dtrace.c revision 255763
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/9/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 255763 2013-09-21 16:46:34Z markj $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * DTrace - Dynamic Tracing for Solaris
33 *
34 * This is the implementation of the Solaris Dynamic Tracing framework
35 * (DTrace).  The user-visible interface to DTrace is described at length in
36 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37 * library, the in-kernel DTrace framework, and the DTrace providers are
38 * described in the block comments in the <sys/dtrace.h> header file.  The
39 * internal architecture of DTrace is described in the block comments in the
40 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41 * implementation very much assume mastery of all of these sources; if one has
42 * an unanswered question about the implementation, one should consult them
43 * first.
44 *
45 * The functions here are ordered roughly as follows:
46 *
47 *   - Probe context functions
48 *   - Probe hashing functions
49 *   - Non-probe context utility functions
50 *   - Matching functions
51 *   - Provider-to-Framework API functions
52 *   - Probe management functions
53 *   - DIF object functions
54 *   - Format functions
55 *   - Predicate functions
56 *   - ECB functions
57 *   - Buffer functions
58 *   - Enabling functions
59 *   - DOF functions
60 *   - Anonymous enabling functions
61 *   - Consumer state functions
62 *   - Helper functions
63 *   - Hook functions
64 *   - Driver cookbook functions
65 *
66 * Each group of functions begins with a block comment labelled the "DTrace
67 * [Group] Functions", allowing one to find each block by searching forward
68 * on capital-f functions.
69 */
70#include <sys/errno.h>
71#if !defined(sun)
72#include <sys/time.h>
73#endif
74#include <sys/stat.h>
75#include <sys/modctl.h>
76#include <sys/conf.h>
77#include <sys/systm.h>
78#if defined(sun)
79#include <sys/ddi.h>
80#include <sys/sunddi.h>
81#endif
82#include <sys/cpuvar.h>
83#include <sys/kmem.h>
84#if defined(sun)
85#include <sys/strsubr.h>
86#endif
87#include <sys/sysmacros.h>
88#include <sys/dtrace_impl.h>
89#include <sys/atomic.h>
90#include <sys/cmn_err.h>
91#if defined(sun)
92#include <sys/mutex_impl.h>
93#include <sys/rwlock_impl.h>
94#endif
95#include <sys/ctf_api.h>
96#if defined(sun)
97#include <sys/panic.h>
98#include <sys/priv_impl.h>
99#endif
100#include <sys/policy.h>
101#if defined(sun)
102#include <sys/cred_impl.h>
103#include <sys/procfs_isa.h>
104#endif
105#include <sys/taskq.h>
106#if defined(sun)
107#include <sys/mkdev.h>
108#include <sys/kdi.h>
109#endif
110#include <sys/zone.h>
111#include <sys/socket.h>
112#include <netinet/in.h>
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/eventhandler.h>
119#include <sys/limits.h>
120#include <sys/kdb.h>
121#include <sys/kernel.h>
122#include <sys/malloc.h>
123#include <sys/sysctl.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/rwlock.h>
127#include <sys/sx.h>
128#include <sys/dtrace_bsd.h>
129#include <netinet/in.h>
130#include "dtrace_cddl.h"
131#include "dtrace_debug.c"
132#endif
133
134/*
135 * DTrace Tunable Variables
136 *
137 * The following variables may be tuned by adding a line to /etc/system that
138 * includes both the name of the DTrace module ("dtrace") and the name of the
139 * variable.  For example:
140 *
141 *   set dtrace:dtrace_destructive_disallow = 1
142 *
143 * In general, the only variables that one should be tuning this way are those
144 * that affect system-wide DTrace behavior, and for which the default behavior
145 * is undesirable.  Most of these variables are tunable on a per-consumer
146 * basis using DTrace options, and need not be tuned on a system-wide basis.
147 * When tuning these variables, avoid pathological values; while some attempt
148 * is made to verify the integrity of these variables, they are not considered
149 * part of the supported interface to DTrace, and they are therefore not
150 * checked comprehensively.  Further, these variables should not be tuned
151 * dynamically via "mdb -kw" or other means; they should only be tuned via
152 * /etc/system.
153 */
154int		dtrace_destructive_disallow = 0;
155dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
156size_t		dtrace_difo_maxsize = (256 * 1024);
157dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
158size_t		dtrace_global_maxsize = (16 * 1024);
159size_t		dtrace_actions_max = (16 * 1024);
160size_t		dtrace_retain_max = 1024;
161dtrace_optval_t	dtrace_helper_actions_max = 128;
162dtrace_optval_t	dtrace_helper_providers_max = 32;
163dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
164size_t		dtrace_strsize_default = 256;
165dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
166dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
167dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
168dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
170dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
171dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
172dtrace_optval_t	dtrace_nspec_default = 1;
173dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
174dtrace_optval_t dtrace_stackframes_default = 20;
175dtrace_optval_t dtrace_ustackframes_default = 20;
176dtrace_optval_t dtrace_jstackframes_default = 50;
177dtrace_optval_t dtrace_jstackstrsize_default = 512;
178int		dtrace_msgdsize_max = 128;
179hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
180hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
181int		dtrace_devdepth_max = 32;
182int		dtrace_err_verbose;
183hrtime_t	dtrace_deadman_interval = NANOSEC;
184hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
185hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
186hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
187
188/*
189 * DTrace External Variables
190 *
191 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
192 * available to DTrace consumers via the backtick (`) syntax.  One of these,
193 * dtrace_zero, is made deliberately so:  it is provided as a source of
194 * well-known, zero-filled memory.  While this variable is not documented,
195 * it is used by some translators as an implementation detail.
196 */
197const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
198
199/*
200 * DTrace Internal Variables
201 */
202#if defined(sun)
203static dev_info_t	*dtrace_devi;		/* device info */
204#endif
205#if defined(sun)
206static vmem_t		*dtrace_arena;		/* probe ID arena */
207static vmem_t		*dtrace_minor;		/* minor number arena */
208#else
209static taskq_t		*dtrace_taskq;		/* task queue */
210static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
211#endif
212static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
213static int		dtrace_nprobes;		/* number of probes */
214static dtrace_provider_t *dtrace_provider;	/* provider list */
215static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
216static int		dtrace_opens;		/* number of opens */
217static int		dtrace_helpers;		/* number of helpers */
218#if defined(sun)
219static void		*dtrace_softstate;	/* softstate pointer */
220#endif
221static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
222static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
223static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
224static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
225static int		dtrace_toxranges;	/* number of toxic ranges */
226static int		dtrace_toxranges_max;	/* size of toxic range array */
227static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
228static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
229static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
230static kthread_t	*dtrace_panicked;	/* panicking thread */
231static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
232static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
233static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
234static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
235static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
236#if !defined(sun)
237static struct mtx	dtrace_unr_mtx;
238MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
239int		dtrace_in_probe;	/* non-zero if executing a probe */
240#if defined(__i386__) || defined(__amd64__)
241uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
242#endif
243static eventhandler_tag	dtrace_kld_load_tag;
244static eventhandler_tag	dtrace_kld_unload_tag;
245#endif
246
247/*
248 * DTrace Locking
249 * DTrace is protected by three (relatively coarse-grained) locks:
250 *
251 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
252 *     including enabling state, probes, ECBs, consumer state, helper state,
253 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
254 *     probe context is lock-free -- synchronization is handled via the
255 *     dtrace_sync() cross call mechanism.
256 *
257 * (2) dtrace_provider_lock is required when manipulating provider state, or
258 *     when provider state must be held constant.
259 *
260 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
261 *     when meta provider state must be held constant.
262 *
263 * The lock ordering between these three locks is dtrace_meta_lock before
264 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
265 * several places where dtrace_provider_lock is held by the framework as it
266 * calls into the providers -- which then call back into the framework,
267 * grabbing dtrace_lock.)
268 *
269 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
270 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
271 * role as a coarse-grained lock; it is acquired before both of these locks.
272 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
273 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
274 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
275 * acquired _between_ dtrace_provider_lock and dtrace_lock.
276 */
277static kmutex_t		dtrace_lock;		/* probe state lock */
278static kmutex_t		dtrace_provider_lock;	/* provider state lock */
279static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
280
281#if !defined(sun)
282/* XXX FreeBSD hacks. */
283static kmutex_t		mod_lock;
284
285#define cr_suid		cr_svuid
286#define cr_sgid		cr_svgid
287#define	ipaddr_t	in_addr_t
288#define mod_modname	pathname
289#define vuprintf	vprintf
290#define ttoproc(_a)	((_a)->td_proc)
291#define crgetzoneid(_a)	0
292#define	NCPU		MAXCPU
293#define SNOCD		0
294#define CPU_ON_INTR(_a)	0
295
296#define PRIV_EFFECTIVE		(1 << 0)
297#define PRIV_DTRACE_KERNEL	(1 << 1)
298#define PRIV_DTRACE_PROC	(1 << 2)
299#define PRIV_DTRACE_USER	(1 << 3)
300#define PRIV_PROC_OWNER		(1 << 4)
301#define PRIV_PROC_ZONE		(1 << 5)
302#define PRIV_ALL		~0
303
304SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
305#endif
306
307#if defined(sun)
308#define curcpu	CPU->cpu_id
309#endif
310
311
312/*
313 * DTrace Provider Variables
314 *
315 * These are the variables relating to DTrace as a provider (that is, the
316 * provider of the BEGIN, END, and ERROR probes).
317 */
318static dtrace_pattr_t	dtrace_provider_attr = {
319{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
321{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
322{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
323{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
324};
325
326static void
327dtrace_nullop(void)
328{}
329
330static dtrace_pops_t	dtrace_provider_ops = {
331	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
332	(void (*)(void *, modctl_t *))dtrace_nullop,
333	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
334	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
335	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
336	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
337	NULL,
338	NULL,
339	NULL,
340	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
341};
342
343static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
344static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
345dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
346
347/*
348 * DTrace Helper Tracing Variables
349 */
350uint32_t dtrace_helptrace_next = 0;
351uint32_t dtrace_helptrace_nlocals;
352char	*dtrace_helptrace_buffer;
353int	dtrace_helptrace_bufsize = 512 * 1024;
354
355#ifdef DEBUG
356int	dtrace_helptrace_enabled = 1;
357#else
358int	dtrace_helptrace_enabled = 0;
359#endif
360
361/*
362 * DTrace Error Hashing
363 *
364 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
365 * table.  This is very useful for checking coverage of tests that are
366 * expected to induce DIF or DOF processing errors, and may be useful for
367 * debugging problems in the DIF code generator or in DOF generation .  The
368 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
369 */
370#ifdef DEBUG
371static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
372static const char *dtrace_errlast;
373static kthread_t *dtrace_errthread;
374static kmutex_t dtrace_errlock;
375#endif
376
377/*
378 * DTrace Macros and Constants
379 *
380 * These are various macros that are useful in various spots in the
381 * implementation, along with a few random constants that have no meaning
382 * outside of the implementation.  There is no real structure to this cpp
383 * mishmash -- but is there ever?
384 */
385#define	DTRACE_HASHSTR(hash, probe)	\
386	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
387
388#define	DTRACE_HASHNEXT(hash, probe)	\
389	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
390
391#define	DTRACE_HASHPREV(hash, probe)	\
392	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
393
394#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
395	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
396	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
397
398#define	DTRACE_AGGHASHSIZE_SLEW		17
399
400#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
401
402/*
403 * The key for a thread-local variable consists of the lower 61 bits of the
404 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
405 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
406 * equal to a variable identifier.  This is necessary (but not sufficient) to
407 * assure that global associative arrays never collide with thread-local
408 * variables.  To guarantee that they cannot collide, we must also define the
409 * order for keying dynamic variables.  That order is:
410 *
411 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
412 *
413 * Because the variable-key and the tls-key are in orthogonal spaces, there is
414 * no way for a global variable key signature to match a thread-local key
415 * signature.
416 */
417#if defined(sun)
418#define	DTRACE_TLS_THRKEY(where) { \
419	uint_t intr = 0; \
420	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
421	for (; actv; actv >>= 1) \
422		intr++; \
423	ASSERT(intr < (1 << 3)); \
424	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
425	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
426}
427#else
428#define	DTRACE_TLS_THRKEY(where) { \
429	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
430	uint_t intr = 0; \
431	uint_t actv = _c->cpu_intr_actv; \
432	for (; actv; actv >>= 1) \
433		intr++; \
434	ASSERT(intr < (1 << 3)); \
435	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
436	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
437}
438#endif
439
440#define	DT_BSWAP_8(x)	((x) & 0xff)
441#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
442#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
443#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
444
445#define	DT_MASK_LO 0x00000000FFFFFFFFULL
446
447#define	DTRACE_STORE(type, tomax, offset, what) \
448	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
449
450#ifndef __x86
451#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
452	if (addr & (size - 1)) {					\
453		*flags |= CPU_DTRACE_BADALIGN;				\
454		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
455		return (0);						\
456	}
457#else
458#define	DTRACE_ALIGNCHECK(addr, size, flags)
459#endif
460
461/*
462 * Test whether a range of memory starting at testaddr of size testsz falls
463 * within the range of memory described by addr, sz.  We take care to avoid
464 * problems with overflow and underflow of the unsigned quantities, and
465 * disallow all negative sizes.  Ranges of size 0 are allowed.
466 */
467#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
468	((testaddr) - (baseaddr) < (basesz) && \
469	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
470	(testaddr) + (testsz) >= (testaddr))
471
472/*
473 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
474 * alloc_sz on the righthand side of the comparison in order to avoid overflow
475 * or underflow in the comparison with it.  This is simpler than the INRANGE
476 * check above, because we know that the dtms_scratch_ptr is valid in the
477 * range.  Allocations of size zero are allowed.
478 */
479#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
480	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
481	(mstate)->dtms_scratch_ptr >= (alloc_sz))
482
483#define	DTRACE_LOADFUNC(bits)						\
484/*CSTYLED*/								\
485uint##bits##_t								\
486dtrace_load##bits(uintptr_t addr)					\
487{									\
488	size_t size = bits / NBBY;					\
489	/*CSTYLED*/							\
490	uint##bits##_t rval;						\
491	int i;								\
492	volatile uint16_t *flags = (volatile uint16_t *)		\
493	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
494									\
495	DTRACE_ALIGNCHECK(addr, size, flags);				\
496									\
497	for (i = 0; i < dtrace_toxranges; i++) {			\
498		if (addr >= dtrace_toxrange[i].dtt_limit)		\
499			continue;					\
500									\
501		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
502			continue;					\
503									\
504		/*							\
505		 * This address falls within a toxic region; return 0.	\
506		 */							\
507		*flags |= CPU_DTRACE_BADADDR;				\
508		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
509		return (0);						\
510	}								\
511									\
512	*flags |= CPU_DTRACE_NOFAULT;					\
513	/*CSTYLED*/							\
514	rval = *((volatile uint##bits##_t *)addr);			\
515	*flags &= ~CPU_DTRACE_NOFAULT;					\
516									\
517	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
518}
519
520#ifdef _LP64
521#define	dtrace_loadptr	dtrace_load64
522#else
523#define	dtrace_loadptr	dtrace_load32
524#endif
525
526#define	DTRACE_DYNHASH_FREE	0
527#define	DTRACE_DYNHASH_SINK	1
528#define	DTRACE_DYNHASH_VALID	2
529
530#define	DTRACE_MATCH_NEXT	0
531#define	DTRACE_MATCH_DONE	1
532#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
533#define	DTRACE_STATE_ALIGN	64
534
535#define	DTRACE_FLAGS2FLT(flags)						\
536	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
537	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
538	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
539	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
540	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
541	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
542	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
543	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
544	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
545	DTRACEFLT_UNKNOWN)
546
547#define	DTRACEACT_ISSTRING(act)						\
548	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
549	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
550
551/* Function prototype definitions: */
552static size_t dtrace_strlen(const char *, size_t);
553static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
554static void dtrace_enabling_provide(dtrace_provider_t *);
555static int dtrace_enabling_match(dtrace_enabling_t *, int *);
556static void dtrace_enabling_matchall(void);
557static void dtrace_enabling_reap(void);
558static dtrace_state_t *dtrace_anon_grab(void);
559static uint64_t dtrace_helper(int, dtrace_mstate_t *,
560    dtrace_state_t *, uint64_t, uint64_t);
561static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
562static void dtrace_buffer_drop(dtrace_buffer_t *);
563static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
564static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
565    dtrace_state_t *, dtrace_mstate_t *);
566static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
567    dtrace_optval_t);
568static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
569static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
570uint16_t dtrace_load16(uintptr_t);
571uint32_t dtrace_load32(uintptr_t);
572uint64_t dtrace_load64(uintptr_t);
573uint8_t dtrace_load8(uintptr_t);
574void dtrace_dynvar_clean(dtrace_dstate_t *);
575dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
576    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
577uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
578
579/*
580 * DTrace Probe Context Functions
581 *
582 * These functions are called from probe context.  Because probe context is
583 * any context in which C may be called, arbitrarily locks may be held,
584 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
585 * As a result, functions called from probe context may only call other DTrace
586 * support functions -- they may not interact at all with the system at large.
587 * (Note that the ASSERT macro is made probe-context safe by redefining it in
588 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
589 * loads are to be performed from probe context, they _must_ be in terms of
590 * the safe dtrace_load*() variants.
591 *
592 * Some functions in this block are not actually called from probe context;
593 * for these functions, there will be a comment above the function reading
594 * "Note:  not called from probe context."
595 */
596void
597dtrace_panic(const char *format, ...)
598{
599	va_list alist;
600
601	va_start(alist, format);
602	dtrace_vpanic(format, alist);
603	va_end(alist);
604}
605
606int
607dtrace_assfail(const char *a, const char *f, int l)
608{
609	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
610
611	/*
612	 * We just need something here that even the most clever compiler
613	 * cannot optimize away.
614	 */
615	return (a[(uintptr_t)f]);
616}
617
618/*
619 * Atomically increment a specified error counter from probe context.
620 */
621static void
622dtrace_error(uint32_t *counter)
623{
624	/*
625	 * Most counters stored to in probe context are per-CPU counters.
626	 * However, there are some error conditions that are sufficiently
627	 * arcane that they don't merit per-CPU storage.  If these counters
628	 * are incremented concurrently on different CPUs, scalability will be
629	 * adversely affected -- but we don't expect them to be white-hot in a
630	 * correctly constructed enabling...
631	 */
632	uint32_t oval, nval;
633
634	do {
635		oval = *counter;
636
637		if ((nval = oval + 1) == 0) {
638			/*
639			 * If the counter would wrap, set it to 1 -- assuring
640			 * that the counter is never zero when we have seen
641			 * errors.  (The counter must be 32-bits because we
642			 * aren't guaranteed a 64-bit compare&swap operation.)
643			 * To save this code both the infamy of being fingered
644			 * by a priggish news story and the indignity of being
645			 * the target of a neo-puritan witch trial, we're
646			 * carefully avoiding any colorful description of the
647			 * likelihood of this condition -- but suffice it to
648			 * say that it is only slightly more likely than the
649			 * overflow of predicate cache IDs, as discussed in
650			 * dtrace_predicate_create().
651			 */
652			nval = 1;
653		}
654	} while (dtrace_cas32(counter, oval, nval) != oval);
655}
656
657/*
658 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
659 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
660 */
661DTRACE_LOADFUNC(8)
662DTRACE_LOADFUNC(16)
663DTRACE_LOADFUNC(32)
664DTRACE_LOADFUNC(64)
665
666static int
667dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
668{
669	if (dest < mstate->dtms_scratch_base)
670		return (0);
671
672	if (dest + size < dest)
673		return (0);
674
675	if (dest + size > mstate->dtms_scratch_ptr)
676		return (0);
677
678	return (1);
679}
680
681static int
682dtrace_canstore_statvar(uint64_t addr, size_t sz,
683    dtrace_statvar_t **svars, int nsvars)
684{
685	int i;
686
687	for (i = 0; i < nsvars; i++) {
688		dtrace_statvar_t *svar = svars[i];
689
690		if (svar == NULL || svar->dtsv_size == 0)
691			continue;
692
693		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
694			return (1);
695	}
696
697	return (0);
698}
699
700/*
701 * Check to see if the address is within a memory region to which a store may
702 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
703 * region.  The caller of dtrace_canstore() is responsible for performing any
704 * alignment checks that are needed before stores are actually executed.
705 */
706static int
707dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
708    dtrace_vstate_t *vstate)
709{
710	/*
711	 * First, check to see if the address is in scratch space...
712	 */
713	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
714	    mstate->dtms_scratch_size))
715		return (1);
716
717	/*
718	 * Now check to see if it's a dynamic variable.  This check will pick
719	 * up both thread-local variables and any global dynamically-allocated
720	 * variables.
721	 */
722	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
723	    vstate->dtvs_dynvars.dtds_size)) {
724		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
725		uintptr_t base = (uintptr_t)dstate->dtds_base +
726		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
727		uintptr_t chunkoffs;
728
729		/*
730		 * Before we assume that we can store here, we need to make
731		 * sure that it isn't in our metadata -- storing to our
732		 * dynamic variable metadata would corrupt our state.  For
733		 * the range to not include any dynamic variable metadata,
734		 * it must:
735		 *
736		 *	(1) Start above the hash table that is at the base of
737		 *	the dynamic variable space
738		 *
739		 *	(2) Have a starting chunk offset that is beyond the
740		 *	dtrace_dynvar_t that is at the base of every chunk
741		 *
742		 *	(3) Not span a chunk boundary
743		 *
744		 */
745		if (addr < base)
746			return (0);
747
748		chunkoffs = (addr - base) % dstate->dtds_chunksize;
749
750		if (chunkoffs < sizeof (dtrace_dynvar_t))
751			return (0);
752
753		if (chunkoffs + sz > dstate->dtds_chunksize)
754			return (0);
755
756		return (1);
757	}
758
759	/*
760	 * Finally, check the static local and global variables.  These checks
761	 * take the longest, so we perform them last.
762	 */
763	if (dtrace_canstore_statvar(addr, sz,
764	    vstate->dtvs_locals, vstate->dtvs_nlocals))
765		return (1);
766
767	if (dtrace_canstore_statvar(addr, sz,
768	    vstate->dtvs_globals, vstate->dtvs_nglobals))
769		return (1);
770
771	return (0);
772}
773
774
775/*
776 * Convenience routine to check to see if the address is within a memory
777 * region in which a load may be issued given the user's privilege level;
778 * if not, it sets the appropriate error flags and loads 'addr' into the
779 * illegal value slot.
780 *
781 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
782 * appropriate memory access protection.
783 */
784static int
785dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
786    dtrace_vstate_t *vstate)
787{
788	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
789
790	/*
791	 * If we hold the privilege to read from kernel memory, then
792	 * everything is readable.
793	 */
794	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
795		return (1);
796
797	/*
798	 * You can obviously read that which you can store.
799	 */
800	if (dtrace_canstore(addr, sz, mstate, vstate))
801		return (1);
802
803	/*
804	 * We're allowed to read from our own string table.
805	 */
806	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
807	    mstate->dtms_difo->dtdo_strlen))
808		return (1);
809
810	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
811	*illval = addr;
812	return (0);
813}
814
815/*
816 * Convenience routine to check to see if a given string is within a memory
817 * region in which a load may be issued given the user's privilege level;
818 * this exists so that we don't need to issue unnecessary dtrace_strlen()
819 * calls in the event that the user has all privileges.
820 */
821static int
822dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
823    dtrace_vstate_t *vstate)
824{
825	size_t strsz;
826
827	/*
828	 * If we hold the privilege to read from kernel memory, then
829	 * everything is readable.
830	 */
831	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
832		return (1);
833
834	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
835	if (dtrace_canload(addr, strsz, mstate, vstate))
836		return (1);
837
838	return (0);
839}
840
841/*
842 * Convenience routine to check to see if a given variable is within a memory
843 * region in which a load may be issued given the user's privilege level.
844 */
845static int
846dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
847    dtrace_vstate_t *vstate)
848{
849	size_t sz;
850	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
851
852	/*
853	 * If we hold the privilege to read from kernel memory, then
854	 * everything is readable.
855	 */
856	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
857		return (1);
858
859	if (type->dtdt_kind == DIF_TYPE_STRING)
860		sz = dtrace_strlen(src,
861		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
862	else
863		sz = type->dtdt_size;
864
865	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
866}
867
868/*
869 * Compare two strings using safe loads.
870 */
871static int
872dtrace_strncmp(char *s1, char *s2, size_t limit)
873{
874	uint8_t c1, c2;
875	volatile uint16_t *flags;
876
877	if (s1 == s2 || limit == 0)
878		return (0);
879
880	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
881
882	do {
883		if (s1 == NULL) {
884			c1 = '\0';
885		} else {
886			c1 = dtrace_load8((uintptr_t)s1++);
887		}
888
889		if (s2 == NULL) {
890			c2 = '\0';
891		} else {
892			c2 = dtrace_load8((uintptr_t)s2++);
893		}
894
895		if (c1 != c2)
896			return (c1 - c2);
897	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
898
899	return (0);
900}
901
902/*
903 * Compute strlen(s) for a string using safe memory accesses.  The additional
904 * len parameter is used to specify a maximum length to ensure completion.
905 */
906static size_t
907dtrace_strlen(const char *s, size_t lim)
908{
909	uint_t len;
910
911	for (len = 0; len != lim; len++) {
912		if (dtrace_load8((uintptr_t)s++) == '\0')
913			break;
914	}
915
916	return (len);
917}
918
919/*
920 * Check if an address falls within a toxic region.
921 */
922static int
923dtrace_istoxic(uintptr_t kaddr, size_t size)
924{
925	uintptr_t taddr, tsize;
926	int i;
927
928	for (i = 0; i < dtrace_toxranges; i++) {
929		taddr = dtrace_toxrange[i].dtt_base;
930		tsize = dtrace_toxrange[i].dtt_limit - taddr;
931
932		if (kaddr - taddr < tsize) {
933			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
935			return (1);
936		}
937
938		if (taddr - kaddr < size) {
939			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
940			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
941			return (1);
942		}
943	}
944
945	return (0);
946}
947
948/*
949 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
950 * memory specified by the DIF program.  The dst is assumed to be safe memory
951 * that we can store to directly because it is managed by DTrace.  As with
952 * standard bcopy, overlapping copies are handled properly.
953 */
954static void
955dtrace_bcopy(const void *src, void *dst, size_t len)
956{
957	if (len != 0) {
958		uint8_t *s1 = dst;
959		const uint8_t *s2 = src;
960
961		if (s1 <= s2) {
962			do {
963				*s1++ = dtrace_load8((uintptr_t)s2++);
964			} while (--len != 0);
965		} else {
966			s2 += len;
967			s1 += len;
968
969			do {
970				*--s1 = dtrace_load8((uintptr_t)--s2);
971			} while (--len != 0);
972		}
973	}
974}
975
976/*
977 * Copy src to dst using safe memory accesses, up to either the specified
978 * length, or the point that a nul byte is encountered.  The src is assumed to
979 * be unsafe memory specified by the DIF program.  The dst is assumed to be
980 * safe memory that we can store to directly because it is managed by DTrace.
981 * Unlike dtrace_bcopy(), overlapping regions are not handled.
982 */
983static void
984dtrace_strcpy(const void *src, void *dst, size_t len)
985{
986	if (len != 0) {
987		uint8_t *s1 = dst, c;
988		const uint8_t *s2 = src;
989
990		do {
991			*s1++ = c = dtrace_load8((uintptr_t)s2++);
992		} while (--len != 0 && c != '\0');
993	}
994}
995
996/*
997 * Copy src to dst, deriving the size and type from the specified (BYREF)
998 * variable type.  The src is assumed to be unsafe memory specified by the DIF
999 * program.  The dst is assumed to be DTrace variable memory that is of the
1000 * specified type; we assume that we can store to directly.
1001 */
1002static void
1003dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1004{
1005	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1006
1007	if (type->dtdt_kind == DIF_TYPE_STRING) {
1008		dtrace_strcpy(src, dst, type->dtdt_size);
1009	} else {
1010		dtrace_bcopy(src, dst, type->dtdt_size);
1011	}
1012}
1013
1014/*
1015 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1016 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1017 * safe memory that we can access directly because it is managed by DTrace.
1018 */
1019static int
1020dtrace_bcmp(const void *s1, const void *s2, size_t len)
1021{
1022	volatile uint16_t *flags;
1023
1024	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1025
1026	if (s1 == s2)
1027		return (0);
1028
1029	if (s1 == NULL || s2 == NULL)
1030		return (1);
1031
1032	if (s1 != s2 && len != 0) {
1033		const uint8_t *ps1 = s1;
1034		const uint8_t *ps2 = s2;
1035
1036		do {
1037			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1038				return (1);
1039		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1040	}
1041	return (0);
1042}
1043
1044/*
1045 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1046 * is for safe DTrace-managed memory only.
1047 */
1048static void
1049dtrace_bzero(void *dst, size_t len)
1050{
1051	uchar_t *cp;
1052
1053	for (cp = dst; len != 0; len--)
1054		*cp++ = 0;
1055}
1056
1057static void
1058dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1059{
1060	uint64_t result[2];
1061
1062	result[0] = addend1[0] + addend2[0];
1063	result[1] = addend1[1] + addend2[1] +
1064	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1065
1066	sum[0] = result[0];
1067	sum[1] = result[1];
1068}
1069
1070/*
1071 * Shift the 128-bit value in a by b. If b is positive, shift left.
1072 * If b is negative, shift right.
1073 */
1074static void
1075dtrace_shift_128(uint64_t *a, int b)
1076{
1077	uint64_t mask;
1078
1079	if (b == 0)
1080		return;
1081
1082	if (b < 0) {
1083		b = -b;
1084		if (b >= 64) {
1085			a[0] = a[1] >> (b - 64);
1086			a[1] = 0;
1087		} else {
1088			a[0] >>= b;
1089			mask = 1LL << (64 - b);
1090			mask -= 1;
1091			a[0] |= ((a[1] & mask) << (64 - b));
1092			a[1] >>= b;
1093		}
1094	} else {
1095		if (b >= 64) {
1096			a[1] = a[0] << (b - 64);
1097			a[0] = 0;
1098		} else {
1099			a[1] <<= b;
1100			mask = a[0] >> (64 - b);
1101			a[1] |= mask;
1102			a[0] <<= b;
1103		}
1104	}
1105}
1106
1107/*
1108 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1109 * use native multiplication on those, and then re-combine into the
1110 * resulting 128-bit value.
1111 *
1112 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1113 *     hi1 * hi2 << 64 +
1114 *     hi1 * lo2 << 32 +
1115 *     hi2 * lo1 << 32 +
1116 *     lo1 * lo2
1117 */
1118static void
1119dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1120{
1121	uint64_t hi1, hi2, lo1, lo2;
1122	uint64_t tmp[2];
1123
1124	hi1 = factor1 >> 32;
1125	hi2 = factor2 >> 32;
1126
1127	lo1 = factor1 & DT_MASK_LO;
1128	lo2 = factor2 & DT_MASK_LO;
1129
1130	product[0] = lo1 * lo2;
1131	product[1] = hi1 * hi2;
1132
1133	tmp[0] = hi1 * lo2;
1134	tmp[1] = 0;
1135	dtrace_shift_128(tmp, 32);
1136	dtrace_add_128(product, tmp, product);
1137
1138	tmp[0] = hi2 * lo1;
1139	tmp[1] = 0;
1140	dtrace_shift_128(tmp, 32);
1141	dtrace_add_128(product, tmp, product);
1142}
1143
1144/*
1145 * This privilege check should be used by actions and subroutines to
1146 * verify that the user credentials of the process that enabled the
1147 * invoking ECB match the target credentials
1148 */
1149static int
1150dtrace_priv_proc_common_user(dtrace_state_t *state)
1151{
1152	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1153
1154	/*
1155	 * We should always have a non-NULL state cred here, since if cred
1156	 * is null (anonymous tracing), we fast-path bypass this routine.
1157	 */
1158	ASSERT(s_cr != NULL);
1159
1160	if ((cr = CRED()) != NULL &&
1161	    s_cr->cr_uid == cr->cr_uid &&
1162	    s_cr->cr_uid == cr->cr_ruid &&
1163	    s_cr->cr_uid == cr->cr_suid &&
1164	    s_cr->cr_gid == cr->cr_gid &&
1165	    s_cr->cr_gid == cr->cr_rgid &&
1166	    s_cr->cr_gid == cr->cr_sgid)
1167		return (1);
1168
1169	return (0);
1170}
1171
1172/*
1173 * This privilege check should be used by actions and subroutines to
1174 * verify that the zone of the process that enabled the invoking ECB
1175 * matches the target credentials
1176 */
1177static int
1178dtrace_priv_proc_common_zone(dtrace_state_t *state)
1179{
1180#if defined(sun)
1181	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1182
1183	/*
1184	 * We should always have a non-NULL state cred here, since if cred
1185	 * is null (anonymous tracing), we fast-path bypass this routine.
1186	 */
1187	ASSERT(s_cr != NULL);
1188
1189	if ((cr = CRED()) != NULL &&
1190	    s_cr->cr_zone == cr->cr_zone)
1191		return (1);
1192
1193	return (0);
1194#else
1195	return (1);
1196#endif
1197}
1198
1199/*
1200 * This privilege check should be used by actions and subroutines to
1201 * verify that the process has not setuid or changed credentials.
1202 */
1203static int
1204dtrace_priv_proc_common_nocd(void)
1205{
1206	proc_t *proc;
1207
1208	if ((proc = ttoproc(curthread)) != NULL &&
1209	    !(proc->p_flag & SNOCD))
1210		return (1);
1211
1212	return (0);
1213}
1214
1215static int
1216dtrace_priv_proc_destructive(dtrace_state_t *state)
1217{
1218	int action = state->dts_cred.dcr_action;
1219
1220	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1221	    dtrace_priv_proc_common_zone(state) == 0)
1222		goto bad;
1223
1224	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1225	    dtrace_priv_proc_common_user(state) == 0)
1226		goto bad;
1227
1228	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1229	    dtrace_priv_proc_common_nocd() == 0)
1230		goto bad;
1231
1232	return (1);
1233
1234bad:
1235	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1236
1237	return (0);
1238}
1239
1240static int
1241dtrace_priv_proc_control(dtrace_state_t *state)
1242{
1243	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1244		return (1);
1245
1246	if (dtrace_priv_proc_common_zone(state) &&
1247	    dtrace_priv_proc_common_user(state) &&
1248	    dtrace_priv_proc_common_nocd())
1249		return (1);
1250
1251	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1252
1253	return (0);
1254}
1255
1256static int
1257dtrace_priv_proc(dtrace_state_t *state)
1258{
1259	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1260		return (1);
1261
1262	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1263
1264	return (0);
1265}
1266
1267static int
1268dtrace_priv_kernel(dtrace_state_t *state)
1269{
1270	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1271		return (1);
1272
1273	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1274
1275	return (0);
1276}
1277
1278static int
1279dtrace_priv_kernel_destructive(dtrace_state_t *state)
1280{
1281	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1282		return (1);
1283
1284	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1285
1286	return (0);
1287}
1288
1289/*
1290 * Note:  not called from probe context.  This function is called
1291 * asynchronously (and at a regular interval) from outside of probe context to
1292 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1293 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1294 */
1295void
1296dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1297{
1298	dtrace_dynvar_t *dirty;
1299	dtrace_dstate_percpu_t *dcpu;
1300	int i, work = 0;
1301
1302	for (i = 0; i < NCPU; i++) {
1303		dcpu = &dstate->dtds_percpu[i];
1304
1305		ASSERT(dcpu->dtdsc_rinsing == NULL);
1306
1307		/*
1308		 * If the dirty list is NULL, there is no dirty work to do.
1309		 */
1310		if (dcpu->dtdsc_dirty == NULL)
1311			continue;
1312
1313		/*
1314		 * If the clean list is non-NULL, then we're not going to do
1315		 * any work for this CPU -- it means that there has not been
1316		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1317		 * since the last time we cleaned house.
1318		 */
1319		if (dcpu->dtdsc_clean != NULL)
1320			continue;
1321
1322		work = 1;
1323
1324		/*
1325		 * Atomically move the dirty list aside.
1326		 */
1327		do {
1328			dirty = dcpu->dtdsc_dirty;
1329
1330			/*
1331			 * Before we zap the dirty list, set the rinsing list.
1332			 * (This allows for a potential assertion in
1333			 * dtrace_dynvar():  if a free dynamic variable appears
1334			 * on a hash chain, either the dirty list or the
1335			 * rinsing list for some CPU must be non-NULL.)
1336			 */
1337			dcpu->dtdsc_rinsing = dirty;
1338			dtrace_membar_producer();
1339		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1340		    dirty, NULL) != dirty);
1341	}
1342
1343	if (!work) {
1344		/*
1345		 * We have no work to do; we can simply return.
1346		 */
1347		return;
1348	}
1349
1350	dtrace_sync();
1351
1352	for (i = 0; i < NCPU; i++) {
1353		dcpu = &dstate->dtds_percpu[i];
1354
1355		if (dcpu->dtdsc_rinsing == NULL)
1356			continue;
1357
1358		/*
1359		 * We are now guaranteed that no hash chain contains a pointer
1360		 * into this dirty list; we can make it clean.
1361		 */
1362		ASSERT(dcpu->dtdsc_clean == NULL);
1363		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1364		dcpu->dtdsc_rinsing = NULL;
1365	}
1366
1367	/*
1368	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1369	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1370	 * This prevents a race whereby a CPU incorrectly decides that
1371	 * the state should be something other than DTRACE_DSTATE_CLEAN
1372	 * after dtrace_dynvar_clean() has completed.
1373	 */
1374	dtrace_sync();
1375
1376	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1377}
1378
1379/*
1380 * Depending on the value of the op parameter, this function looks-up,
1381 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1382 * allocation is requested, this function will return a pointer to a
1383 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1384 * variable can be allocated.  If NULL is returned, the appropriate counter
1385 * will be incremented.
1386 */
1387dtrace_dynvar_t *
1388dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1389    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1390    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1391{
1392	uint64_t hashval = DTRACE_DYNHASH_VALID;
1393	dtrace_dynhash_t *hash = dstate->dtds_hash;
1394	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1395	processorid_t me = curcpu, cpu = me;
1396	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1397	size_t bucket, ksize;
1398	size_t chunksize = dstate->dtds_chunksize;
1399	uintptr_t kdata, lock, nstate;
1400	uint_t i;
1401
1402	ASSERT(nkeys != 0);
1403
1404	/*
1405	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1406	 * algorithm.  For the by-value portions, we perform the algorithm in
1407	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1408	 * bit, and seems to have only a minute effect on distribution.  For
1409	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1410	 * over each referenced byte.  It's painful to do this, but it's much
1411	 * better than pathological hash distribution.  The efficacy of the
1412	 * hashing algorithm (and a comparison with other algorithms) may be
1413	 * found by running the ::dtrace_dynstat MDB dcmd.
1414	 */
1415	for (i = 0; i < nkeys; i++) {
1416		if (key[i].dttk_size == 0) {
1417			uint64_t val = key[i].dttk_value;
1418
1419			hashval += (val >> 48) & 0xffff;
1420			hashval += (hashval << 10);
1421			hashval ^= (hashval >> 6);
1422
1423			hashval += (val >> 32) & 0xffff;
1424			hashval += (hashval << 10);
1425			hashval ^= (hashval >> 6);
1426
1427			hashval += (val >> 16) & 0xffff;
1428			hashval += (hashval << 10);
1429			hashval ^= (hashval >> 6);
1430
1431			hashval += val & 0xffff;
1432			hashval += (hashval << 10);
1433			hashval ^= (hashval >> 6);
1434		} else {
1435			/*
1436			 * This is incredibly painful, but it beats the hell
1437			 * out of the alternative.
1438			 */
1439			uint64_t j, size = key[i].dttk_size;
1440			uintptr_t base = (uintptr_t)key[i].dttk_value;
1441
1442			if (!dtrace_canload(base, size, mstate, vstate))
1443				break;
1444
1445			for (j = 0; j < size; j++) {
1446				hashval += dtrace_load8(base + j);
1447				hashval += (hashval << 10);
1448				hashval ^= (hashval >> 6);
1449			}
1450		}
1451	}
1452
1453	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1454		return (NULL);
1455
1456	hashval += (hashval << 3);
1457	hashval ^= (hashval >> 11);
1458	hashval += (hashval << 15);
1459
1460	/*
1461	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1462	 * comes out to be one of our two sentinel hash values.  If this
1463	 * actually happens, we set the hashval to be a value known to be a
1464	 * non-sentinel value.
1465	 */
1466	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1467		hashval = DTRACE_DYNHASH_VALID;
1468
1469	/*
1470	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1471	 * important here, tricks can be pulled to reduce it.  (However, it's
1472	 * critical that hash collisions be kept to an absolute minimum;
1473	 * they're much more painful than a divide.)  It's better to have a
1474	 * solution that generates few collisions and still keeps things
1475	 * relatively simple.
1476	 */
1477	bucket = hashval % dstate->dtds_hashsize;
1478
1479	if (op == DTRACE_DYNVAR_DEALLOC) {
1480		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1481
1482		for (;;) {
1483			while ((lock = *lockp) & 1)
1484				continue;
1485
1486			if (dtrace_casptr((volatile void *)lockp,
1487			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1488				break;
1489		}
1490
1491		dtrace_membar_producer();
1492	}
1493
1494top:
1495	prev = NULL;
1496	lock = hash[bucket].dtdh_lock;
1497
1498	dtrace_membar_consumer();
1499
1500	start = hash[bucket].dtdh_chain;
1501	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1502	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1503	    op != DTRACE_DYNVAR_DEALLOC));
1504
1505	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1506		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1507		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1508
1509		if (dvar->dtdv_hashval != hashval) {
1510			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1511				/*
1512				 * We've reached the sink, and therefore the
1513				 * end of the hash chain; we can kick out of
1514				 * the loop knowing that we have seen a valid
1515				 * snapshot of state.
1516				 */
1517				ASSERT(dvar->dtdv_next == NULL);
1518				ASSERT(dvar == &dtrace_dynhash_sink);
1519				break;
1520			}
1521
1522			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1523				/*
1524				 * We've gone off the rails:  somewhere along
1525				 * the line, one of the members of this hash
1526				 * chain was deleted.  Note that we could also
1527				 * detect this by simply letting this loop run
1528				 * to completion, as we would eventually hit
1529				 * the end of the dirty list.  However, we
1530				 * want to avoid running the length of the
1531				 * dirty list unnecessarily (it might be quite
1532				 * long), so we catch this as early as
1533				 * possible by detecting the hash marker.  In
1534				 * this case, we simply set dvar to NULL and
1535				 * break; the conditional after the loop will
1536				 * send us back to top.
1537				 */
1538				dvar = NULL;
1539				break;
1540			}
1541
1542			goto next;
1543		}
1544
1545		if (dtuple->dtt_nkeys != nkeys)
1546			goto next;
1547
1548		for (i = 0; i < nkeys; i++, dkey++) {
1549			if (dkey->dttk_size != key[i].dttk_size)
1550				goto next; /* size or type mismatch */
1551
1552			if (dkey->dttk_size != 0) {
1553				if (dtrace_bcmp(
1554				    (void *)(uintptr_t)key[i].dttk_value,
1555				    (void *)(uintptr_t)dkey->dttk_value,
1556				    dkey->dttk_size))
1557					goto next;
1558			} else {
1559				if (dkey->dttk_value != key[i].dttk_value)
1560					goto next;
1561			}
1562		}
1563
1564		if (op != DTRACE_DYNVAR_DEALLOC)
1565			return (dvar);
1566
1567		ASSERT(dvar->dtdv_next == NULL ||
1568		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1569
1570		if (prev != NULL) {
1571			ASSERT(hash[bucket].dtdh_chain != dvar);
1572			ASSERT(start != dvar);
1573			ASSERT(prev->dtdv_next == dvar);
1574			prev->dtdv_next = dvar->dtdv_next;
1575		} else {
1576			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1577			    start, dvar->dtdv_next) != start) {
1578				/*
1579				 * We have failed to atomically swing the
1580				 * hash table head pointer, presumably because
1581				 * of a conflicting allocation on another CPU.
1582				 * We need to reread the hash chain and try
1583				 * again.
1584				 */
1585				goto top;
1586			}
1587		}
1588
1589		dtrace_membar_producer();
1590
1591		/*
1592		 * Now set the hash value to indicate that it's free.
1593		 */
1594		ASSERT(hash[bucket].dtdh_chain != dvar);
1595		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1596
1597		dtrace_membar_producer();
1598
1599		/*
1600		 * Set the next pointer to point at the dirty list, and
1601		 * atomically swing the dirty pointer to the newly freed dvar.
1602		 */
1603		do {
1604			next = dcpu->dtdsc_dirty;
1605			dvar->dtdv_next = next;
1606		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1607
1608		/*
1609		 * Finally, unlock this hash bucket.
1610		 */
1611		ASSERT(hash[bucket].dtdh_lock == lock);
1612		ASSERT(lock & 1);
1613		hash[bucket].dtdh_lock++;
1614
1615		return (NULL);
1616next:
1617		prev = dvar;
1618		continue;
1619	}
1620
1621	if (dvar == NULL) {
1622		/*
1623		 * If dvar is NULL, it is because we went off the rails:
1624		 * one of the elements that we traversed in the hash chain
1625		 * was deleted while we were traversing it.  In this case,
1626		 * we assert that we aren't doing a dealloc (deallocs lock
1627		 * the hash bucket to prevent themselves from racing with
1628		 * one another), and retry the hash chain traversal.
1629		 */
1630		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1631		goto top;
1632	}
1633
1634	if (op != DTRACE_DYNVAR_ALLOC) {
1635		/*
1636		 * If we are not to allocate a new variable, we want to
1637		 * return NULL now.  Before we return, check that the value
1638		 * of the lock word hasn't changed.  If it has, we may have
1639		 * seen an inconsistent snapshot.
1640		 */
1641		if (op == DTRACE_DYNVAR_NOALLOC) {
1642			if (hash[bucket].dtdh_lock != lock)
1643				goto top;
1644		} else {
1645			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1646			ASSERT(hash[bucket].dtdh_lock == lock);
1647			ASSERT(lock & 1);
1648			hash[bucket].dtdh_lock++;
1649		}
1650
1651		return (NULL);
1652	}
1653
1654	/*
1655	 * We need to allocate a new dynamic variable.  The size we need is the
1656	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1657	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1658	 * the size of any referred-to data (dsize).  We then round the final
1659	 * size up to the chunksize for allocation.
1660	 */
1661	for (ksize = 0, i = 0; i < nkeys; i++)
1662		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1663
1664	/*
1665	 * This should be pretty much impossible, but could happen if, say,
1666	 * strange DIF specified the tuple.  Ideally, this should be an
1667	 * assertion and not an error condition -- but that requires that the
1668	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1669	 * bullet-proof.  (That is, it must not be able to be fooled by
1670	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1671	 * solving this would presumably not amount to solving the Halting
1672	 * Problem -- but it still seems awfully hard.
1673	 */
1674	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1675	    ksize + dsize > chunksize) {
1676		dcpu->dtdsc_drops++;
1677		return (NULL);
1678	}
1679
1680	nstate = DTRACE_DSTATE_EMPTY;
1681
1682	do {
1683retry:
1684		free = dcpu->dtdsc_free;
1685
1686		if (free == NULL) {
1687			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1688			void *rval;
1689
1690			if (clean == NULL) {
1691				/*
1692				 * We're out of dynamic variable space on
1693				 * this CPU.  Unless we have tried all CPUs,
1694				 * we'll try to allocate from a different
1695				 * CPU.
1696				 */
1697				switch (dstate->dtds_state) {
1698				case DTRACE_DSTATE_CLEAN: {
1699					void *sp = &dstate->dtds_state;
1700
1701					if (++cpu >= NCPU)
1702						cpu = 0;
1703
1704					if (dcpu->dtdsc_dirty != NULL &&
1705					    nstate == DTRACE_DSTATE_EMPTY)
1706						nstate = DTRACE_DSTATE_DIRTY;
1707
1708					if (dcpu->dtdsc_rinsing != NULL)
1709						nstate = DTRACE_DSTATE_RINSING;
1710
1711					dcpu = &dstate->dtds_percpu[cpu];
1712
1713					if (cpu != me)
1714						goto retry;
1715
1716					(void) dtrace_cas32(sp,
1717					    DTRACE_DSTATE_CLEAN, nstate);
1718
1719					/*
1720					 * To increment the correct bean
1721					 * counter, take another lap.
1722					 */
1723					goto retry;
1724				}
1725
1726				case DTRACE_DSTATE_DIRTY:
1727					dcpu->dtdsc_dirty_drops++;
1728					break;
1729
1730				case DTRACE_DSTATE_RINSING:
1731					dcpu->dtdsc_rinsing_drops++;
1732					break;
1733
1734				case DTRACE_DSTATE_EMPTY:
1735					dcpu->dtdsc_drops++;
1736					break;
1737				}
1738
1739				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1740				return (NULL);
1741			}
1742
1743			/*
1744			 * The clean list appears to be non-empty.  We want to
1745			 * move the clean list to the free list; we start by
1746			 * moving the clean pointer aside.
1747			 */
1748			if (dtrace_casptr(&dcpu->dtdsc_clean,
1749			    clean, NULL) != clean) {
1750				/*
1751				 * We are in one of two situations:
1752				 *
1753				 *  (a)	The clean list was switched to the
1754				 *	free list by another CPU.
1755				 *
1756				 *  (b)	The clean list was added to by the
1757				 *	cleansing cyclic.
1758				 *
1759				 * In either of these situations, we can
1760				 * just reattempt the free list allocation.
1761				 */
1762				goto retry;
1763			}
1764
1765			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1766
1767			/*
1768			 * Now we'll move the clean list to the free list.
1769			 * It's impossible for this to fail:  the only way
1770			 * the free list can be updated is through this
1771			 * code path, and only one CPU can own the clean list.
1772			 * Thus, it would only be possible for this to fail if
1773			 * this code were racing with dtrace_dynvar_clean().
1774			 * (That is, if dtrace_dynvar_clean() updated the clean
1775			 * list, and we ended up racing to update the free
1776			 * list.)  This race is prevented by the dtrace_sync()
1777			 * in dtrace_dynvar_clean() -- which flushes the
1778			 * owners of the clean lists out before resetting
1779			 * the clean lists.
1780			 */
1781			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1782			ASSERT(rval == NULL);
1783			goto retry;
1784		}
1785
1786		dvar = free;
1787		new_free = dvar->dtdv_next;
1788	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1789
1790	/*
1791	 * We have now allocated a new chunk.  We copy the tuple keys into the
1792	 * tuple array and copy any referenced key data into the data space
1793	 * following the tuple array.  As we do this, we relocate dttk_value
1794	 * in the final tuple to point to the key data address in the chunk.
1795	 */
1796	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1797	dvar->dtdv_data = (void *)(kdata + ksize);
1798	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1799
1800	for (i = 0; i < nkeys; i++) {
1801		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1802		size_t kesize = key[i].dttk_size;
1803
1804		if (kesize != 0) {
1805			dtrace_bcopy(
1806			    (const void *)(uintptr_t)key[i].dttk_value,
1807			    (void *)kdata, kesize);
1808			dkey->dttk_value = kdata;
1809			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1810		} else {
1811			dkey->dttk_value = key[i].dttk_value;
1812		}
1813
1814		dkey->dttk_size = kesize;
1815	}
1816
1817	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1818	dvar->dtdv_hashval = hashval;
1819	dvar->dtdv_next = start;
1820
1821	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1822		return (dvar);
1823
1824	/*
1825	 * The cas has failed.  Either another CPU is adding an element to
1826	 * this hash chain, or another CPU is deleting an element from this
1827	 * hash chain.  The simplest way to deal with both of these cases
1828	 * (though not necessarily the most efficient) is to free our
1829	 * allocated block and tail-call ourselves.  Note that the free is
1830	 * to the dirty list and _not_ to the free list.  This is to prevent
1831	 * races with allocators, above.
1832	 */
1833	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1834
1835	dtrace_membar_producer();
1836
1837	do {
1838		free = dcpu->dtdsc_dirty;
1839		dvar->dtdv_next = free;
1840	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1841
1842	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1843}
1844
1845/*ARGSUSED*/
1846static void
1847dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1848{
1849	if ((int64_t)nval < (int64_t)*oval)
1850		*oval = nval;
1851}
1852
1853/*ARGSUSED*/
1854static void
1855dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1856{
1857	if ((int64_t)nval > (int64_t)*oval)
1858		*oval = nval;
1859}
1860
1861static void
1862dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1863{
1864	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1865	int64_t val = (int64_t)nval;
1866
1867	if (val < 0) {
1868		for (i = 0; i < zero; i++) {
1869			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1870				quanta[i] += incr;
1871				return;
1872			}
1873		}
1874	} else {
1875		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1876			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1877				quanta[i - 1] += incr;
1878				return;
1879			}
1880		}
1881
1882		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1883		return;
1884	}
1885
1886	ASSERT(0);
1887}
1888
1889static void
1890dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1891{
1892	uint64_t arg = *lquanta++;
1893	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1894	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1895	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1896	int32_t val = (int32_t)nval, level;
1897
1898	ASSERT(step != 0);
1899	ASSERT(levels != 0);
1900
1901	if (val < base) {
1902		/*
1903		 * This is an underflow.
1904		 */
1905		lquanta[0] += incr;
1906		return;
1907	}
1908
1909	level = (val - base) / step;
1910
1911	if (level < levels) {
1912		lquanta[level + 1] += incr;
1913		return;
1914	}
1915
1916	/*
1917	 * This is an overflow.
1918	 */
1919	lquanta[levels + 1] += incr;
1920}
1921
1922static int
1923dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1924    uint16_t high, uint16_t nsteps, int64_t value)
1925{
1926	int64_t this = 1, last, next;
1927	int base = 1, order;
1928
1929	ASSERT(factor <= nsteps);
1930	ASSERT(nsteps % factor == 0);
1931
1932	for (order = 0; order < low; order++)
1933		this *= factor;
1934
1935	/*
1936	 * If our value is less than our factor taken to the power of the
1937	 * low order of magnitude, it goes into the zeroth bucket.
1938	 */
1939	if (value < (last = this))
1940		return (0);
1941
1942	for (this *= factor; order <= high; order++) {
1943		int nbuckets = this > nsteps ? nsteps : this;
1944
1945		if ((next = this * factor) < this) {
1946			/*
1947			 * We should not generally get log/linear quantizations
1948			 * with a high magnitude that allows 64-bits to
1949			 * overflow, but we nonetheless protect against this
1950			 * by explicitly checking for overflow, and clamping
1951			 * our value accordingly.
1952			 */
1953			value = this - 1;
1954		}
1955
1956		if (value < this) {
1957			/*
1958			 * If our value lies within this order of magnitude,
1959			 * determine its position by taking the offset within
1960			 * the order of magnitude, dividing by the bucket
1961			 * width, and adding to our (accumulated) base.
1962			 */
1963			return (base + (value - last) / (this / nbuckets));
1964		}
1965
1966		base += nbuckets - (nbuckets / factor);
1967		last = this;
1968		this = next;
1969	}
1970
1971	/*
1972	 * Our value is greater than or equal to our factor taken to the
1973	 * power of one plus the high magnitude -- return the top bucket.
1974	 */
1975	return (base);
1976}
1977
1978static void
1979dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1980{
1981	uint64_t arg = *llquanta++;
1982	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1983	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1984	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1985	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1986
1987	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1988	    low, high, nsteps, nval)] += incr;
1989}
1990
1991/*ARGSUSED*/
1992static void
1993dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1994{
1995	data[0]++;
1996	data[1] += nval;
1997}
1998
1999/*ARGSUSED*/
2000static void
2001dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2002{
2003	int64_t snval = (int64_t)nval;
2004	uint64_t tmp[2];
2005
2006	data[0]++;
2007	data[1] += nval;
2008
2009	/*
2010	 * What we want to say here is:
2011	 *
2012	 * data[2] += nval * nval;
2013	 *
2014	 * But given that nval is 64-bit, we could easily overflow, so
2015	 * we do this as 128-bit arithmetic.
2016	 */
2017	if (snval < 0)
2018		snval = -snval;
2019
2020	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2021	dtrace_add_128(data + 2, tmp, data + 2);
2022}
2023
2024/*ARGSUSED*/
2025static void
2026dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2027{
2028	*oval = *oval + 1;
2029}
2030
2031/*ARGSUSED*/
2032static void
2033dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2034{
2035	*oval += nval;
2036}
2037
2038/*
2039 * Aggregate given the tuple in the principal data buffer, and the aggregating
2040 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2041 * buffer is specified as the buf parameter.  This routine does not return
2042 * failure; if there is no space in the aggregation buffer, the data will be
2043 * dropped, and a corresponding counter incremented.
2044 */
2045static void
2046dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2047    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2048{
2049	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2050	uint32_t i, ndx, size, fsize;
2051	uint32_t align = sizeof (uint64_t) - 1;
2052	dtrace_aggbuffer_t *agb;
2053	dtrace_aggkey_t *key;
2054	uint32_t hashval = 0, limit, isstr;
2055	caddr_t tomax, data, kdata;
2056	dtrace_actkind_t action;
2057	dtrace_action_t *act;
2058	uintptr_t offs;
2059
2060	if (buf == NULL)
2061		return;
2062
2063	if (!agg->dtag_hasarg) {
2064		/*
2065		 * Currently, only quantize() and lquantize() take additional
2066		 * arguments, and they have the same semantics:  an increment
2067		 * value that defaults to 1 when not present.  If additional
2068		 * aggregating actions take arguments, the setting of the
2069		 * default argument value will presumably have to become more
2070		 * sophisticated...
2071		 */
2072		arg = 1;
2073	}
2074
2075	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2076	size = rec->dtrd_offset - agg->dtag_base;
2077	fsize = size + rec->dtrd_size;
2078
2079	ASSERT(dbuf->dtb_tomax != NULL);
2080	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2081
2082	if ((tomax = buf->dtb_tomax) == NULL) {
2083		dtrace_buffer_drop(buf);
2084		return;
2085	}
2086
2087	/*
2088	 * The metastructure is always at the bottom of the buffer.
2089	 */
2090	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2091	    sizeof (dtrace_aggbuffer_t));
2092
2093	if (buf->dtb_offset == 0) {
2094		/*
2095		 * We just kludge up approximately 1/8th of the size to be
2096		 * buckets.  If this guess ends up being routinely
2097		 * off-the-mark, we may need to dynamically readjust this
2098		 * based on past performance.
2099		 */
2100		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2101
2102		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2103		    (uintptr_t)tomax || hashsize == 0) {
2104			/*
2105			 * We've been given a ludicrously small buffer;
2106			 * increment our drop count and leave.
2107			 */
2108			dtrace_buffer_drop(buf);
2109			return;
2110		}
2111
2112		/*
2113		 * And now, a pathetic attempt to try to get a an odd (or
2114		 * perchance, a prime) hash size for better hash distribution.
2115		 */
2116		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2117			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2118
2119		agb->dtagb_hashsize = hashsize;
2120		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2121		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2122		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2123
2124		for (i = 0; i < agb->dtagb_hashsize; i++)
2125			agb->dtagb_hash[i] = NULL;
2126	}
2127
2128	ASSERT(agg->dtag_first != NULL);
2129	ASSERT(agg->dtag_first->dta_intuple);
2130
2131	/*
2132	 * Calculate the hash value based on the key.  Note that we _don't_
2133	 * include the aggid in the hashing (but we will store it as part of
2134	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2135	 * algorithm: a simple, quick algorithm that has no known funnels, and
2136	 * gets good distribution in practice.  The efficacy of the hashing
2137	 * algorithm (and a comparison with other algorithms) may be found by
2138	 * running the ::dtrace_aggstat MDB dcmd.
2139	 */
2140	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2141		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2142		limit = i + act->dta_rec.dtrd_size;
2143		ASSERT(limit <= size);
2144		isstr = DTRACEACT_ISSTRING(act);
2145
2146		for (; i < limit; i++) {
2147			hashval += data[i];
2148			hashval += (hashval << 10);
2149			hashval ^= (hashval >> 6);
2150
2151			if (isstr && data[i] == '\0')
2152				break;
2153		}
2154	}
2155
2156	hashval += (hashval << 3);
2157	hashval ^= (hashval >> 11);
2158	hashval += (hashval << 15);
2159
2160	/*
2161	 * Yes, the divide here is expensive -- but it's generally the least
2162	 * of the performance issues given the amount of data that we iterate
2163	 * over to compute hash values, compare data, etc.
