dtrace.c revision 250484
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/9/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 250484 2013-05-10 21:12:55Z pfg $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * DTrace - Dynamic Tracing for Solaris
33 *
34 * This is the implementation of the Solaris Dynamic Tracing framework
35 * (DTrace).  The user-visible interface to DTrace is described at length in
36 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37 * library, the in-kernel DTrace framework, and the DTrace providers are
38 * described in the block comments in the <sys/dtrace.h> header file.  The
39 * internal architecture of DTrace is described in the block comments in the
40 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41 * implementation very much assume mastery of all of these sources; if one has
42 * an unanswered question about the implementation, one should consult them
43 * first.
44 *
45 * The functions here are ordered roughly as follows:
46 *
47 *   - Probe context functions
48 *   - Probe hashing functions
49 *   - Non-probe context utility functions
50 *   - Matching functions
51 *   - Provider-to-Framework API functions
52 *   - Probe management functions
53 *   - DIF object functions
54 *   - Format functions
55 *   - Predicate functions
56 *   - ECB functions
57 *   - Buffer functions
58 *   - Enabling functions
59 *   - DOF functions
60 *   - Anonymous enabling functions
61 *   - Consumer state functions
62 *   - Helper functions
63 *   - Hook functions
64 *   - Driver cookbook functions
65 *
66 * Each group of functions begins with a block comment labelled the "DTrace
67 * [Group] Functions", allowing one to find each block by searching forward
68 * on capital-f functions.
69 */
70#include <sys/errno.h>
71#if !defined(sun)
72#include <sys/time.h>
73#endif
74#include <sys/stat.h>
75#include <sys/modctl.h>
76#include <sys/conf.h>
77#include <sys/systm.h>
78#if defined(sun)
79#include <sys/ddi.h>
80#include <sys/sunddi.h>
81#endif
82#include <sys/cpuvar.h>
83#include <sys/kmem.h>
84#if defined(sun)
85#include <sys/strsubr.h>
86#endif
87#include <sys/sysmacros.h>
88#include <sys/dtrace_impl.h>
89#include <sys/atomic.h>
90#include <sys/cmn_err.h>
91#if defined(sun)
92#include <sys/mutex_impl.h>
93#include <sys/rwlock_impl.h>
94#endif
95#include <sys/ctf_api.h>
96#if defined(sun)
97#include <sys/panic.h>
98#include <sys/priv_impl.h>
99#endif
100#include <sys/policy.h>
101#if defined(sun)
102#include <sys/cred_impl.h>
103#include <sys/procfs_isa.h>
104#endif
105#include <sys/taskq.h>
106#if defined(sun)
107#include <sys/mkdev.h>
108#include <sys/kdi.h>
109#endif
110#include <sys/zone.h>
111#include <sys/socket.h>
112#include <netinet/in.h>
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/limits.h>
119#include <sys/kdb.h>
120#include <sys/kernel.h>
121#include <sys/malloc.h>
122#include <sys/sysctl.h>
123#include <sys/lock.h>
124#include <sys/mutex.h>
125#include <sys/rwlock.h>
126#include <sys/sx.h>
127#include <sys/dtrace_bsd.h>
128#include <netinet/in.h>
129#include "dtrace_cddl.h"
130#include "dtrace_debug.c"
131#endif
132
133/*
134 * DTrace Tunable Variables
135 *
136 * The following variables may be tuned by adding a line to /etc/system that
137 * includes both the name of the DTrace module ("dtrace") and the name of the
138 * variable.  For example:
139 *
140 *   set dtrace:dtrace_destructive_disallow = 1
141 *
142 * In general, the only variables that one should be tuning this way are those
143 * that affect system-wide DTrace behavior, and for which the default behavior
144 * is undesirable.  Most of these variables are tunable on a per-consumer
145 * basis using DTrace options, and need not be tuned on a system-wide basis.
146 * When tuning these variables, avoid pathological values; while some attempt
147 * is made to verify the integrity of these variables, they are not considered
148 * part of the supported interface to DTrace, and they are therefore not
149 * checked comprehensively.  Further, these variables should not be tuned
150 * dynamically via "mdb -kw" or other means; they should only be tuned via
151 * /etc/system.
152 */
153int		dtrace_destructive_disallow = 0;
154dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155size_t		dtrace_difo_maxsize = (256 * 1024);
156dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
157size_t		dtrace_global_maxsize = (16 * 1024);
158size_t		dtrace_actions_max = (16 * 1024);
159size_t		dtrace_retain_max = 1024;
160dtrace_optval_t	dtrace_helper_actions_max = 128;
161dtrace_optval_t	dtrace_helper_providers_max = 32;
162dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
163size_t		dtrace_strsize_default = 256;
164dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
165dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
166dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
167dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
168dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
170dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
171dtrace_optval_t	dtrace_nspec_default = 1;
172dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
173dtrace_optval_t dtrace_stackframes_default = 20;
174dtrace_optval_t dtrace_ustackframes_default = 20;
175dtrace_optval_t dtrace_jstackframes_default = 50;
176dtrace_optval_t dtrace_jstackstrsize_default = 512;
177int		dtrace_msgdsize_max = 128;
178hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
179hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
180int		dtrace_devdepth_max = 32;
181int		dtrace_err_verbose;
182hrtime_t	dtrace_deadman_interval = NANOSEC;
183hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
186
187/*
188 * DTrace External Variables
189 *
190 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
191 * available to DTrace consumers via the backtick (`) syntax.  One of these,
192 * dtrace_zero, is made deliberately so:  it is provided as a source of
193 * well-known, zero-filled memory.  While this variable is not documented,
194 * it is used by some translators as an implementation detail.
195 */
196const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
197
198/*
199 * DTrace Internal Variables
200 */
201#if defined(sun)
202static dev_info_t	*dtrace_devi;		/* device info */
203#endif
204#if defined(sun)
205static vmem_t		*dtrace_arena;		/* probe ID arena */
206static vmem_t		*dtrace_minor;		/* minor number arena */
207#else
208static taskq_t		*dtrace_taskq;		/* task queue */
209static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
210#endif
211static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
212static int		dtrace_nprobes;		/* number of probes */
213static dtrace_provider_t *dtrace_provider;	/* provider list */
214static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
215static int		dtrace_opens;		/* number of opens */
216static int		dtrace_helpers;		/* number of helpers */
217#if defined(sun)
218static void		*dtrace_softstate;	/* softstate pointer */
219#endif
220static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
221static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
222static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
223static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
224static int		dtrace_toxranges;	/* number of toxic ranges */
225static int		dtrace_toxranges_max;	/* size of toxic range array */
226static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
227static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
228static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
229static kthread_t	*dtrace_panicked;	/* panicking thread */
230static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
231static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
232static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
233static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
234static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
235#if !defined(sun)
236static struct mtx	dtrace_unr_mtx;
237MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
238int		dtrace_in_probe;	/* non-zero if executing a probe */
239#if defined(__i386__) || defined(__amd64__)
240uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
241#endif
242#endif
243
244/*
245 * DTrace Locking
246 * DTrace is protected by three (relatively coarse-grained) locks:
247 *
248 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
249 *     including enabling state, probes, ECBs, consumer state, helper state,
250 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
251 *     probe context is lock-free -- synchronization is handled via the
252 *     dtrace_sync() cross call mechanism.
253 *
254 * (2) dtrace_provider_lock is required when manipulating provider state, or
255 *     when provider state must be held constant.
256 *
257 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
258 *     when meta provider state must be held constant.
259 *
260 * The lock ordering between these three locks is dtrace_meta_lock before
261 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
262 * several places where dtrace_provider_lock is held by the framework as it
263 * calls into the providers -- which then call back into the framework,
264 * grabbing dtrace_lock.)
265 *
266 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
267 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
268 * role as a coarse-grained lock; it is acquired before both of these locks.
269 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
270 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
271 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
272 * acquired _between_ dtrace_provider_lock and dtrace_lock.
273 */
274static kmutex_t		dtrace_lock;		/* probe state lock */
275static kmutex_t		dtrace_provider_lock;	/* provider state lock */
276static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
277
278#if !defined(sun)
279/* XXX FreeBSD hacks. */
280static kmutex_t		mod_lock;
281
282#define cr_suid		cr_svuid
283#define cr_sgid		cr_svgid
284#define	ipaddr_t	in_addr_t
285#define mod_modname	pathname
286#define vuprintf	vprintf
287#define ttoproc(_a)	((_a)->td_proc)
288#define crgetzoneid(_a)	0
289#define	NCPU		MAXCPU
290#define SNOCD		0
291#define CPU_ON_INTR(_a)	0
292
293#define PRIV_EFFECTIVE		(1 << 0)
294#define PRIV_DTRACE_KERNEL	(1 << 1)
295#define PRIV_DTRACE_PROC	(1 << 2)
296#define PRIV_DTRACE_USER	(1 << 3)
297#define PRIV_PROC_OWNER		(1 << 4)
298#define PRIV_PROC_ZONE		(1 << 5)
299#define PRIV_ALL		~0
300
301SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
302#endif
303
304#if defined(sun)
305#define curcpu	CPU->cpu_id
306#endif
307
308
309/*
310 * DTrace Provider Variables
311 *
312 * These are the variables relating to DTrace as a provider (that is, the
313 * provider of the BEGIN, END, and ERROR probes).
314 */
315static dtrace_pattr_t	dtrace_provider_attr = {
316{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
317{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
319{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
321};
322
323static void
324dtrace_nullop(void)
325{}
326
327static dtrace_pops_t	dtrace_provider_ops = {
328	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
329	(void (*)(void *, modctl_t *))dtrace_nullop,
330	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
334	NULL,
335	NULL,
336	NULL,
337	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
338};
339
340static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
341static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
342dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
343
344/*
345 * DTrace Helper Tracing Variables
346 */
347uint32_t dtrace_helptrace_next = 0;
348uint32_t dtrace_helptrace_nlocals;
349char	*dtrace_helptrace_buffer;
350int	dtrace_helptrace_bufsize = 512 * 1024;
351
352#ifdef DEBUG
353int	dtrace_helptrace_enabled = 1;
354#else
355int	dtrace_helptrace_enabled = 0;
356#endif
357
358/*
359 * DTrace Error Hashing
360 *
361 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
362 * table.  This is very useful for checking coverage of tests that are
363 * expected to induce DIF or DOF processing errors, and may be useful for
364 * debugging problems in the DIF code generator or in DOF generation .  The
365 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
366 */
367#ifdef DEBUG
368static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
369static const char *dtrace_errlast;
370static kthread_t *dtrace_errthread;
371static kmutex_t dtrace_errlock;
372#endif
373
374/*
375 * DTrace Macros and Constants
376 *
377 * These are various macros that are useful in various spots in the
378 * implementation, along with a few random constants that have no meaning
379 * outside of the implementation.  There is no real structure to this cpp
380 * mishmash -- but is there ever?
381 */
382#define	DTRACE_HASHSTR(hash, probe)	\
383	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
384
385#define	DTRACE_HASHNEXT(hash, probe)	\
386	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
387
388#define	DTRACE_HASHPREV(hash, probe)	\
389	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
390
391#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
392	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
393	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
394
395#define	DTRACE_AGGHASHSIZE_SLEW		17
396
397#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
398
399/*
400 * The key for a thread-local variable consists of the lower 61 bits of the
401 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
402 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
403 * equal to a variable identifier.  This is necessary (but not sufficient) to
404 * assure that global associative arrays never collide with thread-local
405 * variables.  To guarantee that they cannot collide, we must also define the
406 * order for keying dynamic variables.  That order is:
407 *
408 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
409 *
410 * Because the variable-key and the tls-key are in orthogonal spaces, there is
411 * no way for a global variable key signature to match a thread-local key
412 * signature.
413 */
414#if defined(sun)
415#define	DTRACE_TLS_THRKEY(where) { \
416	uint_t intr = 0; \
417	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
418	for (; actv; actv >>= 1) \
419		intr++; \
420	ASSERT(intr < (1 << 3)); \
421	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
422	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
423}
424#else
425#define	DTRACE_TLS_THRKEY(where) { \
426	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
427	uint_t intr = 0; \
428	uint_t actv = _c->cpu_intr_actv; \
429	for (; actv; actv >>= 1) \
430		intr++; \
431	ASSERT(intr < (1 << 3)); \
432	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
433	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
434}
435#endif
436
437#define	DT_BSWAP_8(x)	((x) & 0xff)
438#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
439#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
440#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
441
442#define	DT_MASK_LO 0x00000000FFFFFFFFULL
443
444#define	DTRACE_STORE(type, tomax, offset, what) \
445	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
446
447#ifndef __x86
448#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
449	if (addr & (size - 1)) {					\
450		*flags |= CPU_DTRACE_BADALIGN;				\
451		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
452		return (0);						\
453	}
454#else
455#define	DTRACE_ALIGNCHECK(addr, size, flags)
456#endif
457
458/*
459 * Test whether a range of memory starting at testaddr of size testsz falls
460 * within the range of memory described by addr, sz.  We take care to avoid
461 * problems with overflow and underflow of the unsigned quantities, and
462 * disallow all negative sizes.  Ranges of size 0 are allowed.
463 */
464#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
465	((testaddr) - (baseaddr) < (basesz) && \
466	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
467	(testaddr) + (testsz) >= (testaddr))
468
469/*
470 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
471 * alloc_sz on the righthand side of the comparison in order to avoid overflow
472 * or underflow in the comparison with it.  This is simpler than the INRANGE
473 * check above, because we know that the dtms_scratch_ptr is valid in the
474 * range.  Allocations of size zero are allowed.
475 */
476#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
477	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
478	(mstate)->dtms_scratch_ptr >= (alloc_sz))
479
480#define	DTRACE_LOADFUNC(bits)						\
481/*CSTYLED*/								\
482uint##bits##_t								\
483dtrace_load##bits(uintptr_t addr)					\
484{									\
485	size_t size = bits / NBBY;					\
486	/*CSTYLED*/							\
487	uint##bits##_t rval;						\
488	int i;								\
489	volatile uint16_t *flags = (volatile uint16_t *)		\
490	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
491									\
492	DTRACE_ALIGNCHECK(addr, size, flags);				\
493									\
494	for (i = 0; i < dtrace_toxranges; i++) {			\
495		if (addr >= dtrace_toxrange[i].dtt_limit)		\
496			continue;					\
497									\
498		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
499			continue;					\
500									\
501		/*							\
502		 * This address falls within a toxic region; return 0.	\
503		 */							\
504		*flags |= CPU_DTRACE_BADADDR;				\
505		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
506		return (0);						\
507	}								\
508									\
509	*flags |= CPU_DTRACE_NOFAULT;					\
510	/*CSTYLED*/							\
511	rval = *((volatile uint##bits##_t *)addr);			\
512	*flags &= ~CPU_DTRACE_NOFAULT;					\
513									\
514	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
515}
516
517#ifdef _LP64
518#define	dtrace_loadptr	dtrace_load64
519#else
520#define	dtrace_loadptr	dtrace_load32
521#endif
522
523#define	DTRACE_DYNHASH_FREE	0
524#define	DTRACE_DYNHASH_SINK	1
525#define	DTRACE_DYNHASH_VALID	2
526
527#define	DTRACE_MATCH_NEXT	0
528#define	DTRACE_MATCH_DONE	1
529#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
530#define	DTRACE_STATE_ALIGN	64
531
532#define	DTRACE_FLAGS2FLT(flags)						\
533	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
534	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
535	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
536	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
537	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
538	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
539	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
540	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
541	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
542	DTRACEFLT_UNKNOWN)
543
544#define	DTRACEACT_ISSTRING(act)						\
545	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
546	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
547
548/* Function prototype definitions: */
549static size_t dtrace_strlen(const char *, size_t);
550static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
551static void dtrace_enabling_provide(dtrace_provider_t *);
552static int dtrace_enabling_match(dtrace_enabling_t *, int *);
553static void dtrace_enabling_matchall(void);
554static void dtrace_enabling_reap(void);
555static dtrace_state_t *dtrace_anon_grab(void);
556static uint64_t dtrace_helper(int, dtrace_mstate_t *,
557    dtrace_state_t *, uint64_t, uint64_t);
558static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
559static void dtrace_buffer_drop(dtrace_buffer_t *);
560static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
561static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
562    dtrace_state_t *, dtrace_mstate_t *);
563static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
564    dtrace_optval_t);
565static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
566static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
567uint16_t dtrace_load16(uintptr_t);
568uint32_t dtrace_load32(uintptr_t);
569uint64_t dtrace_load64(uintptr_t);
570uint8_t dtrace_load8(uintptr_t);
571void dtrace_dynvar_clean(dtrace_dstate_t *);
572dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
573    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
574uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
575
576/*
577 * DTrace Probe Context Functions
578 *
579 * These functions are called from probe context.  Because probe context is
580 * any context in which C may be called, arbitrarily locks may be held,
581 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
582 * As a result, functions called from probe context may only call other DTrace
583 * support functions -- they may not interact at all with the system at large.
584 * (Note that the ASSERT macro is made probe-context safe by redefining it in
585 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
586 * loads are to be performed from probe context, they _must_ be in terms of
587 * the safe dtrace_load*() variants.
588 *
589 * Some functions in this block are not actually called from probe context;
590 * for these functions, there will be a comment above the function reading
591 * "Note:  not called from probe context."
592 */
593void
594dtrace_panic(const char *format, ...)
595{
596	va_list alist;
597
598	va_start(alist, format);
599	dtrace_vpanic(format, alist);
600	va_end(alist);
601}
602
603int
604dtrace_assfail(const char *a, const char *f, int l)
605{
606	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
607
608	/*
609	 * We just need something here that even the most clever compiler
610	 * cannot optimize away.
611	 */
612	return (a[(uintptr_t)f]);
613}
614
615/*
616 * Atomically increment a specified error counter from probe context.
617 */
618static void
619dtrace_error(uint32_t *counter)
620{
621	/*
622	 * Most counters stored to in probe context are per-CPU counters.
623	 * However, there are some error conditions that are sufficiently
624	 * arcane that they don't merit per-CPU storage.  If these counters
625	 * are incremented concurrently on different CPUs, scalability will be
626	 * adversely affected -- but we don't expect them to be white-hot in a
627	 * correctly constructed enabling...
628	 */
629	uint32_t oval, nval;
630
631	do {
632		oval = *counter;
633
634		if ((nval = oval + 1) == 0) {
635			/*
636			 * If the counter would wrap, set it to 1 -- assuring
637			 * that the counter is never zero when we have seen
638			 * errors.  (The counter must be 32-bits because we
639			 * aren't guaranteed a 64-bit compare&swap operation.)
640			 * To save this code both the infamy of being fingered
641			 * by a priggish news story and the indignity of being
642			 * the target of a neo-puritan witch trial, we're
643			 * carefully avoiding any colorful description of the
644			 * likelihood of this condition -- but suffice it to
645			 * say that it is only slightly more likely than the
646			 * overflow of predicate cache IDs, as discussed in
647			 * dtrace_predicate_create().
648			 */
649			nval = 1;
650		}
651	} while (dtrace_cas32(counter, oval, nval) != oval);
652}
653
654/*
655 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
656 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
657 */
658DTRACE_LOADFUNC(8)
659DTRACE_LOADFUNC(16)
660DTRACE_LOADFUNC(32)
661DTRACE_LOADFUNC(64)
662
663static int
664dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
665{
666	if (dest < mstate->dtms_scratch_base)
667		return (0);
668
669	if (dest + size < dest)
670		return (0);
671
672	if (dest + size > mstate->dtms_scratch_ptr)
673		return (0);
674
675	return (1);
676}
677
678static int
679dtrace_canstore_statvar(uint64_t addr, size_t sz,
680    dtrace_statvar_t **svars, int nsvars)
681{
682	int i;
683
684	for (i = 0; i < nsvars; i++) {
685		dtrace_statvar_t *svar = svars[i];
686
687		if (svar == NULL || svar->dtsv_size == 0)
688			continue;
689
690		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
691			return (1);
692	}
693
694	return (0);
695}
696
697/*
698 * Check to see if the address is within a memory region to which a store may
699 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
700 * region.  The caller of dtrace_canstore() is responsible for performing any
701 * alignment checks that are needed before stores are actually executed.
702 */
703static int
704dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
705    dtrace_vstate_t *vstate)
706{
707	/*
708	 * First, check to see if the address is in scratch space...
709	 */
710	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
711	    mstate->dtms_scratch_size))
712		return (1);
713
714	/*
715	 * Now check to see if it's a dynamic variable.  This check will pick
716	 * up both thread-local variables and any global dynamically-allocated
717	 * variables.
718	 */
719	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
720	    vstate->dtvs_dynvars.dtds_size)) {
721		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
722		uintptr_t base = (uintptr_t)dstate->dtds_base +
723		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
724		uintptr_t chunkoffs;
725
726		/*
727		 * Before we assume that we can store here, we need to make
728		 * sure that it isn't in our metadata -- storing to our
729		 * dynamic variable metadata would corrupt our state.  For
730		 * the range to not include any dynamic variable metadata,
731		 * it must:
732		 *
733		 *	(1) Start above the hash table that is at the base of
734		 *	the dynamic variable space
735		 *
736		 *	(2) Have a starting chunk offset that is beyond the
737		 *	dtrace_dynvar_t that is at the base of every chunk
738		 *
739		 *	(3) Not span a chunk boundary
740		 *
741		 */
742		if (addr < base)
743			return (0);
744
745		chunkoffs = (addr - base) % dstate->dtds_chunksize;
746
747		if (chunkoffs < sizeof (dtrace_dynvar_t))
748			return (0);
749
750		if (chunkoffs + sz > dstate->dtds_chunksize)
751			return (0);
752
753		return (1);
754	}
755
756	/*
757	 * Finally, check the static local and global variables.  These checks
758	 * take the longest, so we perform them last.
759	 */
760	if (dtrace_canstore_statvar(addr, sz,
761	    vstate->dtvs_locals, vstate->dtvs_nlocals))
762		return (1);
763
764	if (dtrace_canstore_statvar(addr, sz,
765	    vstate->dtvs_globals, vstate->dtvs_nglobals))
766		return (1);
767
768	return (0);
769}
770
771
772/*
773 * Convenience routine to check to see if the address is within a memory
774 * region in which a load may be issued given the user's privilege level;
775 * if not, it sets the appropriate error flags and loads 'addr' into the
776 * illegal value slot.
777 *
778 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
779 * appropriate memory access protection.
780 */
781static int
782dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
783    dtrace_vstate_t *vstate)
784{
785	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
786
787	/*
788	 * If we hold the privilege to read from kernel memory, then
789	 * everything is readable.
790	 */
791	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
792		return (1);
793
794	/*
795	 * You can obviously read that which you can store.
796	 */
797	if (dtrace_canstore(addr, sz, mstate, vstate))
798		return (1);
799
800	/*
801	 * We're allowed to read from our own string table.
802	 */
803	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
804	    mstate->dtms_difo->dtdo_strlen))
805		return (1);
806
807	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
808	*illval = addr;
809	return (0);
810}
811
812/*
813 * Convenience routine to check to see if a given string is within a memory
814 * region in which a load may be issued given the user's privilege level;
815 * this exists so that we don't need to issue unnecessary dtrace_strlen()
816 * calls in the event that the user has all privileges.
817 */
818static int
819dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
820    dtrace_vstate_t *vstate)
821{
822	size_t strsz;
823
824	/*
825	 * If we hold the privilege to read from kernel memory, then
826	 * everything is readable.
827	 */
828	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
829		return (1);
830
831	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
832	if (dtrace_canload(addr, strsz, mstate, vstate))
833		return (1);
834
835	return (0);
836}
837
838/*
839 * Convenience routine to check to see if a given variable is within a memory
840 * region in which a load may be issued given the user's privilege level.
841 */
842static int
843dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
844    dtrace_vstate_t *vstate)
845{
846	size_t sz;
847	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
848
849	/*
850	 * If we hold the privilege to read from kernel memory, then
851	 * everything is readable.
852	 */
853	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
854		return (1);
855
856	if (type->dtdt_kind == DIF_TYPE_STRING)
857		sz = dtrace_strlen(src,
858		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
859	else
860		sz = type->dtdt_size;
861
862	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
863}
864
865/*
866 * Compare two strings using safe loads.
867 */
868static int
869dtrace_strncmp(char *s1, char *s2, size_t limit)
870{
871	uint8_t c1, c2;
872	volatile uint16_t *flags;
873
874	if (s1 == s2 || limit == 0)
875		return (0);
876
877	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
878
879	do {
880		if (s1 == NULL) {
881			c1 = '\0';
882		} else {
883			c1 = dtrace_load8((uintptr_t)s1++);
884		}
885
886		if (s2 == NULL) {
887			c2 = '\0';
888		} else {
889			c2 = dtrace_load8((uintptr_t)s2++);
890		}
891
892		if (c1 != c2)
893			return (c1 - c2);
894	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
895
896	return (0);
897}
898
899/*
900 * Compute strlen(s) for a string using safe memory accesses.  The additional
901 * len parameter is used to specify a maximum length to ensure completion.
902 */
903static size_t
904dtrace_strlen(const char *s, size_t lim)
905{
906	uint_t len;
907
908	for (len = 0; len != lim; len++) {
909		if (dtrace_load8((uintptr_t)s++) == '\0')
910			break;
911	}
912
913	return (len);
914}
915
916/*
917 * Check if an address falls within a toxic region.
918 */
919static int
920dtrace_istoxic(uintptr_t kaddr, size_t size)
921{
922	uintptr_t taddr, tsize;
923	int i;
924
925	for (i = 0; i < dtrace_toxranges; i++) {
926		taddr = dtrace_toxrange[i].dtt_base;
927		tsize = dtrace_toxrange[i].dtt_limit - taddr;
928
929		if (kaddr - taddr < tsize) {
930			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
931			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
932			return (1);
933		}
934
935		if (taddr - kaddr < size) {
936			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
937			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
938			return (1);
939		}
940	}
941
942	return (0);
943}
944
945/*
946 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
947 * memory specified by the DIF program.  The dst is assumed to be safe memory
948 * that we can store to directly because it is managed by DTrace.  As with
949 * standard bcopy, overlapping copies are handled properly.
950 */
951static void
952dtrace_bcopy(const void *src, void *dst, size_t len)
953{
954	if (len != 0) {
955		uint8_t *s1 = dst;
956		const uint8_t *s2 = src;
957
958		if (s1 <= s2) {
959			do {
960				*s1++ = dtrace_load8((uintptr_t)s2++);
961			} while (--len != 0);
962		} else {
963			s2 += len;
964			s1 += len;
965
966			do {
967				*--s1 = dtrace_load8((uintptr_t)--s2);
968			} while (--len != 0);
969		}
970	}
971}
972
973/*
974 * Copy src to dst using safe memory accesses, up to either the specified
975 * length, or the point that a nul byte is encountered.  The src is assumed to
976 * be unsafe memory specified by the DIF program.  The dst is assumed to be
977 * safe memory that we can store to directly because it is managed by DTrace.
978 * Unlike dtrace_bcopy(), overlapping regions are not handled.
979 */
980static void
981dtrace_strcpy(const void *src, void *dst, size_t len)
982{
983	if (len != 0) {
984		uint8_t *s1 = dst, c;
985		const uint8_t *s2 = src;
986
987		do {
988			*s1++ = c = dtrace_load8((uintptr_t)s2++);
989		} while (--len != 0 && c != '\0');
990	}
991}
992
993/*
994 * Copy src to dst, deriving the size and type from the specified (BYREF)
995 * variable type.  The src is assumed to be unsafe memory specified by the DIF
996 * program.  The dst is assumed to be DTrace variable memory that is of the
997 * specified type; we assume that we can store to directly.
998 */
999static void
1000dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1001{
1002	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1003
1004	if (type->dtdt_kind == DIF_TYPE_STRING) {
1005		dtrace_strcpy(src, dst, type->dtdt_size);
1006	} else {
1007		dtrace_bcopy(src, dst, type->dtdt_size);
1008	}
1009}
1010
1011/*
1012 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1013 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1014 * safe memory that we can access directly because it is managed by DTrace.
1015 */
1016static int
1017dtrace_bcmp(const void *s1, const void *s2, size_t len)
1018{
1019	volatile uint16_t *flags;
1020
1021	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1022
1023	if (s1 == s2)
1024		return (0);
1025
1026	if (s1 == NULL || s2 == NULL)
1027		return (1);
1028
1029	if (s1 != s2 && len != 0) {
1030		const uint8_t *ps1 = s1;
1031		const uint8_t *ps2 = s2;
1032
1033		do {
1034			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1035				return (1);
1036		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1037	}
1038	return (0);
1039}
1040
1041/*
1042 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1043 * is for safe DTrace-managed memory only.
