	}
2138
2139	/*
2140	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2141	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2142	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2143	 * so this is sufficient to ensure mutual exclusion.
2144	 */
2145	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2146	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2147	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2148
2149	if (vd == rvd) {
2150		for (c = 0; c < rvd->vdev_children; c++)
2151			vdev_config_dirty(rvd->vdev_child[c]);
2152	} else {
2153		ASSERT(vd == vd->vdev_top);
2154
2155		if (!list_link_active(&vd->vdev_config_dirty_node))
2156			list_insert_head(&spa->spa_config_dirty_list, vd);
2157	}
2158}
2159
2160void
2161vdev_config_clean(vdev_t *vd)
2162{
2163	spa_t *spa = vd->vdev_spa;
2164
2165	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2166	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2167	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2168
2169	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2170	list_remove(&spa->spa_config_dirty_list, vd);
2171}
2172
2173/*
2174 * Mark a top-level vdev's state as dirty, so that the next pass of
2175 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2176 * the state changes from larger config changes because they require
2177 * much less locking, and are often needed for administrative actions.
2178 */
2179void
2180vdev_state_dirty(vdev_t *vd)
2181{
2182	spa_t *spa = vd->vdev_spa;
2183
2184	ASSERT(vd == vd->vdev_top);
2185
2186	/*
2187	 * The state list is protected by the SCL_STATE lock.  The caller
2188	 * must either hold SCL_STATE as writer, or must be the sync thread
2189	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2190	 * so this is sufficient to ensure mutual exclusion.
2191	 */
2192	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2193	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2194	    spa_config_held(spa, SCL_STATE, RW_READER)));
2195
2196	if (!list_link_active(&vd->vdev_state_dirty_node))
2197		list_insert_head(&spa->spa_state_dirty_list, vd);
2198}
2199
2200void
2201vdev_state_clean(vdev_t *vd)
2202{
2203	spa_t *spa = vd->vdev_spa;
2204
2205	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2206	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2207	    spa_config_held(spa, SCL_STATE, RW_READER)));
2208
2209	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2210	list_remove(&spa->spa_state_dirty_list, vd);
2211}
2212
2213/*
2214 * Propagate vdev state up from children to parent.
2215 */
2216void
2217vdev_propagate_state(vdev_t *vd)
2218{
2219	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2220	int degraded = 0, faulted = 0;
2221	int corrupted = 0;
2222	int c;
2223	vdev_t *child;
2224
2225	if (vd->vdev_children > 0) {
2226		for (c = 0; c < vd->vdev_children; c++) {
2227			child = vd->vdev_child[c];
2228
2229			if (!vdev_readable(child) ||
2230			    (!vdev_writeable(child) && (spa_mode & FWRITE))) {
2231				/*
2232				 * Root special: if there is a top-level log
2233				 * device, treat the root vdev as if it were
2234				 * degraded.
2235				 */
2236				if (child->vdev_islog && vd == rvd)
2237					degraded++;
2238				else
2239					faulted++;
2240			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2241				degraded++;
2242			}
2243
2244			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2245				corrupted++;
2246		}
2247
2248		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2249
2250		/*
2251		 * Root special: if there is a top-level vdev that cannot be
2252		 * opened due to corrupted metadata, then propagate the root
2253		 * vdev's aux state as 'corrupt' rather than 'insufficient
2254		 * replicas'.
2255		 */
2256		if (corrupted && vd == rvd &&
2257		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2258			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2259			    VDEV_AUX_CORRUPT_DATA);
2260	}
2261
2262	if (vd->vdev_parent)
2263		vdev_propagate_state(vd->vdev_parent);
2264}
2265
2266/*
2267 * Set a vdev's state.  If this is during an open, we don't update the parent
2268 * state, because we're in the process of opening children depth-first.
2269 * Otherwise, we propagate the change to the parent.
2270 *
2271 * If this routine places a device in a faulted state, an appropriate ereport is
2272 * generated.
2273 */
2274void
2275vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2276{
2277	uint64_t save_state;
2278	spa_t *spa = vd->vdev_spa;
2279
2280	if (state == vd->vdev_state) {
2281		vd->vdev_stat.vs_aux = aux;
2282		return;
2283	}
2284
2285	save_state = vd->vdev_state;
2286
2287	vd->vdev_state = state;
2288	vd->vdev_stat.vs_aux = aux;
2289
2290	/*
2291	 * If we are setting the vdev state to anything but an open state, then
2292	 * always close the underlying device.  Otherwise, we keep accessible
2293	 * but invalid devices open forever.  We don't call vdev_close() itself,
2294	 * because that implies some extra checks (offline, etc) that we don't
2295	 * want here.  This is limited to leaf devices, because otherwise
2296	 * closing the device will affect other children.