2164	 */
2165	ndx = hashval % agb->dtagb_hashsize;
2166
2167	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2168		ASSERT((caddr_t)key >= tomax);
2169		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2170
2171		if (hashval != key->dtak_hashval || key->dtak_size != size)
2172			continue;
2173
2174		kdata = key->dtak_data;
2175		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2176
2177		for (act = agg->dtag_first; act->dta_intuple;
2178		    act = act->dta_next) {
2179			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2180			limit = i + act->dta_rec.dtrd_size;
2181			ASSERT(limit <= size);
2182			isstr = DTRACEACT_ISSTRING(act);
2183
2184			for (; i < limit; i++) {
2185				if (kdata[i] != data[i])
2186					goto next;
2187
2188				if (isstr && data[i] == '\0')
2189					break;
2190			}
2191		}
2192
2193		if (action != key->dtak_action) {
2194			/*
2195			 * We are aggregating on the same value in the same
2196			 * aggregation with two different aggregating actions.
2197			 * (This should have been picked up in the compiler,
2198			 * so we may be dealing with errant or devious DIF.)
2199			 * This is an error condition; we indicate as much,
2200			 * and return.
2201			 */
2202			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2203			return;
2204		}
2205
2206		/*
2207		 * This is a hit:  we need to apply the aggregator to
2208		 * the value at this key.
2209		 */
2210		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2211		return;
2212next:
2213		continue;
2214	}
2215
2216	/*
2217	 * We didn't find it.  We need to allocate some zero-filled space,
2218	 * link it into the hash table appropriately, and apply the aggregator
2219	 * to the (zero-filled) value.
2220	 */
2221	offs = buf->dtb_offset;
2222	while (offs & (align - 1))
2223		offs += sizeof (uint32_t);
2224
2225	/*
2226	 * If we don't have enough room to both allocate a new key _and_
2227	 * its associated data, increment the drop count and return.
2228	 */
2229	if ((uintptr_t)tomax + offs + fsize >
2230	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2231		dtrace_buffer_drop(buf);
2232		return;
2233	}
2234
2235	/*CONSTCOND*/
2236	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2237	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2238	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2239
2240	key->dtak_data = kdata = tomax + offs;
2241	buf->dtb_offset = offs + fsize;
2242
2243	/*
2244	 * Now copy the data across.
2245	 */
2246	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2247
2248	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2249		kdata[i] = data[i];
2250
2251	/*
2252	 * Because strings are not zeroed out by default, we need to iterate
2253	 * looking for actions that store strings, and we need to explicitly
2254	 * pad these strings out with zeroes.
2255	 */
2256	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2257		int nul;
2258
2259		if (!DTRACEACT_ISSTRING(act))
2260			continue;
2261
2262		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2263		limit = i + act->dta_rec.dtrd_size;
2264		ASSERT(limit <= size);
2265
2266		for (nul = 0; i < limit; i++) {
2267			if (nul) {
2268				kdata[i] = '\0';
2269				continue;
2270			}
2271
2272			if (data[i] != '\0')
2273				continue;
2274
2275			nul = 1;
2276		}
2277	}
2278
2279	for (i = size; i < fsize; i++)
2280		kdata[i] = 0;
2281
2282	key->dtak_hashval = hashval;
2283	key->dtak_size = size;
2284	key->dtak_action = action;
2285	key->dtak_next = agb->dtagb_hash[ndx];
2286	agb->dtagb_hash[ndx] = key;
2287
2288	/*
2289	 * Finally, apply the aggregator.
2290	 */
2291	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2292	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2293}
2294
2295/*
2296 * Given consumer state, this routine finds a speculation in the INACTIVE
2297 * state and transitions it into the ACTIVE state.  If there is no speculation
2298 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2299 * incremented -- it is up to the caller to take appropriate action.
2300 */
2301static int
2302dtrace_speculation(dtrace_state_t *state)
2303{
2304	int i = 0;
2305	dtrace_speculation_state_t current;
2306	uint32_t *stat = &state->dts_speculations_unavail, count;
2307
2308	while (i < state->dts_nspeculations) {
2309		dtrace_speculation_t *spec = &state->dts_speculations[i];
2310
2311		current = spec->dtsp_state;
2312
2313		if (current != DTRACESPEC_INACTIVE) {
2314			if (current == DTRACESPEC_COMMITTINGMANY ||
2315			    current == DTRACESPEC_COMMITTING ||
2316			    current == DTRACESPEC_DISCARDING)
2317				stat = &state->dts_speculations_busy;
2318			i++;
2319			continue;
2320		}
2321
2322		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2323		    current, DTRACESPEC_ACTIVE) == current)
2324			return (i + 1);
2325	}
2326
2327	/*
2328	 * We couldn't find a speculation.  If we found as much as a single
2329	 * busy speculation buffer, we'll attribute this failure as "busy"
2330	 * instead of "unavail".
2331	 */
2332	do {
2333		count = *stat;
2334	} while (dtrace_cas32(stat, count, count + 1) != count);
2335
2336	return (0);
2337}
2338
2339/*
2340 * This routine commits an active speculation.  If the specified speculation
2341 * is not in a valid state to perform a commit(), this routine will silently do
2342 * nothing.  The state of the specified speculation is transitioned according
2343 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2344 */
2345static void
2346dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2347    dtrace_specid_t which)
2348{
2349	dtrace_speculation_t *spec;
2350	dtrace_buffer_t *src, *dest;
2351	uintptr_t daddr, saddr, dlimit;
2352	dtrace_speculation_state_t current, new = 0;
2353	intptr_t offs;
2354
2355	if (which == 0)
2356		return;
2357
2358	if (which > state->dts_nspeculations) {
2359		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2360		return;
2361	}
2362
2363	spec = &state->dts_speculations[which - 1];
2364	src = &spec->dtsp_buffer[cpu];
2365	dest = &state->dts_buffer[cpu];
2366
2367	do {
2368		current = spec->dtsp_state;
2369
2370		if (current == DTRACESPEC_COMMITTINGMANY)
2371			break;
2372
2373		switch (current) {
2374		case DTRACESPEC_INACTIVE:
2375		case DTRACESPEC_DISCARDING:
2376			return;
2377
2378		case DTRACESPEC_COMMITTING:
2379			/*
2380			 * This is only possible if we are (a) commit()'ing
2381			 * without having done a prior speculate() on this CPU
2382			 * and (b) racing with another commit() on a different
2383			 * CPU.  There's nothing to do -- we just assert that
2384			 * our offset is 0.
2385			 */
2386			ASSERT(src->dtb_offset == 0);
2387			return;
2388
2389		case DTRACESPEC_ACTIVE:
2390			new = DTRACESPEC_COMMITTING;
2391			break;
2392
2393		case DTRACESPEC_ACTIVEONE:
2394			/*
2395			 * This speculation is active on one CPU.  If our
2396			 * buffer offset is non-zero, we know that the one CPU
2397			 * must be us.  Otherwise, we are committing on a
2398			 * different CPU from the speculate(), and we must
2399			 * rely on being asynchronously cleaned.
2400			 */
2401			if (src->dtb_offset != 0) {
2402				new = DTRACESPEC_COMMITTING;
2403				break;
2404			}
2405			/*FALLTHROUGH*/
2406
2407		case DTRACESPEC_ACTIVEMANY:
2408			new = DTRACESPEC_COMMITTINGMANY;
2409			break;
2410
2411		default:
2412			ASSERT(0);
2413		}
2414	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2415	    current, new) != current);
2416
2417	/*
2418	 * We have set the state to indicate that we are committing this
2419	 * speculation.  Now reserve the necessary space in the destination
2420	 * buffer.
2421	 */
2422	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2423	    sizeof (uint64_t), state, NULL)) < 0) {
2424		dtrace_buffer_drop(dest);
2425		goto out;
2426	}
2427
2428	/*
2429	 * We have the space; copy the buffer across.  (Note that this is a
2430	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2431	 * a serious performance issue, a high-performance DTrace-specific
2432	 * bcopy() should obviously be invented.)
2433	 */
2434	daddr = (uintptr_t)dest->dtb_tomax + offs;
2435	dlimit = daddr + src->dtb_offset;
2436	saddr = (uintptr_t)src->dtb_tomax;
2437
2438	/*
2439	 * First, the aligned portion.
2440	 */
2441	while (dlimit - daddr >= sizeof (uint64_t)) {
2442		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2443
2444		daddr += sizeof (uint64_t);
2445		saddr += sizeof (uint64_t);
2446	}
2447
2448	/*
2449	 * Now any left-over bit...
2450	 */
2451	while (dlimit - daddr)
2452		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2453
2454	/*
2455	 * Finally, commit the reserved space in the destination buffer.
2456	 */
2457	dest->dtb_offset = offs + src->dtb_offset;
2458
2459out:
2460	/*
2461	 * If we're lucky enough to be the only active CPU on this speculation
2462	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2463	 */
2464	if (current == DTRACESPEC_ACTIVE ||
2465	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2466		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2467		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2468
2469		ASSERT(rval == DTRACESPEC_COMMITTING);
2470	}
2471
2472	src->dtb_offset = 0;
2473	src->dtb_xamot_drops += src->dtb_drops;
2474	src->dtb_drops = 0;
2475}
2476
2477/*
2478 * This routine discards an active speculation.  If the specified speculation
2479 * is not in a valid state to perform a discard(), this routine will silently
2480 * do nothing.  The state of the specified speculation is transitioned
2481 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2482 */
2483static void
2484dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2485    dtrace_specid_t which)
2486{
2487	dtrace_speculation_t *spec;
2488	dtrace_speculation_state_t current, new = 0;
2489	dtrace_buffer_t *buf;
2490
2491	if (which == 0)
2492		return;
2493
2494	if (which > state->dts_nspeculations) {
2495		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2496		return;
2497	}
2498
2499	spec = &state->dts_speculations[which - 1];
2500	buf = &spec->dtsp_buffer[cpu];
2501
2502	do {
2503		current = spec->dtsp_state;
2504
2505		switch (current) {
2506		case DTRACESPEC_INACTIVE:
2507		case DTRACESPEC_COMMITTINGMANY:
2508		case DTRACESPEC_COMMITTING:
2509		case DTRACESPEC_DISCARDING:
2510			return;
2511
2512		case DTRACESPEC_ACTIVE:
2513		case DTRACESPEC_ACTIVEMANY:
2514			new = DTRACESPEC_DISCARDING;
2515			break;
2516
2517		case DTRACESPEC_ACTIVEONE:
2518			if (buf->dtb_offset != 0) {
2519				new = DTRACESPEC_INACTIVE;
2520			} else {
2521				new = DTRACESPEC_DISCARDING;
2522			}
2523			break;
2524
2525		default:
2526			ASSERT(0);
2527		}
2528	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2529	    current, new) != current);
2530
2531	buf->dtb_offset = 0;
2532	buf->dtb_drops = 0;
2533}
2534
2535/*
2536 * Note:  not called from probe context.  This function is called
2537 * asynchronously from cross call context to clean any speculations that are
2538 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2539 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2540 * speculation.
2541 */
2542static void
2543dtrace_speculation_clean_here(dtrace_state_t *state)
2544{
2545	dtrace_icookie_t cookie;
2546	processorid_t cpu = curcpu;
2547	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2548	dtrace_specid_t i;
2549
2550	cookie = dtrace_interrupt_disable();
2551
2552	if (dest->dtb_tomax == NULL) {
2553		dtrace_interrupt_enable(cookie);
2554		return;
2555	}
2556
2557	for (i = 0; i < state->dts_nspeculations; i++) {
2558		dtrace_speculation_t *spec = &state->dts_speculations[i];
2559		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2560
2561		if (src->dtb_tomax == NULL)
2562			continue;
2563
2564		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2565			src->dtb_offset = 0;
2566			continue;
2567		}
2568
2569		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2570			continue;
2571
2572		if (src->dtb_offset == 0)
2573			continue;
2574
2575		dtrace_speculation_commit(state, cpu, i + 1);
2576	}
2577
2578	dtrace_interrupt_enable(cookie);
2579}
2580
2581/*
2582 * Note:  not called from probe context.  This function is called
2583 * asynchronously (and at a regular interval) to clean any speculations that
2584 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2585 * is work to be done, it cross calls all CPUs to perform that work;
2586 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2587 * INACTIVE state until they have been cleaned by all CPUs.
2588 */
2589static void
2590dtrace_speculation_clean(dtrace_state_t *state)
2591{
2592	int work = 0, rv;
2593	dtrace_specid_t i;
2594
2595	for (i = 0; i < state->dts_nspeculations; i++) {
2596		dtrace_speculation_t *spec = &state->dts_speculations[i];
2597
2598		ASSERT(!spec->dtsp_cleaning);
2599
2600		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2601		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2602			continue;
2603
2604		work++;
2605		spec->dtsp_cleaning = 1;
2606	}
2607
2608	if (!work)
2609		return;
2610
2611	dtrace_xcall(DTRACE_CPUALL,
2612	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2613
2614	/*
2615	 * We now know that all CPUs have committed or discarded their
2616	 * speculation buffers, as appropriate.  We can now set the state
2617	 * to inactive.
2618	 */
2619	for (i = 0; i < state->dts_nspeculations; i++) {
2620		dtrace_speculation_t *spec = &state->dts_speculations[i];
2621		dtrace_speculation_state_t current, new;
2622
2623		if (!spec->dtsp_cleaning)
2624			continue;
2625
2626		current = spec->dtsp_state;
2627		ASSERT(current == DTRACESPEC_DISCARDING ||
2628		    current == DTRACESPEC_COMMITTINGMANY);
2629
2630		new = DTRACESPEC_INACTIVE;
2631
2632		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2633		ASSERT(rv == current);
2634		spec->dtsp_cleaning = 0;
2635	}
2636}
2637
2638/*
2639 * Called as part of a speculate() to get the speculative buffer associated
2640 * with a given speculation.  Returns NULL if the specified speculation is not
2641 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2642 * the active CPU is not the specified CPU -- the speculation will be
2643 * atomically transitioned into the ACTIVEMANY state.
2644 */
2645static dtrace_buffer_t *
2646dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2647    dtrace_specid_t which)
2648{
2649	dtrace_speculation_t *spec;
2650	dtrace_speculation_state_t current, new = 0;
2651	dtrace_buffer_t *buf;
2652
2653	if (which == 0)
2654		return (NULL);
2655
2656	if (which > state->dts_nspeculations) {
2657		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2658		return (NULL);
2659	}
2660
2661	spec = &state->dts_speculations[which - 1];
2662	buf = &spec->dtsp_buffer[cpuid];
2663
2664	do {
2665		current = spec->dtsp_state;
2666
2667		switch (current) {
2668		case DTRACESPEC_INACTIVE:
2669		case DTRACESPEC_COMMITTINGMANY:
2670		case DTRACESPEC_DISCARDING:
2671			return (NULL);
2672
2673		case DTRACESPEC_COMMITTING:
2674			ASSERT(buf->dtb_offset == 0);
2675			return (NULL);
2676
2677		case DTRACESPEC_ACTIVEONE:
2678			/*
2679			 * This speculation is currently active on one CPU.
2680			 * Check the offset in the buffer; if it's non-zero,
2681			 * that CPU must be us (and we leave the state alone).
2682			 * If it's zero, assume that we're starting on a new
2683			 * CPU -- and change the state to indicate that the
2684			 * speculation is active on more than one CPU.
2685			 */
2686			if (buf->dtb_offset != 0)
2687				return (buf);
2688
2689			new = DTRACESPEC_ACTIVEMANY;
2690			break;
2691
2692		case DTRACESPEC_ACTIVEMANY:
2693			return (buf);
2694
2695		case DTRACESPEC_ACTIVE:
2696			new = DTRACESPEC_ACTIVEONE;
2697			break;
2698
2699		default:
2700			ASSERT(0);
2701		}
2702	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2703	    current, new) != current);
2704
2705	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2706	return (buf);
2707}
2708
2709/*
2710 * Return a string.  In the event that the user lacks the privilege to access
2711 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2712 * don't fail access checking.
2713 *
2714 * dtrace_dif_variable() uses this routine as a helper for various
2715 * builtin values such as 'execname' and 'probefunc.'
2716 */
2717uintptr_t
2718dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2719    dtrace_mstate_t *mstate)
2720{
2721	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2722	uintptr_t ret;
2723	size_t strsz;
2724
2725	/*
2726	 * The easy case: this probe is allowed to read all of memory, so
2727	 * we can just return this as a vanilla pointer.
2728	 */
2729	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2730		return (addr);
2731
2732	/*
2733	 * This is the tougher case: we copy the string in question from
2734	 * kernel memory into scratch memory and return it that way: this
2735	 * ensures that we won't trip up when access checking tests the
2736	 * BYREF return value.
2737	 */
2738	strsz = dtrace_strlen((char *)addr, size) + 1;
2739
2740	if (mstate->dtms_scratch_ptr + strsz >
2741	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2742		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2743		return (0);
2744	}
2745
2746	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2747	    strsz);
2748	ret = mstate->dtms_scratch_ptr;
2749	mstate->dtms_scratch_ptr += strsz;
2750	return (ret);
2751}
2752
2753/*
2754 * Return a string from a memoy address which is known to have one or
2755 * more concatenated, individually zero terminated, sub-strings.
2756 * In the event that the user lacks the privilege to access
2757 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2758 * don't fail access checking.
2759 *
2760 * dtrace_dif_variable() uses this routine as a helper for various
2761 * builtin values such as 'execargs'.
2762 */
2763static uintptr_t
2764dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2765    dtrace_mstate_t *mstate)
2766{
2767	char *p;
2768	size_t i;
2769	uintptr_t ret;
2770
2771	if (mstate->dtms_scratch_ptr + strsz >
2772	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2773		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2774		return (0);
2775	}
2776
2777	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2778	    strsz);
2779
2780	/* Replace sub-string termination characters with a space. */
2781	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2782	    p++, i++)
2783		if (*p == '\0')
2784			*p = ' ';
2785
2786	ret = mstate->dtms_scratch_ptr;
2787	mstate->dtms_scratch_ptr += strsz;
2788	return (ret);
2789}
2790
2791/*
2792 * This function implements the DIF emulator's variable lookups.  The emulator
2793 * passes a reserved variable identifier and optional built-in array index.
2794 */
2795static uint64_t
2796dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2797    uint64_t ndx)
2798{
2799	/*
2800	 * If we're accessing one of the uncached arguments, we'll turn this
2801	 * into a reference in the args array.
2802	 */
2803	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2804		ndx = v - DIF_VAR_ARG0;
2805		v = DIF_VAR_ARGS;
2806	}
2807
2808	switch (v) {
2809	case DIF_VAR_ARGS:
2810		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2811		if (ndx >= sizeof (mstate->dtms_arg) /
2812		    sizeof (mstate->dtms_arg[0])) {
2813			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2814			dtrace_provider_t *pv;
2815			uint64_t val;
2816
2817			pv = mstate->dtms_probe->dtpr_provider;
2818			if (pv->dtpv_pops.dtps_getargval != NULL)
2819				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2820				    mstate->dtms_probe->dtpr_id,
2821				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2822			else
2823				val = dtrace_getarg(ndx, aframes);
2824
2825			/*
2826			 * This is regrettably required to keep the compiler
2827			 * from tail-optimizing the call to dtrace_getarg().
2828			 * The condition always evaluates to true, but the
2829			 * compiler has no way of figuring that out a priori.
2830			 * (None of this would be necessary if the compiler
2831			 * could be relied upon to _always_ tail-optimize
2832			 * the call to dtrace_getarg() -- but it can't.)
2833			 */
2834			if (mstate->dtms_probe != NULL)
2835				return (val);
2836
2837			ASSERT(0);
2838		}
2839
2840		return (mstate->dtms_arg[ndx]);
2841
2842#if defined(sun)
2843	case DIF_VAR_UREGS: {
2844		klwp_t *lwp;
2845
2846		if (!dtrace_priv_proc(state))
2847			return (0);
2848
2849		if ((lwp = curthread->t_lwp) == NULL) {
2850			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2851			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2852			return (0);
2853		}
2854
2855		return (dtrace_getreg(lwp->lwp_regs, ndx));
2856		return (0);
2857	}
2858#else
2859	case DIF_VAR_UREGS: {
2860		struct trapframe *tframe;
2861
2862		if (!dtrace_priv_proc(state))
2863			return (0);
2864
2865		if ((tframe = curthread->td_frame) == NULL) {
2866			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2867			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2868			return (0);
2869		}
2870
2871		return (dtrace_getreg(tframe, ndx));
2872	}
2873#endif
2874
2875	case DIF_VAR_CURTHREAD:
2876		if (!dtrace_priv_kernel(state))
2877			return (0);
2878		return ((uint64_t)(uintptr_t)curthread);
2879
2880	case DIF_VAR_TIMESTAMP:
2881		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2882			mstate->dtms_timestamp = dtrace_gethrtime();
2883			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2884		}
2885		return (mstate->dtms_timestamp);
2886
2887	case DIF_VAR_VTIMESTAMP:
2888		ASSERT(dtrace_vtime_references != 0);
2889		return (curthread->t_dtrace_vtime);
2890
2891	case DIF_VAR_WALLTIMESTAMP:
2892		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2893			mstate->dtms_walltimestamp = dtrace_gethrestime();
2894			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2895		}
2896		return (mstate->dtms_walltimestamp);
2897
2898#if defined(sun)
2899	case DIF_VAR_IPL:
2900		if (!dtrace_priv_kernel(state))
2901			return (0);
2902		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2903			mstate->dtms_ipl = dtrace_getipl();
2904			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2905		}
2906		return (mstate->dtms_ipl);
2907#endif
2908
2909	case DIF_VAR_EPID:
2910		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2911		return (mstate->dtms_epid);
2912
2913	case DIF_VAR_ID:
2914		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2915		return (mstate->dtms_probe->dtpr_id);
2916
2917	case DIF_VAR_STACKDEPTH:
2918		if (!dtrace_priv_kernel(state))
2919			return (0);
2920		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2921			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2922
2923			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2924			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2925		}
2926		return (mstate->dtms_stackdepth);
2927
2928	case DIF_VAR_USTACKDEPTH:
2929		if (!dtrace_priv_proc(state))
2930			return (0);
2931		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2932			/*
2933			 * See comment in DIF_VAR_PID.
2934			 */
2935			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2936			    CPU_ON_INTR(CPU)) {
2937				mstate->dtms_ustackdepth = 0;
2938			} else {
2939				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2940				mstate->dtms_ustackdepth =
2941				    dtrace_getustackdepth();
2942				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2943			}
2944			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2945		}
2946		return (mstate->dtms_ustackdepth);
2947
2948	case DIF_VAR_CALLER:
2949		if (!dtrace_priv_kernel(state))
2950			return (0);
2951		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2952			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2953
2954			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2955				/*
2956				 * If this is an unanchored probe, we are
2957				 * required to go through the slow path:
2958				 * dtrace_caller() only guarantees correct
2959				 * results for anchored probes.
2960				 */
2961				pc_t caller[2] = {0, 0};
2962
2963				dtrace_getpcstack(caller, 2, aframes,
2964				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2965				mstate->dtms_caller = caller[1];
2966			} else if ((mstate->dtms_caller =
2967			    dtrace_caller(aframes)) == -1) {
2968				/*
2969				 * We have failed to do this the quick way;
2970				 * we must resort to the slower approach of
2971				 * calling dtrace_getpcstack().
2972				 */
2973				pc_t caller = 0;
2974
2975				dtrace_getpcstack(&caller, 1, aframes, NULL);
2976				mstate->dtms_caller = caller;
2977			}
2978
2979			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2980		}
2981		return (mstate->dtms_caller);
2982
2983	case DIF_VAR_UCALLER:
2984		if (!dtrace_priv_proc(state))
2985			return (0);
2986
2987		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2988			uint64_t ustack[3];
2989
2990			/*
2991			 * dtrace_getupcstack() fills in the first uint64_t
2992			 * with the current PID.  The second uint64_t will
2993			 * be the program counter at user-level.  The third
2994			 * uint64_t will contain the caller, which is what
2995			 * we're after.
2996			 */
2997			ustack[2] = 0;
2998			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2999			dtrace_getupcstack(ustack, 3);
3000			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3001			mstate->dtms_ucaller = ustack[2];
3002			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3003		}
3004
3005		return (mstate->dtms_ucaller);
3006
3007	case DIF_VAR_PROBEPROV:
3008		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3009		return (dtrace_dif_varstr(
3010		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3011		    state, mstate));
3012
3013	case DIF_VAR_PROBEMOD:
3014		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3015		return (dtrace_dif_varstr(
3016		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3017		    state, mstate));
3018
3019	case DIF_VAR_PROBEFUNC:
3020		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3021		return (dtrace_dif_varstr(
3022		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3023		    state, mstate));
3024
3025	case DIF_VAR_PROBENAME:
3026		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3027		return (dtrace_dif_varstr(
3028		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3029		    state, mstate));
3030
3031	case DIF_VAR_PID:
3032		if (!dtrace_priv_proc(state))
3033			return (0);
3034
3035#if defined(sun)
3036		/*
3037		 * Note that we are assuming that an unanchored probe is
3038		 * always due to a high-level interrupt.  (And we're assuming
3039		 * that there is only a single high level interrupt.)
3040		 */
3041		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3042			return (pid0.pid_id);
3043
3044		/*
3045		 * It is always safe to dereference one's own t_procp pointer:
3046		 * it always points to a valid, allocated proc structure.
3047		 * Further, it is always safe to dereference the p_pidp member
3048		 * of one's own proc structure.  (These are truisms becuase
3049		 * threads and processes don't clean up their own state --
3050		 * they leave that task to whomever reaps them.)
3051		 */
3052		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3053#else
3054		return ((uint64_t)curproc->p_pid);
3055#endif
3056
3057	case DIF_VAR_PPID:
3058		if (!dtrace_priv_proc(state))
3059			return (0);
3060
3061#if defined(sun)
3062		/*
3063		 * See comment in DIF_VAR_PID.
3064		 */
3065		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3066			return (pid0.pid_id);
3067
3068		/*
3069		 * It is always safe to dereference one's own t_procp pointer:
3070		 * it always points to a valid, allocated proc structure.
3071		 * (This is true because threads don't clean up their own
3072		 * state -- they leave that task to whomever reaps them.)
3073		 */
3074		return ((uint64_t)curthread->t_procp->p_ppid);
3075#else
3076		return ((uint64_t)curproc->p_pptr->p_pid);
3077#endif
3078
3079	case DIF_VAR_TID:
3080#if defined(sun)
3081		/*
3082		 * See comment in DIF_VAR_PID.
3083		 */
3084		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3085			return (0);
3086#endif
3087
3088		return ((uint64_t)curthread->t_tid);
3089
3090	case DIF_VAR_EXECARGS: {
3091		struct pargs *p_args = curthread->td_proc->p_args;
3092
3093		if (p_args == NULL)
3094			return(0);
3095
3096		return (dtrace_dif_varstrz(
3097		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3098	}
3099
3100	case DIF_VAR_EXECNAME:
3101#if defined(sun)
3102		if (!dtrace_priv_proc(state))
3103			return (0);
3104
3105		/*
3106		 * See comment in DIF_VAR_PID.
3107		 */
3108		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3109			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3110
3111		/*
3112		 * It is always safe to dereference one's own t_procp pointer:
3113		 * it always points to a valid, allocated proc structure.
3114		 * (This is true because threads don't clean up their own
3115		 * state -- they leave that task to whomever reaps them.)
3116		 */
3117		return (dtrace_dif_varstr(
3118		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3119		    state, mstate));
3120#else
3121		return (dtrace_dif_varstr(
3122		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3123#endif
3124
3125	case DIF_VAR_ZONENAME:
3126#if defined(sun)
3127		if (!dtrace_priv_proc(state))
3128			return (0);
3129
3130		/*
3131		 * See comment in DIF_VAR_PID.
3132		 */
3133		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3134			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3135
3136		/*
3137		 * It is always safe to dereference one's own t_procp pointer:
3138		 * it always points to a valid, allocated proc structure.
3139		 * (This is true because threads don't clean up their own
3140		 * state -- they leave that task to whomever reaps them.)
3141		 */
3142		return (dtrace_dif_varstr(
3143		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3144		    state, mstate));
3145#else
3146		return (0);
3147#endif
3148
3149	case DIF_VAR_UID:
3150		if (!dtrace_priv_proc(state))
3151			return (0);
3152
3153#if defined(sun)
3154		/*
3155		 * See comment in DIF_VAR_PID.
3156		 */
3157		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3158			return ((uint64_t)p0.p_cred->cr_uid);
3159#endif
3160
3161		/*
3162		 * It is always safe to dereference one's own t_procp pointer:
3163		 * it always points to a valid, allocated proc structure.
3164		 * (This is true because threads don't clean up their own
3165		 * state -- they leave that task to whomever reaps them.)
3166		 *
3167		 * Additionally, it is safe to dereference one's own process
3168		 * credential, since this is never NULL after process birth.
3169		 */
3170		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3171
3172	case DIF_VAR_GID:
3173		if (!dtrace_priv_proc(state))
3174			return (0);
3175
3176#if defined(sun)
3177		/*
3178		 * See comment in DIF_VAR_PID.
3179		 */
3180		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3181			return ((uint64_t)p0.p_cred->cr_gid);
3182#endif
3183
3184		/*
3185		 * It is always safe to dereference one's own t_procp pointer:
3186		 * it always points to a valid, allocated proc structure.
3187		 * (This is true because threads don't clean up their own
3188		 * state -- they leave that task to whomever reaps them.)
3189		 *
3190		 * Additionally, it is safe to dereference one's own process
3191		 * credential, since this is never NULL after process birth.
3192		 */
3193		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3194
3195	case DIF_VAR_ERRNO: {
3196#if defined(sun)
3197		klwp_t *lwp;
3198		if (!dtrace_priv_proc(state))
3199			return (0);
3200
3201		/*
3202		 * See comment in DIF_VAR_PID.
3203		 */
3204		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3205			return (0);
3206
3207		/*
3208		 * It is always safe to dereference one's own t_lwp pointer in
3209		 * the event that this pointer is non-NULL.  (This is true
3210		 * because threads and lwps don't clean up their own state --
3211		 * they leave that task to whomever reaps them.)
3212		 */
3213		if ((lwp = curthread->t_lwp) == NULL)
3214			return (0);
3215
3216		return ((uint64_t)lwp->lwp_errno);
3217#else
3218		return (curthread->td_errno);
3219#endif
3220	}
3221#if !defined(sun)
3222	case DIF_VAR_CPU: {
3223		return curcpu;
3224	}
3225#endif
3226	default:
3227		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3228		return (0);
3229	}
3230}
3231
3232/*
3233 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3234 * Notice that we don't bother validating the proper number of arguments or
3235 * their types in the tuple stack.  This isn't needed because all argument
3236 * interpretation is safe because of our load safety -- the worst that can
3237 * happen is that a bogus program can obtain bogus results.
3238 */
3239static void
3240dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3241    dtrace_key_t *tupregs, int nargs,
3242    dtrace_mstate_t *mstate, dtrace_state_t *state)
3243{
3244	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3245	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3246	dtrace_vstate_t *vstate = &state->dts_vstate;
3247
3248#if defined(sun)
3249	union {
3250		mutex_impl_t mi;
3251		uint64_t mx;
3252	} m;
3253
3254	union {
3255		krwlock_t ri;
3256		uintptr_t rw;
3257	} r;
3258#else
3259	struct thread *lowner;
3260	union {
3261		struct lock_object *li;
3262		uintptr_t lx;
3263	} l;
3264#endif
3265
3266	switch (subr) {
3267	case DIF_SUBR_RAND:
3268		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3269		break;
3270
3271#if defined(sun)
3272	case DIF_SUBR_MUTEX_OWNED:
3273		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3274		    mstate, vstate)) {
3275			regs[rd] = 0;
3276			break;
3277		}
3278
3279		m.mx = dtrace_load64(tupregs[0].dttk_value);
3280		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3281			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3282		else
3283			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3284		break;
3285
3286	case DIF_SUBR_MUTEX_OWNER:
3287		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3288		    mstate, vstate)) {
3289			regs[rd] = 0;
3290			break;
3291		}
3292
3293		m.mx = dtrace_load64(tupregs[0].dttk_value);
3294		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3295		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3296			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3297		else
3298			regs[rd] = 0;
3299		break;
3300
3301	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3302		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3303		    mstate, vstate)) {
3304			regs[rd] = 0;
3305			break;
3306		}
3307
3308		m.mx = dtrace_load64(tupregs[0].dttk_value);
3309		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3310		break;
3311
3312	case DIF_SUBR_MUTEX_TYPE_SPIN:
3313		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3314		    mstate, vstate)) {
3315			regs[rd] = 0;
3316			break;
3317		}
3318
3319		m.mx = dtrace_load64(tupregs[0].dttk_value);
3320		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3321		break;
3322
3323	case DIF_SUBR_RW_READ_HELD: {
3324		uintptr_t tmp;
3325
3326		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3327		    mstate, vstate)) {
3328			regs[rd] = 0;
3329			break;
3330		}
3331
3332		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3333		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3334		break;
3335	}
3336
3337	case DIF_SUBR_RW_WRITE_HELD:
3338		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3339		    mstate, vstate)) {
3340			regs[rd] = 0;
3341			break;
3342		}
3343
3344		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3345		regs[rd] = _RW_WRITE_HELD(&r.ri);
3346		break;
3347
3348	case DIF_SUBR_RW_ISWRITER:
3349		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3350		    mstate, vstate)) {
3351			regs[rd] = 0;
3352			break;
3353		}
3354
3355		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3356		regs[rd] = _RW_ISWRITER(&r.ri);
3357		break;
3358
3359#else
3360	case DIF_SUBR_MUTEX_OWNED:
3361		if (!dtrace_canload(tupregs[0].dttk_value,
3362			sizeof (struct lock_object), mstate, vstate)) {
3363			regs[rd] = 0;
3364			break;
3365		}
3366		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3367		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3368		break;
3369
3370	case DIF_SUBR_MUTEX_OWNER:
3371		if (!dtrace_canload(tupregs[0].dttk_value,
3372			sizeof (struct lock_object), mstate, vstate)) {
3373			regs[rd] = 0;
3374			break;
3375		}
3376		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3377		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3378		regs[rd] = (uintptr_t)lowner;
3379		break;
3380
3381	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3382		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3383		    mstate, vstate)) {
3384			regs[rd] = 0;
3385			break;
3386		}
3387		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3388		/* XXX - should be only LC_SLEEPABLE? */
3389		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3390		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3391		break;
3392
3393	case DIF_SUBR_MUTEX_TYPE_SPIN:
3394		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3395		    mstate, vstate)) {
3396			regs[rd] = 0;
3397			break;
3398		}
3399		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3400		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3401		break;
3402
3403	case DIF_SUBR_RW_READ_HELD:
3404	case DIF_SUBR_SX_SHARED_HELD:
3405		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3406		    mstate, vstate)) {
3407			regs[rd] = 0;
3408			break;
3409		}
3410		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3411		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3412		    lowner == NULL;
3413		break;
3414
3415	case DIF_SUBR_RW_WRITE_HELD:
3416	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3417		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3418		    mstate, vstate)) {
3419			regs[rd] = 0;
3420			break;
3421		}
3422		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3423		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3424		regs[rd] = (lowner == curthread);
3425		break;
3426
3427	case DIF_SUBR_RW_ISWRITER:
3428	case DIF_SUBR_SX_ISEXCLUSIVE:
3429		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3430		    mstate, vstate)) {
3431			regs[rd] = 0;
3432			break;
3433		}
3434		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3435		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3436		    lowner != NULL;
3437		break;
3438#endif /* ! defined(sun) */
3439
3440	case DIF_SUBR_BCOPY: {
3441		/*
3442		 * We need to be sure that the destination is in the scratch
3443		 * region -- no other region is allowed.
3444		 */
3445		uintptr_t src = tupregs[0].dttk_value;
3446		uintptr_t dest = tupregs[1].dttk_value;
3447		size_t size = tupregs[2].dttk_value;
3448
3449		if (!dtrace_inscratch(dest, size, mstate)) {
3450			*flags |= CPU_DTRACE_BADADDR;
3451			*illval = regs[rd];
3452			break;
3453		}
3454
3455		if (!dtrace_canload(src, size, mstate, vstate)) {
3456			regs[rd] = 0;
3457			break;
3458		}
3459
3460		dtrace_bcopy((void *)src, (void *)dest, size);
3461		break;
3462	}
3463
3464	case DIF_SUBR_ALLOCA:
3465	case DIF_SUBR_COPYIN: {
3466		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3467		uint64_t size =
3468		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3469		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3470
3471		/*
3472		 * This action doesn't require any credential checks since
3473		 * probes will not activate in user contexts to which the
3474		 * enabling user does not have permissions.
3475		 */
3476
3477		/*
3478		 * Rounding up the user allocation size could have overflowed
3479		 * a large, bogus allocation (like -1ULL) to 0.
3480		 */
3481		if (scratch_size < size ||
3482		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3483			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3484			regs[rd] = 0;
3485			break;
3486		}
3487
3488		if (subr == DIF_SUBR_COPYIN) {
3489			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3490			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3491			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3492		}
3493
3494		mstate->dtms_scratch_ptr += scratch_size;
3495		regs[rd] = dest;
3496		break;
3497	}
3498
3499	case DIF_SUBR_COPYINTO: {
3500		uint64_t size = tupregs[1].dttk_value;
3501		uintptr_t dest = tupregs[2].dttk_value;
3502
3503		/*
3504		 * This action doesn't require any credential checks since
3505		 * probes will not activate in user contexts to which the
3506		 * enabling user does not have permissions.
3507		 */
3508		if (!dtrace_inscratch(dest, size, mstate)) {
3509			*flags |= CPU_DTRACE_BADADDR;
3510			*illval = regs[rd];
3511			break;
3512		}
3513
3514		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3515		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3516		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3517		break;
3518	}
3519
3520	case DIF_SUBR_COPYINSTR: {
3521		uintptr_t dest = mstate->dtms_scratch_ptr;
3522		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3523
3524		if (nargs > 1 && tupregs[1].dttk_value < size)
3525			size = tupregs[1].dttk_value + 1;
3526
3527		/*
3528		 * This action doesn't require any credential checks since
3529		 * probes will not activate in user contexts to which the
3530		 * enabling user does not have permissions.
3531		 */
3532		if (!DTRACE_INSCRATCH(mstate, size)) {
3533			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3534			regs[rd] = 0;
3535			break;
3536		}
3537
3538		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3539		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3540		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3541
3542		((char *)dest)[size - 1] = '\0';
3543		mstate->dtms_scratch_ptr += size;
3544		regs[rd] = dest;
3545		break;
3546	}
3547
3548#if defined(sun)
3549	case DIF_SUBR_MSGSIZE:
3550	case DIF_SUBR_MSGDSIZE: {
3551		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3552		uintptr_t wptr, rptr;
3553		size_t count = 0;
3554		int cont = 0;
3555
3556		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3557
3558			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3559			    vstate)) {
3560				regs[rd] = 0;
3561				break;
3562			}
3563
3564			wptr = dtrace_loadptr(baddr +
3565			    offsetof(mblk_t, b_wptr));
3566
3567			rptr = dtrace_loadptr(baddr +
3568			    offsetof(mblk_t, b_rptr));
3569
3570			if (wptr < rptr) {
3571				*flags |= CPU_DTRACE_BADADDR;
3572				*illval = tupregs[0].dttk_value;
3573				break;
3574			}
3575
3576			daddr = dtrace_loadptr(baddr +
3577			    offsetof(mblk_t, b_datap));
3578
3579			baddr = dtrace_loadptr(baddr +
3580			    offsetof(mblk_t, b_cont));
3581
3582			/*
3583			 * We want to prevent against denial-of-service here,
3584			 * so we're only going to search the list for
3585			 * dtrace_msgdsize_max mblks.
3586			 */
3587			if (cont++ > dtrace_msgdsize_max) {
3588				*flags |= CPU_DTRACE_ILLOP;
3589				break;
3590			}
3591
3592			if (subr == DIF_SUBR_MSGDSIZE) {
3593				if (dtrace_load8(daddr +
3594				    offsetof(dblk_t, db_type)) != M_DATA)
3595					continue;
3596			}
3597
3598			count += wptr - rptr;
3599		}
3600
3601		if (!(*flags & CPU_DTRACE_FAULT))
3602			regs[rd] = count;
3603
3604		break;
3605	}
3606#endif
3607
3608	case DIF_SUBR_PROGENYOF: {
3609		pid_t pid = tupregs[0].dttk_value;
3610		proc_t *p;
3611		int rval = 0;
3612
3613		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3614
3615		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3616#if defined(sun)
3617			if (p->p_pidp->pid_id == pid) {
3618#else
3619			if (p->p_pid == pid) {
3620#endif
3621				rval = 1;
3622				break;
3623			}
3624		}
3625
3626		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3627
3628		regs[rd] = rval;
3629		break;
3630	}
3631
3632	case DIF_SUBR_SPECULATION:
3633		regs[rd] = dtrace_speculation(state);
3634		break;
3635
3636	case DIF_SUBR_COPYOUT: {
3637		uintptr_t kaddr = tupregs[0].dttk_value;
3638		uintptr_t uaddr = tupregs[1].dttk_value;
3639		uint64_t size = tupregs[2].dttk_value;
3640
3641		if (!dtrace_destructive_disallow &&
3642		    dtrace_priv_proc_control(state) &&
3643		    !dtrace_istoxic(kaddr, size)) {
3644			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3645			dtrace_copyout(kaddr, uaddr, size, flags);
3646			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3647		}
3648		break;
3649	}
3650
3651	case DIF_SUBR_COPYOUTSTR: {
3652		uintptr_t kaddr = tupregs[0].dttk_value;
3653		uintptr_t uaddr = tupregs[1].dttk_value;
3654		uint64_t size = tupregs[2].dttk_value;
3655
3656		if (!dtrace_destructive_disallow &&
3657		    dtrace_priv_proc_control(state) &&
3658		    !dtrace_istoxic(kaddr, size)) {
3659			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3660			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3661			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3662		}
3663		break;
3664	}
3665
3666	case DIF_SUBR_STRLEN: {
3667		size_t sz;
3668		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3669		sz = dtrace_strlen((char *)addr,
3670		    state->dts_options[DTRACEOPT_STRSIZE]);
3671
3672		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3673			regs[rd] = 0;
3674			break;
3675		}
3676
3677		regs[rd] = sz;
3678
3679		break;
3680	}
3681
3682	case DIF_SUBR_STRCHR:
3683	case DIF_SUBR_STRRCHR: {
3684		/*
3685		 * We're going to iterate over the string looking for the
3686		 * specified character.  We will iterate until we have reached
3687		 * the string length or we have found the character.  If this
3688		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3689		 * of the specified character instead of the first.
3690		 */
3691		uintptr_t saddr = tupregs[0].dttk_value;
3692		uintptr_t addr = tupregs[0].dttk_value;
3693		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3694		char c, target = (char)tupregs[1].dttk_value;
3695
3696		for (regs[rd] = 0; addr < limit; addr++) {
3697			if ((c = dtrace_load8(addr)) == target) {
3698				regs[rd] = addr;
3699
3700				if (subr == DIF_SUBR_STRCHR)
3701					break;
3702			}
3703
3704			if (c == '\0')
3705				break;
3706		}
3707
3708		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3709			regs[rd] = 0;
3710			break;
3711		}
3712
3713		break;
3714	}
3715
3716	case DIF_SUBR_STRSTR:
3717	case DIF_SUBR_INDEX:
3718	case DIF_SUBR_RINDEX: {
3719		/*
3720		 * We're going to iterate over the string looking for the
3721		 * specified string.  We will iterate until we have reached
3722		 * the string length or we have found the string.  (Yes, this
3723		 * is done in the most naive way possible -- but considering
3724		 * that the string we're searching for is likely to be
3725		 * relatively short, the complexity of Rabin-Karp or similar
3726		 * hardly seems merited.)
3727		 */
3728		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3729		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3730		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3731		size_t len = dtrace_strlen(addr, size);
3732		size_t sublen = dtrace_strlen(substr, size);
3733		char *limit = addr + len, *orig = addr;
3734		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3735		int inc = 1;
3736
3737		regs[rd] = notfound;
3738
3739		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3740			regs[rd] = 0;
3741			break;
3742		}
3743
3744		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3745		    vstate)) {
3746			regs[rd] = 0;
3747			break;
3748		}
3749
3750		/*
3751		 * strstr() and index()/rindex() have similar semantics if
3752		 * both strings are the empty string: strstr() returns a
3753		 * pointer to the (empty) string, and index() and rindex()
3754		 * both return index 0 (regardless of any position argument).
3755		 */
3756		if (sublen == 0 && len == 0) {
3757			if (subr == DIF_SUBR_STRSTR)
3758				regs[rd] = (uintptr_t)addr;
3759			else
3760				regs[rd] = 0;
3761			break;
3762		}
3763
3764		if (subr != DIF_SUBR_STRSTR) {
3765			if (subr == DIF_SUBR_RINDEX) {
3766				limit = orig - 1;
3767				addr += len;
3768				inc = -1;
3769			}
3770
3771			/*
3772			 * Both index() and rindex() take an optional position
3773			 * argument that denotes the starting position.
3774			 */
3775			if (nargs == 3) {
3776				int64_t pos = (int64_t)tupregs[2].dttk_value;
3777
3778				/*
3779				 * If the position argument to index() is
3780				 * negative, Perl implicitly clamps it at
3781				 * zero.  This semantic is a little surprising
3782				 * given the special meaning of negative
3783				 * positions to similar Perl functions like
3784				 * substr(), but it appears to reflect a
3785				 * notion that index() can start from a
3786				 * negative index and increment its way up to
3787				 * the string.  Given this notion, Perl's
3788				 * rindex() is at least self-consistent in
3789				 * that it implicitly clamps positions greater
3790				 * than the string length to be the string
3791				 * length.  Where Perl completely loses
3792				 * coherence, however, is when the specified
3793				 * substring is the empty string ("").  In
3794				 * this case, even if the position is
3795				 * negative, rindex() returns 0 -- and even if
3796				 * the position is greater than the length,
3797				 * index() returns the string length.  These
3798				 * semantics violate the notion that index()
3799				 * should never return a value less than the
3800				 * specified position and that rindex() should
3801				 * never return a value greater than the
3802				 * specified position.  (One assumes that
3803				 * these semantics are artifacts of Perl's
3804				 * implementation and not the results of
3805				 * deliberate design -- it beggars belief that
3806				 * even Larry Wall could desire such oddness.)
3807				 * While in the abstract one would wish for
3808				 * consistent position semantics across
3809				 * substr(), index() and rindex() -- or at the
3810				 * very least self-consistent position
3811				 * semantics for index() and rindex() -- we
3812				 * instead opt to keep with the extant Perl
3813				 * semantics, in all their broken glory.  (Do
3814				 * we have more desire to maintain Perl's
3815				 * semantics than Perl does?  Probably.)
3816				 */
3817				if (subr == DIF_SUBR_RINDEX) {
3818					if (pos < 0) {
3819						if (sublen == 0)
3820							regs[rd] = 0;
3821						break;
3822					}
3823
3824					if (pos > len)
3825						pos = len;
3826				} else {
3827					if (pos < 0)
3828						pos = 0;
3829
3830					if (pos >= len) {
3831						if (sublen == 0)
3832							regs[rd] = len;
3833						break;
3834					}
3835				}
3836
3837				addr = orig + pos;
3838			}
3839		}
3840
3841		for (regs[rd] = notfound; addr != limit; addr += inc) {
3842			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3843				if (subr != DIF_SUBR_STRSTR) {
3844					/*
3845					 * As D index() and rindex() are
3846					 * modeled on Perl (and not on awk),
3847					 * we return a zero-based (and not a
3848					 * one-based) index.  (For you Perl
3849					 * weenies: no, we're not going to add
3850					 * $[ -- and shouldn't you be at a con
3851					 * or something?)
3852					 */
3853					regs[rd] = (uintptr_t)(addr - orig);
3854					break;
3855				}
3856
3857				ASSERT(subr == DIF_SUBR_STRSTR);
3858				regs[rd] = (uintptr_t)addr;
3859				break;
3860			}
3861		}
3862
3863		break;
3864	}
3865
3866	case DIF_SUBR_STRTOK: {
3867		uintptr_t addr = tupregs[0].dttk_value;
3868		uintptr_t tokaddr = tupregs[1].dttk_value;
3869		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3870		uintptr_t limit, toklimit = tokaddr + size;
3871		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3872		char *dest = (char *)mstate->dtms_scratch_ptr;
3873		int i;
3874
3875		/*
3876		 * Check both the token buffer and (later) the input buffer,
3877		 * since both could be non-scratch addresses.
3878		 */
3879		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3880			regs[rd] = 0;
3881			break;
3882		}
3883
3884		if (!DTRACE_INSCRATCH(mstate, size)) {
3885			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3886			regs[rd] = 0;
3887			break;
3888		}
3889
3890		if (addr == 0) {
3891			/*
3892			 * If the address specified is NULL, we use our saved
3893			 * strtok pointer from the mstate.  Note that this
3894			 * means that the saved strtok pointer is _only_
3895			 * valid within multiple enablings of the same probe --
3896			 * it behaves like an implicit clause-local variable.
3897			 */
3898			addr = mstate->dtms_strtok;
3899		} else {
3900			/*
3901			 * If the user-specified address is non-NULL we must
3902			 * access check it.  This is the only time we have
3903			 * a chance to do so, since this address may reside
3904			 * in the string table of this clause-- future calls
3905			 * (when we fetch addr from mstate->dtms_strtok)
3906			 * would fail this access check.
3907			 */
3908			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3909				regs[rd] = 0;
3910				break;
3911			}
3912		}
3913
3914		/*
3915		 * First, zero the token map, and then process the token
3916		 * string -- setting a bit in the map for every character
3917		 * found in the token string.
3918		 */
3919		for (i = 0; i < sizeof (tokmap); i++)
3920			tokmap[i] = 0;
3921
3922		for (; tokaddr < toklimit; tokaddr++) {
3923			if ((c = dtrace_load8(tokaddr)) == '\0')
3924				break;
3925
3926			ASSERT((c >> 3) < sizeof (tokmap));
3927			tokmap[c >> 3] |= (1 << (c & 0x7));
3928		}
3929
3930		for (limit = addr + size; addr < limit; addr++) {
3931			/*
3932			 * We're looking for a character that is _not_ contained
3933			 * in the token string.
3934			 */
3935			if ((c = dtrace_load8(addr)) == '\0')
3936				break;
3937
3938			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3939				break;
3940		}
3941
3942		if (c == '\0') {
3943			/*
3944			 * We reached the end of the string without finding
3945			 * any character that was not in the token string.
3946			 * We return NULL in this case, and we set the saved
3947			 * address to NULL as well.
3948			 */
3949			regs[rd] = 0;
3950			mstate->dtms_strtok = 0;
3951			break;
3952		}
3953
3954		/*
3955		 * From here on, we're copying into the destination string.
3956		 */
3957		for (i = 0; addr < limit && i < size - 1; addr++) {
3958			if ((c = dtrace_load8(addr)) == '\0')
3959				break;
3960
3961			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3962				break;
3963
3964			ASSERT(i < size);
3965			dest[i++] = c;
3966		}
3967
3968		ASSERT(i < size);
3969		dest[i] = '\0';
3970		regs[rd] = (uintptr_t)dest;
3971		mstate->dtms_scratch_ptr += size;
3972		mstate->dtms_strtok = addr;
3973		break;
3974	}
3975
3976	case DIF_SUBR_SUBSTR: {
3977		uintptr_t s = tupregs[0].dttk_value;
3978		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3979		char *d = (char *)mstate->dtms_scratch_ptr;
3980		int64_t index = (int64_t)tupregs[1].dttk_value;
3981		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3982		size_t len = dtrace_strlen((char *)s, size);
3983		int64_t i = 0;
3984
3985		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3986			regs[rd] = 0;
3987			break;
3988		}
3989
3990		if (!DTRACE_INSCRATCH(mstate, size)) {
3991			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3992			regs[rd] = 0;
3993			break;
3994		}
3995
3996		if (nargs <= 2)
3997			remaining = (int64_t)size;
3998
3999		if (index < 0) {
4000			index += len;
4001
4002			if (index < 0 && index + remaining > 0) {
4003				remaining += index;
4004				index = 0;
4005			}
4006		}
4007
4008		if (index >= len || index < 0) {
4009			remaining = 0;
4010		} else if (remaining < 0) {
4011			remaining += len - index;
4012		} else if (index + remaining > size) {
4013			remaining = size - index;
4014		}
4015
4016		for (i = 0; i < remaining; i++) {
4017			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4018				break;
4019		}
4020
4021		d[i] = '\0';
4022
4023		mstate->dtms_scratch_ptr += size;
4024		regs[rd] = (uintptr_t)d;
4025		break;
4026	}
4027
4028	case DIF_SUBR_TOUPPER:
4029	case DIF_SUBR_TOLOWER: {
4030		uintptr_t s = tupregs[0].dttk_value;
4031		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4032		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4033		size_t len = dtrace_strlen((char *)s, size);
4034		char lower, upper, convert;
4035		int64_t i;
4036
4037		if (subr == DIF_SUBR_TOUPPER) {
4038			lower = 'a';
4039			upper = 'z';
4040			convert = 'A';
4041		} else {
4042			lower = 'A';
4043			upper = 'Z';
4044			convert = 'a';
4045		}
4046
4047		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4048			regs[rd] = 0;
4049			break;
4050		}
4051
4052		if (!DTRACE_INSCRATCH(mstate, size)) {
4053			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4054			regs[rd] = 0;
4055			break;
4056		}
4057
4058		for (i = 0; i < size - 1; i++) {
4059			if ((c = dtrace_load8(s + i)) == '\0')
4060				break;
4061
4062			if (c >= lower && c <= upper)
4063				c = convert + (c - lower);
4064
4065			dest[i] = c;
4066		}
4067
4068		ASSERT(i < size);
4069		dest[i] = '\0';
4070		regs[rd] = (uintptr_t)dest;
4071		mstate->dtms_scratch_ptr += size;
4072		break;
4073	}
4074
4075#if defined(sun)
4076	case DIF_SUBR_GETMAJOR:
4077#ifdef _LP64
4078		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4079#else
4080		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4081#endif
4082		break;
4083
4084	case DIF_SUBR_GETMINOR:
4085#ifdef _LP64
4086		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4087#else
4088		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4089#endif
4090		break;
4091
4092	case DIF_SUBR_DDI_PATHNAME: {
4093		/*
4094		 * This one is a galactic mess.  We are going to roughly
4095		 * emulate ddi_pathname(), but it's made more complicated
4096		 * by the fact that we (a) want to include the minor name and
4097		 * (b) must proceed iteratively instead of recursively.
4098		 */
4099		uintptr_t dest = mstate->dtms_scratch_ptr;
4100		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4101		char *start = (char *)dest, *end = start + size - 1;
4102		uintptr_t daddr = tupregs[0].dttk_value;
4103		int64_t minor = (int64_t)tupregs[1].dttk_value;
4104		char *s;
4105		int i, len, depth = 0;
4106
4107		/*
4108		 * Due to all the pointer jumping we do and context we must
4109		 * rely upon, we just mandate that the user must have kernel
4110		 * read privileges to use this routine.
4111		 */
4112		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4113			*flags |= CPU_DTRACE_KPRIV;
4114			*illval = daddr;
4115			regs[rd] = 0;
4116		}
4117
4118		if (!DTRACE_INSCRATCH(mstate, size)) {
4119			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4120			regs[rd] = 0;
4121			break;
4122		}
4123
4124		*end = '\0';
4125
4126		/*
4127		 * We want to have a name for the minor.  In order to do this,
4128		 * we need to walk the minor list from the devinfo.  We want
4129		 * to be sure that we don't infinitely walk a circular list,
4130		 * so we check for circularity by sending a scout pointer
4131		 * ahead two elements for every element that we iterate over;
4132		 * if the list is circular, these will ultimately point to the
4133		 * same element.  You may recognize this little trick as the
4134		 * answer to a stupid interview question -- one that always
4135		 * seems to be asked by those who had to have it laboriously
4136		 * explained to them, and who can't even concisely describe
4137		 * the conditions under which one would be forced to resort to
4138		 * this technique.  Needless to say, those conditions are
4139		 * found here -- and probably only here.  Is this the only use
4140		 * of this infamous trick in shipping, production code?  If it
4141		 * isn't, it probably should be...
4142		 */
4143		if (minor != -1) {
4144			uintptr_t maddr = dtrace_loadptr(daddr +
4145			    offsetof(struct dev_info, devi_minor));
4146
4147			uintptr_t next = offsetof(struct ddi_minor_data, next);
4148			uintptr_t name = offsetof(struct ddi_minor_data,
4149			    d_minor) + offsetof(struct ddi_minor, name);
4150			uintptr_t dev = offsetof(struct ddi_minor_data,
4151			    d_minor) + offsetof(struct ddi_minor, dev);
4152			uintptr_t scout;
4153
4154			if (maddr != NULL)
4155				scout = dtrace_loadptr(maddr + next);
4156
4157			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4158				uint64_t m;
4159#ifdef _LP64
4160				m = dtrace_load64(maddr + dev) & MAXMIN64;
4161#else
4162				m = dtrace_load32(maddr + dev) & MAXMIN;
4163#endif
4164				if (m != minor) {
4165					maddr = dtrace_loadptr(maddr + next);
4166
4167					if (scout == NULL)
4168						continue;
4169
4170					scout = dtrace_loadptr(scout + next);
4171
4172					if (scout == NULL)
4173						continue;
4174
4175					scout = dtrace_loadptr(scout + next);
4176
4177					if (scout == NULL)
4178						continue;
4179
4180					if (scout == maddr) {
4181						*flags |= CPU_DTRACE_ILLOP;
4182						break;
4183					}
4184
4185					continue;
4186				}
4187
4188				/*
4189				 * We have the minor data.  Now we need to
4190				 * copy the minor's name into the end of the
4191				 * pathname.
4192				 */
4193				s = (char *)dtrace_loadptr(maddr + name);
4194				len = dtrace_strlen(s, size);
4195
4196				if (*flags & CPU_DTRACE_FAULT)
4197					break;
4198
4199				if (len != 0) {
4200					if ((end -= (len + 1)) < start)
4201						break;
4202
4203					*end = ':';
4204				}
4205
4206				for (i = 1; i <= len; i++)
4207					end[i] = dtrace_load8((uintptr_t)s++);
4208				break;
4209			}
4210		}
4211
4212		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4213			ddi_node_state_t devi_state;
4214
4215			devi_state = dtrace_load32(daddr +
4216			    offsetof(struct dev_info, devi_node_state));
4217
4218			if (*flags & CPU_DTRACE_FAULT)
4219				break;
4220
4221			if (devi_state >= DS_INITIALIZED) {
4222				s = (char *)dtrace_loadptr(daddr +
4223				    offsetof(struct dev_info, devi_addr));
4224				len = dtrace_strlen(s, size);
4225
4226				if (*flags & CPU_DTRACE_FAULT)
4227					break;
4228
4229				if (len != 0) {
4230					if ((end -= (len + 1)) < start)
4231						break;
4232
4233					*end = '@';
4234				}
4235
4236				for (i = 1; i <= len; i++)
4237					end[i] = dtrace_load8((uintptr_t)s++);
4238			}
4239
4240			/*
4241			 * Now for the node name...
4242			 */
4243			s = (char *)dtrace_loadptr(daddr +
4244			    offsetof(struct dev_info, devi_node_name));
4245
4246			daddr = dtrace_loadptr(daddr +
4247			    offsetof(struct dev_info, devi_parent));
4248
4249			/*
4250			 * If our parent is NULL (that is, if we're the root
4251			 * node), we're going to use the special path
4252			 * "devices".