1044 */
1045static void
1046dtrace_bzero(void *dst, size_t len)
1047{
1048	uchar_t *cp;
1049
1050	for (cp = dst; len != 0; len--)
1051		*cp++ = 0;
1052}
1053
1054static void
1055dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1056{
1057	uint64_t result[2];
1058
1059	result[0] = addend1[0] + addend2[0];
1060	result[1] = addend1[1] + addend2[1] +
1061	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1062
1063	sum[0] = result[0];
1064	sum[1] = result[1];
1065}
1066
1067/*
1068 * Shift the 128-bit value in a by b. If b is positive, shift left.
1069 * If b is negative, shift right.
1070 */
1071static void
1072dtrace_shift_128(uint64_t *a, int b)
1073{
1074	uint64_t mask;
1075
1076	if (b == 0)
1077		return;
1078
1079	if (b < 0) {
1080		b = -b;
1081		if (b >= 64) {
1082			a[0] = a[1] >> (b - 64);
1083			a[1] = 0;
1084		} else {
1085			a[0] >>= b;
1086			mask = 1LL << (64 - b);
1087			mask -= 1;
1088			a[0] |= ((a[1] & mask) << (64 - b));
1089			a[1] >>= b;
1090		}
1091	} else {
1092		if (b >= 64) {
1093			a[1] = a[0] << (b - 64);
1094			a[0] = 0;
1095		} else {
1096			a[1] <<= b;
1097			mask = a[0] >> (64 - b);
1098			a[1] |= mask;
1099			a[0] <<= b;
1100		}
1101	}
1102}
1103
1104/*
1105 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1106 * use native multiplication on those, and then re-combine into the
1107 * resulting 128-bit value.
1108 *
1109 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1110 *     hi1 * hi2 << 64 +
1111 *     hi1 * lo2 << 32 +
1112 *     hi2 * lo1 << 32 +
1113 *     lo1 * lo2
1114 */
1115static void
1116dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1117{
1118	uint64_t hi1, hi2, lo1, lo2;
1119	uint64_t tmp[2];
1120
1121	hi1 = factor1 >> 32;
1122	hi2 = factor2 >> 32;
1123
1124	lo1 = factor1 & DT_MASK_LO;
1125	lo2 = factor2 & DT_MASK_LO;
1126
1127	product[0] = lo1 * lo2;
1128	product[1] = hi1 * hi2;
1129
1130	tmp[0] = hi1 * lo2;
1131	tmp[1] = 0;
1132	dtrace_shift_128(tmp, 32);
1133	dtrace_add_128(product, tmp, product);
1134
1135	tmp[0] = hi2 * lo1;
1136	tmp[1] = 0;
1137	dtrace_shift_128(tmp, 32);
1138	dtrace_add_128(product, tmp, product);
1139}
1140
1141/*
1142 * This privilege check should be used by actions and subroutines to
1143 * verify that the user credentials of the process that enabled the
1144 * invoking ECB match the target credentials
1145 */
1146static int
1147dtrace_priv_proc_common_user(dtrace_state_t *state)
1148{
1149	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1150
1151	/*
1152	 * We should always have a non-NULL state cred here, since if cred
1153	 * is null (anonymous tracing), we fast-path bypass this routine.
1154	 */
1155	ASSERT(s_cr != NULL);
1156
1157	if ((cr = CRED()) != NULL &&
1158	    s_cr->cr_uid == cr->cr_uid &&
1159	    s_cr->cr_uid == cr->cr_ruid &&
1160	    s_cr->cr_uid == cr->cr_suid &&
1161	    s_cr->cr_gid == cr->cr_gid &&
1162	    s_cr->cr_gid == cr->cr_rgid &&
1163	    s_cr->cr_gid == cr->cr_sgid)
1164		return (1);
1165
1166	return (0);
1167}
1168
1169/*
1170 * This privilege check should be used by actions and subroutines to
1171 * verify that the zone of the process that enabled the invoking ECB
1172 * matches the target credentials
1173 */
1174static int
1175dtrace_priv_proc_common_zone(dtrace_state_t *state)
1176{
1177#if defined(sun)
1178	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1179
1180	/*
1181	 * We should always have a non-NULL state cred here, since if cred
1182	 * is null (anonymous tracing), we fast-path bypass this routine.
1183	 */
1184	ASSERT(s_cr != NULL);
1185
1186	if ((cr = CRED()) != NULL &&
1187	    s_cr->cr_zone == cr->cr_zone)
1188		return (1);
1189
1190	return (0);
1191#else
1192	return (1);
1193#endif
1194}
1195
1196/*
1197 * This privilege check should be used by actions and subroutines to
1198 * verify that the process has not setuid or changed credentials.
1199 */
1200static int
1201dtrace_priv_proc_common_nocd(void)
1202{
1203	proc_t *proc;
1204
1205	if ((proc = ttoproc(curthread)) != NULL &&
1206	    !(proc->p_flag & SNOCD))
1207		return (1);
1208
1209	return (0);
1210}
1211
1212static int
1213dtrace_priv_proc_destructive(dtrace_state_t *state)
1214{
1215	int action = state->dts_cred.dcr_action;
1216
1217	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1218	    dtrace_priv_proc_common_zone(state) == 0)
1219		goto bad;
1220
1221	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1222	    dtrace_priv_proc_common_user(state) == 0)
1223		goto bad;
1224
1225	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1226	    dtrace_priv_proc_common_nocd() == 0)
1227		goto bad;
1228
1229	return (1);
1230
1231bad:
1232	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1233
1234	return (0);
1235}
1236
1237static int
1238dtrace_priv_proc_control(dtrace_state_t *state)
1239{
1240	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1241		return (1);
1242
1243	if (dtrace_priv_proc_common_zone(state) &&
1244	    dtrace_priv_proc_common_user(state) &&
1245	    dtrace_priv_proc_common_nocd())
1246		return (1);
1247
1248	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1249
1250	return (0);
1251}
1252
1253static int
1254dtrace_priv_proc(dtrace_state_t *state)
1255{
1256	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1257		return (1);
1258
1259	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1260
1261	return (0);
1262}
1263
1264static int
1265dtrace_priv_kernel(dtrace_state_t *state)
1266{
1267	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1268		return (1);
1269
1270	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1271
1272	return (0);
1273}
1274
1275static int
1276dtrace_priv_kernel_destructive(dtrace_state_t *state)
1277{
1278	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1279		return (1);
1280
1281	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1282
1283	return (0);
1284}
1285
1286/*
1287 * Note:  not called from probe context.  This function is called
1288 * asynchronously (and at a regular interval) from outside of probe context to
1289 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1290 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1291 */
1292void
1293dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1294{
1295	dtrace_dynvar_t *dirty;
1296	dtrace_dstate_percpu_t *dcpu;
1297	int i, work = 0;
1298
1299	for (i = 0; i < NCPU; i++) {
1300		dcpu = &dstate->dtds_percpu[i];
1301
1302		ASSERT(dcpu->dtdsc_rinsing == NULL);
1303
1304		/*
1305		 * If the dirty list is NULL, there is no dirty work to do.
1306		 */
1307		if (dcpu->dtdsc_dirty == NULL)
1308			continue;
1309
1310		/*
1311		 * If the clean list is non-NULL, then we're not going to do
1312		 * any work for this CPU -- it means that there has not been
1313		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1314		 * since the last time we cleaned house.
1315		 */
1316		if (dcpu->dtdsc_clean != NULL)
1317			continue;
1318
1319		work = 1;
1320
1321		/*
1322		 * Atomically move the dirty list aside.
1323		 */
1324		do {
1325			dirty = dcpu->dtdsc_dirty;
1326
1327			/*
1328			 * Before we zap the dirty list, set the rinsing list.
1329			 * (This allows for a potential assertion in
1330			 * dtrace_dynvar():  if a free dynamic variable appears
1331			 * on a hash chain, either the dirty list or the
1332			 * rinsing list for some CPU must be non-NULL.)
1333			 */
1334			dcpu->dtdsc_rinsing = dirty;
1335			dtrace_membar_producer();
1336		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1337		    dirty, NULL) != dirty);
1338	}
1339
1340	if (!work) {
1341		/*
1342		 * We have no work to do; we can simply return.
1343		 */
1344		return;
1345	}
1346
1347	dtrace_sync();
1348
1349	for (i = 0; i < NCPU; i++) {
1350		dcpu = &dstate->dtds_percpu[i];
1351
1352		if (dcpu->dtdsc_rinsing == NULL)
1353			continue;
1354
1355		/*
1356		 * We are now guaranteed that no hash chain contains a pointer
1357		 * into this dirty list; we can make it clean.
1358		 */
1359		ASSERT(dcpu->dtdsc_clean == NULL);
1360		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1361		dcpu->dtdsc_rinsing = NULL;
1362	}
1363
1364	/*
1365	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1366	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1367	 * This prevents a race whereby a CPU incorrectly decides that
1368	 * the state should be something other than DTRACE_DSTATE_CLEAN
1369	 * after dtrace_dynvar_clean() has completed.
1370	 */
1371	dtrace_sync();
1372
1373	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1374}
1375
1376/*
1377 * Depending on the value of the op parameter, this function looks-up,
1378 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1379 * allocation is requested, this function will return a pointer to a
1380 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1381 * variable can be allocated.  If NULL is returned, the appropriate counter
1382 * will be incremented.
1383 */
1384dtrace_dynvar_t *
1385dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1386    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1387    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1388{
1389	uint64_t hashval = DTRACE_DYNHASH_VALID;
1390	dtrace_dynhash_t *hash = dstate->dtds_hash;
1391	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1392	processorid_t me = curcpu, cpu = me;
1393	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1394	size_t bucket, ksize;
1395	size_t chunksize = dstate->dtds_chunksize;
1396	uintptr_t kdata, lock, nstate;
1397	uint_t i;
1398
1399	ASSERT(nkeys != 0);
1400
1401	/*
1402	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1403	 * algorithm.  For the by-value portions, we perform the algorithm in
1404	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1405	 * bit, and seems to have only a minute effect on distribution.  For
1406	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1407	 * over each referenced byte.  It's painful to do this, but it's much
1408	 * better than pathological hash distribution.  The efficacy of the
1409	 * hashing algorithm (and a comparison with other algorithms) may be
1410	 * found by running the ::dtrace_dynstat MDB dcmd.
1411	 */
1412	for (i = 0; i < nkeys; i++) {
1413		if (key[i].dttk_size == 0) {
1414			uint64_t val = key[i].dttk_value;
1415
1416			hashval += (val >> 48) & 0xffff;
1417			hashval += (hashval << 10);
1418			hashval ^= (hashval >> 6);
1419
1420			hashval += (val >> 32) & 0xffff;
1421			hashval += (hashval << 10);
1422			hashval ^= (hashval >> 6);
1423
1424			hashval += (val >> 16) & 0xffff;
1425			hashval += (hashval << 10);
1426			hashval ^= (hashval >> 6);
1427
1428			hashval += val & 0xffff;
1429			hashval += (hashval << 10);
1430			hashval ^= (hashval >> 6);
1431		} else {
1432			/*
1433			 * This is incredibly painful, but it beats the hell
1434			 * out of the alternative.
1435			 */
1436			uint64_t j, size = key[i].dttk_size;
1437			uintptr_t base = (uintptr_t)key[i].dttk_value;
1438
1439			if (!dtrace_canload(base, size, mstate, vstate))
1440				break;
1441
1442			for (j = 0; j < size; j++) {
1443				hashval += dtrace_load8(base + j);
1444				hashval += (hashval << 10);
1445				hashval ^= (hashval >> 6);
1446			}
1447		}
1448	}
1449
1450	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1451		return (NULL);
1452
1453	hashval += (hashval << 3);
1454	hashval ^= (hashval >> 11);
1455	hashval += (hashval << 15);
1456
1457	/*
1458	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1459	 * comes out to be one of our two sentinel hash values.  If this
1460	 * actually happens, we set the hashval to be a value known to be a
1461	 * non-sentinel value.
1462	 */
1463	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1464		hashval = DTRACE_DYNHASH_VALID;
1465
1466	/*
1467	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1468	 * important here, tricks can be pulled to reduce it.  (However, it's
1469	 * critical that hash collisions be kept to an absolute minimum;
1470	 * they're much more painful than a divide.)  It's better to have a
1471	 * solution that generates few collisions and still keeps things
1472	 * relatively simple.
1473	 */
1474	bucket = hashval % dstate->dtds_hashsize;
1475
1476	if (op == DTRACE_DYNVAR_DEALLOC) {
1477		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1478
1479		for (;;) {
1480			while ((lock = *lockp) & 1)
1481				continue;
1482
1483			if (dtrace_casptr((volatile void *)lockp,
1484			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1485				break;
1486		}
1487
1488		dtrace_membar_producer();
1489	}
1490
1491top:
1492	prev = NULL;
1493	lock = hash[bucket].dtdh_lock;
1494
1495	dtrace_membar_consumer();
1496
1497	start = hash[bucket].dtdh_chain;
1498	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1499	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1500	    op != DTRACE_DYNVAR_DEALLOC));
1501
1502	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1503		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1504		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1505
1506		if (dvar->dtdv_hashval != hashval) {
1507			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1508				/*
1509				 * We've reached the sink, and therefore the
1510				 * end of the hash chain; we can kick out of
1511				 * the loop knowing that we have seen a valid
1512				 * snapshot of state.
1513				 */
1514				ASSERT(dvar->dtdv_next == NULL);
1515				ASSERT(dvar == &dtrace_dynhash_sink);
1516				break;
1517			}
1518
1519			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1520				/*
1521				 * We've gone off the rails:  somewhere along
1522				 * the line, one of the members of this hash
1523				 * chain was deleted.  Note that we could also
1524				 * detect this by simply letting this loop run
1525				 * to completion, as we would eventually hit
1526				 * the end of the dirty list.  However, we
1527				 * want to avoid running the length of the
1528				 * dirty list unnecessarily (it might be quite
1529				 * long), so we catch this as early as
1530				 * possible by detecting the hash marker.  In
1531				 * this case, we simply set dvar to NULL and
1532				 * break; the conditional after the loop will
1533				 * send us back to top.
1534				 */
1535				dvar = NULL;
1536				break;
1537			}
1538
1539			goto next;
1540		}
1541
1542		if (dtuple->dtt_nkeys != nkeys)
1543			goto next;
1544
1545		for (i = 0; i < nkeys; i++, dkey++) {
1546			if (dkey->dttk_size != key[i].dttk_size)
1547				goto next; /* size or type mismatch */
1548
1549			if (dkey->dttk_size != 0) {
1550				if (dtrace_bcmp(
1551				    (void *)(uintptr_t)key[i].dttk_value,
1552				    (void *)(uintptr_t)dkey->dttk_value,
1553				    dkey->dttk_size))
1554					goto next;
1555			} else {
1556				if (dkey->dttk_value != key[i].dttk_value)
1557					goto next;
1558			}
1559		}
1560
1561		if (op != DTRACE_DYNVAR_DEALLOC)
1562			return (dvar);
1563
1564		ASSERT(dvar->dtdv_next == NULL ||
1565		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1566
1567		if (prev != NULL) {
1568			ASSERT(hash[bucket].dtdh_chain != dvar);
1569			ASSERT(start != dvar);
1570			ASSERT(prev->dtdv_next == dvar);
1571			prev->dtdv_next = dvar->dtdv_next;
1572		} else {
1573			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1574			    start, dvar->dtdv_next) != start) {
1575				/*
1576				 * We have failed to atomically swing the
1577				 * hash table head pointer, presumably because
1578				 * of a conflicting allocation on another CPU.
1579				 * We need to reread the hash chain and try
1580				 * again.
1581				 */
1582				goto top;
1583			}
1584		}
1585
1586		dtrace_membar_producer();
1587
1588		/*
1589		 * Now set the hash value to indicate that it's free.
1590		 */
1591		ASSERT(hash[bucket].dtdh_chain != dvar);
1592		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1593
1594		dtrace_membar_producer();
1595
1596		/*
1597		 * Set the next pointer to point at the dirty list, and
1598		 * atomically swing the dirty pointer to the newly freed dvar.
1599		 */
1600		do {
1601			next = dcpu->dtdsc_dirty;
1602			dvar->dtdv_next = next;
1603		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1604
1605		/*
1606		 * Finally, unlock this hash bucket.
1607		 */
1608		ASSERT(hash[bucket].dtdh_lock == lock);
1609		ASSERT(lock & 1);
1610		hash[bucket].dtdh_lock++;
1611
1612		return (NULL);
1613next:
1614		prev = dvar;
1615		continue;
1616	}
1617
1618	if (dvar == NULL) {
1619		/*
1620		 * If dvar is NULL, it is because we went off the rails:
1621		 * one of the elements that we traversed in the hash chain
1622		 * was deleted while we were traversing it.  In this case,
1623		 * we assert that we aren't doing a dealloc (deallocs lock
1624		 * the hash bucket to prevent themselves from racing with
1625		 * one another), and retry the hash chain traversal.
1626		 */
1627		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1628		goto top;
1629	}
1630
1631	if (op != DTRACE_DYNVAR_ALLOC) {
1632		/*
1633		 * If we are not to allocate a new variable, we want to
1634		 * return NULL now.  Before we return, check that the value
1635		 * of the lock word hasn't changed.  If it has, we may have
1636		 * seen an inconsistent snapshot.
1637		 */
1638		if (op == DTRACE_DYNVAR_NOALLOC) {
1639			if (hash[bucket].dtdh_lock != lock)
1640				goto top;
1641		} else {
1642			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1643			ASSERT(hash[bucket].dtdh_lock == lock);
1644			ASSERT(lock & 1);
1645			hash[bucket].dtdh_lock++;
1646		}
1647
1648		return (NULL);
1649	}
1650
1651	/*
1652	 * We need to allocate a new dynamic variable.  The size we need is the
1653	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1654	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1655	 * the size of any referred-to data (dsize).  We then round the final
1656	 * size up to the chunksize for allocation.
1657	 */
1658	for (ksize = 0, i = 0; i < nkeys; i++)
1659		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1660
1661	/*
1662	 * This should be pretty much impossible, but could happen if, say,
1663	 * strange DIF specified the tuple.  Ideally, this should be an
1664	 * assertion and not an error condition -- but that requires that the
1665	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1666	 * bullet-proof.  (That is, it must not be able to be fooled by
1667	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1668	 * solving this would presumably not amount to solving the Halting
1669	 * Problem -- but it still seems awfully hard.
1670	 */
1671	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1672	    ksize + dsize > chunksize) {
1673		dcpu->dtdsc_drops++;
1674		return (NULL);
1675	}
1676
1677	nstate = DTRACE_DSTATE_EMPTY;
1678
1679	do {
1680retry:
1681		free = dcpu->dtdsc_free;
1682
1683		if (free == NULL) {
1684			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1685			void *rval;
1686
1687			if (clean == NULL) {
1688				/*
1689				 * We're out of dynamic variable space on
1690				 * this CPU.  Unless we have tried all CPUs,
1691				 * we'll try to allocate from a different
1692				 * CPU.
1693				 */
1694				switch (dstate->dtds_state) {
1695				case DTRACE_DSTATE_CLEAN: {
1696					void *sp = &dstate->dtds_state;
1697
1698					if (++cpu >= NCPU)
1699						cpu = 0;
1700
1701					if (dcpu->dtdsc_dirty != NULL &&
1702					    nstate == DTRACE_DSTATE_EMPTY)
1703						nstate = DTRACE_DSTATE_DIRTY;
1704
1705					if (dcpu->dtdsc_rinsing != NULL)
1706						nstate = DTRACE_DSTATE_RINSING;
1707
1708					dcpu = &dstate->dtds_percpu[cpu];
1709
1710					if (cpu != me)
1711						goto retry;
1712
1713					(void) dtrace_cas32(sp,
1714					    DTRACE_DSTATE_CLEAN, nstate);
1715
1716					/*
1717					 * To increment the correct bean
1718					 * counter, take another lap.
1719					 */
1720					goto retry;
1721				}
1722
1723				case DTRACE_DSTATE_DIRTY:
1724					dcpu->dtdsc_dirty_drops++;
1725					break;
1726
1727				case DTRACE_DSTATE_RINSING:
1728					dcpu->dtdsc_rinsing_drops++;
1729					break;
1730
1731				case DTRACE_DSTATE_EMPTY:
1732					dcpu->dtdsc_drops++;
1733					break;
1734				}
1735
1736				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1737				return (NULL);
1738			}
1739
1740			/*
1741			 * The clean list appears to be non-empty.  We want to
1742			 * move the clean list to the free list; we start by
1743			 * moving the clean pointer aside.
1744			 */
1745			if (dtrace_casptr(&dcpu->dtdsc_clean,
1746			    clean, NULL) != clean) {
1747				/*
1748				 * We are in one of two situations:
1749				 *
1750				 *  (a)	The clean list was switched to the
1751				 *	free list by another CPU.
1752				 *
1753				 *  (b)	The clean list was added to by the
1754				 *	cleansing cyclic.
1755				 *
1756				 * In either of these situations, we can
1757				 * just reattempt the free list allocation.
1758				 */
1759				goto retry;
1760			}
1761
1762			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1763
1764			/*
1765			 * Now we'll move the clean list to the free list.
1766			 * It's impossible for this to fail:  the only way
1767			 * the free list can be updated is through this
1768			 * code path, and only one CPU can own the clean list.
1769			 * Thus, it would only be possible for this to fail if
1770			 * this code were racing with dtrace_dynvar_clean().
1771			 * (That is, if dtrace_dynvar_clean() updated the clean
1772			 * list, and we ended up racing to update the free
1773			 * list.)  This race is prevented by the dtrace_sync()
1774			 * in dtrace_dynvar_clean() -- which flushes the
1775			 * owners of the clean lists out before resetting
1776			 * the clean lists.
1777			 */
1778			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1779			ASSERT(rval == NULL);
1780			goto retry;
1781		}
1782
1783		dvar = free;
1784		new_free = dvar->dtdv_next;
1785	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1786
1787	/*
1788	 * We have now allocated a new chunk.  We copy the tuple keys into the
1789	 * tuple array and copy any referenced key data into the data space
1790	 * following the tuple array.  As we do this, we relocate dttk_value
1791	 * in the final tuple to point to the key data address in the chunk.
1792	 */
1793	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1794	dvar->dtdv_data = (void *)(kdata + ksize);
1795	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1796
1797	for (i = 0; i < nkeys; i++) {
1798		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1799		size_t kesize = key[i].dttk_size;
1800
1801		if (kesize != 0) {
1802			dtrace_bcopy(
1803			    (const void *)(uintptr_t)key[i].dttk_value,
1804			    (void *)kdata, kesize);
1805			dkey->dttk_value = kdata;
1806			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1807		} else {
1808			dkey->dttk_value = key[i].dttk_value;
1809		}
1810
1811		dkey->dttk_size = kesize;
1812	}
1813
1814	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1815	dvar->dtdv_hashval = hashval;
1816	dvar->dtdv_next = start;
1817
1818	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1819		return (dvar);
1820
1821	/*
1822	 * The cas has failed.  Either another CPU is adding an element to
1823	 * this hash chain, or another CPU is deleting an element from this
1824	 * hash chain.  The simplest way to deal with both of these cases
1825	 * (though not necessarily the most efficient) is to free our
1826	 * allocated block and tail-call ourselves.  Note that the free is
1827	 * to the dirty list and _not_ to the free list.  This is to prevent
1828	 * races with allocators, above.
1829	 */
1830	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1831
1832	dtrace_membar_producer();
1833
1834	do {
1835		free = dcpu->dtdsc_dirty;
1836		dvar->dtdv_next = free;
1837	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1838
1839	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1840}
1841
1842/*ARGSUSED*/
1843static void
1844dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1845{
1846	if ((int64_t)nval < (int64_t)*oval)
1847		*oval = nval;
1848}
1849
1850/*ARGSUSED*/
1851static void
1852dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1853{
1854	if ((int64_t)nval > (int64_t)*oval)
1855		*oval = nval;
1856}
1857
1858static void
1859dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1860{
1861	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1862	int64_t val = (int64_t)nval;
1863
1864	if (val < 0) {
1865		for (i = 0; i < zero; i++) {
1866			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1867				quanta[i] += incr;
1868				return;
1869			}
1870		}
1871	} else {
1872		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1873			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1874				quanta[i - 1] += incr;
1875				return;
1876			}
1877		}
1878
1879		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1880		return;
1881	}
1882
1883	ASSERT(0);
1884}
1885
1886static void
1887dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1888{
1889	uint64_t arg = *lquanta++;
1890	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1891	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1892	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1893	int32_t val = (int32_t)nval, level;
1894
1895	ASSERT(step != 0);
1896	ASSERT(levels != 0);
1897
1898	if (val < base) {
1899		/*
1900		 * This is an underflow.
1901		 */
1902		lquanta[0] += incr;
1903		return;
1904	}
1905
1906	level = (val - base) / step;
1907
1908	if (level < levels) {
1909		lquanta[level + 1] += incr;
1910		return;
1911	}
1912
1913	/*
1914	 * This is an overflow.
1915	 */
1916	lquanta[levels + 1] += incr;
1917}
1918
1919static int
1920dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1921    uint16_t high, uint16_t nsteps, int64_t value)
1922{
1923	int64_t this = 1, last, next;
1924	int base = 1, order;
1925
1926	ASSERT(factor <= nsteps);
1927	ASSERT(nsteps % factor == 0);
1928
1929	for (order = 0; order < low; order++)
1930		this *= factor;
1931
1932	/*
1933	 * If our value is less than our factor taken to the power of the
1934	 * low order of magnitude, it goes into the zeroth bucket.
1935	 */
1936	if (value < (last = this))
1937		return (0);
1938
1939	for (this *= factor; order <= high; order++) {
1940		int nbuckets = this > nsteps ? nsteps : this;
1941
1942		if ((next = this * factor) < this) {
1943			/*
1944			 * We should not generally get log/linear quantizations
1945			 * with a high magnitude that allows 64-bits to
1946			 * overflow, but we nonetheless protect against this
1947			 * by explicitly checking for overflow, and clamping
1948			 * our value accordingly.
1949			 */
1950			value = this - 1;
1951		}
1952
1953		if (value < this) {
1954			/*
1955			 * If our value lies within this order of magnitude,
1956			 * determine its position by taking the offset within
1957			 * the order of magnitude, dividing by the bucket
1958			 * width, and adding to our (accumulated) base.
1959			 */
1960			return (base + (value - last) / (this / nbuckets));
1961		}
1962
1963		base += nbuckets - (nbuckets / factor);
1964		last = this;
1965		this = next;
1966	}
1967
1968	/*
1969	 * Our value is greater than or equal to our factor taken to the
1970	 * power of one plus the high magnitude -- return the top bucket.
1971	 */
1972	return (base);
1973}
1974
1975static void
1976dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1977{
1978	uint64_t arg = *llquanta++;
1979	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1980	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1981	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1982	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1983
1984	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1985	    low, high, nsteps, nval)] += incr;
1986}
1987
1988/*ARGSUSED*/
1989static void
1990dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1991{
1992	data[0]++;
1993	data[1] += nval;
1994}
1995
1996/*ARGSUSED*/
1997static void
1998dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1999{
2000	int64_t snval = (int64_t)nval;
2001	uint64_t tmp[2];
2002
2003	data[0]++;
2004	data[1] += nval;
2005
2006	/*
2007	 * What we want to say here is:
2008	 *
2009	 * data[2] += nval * nval;
2010	 *
2011	 * But given that nval is 64-bit, we could easily overflow, so
2012	 * we do this as 128-bit arithmetic.
2013	 */
2014	if (snval < 0)
2015		snval = -snval;
2016
2017	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2018	dtrace_add_128(data + 2, tmp, data + 2);
2019}
2020
2021/*ARGSUSED*/
2022static void
2023dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2024{
2025	*oval = *oval + 1;
2026}
2027
2028/*ARGSUSED*/
2029static void
2030dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2031{
2032	*oval += nval;
2033}
2034
2035/*
2036 * Aggregate given the tuple in the principal data buffer, and the aggregating
2037 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2038 * buffer is specified as the buf parameter.  This routine does not return
2039 * failure; if there is no space in the aggregation buffer, the data will be
2040 * dropped, and a corresponding counter incremented.