2297	 */
2298	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2299		vd->vdev_ops->vdev_op_close(vd);
2300
2301	if (vd->vdev_removed &&
2302	    state == VDEV_STATE_CANT_OPEN &&
2303	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2304		/*
2305		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2306		 * device was previously marked removed and someone attempted to
2307		 * reopen it.  If this failed due to a nonexistent device, then
2308		 * keep the device in the REMOVED state.  We also let this be if
2309		 * it is one of our special test online cases, which is only
2310		 * attempting to online the device and shouldn't generate an FMA
2311		 * fault.
2312		 */
2313		vd->vdev_state = VDEV_STATE_REMOVED;
2314		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2315	} else if (state == VDEV_STATE_REMOVED) {
2316		/*
2317		 * Indicate to the ZFS DE that this device has been removed, and
2318		 * any recent errors should be ignored.
2319		 */
2320		zfs_post_remove(spa, vd);
2321		vd->vdev_removed = B_TRUE;
2322	} else if (state == VDEV_STATE_CANT_OPEN) {
2323		/*
2324		 * If we fail to open a vdev during an import, we mark it as
2325		 * "not available", which signifies that it was never there to
2326		 * begin with.  Failure to open such a device is not considered
2327		 * an error.
2328		 */
2329		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2330		    !spa->spa_import_faulted &&
2331		    vd->vdev_ops->vdev_op_leaf)
2332			vd->vdev_not_present = 1;
2333
2334		/*
2335		 * Post the appropriate ereport.  If the 'prevstate' field is
2336		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2337		 * that this is part of a vdev_reopen().  In this case, we don't
2338		 * want to post the ereport if the device was already in the
2339		 * CANT_OPEN state beforehand.
2340		 *
2341		 * If the 'checkremove' flag is set, then this is an attempt to
2342		 * online the device in response to an insertion event.  If we
2343		 * hit this case, then we have detected an insertion event for a
2344		 * faulted or offline device that wasn't in the removed state.
2345		 * In this scenario, we don't post an ereport because we are
2346		 * about to replace the device, or attempt an online with
2347		 * vdev_forcefault, which will generate the fault for us.
2348		 */
2349		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2350		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2351		    vd != spa->spa_root_vdev) {
2352			const char *class;
2353
2354			switch (aux) {
2355			case VDEV_AUX_OPEN_FAILED:
2356				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2357				break;
2358			case VDEV_AUX_CORRUPT_DATA:
2359				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2360				break;
2361			case VDEV_AUX_NO_REPLICAS:
2362				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2363				break;
2364			case VDEV_AUX_BAD_GUID_SUM:
2365				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2366				break;
2367			case VDEV_AUX_TOO_SMALL:
2368				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2369				break;
2370			case VDEV_AUX_BAD_LABEL:
2371				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2372				break;
2373			case VDEV_AUX_IO_FAILURE:
2374				class = FM_EREPORT_ZFS_IO_FAILURE;
2375				break;
2376			default:
2377				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2378			}
2379
2380			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2381		}
2382
2383		/* Erase any notion of persistent removed state */
2384		vd->vdev_removed = B_FALSE;
2385	} else {
2386		vd->vdev_removed = B_FALSE;
2387	}
2388
2389	if (!isopen)
2390		vdev_propagate_state(vd);
2391}
2392
2393/*
2394 * Check the vdev configuration to ensure that it's capable of supporting
2395 * a root pool.
2396 *
2397 * On Solaris, we do not support RAID-Z or partial configuration.  In
2398 * addition, only a single top-level vdev is allowed and none of the
2399 * leaves can be wholedisks.
2400 *
2401 * For FreeBSD, we can boot from any configuration. There is a
2402 * limitation that the boot filesystem must be either uncompressed or
2403 * compresses with lzjb compression but I'm not sure how to enforce
2404 * that here.
2405 */
2406boolean_t
2407vdev_is_bootable(vdev_t *vd)
2408{
2409#ifdef __FreeBSD_version
2410	return (B_TRUE);
2411#else
2412	int c;
2413
2414	if (!vd->vdev_ops->vdev_op_leaf) {
2415		char *vdev_type = vd->vdev_ops->vdev_op_type;
2416
2417		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2418		    vd->vdev_children > 1) {
2419			return (B_FALSE);
2420		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2421		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2422			return (B_FALSE);
2423		}
2424	} else if (vd->vdev_wholedisk == 1) {
2425		return (B_FALSE);
2426	}
2427
2428	for (c = 0; c < vd->vdev_children; c++) {
2429		if (!vdev_is_bootable(vd->vdev_child[c]))
2430			return (B_FALSE);
2431	}
2432	return (B_TRUE);
2433#endif
2434}
2435