4253			 */
4254			if (daddr == 0)
4255				s = "devices";
4256
4257			len = dtrace_strlen(s, size);
4258			if (*flags & CPU_DTRACE_FAULT)
4259				break;
4260
4261			if ((end -= (len + 1)) < start)
4262				break;
4263
4264			for (i = 1; i <= len; i++)
4265				end[i] = dtrace_load8((uintptr_t)s++);
4266			*end = '/';
4267
4268			if (depth++ > dtrace_devdepth_max) {
4269				*flags |= CPU_DTRACE_ILLOP;
4270				break;
4271			}
4272		}
4273
4274		if (end < start)
4275			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4276
4277		if (daddr == 0) {
4278			regs[rd] = (uintptr_t)end;
4279			mstate->dtms_scratch_ptr += size;
4280		}
4281
4282		break;
4283	}
4284#endif
4285
4286	case DIF_SUBR_STRJOIN: {
4287		char *d = (char *)mstate->dtms_scratch_ptr;
4288		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4289		uintptr_t s1 = tupregs[0].dttk_value;
4290		uintptr_t s2 = tupregs[1].dttk_value;
4291		int i = 0;
4292
4293		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4294		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4295			regs[rd] = 0;
4296			break;
4297		}
4298
4299		if (!DTRACE_INSCRATCH(mstate, size)) {
4300			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4301			regs[rd] = 0;
4302			break;
4303		}
4304
4305		for (;;) {
4306			if (i >= size) {
4307				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4308				regs[rd] = 0;
4309				break;
4310			}
4311
4312			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4313				i--;
4314				break;
4315			}
4316		}
4317
4318		for (;;) {
4319			if (i >= size) {
4320				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4321				regs[rd] = 0;
4322				break;
4323			}
4324
4325			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4326				break;
4327		}
4328
4329		if (i < size) {
4330			mstate->dtms_scratch_ptr += i;
4331			regs[rd] = (uintptr_t)d;
4332		}
4333
4334		break;
4335	}
4336
4337	case DIF_SUBR_LLTOSTR: {
4338		int64_t i = (int64_t)tupregs[0].dttk_value;
4339		uint64_t val, digit;
4340		uint64_t size = 65;	/* enough room for 2^64 in binary */
4341		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4342		int base = 10;
4343
4344		if (nargs > 1) {
4345			if ((base = tupregs[1].dttk_value) <= 1 ||
4346			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4347				*flags |= CPU_DTRACE_ILLOP;
4348				break;
4349			}
4350		}
4351
4352		val = (base == 10 && i < 0) ? i * -1 : i;
4353
4354		if (!DTRACE_INSCRATCH(mstate, size)) {
4355			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4356			regs[rd] = 0;
4357			break;
4358		}
4359
4360		for (*end-- = '\0'; val; val /= base) {
4361			if ((digit = val % base) <= '9' - '0') {
4362				*end-- = '0' + digit;
4363			} else {
4364				*end-- = 'a' + (digit - ('9' - '0') - 1);
4365			}
4366		}
4367
4368		if (i == 0 && base == 16)
4369			*end-- = '0';
4370
4371		if (base == 16)
4372			*end-- = 'x';
4373
4374		if (i == 0 || base == 8 || base == 16)
4375			*end-- = '0';
4376
4377		if (i < 0 && base == 10)
4378			*end-- = '-';
4379
4380		regs[rd] = (uintptr_t)end + 1;
4381		mstate->dtms_scratch_ptr += size;
4382		break;
4383	}
4384
4385	case DIF_SUBR_HTONS:
4386	case DIF_SUBR_NTOHS:
4387#if BYTE_ORDER == BIG_ENDIAN
4388		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4389#else
4390		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4391#endif
4392		break;
4393
4394
4395	case DIF_SUBR_HTONL:
4396	case DIF_SUBR_NTOHL:
4397#if BYTE_ORDER == BIG_ENDIAN
4398		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4399#else
4400		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4401#endif
4402		break;
4403
4404
4405	case DIF_SUBR_HTONLL:
4406	case DIF_SUBR_NTOHLL:
4407#if BYTE_ORDER == BIG_ENDIAN
4408		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4409#else
4410		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4411#endif
4412		break;
4413
4414
4415	case DIF_SUBR_DIRNAME:
4416	case DIF_SUBR_BASENAME: {
4417		char *dest = (char *)mstate->dtms_scratch_ptr;
4418		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4419		uintptr_t src = tupregs[0].dttk_value;
4420		int i, j, len = dtrace_strlen((char *)src, size);
4421		int lastbase = -1, firstbase = -1, lastdir = -1;
4422		int start, end;
4423
4424		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4425			regs[rd] = 0;
4426			break;
4427		}
4428
4429		if (!DTRACE_INSCRATCH(mstate, size)) {
4430			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4431			regs[rd] = 0;
4432			break;
4433		}
4434
4435		/*
4436		 * The basename and dirname for a zero-length string is
4437		 * defined to be "."
4438		 */
4439		if (len == 0) {
4440			len = 1;
4441			src = (uintptr_t)".";
4442		}
4443
4444		/*
4445		 * Start from the back of the string, moving back toward the
4446		 * front until we see a character that isn't a slash.  That
4447		 * character is the last character in the basename.
4448		 */
4449		for (i = len - 1; i >= 0; i--) {
4450			if (dtrace_load8(src + i) != '/')
4451				break;
4452		}
4453
4454		if (i >= 0)
4455			lastbase = i;
4456
4457		/*
4458		 * Starting from the last character in the basename, move
4459		 * towards the front until we find a slash.  The character
4460		 * that we processed immediately before that is the first
4461		 * character in the basename.
4462		 */
4463		for (; i >= 0; i--) {
4464			if (dtrace_load8(src + i) == '/')
4465				break;
4466		}
4467
4468		if (i >= 0)
4469			firstbase = i + 1;
4470
4471		/*
4472		 * Now keep going until we find a non-slash character.  That
4473		 * character is the last character in the dirname.
4474		 */
4475		for (; i >= 0; i--) {
4476			if (dtrace_load8(src + i) != '/')
4477				break;
4478		}
4479
4480		if (i >= 0)
4481			lastdir = i;
4482
4483		ASSERT(!(lastbase == -1 && firstbase != -1));
4484		ASSERT(!(firstbase == -1 && lastdir != -1));
4485
4486		if (lastbase == -1) {
4487			/*
4488			 * We didn't find a non-slash character.  We know that
4489			 * the length is non-zero, so the whole string must be
4490			 * slashes.  In either the dirname or the basename
4491			 * case, we return '/'.
4492			 */
4493			ASSERT(firstbase == -1);
4494			firstbase = lastbase = lastdir = 0;
4495		}
4496
4497		if (firstbase == -1) {
4498			/*
4499			 * The entire string consists only of a basename
4500			 * component.  If we're looking for dirname, we need
4501			 * to change our string to be just "."; if we're
4502			 * looking for a basename, we'll just set the first
4503			 * character of the basename to be 0.
4504			 */
4505			if (subr == DIF_SUBR_DIRNAME) {
4506				ASSERT(lastdir == -1);
4507				src = (uintptr_t)".";
4508				lastdir = 0;
4509			} else {
4510				firstbase = 0;
4511			}
4512		}
4513
4514		if (subr == DIF_SUBR_DIRNAME) {
4515			if (lastdir == -1) {
4516				/*
4517				 * We know that we have a slash in the name --
4518				 * or lastdir would be set to 0, above.  And
4519				 * because lastdir is -1, we know that this
4520				 * slash must be the first character.  (That
4521				 * is, the full string must be of the form
4522				 * "/basename".)  In this case, the last
4523				 * character of the directory name is 0.
4524				 */
4525				lastdir = 0;
4526			}
4527
4528			start = 0;
4529			end = lastdir;
4530		} else {
4531			ASSERT(subr == DIF_SUBR_BASENAME);
4532			ASSERT(firstbase != -1 && lastbase != -1);
4533			start = firstbase;
4534			end = lastbase;
4535		}
4536
4537		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4538			dest[j] = dtrace_load8(src + i);
4539
4540		dest[j] = '\0';
4541		regs[rd] = (uintptr_t)dest;
4542		mstate->dtms_scratch_ptr += size;
4543		break;
4544	}
4545
4546	case DIF_SUBR_CLEANPATH: {
4547		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4548		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4549		uintptr_t src = tupregs[0].dttk_value;
4550		int i = 0, j = 0;
4551
4552		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4553			regs[rd] = 0;
4554			break;
4555		}
4556
4557		if (!DTRACE_INSCRATCH(mstate, size)) {
4558			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4559			regs[rd] = 0;
4560			break;
4561		}
4562
4563		/*
4564		 * Move forward, loading each character.
4565		 */
4566		do {
4567			c = dtrace_load8(src + i++);
4568next:
4569			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4570				break;
4571
4572			if (c != '/') {
4573				dest[j++] = c;
4574				continue;
4575			}
4576
4577			c = dtrace_load8(src + i++);
4578
4579			if (c == '/') {
4580				/*
4581				 * We have two slashes -- we can just advance
4582				 * to the next character.
4583				 */
4584				goto next;
4585			}
4586
4587			if (c != '.') {
4588				/*
4589				 * This is not "." and it's not ".." -- we can
4590				 * just store the "/" and this character and
4591				 * drive on.
4592				 */
4593				dest[j++] = '/';
4594				dest[j++] = c;
4595				continue;
4596			}
4597
4598			c = dtrace_load8(src + i++);
4599
4600			if (c == '/') {
4601				/*
4602				 * This is a "/./" component.  We're not going
4603				 * to store anything in the destination buffer;
4604				 * we're just going to go to the next component.
4605				 */
4606				goto next;
4607			}
4608
4609			if (c != '.') {
4610				/*
4611				 * This is not ".." -- we can just store the
4612				 * "/." and this character and continue
4613				 * processing.
4614				 */
4615				dest[j++] = '/';
4616				dest[j++] = '.';
4617				dest[j++] = c;
4618				continue;
4619			}
4620
4621			c = dtrace_load8(src + i++);
4622
4623			if (c != '/' && c != '\0') {
4624				/*
4625				 * This is not ".." -- it's "..[mumble]".
4626				 * We'll store the "/.." and this character
4627				 * and continue processing.
4628				 */
4629				dest[j++] = '/';
4630				dest[j++] = '.';
4631				dest[j++] = '.';
4632				dest[j++] = c;
4633				continue;
4634			}
4635
4636			/*
4637			 * This is "/../" or "/..\0".  We need to back up
4638			 * our destination pointer until we find a "/".
4639			 */
4640			i--;
4641			while (j != 0 && dest[--j] != '/')
4642				continue;
4643
4644			if (c == '\0')
4645				dest[++j] = '/';
4646		} while (c != '\0');
4647
4648		dest[j] = '\0';
4649		regs[rd] = (uintptr_t)dest;
4650		mstate->dtms_scratch_ptr += size;
4651		break;
4652	}
4653
4654	case DIF_SUBR_INET_NTOA:
4655	case DIF_SUBR_INET_NTOA6:
4656	case DIF_SUBR_INET_NTOP: {
4657		size_t size;
4658		int af, argi, i;
4659		char *base, *end;
4660
4661		if (subr == DIF_SUBR_INET_NTOP) {
4662			af = (int)tupregs[0].dttk_value;
4663			argi = 1;
4664		} else {
4665			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4666			argi = 0;
4667		}
4668
4669		if (af == AF_INET) {
4670			ipaddr_t ip4;
4671			uint8_t *ptr8, val;
4672
4673			/*
4674			 * Safely load the IPv4 address.
4675			 */
4676			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4677
4678			/*
4679			 * Check an IPv4 string will fit in scratch.
4680			 */
4681			size = INET_ADDRSTRLEN;
4682			if (!DTRACE_INSCRATCH(mstate, size)) {
4683				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4684				regs[rd] = 0;
4685				break;
4686			}
4687			base = (char *)mstate->dtms_scratch_ptr;
4688			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4689
4690			/*
4691			 * Stringify as a dotted decimal quad.
4692			 */
4693			*end-- = '\0';
4694			ptr8 = (uint8_t *)&ip4;
4695			for (i = 3; i >= 0; i--) {
4696				val = ptr8[i];
4697
4698				if (val == 0) {
4699					*end-- = '0';
4700				} else {
4701					for (; val; val /= 10) {
4702						*end-- = '0' + (val % 10);
4703					}
4704				}
4705
4706				if (i > 0)
4707					*end-- = '.';
4708			}
4709			ASSERT(end + 1 >= base);
4710
4711		} else if (af == AF_INET6) {
4712			struct in6_addr ip6;
4713			int firstzero, tryzero, numzero, v6end;
4714			uint16_t val;
4715			const char digits[] = "0123456789abcdef";
4716
4717			/*
4718			 * Stringify using RFC 1884 convention 2 - 16 bit
4719			 * hexadecimal values with a zero-run compression.
4720			 * Lower case hexadecimal digits are used.
4721			 * 	eg, fe80::214:4fff:fe0b:76c8.
4722			 * The IPv4 embedded form is returned for inet_ntop,
4723			 * just the IPv4 string is returned for inet_ntoa6.
4724			 */
4725
4726			/*
4727			 * Safely load the IPv6 address.
4728			 */
4729			dtrace_bcopy(
4730			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4731			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4732
4733			/*
4734			 * Check an IPv6 string will fit in scratch.
4735			 */
4736			size = INET6_ADDRSTRLEN;
4737			if (!DTRACE_INSCRATCH(mstate, size)) {
4738				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4739				regs[rd] = 0;
4740				break;
4741			}
4742			base = (char *)mstate->dtms_scratch_ptr;
4743			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4744			*end-- = '\0';
4745
4746			/*
4747			 * Find the longest run of 16 bit zero values
4748			 * for the single allowed zero compression - "::".
4749			 */
4750			firstzero = -1;
4751			tryzero = -1;
4752			numzero = 1;
4753			for (i = 0; i < sizeof (struct in6_addr); i++) {
4754#if defined(sun)
4755				if (ip6._S6_un._S6_u8[i] == 0 &&
4756#else
4757				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4758#endif
4759				    tryzero == -1 && i % 2 == 0) {
4760					tryzero = i;
4761					continue;
4762				}
4763
4764				if (tryzero != -1 &&
4765#if defined(sun)
4766				    (ip6._S6_un._S6_u8[i] != 0 ||
4767#else
4768				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4769#endif
4770				    i == sizeof (struct in6_addr) - 1)) {
4771
4772					if (i - tryzero <= numzero) {
4773						tryzero = -1;
4774						continue;
4775					}
4776
4777					firstzero = tryzero;
4778					numzero = i - i % 2 - tryzero;
4779					tryzero = -1;
4780
4781#if defined(sun)
4782					if (ip6._S6_un._S6_u8[i] == 0 &&
4783#else
4784					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4785#endif
4786					    i == sizeof (struct in6_addr) - 1)
4787						numzero += 2;
4788				}
4789			}
4790			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4791
4792			/*
4793			 * Check for an IPv4 embedded address.
4794			 */
4795			v6end = sizeof (struct in6_addr) - 2;
4796			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4797			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4798				for (i = sizeof (struct in6_addr) - 1;
4799				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4800					ASSERT(end >= base);
4801
4802#if defined(sun)
4803					val = ip6._S6_un._S6_u8[i];
4804#else
4805					val = ip6.__u6_addr.__u6_addr8[i];
4806#endif
4807
4808					if (val == 0) {
4809						*end-- = '0';
4810					} else {
4811						for (; val; val /= 10) {
4812							*end-- = '0' + val % 10;
4813						}
4814					}
4815
4816					if (i > DTRACE_V4MAPPED_OFFSET)
4817						*end-- = '.';
4818				}
4819
4820				if (subr == DIF_SUBR_INET_NTOA6)
4821					goto inetout;
4822
4823				/*
4824				 * Set v6end to skip the IPv4 address that
4825				 * we have already stringified.
4826				 */
4827				v6end = 10;
4828			}
4829
4830			/*
4831			 * Build the IPv6 string by working through the
4832			 * address in reverse.
4833			 */
4834			for (i = v6end; i >= 0; i -= 2) {
4835				ASSERT(end >= base);
4836
4837				if (i == firstzero + numzero - 2) {
4838					*end-- = ':';
4839					*end-- = ':';
4840					i -= numzero - 2;
4841					continue;
4842				}
4843
4844				if (i < 14 && i != firstzero - 2)
4845					*end-- = ':';
4846
4847#if defined(sun)
4848				val = (ip6._S6_un._S6_u8[i] << 8) +
4849				    ip6._S6_un._S6_u8[i + 1];
4850#else
4851				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4852				    ip6.__u6_addr.__u6_addr8[i + 1];
4853#endif
4854
4855				if (val == 0) {
4856					*end-- = '0';
4857				} else {
4858					for (; val; val /= 16) {
4859						*end-- = digits[val % 16];
4860					}
4861				}
4862			}
4863			ASSERT(end + 1 >= base);
4864
4865		} else {
4866			/*
4867			 * The user didn't use AH_INET or AH_INET6.
4868			 */
4869			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4870			regs[rd] = 0;
4871			break;
4872		}
4873
4874inetout:	regs[rd] = (uintptr_t)end + 1;
4875		mstate->dtms_scratch_ptr += size;
4876		break;
4877	}
4878
4879	case DIF_SUBR_MEMREF: {
4880		uintptr_t size = 2 * sizeof(uintptr_t);
4881		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4882		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4883
4884		/* address and length */
4885		memref[0] = tupregs[0].dttk_value;
4886		memref[1] = tupregs[1].dttk_value;
4887
4888		regs[rd] = (uintptr_t) memref;
4889		mstate->dtms_scratch_ptr += scratch_size;
4890		break;
4891	}
4892
4893	case DIF_SUBR_TYPEREF: {
4894		uintptr_t size = 4 * sizeof(uintptr_t);
4895		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4896		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4897
4898		/* address, num_elements, type_str, type_len */
4899		typeref[0] = tupregs[0].dttk_value;
4900		typeref[1] = tupregs[1].dttk_value;
4901		typeref[2] = tupregs[2].dttk_value;
4902		typeref[3] = tupregs[3].dttk_value;
4903
4904		regs[rd] = (uintptr_t) typeref;
4905		mstate->dtms_scratch_ptr += scratch_size;
4906		break;
4907	}
4908	}
4909}
4910
4911/*
4912 * Emulate the execution of DTrace IR instructions specified by the given
4913 * DIF object.  This function is deliberately void of assertions as all of
4914 * the necessary checks are handled by a call to dtrace_difo_validate().
4915 */
4916static uint64_t
4917dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4918    dtrace_vstate_t *vstate, dtrace_state_t *state)
4919{
4920	const dif_instr_t *text = difo->dtdo_buf;
4921	const uint_t textlen = difo->dtdo_len;
4922	const char *strtab = difo->dtdo_strtab;
4923	const uint64_t *inttab = difo->dtdo_inttab;
4924
4925	uint64_t rval = 0;
4926	dtrace_statvar_t *svar;
4927	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4928	dtrace_difv_t *v;
4929	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4930	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4931
4932	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4933	uint64_t regs[DIF_DIR_NREGS];
4934	uint64_t *tmp;
4935
4936	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4937	int64_t cc_r;
4938	uint_t pc = 0, id, opc = 0;
4939	uint8_t ttop = 0;
4940	dif_instr_t instr;
4941	uint_t r1, r2, rd;
4942
4943	/*
4944	 * We stash the current DIF object into the machine state: we need it
4945	 * for subsequent access checking.
4946	 */
4947	mstate->dtms_difo = difo;
4948
4949	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4950
4951	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4952		opc = pc;
4953
4954		instr = text[pc++];
4955		r1 = DIF_INSTR_R1(instr);
4956		r2 = DIF_INSTR_R2(instr);
4957		rd = DIF_INSTR_RD(instr);
4958
4959		switch (DIF_INSTR_OP(instr)) {
4960		case DIF_OP_OR:
4961			regs[rd] = regs[r1] | regs[r2];
4962			break;
4963		case DIF_OP_XOR:
4964			regs[rd] = regs[r1] ^ regs[r2];
4965			break;
4966		case DIF_OP_AND:
4967			regs[rd] = regs[r1] & regs[r2];
4968			break;
4969		case DIF_OP_SLL:
4970			regs[rd] = regs[r1] << regs[r2];
4971			break;
4972		case DIF_OP_SRL:
4973			regs[rd] = regs[r1] >> regs[r2];
4974			break;
4975		case DIF_OP_SUB:
4976			regs[rd] = regs[r1] - regs[r2];
4977			break;
4978		case DIF_OP_ADD:
4979			regs[rd] = regs[r1] + regs[r2];
4980			break;
4981		case DIF_OP_MUL:
4982			regs[rd] = regs[r1] * regs[r2];
4983			break;
4984		case DIF_OP_SDIV:
4985			if (regs[r2] == 0) {
4986				regs[rd] = 0;
4987				*flags |= CPU_DTRACE_DIVZERO;
4988			} else {
4989				regs[rd] = (int64_t)regs[r1] /
4990				    (int64_t)regs[r2];
4991			}
4992			break;
4993
4994		case DIF_OP_UDIV:
4995			if (regs[r2] == 0) {
4996				regs[rd] = 0;
4997				*flags |= CPU_DTRACE_DIVZERO;
4998			} else {
4999				regs[rd] = regs[r1] / regs[r2];
5000			}
5001			break;
5002
5003		case DIF_OP_SREM:
5004			if (regs[r2] == 0) {
5005				regs[rd] = 0;
5006				*flags |= CPU_DTRACE_DIVZERO;
5007			} else {
5008				regs[rd] = (int64_t)regs[r1] %
5009				    (int64_t)regs[r2];
5010			}
5011			break;
5012
5013		case DIF_OP_UREM:
5014			if (regs[r2] == 0) {
5015				regs[rd] = 0;
5016				*flags |= CPU_DTRACE_DIVZERO;
5017			} else {
5018				regs[rd] = regs[r1] % regs[r2];
5019			}
5020			break;
5021
5022		case DIF_OP_NOT:
5023			regs[rd] = ~regs[r1];
5024			break;
5025		case DIF_OP_MOV:
5026			regs[rd] = regs[r1];
5027			break;
5028		case DIF_OP_CMP:
5029			cc_r = regs[r1] - regs[r2];
5030			cc_n = cc_r < 0;
5031			cc_z = cc_r == 0;
5032			cc_v = 0;
5033			cc_c = regs[r1] < regs[r2];
5034			break;
5035		case DIF_OP_TST:
5036			cc_n = cc_v = cc_c = 0;
5037			cc_z = regs[r1] == 0;
5038			break;
5039		case DIF_OP_BA:
5040			pc = DIF_INSTR_LABEL(instr);
5041			break;
5042		case DIF_OP_BE:
5043			if (cc_z)
5044				pc = DIF_INSTR_LABEL(instr);
5045			break;
5046		case DIF_OP_BNE:
5047			if (cc_z == 0)
5048				pc = DIF_INSTR_LABEL(instr);
5049			break;
5050		case DIF_OP_BG:
5051			if ((cc_z | (cc_n ^ cc_v)) == 0)
5052				pc = DIF_INSTR_LABEL(instr);
5053			break;
5054		case DIF_OP_BGU:
5055			if ((cc_c | cc_z) == 0)
5056				pc = DIF_INSTR_LABEL(instr);
5057			break;
5058		case DIF_OP_BGE:
5059			if ((cc_n ^ cc_v) == 0)
5060				pc = DIF_INSTR_LABEL(instr);
5061			break;
5062		case DIF_OP_BGEU:
5063			if (cc_c == 0)
5064				pc = DIF_INSTR_LABEL(instr);
5065			break;
5066		case DIF_OP_BL:
5067			if (cc_n ^ cc_v)
5068				pc = DIF_INSTR_LABEL(instr);
5069			break;
5070		case DIF_OP_BLU:
5071			if (cc_c)
5072				pc = DIF_INSTR_LABEL(instr);
5073			break;
5074		case DIF_OP_BLE:
5075			if (cc_z | (cc_n ^ cc_v))
5076				pc = DIF_INSTR_LABEL(instr);
5077			break;
5078		case DIF_OP_BLEU:
5079			if (cc_c | cc_z)
5080				pc = DIF_INSTR_LABEL(instr);
5081			break;
5082		case DIF_OP_RLDSB:
5083			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5084				*flags |= CPU_DTRACE_KPRIV;
5085				*illval = regs[r1];
5086				break;
5087			}
5088			/*FALLTHROUGH*/
5089		case DIF_OP_LDSB:
5090			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5091			break;
5092		case DIF_OP_RLDSH:
5093			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5094				*flags |= CPU_DTRACE_KPRIV;
5095				*illval = regs[r1];
5096				break;
5097			}
5098			/*FALLTHROUGH*/
5099		case DIF_OP_LDSH:
5100			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5101			break;
5102		case DIF_OP_RLDSW:
5103			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5104				*flags |= CPU_DTRACE_KPRIV;
5105				*illval = regs[r1];
5106				break;
5107			}
5108			/*FALLTHROUGH*/
5109		case DIF_OP_LDSW:
5110			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5111			break;
5112		case DIF_OP_RLDUB:
5113			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5114				*flags |= CPU_DTRACE_KPRIV;
5115				*illval = regs[r1];
5116				break;
5117			}
5118			/*FALLTHROUGH*/
5119		case DIF_OP_LDUB:
5120			regs[rd] = dtrace_load8(regs[r1]);
5121			break;
5122		case DIF_OP_RLDUH:
5123			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5124				*flags |= CPU_DTRACE_KPRIV;
5125				*illval = regs[r1];
5126				break;
5127			}
5128			/*FALLTHROUGH*/
5129		case DIF_OP_LDUH:
5130			regs[rd] = dtrace_load16(regs[r1]);
5131			break;
5132		case DIF_OP_RLDUW:
5133			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5134				*flags |= CPU_DTRACE_KPRIV;
5135				*illval = regs[r1];
5136				break;
5137			}
5138			/*FALLTHROUGH*/
5139		case DIF_OP_LDUW:
5140			regs[rd] = dtrace_load32(regs[r1]);
5141			break;
5142		case DIF_OP_RLDX:
5143			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5144				*flags |= CPU_DTRACE_KPRIV;
5145				*illval = regs[r1];
5146				break;
5147			}
5148			/*FALLTHROUGH*/
5149		case DIF_OP_LDX:
5150			regs[rd] = dtrace_load64(regs[r1]);
5151			break;
5152		case DIF_OP_ULDSB:
5153			regs[rd] = (int8_t)
5154			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5155			break;
5156		case DIF_OP_ULDSH:
5157			regs[rd] = (int16_t)
5158			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5159			break;
5160		case DIF_OP_ULDSW:
5161			regs[rd] = (int32_t)
5162			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5163			break;
5164		case DIF_OP_ULDUB:
5165			regs[rd] =
5166			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5167			break;
5168		case DIF_OP_ULDUH:
5169			regs[rd] =
5170			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5171			break;
5172		case DIF_OP_ULDUW:
5173			regs[rd] =
5174			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5175			break;
5176		case DIF_OP_ULDX:
5177			regs[rd] =
5178			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5179			break;
5180		case DIF_OP_RET:
5181			rval = regs[rd];
5182			pc = textlen;
5183			break;
5184		case DIF_OP_NOP:
5185			break;
5186		case DIF_OP_SETX:
5187			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5188			break;
5189		case DIF_OP_SETS:
5190			regs[rd] = (uint64_t)(uintptr_t)
5191			    (strtab + DIF_INSTR_STRING(instr));
5192			break;
5193		case DIF_OP_SCMP: {
5194			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5195			uintptr_t s1 = regs[r1];
5196			uintptr_t s2 = regs[r2];
5197
5198			if (s1 != 0 &&
5199			    !dtrace_strcanload(s1, sz, mstate, vstate))
5200				break;
5201			if (s2 != 0 &&
5202			    !dtrace_strcanload(s2, sz, mstate, vstate))
5203				break;
5204
5205			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5206
5207			cc_n = cc_r < 0;
5208			cc_z = cc_r == 0;
5209			cc_v = cc_c = 0;
5210			break;
5211		}
5212		case DIF_OP_LDGA:
5213			regs[rd] = dtrace_dif_variable(mstate, state,
5214			    r1, regs[r2]);
5215			break;
5216		case DIF_OP_LDGS:
5217			id = DIF_INSTR_VAR(instr);
5218
5219			if (id >= DIF_VAR_OTHER_UBASE) {
5220				uintptr_t a;
5221
5222				id -= DIF_VAR_OTHER_UBASE;
5223				svar = vstate->dtvs_globals[id];
5224				ASSERT(svar != NULL);
5225				v = &svar->dtsv_var;
5226
5227				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5228					regs[rd] = svar->dtsv_data;
5229					break;
5230				}
5231
5232				a = (uintptr_t)svar->dtsv_data;
5233
5234				if (*(uint8_t *)a == UINT8_MAX) {
5235					/*
5236					 * If the 0th byte is set to UINT8_MAX
5237					 * then this is to be treated as a
5238					 * reference to a NULL variable.
5239					 */
5240					regs[rd] = 0;
5241				} else {
5242					regs[rd] = a + sizeof (uint64_t);
5243				}
5244
5245				break;
5246			}
5247
5248			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5249			break;
5250
5251		case DIF_OP_STGS:
5252			id = DIF_INSTR_VAR(instr);
5253
5254			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5255			id -= DIF_VAR_OTHER_UBASE;
5256
5257			svar = vstate->dtvs_globals[id];
5258			ASSERT(svar != NULL);
5259			v = &svar->dtsv_var;
5260
5261			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5262				uintptr_t a = (uintptr_t)svar->dtsv_data;
5263
5264				ASSERT(a != 0);
5265				ASSERT(svar->dtsv_size != 0);
5266
5267				if (regs[rd] == 0) {
5268					*(uint8_t *)a = UINT8_MAX;
5269					break;
5270				} else {
5271					*(uint8_t *)a = 0;
5272					a += sizeof (uint64_t);
5273				}
5274				if (!dtrace_vcanload(
5275				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5276				    mstate, vstate))
5277					break;
5278
5279				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5280				    (void *)a, &v->dtdv_type);
5281				break;
5282			}
5283
5284			svar->dtsv_data = regs[rd];
5285			break;
5286
5287		case DIF_OP_LDTA:
5288			/*
5289			 * There are no DTrace built-in thread-local arrays at
5290			 * present.  This opcode is saved for future work.
5291			 */
5292			*flags |= CPU_DTRACE_ILLOP;
5293			regs[rd] = 0;
5294			break;
5295
5296		case DIF_OP_LDLS:
5297			id = DIF_INSTR_VAR(instr);
5298
5299			if (id < DIF_VAR_OTHER_UBASE) {
5300				/*
5301				 * For now, this has no meaning.
5302				 */
5303				regs[rd] = 0;
5304				break;
5305			}
5306
5307			id -= DIF_VAR_OTHER_UBASE;
5308
5309			ASSERT(id < vstate->dtvs_nlocals);
5310			ASSERT(vstate->dtvs_locals != NULL);
5311
5312			svar = vstate->dtvs_locals[id];
5313			ASSERT(svar != NULL);
5314			v = &svar->dtsv_var;
5315
5316			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5317				uintptr_t a = (uintptr_t)svar->dtsv_data;
5318				size_t sz = v->dtdv_type.dtdt_size;
5319
5320				sz += sizeof (uint64_t);
5321				ASSERT(svar->dtsv_size == NCPU * sz);
5322				a += curcpu * sz;
5323
5324				if (*(uint8_t *)a == UINT8_MAX) {
5325					/*
5326					 * If the 0th byte is set to UINT8_MAX
5327					 * then this is to be treated as a
5328					 * reference to a NULL variable.
5329					 */
5330					regs[rd] = 0;
5331				} else {
5332					regs[rd] = a + sizeof (uint64_t);
5333				}
5334
5335				break;
5336			}
5337
5338			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5339			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5340			regs[rd] = tmp[curcpu];
5341			break;
5342
5343		case DIF_OP_STLS:
5344			id = DIF_INSTR_VAR(instr);
5345
5346			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5347			id -= DIF_VAR_OTHER_UBASE;
5348			ASSERT(id < vstate->dtvs_nlocals);
5349
5350			ASSERT(vstate->dtvs_locals != NULL);
5351			svar = vstate->dtvs_locals[id];
5352			ASSERT(svar != NULL);
5353			v = &svar->dtsv_var;
5354
5355			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5356				uintptr_t a = (uintptr_t)svar->dtsv_data;
5357				size_t sz = v->dtdv_type.dtdt_size;
5358
5359				sz += sizeof (uint64_t);
5360				ASSERT(svar->dtsv_size == NCPU * sz);
5361				a += curcpu * sz;
5362
5363				if (regs[rd] == 0) {
5364					*(uint8_t *)a = UINT8_MAX;
5365					break;
5366				} else {
5367					*(uint8_t *)a = 0;
5368					a += sizeof (uint64_t);
5369				}
5370
5371				if (!dtrace_vcanload(
5372				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5373				    mstate, vstate))
5374					break;
5375
5376				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5377				    (void *)a, &v->dtdv_type);
5378				break;
5379			}
5380
5381			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5382			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5383			tmp[curcpu] = regs[rd];
5384			break;
5385
5386		case DIF_OP_LDTS: {
5387			dtrace_dynvar_t *dvar;
5388			dtrace_key_t *key;
5389
5390			id = DIF_INSTR_VAR(instr);
5391			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5392			id -= DIF_VAR_OTHER_UBASE;
5393			v = &vstate->dtvs_tlocals[id];
5394
5395			key = &tupregs[DIF_DTR_NREGS];
5396			key[0].dttk_value = (uint64_t)id;
5397			key[0].dttk_size = 0;
5398			DTRACE_TLS_THRKEY(key[1].dttk_value);
5399			key[1].dttk_size = 0;
5400
5401			dvar = dtrace_dynvar(dstate, 2, key,
5402			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5403			    mstate, vstate);
5404
5405			if (dvar == NULL) {
5406				regs[rd] = 0;
5407				break;
5408			}
5409
5410			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5411				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5412			} else {
5413				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5414			}
5415
5416			break;
5417		}
5418
5419		case DIF_OP_STTS: {
5420			dtrace_dynvar_t *dvar;
5421			dtrace_key_t *key;
5422
5423			id = DIF_INSTR_VAR(instr);
5424			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5425			id -= DIF_VAR_OTHER_UBASE;
5426
5427			key = &tupregs[DIF_DTR_NREGS];
5428			key[0].dttk_value = (uint64_t)id;
5429			key[0].dttk_size = 0;
5430			DTRACE_TLS_THRKEY(key[1].dttk_value);
5431			key[1].dttk_size = 0;
5432			v = &vstate->dtvs_tlocals[id];
5433
5434			dvar = dtrace_dynvar(dstate, 2, key,
5435			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5436			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5437			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5438			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5439
5440			/*
5441			 * Given that we're storing to thread-local data,
5442			 * we need to flush our predicate cache.
5443			 */
5444			curthread->t_predcache = 0;
5445
5446			if (dvar == NULL)
5447				break;
5448
5449			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5450				if (!dtrace_vcanload(
5451				    (void *)(uintptr_t)regs[rd],
5452				    &v->dtdv_type, mstate, vstate))
5453					break;
5454
5455				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5456				    dvar->dtdv_data, &v->dtdv_type);
5457			} else {
5458				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5459			}
5460
5461			break;
5462		}
5463
5464		case DIF_OP_SRA:
5465			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5466			break;
5467
5468		case DIF_OP_CALL:
5469			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5470			    regs, tupregs, ttop, mstate, state);
5471			break;
5472
5473		case DIF_OP_PUSHTR:
5474			if (ttop == DIF_DTR_NREGS) {
5475				*flags |= CPU_DTRACE_TUPOFLOW;
5476				break;
5477			}
5478
5479			if (r1 == DIF_TYPE_STRING) {
5480				/*
5481				 * If this is a string type and the size is 0,
5482				 * we'll use the system-wide default string
5483				 * size.  Note that we are _not_ looking at
5484				 * the value of the DTRACEOPT_STRSIZE option;
5485				 * had this been set, we would expect to have
5486				 * a non-zero size value in the "pushtr".
5487				 */
5488				tupregs[ttop].dttk_size =
5489				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5490				    regs[r2] ? regs[r2] :
5491				    dtrace_strsize_default) + 1;
5492			} else {
5493				tupregs[ttop].dttk_size = regs[r2];
5494			}
5495
5496			tupregs[ttop++].dttk_value = regs[rd];
5497			break;
5498
5499		case DIF_OP_PUSHTV:
5500			if (ttop == DIF_DTR_NREGS) {
5501				*flags |= CPU_DTRACE_TUPOFLOW;
5502				break;
5503			}
5504
5505			tupregs[ttop].dttk_value = regs[rd];
5506			tupregs[ttop++].dttk_size = 0;
5507			break;
5508
5509		case DIF_OP_POPTS:
5510			if (ttop != 0)
5511				ttop--;
5512			break;
5513
5514		case DIF_OP_FLUSHTS:
5515			ttop = 0;
5516			break;
5517
5518		case DIF_OP_LDGAA:
5519		case DIF_OP_LDTAA: {
5520			dtrace_dynvar_t *dvar;
5521			dtrace_key_t *key = tupregs;
5522			uint_t nkeys = ttop;
5523
5524			id = DIF_INSTR_VAR(instr);
5525			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5526			id -= DIF_VAR_OTHER_UBASE;
5527
5528			key[nkeys].dttk_value = (uint64_t)id;
5529			key[nkeys++].dttk_size = 0;
5530
5531			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5532				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5533				key[nkeys++].dttk_size = 0;
5534				v = &vstate->dtvs_tlocals[id];
5535			} else {
5536				v = &vstate->dtvs_globals[id]->dtsv_var;
5537			}
5538
5539			dvar = dtrace_dynvar(dstate, nkeys, key,
5540			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5541			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5542			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5543
5544			if (dvar == NULL) {
5545				regs[rd] = 0;
5546				break;
5547			}
5548
5549			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5550				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5551			} else {
5552				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5553			}
5554
5555			break;
5556		}
5557
5558		case DIF_OP_STGAA:
5559		case DIF_OP_STTAA: {
5560			dtrace_dynvar_t *dvar;
5561			dtrace_key_t *key = tupregs;
5562			uint_t nkeys = ttop;
5563
5564			id = DIF_INSTR_VAR(instr);
5565			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5566			id -= DIF_VAR_OTHER_UBASE;
5567
5568			key[nkeys].dttk_value = (uint64_t)id;
5569			key[nkeys++].dttk_size = 0;
5570
5571			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5572				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5573				key[nkeys++].dttk_size = 0;
5574				v = &vstate->dtvs_tlocals[id];
5575			} else {
5576				v = &vstate->dtvs_globals[id]->dtsv_var;
5577			}
5578
5579			dvar = dtrace_dynvar(dstate, nkeys, key,
5580			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5581			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5582			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5583			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5584
5585			if (dvar == NULL)
5586				break;
5587
5588			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5589				if (!dtrace_vcanload(
5590				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5591				    mstate, vstate))
5592					break;
5593
5594				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5595				    dvar->dtdv_data, &v->dtdv_type);
5596			} else {
5597				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5598			}
5599
5600			break;
5601		}
5602
5603		case DIF_OP_ALLOCS: {
5604			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5605			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5606
5607			/*
5608			 * Rounding up the user allocation size could have
5609			 * overflowed large, bogus allocations (like -1ULL) to
5610			 * 0.
5611			 */
5612			if (size < regs[r1] ||
5613			    !DTRACE_INSCRATCH(mstate, size)) {
5614				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5615				regs[rd] = 0;
5616				break;
5617			}
5618
5619			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5620			mstate->dtms_scratch_ptr += size;
5621			regs[rd] = ptr;
5622			break;
5623		}
5624
5625		case DIF_OP_COPYS:
5626			if (!dtrace_canstore(regs[rd], regs[r2],
5627			    mstate, vstate)) {
5628				*flags |= CPU_DTRACE_BADADDR;
5629				*illval = regs[rd];
5630				break;
5631			}
5632
5633			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5634				break;
5635
5636			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5637			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5638			break;
5639
5640		case DIF_OP_STB:
5641			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5642				*flags |= CPU_DTRACE_BADADDR;
5643				*illval = regs[rd];
5644				break;
5645			}
5646			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5647			break;
5648
5649		case DIF_OP_STH:
5650			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5651				*flags |= CPU_DTRACE_BADADDR;
5652				*illval = regs[rd];
5653				break;
5654			}
5655			if (regs[rd] & 1) {
5656				*flags |= CPU_DTRACE_BADALIGN;
5657				*illval = regs[rd];
5658				break;
5659			}
5660			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5661			break;
5662
5663		case DIF_OP_STW:
5664			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5665				*flags |= CPU_DTRACE_BADADDR;
5666				*illval = regs[rd];
5667				break;
5668			}
5669			if (regs[rd] & 3) {
5670				*flags |= CPU_DTRACE_BADALIGN;
5671				*illval = regs[rd];
5672				break;
5673			}
5674			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5675			break;
5676
5677		case DIF_OP_STX:
5678			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5679				*flags |= CPU_DTRACE_BADADDR;
5680				*illval = regs[rd];
5681				break;
5682			}
5683			if (regs[rd] & 7) {
5684				*flags |= CPU_DTRACE_BADALIGN;
5685				*illval = regs[rd];
5686				break;
5687			}
5688			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5689			break;
5690		}
5691	}
5692
5693	if (!(*flags & CPU_DTRACE_FAULT))
5694		return (rval);
5695
5696	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5697	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5698
5699	return (0);
5700}
5701
5702static void
5703dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5704{
5705	dtrace_probe_t *probe = ecb->dte_probe;
5706	dtrace_provider_t *prov = probe->dtpr_provider;
5707	char c[DTRACE_FULLNAMELEN + 80], *str;
5708	char *msg = "dtrace: breakpoint action at probe ";
5709	char *ecbmsg = " (ecb ";
5710	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5711	uintptr_t val = (uintptr_t)ecb;
5712	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5713
5714	if (dtrace_destructive_disallow)
5715		return;
5716
5717	/*
5718	 * It's impossible to be taking action on the NULL probe.
5719	 */
5720	ASSERT(probe != NULL);
5721
5722	/*
5723	 * This is a poor man's (destitute man's?) sprintf():  we want to
5724	 * print the provider name, module name, function name and name of
5725	 * the probe, along with the hex address of the ECB with the breakpoint
5726	 * action -- all of which we must place in the character buffer by
5727	 * hand.
5728	 */
5729	while (*msg != '\0')
5730		c[i++] = *msg++;
5731
5732	for (str = prov->dtpv_name; *str != '\0'; str++)
5733		c[i++] = *str;
5734	c[i++] = ':';
5735
5736	for (str = probe->dtpr_mod; *str != '\0'; str++)
5737		c[i++] = *str;
5738	c[i++] = ':';
5739
5740	for (str = probe->dtpr_func; *str != '\0'; str++)
5741		c[i++] = *str;
5742	c[i++] = ':';
5743
5744	for (str = probe->dtpr_name; *str != '\0'; str++)
5745		c[i++] = *str;
5746
5747	while (*ecbmsg != '\0')
5748		c[i++] = *ecbmsg++;
5749
5750	while (shift >= 0) {
5751		mask = (uintptr_t)0xf << shift;
5752
5753		if (val >= ((uintptr_t)1 << shift))
5754			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5755		shift -= 4;
5756	}
5757
5758	c[i++] = ')';
5759	c[i] = '\0';
5760
5761#if defined(sun)
5762	debug_enter(c);
5763#else
5764	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5765#endif
5766}
5767
5768static void
5769dtrace_action_panic(dtrace_ecb_t *ecb)
5770{
5771	dtrace_probe_t *probe = ecb->dte_probe;
5772
5773	/*
5774	 * It's impossible to be taking action on the NULL probe.
5775	 */
5776	ASSERT(probe != NULL);
5777
5778	if (dtrace_destructive_disallow)
5779		return;
5780
5781	if (dtrace_panicked != NULL)
5782		return;
5783
5784	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5785		return;
5786
5787	/*
5788	 * We won the right to panic.  (We want to be sure that only one
5789	 * thread calls panic() from dtrace_probe(), and that panic() is
5790	 * called exactly once.)
5791	 */
5792	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5793	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5794	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5795}
5796
5797static void
5798dtrace_action_raise(uint64_t sig)
5799{
5800	if (dtrace_destructive_disallow)
5801		return;
5802
5803	if (sig >= NSIG) {
5804		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5805		return;
5806	}
5807
5808#if defined(sun)
5809	/*
5810	 * raise() has a queue depth of 1 -- we ignore all subsequent
5811	 * invocations of the raise() action.
5812	 */
5813	if (curthread->t_dtrace_sig == 0)
5814		curthread->t_dtrace_sig = (uint8_t)sig;
5815
5816	curthread->t_sig_check = 1;
5817	aston(curthread);
5818#else
5819	struct proc *p = curproc;
5820	PROC_LOCK(p);
5821	kern_psignal(p, sig);
5822	PROC_UNLOCK(p);
5823#endif
5824}
5825
5826static void
5827dtrace_action_stop(void)
5828{
5829	if (dtrace_destructive_disallow)
5830		return;
5831
5832#if defined(sun)
5833	if (!curthread->t_dtrace_stop) {
5834		curthread->t_dtrace_stop = 1;
5835		curthread->t_sig_check = 1;
5836		aston(curthread);
5837	}
5838#else
5839	struct proc *p = curproc;
5840	PROC_LOCK(p);
5841	kern_psignal(p, SIGSTOP);
5842	PROC_UNLOCK(p);
5843#endif
5844}
5845
5846static void
5847dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5848{
5849	hrtime_t now;
5850	volatile uint16_t *flags;
5851#if defined(sun)
5852	cpu_t *cpu = CPU;
5853#else
5854	cpu_t *cpu = &solaris_cpu[curcpu];
5855#endif
5856
5857	if (dtrace_destructive_disallow)
5858		return;
5859
5860	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5861
5862	now = dtrace_gethrtime();
5863
5864	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5865		/*
5866		 * We need to advance the mark to the current time.
5867		 */
5868		cpu->cpu_dtrace_chillmark = now;
5869		cpu->cpu_dtrace_chilled = 0;
5870	}
5871
5872	/*
5873	 * Now check to see if the requested chill time would take us over
5874	 * the maximum amount of time allowed in the chill interval.  (Or
5875	 * worse, if the calculation itself induces overflow.)
5876	 */
5877	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5878	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5879		*flags |= CPU_DTRACE_ILLOP;
5880		return;
5881	}
5882
5883	while (dtrace_gethrtime() - now < val)
5884		continue;
5885
5886	/*
5887	 * Normally, we assure that the value of the variable "timestamp" does
5888	 * not change within an ECB.  The presence of chill() represents an
5889	 * exception to this rule, however.
5890	 */
5891	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5892	cpu->cpu_dtrace_chilled += val;
5893}
5894
5895static void
5896dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5897    uint64_t *buf, uint64_t arg)
5898{
5899	int nframes = DTRACE_USTACK_NFRAMES(arg);
5900	int strsize = DTRACE_USTACK_STRSIZE(arg);
5901	uint64_t *pcs = &buf[1], *fps;
5902	char *str = (char *)&pcs[nframes];
5903	int size, offs = 0, i, j;
5904	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5905	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5906	char *sym;
5907
5908	/*
5909	 * Should be taking a faster path if string space has not been
5910	 * allocated.
5911	 */
5912	ASSERT(strsize != 0);
5913
5914	/*
5915	 * We will first allocate some temporary space for the frame pointers.
5916	 */
5917	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5918	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5919	    (nframes * sizeof (uint64_t));
5920
5921	if (!DTRACE_INSCRATCH(mstate, size)) {
5922		/*
5923		 * Not enough room for our frame pointers -- need to indicate
5924		 * that we ran out of scratch space.
5925		 */
5926		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5927		return;
5928	}
5929
5930	mstate->dtms_scratch_ptr += size;
5931	saved = mstate->dtms_scratch_ptr;
5932
5933	/*
5934	 * Now get a stack with both program counters and frame pointers.
5935	 */
5936	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5937	dtrace_getufpstack(buf, fps, nframes + 1);
5938	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5939
5940	/*
5941	 * If that faulted, we're cooked.
5942	 */
5943	if (*flags & CPU_DTRACE_FAULT)
5944		goto out;
5945
5946	/*
5947	 * Now we want to walk up the stack, calling the USTACK helper.  For
5948	 * each iteration, we restore the scratch pointer.
5949	 */
5950	for (i = 0; i < nframes; i++) {
5951		mstate->dtms_scratch_ptr = saved;
5952
5953		if (offs >= strsize)
5954			break;
5955
5956		sym = (char *)(uintptr_t)dtrace_helper(
5957		    DTRACE_HELPER_ACTION_USTACK,
5958		    mstate, state, pcs[i], fps[i]);
5959
5960		/*
5961		 * If we faulted while running the helper, we're going to
5962		 * clear the fault and null out the corresponding string.
5963		 */
5964		if (*flags & CPU_DTRACE_FAULT) {
5965			*flags &= ~CPU_DTRACE_FAULT;
5966			str[offs++] = '\0';
5967			continue;
5968		}
5969
5970		if (sym == NULL) {
5971			str[offs++] = '\0';
5972			continue;
5973		}
5974
5975		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5976
5977		/*
5978		 * Now copy in the string that the helper returned to us.
5979		 */
5980		for (j = 0; offs + j < strsize; j++) {
5981			if ((str[offs + j] = sym[j]) == '\0')
5982				break;
5983		}
5984
5985		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5986
5987		offs += j + 1;
5988	}
5989
5990	if (offs >= strsize) {
5991		/*
5992		 * If we didn't have room for all of the strings, we don't
5993		 * abort processing -- this needn't be a fatal error -- but we
5994		 * still want to increment a counter (dts_stkstroverflows) to
5995		 * allow this condition to be warned about.  (If this is from
5996		 * a jstack() action, it is easily tuned via jstackstrsize.)
5997		 */
5998		dtrace_error(&state->dts_stkstroverflows);
5999	}
6000
6001	while (offs < strsize)
6002		str[offs++] = '\0';
6003
6004out:
6005	mstate->dtms_scratch_ptr = old;
6006}
6007
6008/*
6009 * If you're looking for the epicenter of DTrace, you just found it.  This
6010 * is the function called by the provider to fire a probe -- from which all
6011 * subsequent probe-context DTrace activity emanates.
6012 */
6013void
6014dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6015    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6016{
6017	processorid_t cpuid;
6018	dtrace_icookie_t cookie;
6019	dtrace_probe_t *probe;
6020	dtrace_mstate_t mstate;
6021	dtrace_ecb_t *ecb;
6022	dtrace_action_t *act;
6023	intptr_t offs;
6024	size_t size;
6025	int vtime, onintr;
6026	volatile uint16_t *flags;
6027	hrtime_t now;
6028
6029	if (panicstr != NULL)
6030		return;
6031
6032#if defined(sun)
6033	/*
6034	 * Kick out immediately if this CPU is still being born (in which case
6035	 * curthread will be set to -1) or the current thread can't allow
6036	 * probes in its current context.
6037	 */
6038	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6039		return;
6040#endif
6041
6042	cookie = dtrace_interrupt_disable();
6043	probe = dtrace_probes[id - 1];
6044	cpuid = curcpu;
6045	onintr = CPU_ON_INTR(CPU);
6046
6047	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6048	    probe->dtpr_predcache == curthread->t_predcache) {
6049		/*
6050		 * We have hit in the predicate cache; we know that
6051		 * this predicate would evaluate to be false.
6052		 */
6053		dtrace_interrupt_enable(cookie);
6054		return;
6055	}
6056
6057#if defined(sun)
6058	if (panic_quiesce) {
6059#else
6060	if (panicstr != NULL) {
6061#endif
6062		/*
6063		 * We don't trace anything if we're panicking.
6064		 */
6065		dtrace_interrupt_enable(cookie);
6066		return;
6067	}
6068
6069	now = dtrace_gethrtime();
6070	vtime = dtrace_vtime_references != 0;
6071
6072	if (vtime && curthread->t_dtrace_start)
6073		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6074
6075	mstate.dtms_difo = NULL;
6076	mstate.dtms_probe = probe;
6077	mstate.dtms_strtok = 0;
6078	mstate.dtms_arg[0] = arg0;
6079	mstate.dtms_arg[1] = arg1;
6080	mstate.dtms_arg[2] = arg2;
6081	mstate.dtms_arg[3] = arg3;
6082	mstate.dtms_arg[4] = arg4;
6083
6084	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6085
6086	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6087		dtrace_predicate_t *pred = ecb->dte_predicate;
6088		dtrace_state_t *state = ecb->dte_state;
6089		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6090		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6091		dtrace_vstate_t *vstate = &state->dts_vstate;
6092		dtrace_provider_t *prov = probe->dtpr_provider;
6093		uint64_t tracememsize = 0;
6094		int committed = 0;
6095		caddr_t tomax;
6096
6097		/*
6098		 * A little subtlety with the following (seemingly innocuous)
6099		 * declaration of the automatic 'val':  by looking at the
6100		 * code, you might think that it could be declared in the
6101		 * action processing loop, below.  (That is, it's only used in
6102		 * the action processing loop.)  However, it must be declared
6103		 * out of that scope because in the case of DIF expression
6104		 * arguments to aggregating actions, one iteration of the
6105		 * action loop will use the last iteration's value.
6106		 */
6107		uint64_t val = 0;
6108
6109		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6110		*flags &= ~CPU_DTRACE_ERROR;
6111
6112		if (prov == dtrace_provider) {
6113			/*
6114			 * If dtrace itself is the provider of this probe,
6115			 * we're only going to continue processing the ECB if
6116			 * arg0 (the dtrace_state_t) is equal to the ECB's
6117			 * creating state.  (This prevents disjoint consumers
6118			 * from seeing one another's metaprobes.)
6119			 */
6120			if (arg0 != (uint64_t)(uintptr_t)state)
6121				continue;
6122		}
6123
6124		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6125			/*
6126			 * We're not currently active.  If our provider isn't
6127			 * the dtrace pseudo provider, we're not interested.
6128			 */
6129			if (prov != dtrace_provider)
6130				continue;
6131
6132			/*
6133			 * Now we must further check if we are in the BEGIN
6134			 * probe.  If we are, we will only continue processing
6135			 * if we're still in WARMUP -- if one BEGIN enabling
6136			 * has invoked the exit() action, we don't want to
6137			 * evaluate subsequent BEGIN enablings.
6138			 */
6139			if (probe->dtpr_id == dtrace_probeid_begin &&
6140			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6141				ASSERT(state->dts_activity ==
6142				    DTRACE_ACTIVITY_DRAINING);
6143				continue;
6144			}
6145		}
6146
6147		if (ecb->dte_cond) {
6148			/*
6149			 * If the dte_cond bits indicate that this
6150			 * consumer is only allowed to see user-mode firings
6151			 * of this probe, call the provider's dtps_usermode()
6152			 * entry point to check that the probe was fired
6153			 * while in a user context. Skip this ECB if that's
6154			 * not the case.
6155			 */
6156			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6157			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6158			    probe->dtpr_id, probe->dtpr_arg) == 0)
6159				continue;
6160
6161#if defined(sun)
6162			/*
6163			 * This is more subtle than it looks. We have to be
6164			 * absolutely certain that CRED() isn't going to
6165			 * change out from under us so it's only legit to
6166			 * examine that structure if we're in constrained
6167			 * situations. Currently, the only times we'll this
6168			 * check is if a non-super-user has enabled the
6169			 * profile or syscall providers -- providers that
6170			 * allow visibility of all processes. For the
6171			 * profile case, the check above will ensure that
6172			 * we're examining a user context.
6173			 */
6174			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6175				cred_t *cr;
6176				cred_t *s_cr =
6177				    ecb->dte_state->dts_cred.dcr_cred;
6178				proc_t *proc;
6179
6180				ASSERT(s_cr != NULL);
6181
6182				if ((cr = CRED()) == NULL ||
6183				    s_cr->cr_uid != cr->cr_uid ||
6184				    s_cr->cr_uid != cr->cr_ruid ||
6185				    s_cr->cr_uid != cr->cr_suid ||
6186				    s_cr->cr_gid != cr->cr_gid ||
6187				    s_cr->cr_gid != cr->cr_rgid ||
6188				    s_cr->cr_gid != cr->cr_sgid ||
6189				    (proc = ttoproc(curthread)) == NULL ||
6190				    (proc->p_flag & SNOCD))
6191					continue;
6192			}
6193
6194			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6195				cred_t *cr;
6196				cred_t *s_cr =
6197				    ecb->dte_state->dts_cred.dcr_cred;
6198
6199				ASSERT(s_cr != NULL);
6200
6201				if ((cr = CRED()) == NULL ||
6202				    s_cr->cr_zone->zone_id !=
6203				    cr->cr_zone->zone_id)
6204					continue;
6205			}
6206#endif
6207		}
6208
6209		if (now - state->dts_alive > dtrace_deadman_timeout) {
6210			/*
6211			 * We seem to be dead.  Unless we (a) have kernel
6212			 * destructive permissions (b) have expicitly enabled
6213			 * destructive actions and (c) destructive actions have
6214			 * not been disabled, we're going to transition into
6215			 * the KILLED state, from which no further processing
6216			 * on this state will be performed.
6217			 */
6218			if (!dtrace_priv_kernel_destructive(state) ||
6219			    !state->dts_cred.dcr_destructive ||
6220			    dtrace_destructive_disallow) {
6221				void *activity = &state->dts_activity;
6222				dtrace_activity_t current;
6223
6224				do {
6225					current = state->dts_activity;
6226				} while (dtrace_cas32(activity, current,
6227				    DTRACE_ACTIVITY_KILLED) != current);
6228
6229				continue;
6230			}
6231		}
6232
6233		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6234		    ecb->dte_alignment, state, &mstate)) < 0)
6235			continue;
6236
6237		tomax = buf->dtb_tomax;
6238		ASSERT(tomax != NULL);
6239
6240		if (ecb->dte_size != 0)
6241			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6242
6243		mstate.dtms_epid = ecb->dte_epid;
6244		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6245
6246		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6247			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6248		else
6249			mstate.dtms_access = 0;
6250
6251		if (pred != NULL) {
6252			dtrace_difo_t *dp = pred->dtp_difo;
6253			int rval;
6254
6255			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6256
6257			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6258				dtrace_cacheid_t cid = probe->dtpr_predcache;
6259
6260				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6261					/*
6262					 * Update the predicate cache...
6263					 */
6264					ASSERT(cid == pred->dtp_cacheid);
6265					curthread->t_predcache = cid;
6266				}
6267
6268				continue;
6269			}
6270		}
6271
6272		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6273		    act != NULL; act = act->dta_next) {
6274			size_t valoffs;
6275			dtrace_difo_t *dp;
6276			dtrace_recdesc_t *rec = &act->dta_rec;
6277
6278			size = rec->dtrd_size;
6279			valoffs = offs + rec->dtrd_offset;
6280
6281			if (DTRACEACT_ISAGG(act->dta_kind)) {
6282				uint64_t v = 0xbad;
6283				dtrace_aggregation_t *agg;
6284
6285				agg = (dtrace_aggregation_t *)act;
6286
6287				if ((dp = act->dta_difo) != NULL)
6288					v = dtrace_dif_emulate(dp,
6289					    &mstate, vstate, state);
6290
6291				if (*flags & CPU_DTRACE_ERROR)
6292					continue;
6293
6294				/*
6295				 * Note that we always pass the expression
6296				 * value from the previous iteration of the
6297				 * action loop.  This value will only be used
6298				 * if there is an expression argument to the
6299				 * aggregating action, denoted by the
6300				 * dtag_hasarg field.
6301				 */
6302				dtrace_aggregate(agg, buf,
6303				    offs, aggbuf, v, val);
6304				continue;
6305			}
6306
6307			switch (act->dta_kind) {
6308			case DTRACEACT_STOP:
6309				if (dtrace_priv_proc_destructive(state))
6310					dtrace_action_stop();
6311				continue;
6312
6313			case DTRACEACT_BREAKPOINT:
6314				if (dtrace_priv_kernel_destructive(state))
6315					dtrace_action_breakpoint(ecb);
6316				continue;
6317
6318			case DTRACEACT_PANIC:
6319				if (dtrace_priv_kernel_destructive(state))
6320					dtrace_action_panic(ecb);
6321				continue;
6322
6323			case DTRACEACT_STACK:
6324				if (!dtrace_priv_kernel(state))
6325					continue;
6326
6327				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6328				    size / sizeof (pc_t), probe->dtpr_aframes,
6329				    DTRACE_ANCHORED(probe) ? NULL :
6330				    (uint32_t *)arg0);
6331				continue;
6332
6333			case DTRACEACT_JSTACK:
6334			case DTRACEACT_USTACK:
6335				if (!dtrace_priv_proc(state))
6336					continue;
6337
6338				/*
6339				 * See comment in DIF_VAR_PID.
6340				 */
6341				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6342				    CPU_ON_INTR(CPU)) {
6343					int depth = DTRACE_USTACK_NFRAMES(
6344					    rec->dtrd_arg) + 1;
6345
6346					dtrace_bzero((void *)(tomax + valoffs),
6347					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6348					    + depth * sizeof (uint64_t));
6349
6350					continue;
6351				}
6352
6353				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6354				    curproc->p_dtrace_helpers != NULL) {
6355					/*
6356					 * This is the slow path -- we have
6357					 * allocated string space, and we're
6358					 * getting the stack of a process that
6359					 * has helpers.  Call into a separate
6360					 * routine to perform this processing.