2041 */
2042static void
2043dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2044    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2045{
2046	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2047	uint32_t i, ndx, size, fsize;
2048	uint32_t align = sizeof (uint64_t) - 1;
2049	dtrace_aggbuffer_t *agb;
2050	dtrace_aggkey_t *key;
2051	uint32_t hashval = 0, limit, isstr;
2052	caddr_t tomax, data, kdata;
2053	dtrace_actkind_t action;
2054	dtrace_action_t *act;
2055	uintptr_t offs;
2056
2057	if (buf == NULL)
2058		return;
2059
2060	if (!agg->dtag_hasarg) {
2061		/*
2062		 * Currently, only quantize() and lquantize() take additional
2063		 * arguments, and they have the same semantics:  an increment
2064		 * value that defaults to 1 when not present.  If additional
2065		 * aggregating actions take arguments, the setting of the
2066		 * default argument value will presumably have to become more
2067		 * sophisticated...
2068		 */
2069		arg = 1;
2070	}
2071
2072	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2073	size = rec->dtrd_offset - agg->dtag_base;
2074	fsize = size + rec->dtrd_size;
2075
2076	ASSERT(dbuf->dtb_tomax != NULL);
2077	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2078
2079	if ((tomax = buf->dtb_tomax) == NULL) {
2080		dtrace_buffer_drop(buf);
2081		return;
2082	}
2083
2084	/*
2085	 * The metastructure is always at the bottom of the buffer.
2086	 */
2087	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2088	    sizeof (dtrace_aggbuffer_t));
2089
2090	if (buf->dtb_offset == 0) {
2091		/*
2092		 * We just kludge up approximately 1/8th of the size to be
2093		 * buckets.  If this guess ends up being routinely
2094		 * off-the-mark, we may need to dynamically readjust this
2095		 * based on past performance.
2096		 */
2097		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2098
2099		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2100		    (uintptr_t)tomax || hashsize == 0) {
2101			/*
2102			 * We've been given a ludicrously small buffer;
2103			 * increment our drop count and leave.
2104			 */
2105			dtrace_buffer_drop(buf);
2106			return;
2107		}
2108
2109		/*
2110		 * And now, a pathetic attempt to try to get a an odd (or
2111		 * perchance, a prime) hash size for better hash distribution.
2112		 */
2113		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2114			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2115
2116		agb->dtagb_hashsize = hashsize;
2117		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2118		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2119		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2120
2121		for (i = 0; i < agb->dtagb_hashsize; i++)
2122			agb->dtagb_hash[i] = NULL;
2123	}
2124
2125	ASSERT(agg->dtag_first != NULL);
2126	ASSERT(agg->dtag_first->dta_intuple);
2127
2128	/*
2129	 * Calculate the hash value based on the key.  Note that we _don't_
2130	 * include the aggid in the hashing (but we will store it as part of
2131	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2132	 * algorithm: a simple, quick algorithm that has no known funnels, and
2133	 * gets good distribution in practice.  The efficacy of the hashing
2134	 * algorithm (and a comparison with other algorithms) may be found by
2135	 * running the ::dtrace_aggstat MDB dcmd.
2136	 */
2137	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2138		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2139		limit = i + act->dta_rec.dtrd_size;
2140		ASSERT(limit <= size);
2141		isstr = DTRACEACT_ISSTRING(act);
2142
2143		for (; i < limit; i++) {
2144			hashval += data[i];
2145			hashval += (hashval << 10);
2146			hashval ^= (hashval >> 6);
2147
2148			if (isstr && data[i] == '\0')
2149				break;
2150		}
2151	}
2152
2153	hashval += (hashval << 3);
2154	hashval ^= (hashval >> 11);
2155	hashval += (hashval << 15);
2156
2157	/*
2158	 * Yes, the divide here is expensive -- but it's generally the least
2159	 * of the performance issues given the amount of data that we iterate
2160	 * over to compute hash values, compare data, etc.
2161	 */
2162	ndx = hashval % agb->dtagb_hashsize;
2163
2164	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2165		ASSERT((caddr_t)key >= tomax);
2166		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2167
2168		if (hashval != key->dtak_hashval || key->dtak_size != size)
2169			continue;
2170
2171		kdata = key->dtak_data;
2172		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2173
2174		for (act = agg->dtag_first; act->dta_intuple;
2175		    act = act->dta_next) {
2176			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2177			limit = i + act->dta_rec.dtrd_size;
2178			ASSERT(limit <= size);
2179			isstr = DTRACEACT_ISSTRING(act);
2180
2181			for (; i < limit; i++) {
2182				if (kdata[i] != data[i])
2183					goto next;
2184
2185				if (isstr && data[i] == '\0')
2186					break;
2187			}
2188		}
2189
2190		if (action != key->dtak_action) {
2191			/*
2192			 * We are aggregating on the same value in the same
2193			 * aggregation with two different aggregating actions.
2194			 * (This should have been picked up in the compiler,
2195			 * so we may be dealing with errant or devious DIF.)
2196			 * This is an error condition; we indicate as much,
2197			 * and return.
2198			 */
2199			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2200			return;
2201		}
2202
2203		/*
2204		 * This is a hit:  we need to apply the aggregator to
2205		 * the value at this key.
2206		 */
2207		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2208		return;
2209next:
2210		continue;
2211	}
2212
2213	/*
2214	 * We didn't find it.  We need to allocate some zero-filled space,
2215	 * link it into the hash table appropriately, and apply the aggregator
2216	 * to the (zero-filled) value.
2217	 */
2218	offs = buf->dtb_offset;
2219	while (offs & (align - 1))
2220		offs += sizeof (uint32_t);
2221
2222	/*
2223	 * If we don't have enough room to both allocate a new key _and_
2224	 * its associated data, increment the drop count and return.
2225	 */
2226	if ((uintptr_t)tomax + offs + fsize >
2227	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2228		dtrace_buffer_drop(buf);
2229		return;
2230	}
2231
2232	/*CONSTCOND*/
2233	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2234	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2235	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2236
2237	key->dtak_data = kdata = tomax + offs;
2238	buf->dtb_offset = offs + fsize;
2239
2240	/*
2241	 * Now copy the data across.
2242	 */
2243	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2244
2245	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2246		kdata[i] = data[i];
2247
2248	/*
2249	 * Because strings are not zeroed out by default, we need to iterate
2250	 * looking for actions that store strings, and we need to explicitly
2251	 * pad these strings out with zeroes.
2252	 */
2253	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2254		int nul;
2255
2256		if (!DTRACEACT_ISSTRING(act))
2257			continue;
2258
2259		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2260		limit = i + act->dta_rec.dtrd_size;
2261		ASSERT(limit <= size);
2262
2263		for (nul = 0; i < limit; i++) {
2264			if (nul) {
2265				kdata[i] = '\0';
2266				continue;
2267			}
2268
2269			if (data[i] != '\0')
2270				continue;
2271
2272			nul = 1;
2273		}
2274	}
2275
2276	for (i = size; i < fsize; i++)
2277		kdata[i] = 0;
2278
2279	key->dtak_hashval = hashval;
2280	key->dtak_size = size;
2281	key->dtak_action = action;
2282	key->dtak_next = agb->dtagb_hash[ndx];
2283	agb->dtagb_hash[ndx] = key;
2284
2285	/*
2286	 * Finally, apply the aggregator.
2287	 */
2288	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2289	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2290}
2291
2292/*
2293 * Given consumer state, this routine finds a speculation in the INACTIVE
2294 * state and transitions it into the ACTIVE state.  If there is no speculation
2295 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2296 * incremented -- it is up to the caller to take appropriate action.
2297 */
2298static int
2299dtrace_speculation(dtrace_state_t *state)
2300{
2301	int i = 0;
2302	dtrace_speculation_state_t current;
2303	uint32_t *stat = &state->dts_speculations_unavail, count;
2304
2305	while (i < state->dts_nspeculations) {
2306		dtrace_speculation_t *spec = &state->dts_speculations[i];
2307
2308		current = spec->dtsp_state;
2309
2310		if (current != DTRACESPEC_INACTIVE) {
2311			if (current == DTRACESPEC_COMMITTINGMANY ||
2312			    current == DTRACESPEC_COMMITTING ||
2313			    current == DTRACESPEC_DISCARDING)
2314				stat = &state->dts_speculations_busy;
2315			i++;
2316			continue;
2317		}
2318
2319		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2320		    current, DTRACESPEC_ACTIVE) == current)
2321			return (i + 1);
2322	}
2323
2324	/*
2325	 * We couldn't find a speculation.  If we found as much as a single
2326	 * busy speculation buffer, we'll attribute this failure as "busy"
2327	 * instead of "unavail".
2328	 */
2329	do {
2330		count = *stat;
2331	} while (dtrace_cas32(stat, count, count + 1) != count);
2332
2333	return (0);
2334}
2335
2336/*
2337 * This routine commits an active speculation.  If the specified speculation
2338 * is not in a valid state to perform a commit(), this routine will silently do
2339 * nothing.  The state of the specified speculation is transitioned according
2340 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2341 */
2342static void
2343dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2344    dtrace_specid_t which)
2345{
2346	dtrace_speculation_t *spec;
2347	dtrace_buffer_t *src, *dest;
2348	uintptr_t daddr, saddr, dlimit;
2349	dtrace_speculation_state_t current, new = 0;
2350	intptr_t offs;
2351
2352	if (which == 0)
2353		return;
2354
2355	if (which > state->dts_nspeculations) {
2356		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2357		return;
2358	}
2359
2360	spec = &state->dts_speculations[which - 1];
2361	src = &spec->dtsp_buffer[cpu];
2362	dest = &state->dts_buffer[cpu];
2363
2364	do {
2365		current = spec->dtsp_state;
2366
2367		if (current == DTRACESPEC_COMMITTINGMANY)
2368			break;
2369
2370		switch (current) {
2371		case DTRACESPEC_INACTIVE:
2372		case DTRACESPEC_DISCARDING:
2373			return;
2374
2375		case DTRACESPEC_COMMITTING:
2376			/*
2377			 * This is only possible if we are (a) commit()'ing
2378			 * without having done a prior speculate() on this CPU
2379			 * and (b) racing with another commit() on a different
2380			 * CPU.  There's nothing to do -- we just assert that
2381			 * our offset is 0.
2382			 */
2383			ASSERT(src->dtb_offset == 0);
2384			return;
2385
2386		case DTRACESPEC_ACTIVE:
2387			new = DTRACESPEC_COMMITTING;
2388			break;
2389
2390		case DTRACESPEC_ACTIVEONE:
2391			/*
2392			 * This speculation is active on one CPU.  If our
2393			 * buffer offset is non-zero, we know that the one CPU
2394			 * must be us.  Otherwise, we are committing on a
2395			 * different CPU from the speculate(), and we must
2396			 * rely on being asynchronously cleaned.
2397			 */
2398			if (src->dtb_offset != 0) {
2399				new = DTRACESPEC_COMMITTING;
2400				break;
2401			}
2402			/*FALLTHROUGH*/
2403
2404		case DTRACESPEC_ACTIVEMANY:
2405			new = DTRACESPEC_COMMITTINGMANY;
2406			break;
2407
2408		default:
2409			ASSERT(0);
2410		}
2411	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2412	    current, new) != current);
2413
2414	/*
2415	 * We have set the state to indicate that we are committing this
2416	 * speculation.  Now reserve the necessary space in the destination
2417	 * buffer.
2418	 */
2419	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2420	    sizeof (uint64_t), state, NULL)) < 0) {
2421		dtrace_buffer_drop(dest);
2422		goto out;
2423	}
2424
2425	/*
2426	 * We have the space; copy the buffer across.  (Note that this is a
2427	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2428	 * a serious performance issue, a high-performance DTrace-specific
2429	 * bcopy() should obviously be invented.)
2430	 */
2431	daddr = (uintptr_t)dest->dtb_tomax + offs;
2432	dlimit = daddr + src->dtb_offset;
2433	saddr = (uintptr_t)src->dtb_tomax;
2434
2435	/*
2436	 * First, the aligned portion.
2437	 */
2438	while (dlimit - daddr >= sizeof (uint64_t)) {
2439		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2440
2441		daddr += sizeof (uint64_t);
2442		saddr += sizeof (uint64_t);
2443	}
2444
2445	/*
2446	 * Now any left-over bit...
2447	 */
2448	while (dlimit - daddr)
2449		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2450
2451	/*
2452	 * Finally, commit the reserved space in the destination buffer.
2453	 */
2454	dest->dtb_offset = offs + src->dtb_offset;
2455
2456out:
2457	/*
2458	 * If we're lucky enough to be the only active CPU on this speculation
2459	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2460	 */
2461	if (current == DTRACESPEC_ACTIVE ||
2462	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2463		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2464		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2465
2466		ASSERT(rval == DTRACESPEC_COMMITTING);
2467	}
2468
2469	src->dtb_offset = 0;
2470	src->dtb_xamot_drops += src->dtb_drops;
2471	src->dtb_drops = 0;
2472}
2473
2474/*
2475 * This routine discards an active speculation.  If the specified speculation
2476 * is not in a valid state to perform a discard(), this routine will silently
2477 * do nothing.  The state of the specified speculation is transitioned
2478 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2479 */
2480static void
2481dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2482    dtrace_specid_t which)
2483{
2484	dtrace_speculation_t *spec;
2485	dtrace_speculation_state_t current, new = 0;
2486	dtrace_buffer_t *buf;
2487
2488	if (which == 0)
2489		return;
2490
2491	if (which > state->dts_nspeculations) {
2492		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2493		return;
2494	}
2495
2496	spec = &state->dts_speculations[which - 1];
2497	buf = &spec->dtsp_buffer[cpu];
2498
2499	do {
2500		current = spec->dtsp_state;
2501
2502		switch (current) {
2503		case DTRACESPEC_INACTIVE:
2504		case DTRACESPEC_COMMITTINGMANY:
2505		case DTRACESPEC_COMMITTING:
2506		case DTRACESPEC_DISCARDING:
2507			return;
2508
2509		case DTRACESPEC_ACTIVE:
2510		case DTRACESPEC_ACTIVEMANY:
2511			new = DTRACESPEC_DISCARDING;
2512			break;
2513
2514		case DTRACESPEC_ACTIVEONE:
2515			if (buf->dtb_offset != 0) {
2516				new = DTRACESPEC_INACTIVE;
2517			} else {
2518				new = DTRACESPEC_DISCARDING;
2519			}
2520			break;
2521
2522		default:
2523			ASSERT(0);
2524		}
2525	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2526	    current, new) != current);
2527
2528	buf->dtb_offset = 0;
2529	buf->dtb_drops = 0;
2530}
2531
2532/*
2533 * Note:  not called from probe context.  This function is called
2534 * asynchronously from cross call context to clean any speculations that are
2535 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2536 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2537 * speculation.
2538 */
2539static void
2540dtrace_speculation_clean_here(dtrace_state_t *state)
2541{
2542	dtrace_icookie_t cookie;
2543	processorid_t cpu = curcpu;
2544	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2545	dtrace_specid_t i;
2546
2547	cookie = dtrace_interrupt_disable();
2548
2549	if (dest->dtb_tomax == NULL) {
2550		dtrace_interrupt_enable(cookie);
2551		return;
2552	}
2553
2554	for (i = 0; i < state->dts_nspeculations; i++) {
2555		dtrace_speculation_t *spec = &state->dts_speculations[i];
2556		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2557
2558		if (src->dtb_tomax == NULL)
2559			continue;
2560
2561		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2562			src->dtb_offset = 0;
2563			continue;
2564		}
2565
2566		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2567			continue;
2568
2569		if (src->dtb_offset == 0)
2570			continue;
2571
2572		dtrace_speculation_commit(state, cpu, i + 1);
2573	}
2574
2575	dtrace_interrupt_enable(cookie);
2576}
2577
2578/*
2579 * Note:  not called from probe context.  This function is called
2580 * asynchronously (and at a regular interval) to clean any speculations that
2581 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2582 * is work to be done, it cross calls all CPUs to perform that work;
2583 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2584 * INACTIVE state until they have been cleaned by all CPUs.
2585 */
2586static void
2587dtrace_speculation_clean(dtrace_state_t *state)
2588{
2589	int work = 0, rv;
2590	dtrace_specid_t i;
2591
2592	for (i = 0; i < state->dts_nspeculations; i++) {
2593		dtrace_speculation_t *spec = &state->dts_speculations[i];
2594
2595		ASSERT(!spec->dtsp_cleaning);
2596
2597		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2598		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2599			continue;
2600
2601		work++;
2602		spec->dtsp_cleaning = 1;
2603	}
2604
2605	if (!work)
2606		return;
2607
2608	dtrace_xcall(DTRACE_CPUALL,
2609	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2610
2611	/*
2612	 * We now know that all CPUs have committed or discarded their
2613	 * speculation buffers, as appropriate.  We can now set the state
2614	 * to inactive.
2615	 */
2616	for (i = 0; i < state->dts_nspeculations; i++) {
2617		dtrace_speculation_t *spec = &state->dts_speculations[i];
2618		dtrace_speculation_state_t current, new;
2619
2620		if (!spec->dtsp_cleaning)
2621			continue;
2622
2623		current = spec->dtsp_state;
2624		ASSERT(current == DTRACESPEC_DISCARDING ||
2625		    current == DTRACESPEC_COMMITTINGMANY);
2626
2627		new = DTRACESPEC_INACTIVE;
2628
2629		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2630		ASSERT(rv == current);
2631		spec->dtsp_cleaning = 0;
2632	}
2633}
2634
2635/*
2636 * Called as part of a speculate() to get the speculative buffer associated
2637 * with a given speculation.  Returns NULL if the specified speculation is not
2638 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2639 * the active CPU is not the specified CPU -- the speculation will be
2640 * atomically transitioned into the ACTIVEMANY state.
2641 */
2642static dtrace_buffer_t *
2643dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2644    dtrace_specid_t which)
2645{
2646	dtrace_speculation_t *spec;
2647	dtrace_speculation_state_t current, new = 0;
2648	dtrace_buffer_t *buf;
2649
2650	if (which == 0)
2651		return (NULL);
2652
2653	if (which > state->dts_nspeculations) {
2654		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2655		return (NULL);
2656	}
2657
2658	spec = &state->dts_speculations[which - 1];
2659	buf = &spec->dtsp_buffer[cpuid];
2660
2661	do {
2662		current = spec->dtsp_state;
2663
2664		switch (current) {
2665		case DTRACESPEC_INACTIVE:
2666		case DTRACESPEC_COMMITTINGMANY:
2667		case DTRACESPEC_DISCARDING:
2668			return (NULL);
2669
2670		case DTRACESPEC_COMMITTING:
2671			ASSERT(buf->dtb_offset == 0);
2672			return (NULL);
2673
2674		case DTRACESPEC_ACTIVEONE:
2675			/*
2676			 * This speculation is currently active on one CPU.
2677			 * Check the offset in the buffer; if it's non-zero,
2678			 * that CPU must be us (and we leave the state alone).
2679			 * If it's zero, assume that we're starting on a new
2680			 * CPU -- and change the state to indicate that the
2681			 * speculation is active on more than one CPU.
2682			 */
2683			if (buf->dtb_offset != 0)
2684				return (buf);
2685
2686			new = DTRACESPEC_ACTIVEMANY;
2687			break;
2688
2689		case DTRACESPEC_ACTIVEMANY:
2690			return (buf);
2691
2692		case DTRACESPEC_ACTIVE:
2693			new = DTRACESPEC_ACTIVEONE;
2694			break;
2695
2696		default:
2697			ASSERT(0);
2698		}
2699	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2700	    current, new) != current);
2701
2702	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2703	return (buf);
2704}
2705
2706/*
2707 * Return a string.  In the event that the user lacks the privilege to access
2708 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2709 * don't fail access checking.
2710 *
2711 * dtrace_dif_variable() uses this routine as a helper for various
2712 * builtin values such as 'execname' and 'probefunc.'
2713 */
2714uintptr_t
2715dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2716    dtrace_mstate_t *mstate)
2717{
2718	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2719	uintptr_t ret;
2720	size_t strsz;
2721
2722	/*
2723	 * The easy case: this probe is allowed to read all of memory, so
2724	 * we can just return this as a vanilla pointer.
2725	 */
2726	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2727		return (addr);
2728
2729	/*
2730	 * This is the tougher case: we copy the string in question from
2731	 * kernel memory into scratch memory and return it that way: this
2732	 * ensures that we won't trip up when access checking tests the
2733	 * BYREF return value.
2734	 */
2735	strsz = dtrace_strlen((char *)addr, size) + 1;
2736
2737	if (mstate->dtms_scratch_ptr + strsz >
2738	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2739		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2740		return (0);
2741	}
2742
2743	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2744	    strsz);
2745	ret = mstate->dtms_scratch_ptr;
2746	mstate->dtms_scratch_ptr += strsz;
2747	return (ret);
2748}
2749
2750/*
2751 * Return a string from a memoy address which is known to have one or
2752 * more concatenated, individually zero terminated, sub-strings.
2753 * In the event that the user lacks the privilege to access
2754 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2755 * don't fail access checking.
2756 *
2757 * dtrace_dif_variable() uses this routine as a helper for various
2758 * builtin values such as 'execargs'.
2759 */
2760static uintptr_t
2761dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2762    dtrace_mstate_t *mstate)
2763{
2764	char *p;
2765	size_t i;
2766	uintptr_t ret;
2767
2768	if (mstate->dtms_scratch_ptr + strsz >
2769	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2770		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2771		return (0);
2772	}
2773
2774	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2775	    strsz);
2776
2777	/* Replace sub-string termination characters with a space. */
2778	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2779	    p++, i++)
2780		if (*p == '\0')
2781			*p = ' ';
2782
2783	ret = mstate->dtms_scratch_ptr;
2784	mstate->dtms_scratch_ptr += strsz;
2785	return (ret);
2786}
2787
2788/*
2789 * This function implements the DIF emulator's variable lookups.  The emulator
2790 * passes a reserved variable identifier and optional built-in array index.
2791 */
2792static uint64_t
2793dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2794    uint64_t ndx)
2795{
2796	/*
2797	 * If we're accessing one of the uncached arguments, we'll turn this
2798	 * into a reference in the args array.
2799	 */
2800	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2801		ndx = v - DIF_VAR_ARG0;
2802		v = DIF_VAR_ARGS;
2803	}
2804
2805	switch (v) {
2806	case DIF_VAR_ARGS:
2807		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2808		if (ndx >= sizeof (mstate->dtms_arg) /
2809		    sizeof (mstate->dtms_arg[0])) {
2810			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2811			dtrace_provider_t *pv;
2812			uint64_t val;
2813
2814			pv = mstate->dtms_probe->dtpr_provider;
2815			if (pv->dtpv_pops.dtps_getargval != NULL)
2816				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2817				    mstate->dtms_probe->dtpr_id,
2818				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2819			else
2820				val = dtrace_getarg(ndx, aframes);
2821
2822			/*
2823			 * This is regrettably required to keep the compiler
2824			 * from tail-optimizing the call to dtrace_getarg().
2825			 * The condition always evaluates to true, but the
2826			 * compiler has no way of figuring that out a priori.
2827			 * (None of this would be necessary if the compiler
2828			 * could be relied upon to _always_ tail-optimize
2829			 * the call to dtrace_getarg() -- but it can't.)
2830			 */
2831			if (mstate->dtms_probe != NULL)
2832				return (val);
2833
2834			ASSERT(0);
2835		}
2836
2837		return (mstate->dtms_arg[ndx]);
2838
2839#if defined(sun)
2840	case DIF_VAR_UREGS: {
2841		klwp_t *lwp;
2842
2843		if (!dtrace_priv_proc(state))
2844			return (0);
2845
2846		if ((lwp = curthread->t_lwp) == NULL) {
2847			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2848			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2849			return (0);
2850		}
2851
2852		return (dtrace_getreg(lwp->lwp_regs, ndx));
2853		return (0);
2854	}
2855#else
2856	case DIF_VAR_UREGS: {
2857		struct trapframe *tframe;
2858
2859		if (!dtrace_priv_proc(state))
2860			return (0);
2861
2862		if ((tframe = curthread->td_frame) == NULL) {
2863			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2864			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2865			return (0);
2866		}
2867
2868		return (dtrace_getreg(tframe, ndx));
2869	}
2870#endif
2871
2872	case DIF_VAR_CURTHREAD:
2873		if (!dtrace_priv_kernel(state))
2874			return (0);
2875		return ((uint64_t)(uintptr_t)curthread);
2876
2877	case DIF_VAR_TIMESTAMP:
2878		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2879			mstate->dtms_timestamp = dtrace_gethrtime();
2880			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2881		}
2882		return (mstate->dtms_timestamp);
2883
2884	case DIF_VAR_VTIMESTAMP:
2885		ASSERT(dtrace_vtime_references != 0);
2886		return (curthread->t_dtrace_vtime);
2887
2888	case DIF_VAR_WALLTIMESTAMP:
2889		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2890			mstate->dtms_walltimestamp = dtrace_gethrestime();
2891			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2892		}
2893		return (mstate->dtms_walltimestamp);
2894
2895#if defined(sun)
2896	case DIF_VAR_IPL:
2897		if (!dtrace_priv_kernel(state))
2898			return (0);
2899		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2900			mstate->dtms_ipl = dtrace_getipl();
2901			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2902		}
2903		return (mstate->dtms_ipl);
2904#endif
2905
2906	case DIF_VAR_EPID:
2907		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2908		return (mstate->dtms_epid);
2909
2910	case DIF_VAR_ID:
2911		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2912		return (mstate->dtms_probe->dtpr_id);
2913
2914	case DIF_VAR_STACKDEPTH:
2915		if (!dtrace_priv_kernel(state))
2916			return (0);
2917		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2918			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2919
2920			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2921			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2922		}
2923		return (mstate->dtms_stackdepth);
2924
2925	case DIF_VAR_USTACKDEPTH:
2926		if (!dtrace_priv_proc(state))
2927			return (0);
2928		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2929			/*
2930			 * See comment in DIF_VAR_PID.
2931			 */
2932			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2933			    CPU_ON_INTR(CPU)) {
2934				mstate->dtms_ustackdepth = 0;
2935			} else {
2936				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2937				mstate->dtms_ustackdepth =
2938				    dtrace_getustackdepth();
2939				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2940			}
2941			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2942		}
2943		return (mstate->dtms_ustackdepth);
2944
2945	case DIF_VAR_CALLER:
2946		if (!dtrace_priv_kernel(state))
2947			return (0);
2948		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2949			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2950
2951			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2952				/*
2953				 * If this is an unanchored probe, we are
2954				 * required to go through the slow path:
2955				 * dtrace_caller() only guarantees correct
2956				 * results for anchored probes.
2957				 */
2958				pc_t caller[2] = {0, 0};
2959
2960				dtrace_getpcstack(caller, 2, aframes,
2961				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2962				mstate->dtms_caller = caller[1];
2963			} else if ((mstate->dtms_caller =
2964			    dtrace_caller(aframes)) == -1) {
2965				/*
2966				 * We have failed to do this the quick way;
2967				 * we must resort to the slower approach of
2968				 * calling dtrace_getpcstack().
2969				 */
2970				pc_t caller = 0;
2971
2972				dtrace_getpcstack(&caller, 1, aframes, NULL);
2973				mstate->dtms_caller = caller;
2974			}
2975
2976			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2977		}
2978		return (mstate->dtms_caller);
2979
2980	case DIF_VAR_UCALLER:
2981		if (!dtrace_priv_proc(state))
2982			return (0);
2983
2984		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2985			uint64_t ustack[3];
2986
2987			/*
2988			 * dtrace_getupcstack() fills in the first uint64_t
2989			 * with the current PID.  The second uint64_t will
2990			 * be the program counter at user-level.  The third
2991			 * uint64_t will contain the caller, which is what
2992			 * we're after.