6361					 */
6362					dtrace_action_ustack(&mstate, state,
6363					    (uint64_t *)(tomax + valoffs),
6364					    rec->dtrd_arg);
6365					continue;
6366				}
6367
6368				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6369				dtrace_getupcstack((uint64_t *)
6370				    (tomax + valoffs),
6371				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6372				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6373				continue;
6374
6375			default:
6376				break;
6377			}
6378
6379			dp = act->dta_difo;
6380			ASSERT(dp != NULL);
6381
6382			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6383
6384			if (*flags & CPU_DTRACE_ERROR)
6385				continue;
6386
6387			switch (act->dta_kind) {
6388			case DTRACEACT_SPECULATE:
6389				ASSERT(buf == &state->dts_buffer[cpuid]);
6390				buf = dtrace_speculation_buffer(state,
6391				    cpuid, val);
6392
6393				if (buf == NULL) {
6394					*flags |= CPU_DTRACE_DROP;
6395					continue;
6396				}
6397
6398				offs = dtrace_buffer_reserve(buf,
6399				    ecb->dte_needed, ecb->dte_alignment,
6400				    state, NULL);
6401
6402				if (offs < 0) {
6403					*flags |= CPU_DTRACE_DROP;
6404					continue;
6405				}
6406
6407				tomax = buf->dtb_tomax;
6408				ASSERT(tomax != NULL);
6409
6410				if (ecb->dte_size != 0)
6411					DTRACE_STORE(uint32_t, tomax, offs,
6412					    ecb->dte_epid);
6413				continue;
6414
6415			case DTRACEACT_PRINTM: {
6416				/* The DIF returns a 'memref'. */
6417				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6418
6419				/* Get the size from the memref. */
6420				size = memref[1];
6421
6422				/*
6423				 * Check if the size exceeds the allocated
6424				 * buffer size.
6425				 */
6426				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6427					/* Flag a drop! */
6428					*flags |= CPU_DTRACE_DROP;
6429					continue;
6430				}
6431
6432				/* Store the size in the buffer first. */
6433				DTRACE_STORE(uintptr_t, tomax,
6434				    valoffs, size);
6435
6436				/*
6437				 * Offset the buffer address to the start
6438				 * of the data.
6439				 */
6440				valoffs += sizeof(uintptr_t);
6441
6442				/*
6443				 * Reset to the memory address rather than
6444				 * the memref array, then let the BYREF
6445				 * code below do the work to store the
6446				 * memory data in the buffer.
6447				 */
6448				val = memref[0];
6449				break;
6450			}
6451
6452			case DTRACEACT_PRINTT: {
6453				/* The DIF returns a 'typeref'. */
6454				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6455				char c = '\0' + 1;
6456				size_t s;
6457
6458				/*
6459				 * Get the type string length and round it
6460				 * up so that the data that follows is
6461				 * aligned for easy access.
6462				 */
6463				size_t typs = strlen((char *) typeref[2]) + 1;
6464				typs = roundup(typs,  sizeof(uintptr_t));
6465
6466				/*
6467				 *Get the size from the typeref using the
6468				 * number of elements and the type size.
6469				 */
6470				size = typeref[1] * typeref[3];
6471
6472				/*
6473				 * Check if the size exceeds the allocated
6474				 * buffer size.
6475				 */
6476				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6477					/* Flag a drop! */
6478					*flags |= CPU_DTRACE_DROP;
6479
6480				}
6481
6482				/* Store the size in the buffer first. */
6483				DTRACE_STORE(uintptr_t, tomax,
6484				    valoffs, size);
6485				valoffs += sizeof(uintptr_t);
6486
6487				/* Store the type size in the buffer. */
6488				DTRACE_STORE(uintptr_t, tomax,
6489				    valoffs, typeref[3]);
6490				valoffs += sizeof(uintptr_t);
6491
6492				val = typeref[2];
6493
6494				for (s = 0; s < typs; s++) {
6495					if (c != '\0')
6496						c = dtrace_load8(val++);
6497
6498					DTRACE_STORE(uint8_t, tomax,
6499					    valoffs++, c);
6500				}
6501
6502				/*
6503				 * Reset to the memory address rather than
6504				 * the typeref array, then let the BYREF
6505				 * code below do the work to store the
6506				 * memory data in the buffer.
6507				 */
6508				val = typeref[0];
6509				break;
6510			}
6511
6512			case DTRACEACT_CHILL:
6513				if (dtrace_priv_kernel_destructive(state))
6514					dtrace_action_chill(&mstate, val);
6515				continue;
6516
6517			case DTRACEACT_RAISE:
6518				if (dtrace_priv_proc_destructive(state))
6519					dtrace_action_raise(val);
6520				continue;
6521
6522			case DTRACEACT_COMMIT:
6523				ASSERT(!committed);
6524
6525				/*
6526				 * We need to commit our buffer state.
6527				 */
6528				if (ecb->dte_size)
6529					buf->dtb_offset = offs + ecb->dte_size;
6530				buf = &state->dts_buffer[cpuid];
6531				dtrace_speculation_commit(state, cpuid, val);
6532				committed = 1;
6533				continue;
6534
6535			case DTRACEACT_DISCARD:
6536				dtrace_speculation_discard(state, cpuid, val);
6537				continue;
6538
6539			case DTRACEACT_DIFEXPR:
6540			case DTRACEACT_LIBACT:
6541			case DTRACEACT_PRINTF:
6542			case DTRACEACT_PRINTA:
6543			case DTRACEACT_SYSTEM:
6544			case DTRACEACT_FREOPEN:
6545			case DTRACEACT_TRACEMEM:
6546				break;
6547
6548			case DTRACEACT_TRACEMEM_DYNSIZE:
6549				tracememsize = val;
6550				break;
6551
6552			case DTRACEACT_SYM:
6553			case DTRACEACT_MOD:
6554				if (!dtrace_priv_kernel(state))
6555					continue;
6556				break;
6557
6558			case DTRACEACT_USYM:
6559			case DTRACEACT_UMOD:
6560			case DTRACEACT_UADDR: {
6561#if defined(sun)
6562				struct pid *pid = curthread->t_procp->p_pidp;
6563#endif
6564
6565				if (!dtrace_priv_proc(state))
6566					continue;
6567
6568				DTRACE_STORE(uint64_t, tomax,
6569#if defined(sun)
6570				    valoffs, (uint64_t)pid->pid_id);
6571#else
6572				    valoffs, (uint64_t) curproc->p_pid);
6573#endif
6574				DTRACE_STORE(uint64_t, tomax,
6575				    valoffs + sizeof (uint64_t), val);
6576
6577				continue;
6578			}
6579
6580			case DTRACEACT_EXIT: {
6581				/*
6582				 * For the exit action, we are going to attempt
6583				 * to atomically set our activity to be
6584				 * draining.  If this fails (either because
6585				 * another CPU has beat us to the exit action,
6586				 * or because our current activity is something
6587				 * other than ACTIVE or WARMUP), we will
6588				 * continue.  This assures that the exit action
6589				 * can be successfully recorded at most once
6590				 * when we're in the ACTIVE state.  If we're
6591				 * encountering the exit() action while in
6592				 * COOLDOWN, however, we want to honor the new
6593				 * status code.  (We know that we're the only
6594				 * thread in COOLDOWN, so there is no race.)
6595				 */
6596				void *activity = &state->dts_activity;
6597				dtrace_activity_t current = state->dts_activity;
6598
6599				if (current == DTRACE_ACTIVITY_COOLDOWN)
6600					break;
6601
6602				if (current != DTRACE_ACTIVITY_WARMUP)
6603					current = DTRACE_ACTIVITY_ACTIVE;
6604
6605				if (dtrace_cas32(activity, current,
6606				    DTRACE_ACTIVITY_DRAINING) != current) {
6607					*flags |= CPU_DTRACE_DROP;
6608					continue;
6609				}
6610
6611				break;
6612			}
6613
6614			default:
6615				ASSERT(0);
6616			}
6617
6618			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6619				uintptr_t end = valoffs + size;
6620
6621				if (tracememsize != 0 &&
6622				    valoffs + tracememsize < end) {
6623					end = valoffs + tracememsize;
6624					tracememsize = 0;
6625				}
6626
6627				if (!dtrace_vcanload((void *)(uintptr_t)val,
6628				    &dp->dtdo_rtype, &mstate, vstate))
6629					continue;
6630
6631				/*
6632				 * If this is a string, we're going to only
6633				 * load until we find the zero byte -- after
6634				 * which we'll store zero bytes.
6635				 */
6636				if (dp->dtdo_rtype.dtdt_kind ==
6637				    DIF_TYPE_STRING) {
6638					char c = '\0' + 1;
6639					int intuple = act->dta_intuple;
6640					size_t s;
6641
6642					for (s = 0; s < size; s++) {
6643						if (c != '\0')
6644							c = dtrace_load8(val++);
6645
6646						DTRACE_STORE(uint8_t, tomax,
6647						    valoffs++, c);
6648
6649						if (c == '\0' && intuple)
6650							break;
6651					}
6652
6653					continue;
6654				}
6655
6656				while (valoffs < end) {
6657					DTRACE_STORE(uint8_t, tomax, valoffs++,
6658					    dtrace_load8(val++));
6659				}
6660
6661				continue;
6662			}
6663
6664			switch (size) {
6665			case 0:
6666				break;
6667
6668			case sizeof (uint8_t):
6669				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6670				break;
6671			case sizeof (uint16_t):
6672				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6673				break;
6674			case sizeof (uint32_t):
6675				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6676				break;
6677			case sizeof (uint64_t):
6678				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6679				break;
6680			default:
6681				/*
6682				 * Any other size should have been returned by
6683				 * reference, not by value.
6684				 */
6685				ASSERT(0);
6686				break;
6687			}
6688		}
6689
6690		if (*flags & CPU_DTRACE_DROP)
6691			continue;
6692
6693		if (*flags & CPU_DTRACE_FAULT) {
6694			int ndx;
6695			dtrace_action_t *err;
6696
6697			buf->dtb_errors++;
6698
6699			if (probe->dtpr_id == dtrace_probeid_error) {
6700				/*
6701				 * There's nothing we can do -- we had an
6702				 * error on the error probe.  We bump an
6703				 * error counter to at least indicate that
6704				 * this condition happened.
6705				 */
6706				dtrace_error(&state->dts_dblerrors);
6707				continue;
6708			}
6709
6710			if (vtime) {
6711				/*
6712				 * Before recursing on dtrace_probe(), we
6713				 * need to explicitly clear out our start
6714				 * time to prevent it from being accumulated
6715				 * into t_dtrace_vtime.
6716				 */
6717				curthread->t_dtrace_start = 0;
6718			}
6719
6720			/*
6721			 * Iterate over the actions to figure out which action
6722			 * we were processing when we experienced the error.
6723			 * Note that act points _past_ the faulting action; if
6724			 * act is ecb->dte_action, the fault was in the
6725			 * predicate, if it's ecb->dte_action->dta_next it's
6726			 * in action #1, and so on.
6727			 */
6728			for (err = ecb->dte_action, ndx = 0;
6729			    err != act; err = err->dta_next, ndx++)
6730				continue;
6731
6732			dtrace_probe_error(state, ecb->dte_epid, ndx,
6733			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6734			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6735			    cpu_core[cpuid].cpuc_dtrace_illval);
6736
6737			continue;
6738		}
6739
6740		if (!committed)
6741			buf->dtb_offset = offs + ecb->dte_size;
6742	}
6743
6744	if (vtime)
6745		curthread->t_dtrace_start = dtrace_gethrtime();
6746
6747	dtrace_interrupt_enable(cookie);
6748}
6749
6750/*
6751 * DTrace Probe Hashing Functions
6752 *
6753 * The functions in this section (and indeed, the functions in remaining
6754 * sections) are not _called_ from probe context.  (Any exceptions to this are
6755 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6756 * DTrace framework to look-up probes in, add probes to and remove probes from
6757 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6758 * probe tuple -- allowing for fast lookups, regardless of what was
6759 * specified.)
6760 */
6761static uint_t
6762dtrace_hash_str(const char *p)
6763{
6764	unsigned int g;
6765	uint_t hval = 0;
6766
6767	while (*p) {
6768		hval = (hval << 4) + *p++;
6769		if ((g = (hval & 0xf0000000)) != 0)
6770			hval ^= g >> 24;
6771		hval &= ~g;
6772	}
6773	return (hval);
6774}
6775
6776static dtrace_hash_t *
6777dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6778{
6779	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6780
6781	hash->dth_stroffs = stroffs;
6782	hash->dth_nextoffs = nextoffs;
6783	hash->dth_prevoffs = prevoffs;
6784
6785	hash->dth_size = 1;
6786	hash->dth_mask = hash->dth_size - 1;
6787
6788	hash->dth_tab = kmem_zalloc(hash->dth_size *
6789	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6790
6791	return (hash);
6792}
6793
6794static void
6795dtrace_hash_destroy(dtrace_hash_t *hash)
6796{
6797#ifdef DEBUG
6798	int i;
6799
6800	for (i = 0; i < hash->dth_size; i++)
6801		ASSERT(hash->dth_tab[i] == NULL);
6802#endif
6803
6804	kmem_free(hash->dth_tab,
6805	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6806	kmem_free(hash, sizeof (dtrace_hash_t));
6807}
6808
6809static void
6810dtrace_hash_resize(dtrace_hash_t *hash)
6811{
6812	int size = hash->dth_size, i, ndx;
6813	int new_size = hash->dth_size << 1;
6814	int new_mask = new_size - 1;
6815	dtrace_hashbucket_t **new_tab, *bucket, *next;
6816
6817	ASSERT((new_size & new_mask) == 0);
6818
6819	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6820
6821	for (i = 0; i < size; i++) {
6822		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6823			dtrace_probe_t *probe = bucket->dthb_chain;
6824
6825			ASSERT(probe != NULL);
6826			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6827
6828			next = bucket->dthb_next;
6829			bucket->dthb_next = new_tab[ndx];
6830			new_tab[ndx] = bucket;
6831		}
6832	}
6833
6834	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6835	hash->dth_tab = new_tab;
6836	hash->dth_size = new_size;
6837	hash->dth_mask = new_mask;
6838}
6839
6840static void
6841dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6842{
6843	int hashval = DTRACE_HASHSTR(hash, new);
6844	int ndx = hashval & hash->dth_mask;
6845	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6846	dtrace_probe_t **nextp, **prevp;
6847
6848	for (; bucket != NULL; bucket = bucket->dthb_next) {
6849		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6850			goto add;
6851	}
6852
6853	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6854		dtrace_hash_resize(hash);
6855		dtrace_hash_add(hash, new);
6856		return;
6857	}
6858
6859	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6860	bucket->dthb_next = hash->dth_tab[ndx];
6861	hash->dth_tab[ndx] = bucket;
6862	hash->dth_nbuckets++;
6863
6864add:
6865	nextp = DTRACE_HASHNEXT(hash, new);
6866	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6867	*nextp = bucket->dthb_chain;
6868
6869	if (bucket->dthb_chain != NULL) {
6870		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6871		ASSERT(*prevp == NULL);
6872		*prevp = new;
6873	}
6874
6875	bucket->dthb_chain = new;
6876	bucket->dthb_len++;
6877}
6878
6879static dtrace_probe_t *
6880dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6881{
6882	int hashval = DTRACE_HASHSTR(hash, template);
6883	int ndx = hashval & hash->dth_mask;
6884	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6885
6886	for (; bucket != NULL; bucket = bucket->dthb_next) {
6887		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6888			return (bucket->dthb_chain);
6889	}
6890
6891	return (NULL);
6892}
6893
6894static int
6895dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6896{
6897	int hashval = DTRACE_HASHSTR(hash, template);
6898	int ndx = hashval & hash->dth_mask;
6899	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6900
6901	for (; bucket != NULL; bucket = bucket->dthb_next) {
6902		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6903			return (bucket->dthb_len);
6904	}
6905
6906	return (0);
6907}
6908
6909static void
6910dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6911{
6912	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6913	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6914
6915	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6916	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6917
6918	/*
6919	 * Find the bucket that we're removing this probe from.
6920	 */
6921	for (; bucket != NULL; bucket = bucket->dthb_next) {
6922		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6923			break;
6924	}
6925
6926	ASSERT(bucket != NULL);
6927
6928	if (*prevp == NULL) {
6929		if (*nextp == NULL) {
6930			/*
6931			 * The removed probe was the only probe on this
6932			 * bucket; we need to remove the bucket.
6933			 */
6934			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6935
6936			ASSERT(bucket->dthb_chain == probe);
6937			ASSERT(b != NULL);
6938
6939			if (b == bucket) {
6940				hash->dth_tab[ndx] = bucket->dthb_next;
6941			} else {
6942				while (b->dthb_next != bucket)
6943					b = b->dthb_next;
6944				b->dthb_next = bucket->dthb_next;
6945			}
6946
6947			ASSERT(hash->dth_nbuckets > 0);
6948			hash->dth_nbuckets--;
6949			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6950			return;
6951		}
6952
6953		bucket->dthb_chain = *nextp;
6954	} else {
6955		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6956	}
6957
6958	if (*nextp != NULL)
6959		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6960}
6961
6962/*
6963 * DTrace Utility Functions
6964 *
6965 * These are random utility functions that are _not_ called from probe context.
6966 */
6967static int
6968dtrace_badattr(const dtrace_attribute_t *a)
6969{
6970	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6971	    a->dtat_data > DTRACE_STABILITY_MAX ||
6972	    a->dtat_class > DTRACE_CLASS_MAX);
6973}
6974
6975/*
6976 * Return a duplicate copy of a string.  If the specified string is NULL,
6977 * this function returns a zero-length string.
6978 */
6979static char *
6980dtrace_strdup(const char *str)
6981{
6982	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6983
6984	if (str != NULL)
6985		(void) strcpy(new, str);
6986
6987	return (new);
6988}
6989
6990#define	DTRACE_ISALPHA(c)	\
6991	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6992
6993static int
6994dtrace_badname(const char *s)
6995{
6996	char c;
6997
6998	if (s == NULL || (c = *s++) == '\0')
6999		return (0);
7000
7001	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7002		return (1);
7003
7004	while ((c = *s++) != '\0') {
7005		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7006		    c != '-' && c != '_' && c != '.' && c != '`')
7007			return (1);
7008	}
7009
7010	return (0);
7011}
7012
7013static void
7014dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7015{
7016	uint32_t priv;
7017
7018#if defined(sun)
7019	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7020		/*
7021		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7022		 */
7023		priv = DTRACE_PRIV_ALL;
7024	} else {
7025		*uidp = crgetuid(cr);
7026		*zoneidp = crgetzoneid(cr);
7027
7028		priv = 0;
7029		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7030			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7031		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7032			priv |= DTRACE_PRIV_USER;
7033		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7034			priv |= DTRACE_PRIV_PROC;
7035		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7036			priv |= DTRACE_PRIV_OWNER;
7037		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7038			priv |= DTRACE_PRIV_ZONEOWNER;
7039	}
7040#else
7041	priv = DTRACE_PRIV_ALL;
7042#endif
7043
7044	*privp = priv;
7045}
7046
7047#ifdef DTRACE_ERRDEBUG
7048static void
7049dtrace_errdebug(const char *str)
7050{
7051	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7052	int occupied = 0;
7053
7054	mutex_enter(&dtrace_errlock);
7055	dtrace_errlast = str;
7056	dtrace_errthread = curthread;
7057
7058	while (occupied++ < DTRACE_ERRHASHSZ) {
7059		if (dtrace_errhash[hval].dter_msg == str) {
7060			dtrace_errhash[hval].dter_count++;
7061			goto out;
7062		}
7063
7064		if (dtrace_errhash[hval].dter_msg != NULL) {
7065			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7066			continue;
7067		}
7068
7069		dtrace_errhash[hval].dter_msg = str;
7070		dtrace_errhash[hval].dter_count = 1;
7071		goto out;
7072	}
7073
7074	panic("dtrace: undersized error hash");
7075out:
7076	mutex_exit(&dtrace_errlock);
7077}
7078#endif
7079
7080/*
7081 * DTrace Matching Functions
7082 *
7083 * These functions are used to match groups of probes, given some elements of
7084 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7085 */
7086static int
7087dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7088    zoneid_t zoneid)
7089{
7090	if (priv != DTRACE_PRIV_ALL) {
7091		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7092		uint32_t match = priv & ppriv;
7093
7094		/*
7095		 * No PRIV_DTRACE_* privileges...
7096		 */
7097		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7098		    DTRACE_PRIV_KERNEL)) == 0)
7099			return (0);
7100
7101		/*
7102		 * No matching bits, but there were bits to match...
7103		 */
7104		if (match == 0 && ppriv != 0)
7105			return (0);
7106
7107		/*
7108		 * Need to have permissions to the process, but don't...
7109		 */
7110		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7111		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7112			return (0);
7113		}
7114
7115		/*
7116		 * Need to be in the same zone unless we possess the
7117		 * privilege to examine all zones.
7118		 */
7119		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7120		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7121			return (0);
7122		}
7123	}
7124
7125	return (1);
7126}
7127
7128/*
7129 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7130 * consists of input pattern strings and an ops-vector to evaluate them.
7131 * This function returns >0 for match, 0 for no match, and <0 for error.
7132 */
7133static int
7134dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7135    uint32_t priv, uid_t uid, zoneid_t zoneid)
7136{
7137	dtrace_provider_t *pvp = prp->dtpr_provider;
7138	int rv;
7139
7140	if (pvp->dtpv_defunct)
7141		return (0);
7142
7143	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7144		return (rv);
7145
7146	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7147		return (rv);
7148
7149	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7150		return (rv);
7151
7152	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7153		return (rv);
7154
7155	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7156		return (0);
7157
7158	return (rv);
7159}
7160
7161/*
7162 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7163 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7164 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7165 * In addition, all of the recursion cases except for '*' matching have been
7166 * unwound.  For '*', we still implement recursive evaluation, but a depth
7167 * counter is maintained and matching is aborted if we recurse too deep.
7168 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7169 */
7170static int
7171dtrace_match_glob(const char *s, const char *p, int depth)
7172{
7173	const char *olds;
7174	char s1, c;
7175	int gs;
7176
7177	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7178		return (-1);
7179
7180	if (s == NULL)
7181		s = ""; /* treat NULL as empty string */
7182
7183top:
7184	olds = s;
7185	s1 = *s++;
7186
7187	if (p == NULL)
7188		return (0);
7189
7190	if ((c = *p++) == '\0')
7191		return (s1 == '\0');
7192
7193	switch (c) {
7194	case '[': {
7195		int ok = 0, notflag = 0;
7196		char lc = '\0';
7197
7198		if (s1 == '\0')
7199			return (0);
7200
7201		if (*p == '!') {
7202			notflag = 1;
7203			p++;
7204		}
7205
7206		if ((c = *p++) == '\0')
7207			return (0);
7208
7209		do {
7210			if (c == '-' && lc != '\0' && *p != ']') {
7211				if ((c = *p++) == '\0')
7212					return (0);
7213				if (c == '\\' && (c = *p++) == '\0')
7214					return (0);
7215
7216				if (notflag) {
7217					if (s1 < lc || s1 > c)
7218						ok++;
7219					else
7220						return (0);
7221				} else if (lc <= s1 && s1 <= c)
7222					ok++;
7223
7224			} else if (c == '\\' && (c = *p++) == '\0')
7225				return (0);
7226
7227			lc = c; /* save left-hand 'c' for next iteration */
7228
7229			if (notflag) {
7230				if (s1 != c)
7231					ok++;
7232				else
7233					return (0);
7234			} else if (s1 == c)
7235				ok++;
7236
7237			if ((c = *p++) == '\0')
7238				return (0);
7239
7240		} while (c != ']');
7241
7242		if (ok)
7243			goto top;
7244
7245		return (0);
7246	}
7247
7248	case '\\':
7249		if ((c = *p++) == '\0')
7250			return (0);
7251		/*FALLTHRU*/
7252
7253	default:
7254		if (c != s1)
7255			return (0);
7256		/*FALLTHRU*/
7257
7258	case '?':
7259		if (s1 != '\0')
7260			goto top;
7261		return (0);
7262
7263	case '*':
7264		while (*p == '*')
7265			p++; /* consecutive *'s are identical to a single one */
7266
7267		if (*p == '\0')
7268			return (1);
7269
7270		for (s = olds; *s != '\0'; s++) {
7271			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7272				return (gs);
7273		}
7274
7275		return (0);
7276	}
7277}
7278
7279/*ARGSUSED*/
7280static int
7281dtrace_match_string(const char *s, const char *p, int depth)
7282{
7283	return (s != NULL && strcmp(s, p) == 0);
7284}
7285
7286/*ARGSUSED*/
7287static int
7288dtrace_match_nul(const char *s, const char *p, int depth)
7289{
7290	return (1); /* always match the empty pattern */
7291}
7292
7293/*ARGSUSED*/
7294static int
7295dtrace_match_nonzero(const char *s, const char *p, int depth)
7296{
7297	return (s != NULL && s[0] != '\0');
7298}
7299
7300static int
7301dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7302    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7303{
7304	dtrace_probe_t template, *probe;
7305	dtrace_hash_t *hash = NULL;
7306	int len, best = INT_MAX, nmatched = 0;
7307	dtrace_id_t i;
7308
7309	ASSERT(MUTEX_HELD(&dtrace_lock));
7310
7311	/*
7312	 * If the probe ID is specified in the key, just lookup by ID and
7313	 * invoke the match callback once if a matching probe is found.
7314	 */
7315	if (pkp->dtpk_id != DTRACE_IDNONE) {
7316		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7317		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7318			(void) (*matched)(probe, arg);
7319			nmatched++;
7320		}
7321		return (nmatched);
7322	}
7323
7324	template.dtpr_mod = (char *)pkp->dtpk_mod;
7325	template.dtpr_func = (char *)pkp->dtpk_func;
7326	template.dtpr_name = (char *)pkp->dtpk_name;
7327
7328	/*
7329	 * We want to find the most distinct of the module name, function
7330	 * name, and name.  So for each one that is not a glob pattern or
7331	 * empty string, we perform a lookup in the corresponding hash and
7332	 * use the hash table with the fewest collisions to do our search.
7333	 */
7334	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7335	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7336		best = len;
7337		hash = dtrace_bymod;
7338	}
7339
7340	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7341	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7342		best = len;
7343		hash = dtrace_byfunc;
7344	}
7345
7346	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7347	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7348		best = len;
7349		hash = dtrace_byname;
7350	}
7351
7352	/*
7353	 * If we did not select a hash table, iterate over every probe and
7354	 * invoke our callback for each one that matches our input probe key.
7355	 */
7356	if (hash == NULL) {
7357		for (i = 0; i < dtrace_nprobes; i++) {
7358			if ((probe = dtrace_probes[i]) == NULL ||
7359			    dtrace_match_probe(probe, pkp, priv, uid,
7360			    zoneid) <= 0)
7361				continue;
7362
7363			nmatched++;
7364
7365			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7366				break;
7367		}
7368
7369		return (nmatched);
7370	}
7371
7372	/*
7373	 * If we selected a hash table, iterate over each probe of the same key
7374	 * name and invoke the callback for every probe that matches the other
7375	 * attributes of our input probe key.
7376	 */
7377	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7378	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7379
7380		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7381			continue;
7382
7383		nmatched++;
7384
7385		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7386			break;
7387	}
7388
7389	return (nmatched);
7390}
7391
7392/*
7393 * Return the function pointer dtrace_probecmp() should use to compare the
7394 * specified pattern with a string.  For NULL or empty patterns, we select
7395 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7396 * For non-empty non-glob strings, we use dtrace_match_string().
7397 */
7398static dtrace_probekey_f *
7399dtrace_probekey_func(const char *p)
7400{
7401	char c;
7402
7403	if (p == NULL || *p == '\0')
7404		return (&dtrace_match_nul);
7405
7406	while ((c = *p++) != '\0') {
7407		if (c == '[' || c == '?' || c == '*' || c == '\\')
7408			return (&dtrace_match_glob);
7409	}
7410
7411	return (&dtrace_match_string);
7412}
7413
7414/*
7415 * Build a probe comparison key for use with dtrace_match_probe() from the
7416 * given probe description.  By convention, a null key only matches anchored
7417 * probes: if each field is the empty string, reset dtpk_fmatch to
7418 * dtrace_match_nonzero().
7419 */
7420static void
7421dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7422{
7423	pkp->dtpk_prov = pdp->dtpd_provider;
7424	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7425
7426	pkp->dtpk_mod = pdp->dtpd_mod;
7427	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7428
7429	pkp->dtpk_func = pdp->dtpd_func;
7430	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7431
7432	pkp->dtpk_name = pdp->dtpd_name;
7433	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7434
7435	pkp->dtpk_id = pdp->dtpd_id;
7436
7437	if (pkp->dtpk_id == DTRACE_IDNONE &&
7438	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7439	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7440	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7441	    pkp->dtpk_nmatch == &dtrace_match_nul)
7442		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7443}
7444
7445/*
7446 * DTrace Provider-to-Framework API Functions
7447 *
7448 * These functions implement much of the Provider-to-Framework API, as
7449 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7450 * the functions in the API for probe management (found below), and
7451 * dtrace_probe() itself (found above).
7452 */
7453
7454/*
7455 * Register the calling provider with the DTrace framework.  This should
7456 * generally be called by DTrace providers in their attach(9E) entry point.
7457 */
7458int
7459dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7460    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7461{
7462	dtrace_provider_t *provider;
7463
7464	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7465		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7466		    "arguments", name ? name : "<NULL>");
7467		return (EINVAL);
7468	}
7469
7470	if (name[0] == '\0' || dtrace_badname(name)) {
7471		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7472		    "provider name", name);
7473		return (EINVAL);
7474	}
7475
7476	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7477	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7478	    pops->dtps_destroy == NULL ||
7479	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7480		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7481		    "provider ops", name);
7482		return (EINVAL);
7483	}
7484
7485	if (dtrace_badattr(&pap->dtpa_provider) ||
7486	    dtrace_badattr(&pap->dtpa_mod) ||
7487	    dtrace_badattr(&pap->dtpa_func) ||
7488	    dtrace_badattr(&pap->dtpa_name) ||
7489	    dtrace_badattr(&pap->dtpa_args)) {
7490		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7491		    "provider attributes", name);
7492		return (EINVAL);
7493	}
7494
7495	if (priv & ~DTRACE_PRIV_ALL) {
7496		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7497		    "privilege attributes", name);
7498		return (EINVAL);
7499	}
7500
7501	if ((priv & DTRACE_PRIV_KERNEL) &&
7502	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7503	    pops->dtps_usermode == NULL) {
7504		cmn_err(CE_WARN, "failed to register provider '%s': need "
7505		    "dtps_usermode() op for given privilege attributes", name);
7506		return (EINVAL);
7507	}
7508
7509	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7510	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7511	(void) strcpy(provider->dtpv_name, name);
7512
7513	provider->dtpv_attr = *pap;
7514	provider->dtpv_priv.dtpp_flags = priv;
7515	if (cr != NULL) {
7516		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7517		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7518	}
7519	provider->dtpv_pops = *pops;
7520
7521	if (pops->dtps_provide == NULL) {
7522		ASSERT(pops->dtps_provide_module != NULL);
7523		provider->dtpv_pops.dtps_provide =
7524		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7525	}
7526
7527	if (pops->dtps_provide_module == NULL) {
7528		ASSERT(pops->dtps_provide != NULL);
7529		provider->dtpv_pops.dtps_provide_module =
7530		    (void (*)(void *, modctl_t *))dtrace_nullop;
7531	}
7532
7533	if (pops->dtps_suspend == NULL) {
7534		ASSERT(pops->dtps_resume == NULL);
7535		provider->dtpv_pops.dtps_suspend =
7536		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7537		provider->dtpv_pops.dtps_resume =
7538		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7539	}
7540
7541	provider->dtpv_arg = arg;
7542	*idp = (dtrace_provider_id_t)provider;
7543
7544	if (pops == &dtrace_provider_ops) {
7545		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7546		ASSERT(MUTEX_HELD(&dtrace_lock));
7547		ASSERT(dtrace_anon.dta_enabling == NULL);
7548
7549		/*
7550		 * We make sure that the DTrace provider is at the head of
7551		 * the provider chain.
7552		 */
7553		provider->dtpv_next = dtrace_provider;
7554		dtrace_provider = provider;
7555		return (0);
7556	}
7557
7558	mutex_enter(&dtrace_provider_lock);
7559	mutex_enter(&dtrace_lock);
7560
7561	/*
7562	 * If there is at least one provider registered, we'll add this
7563	 * provider after the first provider.
7564	 */
7565	if (dtrace_provider != NULL) {
7566		provider->dtpv_next = dtrace_provider->dtpv_next;
7567		dtrace_provider->dtpv_next = provider;
7568	} else {
7569		dtrace_provider = provider;
7570	}
7571
7572	if (dtrace_retained != NULL) {
7573		dtrace_enabling_provide(provider);
7574
7575		/*
7576		 * Now we need to call dtrace_enabling_matchall() -- which
7577		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7578		 * to drop all of our locks before calling into it...
7579		 */
7580		mutex_exit(&dtrace_lock);
7581		mutex_exit(&dtrace_provider_lock);
7582		dtrace_enabling_matchall();
7583
7584		return (0);
7585	}
7586
7587	mutex_exit(&dtrace_lock);
7588	mutex_exit(&dtrace_provider_lock);
7589
7590	return (0);
7591}
7592
7593/*
7594 * Unregister the specified provider from the DTrace framework.  This should
7595 * generally be called by DTrace providers in their detach(9E) entry point.
7596 */
7597int
7598dtrace_unregister(dtrace_provider_id_t id)
7599{
7600	dtrace_provider_t *old = (dtrace_provider_t *)id;
7601	dtrace_provider_t *prev = NULL;
7602	int i, self = 0, noreap = 0;
7603	dtrace_probe_t *probe, *first = NULL;
7604
7605	if (old->dtpv_pops.dtps_enable ==
7606	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7607		/*
7608		 * If DTrace itself is the provider, we're called with locks
7609		 * already held.
7610		 */
7611		ASSERT(old == dtrace_provider);
7612#if defined(sun)
7613		ASSERT(dtrace_devi != NULL);
7614#endif
7615		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7616		ASSERT(MUTEX_HELD(&dtrace_lock));
7617		self = 1;
7618
7619		if (dtrace_provider->dtpv_next != NULL) {
7620			/*
7621			 * There's another provider here; return failure.
7622			 */
7623			return (EBUSY);
7624		}
7625	} else {
7626		mutex_enter(&dtrace_provider_lock);
7627		mutex_enter(&mod_lock);
7628		mutex_enter(&dtrace_lock);
7629	}
7630
7631	/*
7632	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7633	 * probes, we refuse to let providers slither away, unless this
7634	 * provider has already been explicitly invalidated.
7635	 */
7636	if (!old->dtpv_defunct &&
7637	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7638	    dtrace_anon.dta_state->dts_necbs > 0))) {
7639		if (!self) {
7640			mutex_exit(&dtrace_lock);
7641			mutex_exit(&mod_lock);
7642			mutex_exit(&dtrace_provider_lock);
7643		}
7644		return (EBUSY);
7645	}
7646
7647	/*
7648	 * Attempt to destroy the probes associated with this provider.
7649	 */
7650	for (i = 0; i < dtrace_nprobes; i++) {
7651		if ((probe = dtrace_probes[i]) == NULL)
7652			continue;
7653
7654		if (probe->dtpr_provider != old)
7655			continue;
7656
7657		if (probe->dtpr_ecb == NULL)
7658			continue;
7659
7660		/*
7661		 * If we are trying to unregister a defunct provider, and the
7662		 * provider was made defunct within the interval dictated by
7663		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
7664		 * attempt to reap our enablings.  To denote that the provider
7665		 * should reattempt to unregister itself at some point in the
7666		 * future, we will return a differentiable error code (EAGAIN
7667		 * instead of EBUSY) in this case.
7668		 */
7669		if (dtrace_gethrtime() - old->dtpv_defunct >
7670		    dtrace_unregister_defunct_reap)
7671			noreap = 1;
7672
7673		if (!self) {
7674			mutex_exit(&dtrace_lock);
7675			mutex_exit(&mod_lock);
7676			mutex_exit(&dtrace_provider_lock);
7677		}
7678
7679		if (noreap)
7680			return (EBUSY);
7681
7682		(void) taskq_dispatch(dtrace_taskq,
7683		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7684
7685		return (EAGAIN);
7686	}
7687
7688	/*
7689	 * All of the probes for this provider are disabled; we can safely
7690	 * remove all of them from their hash chains and from the probe array.
7691	 */
7692	for (i = 0; i < dtrace_nprobes; i++) {
7693		if ((probe = dtrace_probes[i]) == NULL)
7694			continue;
7695
7696		if (probe->dtpr_provider != old)
7697			continue;
7698
7699		dtrace_probes[i] = NULL;
7700
7701		dtrace_hash_remove(dtrace_bymod, probe);
7702		dtrace_hash_remove(dtrace_byfunc, probe);
7703		dtrace_hash_remove(dtrace_byname, probe);
7704
7705		if (first == NULL) {
7706			first = probe;
7707			probe->dtpr_nextmod = NULL;
7708		} else {
7709			probe->dtpr_nextmod = first;
7710			first = probe;
7711		}
7712	}
7713
7714	/*
7715	 * The provider's probes have been removed from the hash chains and
7716	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7717	 * everyone has cleared out from any probe array processing.
7718	 */
7719	dtrace_sync();
7720
7721	for (probe = first; probe != NULL; probe = first) {
7722		first = probe->dtpr_nextmod;
7723
7724		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7725		    probe->dtpr_arg);
7726		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7727		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7728		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7729#if defined(sun)
7730		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7731#else
7732		free_unr(dtrace_arena, probe->dtpr_id);
7733#endif
7734		kmem_free(probe, sizeof (dtrace_probe_t));
7735	}
7736
7737	if ((prev = dtrace_provider) == old) {
7738#if defined(sun)
7739		ASSERT(self || dtrace_devi == NULL);
7740		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7741#endif
7742		dtrace_provider = old->dtpv_next;
7743	} else {
7744		while (prev != NULL && prev->dtpv_next != old)
7745			prev = prev->dtpv_next;
7746
7747		if (prev == NULL) {
7748			panic("attempt to unregister non-existent "
7749			    "dtrace provider %p\n", (void *)id);
7750		}
7751
7752		prev->dtpv_next = old->dtpv_next;
7753	}
7754
7755	if (!self) {
7756		mutex_exit(&dtrace_lock);
7757		mutex_exit(&mod_lock);
7758		mutex_exit(&dtrace_provider_lock);
7759	}
7760
7761	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7762	kmem_free(old, sizeof (dtrace_provider_t));
7763
7764	return (0);
7765}
7766
7767/*
7768 * Invalidate the specified provider.  All subsequent probe lookups for the
7769 * specified provider will fail, but its probes will not be removed.
7770 */
7771void
7772dtrace_invalidate(dtrace_provider_id_t id)
7773{
7774	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7775
7776	ASSERT(pvp->dtpv_pops.dtps_enable !=
7777	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7778
7779	mutex_enter(&dtrace_provider_lock);
7780	mutex_enter(&dtrace_lock);
7781
7782	pvp->dtpv_defunct = dtrace_gethrtime();
7783
7784	mutex_exit(&dtrace_lock);
7785	mutex_exit(&dtrace_provider_lock);
7786}
7787
7788/*
7789 * Indicate whether or not DTrace has attached.
7790 */
7791int
7792dtrace_attached(void)
7793{
7794	/*
7795	 * dtrace_provider will be non-NULL iff the DTrace driver has
7796	 * attached.  (It's non-NULL because DTrace is always itself a
7797	 * provider.)
7798	 */
7799	return (dtrace_provider != NULL);
7800}
7801
7802/*
7803 * Remove all the unenabled probes for the given provider.  This function is
7804 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7805 * -- just as many of its associated probes as it can.
7806 */
7807int
7808dtrace_condense(dtrace_provider_id_t id)
7809{
7810	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7811	int i;
7812	dtrace_probe_t *probe;
7813
7814	/*
7815	 * Make sure this isn't the dtrace provider itself.
7816	 */
7817	ASSERT(prov->dtpv_pops.dtps_enable !=
7818	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7819
7820	mutex_enter(&dtrace_provider_lock);
7821	mutex_enter(&dtrace_lock);
7822
7823	/*
7824	 * Attempt to destroy the probes associated with this provider.
7825	 */
7826	for (i = 0; i < dtrace_nprobes; i++) {
7827		if ((probe = dtrace_probes[i]) == NULL)
7828			continue;
7829
7830		if (probe->dtpr_provider != prov)
7831			continue;
7832
7833		if (probe->dtpr_ecb != NULL)
7834			continue;
7835
7836		dtrace_probes[i] = NULL;
7837
7838		dtrace_hash_remove(dtrace_bymod, probe);
7839		dtrace_hash_remove(dtrace_byfunc, probe);
7840		dtrace_hash_remove(dtrace_byname, probe);
7841
7842		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7843		    probe->dtpr_arg);
7844		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7845		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7846		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7847		kmem_free(probe, sizeof (dtrace_probe_t));
7848#if defined(sun)
7849		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7850#else
7851		free_unr(dtrace_arena, i + 1);
7852#endif
7853	}
7854
7855	mutex_exit(&dtrace_lock);
7856	mutex_exit(&dtrace_provider_lock);
7857
7858	return (0);
7859}
7860
7861/*
7862 * DTrace Probe Management Functions
7863 *
7864 * The functions in this section perform the DTrace probe management,
7865 * including functions to create probes, look-up probes, and call into the
7866 * providers to request that probes be provided.  Some of these functions are
7867 * in the Provider-to-Framework API; these functions can be identified by the
7868 * fact that they are not declared "static".
7869 */
7870
7871/*
7872 * Create a probe with the specified module name, function name, and name.
7873 */
7874dtrace_id_t
7875dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7876    const char *func, const char *name, int aframes, void *arg)
7877{
7878	dtrace_probe_t *probe, **probes;
7879	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7880	dtrace_id_t id;
7881
7882	if (provider == dtrace_provider) {
7883		ASSERT(MUTEX_HELD(&dtrace_lock));
7884	} else {
7885		mutex_enter(&dtrace_lock);
7886	}
7887
7888#if defined(sun)
7889	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7890	    VM_BESTFIT | VM_SLEEP);
7891#else
7892	id = alloc_unr(dtrace_arena);
7893#endif
7894	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7895
7896	probe->dtpr_id = id;
7897	probe->dtpr_gen = dtrace_probegen++;
7898	probe->dtpr_mod = dtrace_strdup(mod);
7899	probe->dtpr_func = dtrace_strdup(func);
7900	probe->dtpr_name = dtrace_strdup(name);
7901	probe->dtpr_arg = arg;
7902	probe->dtpr_aframes = aframes;
7903	probe->dtpr_provider = provider;
7904
7905	dtrace_hash_add(dtrace_bymod, probe);
7906	dtrace_hash_add(dtrace_byfunc, probe);
7907	dtrace_hash_add(dtrace_byname, probe);
7908
7909	if (id - 1 >= dtrace_nprobes) {
7910		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7911		size_t nsize = osize << 1;
7912
7913		if (nsize == 0) {
7914			ASSERT(osize == 0);
7915			ASSERT(dtrace_probes == NULL);
7916			nsize = sizeof (dtrace_probe_t *);
7917		}
7918
7919		probes = kmem_zalloc(nsize, KM_SLEEP);
7920
7921		if (dtrace_probes == NULL) {
7922			ASSERT(osize == 0);
7923			dtrace_probes = probes;
7924			dtrace_nprobes = 1;
7925		} else {
7926			dtrace_probe_t **oprobes = dtrace_probes;
7927
7928			bcopy(oprobes, probes, osize);
7929			dtrace_membar_producer();
7930			dtrace_probes = probes;
7931
7932			dtrace_sync();
7933
7934			/*
7935			 * All CPUs are now seeing the new probes array; we can
7936			 * safely free the old array.
7937			 */
7938			kmem_free(oprobes, osize);
7939			dtrace_nprobes <<= 1;
7940		}
7941
7942		ASSERT(id - 1 < dtrace_nprobes);
7943	}
7944
7945	ASSERT(dtrace_probes[id - 1] == NULL);
7946	dtrace_probes[id - 1] = probe;
7947
7948	if (provider != dtrace_provider)
7949		mutex_exit(&dtrace_lock);
7950
7951	return (id);
7952}
7953
7954static dtrace_probe_t *
7955dtrace_probe_lookup_id(dtrace_id_t id)
7956{
7957	ASSERT(MUTEX_HELD(&dtrace_lock));
7958
7959	if (id == 0 || id > dtrace_nprobes)
7960		return (NULL);
7961
7962	return (dtrace_probes[id - 1]);
7963}
7964
7965static int
7966dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7967{
7968	*((dtrace_id_t *)arg) = probe->dtpr_id;
7969
7970	return (DTRACE_MATCH_DONE);
7971}
7972
7973/*
7974 * Look up a probe based on provider and one or more of module name, function
7975 * name and probe name.
7976 */
7977dtrace_id_t
7978dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7979    char *func, char *name)
7980{
7981	dtrace_probekey_t pkey;
7982	dtrace_id_t id;
7983	int match;
7984
7985	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7986	pkey.dtpk_pmatch = &dtrace_match_string;
7987	pkey.dtpk_mod = mod;
7988	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7989	pkey.dtpk_func = func;
7990	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7991	pkey.dtpk_name = name;
7992	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7993	pkey.dtpk_id = DTRACE_IDNONE;
7994
7995	mutex_enter(&dtrace_lock);
7996	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7997	    dtrace_probe_lookup_match, &id);
7998	mutex_exit(&dtrace_lock);
7999
8000	ASSERT(match == 1 || match == 0);
8001	return (match ? id : 0);
8002}
8003
8004/*
8005 * Returns the probe argument associated with the specified probe.
8006 */
8007void *
8008dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8009{
8010	dtrace_probe_t *probe;
8011	void *rval = NULL;
8012
8013	mutex_enter(&dtrace_lock);
8014
8015	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8016	    probe->dtpr_provider == (dtrace_provider_t *)id)
8017		rval = probe->dtpr_arg;
8018
8019	mutex_exit(&dtrace_lock);
8020
8021	return (rval);
8022}
8023
8024/*
8025 * Copy a probe into a probe description.
8026 */
8027static void
8028dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8029{
8030	bzero(pdp, sizeof (dtrace_probedesc_t));
8031	pdp->dtpd_id = prp->dtpr_id;
8032
8033	(void) strncpy(pdp->dtpd_provider,
8034	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8035
8036	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8037	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8038	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8039}
8040
8041/*
8042 * Called to indicate that a probe -- or probes -- should be provided by a
8043 * specfied provider.  If the specified description is NULL, the provider will
8044 * be told to provide all of its probes.  (This is done whenever a new
8045 * consumer comes along, or whenever a retained enabling is to be matched.) If
8046 * the specified description is non-NULL, the provider is given the
8047 * opportunity to dynamically provide the specified probe, allowing providers
8048 * to support the creation of probes on-the-fly.  (So-called _autocreated_
8049 * probes.)  If the provider is NULL, the operations will be applied to all
8050 * providers; if the provider is non-NULL the operations will only be applied
8051 * to the specified provider.  The dtrace_provider_lock must be held, and the
8052 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8053 * will need to grab the dtrace_lock when it reenters the framework through
8054 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8055 */
8056static void
8057dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8058{
8059#if defined(sun)
8060	modctl_t *ctl;
8061#endif
8062	int all = 0;
8063
8064	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8065
8066	if (prv == NULL) {
8067		all = 1;
8068		prv = dtrace_provider;
8069	}
8070
8071	do {
8072		/*
8073		 * First, call the blanket provide operation.
8074		 */
8075		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8076
8077		/*
8078		 * Now call the per-module provide operation.  We will grab
8079		 * mod_lock to prevent the list from being modified.  Note
8080		 * that this also prevents the mod_busy bits from changing.
8081		 * (mod_busy can only be changed with mod_lock held.)
8082		 */
8083		mutex_enter(&mod_lock);
8084
8085#if defined(sun)
8086		ctl = &modules;
8087		do {
8088			if (ctl->mod_busy || ctl->mod_mp == NULL)
8089				continue;
8090
8091			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8092
8093		} while ((ctl = ctl->mod_next) != &modules);
8094#endif
8095
8096		mutex_exit(&mod_lock);
8097	} while (all && (prv = prv->dtpv_next) != NULL);
8098}
8099
8100#if defined(sun)
8101/*
8102 * Iterate over each probe, and call the Framework-to-Provider API function
8103 * denoted by offs.
8104 */
8105static void
8106dtrace_probe_foreach(uintptr_t offs)
8107{
8108	dtrace_provider_t *prov;
8109	void (*func)(void *, dtrace_id_t, void *);
8110	dtrace_probe_t *probe;
8111	dtrace_icookie_t cookie;
8112	int i;
8113
8114	/*
8115	 * We disable interrupts to walk through the probe array.  This is
8116	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8117	 * won't see stale data.
8118	 */
8119	cookie = dtrace_interrupt_disable();
8120
8121	for (i = 0; i < dtrace_nprobes; i++) {
8122		if ((probe = dtrace_probes[i]) == NULL)
8123			continue;
8124
8125		if (probe->dtpr_ecb == NULL) {
8126			/*
8127			 * This probe isn't enabled -- don't call the function.
8128			 */
8129			continue;
8130		}
8131
8132		prov = probe->dtpr_provider;
8133		func = *((void(**)(void *, dtrace_id_t, void *))
8134		    ((uintptr_t)&prov->dtpv_pops + offs));
8135
8136		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8137	}
8138
8139	dtrace_interrupt_enable(cookie);
8140}
8141#endif
8142
8143static int
8144dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8145{
8146	dtrace_probekey_t pkey;
8147	uint32_t priv;
8148	uid_t uid;
8149	zoneid_t zoneid;
8150
8151	ASSERT(MUTEX_HELD(&dtrace_lock));
8152	dtrace_ecb_create_cache = NULL;
8153
8154	if (desc == NULL) {
8155		/*
8156		 * If we're passed a NULL description, we're being asked to
8157		 * create an ECB with a NULL probe.
8158		 */
8159		(void) dtrace_ecb_create_enable(NULL, enab);
8160		return (0);
8161	}
8162
8163	dtrace_probekey(desc, &pkey);
8164	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8165	    &priv, &uid, &zoneid);
8166
8167	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8168	    enab));
8169}
8170
8171/*
8172 * DTrace Helper Provider Functions
8173 */
8174static void
8175dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8176{
8177	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8178	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8179	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8180}
8181
8182static void
8183dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8184    const dof_provider_t *dofprov, char *strtab)
8185{
8186	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8187	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8188	    dofprov->dofpv_provattr);
8189	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8190	    dofprov->dofpv_modattr);
8191	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8192	    dofprov->dofpv_funcattr);
8193	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8194	    dofprov->dofpv_nameattr);
8195	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8196	    dofprov->dofpv_argsattr);
8197}
8198
8199static void
8200dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8201{
8202	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8203	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8204	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8205	dof_provider_t *provider;
8206	dof_probe_t *probe;
8207	uint32_t *off, *enoff;
8208	uint8_t *arg;
8209	char *strtab;
8210	uint_t i, nprobes;
8211	dtrace_helper_provdesc_t dhpv;
8212	dtrace_helper_probedesc_t dhpb;
8213	dtrace_meta_t *meta = dtrace_meta_pid;
8214	dtrace_mops_t *mops = &meta->dtm_mops;
8215	void *parg;
8216
8217	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8218	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8219	    provider->dofpv_strtab * dof->dofh_secsize);
8220	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8221	    provider->dofpv_probes * dof->dofh_secsize);
8222	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8223	    provider->dofpv_prargs * dof->dofh_secsize);
8224	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8225	    provider->dofpv_proffs * dof->dofh_secsize);
8226
8227	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8228	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8229	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8230	enoff = NULL;
8231
8232	/*
8233	 * See dtrace_helper_provider_validate().
8234	 */
8235	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8236	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8237		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8238		    provider->dofpv_prenoffs * dof->dofh_secsize);
8239		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8240	}
8241
8242	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8243
8244	/*
8245	 * Create the provider.
8246	 */
8247	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8248
8249	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8250		return;
8251
8252	meta->dtm_count++;
8253
8254	/*
8255	 * Create the probes.
8256	 */
8257	for (i = 0; i < nprobes; i++) {
8258		probe = (dof_probe_t *)(uintptr_t)(daddr +
8259		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8260
8261		dhpb.dthpb_mod = dhp->dofhp_mod;
8262		dhpb.dthpb_func = strtab + probe->dofpr_func;
8263		dhpb.dthpb_name = strtab + probe->dofpr_name;
8264		dhpb.dthpb_base = probe->dofpr_addr;
8265		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8266		dhpb.dthpb_noffs = probe->dofpr_noffs;
8267		if (enoff != NULL) {
8268			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8269			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8270		} else {
8271			dhpb.dthpb_enoffs = NULL;
8272			dhpb.dthpb_nenoffs = 0;
8273		}
8274		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8275		dhpb.dthpb_nargc = probe->dofpr_nargc;
8276		dhpb.dthpb_xargc = probe->dofpr_xargc;
8277		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8278		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8279
8280		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8281	}
8282}
8283
8284static void
8285dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8286{
8287	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8288	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8289	int i;
8290
8291	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8292
8293	for (i = 0; i < dof->dofh_secnum; i++) {
8294		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8295		    dof->dofh_secoff + i * dof->dofh_secsize);
8296
8297		if (sec->dofs_type != DOF_SECT_PROVIDER)
8298			continue;
8299
8300		dtrace_helper_provide_one(dhp, sec, pid);
8301	}
8302
8303	/*
8304	 * We may have just created probes, so we must now rematch against
8305	 * any retained enablings.  Note that this call will acquire both
8306	 * cpu_lock and dtrace_lock; the fact that we are holding
8307	 * dtrace_meta_lock now is what defines the ordering with respect to
8308	 * these three locks.
8309	 */
8310	dtrace_enabling_matchall();
8311}
8312
8313static void
8314dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8315{
8316	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8317	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8318	dof_sec_t *str_sec;
8319	dof_provider_t *provider;
8320	char *strtab;
8321	dtrace_helper_provdesc_t dhpv;
8322	dtrace_meta_t *meta = dtrace_meta_pid;
8323	dtrace_mops_t *mops = &meta->dtm_mops;
8324
8325	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8326	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8327	    provider->dofpv_strtab * dof->dofh_secsize);
8328
8329	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8330
8331	/*
8332	 * Create the provider.
8333	 */
8334	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8335
8336	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8337
8338	meta->dtm_count--;
8339}
8340
8341static void
8342dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8343{
8344	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8345	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8346	int i;
8347
8348	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8349
8350	for (i = 0; i < dof->dofh_secnum; i++) {
8351		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8352		    dof->dofh_secoff + i * dof->dofh_secsize);
8353
8354		if (sec->dofs_type != DOF_SECT_PROVIDER)
8355			continue;
8356
8357		dtrace_helper_provider_remove_one(dhp, sec, pid);
8358	}
8359}
8360
8361/*
8362 * DTrace Meta Provider-to-Framework API Functions
8363 *
8364 * These functions implement the Meta Provider-to-Framework API, as described
8365 * in <sys/dtrace.h>.
8366 */
8367int
8368dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8369    dtrace_meta_provider_id_t *idp)
8370{
8371	dtrace_meta_t *meta;
8372	dtrace_helpers_t *help, *next;
8373	int i;
8374
8375	*idp = DTRACE_METAPROVNONE;
8376
8377	/*
8378	 * We strictly don't need the name, but we hold onto it for
8379	 * debuggability. All hail error queues!
8380	 */
8381	if (name == NULL) {
8382		cmn_err(CE_WARN, "failed to register meta-provider: "
8383		    "invalid name");
8384		return (EINVAL);
8385	}
8386
8387	if (mops == NULL ||
8388	    mops->dtms_create_probe == NULL ||
8389	    mops->dtms_provide_pid == NULL ||
8390	    mops->dtms_remove_pid == NULL) {
8391		cmn_err(CE_WARN, "failed to register meta-register %s: "
8392		    "invalid ops", name);
8393		return (EINVAL);
8394	}
8395
8396	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8397	meta->dtm_mops = *mops;
8398	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8399	(void) strcpy(meta->dtm_name, name);
8400	meta->dtm_arg = arg;
8401
8402	mutex_enter(&dtrace_meta_lock);
8403	mutex_enter(&dtrace_lock);
8404
8405	if (dtrace_meta_pid != NULL) {
8406		mutex_exit(&dtrace_lock);
8407		mutex_exit(&dtrace_meta_lock);
8408		cmn_err(CE_WARN, "failed to register meta-register %s: "
8409		    "user-land meta-provider exists", name);
8410		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8411		kmem_free(meta, sizeof (dtrace_meta_t));
8412		return (EINVAL);
8413	}
8414
8415	dtrace_meta_pid = meta;
8416	*idp = (dtrace_meta_provider_id_t)meta;
8417
8418	/*
8419	 * If there are providers and probes ready to go, pass them
8420	 * off to the new meta provider now.
8421	 */
8422
8423	help = dtrace_deferred_pid;
8424	dtrace_deferred_pid = NULL;
8425
8426	mutex_exit(&dtrace_lock);
8427
8428	while (help != NULL) {
8429		for (i = 0; i < help->dthps_nprovs; i++) {
8430			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8431			    help->dthps_pid);
8432		}
8433
8434		next = help->dthps_next;
8435		help->dthps_next = NULL;
8436		help->dthps_prev = NULL;
8437		help->dthps_deferred = 0;
8438		help = next;
8439	}
8440
8441	mutex_exit(&dtrace_meta_lock);
8442
8443	return (0);
8444}
8445
8446int
8447dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8448{
8449	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8450
8451	mutex_enter(&dtrace_meta_lock);
8452	mutex_enter(&dtrace_lock);
8453
8454	if (old == dtrace_meta_pid) {
8455		pp = &dtrace_meta_pid;
8456	} else {
8457		panic("attempt to unregister non-existent "
8458		    "dtrace meta-provider %p\n", (void *)old);
8459	}
8460
8461	if (old->dtm_count != 0) {
8462		mutex_exit(&dtrace_lock);
8463		mutex_exit(&dtrace_meta_lock);
8464		return (EBUSY);
8465	}
8466
8467	*pp = NULL;
8468
8469	mutex_exit(&dtrace_lock);
8470	mutex_exit(&dtrace_meta_lock);
8471
8472	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8473	kmem_free(old, sizeof (dtrace_meta_t));
8474
8475	return (0);
8476}
8477
8478
8479/*
8480 * DTrace DIF Object Functions
8481 */
8482static int
8483dtrace_difo_err(uint_t pc, const char *format, ...)
8484{
8485	if (dtrace_err_verbose) {
8486		va_list alist;
8487
8488		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8489		va_start(alist, format);
8490		(void) vuprintf(format, alist);
8491		va_end(alist);
8492	}
8493
8494#ifdef DTRACE_ERRDEBUG
8495	dtrace_errdebug(format);
8496#endif
8497	return (1);
8498}
8499
8500/*
8501 * Validate a DTrace DIF object by checking the IR instructions.  The following
8502 * rules are currently enforced by dtrace_difo_validate():
8503 *
8504 * 1. Each instruction must have a valid opcode
8505 * 2. Each register, string, variable, or subroutine reference must be valid
8506 * 3. No instruction can modify register %r0 (must be zero)
8507 * 4. All instruction reserved bits must be set to zero
8508 * 5. The last instruction must be a "ret" instruction
8509 * 6. All branch targets must reference a valid instruction _after_ the branch
8510 */
8511static int
8512dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8513    cred_t *cr)
8514{
8515	int err = 0, i;
8516	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8517	int kcheckload;
8518	uint_t pc;
8519
8520	kcheckload = cr == NULL ||
8521	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8522
8523	dp->dtdo_destructive = 0;
8524
8525	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8526		dif_instr_t instr = dp->dtdo_buf[pc];
8527
8528		uint_t r1 = DIF_INSTR_R1(instr);
8529		uint_t r2 = DIF_INSTR_R2(instr);
8530		uint_t rd = DIF_INSTR_RD(instr);
8531		uint_t rs = DIF_INSTR_RS(instr);
8532		uint_t label = DIF_INSTR_LABEL(instr);
8533		uint_t v = DIF_INSTR_VAR(instr);
8534		uint_t subr = DIF_INSTR_SUBR(instr);
8535		uint_t type = DIF_INSTR_TYPE(instr);
8536		uint_t op = DIF_INSTR_OP(instr);
8537
8538		switch (op) {
8539		case DIF_OP_OR:
8540		case DIF_OP_XOR:
8541		case DIF_OP_AND:
8542		case DIF_OP_SLL:
8543		case DIF_OP_SRL:
8544		case DIF_OP_SRA:
8545		case DIF_OP_SUB:
8546		case DIF_OP_ADD:
8547		case DIF_OP_MUL:
8548		case DIF_OP_SDIV:
8549		case DIF_OP_UDIV:
8550		case DIF_OP_SREM:
8551		case DIF_OP_UREM:
8552		case DIF_OP_COPYS:
8553			if (r1 >= nregs)
8554				err += efunc(pc, "invalid register %u\n", r1);
8555			if (r2 >= nregs)
8556				err += efunc(pc, "invalid register %u\n", r2);
8557			if (rd >= nregs)
8558				err += efunc(pc, "invalid register %u\n", rd);
8559			if (rd == 0)
8560				err += efunc(pc, "cannot write to %r0\n");
8561			break;
8562		case DIF_OP_NOT:
8563		case DIF_OP_MOV:
8564		case DIF_OP_ALLOCS:
8565			if (r1 >= nregs)
8566				err += efunc(pc, "invalid register %u\n", r1);
8567			if (r2 != 0)
8568				err += efunc(pc, "non-zero reserved bits\n");
8569			if (rd >= nregs)
8570				err += efunc(pc, "invalid register %u\n", rd);
8571			if (rd == 0)
8572				err += efunc(pc, "cannot write to %r0\n");
8573			break;
8574		case DIF_OP_LDSB:
8575		case DIF_OP_LDSH:
8576		case DIF_OP_LDSW:
8577		case DIF_OP_LDUB:
8578		case DIF_OP_LDUH:
8579		case DIF_OP_LDUW:
8580		case DIF_OP_LDX:
8581			if (r1 >= nregs)
8582				err += efunc(pc, "invalid register %u\n", r1);
8583			if (r2 != 0)
8584				err += efunc(pc, "non-zero reserved bits\n");
8585			if (rd >= nregs)
8586				err += efunc(pc, "invalid register %u\n", rd);
8587			if (rd == 0)
8588				err += efunc(pc, "cannot write to %r0\n");
8589			if (kcheckload)
8590				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8591				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8592			break;
8593		case DIF_OP_RLDSB:
8594		case DIF_OP_RLDSH:
8595		case DIF_OP_RLDSW:
8596		case DIF_OP_RLDUB:
8597		case DIF_OP_RLDUH:
8598		case DIF_OP_RLDUW:
8599		case DIF_OP_RLDX:
8600			if (r1 >= nregs)
8601				err += efunc(pc, "invalid register %u\n", r1);
8602			if (r2 != 0)
8603				err += efunc(pc, "non-zero reserved bits\n");
8604			if (rd >= nregs)
8605				err += efunc(pc, "invalid register %u\n", rd);
8606			if (rd == 0)
8607				err += efunc(pc, "cannot write to %r0\n");
8608			break;
8609		case DIF_OP_ULDSB:
8610		case DIF_OP_ULDSH:
8611		case DIF_OP_ULDSW:
8612		case DIF_OP_ULDUB:
8613		case DIF_OP_ULDUH:
8614		case DIF_OP_ULDUW:
8615		case DIF_OP_ULDX:
8616			if (r1 >= nregs)
8617				err += efunc(pc, "invalid register %u\n", r1);
8618			if (r2 != 0)
8619				err += efunc(pc, "non-zero reserved bits\n");
8620			if (rd >= nregs)
8621				err += efunc(pc, "invalid register %u\n", rd);
8622			if (rd == 0)
8623				err += efunc(pc, "cannot write to %r0\n");
8624			break;
8625		case DIF_OP_STB:
8626		case DIF_OP_STH:
8627		case DIF_OP_STW:
8628		case DIF_OP_STX:
8629			if (r1 >= nregs)
8630				err += efunc(pc, "invalid register %u\n", r1);
8631			if (r2 != 0)
8632				err += efunc(pc, "non-zero reserved bits\n");
8633			if (rd >= nregs)
8634				err += efunc(pc, "invalid register %u\n", rd);
8635			if (rd == 0)
8636				err += efunc(pc, "cannot write to 0 address\n");
8637			break;
8638		case DIF_OP_CMP:
8639		case DIF_OP_SCMP:
8640			if (r1 >= nregs)
8641				err += efunc(pc, "invalid register %u\n", r1);
8642			if (r2 >= nregs)
8643				err += efunc(pc, "invalid register %u\n", r2);
8644			if (rd != 0)
8645				err += efunc(pc, "non-zero reserved bits\n");
8646			break;
8647		case DIF_OP_TST:
8648			if (r1 >= nregs)
8649				err += efunc(pc, "invalid register %u\n", r1);
8650			if (r2 != 0 || rd != 0)
8651				err += efunc(pc, "non-zero reserved bits\n");
8652			break;
8653		case DIF_OP_BA:
8654		case DIF_OP_BE:
8655		case DIF_OP_BNE:
8656		case DIF_OP_BG:
8657		case DIF_OP_BGU:
8658		case DIF_OP_BGE:
8659		case DIF_OP_BGEU:
8660		case DIF_OP_BL:
8661		case DIF_OP_BLU:
8662		case DIF_OP_BLE:
8663		case DIF_OP_BLEU:
8664			if (label >= dp->dtdo_len) {
8665				err += efunc(pc, "invalid branch target %u\n",
8666				    label);
8667			}
8668			if (label <= pc) {
8669				err += efunc(pc, "backward branch to %u\n",
8670				    label);
8671			}
8672			break;
8673		case DIF_OP_RET:
8674			if (r1 != 0 || r2 != 0)
8675				err += efunc(pc, "non-zero reserved bits\n");
8676			if (rd >= nregs)
8677				err += efunc(pc, "invalid register %u\n", rd);
8678			break;
8679		case DIF_OP_NOP:
8680		case DIF_OP_POPTS:
8681		case DIF_OP_FLUSHTS:
8682			if (r1 != 0 || r2 != 0 || rd != 0)
8683				err += efunc(pc, "non-zero reserved bits\n");
8684			break;
8685		case DIF_OP_SETX:
8686			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8687				err += efunc(pc, "invalid integer ref %u\n",
8688				    DIF_INSTR_INTEGER(instr));
8689			}
8690			if (rd >= nregs)
8691				err += efunc(pc, "invalid register %u\n", rd);
8692			if (rd == 0)
8693				err += efunc(pc, "cannot write to %r0\n");
8694			break;
8695		case DIF_OP_SETS:
8696			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8697				err += efunc(pc, "invalid string ref %u\n",
8698				    DIF_INSTR_STRING(instr));
8699			}
8700			if (rd >= nregs)
8701				err += efunc(pc, "invalid register %u\n", rd);
8702			if (rd == 0)
8703				err += efunc(pc, "cannot write to %r0\n");
8704			break;
8705		case DIF_OP_LDGA:
8706		case DIF_OP_LDTA:
8707			if (r1 > DIF_VAR_ARRAY_MAX)
8708				err += efunc(pc, "invalid array %u\n", r1);
8709			if (r2 >= nregs)
8710				err += efunc(pc, "invalid register %u\n", r2);
8711			if (rd >= nregs)
8712				err += efunc(pc, "invalid register %u\n", rd);
8713			if (rd == 0)
8714				err += efunc(pc, "cannot write to %r0\n");
8715			break;
8716		case DIF_OP_LDGS:
8717		case DIF_OP_LDTS:
8718		case DIF_OP_LDLS:
8719		case DIF_OP_LDGAA:
8720		case DIF_OP_LDTAA:
8721			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8722				err += efunc(pc, "invalid variable %u\n", v);
8723			if (rd >= nregs)
8724				err += efunc(pc, "invalid register %u\n", rd);
8725			if (rd == 0)
8726				err += efunc(pc, "cannot write to %r0\n");
8727			break;
8728		case DIF_OP_STGS:
8729		case DIF_OP_STTS:
8730		case DIF_OP_STLS:
8731		case DIF_OP_STGAA:
8732		case DIF_OP_STTAA:
8733			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8734				err += efunc(pc, "invalid variable %u\n", v);
8735			if (rs >= nregs)
8736				err += efunc(pc, "invalid register %u\n", rd);
8737			break;
8738		case DIF_OP_CALL:
8739			if (subr > DIF_SUBR_MAX)
8740				err += efunc(pc, "invalid subr %u\n", subr);
8741			if (rd >= nregs)
8742				err += efunc(pc, "invalid register %u\n", rd);
8743			if (rd == 0)
8744				err += efunc(pc, "cannot write to %r0\n");
8745
8746			if (subr == DIF_SUBR_COPYOUT ||
8747			    subr == DIF_SUBR_COPYOUTSTR) {
8748				dp->dtdo_destructive = 1;
8749			}
8750			break;
8751		case DIF_OP_PUSHTR:
8752			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8753				err += efunc(pc, "invalid ref type %u\n", type);
8754			if (r2 >= nregs)
8755				err += efunc(pc, "invalid register %u\n", r2);
8756			if (rs >= nregs)
8757				err += efunc(pc, "invalid register %u\n", rs);
8758			break;
8759		case DIF_OP_PUSHTV:
8760			if (type != DIF_TYPE_CTF)
8761				err += efunc(pc, "invalid val type %u\n", type);
8762			if (r2 >= nregs)
8763				err += efunc(pc, "invalid register %u\n", r2);
8764			if (rs >= nregs)
8765				err += efunc(pc, "invalid register %u\n", rs);
8766			break;
8767		default:
8768			err += efunc(pc, "invalid opcode %u\n",
8769			    DIF_INSTR_OP(instr));
8770		}
8771	}
8772
8773	if (dp->dtdo_len != 0 &&
8774	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8775		err += efunc(dp->dtdo_len - 1,
8776		    "expected 'ret' as last DIF instruction\n");
8777	}
8778
8779	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8780		/*
8781		 * If we're not returning by reference, the size must be either
8782		 * 0 or the size of one of the base types.
8783		 */
8784		switch (dp->dtdo_rtype.dtdt_size) {
8785		case 0:
8786		case sizeof (uint8_t):
8787		case sizeof (uint16_t):
8788		case sizeof (uint32_t):
8789		case sizeof (uint64_t):
8790			break;
8791
8792		default:
8793			err += efunc(dp->dtdo_len - 1, "bad return size");
8794		}
8795	}
8796
8797	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8798		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8799		dtrace_diftype_t *vt, *et;
8800		uint_t id, ndx;
8801
8802		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8803		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8804		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8805			err += efunc(i, "unrecognized variable scope %d\n",
8806			    v->dtdv_scope);
8807			break;
8808		}
8809
8810		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8811		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8812			err += efunc(i, "unrecognized variable type %d\n",
8813			    v->dtdv_kind);
8814			break;
8815		}
8816
8817		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8818			err += efunc(i, "%d exceeds variable id limit\n", id);
8819			break;
8820		}
8821
8822		if (id < DIF_VAR_OTHER_UBASE)
8823			continue;
8824
8825		/*
8826		 * For user-defined variables, we need to check that this
8827		 * definition is identical to any previous definition that we
8828		 * encountered.
8829		 */
8830		ndx = id - DIF_VAR_OTHER_UBASE;
8831
8832		switch (v->dtdv_scope) {
8833		case DIFV_SCOPE_GLOBAL:
8834			if (ndx < vstate->dtvs_nglobals) {
8835				dtrace_statvar_t *svar;
8836
8837				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8838					existing = &svar->dtsv_var;
8839			}
8840
8841			break;
8842
8843		case DIFV_SCOPE_THREAD:
8844			if (ndx < vstate->dtvs_ntlocals)
8845				existing = &vstate->dtvs_tlocals[ndx];
8846			break;
8847
8848		case DIFV_SCOPE_LOCAL:
8849			if (ndx < vstate->dtvs_nlocals) {
8850				dtrace_statvar_t *svar;
8851
8852				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8853					existing = &svar->dtsv_var;
8854			}
8855
8856			break;
8857		}
8858
8859		vt = &v->dtdv_type;
8860
8861		if (vt->dtdt_flags & DIF_TF_BYREF) {
8862			if (vt->dtdt_size == 0) {
8863				err += efunc(i, "zero-sized variable\n");
8864				break;
8865			}
8866
8867			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8868			    vt->dtdt_size > dtrace_global_maxsize) {
8869				err += efunc(i, "oversized by-ref global\n");
8870				break;
8871			}
8872		}
8873
8874		if (existing == NULL || existing->dtdv_id == 0)
8875			continue;
8876
8877		ASSERT(existing->dtdv_id == v->dtdv_id);
8878		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8879
8880		if (existing->dtdv_kind != v->dtdv_kind)
8881			err += efunc(i, "%d changed variable kind\n", id);
8882
8883		et = &existing->dtdv_type;
8884
8885		if (vt->dtdt_flags != et->dtdt_flags) {
8886			err += efunc(i, "%d changed variable type flags\n", id);
8887			break;
8888		}
8889
8890		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8891			err += efunc(i, "%d changed variable type size\n", id);
8892			break;
8893		}
8894	}
8895
8896	return (err);
8897}
8898
8899/*
8900 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8901 * are much more constrained than normal DIFOs.  Specifically, they may
8902 * not:
8903 *
8904 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8905 *    miscellaneous string routines
8906 * 2. Access DTrace variables other than the args[] array, and the
8907 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8908 * 3. Have thread-local variables.
8909 * 4. Have dynamic variables.
8910 */
8911static int
8912dtrace_difo_validate_helper(dtrace_difo_t *dp)
8913{
8914	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8915	int err = 0;
8916	uint_t pc;
8917
8918	for (pc = 0; pc < dp->dtdo_len; pc++) {
8919		dif_instr_t instr = dp->dtdo_buf[pc];
8920
8921		uint_t v = DIF_INSTR_VAR(instr);
8922		uint_t subr = DIF_INSTR_SUBR(instr);
8923		uint_t op = DIF_INSTR_OP(instr);
8924
8925		switch (op) {
8926		case DIF_OP_OR:
8927		case DIF_OP_XOR:
8928		case DIF_OP_AND:
8929		case DIF_OP_SLL:
8930		case DIF_OP_SRL:
8931		case DIF_OP_SRA:
8932		case DIF_OP_SUB:
8933		case DIF_OP_ADD:
8934		case DIF_OP_MUL:
8935		case DIF_OP_SDIV:
8936		case DIF_OP_UDIV:
8937		case DIF_OP_SREM:
8938		case DIF_OP_UREM:
8939		case DIF_OP_COPYS:
8940		case DIF_OP_NOT:
8941		case DIF_OP_MOV:
8942		case DIF_OP_RLDSB:
8943		case DIF_OP_RLDSH:
8944		case DIF_OP_RLDSW:
8945		case DIF_OP_RLDUB:
8946		case DIF_OP_RLDUH:
8947		case DIF_OP_RLDUW:
8948		case DIF_OP_RLDX:
8949		case DIF_OP_ULDSB:
8950		case DIF_OP_ULDSH:
8951		case DIF_OP_ULDSW:
8952		case DIF_OP_ULDUB:
8953		case DIF_OP_ULDUH:
8954		case DIF_OP_ULDUW:
8955		case DIF_OP_ULDX:
8956		case DIF_OP_STB:
8957		case DIF_OP_STH:
8958		case DIF_OP_STW:
8959		case DIF_OP_STX:
8960		case DIF_OP_ALLOCS:
8961		case DIF_OP_CMP:
8962		case DIF_OP_SCMP:
8963		case DIF_OP_TST:
8964		case DIF_OP_BA:
8965		case DIF_OP_BE:
8966		case DIF_OP_BNE:
8967		case DIF_OP_BG:
8968		case DIF_OP_BGU:
8969		case DIF_OP_BGE:
8970		case DIF_OP_BGEU:
8971		case DIF_OP_BL:
8972		case DIF_OP_BLU:
8973		case DIF_OP_BLE:
8974		case DIF_OP_BLEU:
8975		case DIF_OP_RET:
8976		case DIF_OP_NOP:
8977		case DIF_OP_POPTS:
8978		case DIF_OP_FLUSHTS:
8979		case DIF_OP_SETX:
8980		case DIF_OP_SETS:
8981		case DIF_OP_LDGA:
8982		case DIF_OP_LDLS:
8983		case DIF_OP_STGS:
8984		case DIF_OP_STLS:
8985		case DIF_OP_PUSHTR:
8986		case DIF_OP_PUSHTV:
8987			break;
8988
8989		case DIF_OP_LDGS:
8990			if (v >= DIF_VAR_OTHER_UBASE)
8991				break;
8992
8993			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8994				break;
8995
8996			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8997			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8998			    v == DIF_VAR_EXECARGS ||
8999			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9000			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9001				break;
9002
9003			err += efunc(pc, "illegal variable %u\n", v);
9004			break;
9005
9006		case DIF_OP_LDTA:
9007		case DIF_OP_LDTS:
9008		case DIF_OP_LDGAA:
9009		case DIF_OP_LDTAA:
9010			err += efunc(pc, "illegal dynamic variable load\n");
9011			break;
9012
9013		case DIF_OP_STTS:
9014		case DIF_OP_STGAA:
9015		case DIF_OP_STTAA:
9016			err += efunc(pc, "illegal dynamic variable store\n");
9017			break;
9018
9019		case DIF_OP_CALL:
9020			if (subr == DIF_SUBR_ALLOCA ||
9021			    subr == DIF_SUBR_BCOPY ||
9022			    subr == DIF_SUBR_COPYIN ||
9023			    subr == DIF_SUBR_COPYINTO ||
9024			    subr == DIF_SUBR_COPYINSTR ||
9025			    subr == DIF_SUBR_INDEX ||
9026			    subr == DIF_SUBR_INET_NTOA ||
9027			    subr == DIF_SUBR_INET_NTOA6 ||
9028			    subr == DIF_SUBR_INET_NTOP ||
9029			    subr == DIF_SUBR_LLTOSTR ||
9030			    subr == DIF_SUBR_RINDEX ||
9031			    subr == DIF_SUBR_STRCHR ||
9032			    subr == DIF_SUBR_STRJOIN ||
9033			    subr == DIF_SUBR_STRRCHR ||
9034			    subr == DIF_SUBR_STRSTR ||
9035			    subr == DIF_SUBR_HTONS ||
9036			    subr == DIF_SUBR_HTONL ||
9037			    subr == DIF_SUBR_HTONLL ||
9038			    subr == DIF_SUBR_NTOHS ||
9039			    subr == DIF_SUBR_NTOHL ||
9040			    subr == DIF_SUBR_NTOHLL ||
9041			    subr == DIF_SUBR_MEMREF ||
9042			    subr == DIF_SUBR_TYPEREF)
9043				break;
9044
9045			err += efunc(pc, "invalid subr %u\n", subr);
9046			break;
9047
9048		default:
9049			err += efunc(pc, "invalid opcode %u\n",
9050			    DIF_INSTR_OP(instr));
9051		}
9052	}
9053
9054	return (err);
9055}
9056
9057/*
9058 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9059 * basis; 0 if not.
9060 */
9061static int
9062dtrace_difo_cacheable(dtrace_difo_t *dp)
9063{
9064	int i;
9065
9066	if (dp == NULL)
9067		return (0);
9068
9069	for (i = 0; i < dp->dtdo_varlen; i++) {
9070		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9071
9072		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9073			continue;
9074
9075		switch (v->dtdv_id) {
9076		case DIF_VAR_CURTHREAD:
9077		case DIF_VAR_PID:
9078		case DIF_VAR_TID:
9079		case DIF_VAR_EXECARGS:
9080		case DIF_VAR_EXECNAME:
9081		case DIF_VAR_ZONENAME:
9082			break;
9083
9084		default:
9085			return (0);
9086		}
9087	}
9088
9089	/*
9090	 * This DIF object may be cacheable.  Now we need to look for any
9091	 * array loading instructions, any memory loading instructions, or
9092	 * any stores to thread-local variables.
9093	 */
9094	for (i = 0; i < dp->dtdo_len; i++) {
9095		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9096
9097		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9098		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9099		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9100		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9101			return (0);
9102	}
9103
9104	return (1);
9105}
9106
9107static void
9108dtrace_difo_hold(dtrace_difo_t *dp)
9109{
9110	int i;
9111
9112	ASSERT(MUTEX_HELD(&dtrace_lock));
9113
9114	dp->dtdo_refcnt++;
9115	ASSERT(dp->dtdo_refcnt != 0);
9116
9117	/*
9118	 * We need to check this DIF object for references to the variable
9119	 * DIF_VAR_VTIMESTAMP.
9120	 */
9121	for (i = 0; i < dp->dtdo_varlen; i++) {
9122		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9123
9124		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9125			continue;
9126
9127		if (dtrace_vtime_references++ == 0)
9128			dtrace_vtime_enable();
9129	}
9130}
9131
9132/*
9133 * This routine calculates the dynamic variable chunksize for a given DIF
9134 * object.  The calculation is not fool-proof, and can probably be tricked by
9135 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9136 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9137 * if a dynamic variable size exceeds the chunksize.
9138 */
9139static void
9140dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9141{
9142	uint64_t sval = 0;
9143	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9144	const dif_instr_t *text = dp->dtdo_buf;
9145	uint_t pc, srd = 0;
9146	uint_t ttop = 0;
9147	size_t size, ksize;
9148	uint_t id, i;
9149
9150	for (pc = 0; pc < dp->dtdo_len; pc++) {
9151		dif_instr_t instr = text[pc];
9152		uint_t op = DIF_INSTR_OP(instr);
9153		uint_t rd = DIF_INSTR_RD(instr);
9154		uint_t r1 = DIF_INSTR_R1(instr);
9155		uint_t nkeys = 0;
9156		uchar_t scope = 0;
9157
9158		dtrace_key_t *key = tupregs;
9159
9160		switch (op) {
9161		case DIF_OP_SETX:
9162			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9163			srd = rd;
9164			continue;
9165
9166		case DIF_OP_STTS:
9167			key = &tupregs[DIF_DTR_NREGS];
9168			key[0].dttk_size = 0;
9169			key[1].dttk_size = 0;
9170			nkeys = 2;
9171			scope = DIFV_SCOPE_THREAD;
9172			break;
9173
9174		case DIF_OP_STGAA:
9175		case DIF_OP_STTAA:
9176			nkeys = ttop;
9177
9178			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9179				key[nkeys++].dttk_size = 0;
9180
9181			key[nkeys++].dttk_size = 0;
9182
9183			if (op == DIF_OP_STTAA) {
9184				scope = DIFV_SCOPE_THREAD;
9185			} else {
9186				scope = DIFV_SCOPE_GLOBAL;
9187			}
9188
9189			break;
9190
9191		case DIF_OP_PUSHTR:
9192			if (ttop == DIF_DTR_NREGS)
9193				return;
9194
9195			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9196				/*
9197				 * If the register for the size of the "pushtr"
9198				 * is %r0 (or the value is 0) and the type is
9199				 * a string, we'll use the system-wide default
9200				 * string size.
9201				 */
9202				tupregs[ttop++].dttk_size =
9203				    dtrace_strsize_default;
9204			} else {
9205				if (srd == 0)
9206					return;
9207
9208				tupregs[ttop++].dttk_size = sval;
9209			}
9210
9211			break;
9212
9213		case DIF_OP_PUSHTV:
9214			if (ttop == DIF_DTR_NREGS)
9215				return;
9216
9217			tupregs[ttop++].dttk_size = 0;
9218			break;
9219
9220		case DIF_OP_FLUSHTS:
9221			ttop = 0;
9222			break;
9223
9224		case DIF_OP_POPTS:
9225			if (ttop != 0)
9226				ttop--;
9227			break;
9228		}
9229
9230		sval = 0;
9231		srd = 0;
9232
9233		if (nkeys == 0)
9234			continue;
9235
9236		/*
9237		 * We have a dynamic variable allocation; calculate its size.
9238		 */
9239		for (ksize = 0, i = 0; i < nkeys; i++)
9240			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9241
9242		size = sizeof (dtrace_dynvar_t);
9243		size += sizeof (dtrace_key_t) * (nkeys - 1);
9244		size += ksize;
9245
9246		/*
9247		 * Now we need to determine the size of the stored data.
9248		 */
9249		id = DIF_INSTR_VAR(instr);
9250
9251		for (i = 0; i < dp->dtdo_varlen; i++) {
9252			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9253
9254			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9255				size += v->dtdv_type.dtdt_size;
9256				break;
9257			}
9258		}
9259
9260		if (i == dp->dtdo_varlen)
9261			return;
9262
9263		/*
9264		 * We have the size.  If this is larger than the chunk size
9265		 * for our dynamic variable state, reset the chunk size.
9266		 */
9267		size = P2ROUNDUP(size, sizeof (uint64_t));
9268
9269		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9270			vstate->dtvs_dynvars.dtds_chunksize = size;
9271	}
9272}
9273
9274static void
9275dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9276{
9277	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9278	uint_t id;
9279
9280	ASSERT(MUTEX_HELD(&dtrace_lock));
9281	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9282
9283	for (i = 0; i < dp->dtdo_varlen; i++) {
9284		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9285		dtrace_statvar_t *svar, ***svarp = NULL;
9286		size_t dsize = 0;
9287		uint8_t scope = v->dtdv_scope;
9288		int *np = NULL;
9289
9290		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9291			continue;
9292
9293		id -= DIF_VAR_OTHER_UBASE;
9294
9295		switch (scope) {
9296		case DIFV_SCOPE_THREAD:
9297			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9298				dtrace_difv_t *tlocals;
9299
9300				if ((ntlocals = (otlocals << 1)) == 0)
9301					ntlocals = 1;
9302
9303				osz = otlocals * sizeof (dtrace_difv_t);
9304				nsz = ntlocals * sizeof (dtrace_difv_t);
9305
9306				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9307
9308				if (osz != 0) {
9309					bcopy(vstate->dtvs_tlocals,
9310					    tlocals, osz);
9311					kmem_free(vstate->dtvs_tlocals, osz);
9312				}
9313
9314				vstate->dtvs_tlocals = tlocals;
9315				vstate->dtvs_ntlocals = ntlocals;
9316			}
9317
9318			vstate->dtvs_tlocals[id] = *v;
9319			continue;
9320
9321		case DIFV_SCOPE_LOCAL:
9322			np = &vstate->dtvs_nlocals;
9323			svarp = &vstate->dtvs_locals;
9324
9325			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9326				dsize = NCPU * (v->dtdv_type.dtdt_size +
9327				    sizeof (uint64_t));
9328			else
9329				dsize = NCPU * sizeof (uint64_t);
9330
9331			break;
9332
9333		case DIFV_SCOPE_GLOBAL:
9334			np = &vstate->dtvs_nglobals;
9335			svarp = &vstate->dtvs_globals;
9336
9337			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9338				dsize = v->dtdv_type.dtdt_size +
9339				    sizeof (uint64_t);
9340
9341			break;
9342
9343		default:
9344			ASSERT(0);
9345		}
9346
9347		while (id >= (oldsvars = *np)) {
9348			dtrace_statvar_t **statics;
9349			int newsvars, oldsize, newsize;
9350
9351			if ((newsvars = (oldsvars << 1)) == 0)
9352				newsvars = 1;
9353
9354			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9355			newsize = newsvars * sizeof (dtrace_statvar_t *);
9356
9357			statics = kmem_zalloc(newsize, KM_SLEEP);
9358
9359			if (oldsize != 0) {
9360				bcopy(*svarp, statics, oldsize);
9361				kmem_free(*svarp, oldsize);
9362			}
9363
9364			*svarp = statics;
9365			*np = newsvars;
9366		}
9367
9368		if ((svar = (*svarp)[id]) == NULL) {
9369			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9370			svar->dtsv_var = *v;
9371
9372			if ((svar->dtsv_size = dsize) != 0) {
9373				svar->dtsv_data = (uint64_t)(uintptr_t)
9374				    kmem_zalloc(dsize, KM_SLEEP);
9375			}
9376
9377			(*svarp)[id] = svar;
9378		}
9379
9380		svar->dtsv_refcnt++;
9381	}
9382
9383	dtrace_difo_chunksize(dp, vstate);
9384	dtrace_difo_hold(dp);
9385}
9386
9387static dtrace_difo_t *
9388dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9389{
9390	dtrace_difo_t *new;
9391	size_t sz;
9392
9393	ASSERT(dp->dtdo_buf != NULL);
9394	ASSERT(dp->dtdo_refcnt != 0);
9395
9396	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9397
9398	ASSERT(dp->dtdo_buf != NULL);
9399	sz = dp->dtdo_len * sizeof (dif_instr_t);
9400	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9401	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9402	new->dtdo_len = dp->dtdo_len;
9403
9404	if (dp->dtdo_strtab != NULL) {
9405		ASSERT(dp->dtdo_strlen != 0);
9406		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9407		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9408		new->dtdo_strlen = dp->dtdo_strlen;
9409	}
9410
9411	if (dp->dtdo_inttab != NULL) {
9412		ASSERT(dp->dtdo_intlen != 0);
9413		sz = dp->dtdo_intlen * sizeof (uint64_t);
9414		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9415		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9416		new->dtdo_intlen = dp->dtdo_intlen;
9417	}
9418
9419	if (dp->dtdo_vartab != NULL) {
9420		ASSERT(dp->dtdo_varlen != 0);
9421		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9422		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9423		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9424		new->dtdo_varlen = dp->dtdo_varlen;
9425	}
9426
9427	dtrace_difo_init(new, vstate);
9428	return (new);
9429}
9430
9431static void
9432dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9433{
9434	int i;
9435
9436	ASSERT(dp->dtdo_refcnt == 0);
9437
9438	for (i = 0; i < dp->dtdo_varlen; i++) {
9439		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9440		dtrace_statvar_t *svar, **svarp = NULL;
9441		uint_t id;
9442		uint8_t scope = v->dtdv_scope;
9443		int *np = NULL;
9444
9445		switch (scope) {
9446		case DIFV_SCOPE_THREAD:
9447			continue;
9448
9449		case DIFV_SCOPE_LOCAL:
9450			np = &vstate->dtvs_nlocals;
9451			svarp = vstate->dtvs_locals;
9452			break;
9453
9454		case DIFV_SCOPE_GLOBAL:
9455			np = &vstate->dtvs_nglobals;
9456			svarp = vstate->dtvs_globals;
9457			break;
9458
9459		default:
9460			ASSERT(0);
9461		}
9462
9463		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9464			continue;
9465
9466		id -= DIF_VAR_OTHER_UBASE;
9467		ASSERT(id < *np);
9468
9469		svar = svarp[id];
9470		ASSERT(svar != NULL);
9471		ASSERT(svar->dtsv_refcnt > 0);
9472
9473		if (--svar->dtsv_refcnt > 0)
9474			continue;
9475
9476		if (svar->dtsv_size != 0) {
9477			ASSERT(svar->dtsv_data != 0);
9478			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9479			    svar->dtsv_size);
9480		}
9481
9482		kmem_free(svar, sizeof (dtrace_statvar_t));
9483		svarp[id] = NULL;
9484	}
9485
9486	if (dp->dtdo_buf != NULL)
9487		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9488	if (dp->dtdo_inttab != NULL)
9489		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9490	if (dp->dtdo_strtab != NULL)
9491		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9492	if (dp->dtdo_vartab != NULL)
9493		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9494
9495	kmem_free(dp, sizeof (dtrace_difo_t));
9496}
9497
9498static void
9499dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9500{
9501	int i;
9502
9503	ASSERT(MUTEX_HELD(&dtrace_lock));
9504	ASSERT(dp->dtdo_refcnt != 0);
9505
9506	for (i = 0; i < dp->dtdo_varlen; i++) {
9507		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9508
9509		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9510			continue;
9511
9512		ASSERT(dtrace_vtime_references > 0);
9513		if (--dtrace_vtime_references == 0)
9514			dtrace_vtime_disable();
9515	}
9516
9517	if (--dp->dtdo_refcnt == 0)
9518		dtrace_difo_destroy(dp, vstate);
9519}
9520
9521/*
9522 * DTrace Format Functions
9523 */
9524static uint16_t
9525dtrace_format_add(dtrace_state_t *state, char *str)
9526{
9527	char *fmt, **new;
9528	uint16_t ndx, len = strlen(str) + 1;
9529
9530	fmt = kmem_zalloc(len, KM_SLEEP);
9531	bcopy(str, fmt, len);
9532
9533	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9534		if (state->dts_formats[ndx] == NULL) {
9535			state->dts_formats[ndx] = fmt;
9536			return (ndx + 1);
9537		}
9538	}
9539
9540	if (state->dts_nformats == USHRT_MAX) {
9541		/*
9542		 * This is only likely if a denial-of-service attack is being
9543		 * attempted.  As such, it's okay to fail silently here.
9544		 */
9545		kmem_free(fmt, len);
9546		return (0);
9547	}
9548
9549	/*
9550	 * For simplicity, we always resize the formats array to be exactly the
9551	 * number of formats.
9552	 */
9553	ndx = state->dts_nformats++;
9554	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9555
9556	if (state->dts_formats != NULL) {
9557		ASSERT(ndx != 0);
9558		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9559		kmem_free(state->dts_formats, ndx * sizeof (char *));
9560	}
9561
9562	state->dts_formats = new;
9563	state->dts_formats[ndx] = fmt;
9564
9565	return (ndx + 1);
9566}
9567
9568static void
9569dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9570{
9571	char *fmt;
9572
9573	ASSERT(state->dts_formats != NULL);
9574	ASSERT(format <= state->dts_nformats);
9575	ASSERT(state->dts_formats[format - 1] != NULL);
9576
9577	fmt = state->dts_formats[format - 1];
9578	kmem_free(fmt, strlen(fmt) + 1);
9579	state->dts_formats[format - 1] = NULL;
9580}
9581
9582static void
9583dtrace_format_destroy(dtrace_state_t *state)
9584{
9585	int i;
9586
9587	if (state->dts_nformats == 0) {
9588		ASSERT(state->dts_formats == NULL);
9589		return;
9590	}
9591
9592	ASSERT(state->dts_formats != NULL);
9593
9594	for (i = 0; i < state->dts_nformats; i++) {
9595		char *fmt = state->dts_formats[i];
9596
9597		if (fmt == NULL)
9598			continue;
9599
9600		kmem_free(fmt, strlen(fmt) + 1);
9601	}
9602
9603	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9604	state->dts_nformats = 0;
9605	state->dts_formats = NULL;
9606}
9607
9608/*
9609 * DTrace Predicate Functions
9610 */
9611static dtrace_predicate_t *
9612dtrace_predicate_create(dtrace_difo_t *dp)
9613{
9614	dtrace_predicate_t *pred;
9615
9616	ASSERT(MUTEX_HELD(&dtrace_lock));
9617	ASSERT(dp->dtdo_refcnt != 0);
9618
9619	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9620	pred->dtp_difo = dp;
9621	pred->dtp_refcnt = 1;
9622
9623	if (!dtrace_difo_cacheable(dp))
9624		return (pred);
9625
9626	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9627		/*
9628		 * This is only theoretically possible -- we have had 2^32
9629		 * cacheable predicates on this machine.  We cannot allow any
9630		 * more predicates to become cacheable:  as unlikely as it is,
9631		 * there may be a thread caching a (now stale) predicate cache
9632		 * ID. (N.B.: the temptation is being successfully resisted to
9633		 * have this cmn_err() "Holy shit -- we executed this code!")
9634		 */
9635		return (pred);
9636	}
9637
9638	pred->dtp_cacheid = dtrace_predcache_id++;
9639
9640	return (pred);
9641}
9642
9643static void
9644dtrace_predicate_hold(dtrace_predicate_t *pred)
9645{
9646	ASSERT(MUTEX_HELD(&dtrace_lock));
9647	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9648	ASSERT(pred->dtp_refcnt > 0);
9649
9650	pred->dtp_refcnt++;
9651}
9652
9653static void
9654dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9655{
9656	dtrace_difo_t *dp = pred->dtp_difo;
9657
9658	ASSERT(MUTEX_HELD(&dtrace_lock));
9659	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9660	ASSERT(pred->dtp_refcnt > 0);
9661
9662	if (--pred->dtp_refcnt == 0) {
9663		dtrace_difo_release(pred->dtp_difo, vstate);
9664		kmem_free(pred, sizeof (dtrace_predicate_t));
9665	}
9666}
9667
9668/*
9669 * DTrace Action Description Functions
9670 */
9671static dtrace_actdesc_t *
9672dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9673    uint64_t uarg, uint64_t arg)
9674{
9675	dtrace_actdesc_t *act;
9676
9677#if defined(sun)
9678	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9679	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9680#endif
9681
9682	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9683	act->dtad_kind = kind;
9684	act->dtad_ntuple = ntuple;
9685	act->dtad_uarg = uarg;
9686	act->dtad_arg = arg;
9687	act->dtad_refcnt = 1;
9688
9689	return (act);
9690}
9691
9692static void
9693dtrace_actdesc_hold(dtrace_actdesc_t *act)
9694{
9695	ASSERT(act->dtad_refcnt >= 1);
9696	act->dtad_refcnt++;
9697}
9698
9699static void
9700dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9701{
9702	dtrace_actkind_t kind = act->dtad_kind;
9703	dtrace_difo_t *dp;
9704
9705	ASSERT(act->dtad_refcnt >= 1);
9706
9707	if (--act->dtad_refcnt != 0)
9708		return;
9709
9710	if ((dp = act->dtad_difo) != NULL)
9711		dtrace_difo_release(dp, vstate);
9712
9713	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9714		char *str = (char *)(uintptr_t)act->dtad_arg;
9715
9716#if defined(sun)
9717		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9718		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9719#endif
9720
9721		if (str != NULL)
9722			kmem_free(str, strlen(str) + 1);
9723	}
9724
9725	kmem_free(act, sizeof (dtrace_actdesc_t));
9726}
9727
9728/*
9729 * DTrace ECB Functions
9730 */
9731static dtrace_ecb_t *
9732dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9733{
9734	dtrace_ecb_t *ecb;
9735	dtrace_epid_t epid;
9736
9737	ASSERT(MUTEX_HELD(&dtrace_lock));
9738
9739	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9740	ecb->dte_predicate = NULL;
9741	ecb->dte_probe = probe;
9742
9743	/*
9744	 * The default size is the size of the default action: recording
9745	 * the epid.
9746	 */
9747	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9748	ecb->dte_alignment = sizeof (dtrace_epid_t);
9749
9750	epid = state->dts_epid++;
9751
9752	if (epid - 1 >= state->dts_necbs) {
9753		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9754		int necbs = state->dts_necbs << 1;
9755
9756		ASSERT(epid == state->dts_necbs + 1);
9757
9758		if (necbs == 0) {
9759			ASSERT(oecbs == NULL);
9760			necbs = 1;
9761		}
9762
9763		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9764
9765		if (oecbs != NULL)
9766			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9767
9768		dtrace_membar_producer();
9769		state->dts_ecbs = ecbs;
9770
9771		if (oecbs != NULL) {
9772			/*
9773			 * If this state is active, we must dtrace_sync()
9774			 * before we can free the old dts_ecbs array:  we're
9775			 * coming in hot, and there may be active ring
9776			 * buffer processing (which indexes into the dts_ecbs
9777			 * array) on another CPU.
9778			 */
9779			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9780				dtrace_sync();
9781
9782			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9783		}
9784
9785		dtrace_membar_producer();
9786		state->dts_necbs = necbs;
9787	}
9788
9789	ecb->dte_state = state;
9790
9791	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9792	dtrace_membar_producer();
9793	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9794
9795	return (ecb);
9796}
9797
9798static void
9799dtrace_ecb_enable(dtrace_ecb_t *ecb)
9800{
9801	dtrace_probe_t *probe = ecb->dte_probe;
9802
9803	ASSERT(MUTEX_HELD(&cpu_lock));
9804	ASSERT(MUTEX_HELD(&dtrace_lock));
9805	ASSERT(ecb->dte_next == NULL);
9806
9807	if (probe == NULL) {
9808		/*
9809		 * This is the NULL probe -- there's nothing to do.
9810		 */
9811		return;
9812	}
9813
9814	if (probe->dtpr_ecb == NULL) {
9815		dtrace_provider_t *prov = probe->dtpr_provider;
9816
9817		/*
9818		 * We're the first ECB on this probe.
9819		 */
9820		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9821
9822		if (ecb->dte_predicate != NULL)
9823			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9824
9825		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9826		    probe->dtpr_id, probe->dtpr_arg);
9827	} else {
9828		/*
9829		 * This probe is already active.  Swing the last pointer to
9830		 * point to the new ECB, and issue a dtrace_sync() to assure
9831		 * that all CPUs have seen the change.
9832		 */
9833		ASSERT(probe->dtpr_ecb_last != NULL);
9834		probe->dtpr_ecb_last->dte_next = ecb;
9835		probe->dtpr_ecb_last = ecb;
9836		probe->dtpr_predcache = 0;
9837
9838		dtrace_sync();
9839	}
9840}
9841
9842static void
9843dtrace_ecb_resize(dtrace_ecb_t *ecb)
9844{
9845	uint32_t maxalign = sizeof (dtrace_epid_t);
9846	uint32_t align = sizeof (uint8_t), offs, diff;
9847	dtrace_action_t *act;
9848	int wastuple = 0;
9849	uint32_t aggbase = UINT32_MAX;
9850	dtrace_state_t *state = ecb->dte_state;
9851
9852	/*
9853	 * If we record anything, we always record the epid.  (And we always
9854	 * record it first.)
9855	 */
9856	offs = sizeof (dtrace_epid_t);
9857	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9858
9859	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9860		dtrace_recdesc_t *rec = &act->dta_rec;
9861
9862		if ((align = rec->dtrd_alignment) > maxalign)
9863			maxalign = align;
9864
9865		if (!wastuple && act->dta_intuple) {
9866			/*
9867			 * This is the first record in a tuple.  Align the
9868			 * offset to be at offset 4 in an 8-byte aligned
9869			 * block.
9870			 */
9871			diff = offs + sizeof (dtrace_aggid_t);
9872
9873			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9874				offs += sizeof (uint64_t) - diff;
9875
9876			aggbase = offs - sizeof (dtrace_aggid_t);
9877			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9878		}
9879
9880		/*LINTED*/
9881		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9882			/*
9883			 * The current offset is not properly aligned; align it.
9884			 */
9885			offs += align - diff;
9886		}
9887
9888		rec->dtrd_offset = offs;
9889
9890		if (offs + rec->dtrd_size > ecb->dte_needed) {
9891			ecb->dte_needed = offs + rec->dtrd_size;
9892
9893			if (ecb->dte_needed > state->dts_needed)
9894				state->dts_needed = ecb->dte_needed;
9895		}
9896
9897		if (DTRACEACT_ISAGG(act->dta_kind)) {
9898			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9899			dtrace_action_t *first = agg->dtag_first, *prev;
9900
9901			ASSERT(rec->dtrd_size != 0 && first != NULL);
9902			ASSERT(wastuple);
9903			ASSERT(aggbase != UINT32_MAX);
9904
9905			agg->dtag_base = aggbase;
9906
9907			while ((prev = first->dta_prev) != NULL &&
9908			    DTRACEACT_ISAGG(prev->dta_kind)) {
9909				agg = (dtrace_aggregation_t *)prev;
9910				first = agg->dtag_first;
9911			}
9912
9913			if (prev != NULL) {
9914				offs = prev->dta_rec.dtrd_offset +
9915				    prev->dta_rec.dtrd_size;
9916			} else {
9917				offs = sizeof (dtrace_epid_t);
9918			}
9919			wastuple = 0;
9920		} else {
9921			if (!act->dta_intuple)
9922				ecb->dte_size = offs + rec->dtrd_size;
9923
9924			offs += rec->dtrd_size;
9925		}
9926
9927		wastuple = act->dta_intuple;
9928	}
9929
9930	if ((act = ecb->dte_action) != NULL &&
9931	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9932	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9933		/*
9934		 * If the size is still sizeof (dtrace_epid_t), then all
9935		 * actions store no data; set the size to 0.
9936		 */
9937		ecb->dte_alignment = maxalign;
9938		ecb->dte_size = 0;
9939
9940		/*
9941		 * If the needed space is still sizeof (dtrace_epid_t), then
9942		 * all actions need no additional space; set the needed
9943		 * size to 0.
9944		 */
9945		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9946			ecb->dte_needed = 0;
9947
9948		return;
9949	}
9950
9951	/*
9952	 * Set our alignment, and make sure that the dte_size and dte_needed
9953	 * are aligned to the size of an EPID.
9954	 */
9955	ecb->dte_alignment = maxalign;
9956	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9957	    ~(sizeof (dtrace_epid_t) - 1);
9958	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9959	    ~(sizeof (dtrace_epid_t) - 1);
9960	ASSERT(ecb->dte_size <= ecb->dte_needed);
9961}
9962
9963static dtrace_action_t *
9964dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9965{
9966	dtrace_aggregation_t *agg;
9967	size_t size = sizeof (uint64_t);
9968	int ntuple = desc->dtad_ntuple;
9969	dtrace_action_t *act;
9970	dtrace_recdesc_t *frec;
9971	dtrace_aggid_t aggid;
9972	dtrace_state_t *state = ecb->dte_state;
9973
9974	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9975	agg->dtag_ecb = ecb;
9976
9977	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9978
9979	switch (desc->dtad_kind) {
9980	case DTRACEAGG_MIN:
9981		agg->dtag_initial = INT64_MAX;
9982		agg->dtag_aggregate = dtrace_aggregate_min;
9983		break;
9984
9985	case DTRACEAGG_MAX:
9986		agg->dtag_initial = INT64_MIN;
9987		agg->dtag_aggregate = dtrace_aggregate_max;
9988		break;
9989
9990	case DTRACEAGG_COUNT:
9991		agg->dtag_aggregate = dtrace_aggregate_count;
9992		break;
9993
9994	case DTRACEAGG_QUANTIZE:
9995		agg->dtag_aggregate = dtrace_aggregate_quantize;
9996		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9997		    sizeof (uint64_t);
9998		break;
9999
10000	case DTRACEAGG_LQUANTIZE: {
10001		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10002		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10003
10004		agg->dtag_initial = desc->dtad_arg;
10005		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10006
10007		if (step == 0 || levels == 0)
10008			goto err;
10009
10010		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10011		break;
10012	}
10013
10014	case DTRACEAGG_LLQUANTIZE: {
10015		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10016		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10017		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10018		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10019		int64_t v;
10020
10021		agg->dtag_initial = desc->dtad_arg;
10022		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10023
10024		if (factor < 2 || low >= high || nsteps < factor)
10025			goto err;
10026
10027		/*
10028		 * Now check that the number of steps evenly divides a power
10029		 * of the factor.  (This assures both integer bucket size and
10030		 * linearity within each magnitude.)
10031		 */
10032		for (v = factor; v < nsteps; v *= factor)
10033			continue;
10034
10035		if ((v % nsteps) || (nsteps % factor))
10036			goto err;
10037
10038		size = (dtrace_aggregate_llquantize_bucket(factor,
10039		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10040		break;
10041	}
10042
10043	case DTRACEAGG_AVG:
10044		agg->dtag_aggregate = dtrace_aggregate_avg;
10045		size = sizeof (uint64_t) * 2;
10046		break;
10047
10048	case DTRACEAGG_STDDEV:
10049		agg->dtag_aggregate = dtrace_aggregate_stddev;
10050		size = sizeof (uint64_t) * 4;
10051		break;
10052
10053	case DTRACEAGG_SUM:
10054		agg->dtag_aggregate = dtrace_aggregate_sum;
10055		break;
10056
10057	default:
10058		goto err;
10059	}
10060
10061	agg->dtag_action.dta_rec.dtrd_size = size;
10062
10063	if (ntuple == 0)
10064		goto err;
10065
10066	/*
10067	 * We must make sure that we have enough actions for the n-tuple.
10068	 */
10069	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10070		if (DTRACEACT_ISAGG(act->dta_kind))
10071			break;
10072
10073		if (--ntuple == 0) {
10074			/*
10075			 * This is the action with which our n-tuple begins.
10076			 */
10077			agg->dtag_first = act;
10078			goto success;
10079		}
10080	}
10081
10082	/*
10083	 * This n-tuple is short by ntuple elements.  Return failure.
10084	 */
10085	ASSERT(ntuple != 0);
10086err:
10087	kmem_free(agg, sizeof (dtrace_aggregation_t));
10088	return (NULL);
10089
10090success:
10091	/*
10092	 * If the last action in the tuple has a size of zero, it's actually
10093	 * an expression argument for the aggregating action.
10094	 */
10095	ASSERT(ecb->dte_action_last != NULL);
10096	act = ecb->dte_action_last;
10097
10098	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10099		ASSERT(act->dta_difo != NULL);
10100
10101		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10102			agg->dtag_hasarg = 1;
10103	}
10104
10105	/*
10106	 * We need to allocate an id for this aggregation.
10107	 */
10108#if defined(sun)
10109	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10110	    VM_BESTFIT | VM_SLEEP);
10111#else
10112	aggid = alloc_unr(state->dts_aggid_arena);
10113#endif
10114
10115	if (aggid - 1 >= state->dts_naggregations) {
10116		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10117		dtrace_aggregation_t **aggs;
10118		int naggs = state->dts_naggregations << 1;
10119		int onaggs = state->dts_naggregations;
10120
10121		ASSERT(aggid == state->dts_naggregations + 1);
10122
10123		if (naggs == 0) {
10124			ASSERT(oaggs == NULL);
10125			naggs = 1;
10126		}
10127
10128		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10129
10130		if (oaggs != NULL) {
10131			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10132			kmem_free(oaggs, onaggs * sizeof (*aggs));
10133		}
10134
10135		state->dts_aggregations = aggs;
10136		state->dts_naggregations = naggs;
10137	}
10138
10139	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10140	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10141
10142	frec = &agg->dtag_first->dta_rec;
10143	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10144		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10145
10146	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10147		ASSERT(!act->dta_intuple);
10148		act->dta_intuple = 1;
10149	}
10150
10151	return (&agg->dtag_action);
10152}
10153
10154static void
10155dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10156{
10157	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10158	dtrace_state_t *state = ecb->dte_state;
10159	dtrace_aggid_t aggid = agg->dtag_id;
10160
10161	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10162#if defined(sun)
10163	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10164#else
10165	free_unr(state->dts_aggid_arena, aggid);
10166#endif
10167
10168	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10169	state->dts_aggregations[aggid - 1] = NULL;
10170
10171	kmem_free(agg, sizeof (dtrace_aggregation_t));
10172}
10173
10174static int
10175dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10176{
10177	dtrace_action_t *action, *last;
10178	dtrace_difo_t *dp = desc->dtad_difo;
10179	uint32_t size = 0, align = sizeof (uint8_t), mask;
10180	uint16_t format = 0;
10181	dtrace_recdesc_t *rec;
10182	dtrace_state_t *state = ecb->dte_state;
10183	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10184	uint64_t arg = desc->dtad_arg;
10185
10186	ASSERT(MUTEX_HELD(&dtrace_lock));
10187	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10188
10189	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10190		/*
10191		 * If this is an aggregating action, there must be neither
10192		 * a speculate nor a commit on the action chain.
10193		 */
10194		dtrace_action_t *act;
10195
10196		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10197			if (act->dta_kind == DTRACEACT_COMMIT)
10198				return (EINVAL);
10199
10200			if (act->dta_kind == DTRACEACT_SPECULATE)
10201				return (EINVAL);
10202		}
10203
10204		action = dtrace_ecb_aggregation_create(ecb, desc);
10205
10206		if (action == NULL)
10207			return (EINVAL);
10208	} else {
10209		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10210		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10211		    dp != NULL && dp->dtdo_destructive)) {
10212			state->dts_destructive = 1;
10213		}
10214
10215		switch (desc->dtad_kind) {
10216		case DTRACEACT_PRINTF:
10217		case DTRACEACT_PRINTA:
10218		case DTRACEACT_SYSTEM:
10219		case DTRACEACT_FREOPEN:
10220		case DTRACEACT_DIFEXPR:
10221			/*
10222			 * We know that our arg is a string -- turn it into a
10223			 * format.
10224			 */
10225			if (arg == 0) {
10226				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10227				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10228				format = 0;
10229			} else {
10230				ASSERT(arg != 0);
10231#if defined(sun)
10232				ASSERT(arg > KERNELBASE);
10233#endif
10234				format = dtrace_format_add(state,
10235				    (char *)(uintptr_t)arg);
10236			}
10237
10238			/*FALLTHROUGH*/
10239		case DTRACEACT_LIBACT:
10240		case DTRACEACT_TRACEMEM:
10241		case DTRACEACT_TRACEMEM_DYNSIZE:
10242			if (dp == NULL)
10243				return (EINVAL);
10244
10245			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10246				break;
10247
10248			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10249				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10250					return (EINVAL);
10251
10252				size = opt[DTRACEOPT_STRSIZE];
10253			}
10254
10255			break;
10256
10257		case DTRACEACT_STACK:
10258			if ((nframes = arg) == 0) {
10259				nframes = opt[DTRACEOPT_STACKFRAMES];
10260				ASSERT(nframes > 0);
10261				arg = nframes;
10262			}
10263
10264			size = nframes * sizeof (pc_t);
10265			break;
10266
10267		case DTRACEACT_JSTACK:
10268			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10269				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10270
10271			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10272				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10273
10274			arg = DTRACE_USTACK_ARG(nframes, strsize);
10275
10276			/*FALLTHROUGH*/
10277		case DTRACEACT_USTACK:
10278			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10279			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10280				strsize = DTRACE_USTACK_STRSIZE(arg);
10281				nframes = opt[DTRACEOPT_USTACKFRAMES];
10282				ASSERT(nframes > 0);
10283				arg = DTRACE_USTACK_ARG(nframes, strsize);
10284			}
10285
10286			/*
10287			 * Save a slot for the pid.
10288			 */
10289			size = (nframes + 1) * sizeof (uint64_t);
10290			size += DTRACE_USTACK_STRSIZE(arg);
10291			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10292
10293			break;
10294
10295		case DTRACEACT_SYM:
10296		case DTRACEACT_MOD:
10297			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10298			    sizeof (uint64_t)) ||
10299			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10300				return (EINVAL);
10301			break;
10302
10303		case DTRACEACT_USYM:
10304		case DTRACEACT_UMOD:
10305		case DTRACEACT_UADDR:
10306			if (dp == NULL ||
10307			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10308			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10309				return (EINVAL);
10310
10311			/*
10312			 * We have a slot for the pid, plus a slot for the
10313			 * argument.  To keep things simple (aligned with
10314			 * bitness-neutral sizing), we store each as a 64-bit
10315			 * quantity.
10316			 */
10317			size = 2 * sizeof (uint64_t);
10318			break;
10319
10320		case DTRACEACT_STOP:
10321		case DTRACEACT_BREAKPOINT:
10322		case DTRACEACT_PANIC:
10323			break;
10324
10325		case DTRACEACT_CHILL:
10326		case DTRACEACT_DISCARD:
10327		case DTRACEACT_RAISE:
10328			if (dp == NULL)
10329				return (EINVAL);
10330			break;
10331
10332		case DTRACEACT_EXIT:
10333			if (dp == NULL ||
10334			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10335			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10336				return (EINVAL);
10337			break;
10338
10339		case DTRACEACT_SPECULATE:
10340			if (ecb->dte_size > sizeof (dtrace_epid_t))
10341				return (EINVAL);
10342
10343			if (dp == NULL)
10344				return (EINVAL);
10345
10346			state->dts_speculates = 1;
10347			break;
10348
10349		case DTRACEACT_PRINTM:
10350		    	size = dp->dtdo_rtype.dtdt_size;
10351			break;
10352
10353		case DTRACEACT_PRINTT:
10354		    	size = dp->dtdo_rtype.dtdt_size;
10355			break;
10356
10357		case DTRACEACT_COMMIT: {
10358			dtrace_action_t *act = ecb->dte_action;
10359
10360			for (; act != NULL; act = act->dta_next) {
10361				if (act->dta_kind == DTRACEACT_COMMIT)
10362					return (EINVAL);
10363			}
10364
10365			if (dp == NULL)
10366				return (EINVAL);
10367			break;
10368		}
10369
10370		default:
10371			return (EINVAL);
10372		}
10373
10374		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10375			/*
10376			 * If this is a data-storing action or a speculate,
10377			 * we must be sure that there isn't a commit on the
10378			 * action chain.
10379			 */
10380			dtrace_action_t *act = ecb->dte_action;
10381
10382			for (; act != NULL; act = act->dta_next) {
10383				if (act->dta_kind == DTRACEACT_COMMIT)
10384					return (EINVAL);
10385			}
10386		}
10387
10388		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10389		action->dta_rec.dtrd_size = size;
10390	}
10391
10392	action->dta_refcnt = 1;
10393	rec = &action->dta_rec;
10394	size = rec->dtrd_size;
10395
10396	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10397		if (!(size & mask)) {
10398			align = mask + 1;
10399			break;
10400		}
10401	}
10402
10403	action->dta_kind = desc->dtad_kind;
10404
10405	if ((action->dta_difo = dp) != NULL)
10406		dtrace_difo_hold(dp);
10407
10408	rec->dtrd_action = action->dta_kind;
10409	rec->dtrd_arg = arg;
10410	rec->dtrd_uarg = desc->dtad_uarg;
10411	rec->dtrd_alignment = (uint16_t)align;
10412	rec->dtrd_format = format;
10413
10414	if ((last = ecb->dte_action_last) != NULL) {
10415		ASSERT(ecb->dte_action != NULL);
10416		action->dta_prev = last;
10417		last->dta_next = action;
10418	} else {
10419		ASSERT(ecb->dte_action == NULL);
10420		ecb->dte_action = action;
10421	}
10422
10423	ecb->dte_action_last = action;
10424
10425	return (0);
10426}
10427
10428static void
10429dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10430{
10431	dtrace_action_t *act = ecb->dte_action, *next;
10432	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10433	dtrace_difo_t *dp;
10434	uint16_t format;
10435
10436	if (act != NULL && act->dta_refcnt > 1) {
10437		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10438		act->dta_refcnt--;
10439	} else {
10440		for (; act != NULL; act = next) {
10441			next = act->dta_next;
10442			ASSERT(next != NULL || act == ecb->dte_action_last);
10443			ASSERT(act->dta_refcnt == 1);
10444
10445			if ((format = act->dta_rec.dtrd_format) != 0)
10446				dtrace_format_remove(ecb->dte_state, format);
10447
10448			if ((dp = act->dta_difo) != NULL)
10449				dtrace_difo_release(dp, vstate);
10450
10451			if (DTRACEACT_ISAGG(act->dta_kind)) {
10452				dtrace_ecb_aggregation_destroy(ecb, act);
10453			} else {
10454				kmem_free(act, sizeof (dtrace_action_t));
10455			}
10456		}
10457	}
10458
10459	ecb->dte_action = NULL;
10460	ecb->dte_action_last = NULL;
10461	ecb->dte_size = sizeof (dtrace_epid_t);
10462}
10463
10464static void
10465dtrace_ecb_disable(dtrace_ecb_t *ecb)
10466{
10467	/*
10468	 * We disable the ECB by removing it from its probe.
10469	 */
10470	dtrace_ecb_t *pecb, *prev = NULL;
10471	dtrace_probe_t *probe = ecb->dte_probe;
10472
10473	ASSERT(MUTEX_HELD(&dtrace_lock));
10474
10475	if (probe == NULL) {
10476		/*
10477		 * This is the NULL probe; there is nothing to disable.
10478		 */
10479		return;
10480	}
10481
10482	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10483		if (pecb == ecb)
10484			break;
10485		prev = pecb;
10486	}
10487
10488	ASSERT(pecb != NULL);
10489
10490	if (prev == NULL) {
10491		probe->dtpr_ecb = ecb->dte_next;
10492	} else {
10493		prev->dte_next = ecb->dte_next;
10494	}
10495
10496	if (ecb == probe->dtpr_ecb_last) {
10497		ASSERT(ecb->dte_next == NULL);
10498		probe->dtpr_ecb_last = prev;
10499	}
10500
10501	/*
10502	 * The ECB has been disconnected from the probe; now sync to assure
10503	 * that all CPUs have seen the change before returning.
10504	 */
10505	dtrace_sync();
10506
10507	if (probe->dtpr_ecb == NULL) {
10508		/*
10509		 * That was the last ECB on the probe; clear the predicate
10510		 * cache ID for the probe, disable it and sync one more time
10511		 * to assure that we'll never hit it again.