2993			 */
2994			ustack[2] = 0;
2995			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2996			dtrace_getupcstack(ustack, 3);
2997			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2998			mstate->dtms_ucaller = ustack[2];
2999			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3000		}
3001
3002		return (mstate->dtms_ucaller);
3003
3004	case DIF_VAR_PROBEPROV:
3005		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3006		return (dtrace_dif_varstr(
3007		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3008		    state, mstate));
3009
3010	case DIF_VAR_PROBEMOD:
3011		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3012		return (dtrace_dif_varstr(
3013		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3014		    state, mstate));
3015
3016	case DIF_VAR_PROBEFUNC:
3017		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3018		return (dtrace_dif_varstr(
3019		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3020		    state, mstate));
3021
3022	case DIF_VAR_PROBENAME:
3023		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3024		return (dtrace_dif_varstr(
3025		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3026		    state, mstate));
3027
3028	case DIF_VAR_PID:
3029		if (!dtrace_priv_proc(state))
3030			return (0);
3031
3032#if defined(sun)
3033		/*
3034		 * Note that we are assuming that an unanchored probe is
3035		 * always due to a high-level interrupt.  (And we're assuming
3036		 * that there is only a single high level interrupt.)
3037		 */
3038		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3039			return (pid0.pid_id);
3040
3041		/*
3042		 * It is always safe to dereference one's own t_procp pointer:
3043		 * it always points to a valid, allocated proc structure.
3044		 * Further, it is always safe to dereference the p_pidp member
3045		 * of one's own proc structure.  (These are truisms becuase
3046		 * threads and processes don't clean up their own state --
3047		 * they leave that task to whomever reaps them.)
3048		 */
3049		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3050#else
3051		return ((uint64_t)curproc->p_pid);
3052#endif
3053
3054	case DIF_VAR_PPID:
3055		if (!dtrace_priv_proc(state))
3056			return (0);
3057
3058#if defined(sun)
3059		/*
3060		 * See comment in DIF_VAR_PID.
3061		 */
3062		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3063			return (pid0.pid_id);
3064
3065		/*
3066		 * It is always safe to dereference one's own t_procp pointer:
3067		 * it always points to a valid, allocated proc structure.
3068		 * (This is true because threads don't clean up their own
3069		 * state -- they leave that task to whomever reaps them.)
3070		 */
3071		return ((uint64_t)curthread->t_procp->p_ppid);
3072#else
3073		return ((uint64_t)curproc->p_pptr->p_pid);
3074#endif
3075
3076	case DIF_VAR_TID:
3077#if defined(sun)
3078		/*
3079		 * See comment in DIF_VAR_PID.
3080		 */
3081		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3082			return (0);
3083#endif
3084
3085		return ((uint64_t)curthread->t_tid);
3086
3087	case DIF_VAR_EXECARGS: {
3088		struct pargs *p_args = curthread->td_proc->p_args;
3089
3090		if (p_args == NULL)
3091			return(0);
3092
3093		return (dtrace_dif_varstrz(
3094		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3095	}
3096
3097	case DIF_VAR_EXECNAME:
3098#if defined(sun)
3099		if (!dtrace_priv_proc(state))
3100			return (0);
3101
3102		/*
3103		 * See comment in DIF_VAR_PID.
3104		 */
3105		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3106			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3107
3108		/*
3109		 * It is always safe to dereference one's own t_procp pointer:
3110		 * it always points to a valid, allocated proc structure.
3111		 * (This is true because threads don't clean up their own
3112		 * state -- they leave that task to whomever reaps them.)
3113		 */
3114		return (dtrace_dif_varstr(
3115		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3116		    state, mstate));
3117#else
3118		return (dtrace_dif_varstr(
3119		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3120#endif
3121
3122	case DIF_VAR_ZONENAME:
3123#if defined(sun)
3124		if (!dtrace_priv_proc(state))
3125			return (0);
3126
3127		/*
3128		 * See comment in DIF_VAR_PID.
3129		 */
3130		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3131			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3132
3133		/*
3134		 * It is always safe to dereference one's own t_procp pointer:
3135		 * it always points to a valid, allocated proc structure.
3136		 * (This is true because threads don't clean up their own
3137		 * state -- they leave that task to whomever reaps them.)
3138		 */
3139		return (dtrace_dif_varstr(
3140		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3141		    state, mstate));
3142#else
3143		return (0);
3144#endif
3145
3146	case DIF_VAR_UID:
3147		if (!dtrace_priv_proc(state))
3148			return (0);
3149
3150#if defined(sun)
3151		/*
3152		 * See comment in DIF_VAR_PID.
3153		 */
3154		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3155			return ((uint64_t)p0.p_cred->cr_uid);
3156#endif
3157
3158		/*
3159		 * It is always safe to dereference one's own t_procp pointer:
3160		 * it always points to a valid, allocated proc structure.
3161		 * (This is true because threads don't clean up their own
3162		 * state -- they leave that task to whomever reaps them.)
3163		 *
3164		 * Additionally, it is safe to dereference one's own process
3165		 * credential, since this is never NULL after process birth.
3166		 */
3167		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3168
3169	case DIF_VAR_GID:
3170		if (!dtrace_priv_proc(state))
3171			return (0);
3172
3173#if defined(sun)
3174		/*
3175		 * See comment in DIF_VAR_PID.
3176		 */
3177		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3178			return ((uint64_t)p0.p_cred->cr_gid);
3179#endif
3180
3181		/*
3182		 * It is always safe to dereference one's own t_procp pointer:
3183		 * it always points to a valid, allocated proc structure.
3184		 * (This is true because threads don't clean up their own
3185		 * state -- they leave that task to whomever reaps them.)
3186		 *
3187		 * Additionally, it is safe to dereference one's own process
3188		 * credential, since this is never NULL after process birth.
3189		 */
3190		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3191
3192	case DIF_VAR_ERRNO: {
3193#if defined(sun)
3194		klwp_t *lwp;
3195		if (!dtrace_priv_proc(state))
3196			return (0);
3197
3198		/*
3199		 * See comment in DIF_VAR_PID.
3200		 */
3201		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3202			return (0);
3203
3204		/*
3205		 * It is always safe to dereference one's own t_lwp pointer in
3206		 * the event that this pointer is non-NULL.  (This is true
3207		 * because threads and lwps don't clean up their own state --
3208		 * they leave that task to whomever reaps them.)
3209		 */
3210		if ((lwp = curthread->t_lwp) == NULL)
3211			return (0);
3212
3213		return ((uint64_t)lwp->lwp_errno);
3214#else
3215		return (curthread->td_errno);
3216#endif
3217	}
3218#if !defined(sun)
3219	case DIF_VAR_CPU: {
3220		return curcpu;
3221	}
3222#endif
3223	default:
3224		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3225		return (0);
3226	}
3227}
3228
3229/*
3230 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3231 * Notice that we don't bother validating the proper number of arguments or
3232 * their types in the tuple stack.  This isn't needed because all argument
3233 * interpretation is safe because of our load safety -- the worst that can
3234 * happen is that a bogus program can obtain bogus results.
3235 */
3236static void
3237dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3238    dtrace_key_t *tupregs, int nargs,
3239    dtrace_mstate_t *mstate, dtrace_state_t *state)
3240{
3241	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3242	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3243	dtrace_vstate_t *vstate = &state->dts_vstate;
3244
3245#if defined(sun)
3246	union {
3247		mutex_impl_t mi;
3248		uint64_t mx;
3249	} m;
3250
3251	union {
3252		krwlock_t ri;
3253		uintptr_t rw;
3254	} r;
3255#else
3256	struct thread *lowner;
3257	union {
3258		struct lock_object *li;
3259		uintptr_t lx;
3260	} l;
3261#endif
3262
3263	switch (subr) {
3264	case DIF_SUBR_RAND:
3265		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3266		break;
3267
3268#if defined(sun)
3269	case DIF_SUBR_MUTEX_OWNED:
3270		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3271		    mstate, vstate)) {
3272			regs[rd] = 0;
3273			break;
3274		}
3275
3276		m.mx = dtrace_load64(tupregs[0].dttk_value);
3277		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3278			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3279		else
3280			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3281		break;
3282
3283	case DIF_SUBR_MUTEX_OWNER:
3284		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3285		    mstate, vstate)) {
3286			regs[rd] = 0;
3287			break;
3288		}
3289
3290		m.mx = dtrace_load64(tupregs[0].dttk_value);
3291		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3292		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3293			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3294		else
3295			regs[rd] = 0;
3296		break;
3297
3298	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3299		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3300		    mstate, vstate)) {
3301			regs[rd] = 0;
3302			break;
3303		}
3304
3305		m.mx = dtrace_load64(tupregs[0].dttk_value);
3306		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3307		break;
3308
3309	case DIF_SUBR_MUTEX_TYPE_SPIN:
3310		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3311		    mstate, vstate)) {
3312			regs[rd] = 0;
3313			break;
3314		}
3315
3316		m.mx = dtrace_load64(tupregs[0].dttk_value);
3317		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3318		break;
3319
3320	case DIF_SUBR_RW_READ_HELD: {
3321		uintptr_t tmp;
3322
3323		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3324		    mstate, vstate)) {
3325			regs[rd] = 0;
3326			break;
3327		}
3328
3329		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3330		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3331		break;
3332	}
3333
3334	case DIF_SUBR_RW_WRITE_HELD:
3335		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3336		    mstate, vstate)) {
3337			regs[rd] = 0;
3338			break;
3339		}
3340
3341		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3342		regs[rd] = _RW_WRITE_HELD(&r.ri);
3343		break;
3344
3345	case DIF_SUBR_RW_ISWRITER:
3346		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3347		    mstate, vstate)) {
3348			regs[rd] = 0;
3349			break;
3350		}
3351
3352		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3353		regs[rd] = _RW_ISWRITER(&r.ri);
3354		break;
3355
3356#else
3357	case DIF_SUBR_MUTEX_OWNED:
3358		if (!dtrace_canload(tupregs[0].dttk_value,
3359			sizeof (struct lock_object), mstate, vstate)) {
3360			regs[rd] = 0;
3361			break;
3362		}
3363		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3364		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3365		break;
3366
3367	case DIF_SUBR_MUTEX_OWNER:
3368		if (!dtrace_canload(tupregs[0].dttk_value,
3369			sizeof (struct lock_object), mstate, vstate)) {
3370			regs[rd] = 0;
3371			break;
3372		}
3373		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3374		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3375		regs[rd] = (uintptr_t)lowner;
3376		break;
3377
3378	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3379		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3380		    mstate, vstate)) {
3381			regs[rd] = 0;
3382			break;
3383		}
3384		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3385		/* XXX - should be only LC_SLEEPABLE? */
3386		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3387		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3388		break;
3389
3390	case DIF_SUBR_MUTEX_TYPE_SPIN:
3391		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3392		    mstate, vstate)) {
3393			regs[rd] = 0;
3394			break;
3395		}
3396		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3397		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3398		break;
3399
3400	case DIF_SUBR_RW_READ_HELD:
3401	case DIF_SUBR_SX_SHARED_HELD:
3402		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3403		    mstate, vstate)) {
3404			regs[rd] = 0;
3405			break;
3406		}
3407		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3408		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3409		    lowner == NULL;
3410		break;
3411
3412	case DIF_SUBR_RW_WRITE_HELD:
3413	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3414		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3415		    mstate, vstate)) {
3416			regs[rd] = 0;
3417			break;
3418		}
3419		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3420		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3421		regs[rd] = (lowner == curthread);
3422		break;
3423
3424	case DIF_SUBR_RW_ISWRITER:
3425	case DIF_SUBR_SX_ISEXCLUSIVE:
3426		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3427		    mstate, vstate)) {
3428			regs[rd] = 0;
3429			break;
3430		}
3431		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3432		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3433		    lowner != NULL;
3434		break;
3435#endif /* ! defined(sun) */
3436
3437	case DIF_SUBR_BCOPY: {
3438		/*
3439		 * We need to be sure that the destination is in the scratch
3440		 * region -- no other region is allowed.
3441		 */
3442		uintptr_t src = tupregs[0].dttk_value;
3443		uintptr_t dest = tupregs[1].dttk_value;
3444		size_t size = tupregs[2].dttk_value;
3445
3446		if (!dtrace_inscratch(dest, size, mstate)) {
3447			*flags |= CPU_DTRACE_BADADDR;
3448			*illval = regs[rd];
3449			break;
3450		}
3451
3452		if (!dtrace_canload(src, size, mstate, vstate)) {
3453			regs[rd] = 0;
3454			break;
3455		}
3456
3457		dtrace_bcopy((void *)src, (void *)dest, size);
3458		break;
3459	}
3460
3461	case DIF_SUBR_ALLOCA:
3462	case DIF_SUBR_COPYIN: {
3463		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3464		uint64_t size =
3465		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3466		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3467
3468		/*
3469		 * This action doesn't require any credential checks since
3470		 * probes will not activate in user contexts to which the
3471		 * enabling user does not have permissions.
3472		 */
3473
3474		/*
3475		 * Rounding up the user allocation size could have overflowed
3476		 * a large, bogus allocation (like -1ULL) to 0.
3477		 */
3478		if (scratch_size < size ||
3479		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3480			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3481			regs[rd] = 0;
3482			break;
3483		}
3484
3485		if (subr == DIF_SUBR_COPYIN) {
3486			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3487			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3488			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3489		}
3490
3491		mstate->dtms_scratch_ptr += scratch_size;
3492		regs[rd] = dest;
3493		break;
3494	}
3495
3496	case DIF_SUBR_COPYINTO: {
3497		uint64_t size = tupregs[1].dttk_value;
3498		uintptr_t dest = tupregs[2].dttk_value;
3499
3500		/*
3501		 * This action doesn't require any credential checks since
3502		 * probes will not activate in user contexts to which the
3503		 * enabling user does not have permissions.
3504		 */
3505		if (!dtrace_inscratch(dest, size, mstate)) {
3506			*flags |= CPU_DTRACE_BADADDR;
3507			*illval = regs[rd];
3508			break;
3509		}
3510
3511		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3512		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3513		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3514		break;
3515	}
3516
3517	case DIF_SUBR_COPYINSTR: {
3518		uintptr_t dest = mstate->dtms_scratch_ptr;
3519		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3520
3521		if (nargs > 1 && tupregs[1].dttk_value < size)
3522			size = tupregs[1].dttk_value + 1;
3523
3524		/*
3525		 * This action doesn't require any credential checks since
3526		 * probes will not activate in user contexts to which the
3527		 * enabling user does not have permissions.
3528		 */
3529		if (!DTRACE_INSCRATCH(mstate, size)) {
3530			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3531			regs[rd] = 0;
3532			break;
3533		}
3534
3535		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3536		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3537		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3538
3539		((char *)dest)[size - 1] = '\0';
3540		mstate->dtms_scratch_ptr += size;
3541		regs[rd] = dest;
3542		break;
3543	}
3544
3545#if defined(sun)
3546	case DIF_SUBR_MSGSIZE:
3547	case DIF_SUBR_MSGDSIZE: {
3548		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3549		uintptr_t wptr, rptr;
3550		size_t count = 0;
3551		int cont = 0;
3552
3553		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3554
3555			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3556			    vstate)) {
3557				regs[rd] = 0;
3558				break;
3559			}
3560
3561			wptr = dtrace_loadptr(baddr +
3562			    offsetof(mblk_t, b_wptr));
3563
3564			rptr = dtrace_loadptr(baddr +
3565			    offsetof(mblk_t, b_rptr));
3566
3567			if (wptr < rptr) {
3568				*flags |= CPU_DTRACE_BADADDR;
3569				*illval = tupregs[0].dttk_value;
3570				break;
3571			}
3572
3573			daddr = dtrace_loadptr(baddr +
3574			    offsetof(mblk_t, b_datap));
3575
3576			baddr = dtrace_loadptr(baddr +
3577			    offsetof(mblk_t, b_cont));
3578
3579			/*
3580			 * We want to prevent against denial-of-service here,
3581			 * so we're only going to search the list for
3582			 * dtrace_msgdsize_max mblks.
3583			 */
3584			if (cont++ > dtrace_msgdsize_max) {
3585				*flags |= CPU_DTRACE_ILLOP;
3586				break;
3587			}
3588
3589			if (subr == DIF_SUBR_MSGDSIZE) {
3590				if (dtrace_load8(daddr +
3591				    offsetof(dblk_t, db_type)) != M_DATA)
3592					continue;
3593			}
3594
3595			count += wptr - rptr;
3596		}
3597
3598		if (!(*flags & CPU_DTRACE_FAULT))
3599			regs[rd] = count;
3600
3601		break;
3602	}
3603#endif
3604
3605	case DIF_SUBR_PROGENYOF: {
3606		pid_t pid = tupregs[0].dttk_value;
3607		proc_t *p;
3608		int rval = 0;
3609
3610		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3611
3612		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3613#if defined(sun)
3614			if (p->p_pidp->pid_id == pid) {
3615#else
3616			if (p->p_pid == pid) {
3617#endif
3618				rval = 1;
3619				break;
3620			}
3621		}
3622
3623		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3624
3625		regs[rd] = rval;
3626		break;
3627	}
3628
3629	case DIF_SUBR_SPECULATION:
3630		regs[rd] = dtrace_speculation(state);
3631		break;
3632
3633	case DIF_SUBR_COPYOUT: {
3634		uintptr_t kaddr = tupregs[0].dttk_value;
3635		uintptr_t uaddr = tupregs[1].dttk_value;
3636		uint64_t size = tupregs[2].dttk_value;
3637
3638		if (!dtrace_destructive_disallow &&
3639		    dtrace_priv_proc_control(state) &&
3640		    !dtrace_istoxic(kaddr, size)) {
3641			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3642			dtrace_copyout(kaddr, uaddr, size, flags);
3643			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3644		}
3645		break;
3646	}
3647
3648	case DIF_SUBR_COPYOUTSTR: {
3649		uintptr_t kaddr = tupregs[0].dttk_value;
3650		uintptr_t uaddr = tupregs[1].dttk_value;
3651		uint64_t size = tupregs[2].dttk_value;
3652
3653		if (!dtrace_destructive_disallow &&
3654		    dtrace_priv_proc_control(state) &&
3655		    !dtrace_istoxic(kaddr, size)) {
3656			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3657			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3658			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3659		}
3660		break;
3661	}
3662
3663	case DIF_SUBR_STRLEN: {
3664		size_t sz;
3665		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3666		sz = dtrace_strlen((char *)addr,
3667		    state->dts_options[DTRACEOPT_STRSIZE]);
3668
3669		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3670			regs[rd] = 0;
3671			break;
3672		}
3673
3674		regs[rd] = sz;
3675
3676		break;
3677	}
3678
3679	case DIF_SUBR_STRCHR:
3680	case DIF_SUBR_STRRCHR: {
3681		/*
3682		 * We're going to iterate over the string looking for the
3683		 * specified character.  We will iterate until we have reached
3684		 * the string length or we have found the character.  If this
3685		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3686		 * of the specified character instead of the first.
3687		 */
3688		uintptr_t saddr = tupregs[0].dttk_value;
3689		uintptr_t addr = tupregs[0].dttk_value;
3690		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3691		char c, target = (char)tupregs[1].dttk_value;
3692
3693		for (regs[rd] = 0; addr < limit; addr++) {
3694			if ((c = dtrace_load8(addr)) == target) {
3695				regs[rd] = addr;
3696
3697				if (subr == DIF_SUBR_STRCHR)
3698					break;
3699			}
3700
3701			if (c == '\0')
3702				break;
3703		}
3704
3705		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3706			regs[rd] = 0;
3707			break;
3708		}
3709
3710		break;
3711	}
3712
3713	case DIF_SUBR_STRSTR:
3714	case DIF_SUBR_INDEX:
3715	case DIF_SUBR_RINDEX: {
3716		/*
3717		 * We're going to iterate over the string looking for the
3718		 * specified string.  We will iterate until we have reached
3719		 * the string length or we have found the string.  (Yes, this
3720		 * is done in the most naive way possible -- but considering
3721		 * that the string we're searching for is likely to be
3722		 * relatively short, the complexity of Rabin-Karp or similar
3723		 * hardly seems merited.)
3724		 */
3725		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3726		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3727		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3728		size_t len = dtrace_strlen(addr, size);
3729		size_t sublen = dtrace_strlen(substr, size);
3730		char *limit = addr + len, *orig = addr;
3731		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3732		int inc = 1;
3733
3734		regs[rd] = notfound;
3735
3736		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3737			regs[rd] = 0;
3738			break;
3739		}
3740
3741		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3742		    vstate)) {
3743			regs[rd] = 0;
3744			break;
3745		}
3746
3747		/*
3748		 * strstr() and index()/rindex() have similar semantics if
3749		 * both strings are the empty string: strstr() returns a
3750		 * pointer to the (empty) string, and index() and rindex()
3751		 * both return index 0 (regardless of any position argument).
3752		 */
3753		if (sublen == 0 && len == 0) {
3754			if (subr == DIF_SUBR_STRSTR)
3755				regs[rd] = (uintptr_t)addr;
3756			else
3757				regs[rd] = 0;
3758			break;
3759		}
3760
3761		if (subr != DIF_SUBR_STRSTR) {
3762			if (subr == DIF_SUBR_RINDEX) {
3763				limit = orig - 1;
3764				addr += len;
3765				inc = -1;
3766			}
3767
3768			/*
3769			 * Both index() and rindex() take an optional position
3770			 * argument that denotes the starting position.
3771			 */
3772			if (nargs == 3) {
3773				int64_t pos = (int64_t)tupregs[2].dttk_value;
3774
3775				/*
3776				 * If the position argument to index() is
3777				 * negative, Perl implicitly clamps it at
3778				 * zero.  This semantic is a little surprising
3779				 * given the special meaning of negative
3780				 * positions to similar Perl functions like
3781				 * substr(), but it appears to reflect a
3782				 * notion that index() can start from a
3783				 * negative index and increment its way up to
3784				 * the string.  Given this notion, Perl's
3785				 * rindex() is at least self-consistent in
3786				 * that it implicitly clamps positions greater
3787				 * than the string length to be the string
3788				 * length.  Where Perl completely loses
3789				 * coherence, however, is when the specified
3790				 * substring is the empty string ("").  In
3791				 * this case, even if the position is
3792				 * negative, rindex() returns 0 -- and even if
3793				 * the position is greater than the length,
3794				 * index() returns the string length.  These
3795				 * semantics violate the notion that index()
3796				 * should never return a value less than the
3797				 * specified position and that rindex() should
3798				 * never return a value greater than the
3799				 * specified position.  (One assumes that
3800				 * these semantics are artifacts of Perl's
3801				 * implementation and not the results of
3802				 * deliberate design -- it beggars belief that
3803				 * even Larry Wall could desire such oddness.)
3804				 * While in the abstract one would wish for
3805				 * consistent position semantics across
3806				 * substr(), index() and rindex() -- or at the
3807				 * very least self-consistent position
3808				 * semantics for index() and rindex() -- we
3809				 * instead opt to keep with the extant Perl
3810				 * semantics, in all their broken glory.  (Do
3811				 * we have more desire to maintain Perl's
3812				 * semantics than Perl does?  Probably.)
3813				 */
3814				if (subr == DIF_SUBR_RINDEX) {
3815					if (pos < 0) {
3816						if (sublen == 0)
3817							regs[rd] = 0;
3818						break;
3819					}
3820
3821					if (pos > len)
3822						pos = len;
3823				} else {
3824					if (pos < 0)
3825						pos = 0;
3826
3827					if (pos >= len) {
3828						if (sublen == 0)
3829							regs[rd] = len;
3830						break;
3831					}
3832				}
3833
3834				addr = orig + pos;
3835			}
3836		}
3837
3838		for (regs[rd] = notfound; addr != limit; addr += inc) {
3839			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3840				if (subr != DIF_SUBR_STRSTR) {
3841					/*
3842					 * As D index() and rindex() are
3843					 * modeled on Perl (and not on awk),
3844					 * we return a zero-based (and not a
3845					 * one-based) index.  (For you Perl
3846					 * weenies: no, we're not going to add
3847					 * $[ -- and shouldn't you be at a con
3848					 * or something?)
3849					 */
3850					regs[rd] = (uintptr_t)(addr - orig);
3851					break;
3852				}
3853
3854				ASSERT(subr == DIF_SUBR_STRSTR);
3855				regs[rd] = (uintptr_t)addr;
3856				break;
3857			}
3858		}
3859
3860		break;
3861	}
3862
3863	case DIF_SUBR_STRTOK: {
3864		uintptr_t addr = tupregs[0].dttk_value;
3865		uintptr_t tokaddr = tupregs[1].dttk_value;
3866		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3867		uintptr_t limit, toklimit = tokaddr + size;
3868		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3869		char *dest = (char *)mstate->dtms_scratch_ptr;
3870		int i;
3871
3872		/*
3873		 * Check both the token buffer and (later) the input buffer,
3874		 * since both could be non-scratch addresses.
3875		 */
3876		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3877			regs[rd] = 0;
3878			break;
3879		}
3880
3881		if (!DTRACE_INSCRATCH(mstate, size)) {
3882			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3883			regs[rd] = 0;
3884			break;
3885		}
3886
3887		if (addr == 0) {
3888			/*
3889			 * If the address specified is NULL, we use our saved
3890			 * strtok pointer from the mstate.  Note that this
3891			 * means that the saved strtok pointer is _only_
3892			 * valid within multiple enablings of the same probe --
3893			 * it behaves like an implicit clause-local variable.
3894			 */
3895			addr = mstate->dtms_strtok;
3896		} else {
3897			/*
3898			 * If the user-specified address is non-NULL we must
3899			 * access check it.  This is the only time we have
3900			 * a chance to do so, since this address may reside
3901			 * in the string table of this clause-- future calls
3902			 * (when we fetch addr from mstate->dtms_strtok)
3903			 * would fail this access check.
3904			 */
3905			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3906				regs[rd] = 0;
3907				break;
3908			}
3909		}
3910
3911		/*
3912		 * First, zero the token map, and then process the token
3913		 * string -- setting a bit in the map for every character
3914		 * found in the token string.
3915		 */
3916		for (i = 0; i < sizeof (tokmap); i++)
3917			tokmap[i] = 0;
3918
3919		for (; tokaddr < toklimit; tokaddr++) {
3920			if ((c = dtrace_load8(tokaddr)) == '\0')
3921				break;
3922
3923			ASSERT((c >> 3) < sizeof (tokmap));
3924			tokmap[c >> 3] |= (1 << (c & 0x7));
3925		}
3926
3927		for (limit = addr + size; addr < limit; addr++) {
3928			/*
3929			 * We're looking for a character that is _not_ contained
3930			 * in the token string.
3931			 */
3932			if ((c = dtrace_load8(addr)) == '\0')
3933				break;
3934
3935			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3936				break;
3937		}
3938
3939		if (c == '\0') {
3940			/*
3941			 * We reached the end of the string without finding
3942			 * any character that was not in the token string.
3943			 * We return NULL in this case, and we set the saved
3944			 * address to NULL as well.
3945			 */
3946			regs[rd] = 0;
3947			mstate->dtms_strtok = 0;
3948			break;
3949		}
3950
3951		/*
3952		 * From here on, we're copying into the destination string.
3953		 */
3954		for (i = 0; addr < limit && i < size - 1; addr++) {
3955			if ((c = dtrace_load8(addr)) == '\0')
3956				break;
3957
3958			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3959				break;
3960
3961			ASSERT(i < size);
3962			dest[i++] = c;
3963		}
3964
3965		ASSERT(i < size);
3966		dest[i] = '\0';
3967		regs[rd] = (uintptr_t)dest;
3968		mstate->dtms_scratch_ptr += size;
3969		mstate->dtms_strtok = addr;
3970		break;
3971	}
3972
3973	case DIF_SUBR_SUBSTR: {
3974		uintptr_t s = tupregs[0].dttk_value;
3975		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3976		char *d = (char *)mstate->dtms_scratch_ptr;
3977		int64_t index = (int64_t)tupregs[1].dttk_value;
3978		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3979		size_t len = dtrace_strlen((char *)s, size);
3980		int64_t i = 0;
3981
3982		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3983			regs[rd] = 0;
3984			break;
3985		}
3986
3987		if (!DTRACE_INSCRATCH(mstate, size)) {
3988			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3989			regs[rd] = 0;
3990			break;
3991		}
3992
3993		if (nargs <= 2)
3994			remaining = (int64_t)size;
3995
3996		if (index < 0) {
3997			index += len;
3998
3999			if (index < 0 && index + remaining > 0) {
4000				remaining += index;
4001				index = 0;
4002			}
4003		}
4004
4005		if (index >= len || index < 0) {
4006			remaining = 0;
4007		} else if (remaining < 0) {
4008			remaining += len - index;
4009		} else if (index + remaining > size) {
4010			remaining = size - index;
4011		}
4012
4013		for (i = 0; i < remaining; i++) {
4014			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4015				break;
4016		}
4017
4018		d[i] = '\0';
4019
4020		mstate->dtms_scratch_ptr += size;
4021		regs[rd] = (uintptr_t)d;
4022		break;
4023	}
4024
4025	case DIF_SUBR_TOUPPER:
4026	case DIF_SUBR_TOLOWER: {
4027		uintptr_t s = tupregs[0].dttk_value;
4028		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4029		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4030		size_t len = dtrace_strlen((char *)s, size);
4031		char lower, upper, convert;
4032		int64_t i;
4033
4034		if (subr == DIF_SUBR_TOUPPER) {
4035			lower = 'a';
4036			upper = 'z';
4037			convert = 'A';
4038		} else {
4039			lower = 'A';
4040			upper = 'Z';
4041			convert = 'a';
4042		}
4043
4044		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4045			regs[rd] = 0;
4046			break;
4047		}
4048
4049		if (!DTRACE_INSCRATCH(mstate, size)) {
4050			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4051			regs[rd] = 0;
4052			break;
4053		}
4054
4055		for (i = 0; i < size - 1; i++) {
4056			if ((c = dtrace_load8(s + i)) == '\0')
4057				break;
4058
4059			if (c >= lower && c <= upper)
4060				c = convert + (c - lower);
4061
4062			dest[i] = c;
4063		}
4064
4065		ASSERT(i < size);
4066		dest[i] = '\0';
4067		regs[rd] = (uintptr_t)dest;
4068		mstate->dtms_scratch_ptr += size;
4069		break;
4070	}
4071
4072#if defined(sun)
4073	case DIF_SUBR_GETMAJOR:
4074#ifdef _LP64
4075		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4076#else
4077		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4078#endif
4079		break;
4080
4081	case DIF_SUBR_GETMINOR:
4082#ifdef _LP64
4083		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4084#else
4085		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4086#endif
4087		break;
4088
4089	case DIF_SUBR_DDI_PATHNAME: {
4090		/*
4091		 * This one is a galactic mess.  We are going to roughly
4092		 * emulate ddi_pathname(), but it's made more complicated
4093		 * by the fact that we (a) want to include the minor name and
4094		 * (b) must proceed iteratively instead of recursively.
4095		 */
4096		uintptr_t dest = mstate->dtms_scratch_ptr;
4097		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4098		char *start = (char *)dest, *end = start + size - 1;
4099		uintptr_t daddr = tupregs[0].dttk_value;
4100		int64_t minor = (int64_t)tupregs[1].dttk_value;
4101		char *s;
4102		int i, len, depth = 0;
4103
4104		/*
4105		 * Due to all the pointer jumping we do and context we must
4106		 * rely upon, we just mandate that the user must have kernel
4107		 * read privileges to use this routine.
4108		 */
4109		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4110			*flags |= CPU_DTRACE_KPRIV;
4111			*illval = daddr;
4112			regs[rd] = 0;
4113		}
4114
4115		if (!DTRACE_INSCRATCH(mstate, size)) {
4116			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4117			regs[rd] = 0;
4118			break;
4119		}
4120
4121		*end = '\0';
4122
4123		/*
4124		 * We want to have a name for the minor.  In order to do this,
4125		 * we need to walk the minor list from the devinfo.  We want
4126		 * to be sure that we don't infinitely walk a circular list,
4127		 * so we check for circularity by sending a scout pointer
4128		 * ahead two elements for every element that we iterate over;
4129		 * if the list is circular, these will ultimately point to the
4130		 * same element.  You may recognize this little trick as the
4131		 * answer to a stupid interview question -- one that always
4132		 * seems to be asked by those who had to have it laboriously
4133		 * explained to them, and who can't even concisely describe
4134		 * the conditions under which one would be forced to resort to
4135		 * this technique.  Needless to say, those conditions are
4136		 * found here -- and probably only here.  Is this the only use
4137		 * of this infamous trick in shipping, production code?  If it
4138		 * isn't, it probably should be...
4139		 */
4140		if (minor != -1) {
4141			uintptr_t maddr = dtrace_loadptr(daddr +
4142			    offsetof(struct dev_info, devi_minor));
4143
4144			uintptr_t next = offsetof(struct ddi_minor_data, next);
4145			uintptr_t name = offsetof(struct ddi_minor_data,
4146			    d_minor) + offsetof(struct ddi_minor, name);
4147			uintptr_t dev = offsetof(struct ddi_minor_data,
4148			    d_minor) + offsetof(struct ddi_minor, dev);
4149			uintptr_t scout;
4150
4151			if (maddr != NULL)
4152				scout = dtrace_loadptr(maddr + next);
4153
4154			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4155				uint64_t m;
4156#ifdef _LP64
4157				m = dtrace_load64(maddr + dev) & MAXMIN64;
4158#else
4159				m = dtrace_load32(maddr + dev) & MAXMIN;
4160#endif
4161				if (m != minor) {
4162					maddr = dtrace_loadptr(maddr + next);
4163
4164					if (scout == NULL)
4165						continue;
4166
4167					scout = dtrace_loadptr(scout + next);
4168
4169					if (scout == NULL)
4170						continue;
4171
4172					scout = dtrace_loadptr(scout + next);
4173
4174					if (scout == NULL)
4175						continue;
4176
4177					if (scout == maddr) {
4178						*flags |= CPU_DTRACE_ILLOP;
4179						break;
4180					}
4181
4182					continue;
4183				}
4184
4185				/*
4186				 * We have the minor data.  Now we need to
4187				 * copy the minor's name into the end of the
4188				 * pathname.
4189				 */
4190				s = (char *)dtrace_loadptr(maddr + name);
4191				len = dtrace_strlen(s, size);
4192
4193				if (*flags & CPU_DTRACE_FAULT)
4194					break;
4195
4196				if (len != 0) {
4197					if ((end -= (len + 1)) < start)
4198						break;
4199
4200					*end = ':';
4201				}
4202
4203				for (i = 1; i <= len; i++)
4204					end[i] = dtrace_load8((uintptr_t)s++);
4205				break;
4206			}
4207		}
4208
4209		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4210			ddi_node_state_t devi_state;
4211
4212			devi_state = dtrace_load32(daddr +
4213			    offsetof(struct dev_info, devi_node_state));
4214
4215			if (*flags & CPU_DTRACE_FAULT)
4216				break;
4217
4218			if (devi_state >= DS_INITIALIZED) {
4219				s = (char *)dtrace_loadptr(daddr +
4220				    offsetof(struct dev_info, devi_addr));
4221				len = dtrace_strlen(s, size);
4222
4223				if (*flags & CPU_DTRACE_FAULT)
4224					break;
4225
4226				if (len != 0) {
4227					if ((end -= (len + 1)) < start)
4228						break;
4229
4230					*end = '@';
4231				}
4232
4233				for (i = 1; i <= len; i++)
4234					end[i] = dtrace_load8((uintptr_t)s++);
4235			}
4236
4237			/*
4238			 * Now for the node name...
4239			 */
4240			s = (char *)dtrace_loadptr(daddr +
4241			    offsetof(struct dev_info, devi_node_name));
4242
4243			daddr = dtrace_loadptr(daddr +
4244			    offsetof(struct dev_info, devi_parent));
4245
4246			/*
4247			 * If our parent is NULL (that is, if we're the root
4248			 * node), we're going to use the special path
4249			 * "devices".
4250			 */
4251			if (daddr == 0)
4252				s = "devices";
4253
4254			len = dtrace_strlen(s, size);
4255			if (*flags & CPU_DTRACE_FAULT)
4256				break;
4257
4258			if ((end -= (len + 1)) < start)
4259				break;
4260
4261			for (i = 1; i <= len; i++)
4262				end[i] = dtrace_load8((uintptr_t)s++);
4263			*end = '/';
4264
4265			if (depth++ > dtrace_devdepth_max) {
4266				*flags |= CPU_DTRACE_ILLOP;
4267				break;
4268			}
4269		}
4270
4271		if (end < start)
4272			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4273
4274		if (daddr == 0) {
4275			regs[rd] = (uintptr_t)end;
4276			mstate->dtms_scratch_ptr += size;
4277		}
4278
4279		break;
4280	}
4281#endif
4282
4283	case DIF_SUBR_STRJOIN: {
4284		char *d = (char *)mstate->dtms_scratch_ptr;
4285		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4286		uintptr_t s1 = tupregs[0].dttk_value;
4287		uintptr_t s2 = tupregs[1].dttk_value;
4288		int i = 0;
4289
4290		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4291		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4292			regs[rd] = 0;
4293			break;
4294		}
4295
4296		if (!DTRACE_INSCRATCH(mstate, size)) {
4297			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4298			regs[rd] = 0;
4299			break;
4300		}
4301
4302		for (;;) {
4303			if (i >= size) {
4304				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4305				regs[rd] = 0;
4306				break;
4307			}
4308
4309			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4310				i--;
4311				break;
4312			}
4313		}
4314
4315		for (;;) {
4316			if (i >= size) {
4317				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4318				regs[rd] = 0;
4319				break;
4320			}
4321
4322			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4323				break;
4324		}
4325
4326		if (i < size) {
4327			mstate->dtms_scratch_ptr += i;
4328			regs[rd] = (uintptr_t)d;
4329		}
4330
4331		break;
4332	}
4333
4334	case DIF_SUBR_LLTOSTR: {
4335		int64_t i = (int64_t)tupregs[0].dttk_value;
4336		uint64_t val, digit;
4337		uint64_t size = 65;	/* enough room for 2^64 in binary */
4338		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4339		int base = 10;
4340
4341		if (nargs > 1) {
4342			if ((base = tupregs[1].dttk_value) <= 1 ||
4343			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4344				*flags |= CPU_DTRACE_ILLOP;
4345				break;
4346			}
4347		}
4348
4349		val = (base == 10 && i < 0) ? i * -1 : i;
4350
4351		if (!DTRACE_INSCRATCH(mstate, size)) {
4352			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4353			regs[rd] = 0;
4354			break;
4355		}
4356
4357		for (*end-- = '\0'; val; val /= base) {
4358			if ((digit = val % base) <= '9' - '0') {
4359				*end-- = '0' + digit;
4360			} else {
4361				*end-- = 'a' + (digit - ('9' - '0') - 1);
4362			}
4363		}
4364
4365		if (i == 0 && base == 16)
4366			*end-- = '0';
4367
4368		if (base == 16)
4369			*end-- = 'x';
4370
4371		if (i == 0 || base == 8 || base == 16)
4372			*end-- = '0';
4373
4374		if (i < 0 && base == 10)
4375			*end-- = '-';
4376
4377		regs[rd] = (uintptr_t)end + 1;
4378		mstate->dtms_scratch_ptr += size;
4379		break;
4380	}
4381
4382	case DIF_SUBR_HTONS:
4383	case DIF_SUBR_NTOHS:
4384#if BYTE_ORDER == BIG_ENDIAN
4385		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4386#else
4387		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4388#endif
4389		break;
4390
4391
4392	case DIF_SUBR_HTONL:
4393	case DIF_SUBR_NTOHL:
4394#if BYTE_ORDER == BIG_ENDIAN
4395		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4396#else
4397		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4398#endif
4399		break;
4400
4401
4402	case DIF_SUBR_HTONLL:
4403	case DIF_SUBR_NTOHLL:
4404#if BYTE_ORDER == BIG_ENDIAN
4405		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4406#else
4407		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4408#endif
4409		break;
4410
4411
4412	case DIF_SUBR_DIRNAME:
4413	case DIF_SUBR_BASENAME: {
4414		char *dest = (char *)mstate->dtms_scratch_ptr;
4415		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4416		uintptr_t src = tupregs[0].dttk_value;
4417		int i, j, len = dtrace_strlen((char *)src, size);
4418		int lastbase = -1, firstbase = -1, lastdir = -1;
4419		int start, end;
4420
4421		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4422			regs[rd] = 0;
4423			break;
4424		}
4425
4426		if (!DTRACE_INSCRATCH(mstate, size)) {
4427			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4428			regs[rd] = 0;
4429			break;
4430		}
4431
4432		/*
4433		 * The basename and dirname for a zero-length string is
4434		 * defined to be "."
4435		 */
4436		if (len == 0) {
4437			len = 1;
4438			src = (uintptr_t)".";
4439		}
4440
4441		/*
4442		 * Start from the back of the string, moving back toward the
4443		 * front until we see a character that isn't a slash.  That
4444		 * character is the last character in the basename.
4445		 */
4446		for (i = len - 1; i >= 0; i--) {
4447			if (dtrace_load8(src + i) != '/')
4448				break;
4449		}
4450
4451		if (i >= 0)
4452			lastbase = i;
4453
4454		/*
4455		 * Starting from the last character in the basename, move
4456		 * towards the front until we find a slash.  The character
4457		 * that we processed immediately before that is the first
4458		 * character in the basename.
4459		 */
4460		for (; i >= 0; i--) {
4461			if (dtrace_load8(src + i) == '/')
4462				break;
4463		}
4464
4465		if (i >= 0)
4466			firstbase = i + 1;
4467
4468		/*
4469		 * Now keep going until we find a non-slash character.  That
4470		 * character is the last character in the dirname.
4471		 */
4472		for (; i >= 0; i--) {
4473			if (dtrace_load8(src + i) != '/')
4474				break;
4475		}
4476
4477		if (i >= 0)
4478			lastdir = i;
4479
4480		ASSERT(!(lastbase == -1 && firstbase != -1));
4481		ASSERT(!(firstbase == -1 && lastdir != -1));
4482
4483		if (lastbase == -1) {
4484			/*
4485			 * We didn't find a non-slash character.  We know that
4486			 * the length is non-zero, so the whole string must be
4487			 * slashes.  In either the dirname or the basename
4488			 * case, we return '/'.
4489			 */
4490			ASSERT(firstbase == -1);
4491			firstbase = lastbase = lastdir = 0;
4492		}
4493
4494		if (firstbase == -1) {
4495			/*
4496			 * The entire string consists only of a basename
4497			 * component.  If we're looking for dirname, we need
4498			 * to change our string to be just "."; if we're
4499			 * looking for a basename, we'll just set the first
4500			 * character of the basename to be 0.
4501			 */
4502			if (subr == DIF_SUBR_DIRNAME) {
4503				ASSERT(lastdir == -1);
4504				src = (uintptr_t)".";
4505				lastdir = 0;
4506			} else {
4507				firstbase = 0;
4508			}
4509		}
4510
4511		if (subr == DIF_SUBR_DIRNAME) {
4512			if (lastdir == -1) {
4513				/*
4514				 * We know that we have a slash in the name --
4515				 * or lastdir would be set to 0, above.  And
4516				 * because lastdir is -1, we know that this
4517				 * slash must be the first character.  (That
4518				 * is, the full string must be of the form
4519				 * "/basename".)  In this case, the last
4520				 * character of the directory name is 0.
4521				 */
4522				lastdir = 0;
4523			}
4524
4525			start = 0;
4526			end = lastdir;
4527		} else {
4528			ASSERT(subr == DIF_SUBR_BASENAME);
4529			ASSERT(firstbase != -1 && lastbase != -1);
4530			start = firstbase;
4531			end = lastbase;
4532		}
4533
4534		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4535			dest[j] = dtrace_load8(src + i);
4536
4537		dest[j] = '\0';
4538		regs[rd] = (uintptr_t)dest;
4539		mstate->dtms_scratch_ptr += size;
4540		break;
4541	}
4542
4543	case DIF_SUBR_CLEANPATH: {
4544		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4545		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4546		uintptr_t src = tupregs[0].dttk_value;
4547		int i = 0, j = 0;
4548
4549		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4550			regs[rd] = 0;
4551			break;
4552		}
4553
4554		if (!DTRACE_INSCRATCH(mstate, size)) {
4555			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4556			regs[rd] = 0;
4557			break;
4558		}
4559
4560		/*
4561		 * Move forward, loading each character.
4562		 */
4563		do {
4564			c = dtrace_load8(src + i++);
4565next:
4566			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4567				break;
4568
4569			if (c != '/') {
4570				dest[j++] = c;
4571				continue;
4572			}
4573
4574			c = dtrace_load8(src + i++);
4575
4576			if (c == '/') {
4577				/*
4578				 * We have two slashes -- we can just advance
4579				 * to the next character.
4580				 */
4581				goto next;
4582			}
4583
4584			if (c != '.') {
4585				/*
4586				 * This is not "." and it's not ".." -- we can
4587				 * just store the "/" and this character and
4588				 * drive on.
4589				 */
4590				dest[j++] = '/';
4591				dest[j++] = c;
4592				continue;
4593			}
4594
4595			c = dtrace_load8(src + i++);
4596
4597			if (c == '/') {
4598				/*
4599				 * This is a "/./" component.  We're not going
4600				 * to store anything in the destination buffer;
4601				 * we're just going to go to the next component.
4602				 */
4603				goto next;
4604			}
4605
4606			if (c != '.') {
4607				/*
4608				 * This is not ".." -- we can just store the
4609				 * "/." and this character and continue
4610				 * processing.
4611				 */
4612				dest[j++] = '/';
4613				dest[j++] = '.';
4614				dest[j++] = c;
4615				continue;
4616			}
4617
4618			c = dtrace_load8(src + i++);
4619
4620			if (c != '/' && c != '\0') {
4621				/*
4622				 * This is not ".." -- it's "..[mumble]".
4623				 * We'll store the "/.." and this character
4624				 * and continue processing.
4625				 */
4626				dest[j++] = '/';
4627				dest[j++] = '.';
4628				dest[j++] = '.';
4629				dest[j++] = c;
4630				continue;
4631			}
4632
4633			/*
4634			 * This is "/../" or "/..\0".  We need to back up
4635			 * our destination pointer until we find a "/".
4636			 */
4637			i--;
4638			while (j != 0 && dest[--j] != '/')
4639				continue;
4640
4641			if (c == '\0')
4642				dest[++j] = '/';
4643		} while (c != '\0');
4644
4645		dest[j] = '\0';
4646		regs[rd] = (uintptr_t)dest;
4647		mstate->dtms_scratch_ptr += size;
4648		break;
4649	}
4650
4651	case DIF_SUBR_INET_NTOA:
4652	case DIF_SUBR_INET_NTOA6:
4653	case DIF_SUBR_INET_NTOP: {
4654		size_t size;
4655		int af, argi, i;
4656		char *base, *end;
4657
4658		if (subr == DIF_SUBR_INET_NTOP) {
4659			af = (int)tupregs[0].dttk_value;
4660			argi = 1;
4661		} else {
4662			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4663			argi = 0;
4664		}
4665
4666		if (af == AF_INET) {
4667			ipaddr_t ip4;
4668			uint8_t *ptr8, val;
4669
4670			/*
4671			 * Safely load the IPv4 address.
4672			 */
4673			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4674
4675			/*
4676			 * Check an IPv4 string will fit in scratch.
4677			 */
4678			size = INET_ADDRSTRLEN;
4679			if (!DTRACE_INSCRATCH(mstate, size)) {
4680				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4681				regs[rd] = 0;
4682				break;
4683			}
4684			base = (char *)mstate->dtms_scratch_ptr;
4685			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4686
4687			/*
4688			 * Stringify as a dotted decimal quad.
4689			 */
4690			*end-- = '\0';
4691			ptr8 = (uint8_t *)&ip4;
4692			for (i = 3; i >= 0; i--) {
4693				val = ptr8[i];
4694
4695				if (val == 0) {
4696					*end-- = '0';
4697				} else {
4698					for (; val; val /= 10) {
4699						*end-- = '0' + (val % 10);
4700					}
4701				}
4702
4703				if (i > 0)
4704					*end-- = '.';
4705			}
4706			ASSERT(end + 1 >= base);
4707
4708		} else if (af == AF_INET6) {
4709			struct in6_addr ip6;
4710			int firstzero, tryzero, numzero, v6end;
4711			uint16_t val;
4712			const char digits[] = "0123456789abcdef";
4713
4714			/*
4715			 * Stringify using RFC 1884 convention 2 - 16 bit
4716			 * hexadecimal values with a zero-run compression.
4717			 * Lower case hexadecimal digits are used.
4718			 * 	eg, fe80::214:4fff:fe0b:76c8.
4719			 * The IPv4 embedded form is returned for inet_ntop,
4720			 * just the IPv4 string is returned for inet_ntoa6.
4721			 */
4722
4723			/*
4724			 * Safely load the IPv6 address.
4725			 */
4726			dtrace_bcopy(
4727			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4728			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4729
4730			/*
4731			 * Check an IPv6 string will fit in scratch.
4732			 */
4733			size = INET6_ADDRSTRLEN;
4734			if (!DTRACE_INSCRATCH(mstate, size)) {
4735				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4736				regs[rd] = 0;
4737				break;
4738			}
4739			base = (char *)mstate->dtms_scratch_ptr;
4740			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4741			*end-- = '\0';
4742
4743			/*
4744			 * Find the longest run of 16 bit zero values
4745			 * for the single allowed zero compression - "::".
4746			 */
4747			firstzero = -1;
4748			tryzero = -1;
4749			numzero = 1;
4750			for (i = 0; i < sizeof (struct in6_addr); i++) {
4751#if defined(sun)
4752				if (ip6._S6_un._S6_u8[i] == 0 &&
4753#else
4754				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4755#endif
4756				    tryzero == -1 && i % 2 == 0) {
4757					tryzero = i;
4758					continue;
4759				}
4760
4761				if (tryzero != -1 &&
4762#if defined(sun)
4763				    (ip6._S6_un._S6_u8[i] != 0 ||
4764#else
4765				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4766#endif
4767				    i == sizeof (struct in6_addr) - 1)) {
4768
4769					if (i - tryzero <= numzero) {
4770						tryzero = -1;
4771						continue;
4772					}
4773
4774					firstzero = tryzero;
4775					numzero = i - i % 2 - tryzero;
4776					tryzero = -1;
4777
4778#if defined(sun)
4779					if (ip6._S6_un._S6_u8[i] == 0 &&
4780#else
4781					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4782#endif
4783					    i == sizeof (struct in6_addr) - 1)
4784						numzero += 2;
4785				}
4786			}
4787			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4788
4789			/*
4790			 * Check for an IPv4 embedded address.
4791			 */
4792			v6end = sizeof (struct in6_addr) - 2;
4793			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4794			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4795				for (i = sizeof (struct in6_addr) - 1;
4796				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4797					ASSERT(end >= base);
4798
4799#if defined(sun)
4800					val = ip6._S6_un._S6_u8[i];
4801#else
4802					val = ip6.__u6_addr.__u6_addr8[i];
4803#endif
4804
4805					if (val == 0) {
4806						*end-- = '0';
4807					} else {
4808						for (; val; val /= 10) {
4809							*end-- = '0' + val % 10;
4810						}
4811					}
4812
4813					if (i > DTRACE_V4MAPPED_OFFSET)
4814						*end-- = '.';
4815				}
4816
4817				if (subr == DIF_SUBR_INET_NTOA6)
4818					goto inetout;
4819
4820				/*
4821				 * Set v6end to skip the IPv4 address that
4822				 * we have already stringified.
4823				 */
4824				v6end = 10;
4825			}
4826
4827			/*
4828			 * Build the IPv6 string by working through the
4829			 * address in reverse.
4830			 */
4831			for (i = v6end; i >= 0; i -= 2) {
4832				ASSERT(end >= base);
4833
4834				if (i == firstzero + numzero - 2) {
4835					*end-- = ':';
4836					*end-- = ':';
4837					i -= numzero - 2;
4838					continue;
4839				}
4840
4841				if (i < 14 && i != firstzero - 2)
4842					*end-- = ':';
4843
4844#if defined(sun)
4845				val = (ip6._S6_un._S6_u8[i] << 8) +
4846				    ip6._S6_un._S6_u8[i + 1];
4847#else
4848				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4849				    ip6.__u6_addr.__u6_addr8[i + 1];
4850#endif
4851
4852				if (val == 0) {
4853					*end-- = '0';
4854				} else {
4855					for (; val; val /= 16) {
4856						*end-- = digits[val % 16];
4857					}
4858				}
4859			}
4860			ASSERT(end + 1 >= base);
4861
4862		} else {
4863			/*
4864			 * The user didn't use AH_INET or AH_INET6.
4865			 */
4866			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4867			regs[rd] = 0;
4868			break;
4869		}
4870
4871inetout:	regs[rd] = (uintptr_t)end + 1;
4872		mstate->dtms_scratch_ptr += size;
4873		break;
4874	}
4875
4876	case DIF_SUBR_MEMREF: {
4877		uintptr_t size = 2 * sizeof(uintptr_t);
4878		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4879		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4880
4881		/* address and length */
4882		memref[0] = tupregs[0].dttk_value;
4883		memref[1] = tupregs[1].dttk_value;
4884
4885		regs[rd] = (uintptr_t) memref;
4886		mstate->dtms_scratch_ptr += scratch_size;
4887		break;
4888	}
4889
4890	case DIF_SUBR_TYPEREF: {
4891		uintptr_t size = 4 * sizeof(uintptr_t);
4892		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4893		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4894
4895		/* address, num_elements, type_str, type_len */
4896		typeref[0] = tupregs[0].dttk_value;
4897		typeref[1] = tupregs[1].dttk_value;
4898		typeref[2] = tupregs[2].dttk_value;
4899		typeref[3] = tupregs[3].dttk_value;
4900
4901		regs[rd] = (uintptr_t) typeref;
4902		mstate->dtms_scratch_ptr += scratch_size;
4903		break;
4904	}
4905	}
4906}
4907
4908/*
4909 * Emulate the execution of DTrace IR instructions specified by the given
4910 * DIF object.  This function is deliberately void of assertions as all of
4911 * the necessary checks are handled by a call to dtrace_difo_validate().
4912 */
4913static uint64_t
4914dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4915    dtrace_vstate_t *vstate, dtrace_state_t *state)
4916{
4917	const dif_instr_t *text = difo->dtdo_buf;
4918	const uint_t textlen = difo->dtdo_len;
4919	const char *strtab = difo->dtdo_strtab;
4920	const uint64_t *inttab = difo->dtdo_inttab;
4921
4922	uint64_t rval = 0;
4923	dtrace_statvar_t *svar;
4924	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4925	dtrace_difv_t *v;
4926	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4927	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4928
4929	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4930	uint64_t regs[DIF_DIR_NREGS];
4931	uint64_t *tmp;
4932
4933	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4934	int64_t cc_r;
4935	uint_t pc = 0, id, opc = 0;
4936	uint8_t ttop = 0;
4937	dif_instr_t instr;
4938	uint_t r1, r2, rd;
4939
4940	/*
4941	 * We stash the current DIF object into the machine state: we need it
4942	 * for subsequent access checking.