10512		 */
10513		dtrace_provider_t *prov = probe->dtpr_provider;
10514
10515		ASSERT(ecb->dte_next == NULL);
10516		ASSERT(probe->dtpr_ecb_last == NULL);
10517		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10518		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10519		    probe->dtpr_id, probe->dtpr_arg);
10520		dtrace_sync();
10521	} else {
10522		/*
10523		 * There is at least one ECB remaining on the probe.  If there
10524		 * is _exactly_ one, set the probe's predicate cache ID to be
10525		 * the predicate cache ID of the remaining ECB.
10526		 */
10527		ASSERT(probe->dtpr_ecb_last != NULL);
10528		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10529
10530		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10531			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10532
10533			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10534
10535			if (p != NULL)
10536				probe->dtpr_predcache = p->dtp_cacheid;
10537		}
10538
10539		ecb->dte_next = NULL;
10540	}
10541}
10542
10543static void
10544dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10545{
10546	dtrace_state_t *state = ecb->dte_state;
10547	dtrace_vstate_t *vstate = &state->dts_vstate;
10548	dtrace_predicate_t *pred;
10549	dtrace_epid_t epid = ecb->dte_epid;
10550
10551	ASSERT(MUTEX_HELD(&dtrace_lock));
10552	ASSERT(ecb->dte_next == NULL);
10553	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10554
10555	if ((pred = ecb->dte_predicate) != NULL)
10556		dtrace_predicate_release(pred, vstate);
10557
10558	dtrace_ecb_action_remove(ecb);
10559
10560	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10561	state->dts_ecbs[epid - 1] = NULL;
10562
10563	kmem_free(ecb, sizeof (dtrace_ecb_t));
10564}
10565
10566static dtrace_ecb_t *
10567dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10568    dtrace_enabling_t *enab)
10569{
10570	dtrace_ecb_t *ecb;
10571	dtrace_predicate_t *pred;
10572	dtrace_actdesc_t *act;
10573	dtrace_provider_t *prov;
10574	dtrace_ecbdesc_t *desc = enab->dten_current;
10575
10576	ASSERT(MUTEX_HELD(&dtrace_lock));
10577	ASSERT(state != NULL);
10578
10579	ecb = dtrace_ecb_add(state, probe);
10580	ecb->dte_uarg = desc->dted_uarg;
10581
10582	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10583		dtrace_predicate_hold(pred);
10584		ecb->dte_predicate = pred;
10585	}
10586
10587	if (probe != NULL) {
10588		/*
10589		 * If the provider shows more leg than the consumer is old
10590		 * enough to see, we need to enable the appropriate implicit
10591		 * predicate bits to prevent the ecb from activating at
10592		 * revealing times.
10593		 *
10594		 * Providers specifying DTRACE_PRIV_USER at register time
10595		 * are stating that they need the /proc-style privilege
10596		 * model to be enforced, and this is what DTRACE_COND_OWNER
10597		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10598		 */
10599		prov = probe->dtpr_provider;
10600		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10601		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10602			ecb->dte_cond |= DTRACE_COND_OWNER;
10603
10604		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10605		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10606			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10607
10608		/*
10609		 * If the provider shows us kernel innards and the user
10610		 * is lacking sufficient privilege, enable the
10611		 * DTRACE_COND_USERMODE implicit predicate.
10612		 */
10613		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10614		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10615			ecb->dte_cond |= DTRACE_COND_USERMODE;
10616	}
10617
10618	if (dtrace_ecb_create_cache != NULL) {
10619		/*
10620		 * If we have a cached ecb, we'll use its action list instead
10621		 * of creating our own (saving both time and space).
10622		 */
10623		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10624		dtrace_action_t *act = cached->dte_action;
10625
10626		if (act != NULL) {
10627			ASSERT(act->dta_refcnt > 0);
10628			act->dta_refcnt++;
10629			ecb->dte_action = act;
10630			ecb->dte_action_last = cached->dte_action_last;
10631			ecb->dte_needed = cached->dte_needed;
10632			ecb->dte_size = cached->dte_size;
10633			ecb->dte_alignment = cached->dte_alignment;
10634		}
10635
10636		return (ecb);
10637	}
10638
10639	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10640		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10641			dtrace_ecb_destroy(ecb);
10642			return (NULL);
10643		}
10644	}
10645
10646	dtrace_ecb_resize(ecb);
10647
10648	return (dtrace_ecb_create_cache = ecb);
10649}
10650
10651static int
10652dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10653{
10654	dtrace_ecb_t *ecb;
10655	dtrace_enabling_t *enab = arg;
10656	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10657
10658	ASSERT(state != NULL);
10659
10660	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10661		/*
10662		 * This probe was created in a generation for which this
10663		 * enabling has previously created ECBs; we don't want to
10664		 * enable it again, so just kick out.
10665		 */
10666		return (DTRACE_MATCH_NEXT);
10667	}
10668
10669	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10670		return (DTRACE_MATCH_DONE);
10671
10672	dtrace_ecb_enable(ecb);
10673	return (DTRACE_MATCH_NEXT);
10674}
10675
10676static dtrace_ecb_t *
10677dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10678{
10679	dtrace_ecb_t *ecb;
10680
10681	ASSERT(MUTEX_HELD(&dtrace_lock));
10682
10683	if (id == 0 || id > state->dts_necbs)
10684		return (NULL);
10685
10686	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10687	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10688
10689	return (state->dts_ecbs[id - 1]);
10690}
10691
10692static dtrace_aggregation_t *
10693dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10694{
10695	dtrace_aggregation_t *agg;
10696
10697	ASSERT(MUTEX_HELD(&dtrace_lock));
10698
10699	if (id == 0 || id > state->dts_naggregations)
10700		return (NULL);
10701
10702	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10703	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10704	    agg->dtag_id == id);
10705
10706	return (state->dts_aggregations[id - 1]);
10707}
10708
10709/*
10710 * DTrace Buffer Functions
10711 *
10712 * The following functions manipulate DTrace buffers.  Most of these functions
10713 * are called in the context of establishing or processing consumer state;
10714 * exceptions are explicitly noted.
10715 */
10716
10717/*
10718 * Note:  called from cross call context.  This function switches the two
10719 * buffers on a given CPU.  The atomicity of this operation is assured by
10720 * disabling interrupts while the actual switch takes place; the disabling of
10721 * interrupts serializes the execution with any execution of dtrace_probe() on
10722 * the same CPU.
10723 */
10724static void
10725dtrace_buffer_switch(dtrace_buffer_t *buf)
10726{
10727	caddr_t tomax = buf->dtb_tomax;
10728	caddr_t xamot = buf->dtb_xamot;
10729	dtrace_icookie_t cookie;
10730	hrtime_t now = dtrace_gethrtime();
10731
10732	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10733	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10734
10735	cookie = dtrace_interrupt_disable();
10736	buf->dtb_tomax = xamot;
10737	buf->dtb_xamot = tomax;
10738	buf->dtb_xamot_drops = buf->dtb_drops;
10739	buf->dtb_xamot_offset = buf->dtb_offset;
10740	buf->dtb_xamot_errors = buf->dtb_errors;
10741	buf->dtb_xamot_flags = buf->dtb_flags;
10742	buf->dtb_offset = 0;
10743	buf->dtb_drops = 0;
10744	buf->dtb_errors = 0;
10745	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10746	buf->dtb_interval = now - buf->dtb_switched;
10747	buf->dtb_switched = now;
10748	dtrace_interrupt_enable(cookie);
10749}
10750
10751/*
10752 * Note:  called from cross call context.  This function activates a buffer
10753 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10754 * is guaranteed by the disabling of interrupts.
10755 */
10756static void
10757dtrace_buffer_activate(dtrace_state_t *state)
10758{
10759	dtrace_buffer_t *buf;
10760	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10761
10762	buf = &state->dts_buffer[curcpu];
10763
10764	if (buf->dtb_tomax != NULL) {
10765		/*
10766		 * We might like to assert that the buffer is marked inactive,
10767		 * but this isn't necessarily true:  the buffer for the CPU
10768		 * that processes the BEGIN probe has its buffer activated
10769		 * manually.  In this case, we take the (harmless) action
10770		 * re-clearing the bit INACTIVE bit.
10771		 */
10772		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10773	}
10774
10775	dtrace_interrupt_enable(cookie);
10776}
10777
10778static int
10779dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10780    processorid_t cpu)
10781{
10782#if defined(sun)
10783	cpu_t *cp;
10784#endif
10785	dtrace_buffer_t *buf;
10786
10787#if defined(sun)
10788	ASSERT(MUTEX_HELD(&cpu_lock));
10789	ASSERT(MUTEX_HELD(&dtrace_lock));
10790
10791	if (size > dtrace_nonroot_maxsize &&
10792	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10793		return (EFBIG);
10794
10795	cp = cpu_list;
10796
10797	do {
10798		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10799			continue;
10800
10801		buf = &bufs[cp->cpu_id];
10802
10803		/*
10804		 * If there is already a buffer allocated for this CPU, it
10805		 * is only possible that this is a DR event.  In this case,
10806		 */
10807		if (buf->dtb_tomax != NULL) {
10808			ASSERT(buf->dtb_size == size);
10809			continue;
10810		}
10811
10812		ASSERT(buf->dtb_xamot == NULL);
10813
10814		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10815			goto err;
10816
10817		buf->dtb_size = size;
10818		buf->dtb_flags = flags;
10819		buf->dtb_offset = 0;
10820		buf->dtb_drops = 0;
10821
10822		if (flags & DTRACEBUF_NOSWITCH)
10823			continue;
10824
10825		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10826			goto err;
10827	} while ((cp = cp->cpu_next) != cpu_list);
10828
10829	return (0);
10830
10831err:
10832	cp = cpu_list;
10833
10834	do {
10835		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10836			continue;
10837
10838		buf = &bufs[cp->cpu_id];
10839
10840		if (buf->dtb_xamot != NULL) {
10841			ASSERT(buf->dtb_tomax != NULL);
10842			ASSERT(buf->dtb_size == size);
10843			kmem_free(buf->dtb_xamot, size);
10844		}
10845
10846		if (buf->dtb_tomax != NULL) {
10847			ASSERT(buf->dtb_size == size);
10848			kmem_free(buf->dtb_tomax, size);
10849		}
10850
10851		buf->dtb_tomax = NULL;
10852		buf->dtb_xamot = NULL;
10853		buf->dtb_size = 0;
10854	} while ((cp = cp->cpu_next) != cpu_list);
10855
10856	return (ENOMEM);
10857#else
10858	int i;
10859
10860#if defined(__amd64__)
10861	/*
10862	 * FreeBSD isn't good at limiting the amount of memory we
10863	 * ask to malloc, so let's place a limit here before trying
10864	 * to do something that might well end in tears at bedtime.
10865	 */
10866	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10867		return(ENOMEM);
10868#endif
10869
10870	ASSERT(MUTEX_HELD(&dtrace_lock));
10871	CPU_FOREACH(i) {
10872		if (cpu != DTRACE_CPUALL && cpu != i)
10873			continue;
10874
10875		buf = &bufs[i];
10876
10877		/*
10878		 * If there is already a buffer allocated for this CPU, it
10879		 * is only possible that this is a DR event.  In this case,
10880		 * the buffer size must match our specified size.
10881		 */
10882		if (buf->dtb_tomax != NULL) {
10883			ASSERT(buf->dtb_size == size);
10884			continue;
10885		}
10886
10887		ASSERT(buf->dtb_xamot == NULL);
10888
10889		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10890			goto err;
10891
10892		buf->dtb_size = size;
10893		buf->dtb_flags = flags;
10894		buf->dtb_offset = 0;
10895		buf->dtb_drops = 0;
10896
10897		if (flags & DTRACEBUF_NOSWITCH)
10898			continue;
10899
10900		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10901			goto err;
10902	}
10903
10904	return (0);
10905
10906err:
10907	/*
10908	 * Error allocating memory, so free the buffers that were
10909	 * allocated before the failed allocation.
10910	 */
10911	CPU_FOREACH(i) {
10912		if (cpu != DTRACE_CPUALL && cpu != i)
10913			continue;
10914
10915		buf = &bufs[i];
10916
10917		if (buf->dtb_xamot != NULL) {
10918			ASSERT(buf->dtb_tomax != NULL);
10919			ASSERT(buf->dtb_size == size);
10920			kmem_free(buf->dtb_xamot, size);
10921		}
10922
10923		if (buf->dtb_tomax != NULL) {
10924			ASSERT(buf->dtb_size == size);
10925			kmem_free(buf->dtb_tomax, size);
10926		}
10927
10928		buf->dtb_tomax = NULL;
10929		buf->dtb_xamot = NULL;
10930		buf->dtb_size = 0;
10931
10932	}
10933
10934	return (ENOMEM);
10935#endif
10936}
10937
10938/*
10939 * Note:  called from probe context.  This function just increments the drop
10940 * count on a buffer.  It has been made a function to allow for the
10941 * possibility of understanding the source of mysterious drop counts.  (A
10942 * problem for which one may be particularly disappointed that DTrace cannot
10943 * be used to understand DTrace.)
10944 */
10945static void
10946dtrace_buffer_drop(dtrace_buffer_t *buf)
10947{
10948	buf->dtb_drops++;
10949}
10950
10951/*
10952 * Note:  called from probe context.  This function is called to reserve space
10953 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10954 * mstate.  Returns the new offset in the buffer, or a negative value if an
10955 * error has occurred.
10956 */
10957static intptr_t
10958dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10959    dtrace_state_t *state, dtrace_mstate_t *mstate)
10960{
10961	intptr_t offs = buf->dtb_offset, soffs;
10962	intptr_t woffs;
10963	caddr_t tomax;
10964	size_t total;
10965
10966	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10967		return (-1);
10968
10969	if ((tomax = buf->dtb_tomax) == NULL) {
10970		dtrace_buffer_drop(buf);
10971		return (-1);
10972	}
10973
10974	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10975		while (offs & (align - 1)) {
10976			/*
10977			 * Assert that our alignment is off by a number which
10978			 * is itself sizeof (uint32_t) aligned.
10979			 */
10980			ASSERT(!((align - (offs & (align - 1))) &
10981			    (sizeof (uint32_t) - 1)));
10982			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10983			offs += sizeof (uint32_t);
10984		}
10985
10986		if ((soffs = offs + needed) > buf->dtb_size) {
10987			dtrace_buffer_drop(buf);
10988			return (-1);
10989		}
10990
10991		if (mstate == NULL)
10992			return (offs);
10993
10994		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10995		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10996		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10997
10998		return (offs);
10999	}
11000
11001	if (buf->dtb_flags & DTRACEBUF_FILL) {
11002		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11003		    (buf->dtb_flags & DTRACEBUF_FULL))
11004			return (-1);
11005		goto out;
11006	}
11007
11008	total = needed + (offs & (align - 1));
11009
11010	/*
11011	 * For a ring buffer, life is quite a bit more complicated.  Before
11012	 * we can store any padding, we need to adjust our wrapping offset.
11013	 * (If we've never before wrapped or we're not about to, no adjustment
11014	 * is required.)
11015	 */
11016	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11017	    offs + total > buf->dtb_size) {
11018		woffs = buf->dtb_xamot_offset;
11019
11020		if (offs + total > buf->dtb_size) {
11021			/*
11022			 * We can't fit in the end of the buffer.  First, a
11023			 * sanity check that we can fit in the buffer at all.
11024			 */
11025			if (total > buf->dtb_size) {
11026				dtrace_buffer_drop(buf);
11027				return (-1);
11028			}
11029
11030			/*
11031			 * We're going to be storing at the top of the buffer,
11032			 * so now we need to deal with the wrapped offset.  We
11033			 * only reset our wrapped offset to 0 if it is
11034			 * currently greater than the current offset.  If it
11035			 * is less than the current offset, it is because a
11036			 * previous allocation induced a wrap -- but the
11037			 * allocation didn't subsequently take the space due
11038			 * to an error or false predicate evaluation.  In this
11039			 * case, we'll just leave the wrapped offset alone: if
11040			 * the wrapped offset hasn't been advanced far enough
11041			 * for this allocation, it will be adjusted in the
11042			 * lower loop.
11043			 */
11044			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11045				if (woffs >= offs)
11046					woffs = 0;
11047			} else {
11048				woffs = 0;
11049			}
11050
11051			/*
11052			 * Now we know that we're going to be storing to the
11053			 * top of the buffer and that there is room for us
11054			 * there.  We need to clear the buffer from the current
11055			 * offset to the end (there may be old gunk there).
11056			 */
11057			while (offs < buf->dtb_size)
11058				tomax[offs++] = 0;
11059
11060			/*
11061			 * We need to set our offset to zero.  And because we
11062			 * are wrapping, we need to set the bit indicating as
11063			 * much.  We can also adjust our needed space back
11064			 * down to the space required by the ECB -- we know
11065			 * that the top of the buffer is aligned.
11066			 */
11067			offs = 0;
11068			total = needed;
11069			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11070		} else {
11071			/*
11072			 * There is room for us in the buffer, so we simply
11073			 * need to check the wrapped offset.
11074			 */
11075			if (woffs < offs) {
11076				/*
11077				 * The wrapped offset is less than the offset.
11078				 * This can happen if we allocated buffer space
11079				 * that induced a wrap, but then we didn't
11080				 * subsequently take the space due to an error
11081				 * or false predicate evaluation.  This is
11082				 * okay; we know that _this_ allocation isn't
11083				 * going to induce a wrap.  We still can't
11084				 * reset the wrapped offset to be zero,
11085				 * however: the space may have been trashed in
11086				 * the previous failed probe attempt.  But at
11087				 * least the wrapped offset doesn't need to
11088				 * be adjusted at all...
11089				 */
11090				goto out;
11091			}
11092		}
11093
11094		while (offs + total > woffs) {
11095			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11096			size_t size;
11097
11098			if (epid == DTRACE_EPIDNONE) {
11099				size = sizeof (uint32_t);
11100			} else {
11101				ASSERT(epid <= state->dts_necbs);
11102				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11103
11104				size = state->dts_ecbs[epid - 1]->dte_size;
11105			}
11106
11107			ASSERT(woffs + size <= buf->dtb_size);
11108			ASSERT(size != 0);
11109
11110			if (woffs + size == buf->dtb_size) {
11111				/*
11112				 * We've reached the end of the buffer; we want
11113				 * to set the wrapped offset to 0 and break
11114				 * out.  However, if the offs is 0, then we're
11115				 * in a strange edge-condition:  the amount of
11116				 * space that we want to reserve plus the size
11117				 * of the record that we're overwriting is
11118				 * greater than the size of the buffer.  This
11119				 * is problematic because if we reserve the
11120				 * space but subsequently don't consume it (due
11121				 * to a failed predicate or error) the wrapped
11122				 * offset will be 0 -- yet the EPID at offset 0
11123				 * will not be committed.  This situation is
11124				 * relatively easy to deal with:  if we're in
11125				 * this case, the buffer is indistinguishable
11126				 * from one that hasn't wrapped; we need only
11127				 * finish the job by clearing the wrapped bit,
11128				 * explicitly setting the offset to be 0, and
11129				 * zero'ing out the old data in the buffer.
11130				 */
11131				if (offs == 0) {
11132					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11133					buf->dtb_offset = 0;
11134					woffs = total;
11135
11136					while (woffs < buf->dtb_size)
11137						tomax[woffs++] = 0;
11138				}
11139
11140				woffs = 0;
11141				break;
11142			}
11143
11144			woffs += size;
11145		}
11146
11147		/*
11148		 * We have a wrapped offset.  It may be that the wrapped offset
11149		 * has become zero -- that's okay.
11150		 */
11151		buf->dtb_xamot_offset = woffs;
11152	}
11153
11154out:
11155	/*
11156	 * Now we can plow the buffer with any necessary padding.
11157	 */
11158	while (offs & (align - 1)) {
11159		/*
11160		 * Assert that our alignment is off by a number which
11161		 * is itself sizeof (uint32_t) aligned.
11162		 */
11163		ASSERT(!((align - (offs & (align - 1))) &
11164		    (sizeof (uint32_t) - 1)));
11165		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11166		offs += sizeof (uint32_t);
11167	}
11168
11169	if (buf->dtb_flags & DTRACEBUF_FILL) {
11170		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11171			buf->dtb_flags |= DTRACEBUF_FULL;
11172			return (-1);
11173		}
11174	}
11175
11176	if (mstate == NULL)
11177		return (offs);
11178
11179	/*
11180	 * For ring buffers and fill buffers, the scratch space is always
11181	 * the inactive buffer.
11182	 */
11183	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11184	mstate->dtms_scratch_size = buf->dtb_size;
11185	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11186
11187	return (offs);
11188}
11189
11190static void
11191dtrace_buffer_polish(dtrace_buffer_t *buf)
11192{
11193	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11194	ASSERT(MUTEX_HELD(&dtrace_lock));
11195
11196	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11197		return;
11198
11199	/*
11200	 * We need to polish the ring buffer.  There are three cases:
11201	 *
11202	 * - The first (and presumably most common) is that there is no gap
11203	 *   between the buffer offset and the wrapped offset.  In this case,
11204	 *   there is nothing in the buffer that isn't valid data; we can
11205	 *   mark the buffer as polished and return.
11206	 *
11207	 * - The second (less common than the first but still more common
11208	 *   than the third) is that there is a gap between the buffer offset
11209	 *   and the wrapped offset, and the wrapped offset is larger than the
11210	 *   buffer offset.  This can happen because of an alignment issue, or
11211	 *   can happen because of a call to dtrace_buffer_reserve() that
11212	 *   didn't subsequently consume the buffer space.  In this case,
11213	 *   we need to zero the data from the buffer offset to the wrapped
11214	 *   offset.
11215	 *
11216	 * - The third (and least common) is that there is a gap between the
11217	 *   buffer offset and the wrapped offset, but the wrapped offset is
11218	 *   _less_ than the buffer offset.  This can only happen because a
11219	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11220	 *   was not subsequently consumed.  In this case, we need to zero the
11221	 *   space from the offset to the end of the buffer _and_ from the
11222	 *   top of the buffer to the wrapped offset.
11223	 */
11224	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11225		bzero(buf->dtb_tomax + buf->dtb_offset,
11226		    buf->dtb_xamot_offset - buf->dtb_offset);
11227	}
11228
11229	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11230		bzero(buf->dtb_tomax + buf->dtb_offset,
11231		    buf->dtb_size - buf->dtb_offset);
11232		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11233	}
11234}
11235
11236/*
11237 * This routine determines if data generated at the specified time has likely
11238 * been entirely consumed at user-level.  This routine is called to determine
11239 * if an ECB on a defunct probe (but for an active enabling) can be safely
11240 * disabled and destroyed.
11241 */
11242static int
11243dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11244{
11245	int i;
11246
11247	for (i = 0; i < NCPU; i++) {
11248		dtrace_buffer_t *buf = &bufs[i];
11249
11250		if (buf->dtb_size == 0)
11251			continue;
11252
11253		if (buf->dtb_flags & DTRACEBUF_RING)
11254			return (0);
11255
11256		if (!buf->dtb_switched && buf->dtb_offset != 0)
11257			return (0);
11258
11259		if (buf->dtb_switched - buf->dtb_interval < when)
11260			return (0);
11261	}
11262
11263	return (1);
11264}
11265
11266static void
11267dtrace_buffer_free(dtrace_buffer_t *bufs)
11268{
11269	int i;
11270
11271	for (i = 0; i < NCPU; i++) {
11272		dtrace_buffer_t *buf = &bufs[i];
11273
11274		if (buf->dtb_tomax == NULL) {
11275			ASSERT(buf->dtb_xamot == NULL);
11276			ASSERT(buf->dtb_size == 0);
11277			continue;
11278		}
11279
11280		if (buf->dtb_xamot != NULL) {
11281			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11282			kmem_free(buf->dtb_xamot, buf->dtb_size);
11283		}
11284
11285		kmem_free(buf->dtb_tomax, buf->dtb_size);
11286		buf->dtb_size = 0;
11287		buf->dtb_tomax = NULL;
11288		buf->dtb_xamot = NULL;
11289	}
11290}
11291
11292/*
11293 * DTrace Enabling Functions
11294 */
11295static dtrace_enabling_t *
11296dtrace_enabling_create(dtrace_vstate_t *vstate)
11297{
11298	dtrace_enabling_t *enab;
11299
11300	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11301	enab->dten_vstate = vstate;
11302
11303	return (enab);
11304}
11305
11306static void
11307dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11308{
11309	dtrace_ecbdesc_t **ndesc;
11310	size_t osize, nsize;
11311
11312	/*
11313	 * We can't add to enablings after we've enabled them, or after we've
11314	 * retained them.
11315	 */
11316	ASSERT(enab->dten_probegen == 0);
11317	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11318
11319	if (enab->dten_ndesc < enab->dten_maxdesc) {
11320		enab->dten_desc[enab->dten_ndesc++] = ecb;
11321		return;
11322	}
11323
11324	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11325
11326	if (enab->dten_maxdesc == 0) {
11327		enab->dten_maxdesc = 1;
11328	} else {
11329		enab->dten_maxdesc <<= 1;
11330	}
11331
11332	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11333
11334	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11335	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11336	bcopy(enab->dten_desc, ndesc, osize);
11337	if (enab->dten_desc != NULL)
11338		kmem_free(enab->dten_desc, osize);
11339
11340	enab->dten_desc = ndesc;
11341	enab->dten_desc[enab->dten_ndesc++] = ecb;
11342}
11343
11344static void
11345dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11346    dtrace_probedesc_t *pd)
11347{
11348	dtrace_ecbdesc_t *new;
11349	dtrace_predicate_t *pred;
11350	dtrace_actdesc_t *act;
11351
11352	/*
11353	 * We're going to create a new ECB description that matches the
11354	 * specified ECB in every way, but has the specified probe description.
11355	 */
11356	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11357
11358	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11359		dtrace_predicate_hold(pred);
11360
11361	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11362		dtrace_actdesc_hold(act);
11363
11364	new->dted_action = ecb->dted_action;
11365	new->dted_pred = ecb->dted_pred;
11366	new->dted_probe = *pd;
11367	new->dted_uarg = ecb->dted_uarg;
11368
11369	dtrace_enabling_add(enab, new);
11370}
11371
11372static void
11373dtrace_enabling_dump(dtrace_enabling_t *enab)
11374{
11375	int i;
11376
11377	for (i = 0; i < enab->dten_ndesc; i++) {
11378		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11379
11380		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11381		    desc->dtpd_provider, desc->dtpd_mod,
11382		    desc->dtpd_func, desc->dtpd_name);
11383	}
11384}
11385
11386static void
11387dtrace_enabling_destroy(dtrace_enabling_t *enab)
11388{
11389	int i;
11390	dtrace_ecbdesc_t *ep;
11391	dtrace_vstate_t *vstate = enab->dten_vstate;
11392
11393	ASSERT(MUTEX_HELD(&dtrace_lock));
11394
11395	for (i = 0; i < enab->dten_ndesc; i++) {
11396		dtrace_actdesc_t *act, *next;
11397		dtrace_predicate_t *pred;
11398
11399		ep = enab->dten_desc[i];
11400
11401		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11402			dtrace_predicate_release(pred, vstate);
11403
11404		for (act = ep->dted_action; act != NULL; act = next) {
11405			next = act->dtad_next;
11406			dtrace_actdesc_release(act, vstate);
11407		}
11408
11409		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11410	}
11411
11412	if (enab->dten_desc != NULL)
11413		kmem_free(enab->dten_desc,
11414		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11415
11416	/*
11417	 * If this was a retained enabling, decrement the dts_nretained count
11418	 * and take it off of the dtrace_retained list.
11419	 */
11420	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11421	    dtrace_retained == enab) {
11422		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11423		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11424		enab->dten_vstate->dtvs_state->dts_nretained--;
11425	}
11426
11427	if (enab->dten_prev == NULL) {
11428		if (dtrace_retained == enab) {
11429			dtrace_retained = enab->dten_next;
11430
11431			if (dtrace_retained != NULL)
11432				dtrace_retained->dten_prev = NULL;
11433		}
11434	} else {
11435		ASSERT(enab != dtrace_retained);
11436		ASSERT(dtrace_retained != NULL);
11437		enab->dten_prev->dten_next = enab->dten_next;
11438	}
11439
11440	if (enab->dten_next != NULL) {
11441		ASSERT(dtrace_retained != NULL);
11442		enab->dten_next->dten_prev = enab->dten_prev;
11443	}
11444
11445	kmem_free(enab, sizeof (dtrace_enabling_t));
11446}
11447
11448static int
11449dtrace_enabling_retain(dtrace_enabling_t *enab)
11450{
11451	dtrace_state_t *state;
11452
11453	ASSERT(MUTEX_HELD(&dtrace_lock));
11454	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11455	ASSERT(enab->dten_vstate != NULL);
11456
11457	state = enab->dten_vstate->dtvs_state;
11458	ASSERT(state != NULL);
11459
11460	/*
11461	 * We only allow each state to retain dtrace_retain_max enablings.
11462	 */
11463	if (state->dts_nretained >= dtrace_retain_max)
11464		return (ENOSPC);
11465
11466	state->dts_nretained++;
11467
11468	if (dtrace_retained == NULL) {
11469		dtrace_retained = enab;
11470		return (0);
11471	}
11472
11473	enab->dten_next = dtrace_retained;
11474	dtrace_retained->dten_prev = enab;
11475	dtrace_retained = enab;
11476
11477	return (0);
11478}
11479
11480static int
11481dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11482    dtrace_probedesc_t *create)
11483{
11484	dtrace_enabling_t *new, *enab;
11485	int found = 0, err = ENOENT;
11486
11487	ASSERT(MUTEX_HELD(&dtrace_lock));
11488	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11489	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11490	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11491	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11492
11493	new = dtrace_enabling_create(&state->dts_vstate);
11494
11495	/*
11496	 * Iterate over all retained enablings, looking for enablings that
11497	 * match the specified state.
11498	 */
11499	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11500		int i;
11501
11502		/*
11503		 * dtvs_state can only be NULL for helper enablings -- and
11504		 * helper enablings can't be retained.
11505		 */
11506		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11507
11508		if (enab->dten_vstate->dtvs_state != state)
11509			continue;
11510
11511		/*
11512		 * Now iterate over each probe description; we're looking for
11513		 * an exact match to the specified probe description.
11514		 */
11515		for (i = 0; i < enab->dten_ndesc; i++) {
11516			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11517			dtrace_probedesc_t *pd = &ep->dted_probe;
11518
11519			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11520				continue;
11521
11522			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11523				continue;
11524
11525			if (strcmp(pd->dtpd_func, match->dtpd_func))
11526				continue;
11527
11528			if (strcmp(pd->dtpd_name, match->dtpd_name))
11529				continue;
11530
11531			/*
11532			 * We have a winning probe!  Add it to our growing
11533			 * enabling.
11534			 */
11535			found = 1;
11536			dtrace_enabling_addlike(new, ep, create);
11537		}
11538	}
11539
11540	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11541		dtrace_enabling_destroy(new);
11542		return (err);
11543	}
11544
11545	return (0);
11546}
11547
11548static void
11549dtrace_enabling_retract(dtrace_state_t *state)
11550{
11551	dtrace_enabling_t *enab, *next;
11552
11553	ASSERT(MUTEX_HELD(&dtrace_lock));
11554
11555	/*
11556	 * Iterate over all retained enablings, destroy the enablings retained
11557	 * for the specified state.
11558	 */
11559	for (enab = dtrace_retained; enab != NULL; enab = next) {
11560		next = enab->dten_next;
11561
11562		/*
11563		 * dtvs_state can only be NULL for helper enablings -- and
11564		 * helper enablings can't be retained.
11565		 */
11566		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11567
11568		if (enab->dten_vstate->dtvs_state == state) {
11569			ASSERT(state->dts_nretained > 0);
11570			dtrace_enabling_destroy(enab);
11571		}
11572	}
11573
11574	ASSERT(state->dts_nretained == 0);
11575}
11576
11577static int
11578dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11579{
11580	int i = 0;
11581	int matched = 0;
11582
11583	ASSERT(MUTEX_HELD(&cpu_lock));
11584	ASSERT(MUTEX_HELD(&dtrace_lock));
11585
11586	for (i = 0; i < enab->dten_ndesc; i++) {
11587		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11588
11589		enab->dten_current = ep;
11590		enab->dten_error = 0;
11591
11592		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11593
11594		if (enab->dten_error != 0) {
11595			/*
11596			 * If we get an error half-way through enabling the
11597			 * probes, we kick out -- perhaps with some number of
11598			 * them enabled.  Leaving enabled probes enabled may
11599			 * be slightly confusing for user-level, but we expect
11600			 * that no one will attempt to actually drive on in
11601			 * the face of such errors.  If this is an anonymous
11602			 * enabling (indicated with a NULL nmatched pointer),
11603			 * we cmn_err() a message.  We aren't expecting to
11604			 * get such an error -- such as it can exist at all,
11605			 * it would be a result of corrupted DOF in the driver
11606			 * properties.
11607			 */
11608			if (nmatched == NULL) {
11609				cmn_err(CE_WARN, "dtrace_enabling_match() "
11610				    "error on %p: %d", (void *)ep,
11611				    enab->dten_error);
11612			}
11613
11614			return (enab->dten_error);
11615		}
11616	}
11617
11618	enab->dten_probegen = dtrace_probegen;
11619	if (nmatched != NULL)
11620		*nmatched = matched;
11621
11622	return (0);
11623}
11624
11625static void
11626dtrace_enabling_matchall(void)
11627{
11628	dtrace_enabling_t *enab;
11629
11630	mutex_enter(&cpu_lock);
11631	mutex_enter(&dtrace_lock);
11632
11633	/*
11634	 * Iterate over all retained enablings to see if any probes match
11635	 * against them.  We only perform this operation on enablings for which
11636	 * we have sufficient permissions by virtue of being in the global zone
11637	 * or in the same zone as the DTrace client.  Because we can be called
11638	 * after dtrace_detach() has been called, we cannot assert that there
11639	 * are retained enablings.  We can safely load from dtrace_retained,
11640	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11641	 * block pending our completion.
11642	 */
11643	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11644#if defined(sun)
11645		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11646
11647		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11648#endif
11649			(void) dtrace_enabling_match(enab, NULL);
11650	}
11651
11652	mutex_exit(&dtrace_lock);
11653	mutex_exit(&cpu_lock);
11654}
11655
11656/*
11657 * If an enabling is to be enabled without having matched probes (that is, if
11658 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11659 * enabling must be _primed_ by creating an ECB for every ECB description.
11660 * This must be done to assure that we know the number of speculations, the
11661 * number of aggregations, the minimum buffer size needed, etc. before we
11662 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11663 * enabling any probes, we create ECBs for every ECB decription, but with a
11664 * NULL probe -- which is exactly what this function does.
11665 */
11666static void
11667dtrace_enabling_prime(dtrace_state_t *state)
11668{
11669	dtrace_enabling_t *enab;
11670	int i;
11671
11672	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11673		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11674
11675		if (enab->dten_vstate->dtvs_state != state)
11676			continue;
11677
11678		/*
11679		 * We don't want to prime an enabling more than once, lest
11680		 * we allow a malicious user to induce resource exhaustion.
11681		 * (The ECBs that result from priming an enabling aren't
11682		 * leaked -- but they also aren't deallocated until the
11683		 * consumer state is destroyed.)
11684		 */
11685		if (enab->dten_primed)
11686			continue;
11687
11688		for (i = 0; i < enab->dten_ndesc; i++) {
11689			enab->dten_current = enab->dten_desc[i];
11690			(void) dtrace_probe_enable(NULL, enab);
11691		}
11692
11693		enab->dten_primed = 1;
11694	}
11695}
11696
11697/*
11698 * Called to indicate that probes should be provided due to retained
11699 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11700 * must take an initial lap through the enabling calling the dtps_provide()
11701 * entry point explicitly to allow for autocreated probes.
11702 */
11703static void
11704dtrace_enabling_provide(dtrace_provider_t *prv)
11705{
11706	int i, all = 0;
11707	dtrace_probedesc_t desc;
11708
11709	ASSERT(MUTEX_HELD(&dtrace_lock));
11710	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11711
11712	if (prv == NULL) {
11713		all = 1;
11714		prv = dtrace_provider;
11715	}
11716
11717	do {
11718		dtrace_enabling_t *enab = dtrace_retained;
11719		void *parg = prv->dtpv_arg;
11720
11721		for (; enab != NULL; enab = enab->dten_next) {
11722			for (i = 0; i < enab->dten_ndesc; i++) {
11723				desc = enab->dten_desc[i]->dted_probe;
11724				mutex_exit(&dtrace_lock);
11725				prv->dtpv_pops.dtps_provide(parg, &desc);
11726				mutex_enter(&dtrace_lock);
11727			}
11728		}
11729	} while (all && (prv = prv->dtpv_next) != NULL);
11730
11731	mutex_exit(&dtrace_lock);
11732	dtrace_probe_provide(NULL, all ? NULL : prv);
11733	mutex_enter(&dtrace_lock);
11734}
11735
11736/*
11737 * Called to reap ECBs that are attached to probes from defunct providers.
11738 */
11739static void
11740dtrace_enabling_reap(void)
11741{
11742	dtrace_provider_t *prov;
11743	dtrace_probe_t *probe;
11744	dtrace_ecb_t *ecb;
11745	hrtime_t when;
11746	int i;
11747
11748	mutex_enter(&cpu_lock);
11749	mutex_enter(&dtrace_lock);
11750
11751	for (i = 0; i < dtrace_nprobes; i++) {
11752		if ((probe = dtrace_probes[i]) == NULL)
11753			continue;
11754
11755		if (probe->dtpr_ecb == NULL)
11756			continue;
11757
11758		prov = probe->dtpr_provider;
11759
11760		if ((when = prov->dtpv_defunct) == 0)
11761			continue;
11762
11763		/*
11764		 * We have ECBs on a defunct provider:  we want to reap these
11765		 * ECBs to allow the provider to unregister.  The destruction
11766		 * of these ECBs must be done carefully:  if we destroy the ECB
11767		 * and the consumer later wishes to consume an EPID that
11768		 * corresponds to the destroyed ECB (and if the EPID metadata
11769		 * has not been previously consumed), the consumer will abort
11770		 * processing on the unknown EPID.  To reduce (but not, sadly,
11771		 * eliminate) the possibility of this, we will only destroy an
11772		 * ECB for a defunct provider if, for the state that
11773		 * corresponds to the ECB:
11774		 *
11775		 *  (a)	There is no speculative tracing (which can effectively
11776		 *	cache an EPID for an arbitrary amount of time).
11777		 *
11778		 *  (b)	The principal buffers have been switched twice since the
11779		 *	provider became defunct.
11780		 *
11781		 *  (c)	The aggregation buffers are of zero size or have been
11782		 *	switched twice since the provider became defunct.
11783		 *
11784		 * We use dts_speculates to determine (a) and call a function
11785		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11786		 * that as soon as we've been unable to destroy one of the ECBs
11787		 * associated with the probe, we quit trying -- reaping is only
11788		 * fruitful in as much as we can destroy all ECBs associated
11789		 * with the defunct provider's probes.
11790		 */
11791		while ((ecb = probe->dtpr_ecb) != NULL) {
11792			dtrace_state_t *state = ecb->dte_state;
11793			dtrace_buffer_t *buf = state->dts_buffer;
11794			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11795
11796			if (state->dts_speculates)
11797				break;
11798
11799			if (!dtrace_buffer_consumed(buf, when))
11800				break;
11801
11802			if (!dtrace_buffer_consumed(aggbuf, when))
11803				break;
11804
11805			dtrace_ecb_disable(ecb);
11806			ASSERT(probe->dtpr_ecb != ecb);
11807			dtrace_ecb_destroy(ecb);
11808		}
11809	}
11810
11811	mutex_exit(&dtrace_lock);
11812	mutex_exit(&cpu_lock);
11813}
11814
11815/*
11816 * DTrace DOF Functions
11817 */
11818/*ARGSUSED*/
11819static void
11820dtrace_dof_error(dof_hdr_t *dof, const char *str)
11821{
11822	if (dtrace_err_verbose)
11823		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11824
11825#ifdef DTRACE_ERRDEBUG
11826	dtrace_errdebug(str);
11827#endif
11828}
11829
11830/*
11831 * Create DOF out of a currently enabled state.  Right now, we only create
11832 * DOF containing the run-time options -- but this could be expanded to create
11833 * complete DOF representing the enabled state.
11834 */
11835static dof_hdr_t *
11836dtrace_dof_create(dtrace_state_t *state)
11837{
11838	dof_hdr_t *dof;
11839	dof_sec_t *sec;
11840	dof_optdesc_t *opt;
11841	int i, len = sizeof (dof_hdr_t) +
11842	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11843	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11844
11845	ASSERT(MUTEX_HELD(&dtrace_lock));
11846
11847	dof = kmem_zalloc(len, KM_SLEEP);
11848	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11849	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11850	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11851	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11852
11853	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11854	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11855	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11856	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11857	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11858	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11859
11860	dof->dofh_flags = 0;
11861	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11862	dof->dofh_secsize = sizeof (dof_sec_t);
11863	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11864	dof->dofh_secoff = sizeof (dof_hdr_t);
11865	dof->dofh_loadsz = len;
11866	dof->dofh_filesz = len;
11867	dof->dofh_pad = 0;
11868
11869	/*
11870	 * Fill in the option section header...
11871	 */
11872	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11873	sec->dofs_type = DOF_SECT_OPTDESC;
11874	sec->dofs_align = sizeof (uint64_t);
11875	sec->dofs_flags = DOF_SECF_LOAD;
11876	sec->dofs_entsize = sizeof (dof_optdesc_t);
11877
11878	opt = (dof_optdesc_t *)((uintptr_t)sec +
11879	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11880
11881	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11882	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11883
11884	for (i = 0; i < DTRACEOPT_MAX; i++) {
11885		opt[i].dofo_option = i;
11886		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11887		opt[i].dofo_value = state->dts_options[i];
11888	}
11889
11890	return (dof);
11891}
11892
11893static dof_hdr_t *
11894dtrace_dof_copyin(uintptr_t uarg, int *errp)
11895{
11896	dof_hdr_t hdr, *dof;
11897
11898	ASSERT(!MUTEX_HELD(&dtrace_lock));
11899
11900	/*
11901	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11902	 */
11903	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11904		dtrace_dof_error(NULL, "failed to copyin DOF header");
11905		*errp = EFAULT;
11906		return (NULL);
11907	}
11908
11909	/*
11910	 * Now we'll allocate the entire DOF and copy it in -- provided
11911	 * that the length isn't outrageous.
11912	 */
11913	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11914		dtrace_dof_error(&hdr, "load size exceeds maximum");
11915		*errp = E2BIG;
11916		return (NULL);
11917	}
11918
11919	if (hdr.dofh_loadsz < sizeof (hdr)) {
11920		dtrace_dof_error(&hdr, "invalid load size");
11921		*errp = EINVAL;
11922		return (NULL);
11923	}
11924
11925	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11926
11927	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11928		kmem_free(dof, hdr.dofh_loadsz);
11929		*errp = EFAULT;
11930		return (NULL);
11931	}
11932
11933	return (dof);
11934}
11935
11936#if !defined(sun)
11937static __inline uchar_t
11938dtrace_dof_char(char c) {
11939	switch (c) {
11940	case '0':
11941	case '1':
11942	case '2':
11943	case '3':
11944	case '4':
11945	case '5':
11946	case '6':
11947	case '7':
11948	case '8':
11949	case '9':
11950		return (c - '0');
11951	case 'A':
11952	case 'B':
11953	case 'C':
11954	case 'D':
11955	case 'E':
11956	case 'F':
11957		return (c - 'A' + 10);
11958	case 'a':
11959	case 'b':
11960	case 'c':
11961	case 'd':
11962	case 'e':
11963	case 'f':
11964		return (c - 'a' + 10);
11965	}
11966	/* Should not reach here. */
11967	return (0);
11968}
11969#endif
11970
11971static dof_hdr_t *
11972dtrace_dof_property(const char *name)
11973{
11974	uchar_t *buf;
11975	uint64_t loadsz;
11976	unsigned int len, i;
11977	dof_hdr_t *dof;
11978
11979#if defined(sun)
11980	/*
11981	 * Unfortunately, array of values in .conf files are always (and
11982	 * only) interpreted to be integer arrays.  We must read our DOF
11983	 * as an integer array, and then squeeze it into a byte array.
11984	 */
11985	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11986	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11987		return (NULL);
11988
11989	for (i = 0; i < len; i++)
11990		buf[i] = (uchar_t)(((int *)buf)[i]);
11991
11992	if (len < sizeof (dof_hdr_t)) {
11993		ddi_prop_free(buf);
11994		dtrace_dof_error(NULL, "truncated header");
11995		return (NULL);
11996	}
11997
11998	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11999		ddi_prop_free(buf);
12000		dtrace_dof_error(NULL, "truncated DOF");
12001		return (NULL);
12002	}
12003
12004	if (loadsz >= dtrace_dof_maxsize) {
12005		ddi_prop_free(buf);
12006		dtrace_dof_error(NULL, "oversized DOF");
12007		return (NULL);
12008	}
12009
12010	dof = kmem_alloc(loadsz, KM_SLEEP);
12011	bcopy(buf, dof, loadsz);
12012	ddi_prop_free(buf);
12013#else
12014	char *p;
12015	char *p_env;
12016
12017	if ((p_env = getenv(name)) == NULL)
12018		return (NULL);
12019
12020	len = strlen(p_env) / 2;
12021
12022	buf = kmem_alloc(len, KM_SLEEP);
12023
12024	dof = (dof_hdr_t *) buf;
12025
12026	p = p_env;
12027
12028	for (i = 0; i < len; i++) {
12029		buf[i] = (dtrace_dof_char(p[0]) << 4) |
12030		     dtrace_dof_char(p[1]);
12031		p += 2;
12032	}
12033
12034	freeenv(p_env);
12035
12036	if (len < sizeof (dof_hdr_t)) {
12037		kmem_free(buf, 0);
12038		dtrace_dof_error(NULL, "truncated header");
12039		return (NULL);
12040	}
12041
12042	if (len < (loadsz = dof->dofh_loadsz)) {
12043		kmem_free(buf, 0);
12044		dtrace_dof_error(NULL, "truncated DOF");
12045		return (NULL);
12046	}
12047
12048	if (loadsz >= dtrace_dof_maxsize) {
12049		kmem_free(buf, 0);
12050		dtrace_dof_error(NULL, "oversized DOF");
12051		return (NULL);
12052	}
12053#endif
12054
12055	return (dof);
12056}
12057
12058static void
12059dtrace_dof_destroy(dof_hdr_t *dof)
12060{
12061	kmem_free(dof, dof->dofh_loadsz);
12062}
12063
12064/*
12065 * Return the dof_sec_t pointer corresponding to a given section index.  If the
12066 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12067 * a type other than DOF_SECT_NONE is specified, the header is checked against
12068 * this type and NULL is returned if the types do not match.
12069 */
12070static dof_sec_t *
12071dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12072{
12073	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12074	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12075
12076	if (i >= dof->dofh_secnum) {
12077		dtrace_dof_error(dof, "referenced section index is invalid");
12078		return (NULL);
12079	}
12080
12081	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12082		dtrace_dof_error(dof, "referenced section is not loadable");
12083		return (NULL);
12084	}
12085
12086	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12087		dtrace_dof_error(dof, "referenced section is the wrong type");
12088		return (NULL);
12089	}
12090
12091	return (sec);
12092}
12093
12094static dtrace_probedesc_t *
12095dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12096{
12097	dof_probedesc_t *probe;
12098	dof_sec_t *strtab;
12099	uintptr_t daddr = (uintptr_t)dof;
12100	uintptr_t str;
12101	size_t size;
12102
12103	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12104		dtrace_dof_error(dof, "invalid probe section");
12105		return (NULL);
12106	}
12107
12108	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12109		dtrace_dof_error(dof, "bad alignment in probe description");
12110		return (NULL);
12111	}
12112
12113	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12114		dtrace_dof_error(dof, "truncated probe description");
12115		return (NULL);
12116	}
12117
12118	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12119	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12120
12121	if (strtab == NULL)
12122		return (NULL);
12123
12124	str = daddr + strtab->dofs_offset;
12125	size = strtab->dofs_size;
12126
12127	if (probe->dofp_provider >= strtab->dofs_size) {
12128		dtrace_dof_error(dof, "corrupt probe provider");
12129		return (NULL);
12130	}
12131
12132	(void) strncpy(desc->dtpd_provider,
12133	    (char *)(str + probe->dofp_provider),
12134	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12135
12136	if (probe->dofp_mod >= strtab->dofs_size) {
12137		dtrace_dof_error(dof, "corrupt probe module");
12138		return (NULL);
12139	}
12140
12141	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12142	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12143
12144	if (probe->dofp_func >= strtab->dofs_size) {
12145		dtrace_dof_error(dof, "corrupt probe function");
12146		return (NULL);
12147	}
12148
12149	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12150	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12151
12152	if (probe->dofp_name >= strtab->dofs_size) {
12153		dtrace_dof_error(dof, "corrupt probe name");
12154		return (NULL);
12155	}
12156
12157	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12158	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12159
12160	return (desc);
12161}
12162
12163static dtrace_difo_t *
12164dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12165    cred_t *cr)
12166{
12167	dtrace_difo_t *dp;
12168	size_t ttl = 0;
12169	dof_difohdr_t *dofd;
12170	uintptr_t daddr = (uintptr_t)dof;
12171	size_t max = dtrace_difo_maxsize;
12172	int i, l, n;
12173
12174	static const struct {
12175		int section;
12176		int bufoffs;
12177		int lenoffs;
12178		int entsize;
12179		int align;
12180		const char *msg;
12181	} difo[] = {
12182		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12183		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12184		sizeof (dif_instr_t), "multiple DIF sections" },
12185
12186		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12187		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12188		sizeof (uint64_t), "multiple integer tables" },
12189
12190		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12191		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12192		sizeof (char), "multiple string tables" },
12193
12194		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12195		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12196		sizeof (uint_t), "multiple variable tables" },
12197
12198		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12199	};
12200
12201	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12202		dtrace_dof_error(dof, "invalid DIFO header section");
12203		return (NULL);
12204	}
12205
12206	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12207		dtrace_dof_error(dof, "bad alignment in DIFO header");
12208		return (NULL);
12209	}
12210
12211	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12212	    sec->dofs_size % sizeof (dof_secidx_t)) {
12213		dtrace_dof_error(dof, "bad size in DIFO header");
12214		return (NULL);
12215	}
12216
12217	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12218	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12219
12220	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12221	dp->dtdo_rtype = dofd->dofd_rtype;
12222
12223	for (l = 0; l < n; l++) {
12224		dof_sec_t *subsec;
12225		void **bufp;
12226		uint32_t *lenp;
12227
12228		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12229		    dofd->dofd_links[l])) == NULL)
12230			goto err; /* invalid section link */
12231
12232		if (ttl + subsec->dofs_size > max) {
12233			dtrace_dof_error(dof, "exceeds maximum size");
12234			goto err;
12235		}
12236
12237		ttl += subsec->dofs_size;
12238
12239		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12240			if (subsec->dofs_type != difo[i].section)
12241				continue;
12242
12243			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12244				dtrace_dof_error(dof, "section not loaded");
12245				goto err;
12246			}
12247
12248			if (subsec->dofs_align != difo[i].align) {
12249				dtrace_dof_error(dof, "bad alignment");
12250				goto err;
12251			}
12252
12253			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12254			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12255
12256			if (*bufp != NULL) {
12257				dtrace_dof_error(dof, difo[i].msg);
12258				goto err;
12259			}
12260
12261			if (difo[i].entsize != subsec->dofs_entsize) {
12262				dtrace_dof_error(dof, "entry size mismatch");
12263				goto err;
12264			}
12265
12266			if (subsec->dofs_entsize != 0 &&
12267			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12268				dtrace_dof_error(dof, "corrupt entry size");
12269				goto err;
12270			}
12271
12272			*lenp = subsec->dofs_size;
12273			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12274			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12275			    *bufp, subsec->dofs_size);
12276
12277			if (subsec->dofs_entsize != 0)
12278				*lenp /= subsec->dofs_entsize;
12279
12280			break;
12281		}
12282
12283		/*
12284		 * If we encounter a loadable DIFO sub-section that is not
12285		 * known to us, assume this is a broken program and fail.
12286		 */
12287		if (difo[i].section == DOF_SECT_NONE &&
12288		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12289			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12290			goto err;
12291		}
12292	}
12293
12294	if (dp->dtdo_buf == NULL) {
12295		/*
12296		 * We can't have a DIF object without DIF text.
12297		 */
12298		dtrace_dof_error(dof, "missing DIF text");
12299		goto err;
12300	}
12301
12302	/*
12303	 * Before we validate the DIF object, run through the variable table
12304	 * looking for the strings -- if any of their size are under, we'll set
12305	 * their size to be the system-wide default string size.  Note that
12306	 * this should _not_ happen if the "strsize" option has been set --
12307	 * in this case, the compiler should have set the size to reflect the
12308	 * setting of the option.
12309	 */
12310	for (i = 0; i < dp->dtdo_varlen; i++) {
12311		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12312		dtrace_diftype_t *t = &v->dtdv_type;
12313
12314		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12315			continue;
12316
12317		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12318			t->dtdt_size = dtrace_strsize_default;
12319	}
12320
12321	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12322		goto err;
12323
12324	dtrace_difo_init(dp, vstate);
12325	return (dp);
12326
12327err:
12328	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12329	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12330	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12331	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12332
12333	kmem_free(dp, sizeof (dtrace_difo_t));
12334	return (NULL);
12335}
12336
12337static dtrace_predicate_t *
12338dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12339    cred_t *cr)
12340{
12341	dtrace_difo_t *dp;
12342
12343	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12344		return (NULL);
12345
12346	return (dtrace_predicate_create(dp));
12347}
12348
12349static dtrace_actdesc_t *
12350dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12351    cred_t *cr)
12352{
12353	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12354	dof_actdesc_t *desc;
12355	dof_sec_t *difosec;
12356	size_t offs;
12357	uintptr_t daddr = (uintptr_t)dof;
12358	uint64_t arg;
12359	dtrace_actkind_t kind;
12360
12361	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12362		dtrace_dof_error(dof, "invalid action section");
12363		return (NULL);
12364	}
12365
12366	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12367		dtrace_dof_error(dof, "truncated action description");
12368		return (NULL);
12369	}
12370
12371	if (sec->dofs_align != sizeof (uint64_t)) {
12372		dtrace_dof_error(dof, "bad alignment in action description");
12373		return (NULL);
12374	}
12375
12376	if (sec->dofs_size < sec->dofs_entsize) {
12377		dtrace_dof_error(dof, "section entry size exceeds total size");
12378		return (NULL);
12379	}
12380
12381	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12382		dtrace_dof_error(dof, "bad entry size in action description");
12383		return (NULL);
12384	}
12385
12386	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12387		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12388		return (NULL);
12389	}
12390
12391	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12392		desc = (dof_actdesc_t *)(daddr +
12393		    (uintptr_t)sec->dofs_offset + offs);
12394		kind = (dtrace_actkind_t)desc->dofa_kind;
12395
12396		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12397		    (kind != DTRACEACT_PRINTA ||
12398		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12399		    (kind == DTRACEACT_DIFEXPR &&
12400		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12401			dof_sec_t *strtab;
12402			char *str, *fmt;
12403			uint64_t i;
12404
12405			/*
12406			 * The argument to these actions is an index into the
12407			 * DOF string table.  For printf()-like actions, this
12408			 * is the format string.  For print(), this is the
12409			 * CTF type of the expression result.
12410			 */
12411			if ((strtab = dtrace_dof_sect(dof,
12412			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12413				goto err;
12414
12415			str = (char *)((uintptr_t)dof +
12416			    (uintptr_t)strtab->dofs_offset);
12417
12418			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12419				if (str[i] == '\0')
12420					break;
12421			}
12422
12423			if (i >= strtab->dofs_size) {
12424				dtrace_dof_error(dof, "bogus format string");
12425				goto err;
12426			}
12427
12428			if (i == desc->dofa_arg) {
12429				dtrace_dof_error(dof, "empty format string");
12430				goto err;
12431			}
12432
12433			i -= desc->dofa_arg;
12434			fmt = kmem_alloc(i + 1, KM_SLEEP);
12435			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12436			arg = (uint64_t)(uintptr_t)fmt;
12437		} else {
12438			if (kind == DTRACEACT_PRINTA) {
12439				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12440				arg = 0;
12441			} else {
12442				arg = desc->dofa_arg;
12443			}
12444		}
12445
12446		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12447		    desc->dofa_uarg, arg);
12448
12449		if (last != NULL) {
12450			last->dtad_next = act;
12451		} else {
12452			first = act;
12453		}
12454
12455		last = act;
12456
12457		if (desc->dofa_difo == DOF_SECIDX_NONE)
12458			continue;
12459
12460		if ((difosec = dtrace_dof_sect(dof,
12461		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12462			goto err;
12463
12464		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12465
12466		if (act->dtad_difo == NULL)
12467			goto err;
12468	}
12469
12470	ASSERT(first != NULL);
12471	return (first);
12472
12473err:
12474	for (act = first; act != NULL; act = next) {
12475		next = act->dtad_next;
12476		dtrace_actdesc_release(act, vstate);
12477	}
12478
12479	return (NULL);
12480}
12481
12482static dtrace_ecbdesc_t *
12483dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12484    cred_t *cr)
12485{
12486	dtrace_ecbdesc_t *ep;
12487	dof_ecbdesc_t *ecb;
12488	dtrace_probedesc_t *desc;
12489	dtrace_predicate_t *pred = NULL;
12490
12491	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12492		dtrace_dof_error(dof, "truncated ECB description");
12493		return (NULL);
12494	}
12495
12496	if (sec->dofs_align != sizeof (uint64_t)) {
12497		dtrace_dof_error(dof, "bad alignment in ECB description");
12498		return (NULL);
12499	}
12500
12501	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12502	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12503
12504	if (sec == NULL)
12505		return (NULL);
12506
12507	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12508	ep->dted_uarg = ecb->dofe_uarg;
12509	desc = &ep->dted_probe;
12510
12511	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12512		goto err;
12513
12514	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12515		if ((sec = dtrace_dof_sect(dof,
12516		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12517			goto err;
12518
12519		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12520			goto err;
12521
12522		ep->dted_pred.dtpdd_predicate = pred;
12523	}
12524
12525	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12526		if ((sec = dtrace_dof_sect(dof,
12527		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12528			goto err;
12529
12530		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12531
12532		if (ep->dted_action == NULL)
12533			goto err;
12534	}
12535
12536	return (ep);
12537
12538err:
12539	if (pred != NULL)
12540		dtrace_predicate_release(pred, vstate);
12541	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12542	return (NULL);
12543}
12544
12545/*
12546 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12547 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12548 * site of any user SETX relocations to account for load object base address.
12549 * In the future, if we need other relocations, this function can be extended.
12550 */
12551static int
12552dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12553{
12554	uintptr_t daddr = (uintptr_t)dof;
12555	dof_relohdr_t *dofr =
12556	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12557	dof_sec_t *ss, *rs, *ts;
12558	dof_relodesc_t *r;
12559	uint_t i, n;
12560
12561	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12562	    sec->dofs_align != sizeof (dof_secidx_t)) {
12563		dtrace_dof_error(dof, "invalid relocation header");
12564		return (-1);
12565	}
12566
12567	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12568	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12569	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12570
12571	if (ss == NULL || rs == NULL || ts == NULL)
12572		return (-1); /* dtrace_dof_error() has been called already */
12573
12574	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12575	    rs->dofs_align != sizeof (uint64_t)) {
12576		dtrace_dof_error(dof, "invalid relocation section");
12577		return (-1);
12578	}
12579
12580	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12581	n = rs->dofs_size / rs->dofs_entsize;
12582
12583	for (i = 0; i < n; i++) {
12584		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12585
12586		switch (r->dofr_type) {
12587		case DOF_RELO_NONE:
12588			break;
12589		case DOF_RELO_SETX:
12590			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12591			    sizeof (uint64_t) > ts->dofs_size) {
12592				dtrace_dof_error(dof, "bad relocation offset");
12593				return (-1);
12594			}
12595
12596			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12597				dtrace_dof_error(dof, "misaligned setx relo");
12598				return (-1);
12599			}
12600
12601			*(uint64_t *)taddr += ubase;
12602			break;
12603		default:
12604			dtrace_dof_error(dof, "invalid relocation type");
12605			return (-1);
12606		}
12607
12608		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12609	}
12610
12611	return (0);
12612}
12613
12614/*
12615 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12616 * header:  it should be at the front of a memory region that is at least
12617 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12618 * size.  It need not be validated in any other way.