4943	 */
4944	mstate->dtms_difo = difo;
4945
4946	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4947
4948	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4949		opc = pc;
4950
4951		instr = text[pc++];
4952		r1 = DIF_INSTR_R1(instr);
4953		r2 = DIF_INSTR_R2(instr);
4954		rd = DIF_INSTR_RD(instr);
4955
4956		switch (DIF_INSTR_OP(instr)) {
4957		case DIF_OP_OR:
4958			regs[rd] = regs[r1] | regs[r2];
4959			break;
4960		case DIF_OP_XOR:
4961			regs[rd] = regs[r1] ^ regs[r2];
4962			break;
4963		case DIF_OP_AND:
4964			regs[rd] = regs[r1] & regs[r2];
4965			break;
4966		case DIF_OP_SLL:
4967			regs[rd] = regs[r1] << regs[r2];
4968			break;
4969		case DIF_OP_SRL:
4970			regs[rd] = regs[r1] >> regs[r2];
4971			break;
4972		case DIF_OP_SUB:
4973			regs[rd] = regs[r1] - regs[r2];
4974			break;
4975		case DIF_OP_ADD:
4976			regs[rd] = regs[r1] + regs[r2];
4977			break;
4978		case DIF_OP_MUL:
4979			regs[rd] = regs[r1] * regs[r2];
4980			break;
4981		case DIF_OP_SDIV:
4982			if (regs[r2] == 0) {
4983				regs[rd] = 0;
4984				*flags |= CPU_DTRACE_DIVZERO;
4985			} else {
4986				regs[rd] = (int64_t)regs[r1] /
4987				    (int64_t)regs[r2];
4988			}
4989			break;
4990
4991		case DIF_OP_UDIV:
4992			if (regs[r2] == 0) {
4993				regs[rd] = 0;
4994				*flags |= CPU_DTRACE_DIVZERO;
4995			} else {
4996				regs[rd] = regs[r1] / regs[r2];
4997			}
4998			break;
4999
5000		case DIF_OP_SREM:
5001			if (regs[r2] == 0) {
5002				regs[rd] = 0;
5003				*flags |= CPU_DTRACE_DIVZERO;
5004			} else {
5005				regs[rd] = (int64_t)regs[r1] %
5006				    (int64_t)regs[r2];
5007			}
5008			break;
5009
5010		case DIF_OP_UREM:
5011			if (regs[r2] == 0) {
5012				regs[rd] = 0;
5013				*flags |= CPU_DTRACE_DIVZERO;
5014			} else {
5015				regs[rd] = regs[r1] % regs[r2];
5016			}
5017			break;
5018
5019		case DIF_OP_NOT:
5020			regs[rd] = ~regs[r1];
5021			break;
5022		case DIF_OP_MOV:
5023			regs[rd] = regs[r1];
5024			break;
5025		case DIF_OP_CMP:
5026			cc_r = regs[r1] - regs[r2];
5027			cc_n = cc_r < 0;
5028			cc_z = cc_r == 0;
5029			cc_v = 0;
5030			cc_c = regs[r1] < regs[r2];
5031			break;
5032		case DIF_OP_TST:
5033			cc_n = cc_v = cc_c = 0;
5034			cc_z = regs[r1] == 0;
5035			break;
5036		case DIF_OP_BA:
5037			pc = DIF_INSTR_LABEL(instr);
5038			break;
5039		case DIF_OP_BE:
5040			if (cc_z)
5041				pc = DIF_INSTR_LABEL(instr);
5042			break;
5043		case DIF_OP_BNE:
5044			if (cc_z == 0)
5045				pc = DIF_INSTR_LABEL(instr);
5046			break;
5047		case DIF_OP_BG:
5048			if ((cc_z | (cc_n ^ cc_v)) == 0)
5049				pc = DIF_INSTR_LABEL(instr);
5050			break;
5051		case DIF_OP_BGU:
5052			if ((cc_c | cc_z) == 0)
5053				pc = DIF_INSTR_LABEL(instr);
5054			break;
5055		case DIF_OP_BGE:
5056			if ((cc_n ^ cc_v) == 0)
5057				pc = DIF_INSTR_LABEL(instr);
5058			break;
5059		case DIF_OP_BGEU:
5060			if (cc_c == 0)
5061				pc = DIF_INSTR_LABEL(instr);
5062			break;
5063		case DIF_OP_BL:
5064			if (cc_n ^ cc_v)
5065				pc = DIF_INSTR_LABEL(instr);
5066			break;
5067		case DIF_OP_BLU:
5068			if (cc_c)
5069				pc = DIF_INSTR_LABEL(instr);
5070			break;
5071		case DIF_OP_BLE:
5072			if (cc_z | (cc_n ^ cc_v))
5073				pc = DIF_INSTR_LABEL(instr);
5074			break;
5075		case DIF_OP_BLEU:
5076			if (cc_c | cc_z)
5077				pc = DIF_INSTR_LABEL(instr);
5078			break;
5079		case DIF_OP_RLDSB:
5080			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5081				*flags |= CPU_DTRACE_KPRIV;
5082				*illval = regs[r1];
5083				break;
5084			}
5085			/*FALLTHROUGH*/
5086		case DIF_OP_LDSB:
5087			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5088			break;
5089		case DIF_OP_RLDSH:
5090			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5091				*flags |= CPU_DTRACE_KPRIV;
5092				*illval = regs[r1];
5093				break;
5094			}
5095			/*FALLTHROUGH*/
5096		case DIF_OP_LDSH:
5097			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5098			break;
5099		case DIF_OP_RLDSW:
5100			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5101				*flags |= CPU_DTRACE_KPRIV;
5102				*illval = regs[r1];
5103				break;
5104			}
5105			/*FALLTHROUGH*/
5106		case DIF_OP_LDSW:
5107			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5108			break;
5109		case DIF_OP_RLDUB:
5110			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5111				*flags |= CPU_DTRACE_KPRIV;
5112				*illval = regs[r1];
5113				break;
5114			}
5115			/*FALLTHROUGH*/
5116		case DIF_OP_LDUB:
5117			regs[rd] = dtrace_load8(regs[r1]);
5118			break;
5119		case DIF_OP_RLDUH:
5120			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5121				*flags |= CPU_DTRACE_KPRIV;
5122				*illval = regs[r1];
5123				break;
5124			}
5125			/*FALLTHROUGH*/
5126		case DIF_OP_LDUH:
5127			regs[rd] = dtrace_load16(regs[r1]);
5128			break;
5129		case DIF_OP_RLDUW:
5130			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5131				*flags |= CPU_DTRACE_KPRIV;
5132				*illval = regs[r1];
5133				break;
5134			}
5135			/*FALLTHROUGH*/
5136		case DIF_OP_LDUW:
5137			regs[rd] = dtrace_load32(regs[r1]);
5138			break;
5139		case DIF_OP_RLDX:
5140			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5141				*flags |= CPU_DTRACE_KPRIV;
5142				*illval = regs[r1];
5143				break;
5144			}
5145			/*FALLTHROUGH*/
5146		case DIF_OP_LDX:
5147			regs[rd] = dtrace_load64(regs[r1]);
5148			break;
5149		case DIF_OP_ULDSB:
5150			regs[rd] = (int8_t)
5151			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5152			break;
5153		case DIF_OP_ULDSH:
5154			regs[rd] = (int16_t)
5155			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5156			break;
5157		case DIF_OP_ULDSW:
5158			regs[rd] = (int32_t)
5159			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5160			break;
5161		case DIF_OP_ULDUB:
5162			regs[rd] =
5163			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5164			break;
5165		case DIF_OP_ULDUH:
5166			regs[rd] =
5167			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5168			break;
5169		case DIF_OP_ULDUW:
5170			regs[rd] =
5171			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5172			break;
5173		case DIF_OP_ULDX:
5174			regs[rd] =
5175			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5176			break;
5177		case DIF_OP_RET:
5178			rval = regs[rd];
5179			pc = textlen;
5180			break;
5181		case DIF_OP_NOP:
5182			break;
5183		case DIF_OP_SETX:
5184			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5185			break;
5186		case DIF_OP_SETS:
5187			regs[rd] = (uint64_t)(uintptr_t)
5188			    (strtab + DIF_INSTR_STRING(instr));
5189			break;
5190		case DIF_OP_SCMP: {
5191			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5192			uintptr_t s1 = regs[r1];
5193			uintptr_t s2 = regs[r2];
5194
5195			if (s1 != 0 &&
5196			    !dtrace_strcanload(s1, sz, mstate, vstate))
5197				break;
5198			if (s2 != 0 &&
5199			    !dtrace_strcanload(s2, sz, mstate, vstate))
5200				break;
5201
5202			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5203
5204			cc_n = cc_r < 0;
5205			cc_z = cc_r == 0;
5206			cc_v = cc_c = 0;
5207			break;
5208		}
5209		case DIF_OP_LDGA:
5210			regs[rd] = dtrace_dif_variable(mstate, state,
5211			    r1, regs[r2]);
5212			break;
5213		case DIF_OP_LDGS:
5214			id = DIF_INSTR_VAR(instr);
5215
5216			if (id >= DIF_VAR_OTHER_UBASE) {
5217				uintptr_t a;
5218
5219				id -= DIF_VAR_OTHER_UBASE;
5220				svar = vstate->dtvs_globals[id];
5221				ASSERT(svar != NULL);
5222				v = &svar->dtsv_var;
5223
5224				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5225					regs[rd] = svar->dtsv_data;
5226					break;
5227				}
5228
5229				a = (uintptr_t)svar->dtsv_data;
5230
5231				if (*(uint8_t *)a == UINT8_MAX) {
5232					/*
5233					 * If the 0th byte is set to UINT8_MAX
5234					 * then this is to be treated as a
5235					 * reference to a NULL variable.
5236					 */
5237					regs[rd] = 0;
5238				} else {
5239					regs[rd] = a + sizeof (uint64_t);
5240				}
5241
5242				break;
5243			}
5244
5245			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5246			break;
5247
5248		case DIF_OP_STGS:
5249			id = DIF_INSTR_VAR(instr);
5250
5251			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5252			id -= DIF_VAR_OTHER_UBASE;
5253
5254			svar = vstate->dtvs_globals[id];
5255			ASSERT(svar != NULL);
5256			v = &svar->dtsv_var;
5257
5258			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5259				uintptr_t a = (uintptr_t)svar->dtsv_data;
5260
5261				ASSERT(a != 0);
5262				ASSERT(svar->dtsv_size != 0);
5263
5264				if (regs[rd] == 0) {
5265					*(uint8_t *)a = UINT8_MAX;
5266					break;
5267				} else {
5268					*(uint8_t *)a = 0;
5269					a += sizeof (uint64_t);
5270				}
5271				if (!dtrace_vcanload(
5272				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5273				    mstate, vstate))
5274					break;
5275
5276				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5277				    (void *)a, &v->dtdv_type);
5278				break;
5279			}
5280
5281			svar->dtsv_data = regs[rd];
5282			break;
5283
5284		case DIF_OP_LDTA:
5285			/*
5286			 * There are no DTrace built-in thread-local arrays at
5287			 * present.  This opcode is saved for future work.
5288			 */
5289			*flags |= CPU_DTRACE_ILLOP;
5290			regs[rd] = 0;
5291			break;
5292
5293		case DIF_OP_LDLS:
5294			id = DIF_INSTR_VAR(instr);
5295
5296			if (id < DIF_VAR_OTHER_UBASE) {
5297				/*
5298				 * For now, this has no meaning.
5299				 */
5300				regs[rd] = 0;
5301				break;
5302			}
5303
5304			id -= DIF_VAR_OTHER_UBASE;
5305
5306			ASSERT(id < vstate->dtvs_nlocals);
5307			ASSERT(vstate->dtvs_locals != NULL);
5308
5309			svar = vstate->dtvs_locals[id];
5310			ASSERT(svar != NULL);
5311			v = &svar->dtsv_var;
5312
5313			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5314				uintptr_t a = (uintptr_t)svar->dtsv_data;
5315				size_t sz = v->dtdv_type.dtdt_size;
5316
5317				sz += sizeof (uint64_t);
5318				ASSERT(svar->dtsv_size == NCPU * sz);
5319				a += curcpu * sz;
5320
5321				if (*(uint8_t *)a == UINT8_MAX) {
5322					/*
5323					 * If the 0th byte is set to UINT8_MAX
5324					 * then this is to be treated as a
5325					 * reference to a NULL variable.
5326					 */
5327					regs[rd] = 0;
5328				} else {
5329					regs[rd] = a + sizeof (uint64_t);
5330				}
5331
5332				break;
5333			}
5334
5335			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5336			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5337			regs[rd] = tmp[curcpu];
5338			break;
5339
5340		case DIF_OP_STLS:
5341			id = DIF_INSTR_VAR(instr);
5342
5343			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5344			id -= DIF_VAR_OTHER_UBASE;
5345			ASSERT(id < vstate->dtvs_nlocals);
5346
5347			ASSERT(vstate->dtvs_locals != NULL);
5348			svar = vstate->dtvs_locals[id];
5349			ASSERT(svar != NULL);
5350			v = &svar->dtsv_var;
5351
5352			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5353				uintptr_t a = (uintptr_t)svar->dtsv_data;
5354				size_t sz = v->dtdv_type.dtdt_size;
5355
5356				sz += sizeof (uint64_t);
5357				ASSERT(svar->dtsv_size == NCPU * sz);
5358				a += curcpu * sz;
5359
5360				if (regs[rd] == 0) {
5361					*(uint8_t *)a = UINT8_MAX;
5362					break;
5363				} else {
5364					*(uint8_t *)a = 0;
5365					a += sizeof (uint64_t);
5366				}
5367
5368				if (!dtrace_vcanload(
5369				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5370				    mstate, vstate))
5371					break;
5372
5373				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5374				    (void *)a, &v->dtdv_type);
5375				break;
5376			}
5377
5378			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5379			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5380			tmp[curcpu] = regs[rd];
5381			break;
5382
5383		case DIF_OP_LDTS: {
5384			dtrace_dynvar_t *dvar;
5385			dtrace_key_t *key;
5386
5387			id = DIF_INSTR_VAR(instr);
5388			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5389			id -= DIF_VAR_OTHER_UBASE;
5390			v = &vstate->dtvs_tlocals[id];
5391
5392			key = &tupregs[DIF_DTR_NREGS];
5393			key[0].dttk_value = (uint64_t)id;
5394			key[0].dttk_size = 0;
5395			DTRACE_TLS_THRKEY(key[1].dttk_value);
5396			key[1].dttk_size = 0;
5397
5398			dvar = dtrace_dynvar(dstate, 2, key,
5399			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5400			    mstate, vstate);
5401
5402			if (dvar == NULL) {
5403				regs[rd] = 0;
5404				break;
5405			}
5406
5407			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5408				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5409			} else {
5410				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5411			}
5412
5413			break;
5414		}
5415
5416		case DIF_OP_STTS: {
5417			dtrace_dynvar_t *dvar;
5418			dtrace_key_t *key;
5419
5420			id = DIF_INSTR_VAR(instr);
5421			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5422			id -= DIF_VAR_OTHER_UBASE;
5423
5424			key = &tupregs[DIF_DTR_NREGS];
5425			key[0].dttk_value = (uint64_t)id;
5426			key[0].dttk_size = 0;
5427			DTRACE_TLS_THRKEY(key[1].dttk_value);
5428			key[1].dttk_size = 0;
5429			v = &vstate->dtvs_tlocals[id];
5430
5431			dvar = dtrace_dynvar(dstate, 2, key,
5432			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5433			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5434			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5435			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5436
5437			/*
5438			 * Given that we're storing to thread-local data,
5439			 * we need to flush our predicate cache.
5440			 */
5441			curthread->t_predcache = 0;
5442
5443			if (dvar == NULL)
5444				break;
5445
5446			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5447				if (!dtrace_vcanload(
5448				    (void *)(uintptr_t)regs[rd],
5449				    &v->dtdv_type, mstate, vstate))
5450					break;
5451
5452				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5453				    dvar->dtdv_data, &v->dtdv_type);
5454			} else {
5455				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5456			}
5457
5458			break;
5459		}
5460
5461		case DIF_OP_SRA:
5462			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5463			break;
5464
5465		case DIF_OP_CALL:
5466			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5467			    regs, tupregs, ttop, mstate, state);
5468			break;
5469
5470		case DIF_OP_PUSHTR:
5471			if (ttop == DIF_DTR_NREGS) {
5472				*flags |= CPU_DTRACE_TUPOFLOW;
5473				break;
5474			}
5475
5476			if (r1 == DIF_TYPE_STRING) {
5477				/*
5478				 * If this is a string type and the size is 0,
5479				 * we'll use the system-wide default string
5480				 * size.  Note that we are _not_ looking at
5481				 * the value of the DTRACEOPT_STRSIZE option;
5482				 * had this been set, we would expect to have
5483				 * a non-zero size value in the "pushtr".
5484				 */
5485				tupregs[ttop].dttk_size =
5486				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5487				    regs[r2] ? regs[r2] :
5488				    dtrace_strsize_default) + 1;
5489			} else {
5490				tupregs[ttop].dttk_size = regs[r2];
5491			}
5492
5493			tupregs[ttop++].dttk_value = regs[rd];
5494			break;
5495
5496		case DIF_OP_PUSHTV:
5497			if (ttop == DIF_DTR_NREGS) {
5498				*flags |= CPU_DTRACE_TUPOFLOW;
5499				break;
5500			}
5501
5502			tupregs[ttop].dttk_value = regs[rd];
5503			tupregs[ttop++].dttk_size = 0;
5504			break;
5505
5506		case DIF_OP_POPTS:
5507			if (ttop != 0)
5508				ttop--;
5509			break;
5510
5511		case DIF_OP_FLUSHTS:
5512			ttop = 0;
5513			break;
5514
5515		case DIF_OP_LDGAA:
5516		case DIF_OP_LDTAA: {
5517			dtrace_dynvar_t *dvar;
5518			dtrace_key_t *key = tupregs;
5519			uint_t nkeys = ttop;
5520
5521			id = DIF_INSTR_VAR(instr);
5522			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5523			id -= DIF_VAR_OTHER_UBASE;
5524
5525			key[nkeys].dttk_value = (uint64_t)id;
5526			key[nkeys++].dttk_size = 0;
5527
5528			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5529				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5530				key[nkeys++].dttk_size = 0;
5531				v = &vstate->dtvs_tlocals[id];
5532			} else {
5533				v = &vstate->dtvs_globals[id]->dtsv_var;
5534			}
5535
5536			dvar = dtrace_dynvar(dstate, nkeys, key,
5537			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5538			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5539			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5540
5541			if (dvar == NULL) {
5542				regs[rd] = 0;
5543				break;
5544			}
5545
5546			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5547				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5548			} else {
5549				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5550			}
5551
5552			break;
5553		}
5554
5555		case DIF_OP_STGAA:
5556		case DIF_OP_STTAA: {
5557			dtrace_dynvar_t *dvar;
5558			dtrace_key_t *key = tupregs;
5559			uint_t nkeys = ttop;
5560
5561			id = DIF_INSTR_VAR(instr);
5562			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5563			id -= DIF_VAR_OTHER_UBASE;
5564
5565			key[nkeys].dttk_value = (uint64_t)id;
5566			key[nkeys++].dttk_size = 0;
5567
5568			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5569				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5570				key[nkeys++].dttk_size = 0;
5571				v = &vstate->dtvs_tlocals[id];
5572			} else {
5573				v = &vstate->dtvs_globals[id]->dtsv_var;
5574			}
5575
5576			dvar = dtrace_dynvar(dstate, nkeys, key,
5577			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5578			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5579			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5580			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5581
5582			if (dvar == NULL)
5583				break;
5584
5585			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5586				if (!dtrace_vcanload(
5587				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5588				    mstate, vstate))
5589					break;
5590
5591				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5592				    dvar->dtdv_data, &v->dtdv_type);
5593			} else {
5594				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5595			}
5596
5597			break;
5598		}
5599
5600		case DIF_OP_ALLOCS: {
5601			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5602			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5603
5604			/*
5605			 * Rounding up the user allocation size could have
5606			 * overflowed large, bogus allocations (like -1ULL) to
5607			 * 0.
5608			 */
5609			if (size < regs[r1] ||
5610			    !DTRACE_INSCRATCH(mstate, size)) {
5611				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5612				regs[rd] = 0;
5613				break;
5614			}
5615
5616			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5617			mstate->dtms_scratch_ptr += size;
5618			regs[rd] = ptr;
5619			break;
5620		}
5621
5622		case DIF_OP_COPYS:
5623			if (!dtrace_canstore(regs[rd], regs[r2],
5624			    mstate, vstate)) {
5625				*flags |= CPU_DTRACE_BADADDR;
5626				*illval = regs[rd];
5627				break;
5628			}
5629
5630			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5631				break;
5632
5633			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5634			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5635			break;
5636
5637		case DIF_OP_STB:
5638			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5639				*flags |= CPU_DTRACE_BADADDR;
5640				*illval = regs[rd];
5641				break;
5642			}
5643			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5644			break;
5645
5646		case DIF_OP_STH:
5647			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5648				*flags |= CPU_DTRACE_BADADDR;
5649				*illval = regs[rd];
5650				break;
5651			}
5652			if (regs[rd] & 1) {
5653				*flags |= CPU_DTRACE_BADALIGN;
5654				*illval = regs[rd];
5655				break;
5656			}
5657			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5658			break;
5659
5660		case DIF_OP_STW:
5661			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5662				*flags |= CPU_DTRACE_BADADDR;
5663				*illval = regs[rd];
5664				break;
5665			}
5666			if (regs[rd] & 3) {
5667				*flags |= CPU_DTRACE_BADALIGN;
5668				*illval = regs[rd];
5669				break;
5670			}
5671			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5672			break;
5673
5674		case DIF_OP_STX:
5675			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5676				*flags |= CPU_DTRACE_BADADDR;
5677				*illval = regs[rd];
5678				break;
5679			}
5680			if (regs[rd] & 7) {
5681				*flags |= CPU_DTRACE_BADALIGN;
5682				*illval = regs[rd];
5683				break;
5684			}
5685			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5686			break;
5687		}
5688	}
5689
5690	if (!(*flags & CPU_DTRACE_FAULT))
5691		return (rval);
5692
5693	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5694	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5695
5696	return (0);
5697}
5698
5699static void
5700dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5701{
5702	dtrace_probe_t *probe = ecb->dte_probe;
5703	dtrace_provider_t *prov = probe->dtpr_provider;
5704	char c[DTRACE_FULLNAMELEN + 80], *str;
5705	char *msg = "dtrace: breakpoint action at probe ";
5706	char *ecbmsg = " (ecb ";
5707	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5708	uintptr_t val = (uintptr_t)ecb;
5709	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5710
5711	if (dtrace_destructive_disallow)
5712		return;
5713
5714	/*
5715	 * It's impossible to be taking action on the NULL probe.
5716	 */
5717	ASSERT(probe != NULL);
5718
5719	/*
5720	 * This is a poor man's (destitute man's?) sprintf():  we want to
5721	 * print the provider name, module name, function name and name of
5722	 * the probe, along with the hex address of the ECB with the breakpoint
5723	 * action -- all of which we must place in the character buffer by
5724	 * hand.
5725	 */
5726	while (*msg != '\0')
5727		c[i++] = *msg++;
5728
5729	for (str = prov->dtpv_name; *str != '\0'; str++)
5730		c[i++] = *str;
5731	c[i++] = ':';
5732
5733	for (str = probe->dtpr_mod; *str != '\0'; str++)
5734		c[i++] = *str;
5735	c[i++] = ':';
5736
5737	for (str = probe->dtpr_func; *str != '\0'; str++)
5738		c[i++] = *str;
5739	c[i++] = ':';
5740
5741	for (str = probe->dtpr_name; *str != '\0'; str++)
5742		c[i++] = *str;
5743
5744	while (*ecbmsg != '\0')
5745		c[i++] = *ecbmsg++;
5746
5747	while (shift >= 0) {
5748		mask = (uintptr_t)0xf << shift;
5749
5750		if (val >= ((uintptr_t)1 << shift))
5751			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5752		shift -= 4;
5753	}
5754
5755	c[i++] = ')';
5756	c[i] = '\0';
5757
5758#if defined(sun)
5759	debug_enter(c);
5760#else
5761	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5762#endif
5763}
5764
5765static void
5766dtrace_action_panic(dtrace_ecb_t *ecb)
5767{
5768	dtrace_probe_t *probe = ecb->dte_probe;
5769
5770	/*
5771	 * It's impossible to be taking action on the NULL probe.
5772	 */
5773	ASSERT(probe != NULL);
5774
5775	if (dtrace_destructive_disallow)
5776		return;
5777
5778	if (dtrace_panicked != NULL)
5779		return;
5780
5781	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5782		return;
5783
5784	/*
5785	 * We won the right to panic.  (We want to be sure that only one
5786	 * thread calls panic() from dtrace_probe(), and that panic() is
5787	 * called exactly once.)
5788	 */
5789	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5790	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5791	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5792}
5793
5794static void
5795dtrace_action_raise(uint64_t sig)
5796{
5797	if (dtrace_destructive_disallow)
5798		return;
5799
5800	if (sig >= NSIG) {
5801		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5802		return;
5803	}
5804
5805#if defined(sun)
5806	/*
5807	 * raise() has a queue depth of 1 -- we ignore all subsequent
5808	 * invocations of the raise() action.
5809	 */
5810	if (curthread->t_dtrace_sig == 0)
5811		curthread->t_dtrace_sig = (uint8_t)sig;
5812
5813	curthread->t_sig_check = 1;
5814	aston(curthread);
5815#else
5816	struct proc *p = curproc;
5817	PROC_LOCK(p);
5818	kern_psignal(p, sig);
5819	PROC_UNLOCK(p);
5820#endif
5821}
5822
5823static void
5824dtrace_action_stop(void)
5825{
5826	if (dtrace_destructive_disallow)
5827		return;
5828
5829#if defined(sun)
5830	if (!curthread->t_dtrace_stop) {
5831		curthread->t_dtrace_stop = 1;
5832		curthread->t_sig_check = 1;
5833		aston(curthread);
5834	}
5835#else
5836	struct proc *p = curproc;
5837	PROC_LOCK(p);
5838	kern_psignal(p, SIGSTOP);
5839	PROC_UNLOCK(p);
5840#endif
5841}
5842
5843static void
5844dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5845{
5846	hrtime_t now;
5847	volatile uint16_t *flags;
5848#if defined(sun)
5849	cpu_t *cpu = CPU;
5850#else
5851	cpu_t *cpu = &solaris_cpu[curcpu];
5852#endif
5853
5854	if (dtrace_destructive_disallow)
5855		return;
5856
5857	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5858
5859	now = dtrace_gethrtime();
5860
5861	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5862		/*
5863		 * We need to advance the mark to the current time.
5864		 */
5865		cpu->cpu_dtrace_chillmark = now;
5866		cpu->cpu_dtrace_chilled = 0;
5867	}
5868
5869	/*
5870	 * Now check to see if the requested chill time would take us over
5871	 * the maximum amount of time allowed in the chill interval.  (Or
5872	 * worse, if the calculation itself induces overflow.)
5873	 */
5874	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5875	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5876		*flags |= CPU_DTRACE_ILLOP;
5877		return;
5878	}
5879
5880	while (dtrace_gethrtime() - now < val)
5881		continue;
5882
5883	/*
5884	 * Normally, we assure that the value of the variable "timestamp" does
5885	 * not change within an ECB.  The presence of chill() represents an
5886	 * exception to this rule, however.
5887	 */
5888	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5889	cpu->cpu_dtrace_chilled += val;
5890}
5891
5892static void
5893dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5894    uint64_t *buf, uint64_t arg)
5895{
5896	int nframes = DTRACE_USTACK_NFRAMES(arg);
5897	int strsize = DTRACE_USTACK_STRSIZE(arg);
5898	uint64_t *pcs = &buf[1], *fps;
5899	char *str = (char *)&pcs[nframes];
5900	int size, offs = 0, i, j;
5901	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5902	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5903	char *sym;
5904
5905	/*
5906	 * Should be taking a faster path if string space has not been
5907	 * allocated.
5908	 */
5909	ASSERT(strsize != 0);
5910
5911	/*
5912	 * We will first allocate some temporary space for the frame pointers.
5913	 */
5914	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5915	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5916	    (nframes * sizeof (uint64_t));
5917
5918	if (!DTRACE_INSCRATCH(mstate, size)) {
5919		/*
5920		 * Not enough room for our frame pointers -- need to indicate
5921		 * that we ran out of scratch space.
5922		 */
5923		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5924		return;
5925	}
5926
5927	mstate->dtms_scratch_ptr += size;
5928	saved = mstate->dtms_scratch_ptr;
5929
5930	/*
5931	 * Now get a stack with both program counters and frame pointers.
5932	 */
5933	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5934	dtrace_getufpstack(buf, fps, nframes + 1);
5935	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5936
5937	/*
5938	 * If that faulted, we're cooked.
5939	 */
5940	if (*flags & CPU_DTRACE_FAULT)
5941		goto out;
5942
5943	/*
5944	 * Now we want to walk up the stack, calling the USTACK helper.  For
5945	 * each iteration, we restore the scratch pointer.
5946	 */
5947	for (i = 0; i < nframes; i++) {
5948		mstate->dtms_scratch_ptr = saved;
5949
5950		if (offs >= strsize)
5951			break;
5952
5953		sym = (char *)(uintptr_t)dtrace_helper(
5954		    DTRACE_HELPER_ACTION_USTACK,
5955		    mstate, state, pcs[i], fps[i]);
5956
5957		/*
5958		 * If we faulted while running the helper, we're going to
5959		 * clear the fault and null out the corresponding string.
5960		 */
5961		if (*flags & CPU_DTRACE_FAULT) {
5962			*flags &= ~CPU_DTRACE_FAULT;
5963			str[offs++] = '\0';
5964			continue;
5965		}
5966
5967		if (sym == NULL) {
5968			str[offs++] = '\0';
5969			continue;
5970		}
5971
5972		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5973
5974		/*
5975		 * Now copy in the string that the helper returned to us.
5976		 */
5977		for (j = 0; offs + j < strsize; j++) {
5978			if ((str[offs + j] = sym[j]) == '\0')
5979				break;
5980		}
5981
5982		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5983
5984		offs += j + 1;
5985	}
5986
5987	if (offs >= strsize) {
5988		/*
5989		 * If we didn't have room for all of the strings, we don't
5990		 * abort processing -- this needn't be a fatal error -- but we
5991		 * still want to increment a counter (dts_stkstroverflows) to
5992		 * allow this condition to be warned about.  (If this is from
5993		 * a jstack() action, it is easily tuned via jstackstrsize.)
5994		 */
5995		dtrace_error(&state->dts_stkstroverflows);
5996	}
5997
5998	while (offs < strsize)
5999		str[offs++] = '\0';
6000
6001out:
6002	mstate->dtms_scratch_ptr = old;
6003}
6004
6005/*
6006 * If you're looking for the epicenter of DTrace, you just found it.  This
6007 * is the function called by the provider to fire a probe -- from which all
6008 * subsequent probe-context DTrace activity emanates.
6009 */
6010void
6011dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6012    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6013{
6014	processorid_t cpuid;
6015	dtrace_icookie_t cookie;
6016	dtrace_probe_t *probe;
6017	dtrace_mstate_t mstate;
6018	dtrace_ecb_t *ecb;
6019	dtrace_action_t *act;
6020	intptr_t offs;
6021	size_t size;
6022	int vtime, onintr;
6023	volatile uint16_t *flags;
6024	hrtime_t now;
6025
6026	if (panicstr != NULL)
6027		return;
6028
6029#if defined(sun)
6030	/*
6031	 * Kick out immediately if this CPU is still being born (in which case
6032	 * curthread will be set to -1) or the current thread can't allow
6033	 * probes in its current context.
6034	 */
6035	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6036		return;
6037#endif
6038
6039	cookie = dtrace_interrupt_disable();
6040	probe = dtrace_probes[id - 1];
6041	cpuid = curcpu;
6042	onintr = CPU_ON_INTR(CPU);
6043
6044	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6045	    probe->dtpr_predcache == curthread->t_predcache) {
6046		/*
6047		 * We have hit in the predicate cache; we know that
6048		 * this predicate would evaluate to be false.
6049		 */
6050		dtrace_interrupt_enable(cookie);
6051		return;
6052	}
6053
6054#if defined(sun)
6055	if (panic_quiesce) {
6056#else
6057	if (panicstr != NULL) {
6058#endif
6059		/*
6060		 * We don't trace anything if we're panicking.
6061		 */
6062		dtrace_interrupt_enable(cookie);
6063		return;
6064	}
6065
6066	now = dtrace_gethrtime();
6067	vtime = dtrace_vtime_references != 0;
6068
6069	if (vtime && curthread->t_dtrace_start)
6070		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6071
6072	mstate.dtms_difo = NULL;
6073	mstate.dtms_probe = probe;
6074	mstate.dtms_strtok = 0;
6075	mstate.dtms_arg[0] = arg0;
6076	mstate.dtms_arg[1] = arg1;
6077	mstate.dtms_arg[2] = arg2;
6078	mstate.dtms_arg[3] = arg3;
6079	mstate.dtms_arg[4] = arg4;
6080
6081	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6082
6083	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6084		dtrace_predicate_t *pred = ecb->dte_predicate;
6085		dtrace_state_t *state = ecb->dte_state;
6086		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6087		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6088		dtrace_vstate_t *vstate = &state->dts_vstate;
6089		dtrace_provider_t *prov = probe->dtpr_provider;
6090		uint64_t tracememsize = 0;
6091		int committed = 0;
6092		caddr_t tomax;
6093
6094		/*
6095		 * A little subtlety with the following (seemingly innocuous)
6096		 * declaration of the automatic 'val':  by looking at the
6097		 * code, you might think that it could be declared in the
6098		 * action processing loop, below.  (That is, it's only used in
6099		 * the action processing loop.)  However, it must be declared
6100		 * out of that scope because in the case of DIF expression
6101		 * arguments to aggregating actions, one iteration of the
6102		 * action loop will use the last iteration's value.
6103		 */
6104		uint64_t val = 0;
6105
6106		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6107		*flags &= ~CPU_DTRACE_ERROR;
6108
6109		if (prov == dtrace_provider) {
6110			/*
6111			 * If dtrace itself is the provider of this probe,
6112			 * we're only going to continue processing the ECB if
6113			 * arg0 (the dtrace_state_t) is equal to the ECB's
6114			 * creating state.  (This prevents disjoint consumers
6115			 * from seeing one another's metaprobes.)
6116			 */
6117			if (arg0 != (uint64_t)(uintptr_t)state)
6118				continue;
6119		}
6120
6121		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6122			/*
6123			 * We're not currently active.  If our provider isn't
6124			 * the dtrace pseudo provider, we're not interested.
6125			 */
6126			if (prov != dtrace_provider)
6127				continue;
6128
6129			/*
6130			 * Now we must further check if we are in the BEGIN
6131			 * probe.  If we are, we will only continue processing
6132			 * if we're still in WARMUP -- if one BEGIN enabling
6133			 * has invoked the exit() action, we don't want to
6134			 * evaluate subsequent BEGIN enablings.
6135			 */
6136			if (probe->dtpr_id == dtrace_probeid_begin &&
6137			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6138				ASSERT(state->dts_activity ==
6139				    DTRACE_ACTIVITY_DRAINING);
6140				continue;
6141			}
6142		}
6143
6144		if (ecb->dte_cond) {
6145			/*
6146			 * If the dte_cond bits indicate that this
6147			 * consumer is only allowed to see user-mode firings
6148			 * of this probe, call the provider's dtps_usermode()
6149			 * entry point to check that the probe was fired
6150			 * while in a user context. Skip this ECB if that's
6151			 * not the case.
6152			 */
6153			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6154			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6155			    probe->dtpr_id, probe->dtpr_arg) == 0)
6156				continue;
6157
6158#if defined(sun)
6159			/*
6160			 * This is more subtle than it looks. We have to be
6161			 * absolutely certain that CRED() isn't going to
6162			 * change out from under us so it's only legit to
6163			 * examine that structure if we're in constrained
6164			 * situations. Currently, the only times we'll this
6165			 * check is if a non-super-user has enabled the
6166			 * profile or syscall providers -- providers that
6167			 * allow visibility of all processes. For the
6168			 * profile case, the check above will ensure that
6169			 * we're examining a user context.
6170			 */
6171			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6172				cred_t *cr;
6173				cred_t *s_cr =
6174				    ecb->dte_state->dts_cred.dcr_cred;
6175				proc_t *proc;
6176
6177				ASSERT(s_cr != NULL);
6178
6179				if ((cr = CRED()) == NULL ||
6180				    s_cr->cr_uid != cr->cr_uid ||
6181				    s_cr->cr_uid != cr->cr_ruid ||
6182				    s_cr->cr_uid != cr->cr_suid ||
6183				    s_cr->cr_gid != cr->cr_gid ||
6184				    s_cr->cr_gid != cr->cr_rgid ||
6185				    s_cr->cr_gid != cr->cr_sgid ||
6186				    (proc = ttoproc(curthread)) == NULL ||
6187				    (proc->p_flag & SNOCD))
6188					continue;
6189			}
6190
6191			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6192				cred_t *cr;
6193				cred_t *s_cr =
6194				    ecb->dte_state->dts_cred.dcr_cred;
6195
6196				ASSERT(s_cr != NULL);
6197
6198				if ((cr = CRED()) == NULL ||
6199				    s_cr->cr_zone->zone_id !=
6200				    cr->cr_zone->zone_id)
6201					continue;
6202			}
6203#endif
6204		}
6205
6206		if (now - state->dts_alive > dtrace_deadman_timeout) {
6207			/*
6208			 * We seem to be dead.  Unless we (a) have kernel
6209			 * destructive permissions (b) have expicitly enabled
6210			 * destructive actions and (c) destructive actions have
6211			 * not been disabled, we're going to transition into
6212			 * the KILLED state, from which no further processing
6213			 * on this state will be performed.
6214			 */
6215			if (!dtrace_priv_kernel_destructive(state) ||
6216			    !state->dts_cred.dcr_destructive ||
6217			    dtrace_destructive_disallow) {
6218				void *activity = &state->dts_activity;
6219				dtrace_activity_t current;
6220
6221				do {
6222					current = state->dts_activity;
6223				} while (dtrace_cas32(activity, current,
6224				    DTRACE_ACTIVITY_KILLED) != current);
6225
6226				continue;
6227			}
6228		}
6229
6230		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6231		    ecb->dte_alignment, state, &mstate)) < 0)
6232			continue;
6233
6234		tomax = buf->dtb_tomax;
6235		ASSERT(tomax != NULL);
6236
6237		if (ecb->dte_size != 0)
6238			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6239
6240		mstate.dtms_epid = ecb->dte_epid;
6241		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6242
6243		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6244			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6245		else
6246			mstate.dtms_access = 0;
6247
6248		if (pred != NULL) {
6249			dtrace_difo_t *dp = pred->dtp_difo;
6250			int rval;
6251
6252			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6253
6254			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6255				dtrace_cacheid_t cid = probe->dtpr_predcache;
6256
6257				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6258					/*
6259					 * Update the predicate cache...
6260					 */
6261					ASSERT(cid == pred->dtp_cacheid);
6262					curthread->t_predcache = cid;
6263				}
6264
6265				continue;
6266			}
6267		}
6268
6269		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6270		    act != NULL; act = act->dta_next) {
6271			size_t valoffs;
6272			dtrace_difo_t *dp;
6273			dtrace_recdesc_t *rec = &act->dta_rec;
6274
6275			size = rec->dtrd_size;
6276			valoffs = offs + rec->dtrd_offset;
6277
6278			if (DTRACEACT_ISAGG(act->dta_kind)) {
6279				uint64_t v = 0xbad;
6280				dtrace_aggregation_t *agg;
6281
6282				agg = (dtrace_aggregation_t *)act;
6283
6284				if ((dp = act->dta_difo) != NULL)
6285					v = dtrace_dif_emulate(dp,
6286					    &mstate, vstate, state);
6287
6288				if (*flags & CPU_DTRACE_ERROR)
6289					continue;
6290
6291				/*
6292				 * Note that we always pass the expression
6293				 * value from the previous iteration of the
6294				 * action loop.  This value will only be used
6295				 * if there is an expression argument to the
6296				 * aggregating action, denoted by the
6297				 * dtag_hasarg field.
6298				 */
6299				dtrace_aggregate(agg, buf,
6300				    offs, aggbuf, v, val);
6301				continue;
6302			}
6303
6304			switch (act->dta_kind) {
6305			case DTRACEACT_STOP:
6306				if (dtrace_priv_proc_destructive(state))
6307					dtrace_action_stop();
6308				continue;
6309
6310			case DTRACEACT_BREAKPOINT:
6311				if (dtrace_priv_kernel_destructive(state))
6312					dtrace_action_breakpoint(ecb);
6313				continue;
6314
6315			case DTRACEACT_PANIC:
6316				if (dtrace_priv_kernel_destructive(state))
6317					dtrace_action_panic(ecb);
6318				continue;
6319
6320			case DTRACEACT_STACK:
6321				if (!dtrace_priv_kernel(state))
6322					continue;
6323
6324				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6325				    size / sizeof (pc_t), probe->dtpr_aframes,
6326				    DTRACE_ANCHORED(probe) ? NULL :
6327				    (uint32_t *)arg0);
6328				continue;
6329
6330			case DTRACEACT_JSTACK:
6331			case DTRACEACT_USTACK:
6332				if (!dtrace_priv_proc(state))
6333					continue;
6334
6335				/*
6336				 * See comment in DIF_VAR_PID.
6337				 */
6338				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6339				    CPU_ON_INTR(CPU)) {
6340					int depth = DTRACE_USTACK_NFRAMES(
6341					    rec->dtrd_arg) + 1;
6342
6343					dtrace_bzero((void *)(tomax + valoffs),
6344					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6345					    + depth * sizeof (uint64_t));
6346
6347					continue;
6348				}
6349
6350				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6351				    curproc->p_dtrace_helpers != NULL) {
6352					/*
6353					 * This is the slow path -- we have
6354					 * allocated string space, and we're
6355					 * getting the stack of a process that
6356					 * has helpers.  Call into a separate
6357					 * routine to perform this processing.
6358					 */
6359					dtrace_action_ustack(&mstate, state,
6360					    (uint64_t *)(tomax + valoffs),
6361					    rec->dtrd_arg);
6362					continue;
6363				}
6364
6365				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6366				dtrace_getupcstack((uint64_t *)
6367				    (tomax + valoffs),
6368				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6369				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6370				continue;
6371
6372			default:
6373				break;
6374			}
6375
6376			dp = act->dta_difo;
6377			ASSERT(dp != NULL);
6378
6379			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6380
6381			if (*flags & CPU_DTRACE_ERROR)
6382				continue;
6383
6384			switch (act->dta_kind) {
6385			case DTRACEACT_SPECULATE:
6386				ASSERT(buf == &state->dts_buffer[cpuid]);
6387				buf = dtrace_speculation_buffer(state,
6388				    cpuid, val);
6389
6390				if (buf == NULL) {
6391					*flags |= CPU_DTRACE_DROP;
6392					continue;
6393				}
6394
6395				offs = dtrace_buffer_reserve(buf,
6396				    ecb->dte_needed, ecb->dte_alignment,
6397				    state, NULL);
6398
6399				if (offs < 0) {
6400					*flags |= CPU_DTRACE_DROP;
6401					continue;
6402				}
6403
6404				tomax = buf->dtb_tomax;
6405				ASSERT(tomax != NULL);
6406
6407				if (ecb->dte_size != 0)
6408					DTRACE_STORE(uint32_t, tomax, offs,
6409					    ecb->dte_epid);
6410				continue;
6411
6412			case DTRACEACT_PRINTM: {
6413				/* The DIF returns a 'memref'. */
6414				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6415
6416				/* Get the size from the memref. */
6417				size = memref[1];
6418
6419				/*
6420				 * Check if the size exceeds the allocated
6421				 * buffer size.
6422				 */
6423				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6424					/* Flag a drop! */
6425					*flags |= CPU_DTRACE_DROP;
6426					continue;
6427				}
6428
6429				/* Store the size in the buffer first. */
6430				DTRACE_STORE(uintptr_t, tomax,
6431				    valoffs, size);
6432
6433				/*
6434				 * Offset the buffer address to the start
6435				 * of the data.
6436				 */
6437				valoffs += sizeof(uintptr_t);
6438
6439				/*
6440				 * Reset to the memory address rather than
6441				 * the memref array, then let the BYREF
6442				 * code below do the work to store the
6443				 * memory data in the buffer.
6444				 */
6445				val = memref[0];
6446				break;
6447			}
6448
6449			case DTRACEACT_PRINTT: {
6450				/* The DIF returns a 'typeref'. */
6451				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6452				char c = '\0' + 1;
6453				size_t s;
6454
6455				/*
6456				 * Get the type string length and round it
6457				 * up so that the data that follows is
6458				 * aligned for easy access.
6459				 */
6460				size_t typs = strlen((char *) typeref[2]) + 1;
6461				typs = roundup(typs,  sizeof(uintptr_t));
6462
6463				/*
6464				 *Get the size from the typeref using the
6465				 * number of elements and the type size.
6466				 */
6467				size = typeref[1] * typeref[3];
6468
6469				/*
6470				 * Check if the size exceeds the allocated
6471				 * buffer size.
6472				 */
6473				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6474					/* Flag a drop! */
6475					*flags |= CPU_DTRACE_DROP;
6476
6477				}
6478
6479				/* Store the size in the buffer first. */
6480				DTRACE_STORE(uintptr_t, tomax,
6481				    valoffs, size);
6482				valoffs += sizeof(uintptr_t);
6483
6484				/* Store the type size in the buffer. */
6485				DTRACE_STORE(uintptr_t, tomax,
6486				    valoffs, typeref[3]);
6487				valoffs += sizeof(uintptr_t);
6488
6489				val = typeref[2];
6490
6491				for (s = 0; s < typs; s++) {
6492					if (c != '\0')
6493						c = dtrace_load8(val++);
6494
6495					DTRACE_STORE(uint8_t, tomax,
6496					    valoffs++, c);
6497				}
6498
6499				/*
6500				 * Reset to the memory address rather than
6501				 * the typeref array, then let the BYREF
6502				 * code below do the work to store the
6503				 * memory data in the buffer.
6504				 */
6505				val = typeref[0];
6506				break;
6507			}
6508
6509			case DTRACEACT_CHILL:
6510				if (dtrace_priv_kernel_destructive(state))
6511					dtrace_action_chill(&mstate, val);
6512				continue;
6513
6514			case DTRACEACT_RAISE:
6515				if (dtrace_priv_proc_destructive(state))
6516					dtrace_action_raise(val);
6517				continue;
6518
6519			case DTRACEACT_COMMIT:
6520				ASSERT(!committed);
6521
6522				/*
6523				 * We need to commit our buffer state.
6524				 */
6525				if (ecb->dte_size)
6526					buf->dtb_offset = offs + ecb->dte_size;
6527				buf = &state->dts_buffer[cpuid];
6528				dtrace_speculation_commit(state, cpuid, val);
6529				committed = 1;
6530				continue;
6531
6532			case DTRACEACT_DISCARD:
6533				dtrace_speculation_discard(state, cpuid, val);
6534				continue;
6535
6536			case DTRACEACT_DIFEXPR:
6537			case DTRACEACT_LIBACT:
6538			case DTRACEACT_PRINTF:
6539			case DTRACEACT_PRINTA:
6540			case DTRACEACT_SYSTEM:
6541			case DTRACEACT_FREOPEN:
6542			case DTRACEACT_TRACEMEM:
6543				break;
6544
6545			case DTRACEACT_TRACEMEM_DYNSIZE:
6546				tracememsize = val;
6547				break;
6548
6549			case DTRACEACT_SYM:
6550			case DTRACEACT_MOD:
6551				if (!dtrace_priv_kernel(state))
6552					continue;
6553				break;
6554
6555			case DTRACEACT_USYM:
6556			case DTRACEACT_UMOD:
6557			case DTRACEACT_UADDR: {
6558#if defined(sun)
6559				struct pid *pid = curthread->t_procp->p_pidp;
6560#endif
6561
6562				if (!dtrace_priv_proc(state))
6563					continue;
6564
6565				DTRACE_STORE(uint64_t, tomax,
6566#if defined(sun)
6567				    valoffs, (uint64_t)pid->pid_id);
6568#else
6569				    valoffs, (uint64_t) curproc->p_pid);
6570#endif
6571				DTRACE_STORE(uint64_t, tomax,
6572				    valoffs + sizeof (uint64_t), val);
6573
6574				continue;
6575			}
6576
6577			case DTRACEACT_EXIT: {
6578				/*
6579				 * For the exit action, we are going to attempt
6580				 * to atomically set our activity to be
6581				 * draining.  If this fails (either because
6582				 * another CPU has beat us to the exit action,
6583				 * or because our current activity is something
6584				 * other than ACTIVE or WARMUP), we will
6585				 * continue.  This assures that the exit action
6586				 * can be successfully recorded at most once
6587				 * when we're in the ACTIVE state.  If we're
6588				 * encountering the exit() action while in
6589				 * COOLDOWN, however, we want to honor the new
6590				 * status code.  (We know that we're the only
6591				 * thread in COOLDOWN, so there is no race.)
6592				 */
6593				void *activity = &state->dts_activity;
6594				dtrace_activity_t current = state->dts_activity;
6595
6596				if (current == DTRACE_ACTIVITY_COOLDOWN)
6597					break;
6598
6599				if (current != DTRACE_ACTIVITY_WARMUP)
6600					current = DTRACE_ACTIVITY_ACTIVE;
6601
6602				if (dtrace_cas32(activity, current,
6603				    DTRACE_ACTIVITY_DRAINING) != current) {
6604					*flags |= CPU_DTRACE_DROP;
6605					continue;
6606				}
6607
6608				break;
6609			}
6610
6611			default:
6612				ASSERT(0);
6613			}
6614
6615			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6616				uintptr_t end = valoffs + size;
6617
6618				if (tracememsize != 0 &&
6619				    valoffs + tracememsize < end) {
6620					end = valoffs + tracememsize;
6621					tracememsize = 0;
6622				}
6623
6624				if (!dtrace_vcanload((void *)(uintptr_t)val,
6625				    &dp->dtdo_rtype, &mstate, vstate))
6626					continue;
6627
6628				/*
6629				 * If this is a string, we're going to only
6630				 * load until we find the zero byte -- after
6631				 * which we'll store zero bytes.
6632				 */
6633				if (dp->dtdo_rtype.dtdt_kind ==
6634				    DIF_TYPE_STRING) {
6635					char c = '\0' + 1;
6636					int intuple = act->dta_intuple;
6637					size_t s;
6638
6639					for (s = 0; s < size; s++) {
6640						if (c != '\0')
6641							c = dtrace_load8(val++);
6642
6643						DTRACE_STORE(uint8_t, tomax,
6644						    valoffs++, c);
6645
6646						if (c == '\0' && intuple)
6647							break;
6648					}
6649
6650					continue;
6651				}
6652
6653				while (valoffs < end) {
6654					DTRACE_STORE(uint8_t, tomax, valoffs++,
6655					    dtrace_load8(val++));
6656				}
6657
6658				continue;
6659			}
6660
6661			switch (size) {
6662			case 0:
6663				break;
6664
6665			case sizeof (uint8_t):
6666				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6667				break;
6668			case sizeof (uint16_t):
6669				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6670				break;
6671			case sizeof (uint32_t):
6672				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6673				break;
6674			case sizeof (uint64_t):
6675				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6676				break;
6677			default:
6678				/*
6679				 * Any other size should have been returned by
6680				 * reference, not by value.
6681				 */
6682				ASSERT(0);
6683				break;
6684			}
6685		}
6686
6687		if (*flags & CPU_DTRACE_DROP)
6688			continue;
6689
6690		if (*flags & CPU_DTRACE_FAULT) {
6691			int ndx;
6692			dtrace_action_t *err;
6693
6694			buf->dtb_errors++;
6695
6696			if (probe->dtpr_id == dtrace_probeid_error) {
6697				/*
6698				 * There's nothing we can do -- we had an
6699				 * error on the error probe.  We bump an
6700				 * error counter to at least indicate that
6701				 * this condition happened.
6702				 */
6703				dtrace_error(&state->dts_dblerrors);
6704				continue;
6705			}
6706
6707			if (vtime) {
6708				/*
6709				 * Before recursing on dtrace_probe(), we
6710				 * need to explicitly clear out our start
6711				 * time to prevent it from being accumulated
6712				 * into t_dtrace_vtime.
6713				 */
6714				curthread->t_dtrace_start = 0;
6715			}
6716
6717			/*
6718			 * Iterate over the actions to figure out which action
6719			 * we were processing when we experienced the error.
6720			 * Note that act points _past_ the faulting action; if
6721			 * act is ecb->dte_action, the fault was in the
6722			 * predicate, if it's ecb->dte_action->dta_next it's
6723			 * in action #1, and so on.
6724			 */
6725			for (err = ecb->dte_action, ndx = 0;
6726			    err != act; err = err->dta_next, ndx++)
6727				continue;
6728
6729			dtrace_probe_error(state, ecb->dte_epid, ndx,
6730			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6731			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6732			    cpu_core[cpuid].cpuc_dtrace_illval);
6733
6734			continue;
6735		}
6736
6737		if (!committed)
6738			buf->dtb_offset = offs + ecb->dte_size;
6739	}
6740
6741	if (vtime)
6742		curthread->t_dtrace_start = dtrace_gethrtime();
6743
6744	dtrace_interrupt_enable(cookie);
6745}
6746
6747/*
6748 * DTrace Probe Hashing Functions
6749 *
6750 * The functions in this section (and indeed, the functions in remaining
6751 * sections) are not _called_ from probe context.  (Any exceptions to this are
6752 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6753 * DTrace framework to look-up probes in, add probes to and remove probes from
6754 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6755 * probe tuple -- allowing for fast lookups, regardless of what was
6756 * specified.)
6757 */
6758static uint_t
6759dtrace_hash_str(const char *p)
6760{
6761	unsigned int g;
6762	uint_t hval = 0;
6763
6764	while (*p) {
6765		hval = (hval << 4) + *p++;
6766		if ((g = (hval & 0xf0000000)) != 0)
6767			hval ^= g >> 24;
6768		hval &= ~g;
6769	}
6770	return (hval);
6771}
6772
6773static dtrace_hash_t *
6774dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6775{
6776	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6777
6778	hash->dth_stroffs = stroffs;
6779	hash->dth_nextoffs = nextoffs;
6780	hash->dth_prevoffs = prevoffs;
6781
6782	hash->dth_size = 1;
6783	hash->dth_mask = hash->dth_size - 1;
6784
6785	hash->dth_tab = kmem_zalloc(hash->dth_size *
6786	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6787
6788	return (hash);
6789}
6790
6791static void
6792dtrace_hash_destroy(dtrace_hash_t *hash)
6793{
6794#ifdef DEBUG
6795	int i;
6796
6797	for (i = 0; i < hash->dth_size; i++)
6798		ASSERT(hash->dth_tab[i] == NULL);
6799#endif
6800
6801	kmem_free(hash->dth_tab,
6802	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6803	kmem_free(hash, sizeof (dtrace_hash_t));
6804}
6805
6806static void
6807dtrace_hash_resize(dtrace_hash_t *hash)
6808{
6809	int size = hash->dth_size, i, ndx;
6810	int new_size = hash->dth_size << 1;
6811	int new_mask = new_size - 1;
6812	dtrace_hashbucket_t **new_tab, *bucket, *next;
6813
6814	ASSERT((new_size & new_mask) == 0);
6815
6816	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6817
6818	for (i = 0; i < size; i++) {
6819		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6820			dtrace_probe_t *probe = bucket->dthb_chain;
6821
6822			ASSERT(probe != NULL);
6823			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6824
6825			next = bucket->dthb_next;
6826			bucket->dthb_next = new_tab[ndx];
6827			new_tab[ndx] = bucket;
6828		}
6829	}
6830
6831	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6832	hash->dth_tab = new_tab;
6833	hash->dth_size = new_size;
6834	hash->dth_mask = new_mask;
6835}
6836
6837static void
6838dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6839{
6840	int hashval = DTRACE_HASHSTR(hash, new);
6841	int ndx = hashval & hash->dth_mask;
6842	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6843	dtrace_probe_t **nextp, **prevp;
6844
6845	for (; bucket != NULL; bucket = bucket->dthb_next) {
6846		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6847			goto add;
6848	}
6849
6850	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6851		dtrace_hash_resize(hash);
6852		dtrace_hash_add(hash, new);
6853		return;
6854	}
6855
6856	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6857	bucket->dthb_next = hash->dth_tab[ndx];
6858	hash->dth_tab[ndx] = bucket;
6859	hash->dth_nbuckets++;
6860
6861add:
6862	nextp = DTRACE_HASHNEXT(hash, new);
6863	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6864	*nextp = bucket->dthb_chain;
6865
6866	if (bucket->dthb_chain != NULL) {
6867		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6868		ASSERT(*prevp == NULL);
6869		*prevp = new;
6870	}
6871
6872	bucket->dthb_chain = new;
6873	bucket->dthb_len++;
6874}
6875
6876static dtrace_probe_t *
6877dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6878{
6879	int hashval = DTRACE_HASHSTR(hash, template);
6880	int ndx = hashval & hash->dth_mask;
6881	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6882
6883	for (; bucket != NULL; bucket = bucket->dthb_next) {
6884		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6885			return (bucket->dthb_chain);
6886	}
6887
6888	return (NULL);
6889}
6890
6891static int
6892dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6893{
6894	int hashval = DTRACE_HASHSTR(hash, template);
6895	int ndx = hashval & hash->dth_mask;
6896	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6897
6898	for (; bucket != NULL; bucket = bucket->dthb_next) {
6899		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6900			return (bucket->dthb_len);
6901	}
6902
6903	return (0);
6904}
6905
6906static void
6907dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6908{
6909	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6910	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6911
6912	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6913	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6914
6915	/*
6916	 * Find the bucket that we're removing this probe from.
6917	 */
6918	for (; bucket != NULL; bucket = bucket->dthb_next) {
6919		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6920			break;
6921	}
6922
6923	ASSERT(bucket != NULL);
6924
6925	if (*prevp == NULL) {
6926		if (*nextp == NULL) {
6927			/*
6928			 * The removed probe was the only probe on this
6929			 * bucket; we need to remove the bucket.