12619 */
12620static int
12621dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12622    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12623{
12624	uint64_t len = dof->dofh_loadsz, seclen;
12625	uintptr_t daddr = (uintptr_t)dof;
12626	dtrace_ecbdesc_t *ep;
12627	dtrace_enabling_t *enab;
12628	uint_t i;
12629
12630	ASSERT(MUTEX_HELD(&dtrace_lock));
12631	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12632
12633	/*
12634	 * Check the DOF header identification bytes.  In addition to checking
12635	 * valid settings, we also verify that unused bits/bytes are zeroed so
12636	 * we can use them later without fear of regressing existing binaries.
12637	 */
12638	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12639	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12640		dtrace_dof_error(dof, "DOF magic string mismatch");
12641		return (-1);
12642	}
12643
12644	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12645	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12646		dtrace_dof_error(dof, "DOF has invalid data model");
12647		return (-1);
12648	}
12649
12650	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12651		dtrace_dof_error(dof, "DOF encoding mismatch");
12652		return (-1);
12653	}
12654
12655	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12656	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12657		dtrace_dof_error(dof, "DOF version mismatch");
12658		return (-1);
12659	}
12660
12661	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12662		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12663		return (-1);
12664	}
12665
12666	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12667		dtrace_dof_error(dof, "DOF uses too many integer registers");
12668		return (-1);
12669	}
12670
12671	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12672		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12673		return (-1);
12674	}
12675
12676	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12677		if (dof->dofh_ident[i] != 0) {
12678			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12679			return (-1);
12680		}
12681	}
12682
12683	if (dof->dofh_flags & ~DOF_FL_VALID) {
12684		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12685		return (-1);
12686	}
12687
12688	if (dof->dofh_secsize == 0) {
12689		dtrace_dof_error(dof, "zero section header size");
12690		return (-1);
12691	}
12692
12693	/*
12694	 * Check that the section headers don't exceed the amount of DOF
12695	 * data.  Note that we cast the section size and number of sections
12696	 * to uint64_t's to prevent possible overflow in the multiplication.
12697	 */
12698	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12699
12700	if (dof->dofh_secoff > len || seclen > len ||
12701	    dof->dofh_secoff + seclen > len) {
12702		dtrace_dof_error(dof, "truncated section headers");
12703		return (-1);
12704	}
12705
12706	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12707		dtrace_dof_error(dof, "misaligned section headers");
12708		return (-1);
12709	}
12710
12711	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12712		dtrace_dof_error(dof, "misaligned section size");
12713		return (-1);
12714	}
12715
12716	/*
12717	 * Take an initial pass through the section headers to be sure that
12718	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12719	 * set, do not permit sections relating to providers, probes, or args.
12720	 */
12721	for (i = 0; i < dof->dofh_secnum; i++) {
12722		dof_sec_t *sec = (dof_sec_t *)(daddr +
12723		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12724
12725		if (noprobes) {
12726			switch (sec->dofs_type) {
12727			case DOF_SECT_PROVIDER:
12728			case DOF_SECT_PROBES:
12729			case DOF_SECT_PRARGS:
12730			case DOF_SECT_PROFFS:
12731				dtrace_dof_error(dof, "illegal sections "
12732				    "for enabling");
12733				return (-1);
12734			}
12735		}
12736
12737		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12738			continue; /* just ignore non-loadable sections */
12739
12740		if (sec->dofs_align & (sec->dofs_align - 1)) {
12741			dtrace_dof_error(dof, "bad section alignment");
12742			return (-1);
12743		}
12744
12745		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12746			dtrace_dof_error(dof, "misaligned section");
12747			return (-1);
12748		}
12749
12750		if (sec->dofs_offset > len || sec->dofs_size > len ||
12751		    sec->dofs_offset + sec->dofs_size > len) {
12752			dtrace_dof_error(dof, "corrupt section header");
12753			return (-1);
12754		}
12755
12756		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12757		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12758			dtrace_dof_error(dof, "non-terminating string table");
12759			return (-1);
12760		}
12761	}
12762
12763	/*
12764	 * Take a second pass through the sections and locate and perform any
12765	 * relocations that are present.  We do this after the first pass to
12766	 * be sure that all sections have had their headers validated.
12767	 */
12768	for (i = 0; i < dof->dofh_secnum; i++) {
12769		dof_sec_t *sec = (dof_sec_t *)(daddr +
12770		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12771
12772		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12773			continue; /* skip sections that are not loadable */
12774
12775		switch (sec->dofs_type) {
12776		case DOF_SECT_URELHDR:
12777			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12778				return (-1);
12779			break;
12780		}
12781	}
12782
12783	if ((enab = *enabp) == NULL)
12784		enab = *enabp = dtrace_enabling_create(vstate);
12785
12786	for (i = 0; i < dof->dofh_secnum; i++) {
12787		dof_sec_t *sec = (dof_sec_t *)(daddr +
12788		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12789
12790		if (sec->dofs_type != DOF_SECT_ECBDESC)
12791			continue;
12792
12793		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12794			dtrace_enabling_destroy(enab);
12795			*enabp = NULL;
12796			return (-1);
12797		}
12798
12799		dtrace_enabling_add(enab, ep);
12800	}
12801
12802	return (0);
12803}
12804
12805/*
12806 * Process DOF for any options.  This routine assumes that the DOF has been
12807 * at least processed by dtrace_dof_slurp().
12808 */
12809static int
12810dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12811{
12812	int i, rval;
12813	uint32_t entsize;
12814	size_t offs;
12815	dof_optdesc_t *desc;
12816
12817	for (i = 0; i < dof->dofh_secnum; i++) {
12818		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12819		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12820
12821		if (sec->dofs_type != DOF_SECT_OPTDESC)
12822			continue;
12823
12824		if (sec->dofs_align != sizeof (uint64_t)) {
12825			dtrace_dof_error(dof, "bad alignment in "
12826			    "option description");
12827			return (EINVAL);
12828		}
12829
12830		if ((entsize = sec->dofs_entsize) == 0) {
12831			dtrace_dof_error(dof, "zeroed option entry size");
12832			return (EINVAL);
12833		}
12834
12835		if (entsize < sizeof (dof_optdesc_t)) {
12836			dtrace_dof_error(dof, "bad option entry size");
12837			return (EINVAL);
12838		}
12839
12840		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12841			desc = (dof_optdesc_t *)((uintptr_t)dof +
12842			    (uintptr_t)sec->dofs_offset + offs);
12843
12844			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12845				dtrace_dof_error(dof, "non-zero option string");
12846				return (EINVAL);
12847			}
12848
12849			if (desc->dofo_value == DTRACEOPT_UNSET) {
12850				dtrace_dof_error(dof, "unset option");
12851				return (EINVAL);
12852			}
12853
12854			if ((rval = dtrace_state_option(state,
12855			    desc->dofo_option, desc->dofo_value)) != 0) {
12856				dtrace_dof_error(dof, "rejected option");
12857				return (rval);
12858			}
12859		}
12860	}
12861
12862	return (0);
12863}
12864
12865/*
12866 * DTrace Consumer State Functions
12867 */
12868static int
12869dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12870{
12871	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12872	void *base;
12873	uintptr_t limit;
12874	dtrace_dynvar_t *dvar, *next, *start;
12875	int i;
12876
12877	ASSERT(MUTEX_HELD(&dtrace_lock));
12878	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12879
12880	bzero(dstate, sizeof (dtrace_dstate_t));
12881
12882	if ((dstate->dtds_chunksize = chunksize) == 0)
12883		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12884
12885	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12886		size = min;
12887
12888	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12889		return (ENOMEM);
12890
12891	dstate->dtds_size = size;
12892	dstate->dtds_base = base;
12893	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12894	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12895
12896	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12897
12898	if (hashsize != 1 && (hashsize & 1))
12899		hashsize--;
12900
12901	dstate->dtds_hashsize = hashsize;
12902	dstate->dtds_hash = dstate->dtds_base;
12903
12904	/*
12905	 * Set all of our hash buckets to point to the single sink, and (if
12906	 * it hasn't already been set), set the sink's hash value to be the
12907	 * sink sentinel value.  The sink is needed for dynamic variable
12908	 * lookups to know that they have iterated over an entire, valid hash
12909	 * chain.
12910	 */
12911	for (i = 0; i < hashsize; i++)
12912		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12913
12914	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12915		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12916
12917	/*
12918	 * Determine number of active CPUs.  Divide free list evenly among
12919	 * active CPUs.
12920	 */
12921	start = (dtrace_dynvar_t *)
12922	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12923	limit = (uintptr_t)base + size;
12924
12925	maxper = (limit - (uintptr_t)start) / NCPU;
12926	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12927
12928#if !defined(sun)
12929	CPU_FOREACH(i) {
12930#else
12931	for (i = 0; i < NCPU; i++) {
12932#endif
12933		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12934
12935		/*
12936		 * If we don't even have enough chunks to make it once through
12937		 * NCPUs, we're just going to allocate everything to the first
12938		 * CPU.  And if we're on the last CPU, we're going to allocate
12939		 * whatever is left over.  In either case, we set the limit to
12940		 * be the limit of the dynamic variable space.
12941		 */
12942		if (maxper == 0 || i == NCPU - 1) {
12943			limit = (uintptr_t)base + size;
12944			start = NULL;
12945		} else {
12946			limit = (uintptr_t)start + maxper;
12947			start = (dtrace_dynvar_t *)limit;
12948		}
12949
12950		ASSERT(limit <= (uintptr_t)base + size);
12951
12952		for (;;) {
12953			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12954			    dstate->dtds_chunksize);
12955
12956			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12957				break;
12958
12959			dvar->dtdv_next = next;
12960			dvar = next;
12961		}
12962
12963		if (maxper == 0)
12964			break;
12965	}
12966
12967	return (0);
12968}
12969
12970static void
12971dtrace_dstate_fini(dtrace_dstate_t *dstate)
12972{
12973	ASSERT(MUTEX_HELD(&cpu_lock));
12974
12975	if (dstate->dtds_base == NULL)
12976		return;
12977
12978	kmem_free(dstate->dtds_base, dstate->dtds_size);
12979	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12980}
12981
12982static void
12983dtrace_vstate_fini(dtrace_vstate_t *vstate)
12984{
12985	/*
12986	 * Logical XOR, where are you?
12987	 */
12988	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12989
12990	if (vstate->dtvs_nglobals > 0) {
12991		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12992		    sizeof (dtrace_statvar_t *));
12993	}
12994
12995	if (vstate->dtvs_ntlocals > 0) {
12996		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12997		    sizeof (dtrace_difv_t));
12998	}
12999
13000	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13001
13002	if (vstate->dtvs_nlocals > 0) {
13003		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13004		    sizeof (dtrace_statvar_t *));
13005	}
13006}
13007
13008#if defined(sun)
13009static void
13010dtrace_state_clean(dtrace_state_t *state)
13011{
13012	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13013		return;
13014
13015	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13016	dtrace_speculation_clean(state);
13017}
13018
13019static void
13020dtrace_state_deadman(dtrace_state_t *state)
13021{
13022	hrtime_t now;
13023
13024	dtrace_sync();
13025
13026	now = dtrace_gethrtime();
13027
13028	if (state != dtrace_anon.dta_state &&
13029	    now - state->dts_laststatus >= dtrace_deadman_user)
13030		return;
13031
13032	/*
13033	 * We must be sure that dts_alive never appears to be less than the
13034	 * value upon entry to dtrace_state_deadman(), and because we lack a
13035	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13036	 * store INT64_MAX to it, followed by a memory barrier, followed by
13037	 * the new value.  This assures that dts_alive never appears to be
13038	 * less than its true value, regardless of the order in which the
13039	 * stores to the underlying storage are issued.
13040	 */
13041	state->dts_alive = INT64_MAX;
13042	dtrace_membar_producer();
13043	state->dts_alive = now;
13044}
13045#else
13046static void
13047dtrace_state_clean(void *arg)
13048{
13049	dtrace_state_t *state = arg;
13050	dtrace_optval_t *opt = state->dts_options;
13051
13052	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13053		return;
13054
13055	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13056	dtrace_speculation_clean(state);
13057
13058	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13059	    dtrace_state_clean, state);
13060}
13061
13062static void
13063dtrace_state_deadman(void *arg)
13064{
13065	dtrace_state_t *state = arg;
13066	hrtime_t now;
13067
13068	dtrace_sync();
13069
13070	dtrace_debug_output();
13071
13072	now = dtrace_gethrtime();
13073
13074	if (state != dtrace_anon.dta_state &&
13075	    now - state->dts_laststatus >= dtrace_deadman_user)
13076		return;
13077
13078	/*
13079	 * We must be sure that dts_alive never appears to be less than the
13080	 * value upon entry to dtrace_state_deadman(), and because we lack a
13081	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13082	 * store INT64_MAX to it, followed by a memory barrier, followed by
13083	 * the new value.  This assures that dts_alive never appears to be
13084	 * less than its true value, regardless of the order in which the
13085	 * stores to the underlying storage are issued.
13086	 */
13087	state->dts_alive = INT64_MAX;
13088	dtrace_membar_producer();
13089	state->dts_alive = now;
13090
13091	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13092	    dtrace_state_deadman, state);
13093}
13094#endif
13095
13096static dtrace_state_t *
13097#if defined(sun)
13098dtrace_state_create(dev_t *devp, cred_t *cr)
13099#else
13100dtrace_state_create(struct cdev *dev)
13101#endif
13102{
13103#if defined(sun)
13104	minor_t minor;
13105	major_t major;
13106#else
13107	cred_t *cr = NULL;
13108	int m = 0;
13109#endif
13110	char c[30];
13111	dtrace_state_t *state;
13112	dtrace_optval_t *opt;
13113	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13114
13115	ASSERT(MUTEX_HELD(&dtrace_lock));
13116	ASSERT(MUTEX_HELD(&cpu_lock));
13117
13118#if defined(sun)
13119	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13120	    VM_BESTFIT | VM_SLEEP);
13121
13122	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13123		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13124		return (NULL);
13125	}
13126
13127	state = ddi_get_soft_state(dtrace_softstate, minor);
13128#else
13129	if (dev != NULL) {
13130		cr = dev->si_cred;
13131		m = dev2unit(dev);
13132		}
13133
13134	/* Allocate memory for the state. */
13135	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13136#endif
13137
13138	state->dts_epid = DTRACE_EPIDNONE + 1;
13139
13140	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13141#if defined(sun)
13142	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13143	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13144
13145	if (devp != NULL) {
13146		major = getemajor(*devp);
13147	} else {
13148		major = ddi_driver_major(dtrace_devi);
13149	}
13150
13151	state->dts_dev = makedevice(major, minor);
13152
13153	if (devp != NULL)
13154		*devp = state->dts_dev;
13155#else
13156	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13157	state->dts_dev = dev;
13158#endif
13159
13160	/*
13161	 * We allocate NCPU buffers.  On the one hand, this can be quite
13162	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13163	 * other hand, it saves an additional memory reference in the probe
13164	 * path.
13165	 */
13166	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13167	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13168
13169#if defined(sun)
13170	state->dts_cleaner = CYCLIC_NONE;
13171	state->dts_deadman = CYCLIC_NONE;
13172#else
13173	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13174	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13175#endif
13176	state->dts_vstate.dtvs_state = state;
13177
13178	for (i = 0; i < DTRACEOPT_MAX; i++)
13179		state->dts_options[i] = DTRACEOPT_UNSET;
13180
13181	/*
13182	 * Set the default options.
13183	 */
13184	opt = state->dts_options;
13185	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13186	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13187	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13188	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13189	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13190	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13191	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13192	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13193	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13194	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13195	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13196	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13197	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13198	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13199
13200	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13201
13202	/*
13203	 * Depending on the user credentials, we set flag bits which alter probe
13204	 * visibility or the amount of destructiveness allowed.  In the case of
13205	 * actual anonymous tracing, or the possession of all privileges, all of
13206	 * the normal checks are bypassed.
13207	 */
13208	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13209		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13210		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13211	} else {
13212		/*
13213		 * Set up the credentials for this instantiation.  We take a
13214		 * hold on the credential to prevent it from disappearing on
13215		 * us; this in turn prevents the zone_t referenced by this
13216		 * credential from disappearing.  This means that we can
13217		 * examine the credential and the zone from probe context.
13218		 */
13219		crhold(cr);
13220		state->dts_cred.dcr_cred = cr;
13221
13222		/*
13223		 * CRA_PROC means "we have *some* privilege for dtrace" and
13224		 * unlocks the use of variables like pid, zonename, etc.
13225		 */
13226		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13227		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13228			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13229		}
13230
13231		/*
13232		 * dtrace_user allows use of syscall and profile providers.
13233		 * If the user also has proc_owner and/or proc_zone, we
13234		 * extend the scope to include additional visibility and
13235		 * destructive power.
13236		 */
13237		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13238			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13239				state->dts_cred.dcr_visible |=
13240				    DTRACE_CRV_ALLPROC;
13241
13242				state->dts_cred.dcr_action |=
13243				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13244			}
13245
13246			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13247				state->dts_cred.dcr_visible |=
13248				    DTRACE_CRV_ALLZONE;
13249
13250				state->dts_cred.dcr_action |=
13251				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13252			}
13253
13254			/*
13255			 * If we have all privs in whatever zone this is,
13256			 * we can do destructive things to processes which
13257			 * have altered credentials.
13258			 */
13259#if defined(sun)
13260			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13261			    cr->cr_zone->zone_privset)) {
13262				state->dts_cred.dcr_action |=
13263				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13264			}
13265#endif
13266		}
13267
13268		/*
13269		 * Holding the dtrace_kernel privilege also implies that
13270		 * the user has the dtrace_user privilege from a visibility
13271		 * perspective.  But without further privileges, some
13272		 * destructive actions are not available.
13273		 */
13274		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13275			/*
13276			 * Make all probes in all zones visible.  However,
13277			 * this doesn't mean that all actions become available
13278			 * to all zones.
13279			 */
13280			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13281			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13282
13283			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13284			    DTRACE_CRA_PROC;
13285			/*
13286			 * Holding proc_owner means that destructive actions
13287			 * for *this* zone are allowed.
13288			 */
13289			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13290				state->dts_cred.dcr_action |=
13291				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13292
13293			/*
13294			 * Holding proc_zone means that destructive actions
13295			 * for this user/group ID in all zones is allowed.
13296			 */
13297			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13298				state->dts_cred.dcr_action |=
13299				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13300
13301#if defined(sun)
13302			/*
13303			 * If we have all privs in whatever zone this is,
13304			 * we can do destructive things to processes which
13305			 * have altered credentials.
13306			 */
13307			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13308			    cr->cr_zone->zone_privset)) {
13309				state->dts_cred.dcr_action |=
13310				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13311			}
13312#endif
13313		}
13314
13315		/*
13316		 * Holding the dtrace_proc privilege gives control over fasttrap
13317		 * and pid providers.  We need to grant wider destructive
13318		 * privileges in the event that the user has proc_owner and/or
13319		 * proc_zone.
13320		 */
13321		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13322			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13323				state->dts_cred.dcr_action |=
13324				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13325
13326			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13327				state->dts_cred.dcr_action |=
13328				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13329		}
13330	}
13331
13332	return (state);
13333}
13334
13335static int
13336dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13337{
13338	dtrace_optval_t *opt = state->dts_options, size;
13339	processorid_t cpu = 0;;
13340	int flags = 0, rval;
13341
13342	ASSERT(MUTEX_HELD(&dtrace_lock));
13343	ASSERT(MUTEX_HELD(&cpu_lock));
13344	ASSERT(which < DTRACEOPT_MAX);
13345	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13346	    (state == dtrace_anon.dta_state &&
13347	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13348
13349	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13350		return (0);
13351
13352	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13353		cpu = opt[DTRACEOPT_CPU];
13354
13355	if (which == DTRACEOPT_SPECSIZE)
13356		flags |= DTRACEBUF_NOSWITCH;
13357
13358	if (which == DTRACEOPT_BUFSIZE) {
13359		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13360			flags |= DTRACEBUF_RING;
13361
13362		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13363			flags |= DTRACEBUF_FILL;
13364
13365		if (state != dtrace_anon.dta_state ||
13366		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13367			flags |= DTRACEBUF_INACTIVE;
13368	}
13369
13370	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13371		/*
13372		 * The size must be 8-byte aligned.  If the size is not 8-byte
13373		 * aligned, drop it down by the difference.
13374		 */
13375		if (size & (sizeof (uint64_t) - 1))
13376			size -= size & (sizeof (uint64_t) - 1);
13377
13378		if (size < state->dts_reserve) {
13379			/*
13380			 * Buffers always must be large enough to accommodate
13381			 * their prereserved space.  We return E2BIG instead
13382			 * of ENOMEM in this case to allow for user-level
13383			 * software to differentiate the cases.
13384			 */
13385			return (E2BIG);
13386		}
13387
13388		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13389
13390		if (rval != ENOMEM) {
13391			opt[which] = size;
13392			return (rval);
13393		}
13394
13395		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13396			return (rval);
13397	}
13398
13399	return (ENOMEM);
13400}
13401
13402static int
13403dtrace_state_buffers(dtrace_state_t *state)
13404{
13405	dtrace_speculation_t *spec = state->dts_speculations;
13406	int rval, i;
13407
13408	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13409	    DTRACEOPT_BUFSIZE)) != 0)
13410		return (rval);
13411
13412	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13413	    DTRACEOPT_AGGSIZE)) != 0)
13414		return (rval);
13415
13416	for (i = 0; i < state->dts_nspeculations; i++) {
13417		if ((rval = dtrace_state_buffer(state,
13418		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13419			return (rval);
13420	}
13421
13422	return (0);
13423}
13424
13425static void
13426dtrace_state_prereserve(dtrace_state_t *state)
13427{
13428	dtrace_ecb_t *ecb;
13429	dtrace_probe_t *probe;
13430
13431	state->dts_reserve = 0;
13432
13433	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13434		return;
13435
13436	/*
13437	 * If our buffer policy is a "fill" buffer policy, we need to set the
13438	 * prereserved space to be the space required by the END probes.
13439	 */
13440	probe = dtrace_probes[dtrace_probeid_end - 1];
13441	ASSERT(probe != NULL);
13442
13443	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13444		if (ecb->dte_state != state)
13445			continue;
13446
13447		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13448	}
13449}
13450
13451static int
13452dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13453{
13454	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13455	dtrace_speculation_t *spec;
13456	dtrace_buffer_t *buf;
13457#if defined(sun)
13458	cyc_handler_t hdlr;
13459	cyc_time_t when;
13460#endif
13461	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13462	dtrace_icookie_t cookie;
13463
13464	mutex_enter(&cpu_lock);
13465	mutex_enter(&dtrace_lock);
13466
13467	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13468		rval = EBUSY;
13469		goto out;
13470	}
13471
13472	/*
13473	 * Before we can perform any checks, we must prime all of the
13474	 * retained enablings that correspond to this state.
13475	 */
13476	dtrace_enabling_prime(state);
13477
13478	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13479		rval = EACCES;
13480		goto out;
13481	}
13482
13483	dtrace_state_prereserve(state);
13484
13485	/*
13486	 * Now we want to do is try to allocate our speculations.
13487	 * We do not automatically resize the number of speculations; if
13488	 * this fails, we will fail the operation.
13489	 */
13490	nspec = opt[DTRACEOPT_NSPEC];
13491	ASSERT(nspec != DTRACEOPT_UNSET);
13492
13493	if (nspec > INT_MAX) {
13494		rval = ENOMEM;
13495		goto out;
13496	}
13497
13498	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13499
13500	if (spec == NULL) {
13501		rval = ENOMEM;
13502		goto out;
13503	}
13504
13505	state->dts_speculations = spec;
13506	state->dts_nspeculations = (int)nspec;
13507
13508	for (i = 0; i < nspec; i++) {
13509		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13510			rval = ENOMEM;
13511			goto err;
13512		}
13513
13514		spec[i].dtsp_buffer = buf;
13515	}
13516
13517	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13518		if (dtrace_anon.dta_state == NULL) {
13519			rval = ENOENT;
13520			goto out;
13521		}
13522
13523		if (state->dts_necbs != 0) {
13524			rval = EALREADY;
13525			goto out;
13526		}
13527
13528		state->dts_anon = dtrace_anon_grab();
13529		ASSERT(state->dts_anon != NULL);
13530		state = state->dts_anon;
13531
13532		/*
13533		 * We want "grabanon" to be set in the grabbed state, so we'll
13534		 * copy that option value from the grabbing state into the
13535		 * grabbed state.
13536		 */
13537		state->dts_options[DTRACEOPT_GRABANON] =
13538		    opt[DTRACEOPT_GRABANON];
13539
13540		*cpu = dtrace_anon.dta_beganon;
13541
13542		/*
13543		 * If the anonymous state is active (as it almost certainly
13544		 * is if the anonymous enabling ultimately matched anything),
13545		 * we don't allow any further option processing -- but we
13546		 * don't return failure.
13547		 */
13548		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13549			goto out;
13550	}
13551
13552	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13553	    opt[DTRACEOPT_AGGSIZE] != 0) {
13554		if (state->dts_aggregations == NULL) {
13555			/*
13556			 * We're not going to create an aggregation buffer
13557			 * because we don't have any ECBs that contain
13558			 * aggregations -- set this option to 0.
13559			 */
13560			opt[DTRACEOPT_AGGSIZE] = 0;
13561		} else {
13562			/*
13563			 * If we have an aggregation buffer, we must also have
13564			 * a buffer to use as scratch.
13565			 */
13566			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13567			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13568				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13569			}
13570		}
13571	}
13572
13573	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13574	    opt[DTRACEOPT_SPECSIZE] != 0) {
13575		if (!state->dts_speculates) {
13576			/*
13577			 * We're not going to create speculation buffers
13578			 * because we don't have any ECBs that actually
13579			 * speculate -- set the speculation size to 0.
13580			 */
13581			opt[DTRACEOPT_SPECSIZE] = 0;
13582		}
13583	}
13584
13585	/*
13586	 * The bare minimum size for any buffer that we're actually going to
13587	 * do anything to is sizeof (uint64_t).
13588	 */
13589	sz = sizeof (uint64_t);
13590
13591	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13592	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13593	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13594		/*
13595		 * A buffer size has been explicitly set to 0 (or to a size
13596		 * that will be adjusted to 0) and we need the space -- we
13597		 * need to return failure.  We return ENOSPC to differentiate
13598		 * it from failing to allocate a buffer due to failure to meet
13599		 * the reserve (for which we return E2BIG).
13600		 */
13601		rval = ENOSPC;
13602		goto out;
13603	}
13604
13605	if ((rval = dtrace_state_buffers(state)) != 0)
13606		goto err;
13607
13608	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13609		sz = dtrace_dstate_defsize;
13610
13611	do {
13612		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13613
13614		if (rval == 0)
13615			break;
13616
13617		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13618			goto err;
13619	} while (sz >>= 1);
13620
13621	opt[DTRACEOPT_DYNVARSIZE] = sz;
13622
13623	if (rval != 0)
13624		goto err;
13625
13626	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13627		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13628
13629	if (opt[DTRACEOPT_CLEANRATE] == 0)
13630		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13631
13632	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13633		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13634
13635	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13636		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13637
13638	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13639#if defined(sun)
13640	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13641	hdlr.cyh_arg = state;
13642	hdlr.cyh_level = CY_LOW_LEVEL;
13643
13644	when.cyt_when = 0;
13645	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13646
13647	state->dts_cleaner = cyclic_add(&hdlr, &when);
13648
13649	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13650	hdlr.cyh_arg = state;
13651	hdlr.cyh_level = CY_LOW_LEVEL;
13652
13653	when.cyt_when = 0;
13654	when.cyt_interval = dtrace_deadman_interval;
13655
13656	state->dts_deadman = cyclic_add(&hdlr, &when);
13657#else
13658	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13659	    dtrace_state_clean, state);
13660	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13661	    dtrace_state_deadman, state);
13662#endif
13663
13664	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13665
13666	/*
13667	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13668	 * interrupts here both to record the CPU on which we fired the BEGIN
13669	 * probe (the data from this CPU will be processed first at user
13670	 * level) and to manually activate the buffer for this CPU.
13671	 */
13672	cookie = dtrace_interrupt_disable();
13673	*cpu = curcpu;
13674	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13675	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13676
13677	dtrace_probe(dtrace_probeid_begin,
13678	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13679	dtrace_interrupt_enable(cookie);
13680	/*
13681	 * We may have had an exit action from a BEGIN probe; only change our
13682	 * state to ACTIVE if we're still in WARMUP.
13683	 */
13684	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13685	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13686
13687	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13688		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13689
13690	/*
13691	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13692	 * want each CPU to transition its principal buffer out of the
13693	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13694	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13695	 * atomically transition from processing none of a state's ECBs to
13696	 * processing all of them.
13697	 */
13698	dtrace_xcall(DTRACE_CPUALL,
13699	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13700	goto out;
13701
13702err:
13703	dtrace_buffer_free(state->dts_buffer);
13704	dtrace_buffer_free(state->dts_aggbuffer);
13705
13706	if ((nspec = state->dts_nspeculations) == 0) {
13707		ASSERT(state->dts_speculations == NULL);
13708		goto out;
13709	}
13710
13711	spec = state->dts_speculations;
13712	ASSERT(spec != NULL);
13713
13714	for (i = 0; i < state->dts_nspeculations; i++) {
13715		if ((buf = spec[i].dtsp_buffer) == NULL)
13716			break;
13717
13718		dtrace_buffer_free(buf);
13719		kmem_free(buf, bufsize);
13720	}
13721
13722	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13723	state->dts_nspeculations = 0;
13724	state->dts_speculations = NULL;
13725
13726out:
13727	mutex_exit(&dtrace_lock);
13728	mutex_exit(&cpu_lock);
13729
13730	return (rval);
13731}
13732
13733static int
13734dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13735{
13736	dtrace_icookie_t cookie;
13737
13738	ASSERT(MUTEX_HELD(&dtrace_lock));
13739
13740	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13741	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13742		return (EINVAL);
13743
13744	/*
13745	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13746	 * to be sure that every CPU has seen it.  See below for the details
13747	 * on why this is done.
13748	 */
13749	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13750	dtrace_sync();
13751
13752	/*
13753	 * By this point, it is impossible for any CPU to be still processing
13754	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13755	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13756	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13757	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13758	 * iff we're in the END probe.
13759	 */
13760	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13761	dtrace_sync();
13762	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13763
13764	/*
13765	 * Finally, we can release the reserve and call the END probe.  We
13766	 * disable interrupts across calling the END probe to allow us to
13767	 * return the CPU on which we actually called the END probe.  This
13768	 * allows user-land to be sure that this CPU's principal buffer is
13769	 * processed last.
13770	 */
13771	state->dts_reserve = 0;
13772
13773	cookie = dtrace_interrupt_disable();
13774	*cpu = curcpu;
13775	dtrace_probe(dtrace_probeid_end,
13776	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13777	dtrace_interrupt_enable(cookie);
13778
13779	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13780	dtrace_sync();
13781
13782	return (0);
13783}
13784
13785static int
13786dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13787    dtrace_optval_t val)
13788{
13789	ASSERT(MUTEX_HELD(&dtrace_lock));
13790
13791	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13792		return (EBUSY);
13793
13794	if (option >= DTRACEOPT_MAX)
13795		return (EINVAL);
13796
13797	if (option != DTRACEOPT_CPU && val < 0)
13798		return (EINVAL);
13799
13800	switch (option) {
13801	case DTRACEOPT_DESTRUCTIVE:
13802		if (dtrace_destructive_disallow)
13803			return (EACCES);
13804
13805		state->dts_cred.dcr_destructive = 1;
13806		break;
13807
13808	case DTRACEOPT_BUFSIZE:
13809	case DTRACEOPT_DYNVARSIZE:
13810	case DTRACEOPT_AGGSIZE:
13811	case DTRACEOPT_SPECSIZE:
13812	case DTRACEOPT_STRSIZE:
13813		if (val < 0)
13814			return (EINVAL);
13815
13816		if (val >= LONG_MAX) {
13817			/*
13818			 * If this is an otherwise negative value, set it to
13819			 * the highest multiple of 128m less than LONG_MAX.
13820			 * Technically, we're adjusting the size without
13821			 * regard to the buffer resizing policy, but in fact,
13822			 * this has no effect -- if we set the buffer size to
13823			 * ~LONG_MAX and the buffer policy is ultimately set to
13824			 * be "manual", the buffer allocation is guaranteed to
13825			 * fail, if only because the allocation requires two
13826			 * buffers.  (We set the the size to the highest
13827			 * multiple of 128m because it ensures that the size
13828			 * will remain a multiple of a megabyte when
13829			 * repeatedly halved -- all the way down to 15m.)
13830			 */
13831			val = LONG_MAX - (1 << 27) + 1;
13832		}
13833	}
13834
13835	state->dts_options[option] = val;
13836
13837	return (0);
13838}
13839
13840static void
13841dtrace_state_destroy(dtrace_state_t *state)
13842{
13843	dtrace_ecb_t *ecb;
13844	dtrace_vstate_t *vstate = &state->dts_vstate;
13845#if defined(sun)
13846	minor_t minor = getminor(state->dts_dev);
13847#endif
13848	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13849	dtrace_speculation_t *spec = state->dts_speculations;
13850	int nspec = state->dts_nspeculations;
13851	uint32_t match;
13852
13853	ASSERT(MUTEX_HELD(&dtrace_lock));
13854	ASSERT(MUTEX_HELD(&cpu_lock));
13855
13856	/*
13857	 * First, retract any retained enablings for this state.
13858	 */
13859	dtrace_enabling_retract(state);
13860	ASSERT(state->dts_nretained == 0);
13861
13862	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13863	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13864		/*
13865		 * We have managed to come into dtrace_state_destroy() on a
13866		 * hot enabling -- almost certainly because of a disorderly
13867		 * shutdown of a consumer.  (That is, a consumer that is
13868		 * exiting without having called dtrace_stop().) In this case,
13869		 * we're going to set our activity to be KILLED, and then
13870		 * issue a sync to be sure that everyone is out of probe
13871		 * context before we start blowing away ECBs.
13872		 */
13873		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13874		dtrace_sync();
13875	}
13876
13877	/*
13878	 * Release the credential hold we took in dtrace_state_create().
13879	 */
13880	if (state->dts_cred.dcr_cred != NULL)
13881		crfree(state->dts_cred.dcr_cred);
13882
13883	/*
13884	 * Now we can safely disable and destroy any enabled probes.  Because
13885	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13886	 * (especially if they're all enabled), we take two passes through the
13887	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13888	 * in the second we disable whatever is left over.
13889	 */
13890	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13891		for (i = 0; i < state->dts_necbs; i++) {
13892			if ((ecb = state->dts_ecbs[i]) == NULL)
13893				continue;
13894
13895			if (match && ecb->dte_probe != NULL) {
13896				dtrace_probe_t *probe = ecb->dte_probe;
13897				dtrace_provider_t *prov = probe->dtpr_provider;
13898
13899				if (!(prov->dtpv_priv.dtpp_flags & match))
13900					continue;
13901			}
13902
13903			dtrace_ecb_disable(ecb);
13904			dtrace_ecb_destroy(ecb);
13905		}
13906
13907		if (!match)
13908			break;
13909	}
13910
13911	/*
13912	 * Before we free the buffers, perform one more sync to assure that
13913	 * every CPU is out of probe context.
13914	 */
13915	dtrace_sync();
13916
13917	dtrace_buffer_free(state->dts_buffer);
13918	dtrace_buffer_free(state->dts_aggbuffer);
13919
13920	for (i = 0; i < nspec; i++)
13921		dtrace_buffer_free(spec[i].dtsp_buffer);
13922
13923#if defined(sun)
13924	if (state->dts_cleaner != CYCLIC_NONE)
13925		cyclic_remove(state->dts_cleaner);
13926
13927	if (state->dts_deadman != CYCLIC_NONE)
13928		cyclic_remove(state->dts_deadman);
13929#else
13930	callout_stop(&state->dts_cleaner);
13931	callout_drain(&state->dts_cleaner);
13932	callout_stop(&state->dts_deadman);
13933	callout_drain(&state->dts_deadman);
13934#endif
13935
13936	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13937	dtrace_vstate_fini(vstate);
13938	if (state->dts_ecbs != NULL)
13939		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13940
13941	if (state->dts_aggregations != NULL) {
13942#ifdef DEBUG
13943		for (i = 0; i < state->dts_naggregations; i++)
13944			ASSERT(state->dts_aggregations[i] == NULL);
13945#endif
13946		ASSERT(state->dts_naggregations > 0);
13947		kmem_free(state->dts_aggregations,
13948		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13949	}
13950
13951	kmem_free(state->dts_buffer, bufsize);
13952	kmem_free(state->dts_aggbuffer, bufsize);
13953
13954	for (i = 0; i < nspec; i++)
13955		kmem_free(spec[i].dtsp_buffer, bufsize);
13956
13957	if (spec != NULL)
13958		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13959
13960	dtrace_format_destroy(state);
13961
13962	if (state->dts_aggid_arena != NULL) {
13963#if defined(sun)
13964		vmem_destroy(state->dts_aggid_arena);
13965#else
13966		delete_unrhdr(state->dts_aggid_arena);
13967#endif
13968		state->dts_aggid_arena = NULL;
13969	}
13970#if defined(sun)
13971	ddi_soft_state_free(dtrace_softstate, minor);
13972	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13973#endif
13974}
13975
13976/*
13977 * DTrace Anonymous Enabling Functions
13978 */
13979static dtrace_state_t *
13980dtrace_anon_grab(void)
13981{
13982	dtrace_state_t *state;
13983
13984	ASSERT(MUTEX_HELD(&dtrace_lock));
13985
13986	if ((state = dtrace_anon.dta_state) == NULL) {
13987		ASSERT(dtrace_anon.dta_enabling == NULL);
13988		return (NULL);
13989	}
13990
13991	ASSERT(dtrace_anon.dta_enabling != NULL);
13992	ASSERT(dtrace_retained != NULL);
13993
13994	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13995	dtrace_anon.dta_enabling = NULL;
13996	dtrace_anon.dta_state = NULL;
13997
13998	return (state);
13999}
14000
14001static void
14002dtrace_anon_property(void)
14003{
14004	int i, rv;
14005	dtrace_state_t *state;
14006	dof_hdr_t *dof;
14007	char c[32];		/* enough for "dof-data-" + digits */
14008
14009	ASSERT(MUTEX_HELD(&dtrace_lock));
14010	ASSERT(MUTEX_HELD(&cpu_lock));
14011
14012	for (i = 0; ; i++) {
14013		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14014
14015		dtrace_err_verbose = 1;
14016
14017		if ((dof = dtrace_dof_property(c)) == NULL) {
14018			dtrace_err_verbose = 0;
14019			break;
14020		}
14021
14022#if defined(sun)
14023		/*
14024		 * We want to create anonymous state, so we need to transition
14025		 * the kernel debugger to indicate that DTrace is active.  If
14026		 * this fails (e.g. because the debugger has modified text in
14027		 * some way), we won't continue with the processing.
14028		 */
14029		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14030			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14031			    "enabling ignored.");
14032			dtrace_dof_destroy(dof);
14033			break;
14034		}
14035#endif
14036
14037		/*
14038		 * If we haven't allocated an anonymous state, we'll do so now.
14039		 */
14040		if ((state = dtrace_anon.dta_state) == NULL) {
14041#if defined(sun)
14042			state = dtrace_state_create(NULL, NULL);
14043#else
14044			state = dtrace_state_create(NULL);
14045#endif
14046			dtrace_anon.dta_state = state;
14047
14048			if (state == NULL) {
14049				/*
14050				 * This basically shouldn't happen:  the only
14051				 * failure mode from dtrace_state_create() is a
14052				 * failure of ddi_soft_state_zalloc() that
14053				 * itself should never happen.  Still, the
14054				 * interface allows for a failure mode, and
14055				 * we want to fail as gracefully as possible:
14056				 * we'll emit an error message and cease
14057				 * processing anonymous state in this case.
14058				 */
14059				cmn_err(CE_WARN, "failed to create "
14060				    "anonymous state");
14061				dtrace_dof_destroy(dof);
14062				break;
14063			}
14064		}
14065
14066		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14067		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14068
14069		if (rv == 0)
14070			rv = dtrace_dof_options(dof, state);
14071
14072		dtrace_err_verbose = 0;
14073		dtrace_dof_destroy(dof);
14074
14075		if (rv != 0) {
14076			/*
14077			 * This is malformed DOF; chuck any anonymous state
14078			 * that we created.
14079			 */
14080			ASSERT(dtrace_anon.dta_enabling == NULL);
14081			dtrace_state_destroy(state);
14082			dtrace_anon.dta_state = NULL;
14083			break;
14084		}
14085
14086		ASSERT(dtrace_anon.dta_enabling != NULL);
14087	}
14088
14089	if (dtrace_anon.dta_enabling != NULL) {
14090		int rval;
14091
14092		/*
14093		 * dtrace_enabling_retain() can only fail because we are
14094		 * trying to retain more enablings than are allowed -- but
14095		 * we only have one anonymous enabling, and we are guaranteed
14096		 * to be allowed at least one retained enabling; we assert
14097		 * that dtrace_enabling_retain() returns success.
14098		 */
14099		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14100		ASSERT(rval == 0);
14101
14102		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14103	}
14104}
14105
14106/*
14107 * DTrace Helper Functions
14108 */
14109static void
14110dtrace_helper_trace(dtrace_helper_action_t *helper,
14111    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14112{
14113	uint32_t size, next, nnext, i;
14114	dtrace_helptrace_t *ent;
14115	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14116
14117	if (!dtrace_helptrace_enabled)
14118		return;
14119
14120	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14121
14122	/*
14123	 * What would a tracing framework be without its own tracing
14124	 * framework?  (Well, a hell of a lot simpler, for starters...)
14125	 */
14126	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14127	    sizeof (uint64_t) - sizeof (uint64_t);
14128
14129	/*
14130	 * Iterate until we can allocate a slot in the trace buffer.
14131	 */
14132	do {
14133		next = dtrace_helptrace_next;
14134
14135		if (next + size < dtrace_helptrace_bufsize) {
14136			nnext = next + size;
14137		} else {
14138			nnext = size;
14139		}
14140	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14141
14142	/*
14143	 * We have our slot; fill it in.
14144	 */
14145	if (nnext == size)
14146		next = 0;
14147
14148	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14149	ent->dtht_helper = helper;
14150	ent->dtht_where = where;
14151	ent->dtht_nlocals = vstate->dtvs_nlocals;
14152
14153	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14154	    mstate->dtms_fltoffs : -1;
14155	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14156	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14157
14158	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14159		dtrace_statvar_t *svar;
14160
14161		if ((svar = vstate->dtvs_locals[i]) == NULL)
14162			continue;
14163
14164		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14165		ent->dtht_locals[i] =
14166		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14167	}
14168}
14169
14170static uint64_t
14171dtrace_helper(int which, dtrace_mstate_t *mstate,
14172    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14173{
14174	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14175	uint64_t sarg0 = mstate->dtms_arg[0];
14176	uint64_t sarg1 = mstate->dtms_arg[1];
14177	uint64_t rval = 0;
14178	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14179	dtrace_helper_action_t *helper;
14180	dtrace_vstate_t *vstate;
14181	dtrace_difo_t *pred;
14182	int i, trace = dtrace_helptrace_enabled;
14183
14184	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14185
14186	if (helpers == NULL)
14187		return (0);
14188
14189	if ((helper = helpers->dthps_actions[which]) == NULL)
14190		return (0);
14191
14192	vstate = &helpers->dthps_vstate;
14193	mstate->dtms_arg[0] = arg0;
14194	mstate->dtms_arg[1] = arg1;
14195
14196	/*
14197	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14198	 * we'll call the corresponding actions.  Note that the below calls
14199	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14200	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14201	 * the stored DIF offset with its own (which is the desired behavior).
14202	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14203	 * from machine state; this is okay, too.
14204	 */
14205	for (; helper != NULL; helper = helper->dtha_next) {
14206		if ((pred = helper->dtha_predicate) != NULL) {
14207			if (trace)
14208				dtrace_helper_trace(helper, mstate, vstate, 0);
14209
14210			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14211				goto next;
14212
14213			if (*flags & CPU_DTRACE_FAULT)
14214				goto err;
14215		}
14216
14217		for (i = 0; i < helper->dtha_nactions; i++) {
14218			if (trace)
14219				dtrace_helper_trace(helper,
14220				    mstate, vstate, i + 1);
14221
14222			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14223			    mstate, vstate, state);
14224
14225			if (*flags & CPU_DTRACE_FAULT)
14226				goto err;
14227		}
14228
14229next:
14230		if (trace)
14231			dtrace_helper_trace(helper, mstate, vstate,
14232			    DTRACE_HELPTRACE_NEXT);
14233	}
14234
14235	if (trace)
14236		dtrace_helper_trace(helper, mstate, vstate,
14237		    DTRACE_HELPTRACE_DONE);
14238
14239	/*
14240	 * Restore the arg0 that we saved upon entry.
14241	 */
14242	mstate->dtms_arg[0] = sarg0;
14243	mstate->dtms_arg[1] = sarg1;
14244
14245	return (rval);
14246
14247err:
14248	if (trace)
14249		dtrace_helper_trace(helper, mstate, vstate,
14250		    DTRACE_HELPTRACE_ERR);
14251
14252	/*
14253	 * Restore the arg0 that we saved upon entry.
14254	 */
14255	mstate->dtms_arg[0] = sarg0;
14256	mstate->dtms_arg[1] = sarg1;
14257
14258	return (0);
14259}
14260
14261static void
14262dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14263    dtrace_vstate_t *vstate)
14264{
14265	int i;
14266
14267	if (helper->dtha_predicate != NULL)
14268		dtrace_difo_release(helper->dtha_predicate, vstate);
14269
14270	for (i = 0; i < helper->dtha_nactions; i++) {
14271		ASSERT(helper->dtha_actions[i] != NULL);
14272		dtrace_difo_release(helper->dtha_actions[i], vstate);
14273	}
14274
14275	kmem_free(helper->dtha_actions,
14276	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14277	kmem_free(helper, sizeof (dtrace_helper_action_t));
14278}
14279
14280static int
14281dtrace_helper_destroygen(int gen)
14282{
14283	proc_t *p = curproc;
14284	dtrace_helpers_t *help = p->p_dtrace_helpers;
14285	dtrace_vstate_t *vstate;
14286	int i;
14287
14288	ASSERT(MUTEX_HELD(&dtrace_lock));
14289
14290	if (help == NULL || gen > help->dthps_generation)
14291		return (EINVAL);
14292
14293	vstate = &help->dthps_vstate;
14294
14295	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14296		dtrace_helper_action_t *last = NULL, *h, *next;
14297
14298		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14299			next = h->dtha_next;
14300
14301			if (h->dtha_generation == gen) {
14302				if (last != NULL) {
14303					last->dtha_next = next;
14304				} else {
14305					help->dthps_actions[i] = next;
14306				}
14307
14308				dtrace_helper_action_destroy(h, vstate);
14309			} else {
14310				last = h;
14311			}
14312		}
14313	}
14314
14315	/*
14316	 * Interate until we've cleared out all helper providers with the
14317	 * given generation number.
14318	 */
14319	for (;;) {
14320		dtrace_helper_provider_t *prov;
14321
14322		/*
14323		 * Look for a helper provider with the right generation. We
14324		 * have to start back at the beginning of the list each time
14325		 * because we drop dtrace_lock. It's unlikely that we'll make
14326		 * more than two passes.
14327		 */
14328		for (i = 0; i < help->dthps_nprovs; i++) {
14329			prov = help->dthps_provs[i];
14330
14331			if (prov->dthp_generation == gen)
14332				break;
14333		}
14334
14335		/*
14336		 * If there were no matches, we're done.
14337		 */
14338		if (i == help->dthps_nprovs)
14339			break;
14340
14341		/*
14342		 * Move the last helper provider into this slot.
14343		 */
14344		help->dthps_nprovs--;
14345		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14346		help->dthps_provs[help->dthps_nprovs] = NULL;
14347
14348		mutex_exit(&dtrace_lock);
14349
14350		/*
14351		 * If we have a meta provider, remove this helper provider.
14352		 */
14353		mutex_enter(&dtrace_meta_lock);
14354		if (dtrace_meta_pid != NULL) {
14355			ASSERT(dtrace_deferred_pid == NULL);
14356			dtrace_helper_provider_remove(&prov->dthp_prov,
14357			    p->p_pid);
14358		}
14359		mutex_exit(&dtrace_meta_lock);
14360
14361		dtrace_helper_provider_destroy(prov);
14362
14363		mutex_enter(&dtrace_lock);
14364	}
14365
14366	return (0);
14367}
14368
14369static int
14370dtrace_helper_validate(dtrace_helper_action_t *helper)
14371{
14372	int err = 0, i;
14373	dtrace_difo_t *dp;
14374
14375	if ((dp = helper->dtha_predicate) != NULL)
14376		err += dtrace_difo_validate_helper(dp);
14377
14378	for (i = 0; i < helper->dtha_nactions; i++)
14379		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14380
14381	return (err == 0);
14382}
14383
14384static int
14385dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14386{
14387	dtrace_helpers_t *help;
14388	dtrace_helper_action_t *helper, *last;
14389	dtrace_actdesc_t *act;
14390	dtrace_vstate_t *vstate;
14391	dtrace_predicate_t *pred;
14392	int count = 0, nactions = 0, i;
14393
14394	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14395		return (EINVAL);
14396
14397	help = curproc->p_dtrace_helpers;
14398	last = help->dthps_actions[which];
14399	vstate = &help->dthps_vstate;
14400
14401	for (count = 0; last != NULL; last = last->dtha_next) {
14402		count++;
14403		if (last->dtha_next == NULL)
14404			break;
14405	}
14406
14407	/*
14408	 * If we already have dtrace_helper_actions_max helper actions for this
14409	 * helper action type, we'll refuse to add a new one.
14410	 */
14411	if (count >= dtrace_helper_actions_max)
14412		return (ENOSPC);
14413
14414	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14415	helper->dtha_generation = help->dthps_generation;
14416
14417	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14418		ASSERT(pred->dtp_difo != NULL);
14419		dtrace_difo_hold(pred->dtp_difo);
14420		helper->dtha_predicate = pred->dtp_difo;
14421	}
14422
14423	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14424		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14425			goto err;
14426
14427		if (act->dtad_difo == NULL)
14428			goto err;
14429
14430		nactions++;
14431	}
14432
14433	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14434	    (helper->dtha_nactions = nactions), KM_SLEEP);
14435
14436	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14437		dtrace_difo_hold(act->dtad_difo);
14438		helper->dtha_actions[i++] = act->dtad_difo;
14439	}
14440
14441	if (!dtrace_helper_validate(helper))
14442		goto err;
14443
14444	if (last == NULL) {
14445		help->dthps_actions[which] = helper;
14446	} else {
14447		last->dtha_next = helper;
14448	}
14449
14450	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14451		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14452		dtrace_helptrace_next = 0;
14453	}
14454
14455	return (0);
14456err:
14457	dtrace_helper_action_destroy(helper, vstate);
14458	return (EINVAL);
14459}
14460
14461static void
14462dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14463    dof_helper_t *dofhp)
14464{
14465	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14466
14467	mutex_enter(&dtrace_meta_lock);
14468	mutex_enter(&dtrace_lock);
14469
14470	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14471		/*
14472		 * If the dtrace module is loaded but not attached, or if
14473		 * there aren't isn't a meta provider registered to deal with
14474		 * these provider descriptions, we need to postpone creating
14475		 * the actual providers until later.
14476		 */
14477
14478		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14479		    dtrace_deferred_pid != help) {
14480			help->dthps_deferred = 1;
14481			help->dthps_pid = p->p_pid;
14482			help->dthps_next = dtrace_deferred_pid;
14483			help->dthps_prev = NULL;
14484			if (dtrace_deferred_pid != NULL)
14485				dtrace_deferred_pid->dthps_prev = help;
14486			dtrace_deferred_pid = help;
14487		}
14488
14489		mutex_exit(&dtrace_lock);
14490
14491	} else if (dofhp != NULL) {
14492		/*
14493		 * If the dtrace module is loaded and we have a particular
14494		 * helper provider description, pass that off to the
14495		 * meta provider.
14496		 */
14497
14498		mutex_exit(&dtrace_lock);
14499
14500		dtrace_helper_provide(dofhp, p->p_pid);
14501
14502	} else {
14503		/*
14504		 * Otherwise, just pass all the helper provider descriptions
14505		 * off to the meta provider.
14506		 */
14507
14508		int i;
14509		mutex_exit(&dtrace_lock);
14510
14511		for (i = 0; i < help->dthps_nprovs; i++) {
14512			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14513			    p->p_pid);
14514		}
14515	}
14516
14517	mutex_exit(&dtrace_meta_lock);
14518}
14519
14520static int
14521dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14522{
14523	dtrace_helpers_t *help;
14524	dtrace_helper_provider_t *hprov, **tmp_provs;
14525	uint_t tmp_maxprovs, i;
14526
14527	ASSERT(MUTEX_HELD(&dtrace_lock));
14528
14529	help = curproc->p_dtrace_helpers;
14530	ASSERT(help != NULL);
14531
14532	/*
14533	 * If we already have dtrace_helper_providers_max helper providers,
14534	 * we're refuse to add a new one.
14535	 */
14536	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14537		return (ENOSPC);
14538
14539	/*
14540	 * Check to make sure this isn't a duplicate.
14541	 */
14542	for (i = 0; i < help->dthps_nprovs; i++) {
14543		if (dofhp->dofhp_addr ==
14544		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14545			return (EALREADY);
14546	}
14547
14548	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14549	hprov->dthp_prov = *dofhp;
14550	hprov->dthp_ref = 1;
14551	hprov->dthp_generation = gen;
14552
14553	/*
14554	 * Allocate a bigger table for helper providers if it's already full.
14555	 */
14556	if (help->dthps_maxprovs == help->dthps_nprovs) {
14557		tmp_maxprovs = help->dthps_maxprovs;
14558		tmp_provs = help->dthps_provs;
14559
14560		if (help->dthps_maxprovs == 0)
14561			help->dthps_maxprovs = 2;
14562		else
14563			help->dthps_maxprovs *= 2;
14564		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14565			help->dthps_maxprovs = dtrace_helper_providers_max;
14566
14567		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14568
14569		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14570		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14571
14572		if (tmp_provs != NULL) {
14573			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14574			    sizeof (dtrace_helper_provider_t *));
14575			kmem_free(tmp_provs, tmp_maxprovs *
14576			    sizeof (dtrace_helper_provider_t *));
14577		}
14578	}
14579
14580	help->dthps_provs[help->dthps_nprovs] = hprov;
14581	help->dthps_nprovs++;
14582
14583	return (0);
14584}
14585
14586static void
14587dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14588{
14589	mutex_enter(&dtrace_lock);
14590
14591	if (--hprov->dthp_ref == 0) {
14592		dof_hdr_t *dof;
14593		mutex_exit(&dtrace_lock);
14594		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14595		dtrace_dof_destroy(dof);
14596		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14597	} else {
14598		mutex_exit(&dtrace_lock);
14599	}
14600}
14601
14602static int
14603dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14604{
14605	uintptr_t daddr = (uintptr_t)dof;
14606	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14607	dof_provider_t *provider;
14608	dof_probe_t *probe;
14609	uint8_t *arg;
14610	char *strtab, *typestr;
14611	dof_stridx_t typeidx;
14612	size_t typesz;
14613	uint_t nprobes, j, k;
14614
14615	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14616
14617	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14618		dtrace_dof_error(dof, "misaligned section offset");
14619		return (-1);
14620	}
14621
14622	/*
14623	 * The section needs to be large enough to contain the DOF provider
14624	 * structure appropriate for the given version.
14625	 */
14626	if (sec->dofs_size <
14627	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14628	    offsetof(dof_provider_t, dofpv_prenoffs) :
14629	    sizeof (dof_provider_t))) {
14630		dtrace_dof_error(dof, "provider section too small");
14631		return (-1);
14632	}
14633
14634	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14635	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14636	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14637	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14638	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14639
14640	if (str_sec == NULL || prb_sec == NULL ||
14641	    arg_sec == NULL || off_sec == NULL)
14642		return (-1);
14643
14644	enoff_sec = NULL;
14645
14646	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14647	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14648	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14649	    provider->dofpv_prenoffs)) == NULL)
14650		return (-1);
14651
14652	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14653
14654	if (provider->dofpv_name >= str_sec->dofs_size ||
14655	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14656		dtrace_dof_error(dof, "invalid provider name");
14657		return (-1);
14658	}
14659
14660	if (prb_sec->dofs_entsize == 0 ||
14661	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14662		dtrace_dof_error(dof, "invalid entry size");
14663		return (-1);
14664	}
14665
14666	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14667		dtrace_dof_error(dof, "misaligned entry size");
14668		return (-1);
14669	}
14670
14671	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14672		dtrace_dof_error(dof, "invalid entry size");
14673		return (-1);
14674	}
14675
14676	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14677		dtrace_dof_error(dof, "misaligned section offset");
14678		return (-1);
14679	}
14680
14681	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14682		dtrace_dof_error(dof, "invalid entry size");
14683		return (-1);
14684	}
14685
14686	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14687
14688	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14689
14690	/*
14691	 * Take a pass through the probes to check for errors.
14692	 */
14693	for (j = 0; j < nprobes; j++) {
14694		probe = (dof_probe_t *)(uintptr_t)(daddr +
14695		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14696
14697		if (probe->dofpr_func >= str_sec->dofs_size) {
14698			dtrace_dof_error(dof, "invalid function name");
14699			return (-1);
14700		}
14701
14702		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14703			dtrace_dof_error(dof, "function name too long");
14704			return (-1);
14705		}
14706
14707		if (probe->dofpr_name >= str_sec->dofs_size ||
14708		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14709			dtrace_dof_error(dof, "invalid probe name");
14710			return (-1);
14711		}
14712
14713		/*
14714		 * The offset count must not wrap the index, and the offsets
14715		 * must also not overflow the section's data.
14716		 */
14717		if (probe->dofpr_offidx + probe->dofpr_noffs <
14718		    probe->dofpr_offidx ||
14719		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14720		    off_sec->dofs_entsize > off_sec->dofs_size) {
14721			dtrace_dof_error(dof, "invalid probe offset");
14722			return (-1);
14723		}
14724
14725		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14726			/*
14727			 * If there's no is-enabled offset section, make sure
14728			 * there aren't any is-enabled offsets. Otherwise
14729			 * perform the same checks as for probe offsets
14730			 * (immediately above).
14731			 */
14732			if (enoff_sec == NULL) {
14733				if (probe->dofpr_enoffidx != 0 ||
14734				    probe->dofpr_nenoffs != 0) {
14735					dtrace_dof_error(dof, "is-enabled "
14736					    "offsets with null section");
14737					return (-1);
14738				}
14739			} else if (probe->dofpr_enoffidx +
14740			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14741			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14742			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14743				dtrace_dof_error(dof, "invalid is-enabled "
14744				    "offset");
14745				return (-1);
14746			}
14747
14748			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14749				dtrace_dof_error(dof, "zero probe and "
14750				    "is-enabled offsets");
14751				return (-1);
14752			}
14753		} else if (probe->dofpr_noffs == 0) {
14754			dtrace_dof_error(dof, "zero probe offsets");
14755			return (-1);
14756		}
14757
14758		if (probe->dofpr_argidx + probe->dofpr_xargc <
14759		    probe->dofpr_argidx ||
14760		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14761		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14762			dtrace_dof_error(dof, "invalid args");
14763			return (-1);
14764		}
14765
14766		typeidx = probe->dofpr_nargv;
14767		typestr = strtab + probe->dofpr_nargv;
14768		for (k = 0; k < probe->dofpr_nargc; k++) {
14769			if (typeidx >= str_sec->dofs_size) {
14770				dtrace_dof_error(dof, "bad "
14771				    "native argument type");
14772				return (-1);
14773			}
14774
14775			typesz = strlen(typestr) + 1;
14776			if (typesz > DTRACE_ARGTYPELEN) {
14777				dtrace_dof_error(dof, "native "
14778				    "argument type too long");
14779				return (-1);
14780			}
14781			typeidx += typesz;
14782			typestr += typesz;
14783		}
14784
14785		typeidx = probe->dofpr_xargv;
14786		typestr = strtab + probe->dofpr_xargv;
14787		for (k = 0; k < probe->dofpr_xargc; k++) {
14788			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14789				dtrace_dof_error(dof, "bad "
14790				    "native argument index");
14791				return (-1);
14792			}
14793
14794			if (typeidx >= str_sec->dofs_size) {
14795				dtrace_dof_error(dof, "bad "
14796				    "translated argument type");
14797				return (-1);
14798			}
14799
14800			typesz = strlen(typestr) + 1;
14801			if (typesz > DTRACE_ARGTYPELEN) {
14802				dtrace_dof_error(dof, "translated argument "
14803				    "type too long");
14804				return (-1);
14805			}
14806
14807			typeidx += typesz;
14808			typestr += typesz;
14809		}
14810	}
14811
14812	return (0);
14813}
14814
14815static int
14816dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14817{
14818	dtrace_helpers_t *help;
14819	dtrace_vstate_t *vstate;
14820	dtrace_enabling_t *enab = NULL;
14821	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14822	uintptr_t daddr = (uintptr_t)dof;
14823
14824	ASSERT(MUTEX_HELD(&dtrace_lock));
14825
14826	if ((help = curproc->p_dtrace_helpers) == NULL)
14827		help = dtrace_helpers_create(curproc);
14828
14829	vstate = &help->dthps_vstate;
14830
14831	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14832	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14833		dtrace_dof_destroy(dof);
14834		return (rv);
14835	}
14836
14837	/*
14838	 * Look for helper providers and validate their descriptions.
14839	 */
14840	if (dhp != NULL) {
14841		for (i = 0; i < dof->dofh_secnum; i++) {
14842			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14843			    dof->dofh_secoff + i * dof->dofh_secsize);
14844
14845			if (sec->dofs_type != DOF_SECT_PROVIDER)
14846				continue;
14847
14848			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14849				dtrace_enabling_destroy(enab);
14850				dtrace_dof_destroy(dof);
14851				return (-1);
14852			}
14853
14854			nprovs++;
14855		}
14856	}
14857
14858	/*
14859	 * Now we need to walk through the ECB descriptions in the enabling.
14860	 */
14861	for (i = 0; i < enab->dten_ndesc; i++) {
14862		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14863		dtrace_probedesc_t *desc = &ep->dted_probe;
14864
14865		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14866			continue;
14867
14868		if (strcmp(desc->dtpd_mod, "helper") != 0)
14869			continue;
14870
14871		if (strcmp(desc->dtpd_func, "ustack") != 0)
14872			continue;
14873
14874		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14875		    ep)) != 0) {
14876			/*
14877			 * Adding this helper action failed -- we are now going
14878			 * to rip out the entire generation and return failure.
14879			 */
14880			(void) dtrace_helper_destroygen(help->dthps_generation);
14881			dtrace_enabling_destroy(enab);
14882			dtrace_dof_destroy(dof);
14883			return (-1);
14884		}
14885
14886		nhelpers++;
14887	}
14888
14889	if (nhelpers < enab->dten_ndesc)
14890		dtrace_dof_error(dof, "unmatched helpers");
14891
14892	gen = help->dthps_generation++;
14893	dtrace_enabling_destroy(enab);
14894
14895	if (dhp != NULL && nprovs > 0) {
14896		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14897		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14898			mutex_exit(&dtrace_lock);
14899			dtrace_helper_provider_register(curproc, help, dhp);
14900			mutex_enter(&dtrace_lock);
14901
14902			destroy = 0;
14903		}
14904	}
14905
14906	if (destroy)
14907		dtrace_dof_destroy(dof);
14908
14909	return (gen);
14910}
14911
14912static dtrace_helpers_t *
14913dtrace_helpers_create(proc_t *p)
14914{
14915	dtrace_helpers_t *help;
14916
14917	ASSERT(MUTEX_HELD(&dtrace_lock));
14918	ASSERT(p->p_dtrace_helpers == NULL);
14919
14920	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14921	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14922	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14923
14924	p->p_dtrace_helpers = help;
14925	dtrace_helpers++;
14926
14927	return (help);
14928}
14929
14930#if defined(sun)
14931static
14932#endif
14933void
14934dtrace_helpers_destroy(proc_t *p)
14935{
14936	dtrace_helpers_t *help;
14937	dtrace_vstate_t *vstate;
14938#if defined(sun)
14939	proc_t *p = curproc;
14940#endif
14941	int i;
14942
14943	mutex_enter(&dtrace_lock);
14944
14945	ASSERT(p->p_dtrace_helpers != NULL);
14946	ASSERT(dtrace_helpers > 0);
14947
14948	help = p->p_dtrace_helpers;
14949	vstate = &help->dthps_vstate;
14950
14951	/*
14952	 * We're now going to lose the help from this process.
14953	 */
14954	p->p_dtrace_helpers = NULL;
14955	dtrace_sync();
14956
14957	/*
14958	 * Destory the helper actions.
14959	 */
14960	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14961		dtrace_helper_action_t *h, *next;
14962
14963		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14964			next = h->dtha_next;
14965			dtrace_helper_action_destroy(h, vstate);
14966			h = next;
14967		}
14968	}
14969
14970	mutex_exit(&dtrace_lock);
14971
14972	/*
14973	 * Destroy the helper providers.
14974	 */
14975	if (help->dthps_maxprovs > 0) {
14976		mutex_enter(&dtrace_meta_lock);
14977		if (dtrace_meta_pid != NULL) {
14978			ASSERT(dtrace_deferred_pid == NULL);
14979
14980			for (i = 0; i < help->dthps_nprovs; i++) {
14981				dtrace_helper_provider_remove(
14982				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14983			}
14984		} else {
14985			mutex_enter(&dtrace_lock);
14986			ASSERT(help->dthps_deferred == 0 ||
14987			    help->dthps_next != NULL ||
14988			    help->dthps_prev != NULL ||
14989			    help == dtrace_deferred_pid);
14990
14991			/*
14992			 * Remove the helper from the deferred list.
14993			 */
14994			if (help->dthps_next != NULL)
14995				help->dthps_next->dthps_prev = help->dthps_prev;
14996			if (help->dthps_prev != NULL)
14997				help->dthps_prev->dthps_next = help->dthps_next;
14998			if (dtrace_deferred_pid == help) {
14999				dtrace_deferred_pid = help->dthps_next;
15000				ASSERT(help->dthps_prev == NULL);
15001			}
15002
15003			mutex_exit(&dtrace_lock);
15004		}
15005
15006		mutex_exit(&dtrace_meta_lock);
15007
15008		for (i = 0; i < help->dthps_nprovs; i++) {
15009			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15010		}
15011
15012		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15013		    sizeof (dtrace_helper_provider_t *));
15014	}
15015
15016	mutex_enter(&dtrace_lock);
15017
15018	dtrace_vstate_fini(&help->dthps_vstate);
15019	kmem_free(help->dthps_actions,
15020	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15021	kmem_free(help, sizeof (dtrace_helpers_t));
15022
15023	--dtrace_helpers;
15024	mutex_exit(&dtrace_lock);
15025}
15026
15027#if defined(sun)
15028static
15029#endif
15030void
15031dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15032{
15033	dtrace_helpers_t *help, *newhelp;
15034	dtrace_helper_action_t *helper, *new, *last;
15035	dtrace_difo_t *dp;
15036	dtrace_vstate_t *vstate;
15037	int i, j, sz, hasprovs = 0;
15038
15039	mutex_enter(&dtrace_lock);
15040	ASSERT(from->p_dtrace_helpers != NULL);
15041	ASSERT(dtrace_helpers > 0);
15042
15043	help = from->p_dtrace_helpers;
15044	newhelp = dtrace_helpers_create(to);
15045	ASSERT(to->p_dtrace_helpers != NULL);
15046
15047	newhelp->dthps_generation = help->dthps_generation;
15048	vstate = &newhelp->dthps_vstate;
15049
15050	/*
15051	 * Duplicate the helper actions.
15052	 */
15053	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15054		if ((helper = help->dthps_actions[i]) == NULL)
15055			continue;
15056
15057		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15058			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15059			    KM_SLEEP);
15060			new->dtha_generation = helper->dtha_generation;
15061
15062			if ((dp = helper->dtha_predicate) != NULL) {
15063				dp = dtrace_difo_duplicate(dp, vstate);
15064				new->dtha_predicate = dp;
15065			}
15066
15067			new->dtha_nactions = helper->dtha_nactions;
15068			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15069			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15070
15071			for (j = 0; j < new->dtha_nactions; j++) {
15072				dtrace_difo_t *dp = helper->dtha_actions[j];
15073
15074				ASSERT(dp != NULL);
15075				dp = dtrace_difo_duplicate(dp, vstate);
15076				new->dtha_actions[j] = dp;
15077			}
15078
15079			if (last != NULL) {
15080				last->dtha_next = new;
15081			} else {
15082				newhelp->dthps_actions[i] = new;
15083			}
15084
15085			last = new;
15086		}
15087	}
15088
15089	/*
15090	 * Duplicate the helper providers and register them with the
15091	 * DTrace framework.
15092	 */
15093	if (help->dthps_nprovs > 0) {
15094		newhelp->dthps_nprovs = help->dthps_nprovs;
15095		newhelp->dthps_maxprovs = help->dthps_nprovs;
15096		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15097		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15098		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15099			newhelp->dthps_provs[i] = help->dthps_provs[i];
15100			newhelp->dthps_provs[i]->dthp_ref++;
15101		}
15102
15103		hasprovs = 1;
15104	}
15105
15106	mutex_exit(&dtrace_lock);
15107
15108	if (hasprovs)
15109		dtrace_helper_provider_register(to, newhelp, NULL);
15110}
15111
15112/*
15113 * DTrace Hook Functions
15114 */
15115static void
15116dtrace_module_loaded(modctl_t *ctl)
15117{
15118	dtrace_provider_t *prv;
15119
15120	mutex_enter(&dtrace_provider_lock);
15121	mutex_enter(&mod_lock);
15122
15123#if defined(sun)
15124	ASSERT(ctl->mod_busy);
15125#endif
15126
15127	/*
15128	 * We're going to call each providers per-module provide operation
15129	 * specifying only this module.
15130	 */
15131	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15132		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15133
15134	mutex_exit(&mod_lock);
15135	mutex_exit(&dtrace_provider_lock);
15136
15137	/*
15138	 * If we have any retained enablings, we need to match against them.
15139	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15140	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15141	 * module.  (In particular, this happens when loading scheduling
15142	 * classes.)  So if we have any retained enablings, we need to dispatch
15143	 * our task queue to do the match for us.
15144	 */
15145	mutex_enter(&dtrace_lock);
15146
15147	if (dtrace_retained == NULL) {
15148		mutex_exit(&dtrace_lock);
15149		return;
15150	}
15151
15152	(void) taskq_dispatch(dtrace_taskq,
15153	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15154
15155	mutex_exit(&dtrace_lock);
15156
15157	/*
15158	 * And now, for a little heuristic sleaze:  in general, we want to
15159	 * match modules as soon as they load.  However, we cannot guarantee
15160	 * this, because it would lead us to the lock ordering violation
15161	 * outlined above.  The common case, of course, is that cpu_lock is
15162	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15163	 * long enough for the task queue to do its work.  If it's not, it's
15164	 * not a serious problem -- it just means that the module that we
15165	 * just loaded may not be immediately instrumentable.
15166	 */
15167	delay(1);
15168}
15169
15170static void
15171#if defined(sun)
15172dtrace_module_unloaded(modctl_t *ctl)
15173#else
15174dtrace_module_unloaded(modctl_t *ctl, int *error)
15175#endif
15176{
15177	dtrace_probe_t template, *probe, *first, *next;
15178	dtrace_provider_t *prov;
15179#if !defined(sun)
15180	char modname[DTRACE_MODNAMELEN];
15181	size_t len;
15182#endif
15183
15184#if defined(sun)
15185	template.dtpr_mod = ctl->mod_modname;
15186#else
15187	/* Handle the fact that ctl->filename may end in ".ko". */
15188	strlcpy(modname, ctl->filename, sizeof(modname));
15189	len = strlen(ctl->filename);
15190	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
15191		modname[len - 3] = '\0';
15192	template.dtpr_mod = modname;
15193#endif
15194
15195	mutex_enter(&dtrace_provider_lock);
15196	mutex_enter(&mod_lock);
15197	mutex_enter(&dtrace_lock);
15198
15199#if !defined(sun)
15200	if (ctl->nenabled > 0) {
15201		/* Don't allow unloads if a probe is enabled. */
15202		mutex_exit(&dtrace_provider_lock);
15203		mutex_exit(&dtrace_lock);
15204		*error = -1;
15205		printf(
15206	"kldunload: attempt to unload module that has DTrace probes enabled\n");
15207		return;
15208	}
15209#endif
15210
15211	if (dtrace_bymod == NULL) {
15212		/*
15213		 * The DTrace module is loaded (obviously) but not attached;
15214		 * we don't have any work to do.
15215		 */
15216		mutex_exit(&dtrace_provider_lock);
15217		mutex_exit(&mod_lock);
15218		mutex_exit(&dtrace_lock);
15219		return;
15220	}
15221
15222	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15223	    probe != NULL; probe = probe->dtpr_nextmod) {
15224		if (probe->dtpr_ecb != NULL) {
15225			mutex_exit(&dtrace_provider_lock);
15226			mutex_exit(&mod_lock);
15227			mutex_exit(&dtrace_lock);
15228
15229			/*
15230			 * This shouldn't _actually_ be possible -- we're
15231			 * unloading a module that has an enabled probe in it.
15232			 * (It's normally up to the provider to make sure that
15233			 * this can't happen.)  However, because dtps_enable()
15234			 * doesn't have a failure mode, there can be an
15235			 * enable/unload race.  Upshot:  we don't want to
15236			 * assert, but we're not going to disable the
15237			 * probe, either.
15238			 */
15239			if (dtrace_err_verbose) {
15240#if defined(sun)
15241				cmn_err(CE_WARN, "unloaded module '%s' had "
15242				    "enabled probes", ctl->mod_modname);
15243#else
15244				cmn_err(CE_WARN, "unloaded module '%s' had "
15245				    "enabled probes", modname);
15246#endif
15247			}
15248
15249			return;
15250		}
15251	}
15252
15253	probe = first;
15254
15255	for (first = NULL; probe != NULL; probe = next) {
15256		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15257
15258		dtrace_probes[probe->dtpr_id - 1] = NULL;
15259
15260		next = probe->dtpr_nextmod;
15261		dtrace_hash_remove(dtrace_bymod, probe);
15262		dtrace_hash_remove(dtrace_byfunc, probe);
15263		dtrace_hash_remove(dtrace_byname, probe);
15264
15265		if (first == NULL) {
15266			first = probe;
15267			probe->dtpr_nextmod = NULL;
15268		} else {
15269			probe->dtpr_nextmod = first;
15270			first = probe;
15271		}
15272	}
15273
15274	/*
15275	 * We've removed all of the module's probes from the hash chains and
15276	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15277	 * everyone has cleared out from any probe array processing.
15278	 */
15279	dtrace_sync();
15280
15281	for (probe = first; probe != NULL; probe = first) {
15282		first = probe->dtpr_nextmod;
15283		prov = probe->dtpr_provider;
15284		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15285		    probe->dtpr_arg);
15286		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15287		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15288		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15289#if defined(sun)
15290		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15291#else
15292		free_unr(dtrace_arena, probe->dtpr_id);
15293#endif
15294		kmem_free(probe, sizeof (dtrace_probe_t));
15295	}
15296
15297	mutex_exit(&dtrace_lock);
15298	mutex_exit(&mod_lock);
15299	mutex_exit(&dtrace_provider_lock);
15300}
15301
15302#if !defined(sun)
15303static void
15304dtrace_kld_load(void *arg __unused, linker_file_t lf)
15305{
15306
15307	dtrace_module_loaded(lf);
15308}
15309
15310static void
15311dtrace_kld_unload(void *arg __unused, linker_file_t lf, int *error)
15312{
15313
15314	if (*error != 0)
15315		/* We already have an error, so don't do anything. */
15316		return;
15317	dtrace_module_unloaded(lf, error);
15318}
15319#endif
15320
15321#if defined(sun)
15322static void
15323dtrace_suspend(void)
15324{
15325	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15326}
15327
15328static void
15329dtrace_resume(void)
15330{
15331	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15332}
15333#endif
15334
15335static int
15336dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15337{
15338	ASSERT(MUTEX_HELD(&cpu_lock));
15339	mutex_enter(&dtrace_lock);
15340
15341	switch (what) {
15342	case CPU_CONFIG: {
15343		dtrace_state_t *state;
15344		dtrace_optval_t *opt, rs, c;
15345
15346		/*
15347		 * For now, we only allocate a new buffer for anonymous state.
15348		 */
15349		if ((state = dtrace_anon.dta_state) == NULL)
15350			break;
15351
15352		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15353			break;
15354
15355		opt = state->dts_options;
15356		c = opt[DTRACEOPT_CPU];
15357
15358		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15359			break;
15360
15361		/*
15362		 * Regardless of what the actual policy is, we're going to
15363		 * temporarily set our resize policy to be manual.  We're
15364		 * also going to temporarily set our CPU option to denote
15365		 * the newly configured CPU.
15366		 */
15367		rs = opt[DTRACEOPT_BUFRESIZE];
15368		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15369		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15370
15371		(void) dtrace_state_buffers(state);
15372
15373		opt[DTRACEOPT_BUFRESIZE] = rs;
15374		opt[DTRACEOPT_CPU] = c;
15375
15376		break;
15377	}
15378
15379	case CPU_UNCONFIG:
15380		/*
15381		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15382		 * buffer will be freed when the consumer exits.)
15383		 */
15384		break;
15385
15386	default:
15387		break;
15388	}
15389
15390	mutex_exit(&dtrace_lock);
15391	return (0);
15392}
15393
15394#if defined(sun)
15395static void
15396dtrace_cpu_setup_initial(processorid_t cpu)
15397{
15398	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15399}
15400#endif
15401
15402static void
15403dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15404{
15405	if (dtrace_toxranges >= dtrace_toxranges_max) {
15406		int osize, nsize;
15407		dtrace_toxrange_t *range;
15408
15409		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15410
15411		if (osize == 0) {
15412			ASSERT(dtrace_toxrange == NULL);
15413			ASSERT(dtrace_toxranges_max == 0);
15414			dtrace_toxranges_max = 1;
15415		} else {
15416			dtrace_toxranges_max <<= 1;
15417		}
15418
15419		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15420		range = kmem_zalloc(nsize, KM_SLEEP);
15421
15422		if (dtrace_toxrange != NULL) {
15423			ASSERT(osize != 0);
15424			bcopy(dtrace_toxrange, range, osize);
15425			kmem_free(dtrace_toxrange, osize);
15426		}
15427
15428		dtrace_toxrange = range;
15429	}
15430
15431	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15432	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15433
15434	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15435	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15436	dtrace_toxranges++;
15437}
15438
15439/*
15440 * DTrace Driver Cookbook Functions
15441 */
15442#if defined(sun)
15443/*ARGSUSED*/
15444static int
15445dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15446{
15447	dtrace_provider_id_t id;
15448	dtrace_state_t *state = NULL;
15449	dtrace_enabling_t *enab;
15450
15451	mutex_enter(&cpu_lock);
15452	mutex_enter(&dtrace_provider_lock);
15453	mutex_enter(&dtrace_lock);
15454
15455	if (ddi_soft_state_init(&dtrace_softstate,
15456	    sizeof (dtrace_state_t), 0) != 0) {
15457		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15458		mutex_exit(&cpu_lock);
15459		mutex_exit(&dtrace_provider_lock);
15460		mutex_exit(&dtrace_lock);
15461		return (DDI_FAILURE);
15462	}
15463
15464	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15465	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15466	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15467	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15468		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15469		ddi_remove_minor_node(devi, NULL);
15470		ddi_soft_state_fini(&dtrace_softstate);
15471		mutex_exit(&cpu_lock);
15472		mutex_exit(&dtrace_provider_lock);
15473		mutex_exit(&dtrace_lock);
15474		return (DDI_FAILURE);
15475	}
15476
15477	ddi_report_dev(devi);
15478	dtrace_devi = devi;
15479
15480	dtrace_modload = dtrace_module_loaded;
15481	dtrace_modunload = dtrace_module_unloaded;
15482	dtrace_cpu_init = dtrace_cpu_setup_initial;
15483	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15484	dtrace_helpers_fork = dtrace_helpers_duplicate;
15485	dtrace_cpustart_init = dtrace_suspend;
15486	dtrace_cpustart_fini = dtrace_resume;
15487	dtrace_debugger_init = dtrace_suspend;
15488	dtrace_debugger_fini = dtrace_resume;
15489
15490	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15491
15492	ASSERT(MUTEX_HELD(&cpu_lock));
15493
15494	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15495	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15496	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15497	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15498	    VM_SLEEP | VMC_IDENTIFIER);
15499	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15500	    1, INT_MAX, 0);
15501
15502	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15503	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15504	    NULL, NULL, NULL, NULL, NULL, 0);
15505
15506	ASSERT(MUTEX_HELD(&cpu_lock));
15507	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15508	    offsetof(dtrace_probe_t, dtpr_nextmod),
15509	    offsetof(dtrace_probe_t, dtpr_prevmod));
15510
15511	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15512	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15513	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15514
15515	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15516	    offsetof(dtrace_probe_t, dtpr_nextname),
15517	    offsetof(dtrace_probe_t, dtpr_prevname));
15518
15519	if (dtrace_retain_max < 1) {
15520		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15521		    "setting to 1", dtrace_retain_max);
15522		dtrace_retain_max = 1;
15523	}
15524
15525	/*
15526	 * Now discover our toxic ranges.
15527	 */
15528	dtrace_toxic_ranges(dtrace_toxrange_add);
15529
15530	/*
15531	 * Before we register ourselves as a provider to our own framework,
15532	 * we would like to assert that dtrace_provider is NULL -- but that's
15533	 * not true if we were loaded as a dependency of a DTrace provider.
15534	 * Once we've registered, we can assert that dtrace_provider is our
15535	 * pseudo provider.
15536	 */
15537	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15538	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15539
15540	ASSERT(dtrace_provider != NULL);
15541	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15542
15543	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15544	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15545	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15546	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15547	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15548	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15549
15550	dtrace_anon_property();
15551	mutex_exit(&cpu_lock);
15552
15553	/*
15554	 * If DTrace helper tracing is enabled, we need to allocate the
15555	 * trace buffer and initialize the values.
15556	 */
15557	if (dtrace_helptrace_enabled) {
15558		ASSERT(dtrace_helptrace_buffer == NULL);
15559		dtrace_helptrace_buffer =
15560		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15561		dtrace_helptrace_next = 0;
15562	}
15563
15564	/*
15565	 * If there are already providers, we must ask them to provide their
15566	 * probes, and then match any anonymous enabling against them.  Note
15567	 * that there should be no other retained enablings at this time:
15568	 * the only retained enablings at this time should be the anonymous
15569	 * enabling.
15570	 */
15571	if (dtrace_anon.dta_enabling != NULL) {
15572		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15573
15574		dtrace_enabling_provide(NULL);
15575		state = dtrace_anon.dta_state;
15576
15577		/*
15578		 * We couldn't hold cpu_lock across the above call to
15579		 * dtrace_enabling_provide(), but we must hold it to actually
15580		 * enable the probes.  We have to drop all of our locks, pick
15581		 * up cpu_lock, and regain our locks before matching the
15582		 * retained anonymous enabling.
15583		 */
15584		mutex_exit(&dtrace_lock);
15585		mutex_exit(&dtrace_provider_lock);
15586
15587		mutex_enter(&cpu_lock);
15588		mutex_enter(&dtrace_provider_lock);
15589		mutex_enter(&dtrace_lock);
15590
15591		if ((enab = dtrace_anon.dta_enabling) != NULL)
15592			(void) dtrace_enabling_match(enab, NULL);
15593
15594		mutex_exit(&cpu_lock);
15595	}
15596
15597	mutex_exit(&dtrace_lock);
15598	mutex_exit(&dtrace_provider_lock);
15599
15600	if (state != NULL) {
15601		/*
15602		 * If we created any anonymous state, set it going now.
15603		 */
15604		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15605	}
15606
15607	return (DDI_SUCCESS);
15608}
15609#endif
15610
15611#if !defined(sun)
15612#if __FreeBSD_version >= 800039
15613static void
15614dtrace_dtr(void *data __unused)
15615{
15616}
15617#endif
15618#endif
15619
15620/*ARGSUSED*/
15621static int
15622#if defined(sun)
15623dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15624#else
15625dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15626#endif
15627{
15628	dtrace_state_t *state;
15629	uint32_t priv;
15630	uid_t uid;
15631	zoneid_t zoneid;
15632
15633#if defined(sun)
15634	if (getminor(*devp) == DTRACEMNRN_HELPER)
15635		return (0);
15636
15637	/*
15638	 * If this wasn't an open with the "helper" minor, then it must be
15639	 * the "dtrace" minor.
15640	 */
15641	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15642#else
15643	cred_t *cred_p = NULL;
15644
15645#if __FreeBSD_version < 800039
15646	/*
15647	 * The first minor device is the one that is cloned so there is
15648	 * nothing more to do here.
15649	 */
15650	if (dev2unit(dev) == 0)
15651		return 0;
15652
15653	/*
15654	 * Devices are cloned, so if the DTrace state has already
15655	 * been allocated, that means this device belongs to a
15656	 * different client. Each client should open '/dev/dtrace'
15657	 * to get a cloned device.
15658	 */
15659	if (dev->si_drv1 != NULL)
15660		return (EBUSY);
15661#endif
15662
15663	cred_p = dev->si_cred;
15664#endif
15665
15666	/*
15667	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15668	 * caller lacks sufficient permission to do anything with DTrace.
15669	 */
15670	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15671	if (priv == DTRACE_PRIV_NONE) {
15672#if !defined(sun)
15673#if __FreeBSD_version < 800039
15674		/* Destroy the cloned device. */
15675                destroy_dev(dev);
15676#endif
15677#endif
15678
15679		return (EACCES);
15680	}
15681
15682	/*
15683	 * Ask all providers to provide all their probes.
15684	 */
15685	mutex_enter(&dtrace_provider_lock);
15686	dtrace_probe_provide(NULL, NULL);
15687	mutex_exit(&dtrace_provider_lock);
15688
15689	mutex_enter(&cpu_lock);
15690	mutex_enter(&dtrace_lock);
15691	dtrace_opens++;
15692	dtrace_membar_producer();
15693
15694#if defined(sun)
15695	/*
15696	 * If the kernel debugger is active (that is, if the kernel debugger
15697	 * modified text in some way), we won't allow the open.
15698	 */
15699	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15700		dtrace_opens--;
15701		mutex_exit(&cpu_lock);
15702		mutex_exit(&dtrace_lock);
15703		return (EBUSY);
15704	}
15705
15706	state = dtrace_state_create(devp, cred_p);
15707#else
15708	state = dtrace_state_create(dev);
15709#if __FreeBSD_version < 800039
15710	dev->si_drv1 = state;
15711#else
15712	devfs_set_cdevpriv(state, dtrace_dtr);
15713#endif
15714	/* This code actually belongs in dtrace_attach() */
15715	if (dtrace_opens == 1)
15716		dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15717		    1, INT_MAX, 0);
15718#endif
15719
15720	mutex_exit(&cpu_lock);
15721
15722	if (state == NULL) {
15723#if defined(sun)
15724		if (--dtrace_opens == 0)
15725			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15726#else
15727		--dtrace_opens;
15728#endif
15729		mutex_exit(&dtrace_lock);
15730#if !defined(sun)
15731#if __FreeBSD_version < 800039
15732		/* Destroy the cloned device. */
15733                destroy_dev(dev);
15734#endif
15735#endif
15736		return (EAGAIN);
15737	}
15738
15739	mutex_exit(&dtrace_lock);
15740
15741	return (0);
15742}
15743
15744/*ARGSUSED*/
15745static int
15746#if defined(sun)
15747dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15748#else
15749dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15750#endif
15751{
15752#if defined(sun)
15753	minor_t minor = getminor(dev);
15754	dtrace_state_t *state;
15755
15756	if (minor == DTRACEMNRN_HELPER)
15757		return (0);
15758
15759	state = ddi_get_soft_state(dtrace_softstate, minor);
15760#else
15761#if __FreeBSD_version < 800039
15762	dtrace_state_t *state = dev->si_drv1;
15763
15764	/* Check if this is not a cloned device. */
15765	if (dev2unit(dev) == 0)
15766		return (0);
15767#else
15768	dtrace_state_t *state;
15769	devfs_get_cdevpriv((void **) &state);
15770#endif
15771
15772#endif
15773
15774	mutex_enter(&cpu_lock);
15775	mutex_enter(&dtrace_lock);
15776
15777	if (state != NULL) {
15778		if (state->dts_anon) {
15779			/*
15780			 * There is anonymous state. Destroy that first.
15781			 */
15782			ASSERT(dtrace_anon.dta_state == NULL);
15783			dtrace_state_destroy(state->dts_anon);
15784		}
15785
15786		dtrace_state_destroy(state);
15787
15788#if !defined(sun)
15789		kmem_free(state, 0);
15790#if __FreeBSD_version < 800039
15791		dev->si_drv1 = NULL;
15792#endif
15793#endif
15794	}
15795
15796	ASSERT(dtrace_opens > 0);
15797#if defined(sun)
15798	if (--dtrace_opens == 0)
15799		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15800#else
15801	--dtrace_opens;
15802	/* This code actually belongs in dtrace_detach() */
15803	if ((dtrace_opens == 0) && (dtrace_taskq != NULL)) {
15804		taskq_destroy(dtrace_taskq);
15805		dtrace_taskq = NULL;
15806	}
15807#endif
15808
15809	mutex_exit(&dtrace_lock);
15810	mutex_exit(&cpu_lock);
15811
15812#if __FreeBSD_version < 800039
15813	/* Schedule this cloned device to be destroyed. */
15814	destroy_dev_sched(dev);
15815#endif
15816
15817	return (0);
15818}
15819
15820#if defined(sun)
15821/*ARGSUSED*/
15822static int
15823dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15824{
15825	int rval;
15826	dof_helper_t help, *dhp = NULL;
15827
15828	switch (cmd) {
15829	case DTRACEHIOC_ADDDOF:
15830		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15831			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15832			return (EFAULT);
15833		}
15834
15835		dhp = &help;
15836		arg = (intptr_t)help.dofhp_dof;
15837		/*FALLTHROUGH*/
15838
15839	case DTRACEHIOC_ADD: {
15840		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15841
15842		if (dof == NULL)
15843			return (rval);
15844
15845		mutex_enter(&dtrace_lock);
15846
15847		/*
15848		 * dtrace_helper_slurp() takes responsibility for the dof --
15849		 * it may free it now or it may save it and free it later.
15850		 */
15851		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15852			*rv = rval;
15853			rval = 0;
15854		} else {
15855			rval = EINVAL;
15856		}
15857
15858		mutex_exit(&dtrace_lock);
15859		return (rval);
15860	}
15861
15862	case DTRACEHIOC_REMOVE: {
15863		mutex_enter(&dtrace_lock);
15864		rval = dtrace_helper_destroygen(arg);
15865		mutex_exit(&dtrace_lock);
15866
15867		return (rval);
15868	}
15869
15870	default:
15871		break;
15872	}
15873
15874	return (ENOTTY);
15875}
15876
15877/*ARGSUSED*/
15878static int
15879dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15880{
15881	minor_t minor = getminor(dev);
15882	dtrace_state_t *state;
15883	int rval;
15884
15885	if (minor == DTRACEMNRN_HELPER)
15886		return (dtrace_ioctl_helper(cmd, arg, rv));
15887
15888	state = ddi_get_soft_state(dtrace_softstate, minor);
15889
15890	if (state->dts_anon) {
15891		ASSERT(dtrace_anon.dta_state == NULL);
15892		state = state->dts_anon;
15893	}
15894
15895	switch (cmd) {
15896	case DTRACEIOC_PROVIDER: {
15897		dtrace_providerdesc_t pvd;
15898		dtrace_provider_t *pvp;
15899
15900		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15901			return (EFAULT);
15902
15903		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15904		mutex_enter(&dtrace_provider_lock);
15905
15906		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15907			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15908				break;
15909		}
15910
15911		mutex_exit(&dtrace_provider_lock);
15912
15913		if (pvp == NULL)
15914			return (ESRCH);
15915
15916		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15917		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15918
15919		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15920			return (EFAULT);
15921
15922		return (0);
15923	}
15924
15925	case DTRACEIOC_EPROBE: {
15926		dtrace_eprobedesc_t epdesc;
15927		dtrace_ecb_t *ecb;
15928		dtrace_action_t *act;
15929		void *buf;
15930		size_t size;
15931		uintptr_t dest;
15932		int nrecs;
15933
15934		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15935			return (EFAULT);
15936
15937		mutex_enter(&dtrace_lock);
15938
15939		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15940			mutex_exit(&dtrace_lock);
15941			return (EINVAL);
15942		}
15943
15944		if (ecb->dte_probe == NULL) {
15945			mutex_exit(&dtrace_lock);
15946			return (EINVAL);
15947		}
15948
15949		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15950		epdesc.dtepd_uarg = ecb->dte_uarg;
15951		epdesc.dtepd_size = ecb->dte_size;
15952
15953		nrecs = epdesc.dtepd_nrecs;
15954		epdesc.dtepd_nrecs = 0;
15955		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15956			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15957				continue;
15958
15959			epdesc.dtepd_nrecs++;
15960		}
15961
15962		/*
15963		 * Now that we have the size, we need to allocate a temporary
15964		 * buffer in which to store the complete description.  We need
15965		 * the temporary buffer to be able to drop dtrace_lock()
15966		 * across the copyout(), below.
15967		 */
15968		size = sizeof (dtrace_eprobedesc_t) +
15969		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15970
15971		buf = kmem_alloc(size, KM_SLEEP);
15972		dest = (uintptr_t)buf;
15973
15974		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15975		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15976
15977		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15978			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15979				continue;
15980
15981			if (nrecs-- == 0)
15982				break;
15983
15984			bcopy(&act->dta_rec, (void *)dest,
15985			    sizeof (dtrace_recdesc_t));
15986			dest += sizeof (dtrace_recdesc_t);
15987		}
15988
15989		mutex_exit(&dtrace_lock);
15990
15991		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15992			kmem_free(buf, size);
15993			return (EFAULT);
15994		}
15995
15996		kmem_free(buf, size);
15997		return (0);
15998	}
15999
16000	case DTRACEIOC_AGGDESC: {
16001		dtrace_aggdesc_t aggdesc;
16002		dtrace_action_t *act;
16003		dtrace_aggregation_t *agg;
16004		int nrecs;
16005		uint32_t offs;
16006		dtrace_recdesc_t *lrec;
16007		void *buf;
16008		size_t size;
16009		uintptr_t dest;
16010
16011		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16012			return (EFAULT);
16013
16014		mutex_enter(&dtrace_lock);
16015
16016		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16017			mutex_exit(&dtrace_lock);
16018			return (EINVAL);
16019		}
16020
16021		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16022
16023		nrecs = aggdesc.dtagd_nrecs;
16024		aggdesc.dtagd_nrecs = 0;
16025
16026		offs = agg->dtag_base;
16027		lrec = &agg->dtag_action.dta_rec;
16028		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16029
16030		for (act = agg->dtag_first; ; act = act->dta_next) {
16031			ASSERT(act->dta_intuple ||
16032			    DTRACEACT_ISAGG(act->dta_kind));
16033
16034			/*
16035			 * If this action has a record size of zero, it
16036			 * denotes an argument to the aggregating action.
16037			 * Because the presence of this record doesn't (or
16038			 * shouldn't) affect the way the data is interpreted,
16039			 * we don't copy it out to save user-level the
16040			 * confusion of dealing with a zero-length record.
16041			 */
16042			if (act->dta_rec.dtrd_size == 0) {
16043				ASSERT(agg->dtag_hasarg);
16044				continue;
16045			}
16046
16047			aggdesc.dtagd_nrecs++;
16048
16049			if (act == &agg->dtag_action)
16050				break;
16051		}
16052
16053		/*
16054		 * Now that we have the size, we need to allocate a temporary
16055		 * buffer in which to store the complete description.  We need
16056		 * the temporary buffer to be able to drop dtrace_lock()
16057		 * across the copyout(), below.
16058		 */
16059		size = sizeof (dtrace_aggdesc_t) +
16060		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16061
16062		buf = kmem_alloc(size, KM_SLEEP);
16063		dest = (uintptr_t)buf;
16064
16065		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16066		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16067
16068		for (act = agg->dtag_first; ; act = act->dta_next) {
16069			dtrace_recdesc_t rec = act->dta_rec;
16070
16071			/*
16072			 * See the comment in the above loop for why we pass
16073			 * over zero-length records.
16074			 */
16075			if (rec.dtrd_size == 0) {
16076				ASSERT(agg->dtag_hasarg);
16077				continue;
16078			}
16079
16080			if (nrecs-- == 0)
16081				break;
16082
16083			rec.dtrd_offset -= offs;
16084			bcopy(&rec, (void *)dest, sizeof (rec));
16085			dest += sizeof (dtrace_recdesc_t);
16086
16087			if (act == &agg->dtag_action)
16088				break;
16089		}
16090
16091		mutex_exit(&dtrace_lock);
16092
16093		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16094			kmem_free(buf, size);
16095			return (EFAULT);
16096		}
16097
16098		kmem_free(buf, size);
16099		return (0);
16100	}
16101
16102	case DTRACEIOC_ENABLE: {
16103		dof_hdr_t *dof;
16104		dtrace_enabling_t *enab = NULL;
16105		dtrace_vstate_t *vstate;
16106		int err = 0;
16107
16108		*rv = 0;
16109
16110		/*
16111		 * If a NULL argument has been passed, we take this as our
16112		 * cue to reevaluate our enablings.
16113		 */
16114		if (arg == NULL) {
16115			dtrace_enabling_matchall();
16116
16117			return (0);
16118		}
16119
16120		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16121			return (rval);
16122
16123		mutex_enter(&cpu_lock);
16124		mutex_enter(&dtrace_lock);
16125		vstate = &state->dts_vstate;
16126
16127		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16128			mutex_exit(&dtrace_lock);
16129			mutex_exit(&cpu_lock);
16130			dtrace_dof_destroy(dof);
16131			return (EBUSY);
16132		}
16133
16134		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16135			mutex_exit(&dtrace_lock);
16136			mutex_exit(&cpu_lock);
16137			dtrace_dof_destroy(dof);
16138			return (EINVAL);
16139		}
16140
16141		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16142			dtrace_enabling_destroy(enab);
16143			mutex_exit(&dtrace_lock);
16144			mutex_exit(&cpu_lock);
16145			dtrace_dof_destroy(dof);
16146			return (rval);
16147		}
16148
16149		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16150			err = dtrace_enabling_retain(enab);
16151		} else {
16152			dtrace_enabling_destroy(enab);
16153		}
16154
16155		mutex_exit(&cpu_lock);
16156		mutex_exit(&dtrace_lock);
16157		dtrace_dof_destroy(dof);
16158
16159		return (err);
16160	}
16161
16162	case DTRACEIOC_REPLICATE: {
16163		dtrace_repldesc_t desc;
16164		dtrace_probedesc_t *match = &desc.dtrpd_match;
16165		dtrace_probedesc_t *create = &desc.dtrpd_create;
16166		int err;
16167
16168		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16169			return (EFAULT);
16170
16171		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16172		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16173		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16174		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16175
16176		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16177		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16178		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16179		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16180
16181		mutex_enter(&dtrace_lock);
16182		err = dtrace_enabling_replicate(state, match, create);
16183		mutex_exit(&dtrace_lock);
16184
16185		return (err);
16186	}
16187
16188	case DTRACEIOC_PROBEMATCH:
16189	case DTRACEIOC_PROBES: {
16190		dtrace_probe_t *probe = NULL;
16191		dtrace_probedesc_t desc;
16192		dtrace_probekey_t pkey;
16193		dtrace_id_t i;
16194		int m = 0;
16195		uint32_t priv;
16196		uid_t uid;
16197		zoneid_t zoneid;
16198
16199		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16200			return (EFAULT);
16201
16202		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16203		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16204		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16205		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16206
16207		/*
16208		 * Before we attempt to match this probe, we want to give
16209		 * all providers the opportunity to provide it.
16210		 */
16211		if (desc.dtpd_id == DTRACE_IDNONE) {
16212			mutex_enter(&dtrace_provider_lock);
16213			dtrace_probe_provide(&desc, NULL);
16214			mutex_exit(&dtrace_provider_lock);
16215			desc.dtpd_id++;
16216		}
16217
16218		if (cmd == DTRACEIOC_PROBEMATCH)  {
16219			dtrace_probekey(&desc, &pkey);
16220			pkey.dtpk_id = DTRACE_IDNONE;
16221		}
16222
16223		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16224
16225		mutex_enter(&dtrace_lock);
16226
16227		if (cmd == DTRACEIOC_PROBEMATCH) {
16228			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16229				if ((probe = dtrace_probes[i - 1]) != NULL &&
16230				    (m = dtrace_match_probe(probe, &pkey,
16231				    priv, uid, zoneid)) != 0)
16232					break;
16233			}
16234
16235			if (m < 0) {
16236				mutex_exit(&dtrace_lock);
16237				return (EINVAL);
16238			}
16239
16240		} else {
16241			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16242				if ((probe = dtrace_probes[i - 1]) != NULL &&
16243				    dtrace_match_priv(probe, priv, uid, zoneid))
16244					break;
16245			}
16246		}
16247
16248		if (probe == NULL) {
16249			mutex_exit(&dtrace_lock);
16250			return (ESRCH);
16251		}
16252
16253		dtrace_probe_description(probe, &desc);
16254		mutex_exit(&dtrace_lock);
16255
16256		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16257			return (EFAULT);
16258
16259		return (0);
16260	}
16261
16262	case DTRACEIOC_PROBEARG: {
16263		dtrace_argdesc_t desc;
16264		dtrace_probe_t *probe;
16265		dtrace_provider_t *prov;
16266
16267		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16268			return (EFAULT);
16269
16270		if (desc.dtargd_id == DTRACE_IDNONE)
16271			return (EINVAL);
16272
16273		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16274			return (EINVAL);
16275
16276		mutex_enter(&dtrace_provider_lock);
16277		mutex_enter(&mod_lock);
16278		mutex_enter(&dtrace_lock);
16279
16280		if (desc.dtargd_id > dtrace_nprobes) {
16281			mutex_exit(&dtrace_lock);
16282			mutex_exit(&mod_lock);
16283			mutex_exit(&dtrace_provider_lock);
16284			return (EINVAL);
16285		}
16286
16287		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16288			mutex_exit(&dtrace_lock);
16289			mutex_exit(&mod_lock);
16290			mutex_exit(&dtrace_provider_lock);
16291			return (EINVAL);
16292		}
16293
16294		mutex_exit(&dtrace_lock);
16295
16296		prov = probe->dtpr_provider;
16297
16298		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16299			/*
16300			 * There isn't any typed information for this probe.
16301			 * Set the argument number to DTRACE_ARGNONE.
16302			 */
16303			desc.dtargd_ndx = DTRACE_ARGNONE;
16304		} else {
16305			desc.dtargd_native[0] = '\0';
16306			desc.dtargd_xlate[0] = '\0';
16307			desc.dtargd_mapping = desc.dtargd_ndx;
16308
16309			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16310			    probe->dtpr_id, probe->dtpr_arg, &desc);
16311		}
16312
16313		mutex_exit(&mod_lock);
16314		mutex_exit(&dtrace_provider_lock);
16315
16316		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16317			return (EFAULT);
16318
16319		return (0);
16320	}
16321
16322	case DTRACEIOC_GO: {
16323		processorid_t cpuid;
16324		rval = dtrace_state_go(state, &cpuid);
16325
16326		if (rval != 0)
16327			return (rval);
16328
16329		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16330			return (EFAULT);
16331
16332		return (0);
16333	}
16334
16335	case DTRACEIOC_STOP: {
16336		processorid_t cpuid;
16337
16338		mutex_enter(&dtrace_lock);
16339		rval = dtrace_state_stop(state, &cpuid);
16340		mutex_exit(&dtrace_lock);
16341
16342		if (rval != 0)
16343			return (rval);
16344
16345		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16346			return (EFAULT);
16347
16348		return (0);
16349	}
16350
16351	case DTRACEIOC_DOFGET: {
16352		dof_hdr_t hdr, *dof;
16353		uint64_t len;
16354
16355		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16356			return (EFAULT);
16357
16358		mutex_enter(&dtrace_lock);
16359		dof = dtrace_dof_create(state);
16360		mutex_exit(&dtrace_lock);
16361
16362		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16363		rval = copyout(dof, (void *)arg, len);
16364		dtrace_dof_destroy(dof);
16365
16366		return (rval == 0 ? 0 : EFAULT);
16367	}
16368
16369	case DTRACEIOC_AGGSNAP:
16370	case DTRACEIOC_BUFSNAP: {
16371		dtrace_bufdesc_t desc;
16372		caddr_t cached;
16373		dtrace_buffer_t *buf;
16374
16375		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16376			return (EFAULT);
16377
16378		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16379			return (EINVAL);
16380
16381		mutex_enter(&dtrace_lock);
16382
16383		if (cmd == DTRACEIOC_BUFSNAP) {
16384			buf = &state->dts_buffer[desc.dtbd_cpu];
16385		} else {
16386			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16387		}
16388
16389		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16390			size_t sz = buf->dtb_offset;
16391
16392			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16393				mutex_exit(&dtrace_lock);
16394				return (EBUSY);
16395			}
16396
16397			/*
16398			 * If this buffer has already been consumed, we're
16399			 * going to indicate that there's nothing left here
16400			 * to consume.
16401			 */
16402			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16403				mutex_exit(&dtrace_lock);
16404
16405				desc.dtbd_size = 0;
16406				desc.dtbd_drops = 0;
16407				desc.dtbd_errors = 0;
16408				desc.dtbd_oldest = 0;
16409				sz = sizeof (desc);
16410
16411				if (copyout(&desc, (void *)arg, sz) != 0)
16412					return (EFAULT);
16413
16414				return (0);
16415			}
16416
16417			/*
16418			 * If this is a ring buffer that has wrapped, we want
16419			 * to copy the whole thing out.
16420			 */
16421			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16422				dtrace_buffer_polish(buf);
16423				sz = buf->dtb_size;
16424			}
16425
16426			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16427				mutex_exit(&dtrace_lock);
16428				return (EFAULT);
16429			}
16430
16431			desc.dtbd_size = sz;
16432			desc.dtbd_drops = buf->dtb_drops;
16433			desc.dtbd_errors = buf->dtb_errors;
16434			desc.dtbd_oldest = buf->dtb_xamot_offset;
16435
16436			mutex_exit(&dtrace_lock);
16437
16438			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16439				return (EFAULT);
16440
16441			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16442
16443			return (0);
16444		}
16445
16446		if (buf->dtb_tomax == NULL) {
16447			ASSERT(buf->dtb_xamot == NULL);
16448			mutex_exit(&dtrace_lock);
16449			return (ENOENT);
16450		}
16451
16452		cached = buf->dtb_tomax;
16453		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16454
16455		dtrace_xcall(desc.dtbd_cpu,
16456		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16457
16458		state->dts_errors += buf->dtb_xamot_errors;
16459
16460		/*
16461		 * If the buffers did not actually switch, then the cross call
16462		 * did not take place -- presumably because the given CPU is
16463		 * not in the ready set.  If this is the case, we'll return
16464		 * ENOENT.
16465		 */
16466		if (buf->dtb_tomax == cached) {
16467			ASSERT(buf->dtb_xamot != cached);
16468			mutex_exit(&dtrace_lock);
16469			return (ENOENT);
16470		}
16471
16472		ASSERT(cached == buf->dtb_xamot);
16473
16474		/*
16475		 * We have our snapshot; now copy it out.
16476		 */
16477		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16478		    buf->dtb_xamot_offset) != 0) {
16479			mutex_exit(&dtrace_lock);
16480			return (EFAULT);
16481		}
16482
16483		desc.dtbd_size = buf->dtb_xamot_offset;
16484		desc.dtbd_drops = buf->dtb_xamot_drops;
16485		desc.dtbd_errors = buf->dtb_xamot_errors;
16486		desc.dtbd_oldest = 0;
16487
16488		mutex_exit(&dtrace_lock);
16489
16490		/*
16491		 * Finally, copy out the buffer description.
16492		 */
16493		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16494			return (EFAULT);
16495
16496		return (0);
16497	}
16498
16499	case DTRACEIOC_CONF: {
16500		dtrace_conf_t conf;
16501
16502		bzero(&conf, sizeof (conf));
16503		conf.dtc_difversion = DIF_VERSION;
16504		conf.dtc_difintregs = DIF_DIR_NREGS;
16505		conf.dtc_diftupregs = DIF_DTR_NREGS;
16506		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16507
16508		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16509			return (EFAULT);
16510
16511		return (0);
16512	}
16513
16514	case DTRACEIOC_STATUS: {
16515		dtrace_status_t stat;
16516		dtrace_dstate_t *dstate;
16517		int i, j;
16518		uint64_t nerrs;
16519
16520		/*
16521		 * See the comment in dtrace_state_deadman() for the reason
16522		 * for setting dts_laststatus to INT64_MAX before setting
16523		 * it to the correct value.
16524		 */
16525		state->dts_laststatus = INT64_MAX;
16526		dtrace_membar_producer();
16527		state->dts_laststatus = dtrace_gethrtime();
16528
16529		bzero(&stat, sizeof (stat));
16530
16531		mutex_enter(&dtrace_lock);
16532
16533		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16534			mutex_exit(&dtrace_lock);
16535			return (ENOENT);
16536		}
16537
16538		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16539			stat.dtst_exiting = 1;
16540
16541		nerrs = state->dts_errors;
16542		dstate = &state->dts_vstate.dtvs_dynvars;
16543
16544		for (i = 0; i < NCPU; i++) {
16545			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16546
16547			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16548			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16549			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16550
16551			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16552				stat.dtst_filled++;
16553
16554			nerrs += state->dts_buffer[i].dtb_errors;
16555
16556			for (j = 0; j < state->dts_nspeculations; j++) {
16557				dtrace_speculation_t *spec;
16558				dtrace_buffer_t *buf;
16559
16560				spec = &state->dts_speculations[j];
16561				buf = &spec->dtsp_buffer[i];
16562				stat.dtst_specdrops += buf->dtb_xamot_drops;
16563			}
16564		}
16565
16566		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16567		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16568		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16569		stat.dtst_dblerrors = state->dts_dblerrors;
16570		stat.dtst_killed =
16571		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16572		stat.dtst_errors = nerrs;
16573
16574		mutex_exit(&dtrace_lock);
16575
16576		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16577			return (EFAULT);
16578
16579		return (0);
16580	}
16581
16582	case DTRACEIOC_FORMAT: {
16583		dtrace_fmtdesc_t fmt;
16584		char *str;
16585		int len;
16586
16587		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16588			return (EFAULT);
16589
16590		mutex_enter(&dtrace_lock);
16591
16592		if (fmt.dtfd_format == 0 ||
16593		    fmt.dtfd_format > state->dts_nformats) {
16594			mutex_exit(&dtrace_lock);
16595			return (EINVAL);
16596		}
16597
16598		/*
16599		 * Format strings are allocated contiguously and they are
16600		 * never freed; if a format index is less than the number
16601		 * of formats, we can assert that the format map is non-NULL
16602		 * and that the format for the specified index is non-NULL.
16603		 */
16604		ASSERT(state->dts_formats != NULL);
16605		str = state->dts_formats[fmt.dtfd_format - 1];
16606		ASSERT(str != NULL);
16607
16608		len = strlen(str) + 1;
16609
16610		if (len > fmt.dtfd_length) {
16611			fmt.dtfd_length = len;
16612
16613			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16614				mutex_exit(&dtrace_lock);
16615				return (EINVAL);
16616			}
16617		} else {
16618			if (copyout(str, fmt.dtfd_string, len) != 0) {
16619				mutex_exit(&dtrace_lock);
16620				return (EINVAL);
16621			}
16622		}
16623
16624		mutex_exit(&dtrace_lock);
16625		return (0);
16626	}
16627
16628	default:
16629		break;
16630	}
16631
16632	return (ENOTTY);
16633}
16634
16635/*ARGSUSED*/
16636static int
16637dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16638{
16639	dtrace_state_t *state;
16640
16641	switch (cmd) {
16642	case DDI_DETACH:
16643		break;
16644
16645	case DDI_SUSPEND:
16646		return (DDI_SUCCESS);
16647
16648	default:
16649		return (DDI_FAILURE);
16650	}
16651
16652	mutex_enter(&cpu_lock);
16653	mutex_enter(&dtrace_provider_lock);
16654	mutex_enter(&dtrace_lock);
16655
16656	ASSERT(dtrace_opens == 0);
16657
16658	if (dtrace_helpers > 0) {
16659		mutex_exit(&dtrace_provider_lock);
16660		mutex_exit(&dtrace_lock);
16661		mutex_exit(&cpu_lock);
16662		return (DDI_FAILURE);
16663	}
16664
16665	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16666		mutex_exit(&dtrace_provider_lock);
16667		mutex_exit(&dtrace_lock);
16668		mutex_exit(&cpu_lock);
16669		return (DDI_FAILURE);
16670	}
16671
16672	dtrace_provider = NULL;
16673
16674	if ((state = dtrace_anon_grab()) != NULL) {
16675		/*
16676		 * If there were ECBs on this state, the provider should
16677		 * have not been allowed to detach; assert that there is
16678		 * none.
16679		 */
16680		ASSERT(state->dts_necbs == 0);
16681		dtrace_state_destroy(state);
16682
16683		/*
16684		 * If we're being detached with anonymous state, we need to
16685		 * indicate to the kernel debugger that DTrace is now inactive.
16686		 */
16687		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16688	}
16689
16690	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16691	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16692	dtrace_cpu_init = NULL;
16693	dtrace_helpers_cleanup = NULL;
16694	dtrace_helpers_fork = NULL;
16695	dtrace_cpustart_init = NULL;
16696	dtrace_cpustart_fini = NULL;
16697	dtrace_debugger_init = NULL;
16698	dtrace_debugger_fini = NULL;
16699	dtrace_modload = NULL;
16700	dtrace_modunload = NULL;
16701
16702	mutex_exit(&cpu_lock);
16703
16704	if (dtrace_helptrace_enabled) {
16705		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16706		dtrace_helptrace_buffer = NULL;
16707	}
16708
16709	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16710	dtrace_probes = NULL;
16711	dtrace_nprobes = 0;
16712
16713	dtrace_hash_destroy(dtrace_bymod);
16714	dtrace_hash_destroy(dtrace_byfunc);
16715	dtrace_hash_destroy(dtrace_byname);
16716	dtrace_bymod = NULL;
16717	dtrace_byfunc = NULL;
16718	dtrace_byname = NULL;
16719
16720	kmem_cache_destroy(dtrace_state_cache);
16721	vmem_destroy(dtrace_minor);
16722	vmem_destroy(dtrace_arena);
16723
16724	if (dtrace_toxrange != NULL) {
16725		kmem_free(dtrace_toxrange,
16726		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16727		dtrace_toxrange = NULL;
16728		dtrace_toxranges = 0;
16729		dtrace_toxranges_max = 0;
16730	}
16731
16732	ddi_remove_minor_node(dtrace_devi, NULL);
16733	dtrace_devi = NULL;
16734
16735	ddi_soft_state_fini(&dtrace_softstate);
16736
16737	ASSERT(dtrace_vtime_references == 0);
16738	ASSERT(dtrace_opens == 0);
16739	ASSERT(dtrace_retained == NULL);
16740
16741	mutex_exit(&dtrace_lock);
16742	mutex_exit(&dtrace_provider_lock);
16743
16744	/*
16745	 * We don't destroy the task queue until after we have dropped our
16746	 * locks (taskq_destroy() may block on running tasks).  To prevent
16747	 * attempting to do work after we have effectively detached but before
16748	 * the task queue has been destroyed, all tasks dispatched via the
16749	 * task queue must check that DTrace is still attached before
16750	 * performing any operation.
16751	 */
16752	taskq_destroy(dtrace_taskq);
16753	dtrace_taskq = NULL;
16754
16755	return (DDI_SUCCESS);
16756}
16757#endif
16758
16759#if defined(sun)
16760/*ARGSUSED*/
16761static int
16762dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16763{
16764	int error;
16765
16766	switch (infocmd) {
16767	case DDI_INFO_DEVT2DEVINFO:
16768		*result = (void *)dtrace_devi;
16769		error = DDI_SUCCESS;
16770		break;
16771	case DDI_INFO_DEVT2INSTANCE:
16772		*result = (void *)0;
16773		error = DDI_SUCCESS;
16774		break;
16775	default:
16776		error = DDI_FAILURE;
16777	}
16778	return (error);
16779}
16780#endif
16781
16782#if defined(sun)
16783static struct cb_ops dtrace_cb_ops = {
16784	dtrace_open,		/* open */
16785	dtrace_close,		/* close */
16786	nulldev,		/* strategy */
16787	nulldev,		/* print */
16788	nodev,			/* dump */
16789	nodev,			/* read */
16790	nodev,			/* write */
16791	dtrace_ioctl,		/* ioctl */
16792	nodev,			/* devmap */
16793	nodev,			/* mmap */
16794	nodev,			/* segmap */
16795	nochpoll,		/* poll */
16796	ddi_prop_op,		/* cb_prop_op */
16797	0,			/* streamtab  */
16798	D_NEW | D_MP		/* Driver compatibility flag */
16799};
16800
16801static struct dev_ops dtrace_ops = {
16802	DEVO_REV,		/* devo_rev */
16803	0,			/* refcnt */
16804	dtrace_info,		/* get_dev_info */
16805	nulldev,		/* identify */
16806	nulldev,		/* probe */
16807	dtrace_attach,		/* attach */
16808	dtrace_detach,		/* detach */
16809	nodev,			/* reset */
16810	&dtrace_cb_ops,		/* driver operations */
16811	NULL,			/* bus operations */
16812	nodev			/* dev power */
16813};
16814
16815static struct modldrv modldrv = {
16816	&mod_driverops,		/* module type (this is a pseudo driver) */
16817	"Dynamic Tracing",	/* name of module */
16818	&dtrace_ops,		/* driver ops */
16819};
16820
16821static struct modlinkage modlinkage = {
16822	MODREV_1,
16823	(void *)&modldrv,
16824	NULL
16825};
16826
16827int
16828_init(void)
16829{
16830	return (mod_install(&modlinkage));
16831}
16832
16833int
16834_info(struct modinfo *modinfop)
16835{
16836	return (mod_info(&modlinkage, modinfop));
16837}
16838
16839int
16840_fini(void)
16841{
16842	return (mod_remove(&modlinkage));
16843}
16844#else
16845
16846static d_ioctl_t	dtrace_ioctl;
16847static d_ioctl_t	dtrace_ioctl_helper;
16848static void		dtrace_load(void *);
16849static int		dtrace_unload(void);
16850#if __FreeBSD_version < 800039
16851static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16852static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16853static eventhandler_tag	eh_tag;			/* Event handler tag. */
16854#else
16855static struct cdev	*dtrace_dev;
16856static struct cdev	*helper_dev;
16857#endif
16858
16859void dtrace_invop_init(void);
16860void dtrace_invop_uninit(void);
16861
16862static struct cdevsw dtrace_cdevsw = {
16863	.d_version	= D_VERSION,
16864	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16865	.d_close	= dtrace_close,
16866	.d_ioctl	= dtrace_ioctl,
16867	.d_open		= dtrace_open,
16868	.d_name		= "dtrace",
16869};
16870
16871static struct cdevsw helper_cdevsw = {
16872	.d_version	= D_VERSION,
16873	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16874	.d_ioctl	= dtrace_ioctl_helper,
16875	.d_name		= "helper",
16876};
16877
16878#include <dtrace_anon.c>
16879#if __FreeBSD_version < 800039
16880#include <dtrace_clone.c>
16881#endif
16882#include <dtrace_ioctl.c>
16883#include <dtrace_load.c>
16884#include <dtrace_modevent.c>
16885#include <dtrace_sysctl.c>
16886#include <dtrace_unload.c>
16887#include <dtrace_vtime.c>
16888#include <dtrace_hacks.c>
16889#include <dtrace_isa.c>
16890
16891SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16892SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16893SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16894
16895DEV_MODULE(dtrace, dtrace_modevent, NULL);
16896MODULE_VERSION(dtrace, 1);
16897MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16898MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16899#endif
16900