6930			 */
6931			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6932
6933			ASSERT(bucket->dthb_chain == probe);
6934			ASSERT(b != NULL);
6935
6936			if (b == bucket) {
6937				hash->dth_tab[ndx] = bucket->dthb_next;
6938			} else {
6939				while (b->dthb_next != bucket)
6940					b = b->dthb_next;
6941				b->dthb_next = bucket->dthb_next;
6942			}
6943
6944			ASSERT(hash->dth_nbuckets > 0);
6945			hash->dth_nbuckets--;
6946			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6947			return;
6948		}
6949
6950		bucket->dthb_chain = *nextp;
6951	} else {
6952		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6953	}
6954
6955	if (*nextp != NULL)
6956		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6957}
6958
6959/*
6960 * DTrace Utility Functions
6961 *
6962 * These are random utility functions that are _not_ called from probe context.
6963 */
6964static int
6965dtrace_badattr(const dtrace_attribute_t *a)
6966{
6967	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6968	    a->dtat_data > DTRACE_STABILITY_MAX ||
6969	    a->dtat_class > DTRACE_CLASS_MAX);
6970}
6971
6972/*
6973 * Return a duplicate copy of a string.  If the specified string is NULL,
6974 * this function returns a zero-length string.
6975 */
6976static char *
6977dtrace_strdup(const char *str)
6978{
6979	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6980
6981	if (str != NULL)
6982		(void) strcpy(new, str);
6983
6984	return (new);
6985}
6986
6987#define	DTRACE_ISALPHA(c)	\
6988	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6989
6990static int
6991dtrace_badname(const char *s)
6992{
6993	char c;
6994
6995	if (s == NULL || (c = *s++) == '\0')
6996		return (0);
6997
6998	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6999		return (1);
7000
7001	while ((c = *s++) != '\0') {
7002		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7003		    c != '-' && c != '_' && c != '.' && c != '`')
7004			return (1);
7005	}
7006
7007	return (0);
7008}
7009
7010static void
7011dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7012{
7013	uint32_t priv;
7014
7015#if defined(sun)
7016	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7017		/*
7018		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7019		 */
7020		priv = DTRACE_PRIV_ALL;
7021	} else {
7022		*uidp = crgetuid(cr);
7023		*zoneidp = crgetzoneid(cr);
7024
7025		priv = 0;
7026		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7027			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7028		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7029			priv |= DTRACE_PRIV_USER;
7030		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7031			priv |= DTRACE_PRIV_PROC;
7032		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7033			priv |= DTRACE_PRIV_OWNER;
7034		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7035			priv |= DTRACE_PRIV_ZONEOWNER;
7036	}
7037#else
7038	priv = DTRACE_PRIV_ALL;
7039#endif
7040
7041	*privp = priv;
7042}
7043
7044#ifdef DTRACE_ERRDEBUG
7045static void
7046dtrace_errdebug(const char *str)
7047{
7048	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7049	int occupied = 0;
7050
7051	mutex_enter(&dtrace_errlock);
7052	dtrace_errlast = str;
7053	dtrace_errthread = curthread;
7054
7055	while (occupied++ < DTRACE_ERRHASHSZ) {
7056		if (dtrace_errhash[hval].dter_msg == str) {
7057			dtrace_errhash[hval].dter_count++;
7058			goto out;
7059		}
7060
7061		if (dtrace_errhash[hval].dter_msg != NULL) {
7062			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7063			continue;
7064		}
7065
7066		dtrace_errhash[hval].dter_msg = str;
7067		dtrace_errhash[hval].dter_count = 1;
7068		goto out;
7069	}
7070
7071	panic("dtrace: undersized error hash");
7072out:
7073	mutex_exit(&dtrace_errlock);
7074}
7075#endif
7076
7077/*
7078 * DTrace Matching Functions
7079 *
7080 * These functions are used to match groups of probes, given some elements of
7081 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7082 */
7083static int
7084dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7085    zoneid_t zoneid)
7086{
7087	if (priv != DTRACE_PRIV_ALL) {
7088		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7089		uint32_t match = priv & ppriv;
7090
7091		/*
7092		 * No PRIV_DTRACE_* privileges...
7093		 */
7094		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7095		    DTRACE_PRIV_KERNEL)) == 0)
7096			return (0);
7097
7098		/*
7099		 * No matching bits, but there were bits to match...
7100		 */
7101		if (match == 0 && ppriv != 0)
7102			return (0);
7103
7104		/*
7105		 * Need to have permissions to the process, but don't...
7106		 */
7107		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7108		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7109			return (0);
7110		}
7111
7112		/*
7113		 * Need to be in the same zone unless we possess the
7114		 * privilege to examine all zones.
7115		 */
7116		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7117		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7118			return (0);
7119		}
7120	}
7121
7122	return (1);
7123}
7124
7125/*
7126 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7127 * consists of input pattern strings and an ops-vector to evaluate them.
7128 * This function returns >0 for match, 0 for no match, and <0 for error.
7129 */
7130static int
7131dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7132    uint32_t priv, uid_t uid, zoneid_t zoneid)
7133{
7134	dtrace_provider_t *pvp = prp->dtpr_provider;
7135	int rv;
7136
7137	if (pvp->dtpv_defunct)
7138		return (0);
7139
7140	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7141		return (rv);
7142
7143	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7144		return (rv);
7145
7146	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7147		return (rv);
7148
7149	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7150		return (rv);
7151
7152	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7153		return (0);
7154
7155	return (rv);
7156}
7157
7158/*
7159 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7160 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7161 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7162 * In addition, all of the recursion cases except for '*' matching have been
7163 * unwound.  For '*', we still implement recursive evaluation, but a depth
7164 * counter is maintained and matching is aborted if we recurse too deep.
7165 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7166 */
7167static int
7168dtrace_match_glob(const char *s, const char *p, int depth)
7169{
7170	const char *olds;
7171	char s1, c;
7172	int gs;
7173
7174	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7175		return (-1);
7176
7177	if (s == NULL)
7178		s = ""; /* treat NULL as empty string */
7179
7180top:
7181	olds = s;
7182	s1 = *s++;
7183
7184	if (p == NULL)
7185		return (0);
7186
7187	if ((c = *p++) == '\0')
7188		return (s1 == '\0');
7189
7190	switch (c) {
7191	case '[': {
7192		int ok = 0, notflag = 0;
7193		char lc = '\0';
7194
7195		if (s1 == '\0')
7196			return (0);
7197
7198		if (*p == '!') {
7199			notflag = 1;
7200			p++;
7201		}
7202
7203		if ((c = *p++) == '\0')
7204			return (0);
7205
7206		do {
7207			if (c == '-' && lc != '\0' && *p != ']') {
7208				if ((c = *p++) == '\0')
7209					return (0);
7210				if (c == '\\' && (c = *p++) == '\0')
7211					return (0);
7212
7213				if (notflag) {
7214					if (s1 < lc || s1 > c)
7215						ok++;
7216					else
7217						return (0);
7218				} else if (lc <= s1 && s1 <= c)
7219					ok++;
7220
7221			} else if (c == '\\' && (c = *p++) == '\0')
7222				return (0);
7223
7224			lc = c; /* save left-hand 'c' for next iteration */
7225
7226			if (notflag) {
7227				if (s1 != c)
7228					ok++;
7229				else
7230					return (0);
7231			} else if (s1 == c)
7232				ok++;
7233
7234			if ((c = *p++) == '\0')
7235				return (0);
7236
7237		} while (c != ']');
7238
7239		if (ok)
7240			goto top;
7241
7242		return (0);
7243	}
7244
7245	case '\\':
7246		if ((c = *p++) == '\0')
7247			return (0);
7248		/*FALLTHRU*/
7249
7250	default:
7251		if (c != s1)
7252			return (0);
7253		/*FALLTHRU*/
7254
7255	case '?':
7256		if (s1 != '\0')
7257			goto top;
7258		return (0);
7259
7260	case '*':
7261		while (*p == '*')
7262			p++; /* consecutive *'s are identical to a single one */
7263
7264		if (*p == '\0')
7265			return (1);
7266
7267		for (s = olds; *s != '\0'; s++) {
7268			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7269				return (gs);
7270		}
7271
7272		return (0);
7273	}
7274}
7275
7276/*ARGSUSED*/
7277static int
7278dtrace_match_string(const char *s, const char *p, int depth)
7279{
7280	return (s != NULL && strcmp(s, p) == 0);
7281}
7282
7283/*ARGSUSED*/
7284static int
7285dtrace_match_nul(const char *s, const char *p, int depth)
7286{
7287	return (1); /* always match the empty pattern */
7288}
7289
7290/*ARGSUSED*/
7291static int
7292dtrace_match_nonzero(const char *s, const char *p, int depth)
7293{
7294	return (s != NULL && s[0] != '\0');
7295}
7296
7297static int
7298dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7299    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7300{
7301	dtrace_probe_t template, *probe;
7302	dtrace_hash_t *hash = NULL;
7303	int len, best = INT_MAX, nmatched = 0;
7304	dtrace_id_t i;
7305
7306	ASSERT(MUTEX_HELD(&dtrace_lock));
7307
7308	/*
7309	 * If the probe ID is specified in the key, just lookup by ID and
7310	 * invoke the match callback once if a matching probe is found.
7311	 */
7312	if (pkp->dtpk_id != DTRACE_IDNONE) {
7313		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7314		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7315			(void) (*matched)(probe, arg);
7316			nmatched++;
7317		}
7318		return (nmatched);
7319	}
7320
7321	template.dtpr_mod = (char *)pkp->dtpk_mod;
7322	template.dtpr_func = (char *)pkp->dtpk_func;
7323	template.dtpr_name = (char *)pkp->dtpk_name;
7324
7325	/*
7326	 * We want to find the most distinct of the module name, function
7327	 * name, and name.  So for each one that is not a glob pattern or
7328	 * empty string, we perform a lookup in the corresponding hash and
7329	 * use the hash table with the fewest collisions to do our search.
7330	 */
7331	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7332	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7333		best = len;
7334		hash = dtrace_bymod;
7335	}
7336
7337	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7338	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7339		best = len;
7340		hash = dtrace_byfunc;
7341	}
7342
7343	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7344	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7345		best = len;
7346		hash = dtrace_byname;
7347	}
7348
7349	/*
7350	 * If we did not select a hash table, iterate over every probe and
7351	 * invoke our callback for each one that matches our input probe key.
7352	 */
7353	if (hash == NULL) {
7354		for (i = 0; i < dtrace_nprobes; i++) {
7355			if ((probe = dtrace_probes[i]) == NULL ||
7356			    dtrace_match_probe(probe, pkp, priv, uid,
7357			    zoneid) <= 0)
7358				continue;
7359
7360			nmatched++;
7361
7362			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7363				break;
7364		}
7365
7366		return (nmatched);
7367	}
7368
7369	/*
7370	 * If we selected a hash table, iterate over each probe of the same key
7371	 * name and invoke the callback for every probe that matches the other
7372	 * attributes of our input probe key.
7373	 */
7374	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7375	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7376
7377		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7378			continue;
7379
7380		nmatched++;
7381
7382		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7383			break;
7384	}
7385
7386	return (nmatched);
7387}
7388
7389/*
7390 * Return the function pointer dtrace_probecmp() should use to compare the
7391 * specified pattern with a string.  For NULL or empty patterns, we select
7392 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7393 * For non-empty non-glob strings, we use dtrace_match_string().
7394 */
7395static dtrace_probekey_f *
7396dtrace_probekey_func(const char *p)
7397{
7398	char c;
7399
7400	if (p == NULL || *p == '\0')
7401		return (&dtrace_match_nul);
7402
7403	while ((c = *p++) != '\0') {
7404		if (c == '[' || c == '?' || c == '*' || c == '\\')
7405			return (&dtrace_match_glob);
7406	}
7407
7408	return (&dtrace_match_string);
7409}
7410
7411/*
7412 * Build a probe comparison key for use with dtrace_match_probe() from the
7413 * given probe description.  By convention, a null key only matches anchored
7414 * probes: if each field is the empty string, reset dtpk_fmatch to
7415 * dtrace_match_nonzero().
7416 */
7417static void
7418dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7419{
7420	pkp->dtpk_prov = pdp->dtpd_provider;
7421	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7422
7423	pkp->dtpk_mod = pdp->dtpd_mod;
7424	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7425
7426	pkp->dtpk_func = pdp->dtpd_func;
7427	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7428
7429	pkp->dtpk_name = pdp->dtpd_name;
7430	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7431
7432	pkp->dtpk_id = pdp->dtpd_id;
7433
7434	if (pkp->dtpk_id == DTRACE_IDNONE &&
7435	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7436	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7437	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7438	    pkp->dtpk_nmatch == &dtrace_match_nul)
7439		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7440}
7441
7442/*
7443 * DTrace Provider-to-Framework API Functions
7444 *
7445 * These functions implement much of the Provider-to-Framework API, as
7446 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7447 * the functions in the API for probe management (found below), and
7448 * dtrace_probe() itself (found above).
7449 */
7450
7451/*
7452 * Register the calling provider with the DTrace framework.  This should
7453 * generally be called by DTrace providers in their attach(9E) entry point.
7454 */
7455int
7456dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7457    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7458{
7459	dtrace_provider_t *provider;
7460
7461	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7462		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7463		    "arguments", name ? name : "<NULL>");
7464		return (EINVAL);
7465	}
7466
7467	if (name[0] == '\0' || dtrace_badname(name)) {
7468		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7469		    "provider name", name);
7470		return (EINVAL);
7471	}
7472
7473	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7474	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7475	    pops->dtps_destroy == NULL ||
7476	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7477		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7478		    "provider ops", name);
7479		return (EINVAL);
7480	}
7481
7482	if (dtrace_badattr(&pap->dtpa_provider) ||
7483	    dtrace_badattr(&pap->dtpa_mod) ||
7484	    dtrace_badattr(&pap->dtpa_func) ||
7485	    dtrace_badattr(&pap->dtpa_name) ||
7486	    dtrace_badattr(&pap->dtpa_args)) {
7487		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7488		    "provider attributes", name);
7489		return (EINVAL);
7490	}
7491
7492	if (priv & ~DTRACE_PRIV_ALL) {
7493		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7494		    "privilege attributes", name);
7495		return (EINVAL);
7496	}
7497
7498	if ((priv & DTRACE_PRIV_KERNEL) &&
7499	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7500	    pops->dtps_usermode == NULL) {
7501		cmn_err(CE_WARN, "failed to register provider '%s': need "
7502		    "dtps_usermode() op for given privilege attributes", name);
7503		return (EINVAL);
7504	}
7505
7506	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7507	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7508	(void) strcpy(provider->dtpv_name, name);
7509
7510	provider->dtpv_attr = *pap;
7511	provider->dtpv_priv.dtpp_flags = priv;
7512	if (cr != NULL) {
7513		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7514		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7515	}
7516	provider->dtpv_pops = *pops;
7517
7518	if (pops->dtps_provide == NULL) {
7519		ASSERT(pops->dtps_provide_module != NULL);
7520		provider->dtpv_pops.dtps_provide =
7521		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7522	}
7523
7524	if (pops->dtps_provide_module == NULL) {
7525		ASSERT(pops->dtps_provide != NULL);
7526		provider->dtpv_pops.dtps_provide_module =
7527		    (void (*)(void *, modctl_t *))dtrace_nullop;
7528	}
7529
7530	if (pops->dtps_suspend == NULL) {
7531		ASSERT(pops->dtps_resume == NULL);
7532		provider->dtpv_pops.dtps_suspend =
7533		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7534		provider->dtpv_pops.dtps_resume =
7535		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7536	}
7537
7538	provider->dtpv_arg = arg;
7539	*idp = (dtrace_provider_id_t)provider;
7540
7541	if (pops == &dtrace_provider_ops) {
7542		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7543		ASSERT(MUTEX_HELD(&dtrace_lock));
7544		ASSERT(dtrace_anon.dta_enabling == NULL);
7545
7546		/*
7547		 * We make sure that the DTrace provider is at the head of
7548		 * the provider chain.
7549		 */
7550		provider->dtpv_next = dtrace_provider;
7551		dtrace_provider = provider;
7552		return (0);
7553	}
7554
7555	mutex_enter(&dtrace_provider_lock);
7556	mutex_enter(&dtrace_lock);
7557
7558	/*
7559	 * If there is at least one provider registered, we'll add this
7560	 * provider after the first provider.
7561	 */
7562	if (dtrace_provider != NULL) {
7563		provider->dtpv_next = dtrace_provider->dtpv_next;
7564		dtrace_provider->dtpv_next = provider;
7565	} else {
7566		dtrace_provider = provider;
7567	}
7568
7569	if (dtrace_retained != NULL) {
7570		dtrace_enabling_provide(provider);
7571
7572		/*
7573		 * Now we need to call dtrace_enabling_matchall() -- which
7574		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7575		 * to drop all of our locks before calling into it...
7576		 */
7577		mutex_exit(&dtrace_lock);
7578		mutex_exit(&dtrace_provider_lock);
7579		dtrace_enabling_matchall();
7580
7581		return (0);
7582	}
7583
7584	mutex_exit(&dtrace_lock);
7585	mutex_exit(&dtrace_provider_lock);
7586
7587	return (0);
7588}
7589
7590/*
7591 * Unregister the specified provider from the DTrace framework.  This should
7592 * generally be called by DTrace providers in their detach(9E) entry point.
7593 */
7594int
7595dtrace_unregister(dtrace_provider_id_t id)
7596{
7597	dtrace_provider_t *old = (dtrace_provider_t *)id;
7598	dtrace_provider_t *prev = NULL;
7599	int i, self = 0, noreap = 0;
7600	dtrace_probe_t *probe, *first = NULL;
7601
7602	if (old->dtpv_pops.dtps_enable ==
7603	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7604		/*
7605		 * If DTrace itself is the provider, we're called with locks
7606		 * already held.
7607		 */
7608		ASSERT(old == dtrace_provider);
7609#if defined(sun)
7610		ASSERT(dtrace_devi != NULL);
7611#endif
7612		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7613		ASSERT(MUTEX_HELD(&dtrace_lock));
7614		self = 1;
7615
7616		if (dtrace_provider->dtpv_next != NULL) {
7617			/*
7618			 * There's another provider here; return failure.
7619			 */
7620			return (EBUSY);
7621		}
7622	} else {
7623		mutex_enter(&dtrace_provider_lock);
7624		mutex_enter(&mod_lock);
7625		mutex_enter(&dtrace_lock);
7626	}
7627
7628	/*
7629	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7630	 * probes, we refuse to let providers slither away, unless this
7631	 * provider has already been explicitly invalidated.
7632	 */
7633	if (!old->dtpv_defunct &&
7634	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7635	    dtrace_anon.dta_state->dts_necbs > 0))) {
7636		if (!self) {
7637			mutex_exit(&dtrace_lock);
7638			mutex_exit(&mod_lock);
7639			mutex_exit(&dtrace_provider_lock);
7640		}
7641		return (EBUSY);
7642	}
7643
7644	/*
7645	 * Attempt to destroy the probes associated with this provider.
7646	 */
7647	for (i = 0; i < dtrace_nprobes; i++) {
7648		if ((probe = dtrace_probes[i]) == NULL)
7649			continue;
7650
7651		if (probe->dtpr_provider != old)
7652			continue;
7653
7654		if (probe->dtpr_ecb == NULL)
7655			continue;
7656
7657		/*
7658		 * If we are trying to unregister a defunct provider, and the
7659		 * provider was made defunct within the interval dictated by
7660		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
7661		 * attempt to reap our enablings.  To denote that the provider
7662		 * should reattempt to unregister itself at some point in the
7663		 * future, we will return a differentiable error code (EAGAIN
7664		 * instead of EBUSY) in this case.
7665		 */
7666		if (dtrace_gethrtime() - old->dtpv_defunct >
7667		    dtrace_unregister_defunct_reap)
7668			noreap = 1;
7669
7670		if (!self) {
7671			mutex_exit(&dtrace_lock);
7672			mutex_exit(&mod_lock);
7673			mutex_exit(&dtrace_provider_lock);
7674		}
7675
7676		if (noreap)
7677			return (EBUSY);
7678
7679		(void) taskq_dispatch(dtrace_taskq,
7680		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7681
7682		return (EAGAIN);
7683	}
7684
7685	/*
7686	 * All of the probes for this provider are disabled; we can safely
7687	 * remove all of them from their hash chains and from the probe array.
7688	 */
7689	for (i = 0; i < dtrace_nprobes; i++) {
7690		if ((probe = dtrace_probes[i]) == NULL)
7691			continue;
7692
7693		if (probe->dtpr_provider != old)
7694			continue;
7695
7696		dtrace_probes[i] = NULL;
7697
7698		dtrace_hash_remove(dtrace_bymod, probe);
7699		dtrace_hash_remove(dtrace_byfunc, probe);
7700		dtrace_hash_remove(dtrace_byname, probe);
7701
7702		if (first == NULL) {
7703			first = probe;
7704			probe->dtpr_nextmod = NULL;
7705		} else {
7706			probe->dtpr_nextmod = first;
7707			first = probe;
7708		}
7709	}
7710
7711	/*
7712	 * The provider's probes have been removed from the hash chains and
7713	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7714	 * everyone has cleared out from any probe array processing.
7715	 */
7716	dtrace_sync();
7717
7718	for (probe = first; probe != NULL; probe = first) {
7719		first = probe->dtpr_nextmod;
7720
7721		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7722		    probe->dtpr_arg);
7723		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7724		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7725		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7726#if defined(sun)
7727		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7728#else
7729		free_unr(dtrace_arena, probe->dtpr_id);
7730#endif
7731		kmem_free(probe, sizeof (dtrace_probe_t));
7732	}
7733
7734	if ((prev = dtrace_provider) == old) {
7735#if defined(sun)
7736		ASSERT(self || dtrace_devi == NULL);
7737		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7738#endif
7739		dtrace_provider = old->dtpv_next;
7740	} else {
7741		while (prev != NULL && prev->dtpv_next != old)
7742			prev = prev->dtpv_next;
7743
7744		if (prev == NULL) {
7745			panic("attempt to unregister non-existent "
7746			    "dtrace provider %p\n", (void *)id);
7747		}
7748
7749		prev->dtpv_next = old->dtpv_next;
7750	}
7751
7752	if (!self) {
7753		mutex_exit(&dtrace_lock);
7754		mutex_exit(&mod_lock);
7755		mutex_exit(&dtrace_provider_lock);
7756	}
7757
7758	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7759	kmem_free(old, sizeof (dtrace_provider_t));
7760
7761	return (0);
7762}
7763
7764/*
7765 * Invalidate the specified provider.  All subsequent probe lookups for the
7766 * specified provider will fail, but its probes will not be removed.
7767 */
7768void
7769dtrace_invalidate(dtrace_provider_id_t id)
7770{
7771	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7772
7773	ASSERT(pvp->dtpv_pops.dtps_enable !=
7774	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7775
7776	mutex_enter(&dtrace_provider_lock);
7777	mutex_enter(&dtrace_lock);
7778
7779	pvp->dtpv_defunct = dtrace_gethrtime();
7780
7781	mutex_exit(&dtrace_lock);
7782	mutex_exit(&dtrace_provider_lock);
7783}
7784
7785/*
7786 * Indicate whether or not DTrace has attached.
7787 */
7788int
7789dtrace_attached(void)
7790{
7791	/*
7792	 * dtrace_provider will be non-NULL iff the DTrace driver has
7793	 * attached.  (It's non-NULL because DTrace is always itself a
7794	 * provider.)
7795	 */
7796	return (dtrace_provider != NULL);
7797}
7798
7799/*
7800 * Remove all the unenabled probes for the given provider.  This function is
7801 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7802 * -- just as many of its associated probes as it can.
7803 */
7804int
7805dtrace_condense(dtrace_provider_id_t id)
7806{
7807	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7808	int i;
7809	dtrace_probe_t *probe;
7810
7811	/*
7812	 * Make sure this isn't the dtrace provider itself.
7813	 */
7814	ASSERT(prov->dtpv_pops.dtps_enable !=
7815	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7816
7817	mutex_enter(&dtrace_provider_lock);
7818	mutex_enter(&dtrace_lock);
7819
7820	/*
7821	 * Attempt to destroy the probes associated with this provider.
7822	 */
7823	for (i = 0; i < dtrace_nprobes; i++) {
7824		if ((probe = dtrace_probes[i]) == NULL)
7825			continue;
7826
7827		if (probe->dtpr_provider != prov)
7828			continue;
7829
7830		if (probe->dtpr_ecb != NULL)
7831			continue;
7832
7833		dtrace_probes[i] = NULL;
7834
7835		dtrace_hash_remove(dtrace_bymod, probe);
7836		dtrace_hash_remove(dtrace_byfunc, probe);
7837		dtrace_hash_remove(dtrace_byname, probe);
7838
7839		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7840		    probe->dtpr_arg);
7841		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7842		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7843		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7844		kmem_free(probe, sizeof (dtrace_probe_t));
7845#if defined(sun)
7846		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7847#else
7848		free_unr(dtrace_arena, i + 1);
7849#endif
7850	}
7851
7852	mutex_exit(&dtrace_lock);
7853	mutex_exit(&dtrace_provider_lock);
7854
7855	return (0);
7856}
7857
7858/*
7859 * DTrace Probe Management Functions
7860 *
7861 * The functions in this section perform the DTrace probe management,
7862 * including functions to create probes, look-up probes, and call into the
7863 * providers to request that probes be provided.  Some of these functions are
7864 * in the Provider-to-Framework API; these functions can be identified by the
7865 * fact that they are not declared "static".
7866 */
7867
7868/*
7869 * Create a probe with the specified module name, function name, and name.
7870 */
7871dtrace_id_t
7872dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7873    const char *func, const char *name, int aframes, void *arg)
7874{
7875	dtrace_probe_t *probe, **probes;
7876	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7877	dtrace_id_t id;
7878
7879	if (provider == dtrace_provider) {
7880		ASSERT(MUTEX_HELD(&dtrace_lock));
7881	} else {
7882		mutex_enter(&dtrace_lock);
7883	}
7884
7885#if defined(sun)
7886	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7887	    VM_BESTFIT | VM_SLEEP);
7888#else
7889	id = alloc_unr(dtrace_arena);
7890#endif
7891	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7892
7893	probe->dtpr_id = id;
7894	probe->dtpr_gen = dtrace_probegen++;
7895	probe->dtpr_mod = dtrace_strdup(mod);
7896	probe->dtpr_func = dtrace_strdup(func);
7897	probe->dtpr_name = dtrace_strdup(name);
7898	probe->dtpr_arg = arg;
7899	probe->dtpr_aframes = aframes;
7900	probe->dtpr_provider = provider;
7901
7902	dtrace_hash_add(dtrace_bymod, probe);
7903	dtrace_hash_add(dtrace_byfunc, probe);
7904	dtrace_hash_add(dtrace_byname, probe);
7905
7906	if (id - 1 >= dtrace_nprobes) {
7907		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7908		size_t nsize = osize << 1;
7909
7910		if (nsize == 0) {
7911			ASSERT(osize == 0);
7912			ASSERT(dtrace_probes == NULL);
7913			nsize = sizeof (dtrace_probe_t *);
7914		}
7915
7916		probes = kmem_zalloc(nsize, KM_SLEEP);
7917
7918		if (dtrace_probes == NULL) {
7919			ASSERT(osize == 0);
7920			dtrace_probes = probes;
7921			dtrace_nprobes = 1;
7922		} else {
7923			dtrace_probe_t **oprobes = dtrace_probes;
7924
7925			bcopy(oprobes, probes, osize);
7926			dtrace_membar_producer();
7927			dtrace_probes = probes;
7928
7929			dtrace_sync();
7930
7931			/*
7932			 * All CPUs are now seeing the new probes array; we can
7933			 * safely free the old array.
7934			 */
7935			kmem_free(oprobes, osize);
7936			dtrace_nprobes <<= 1;
7937		}
7938
7939		ASSERT(id - 1 < dtrace_nprobes);
7940	}
7941
7942	ASSERT(dtrace_probes[id - 1] == NULL);
7943	dtrace_probes[id - 1] = probe;
7944
7945	if (provider != dtrace_provider)
7946		mutex_exit(&dtrace_lock);
7947
7948	return (id);
7949}
7950
7951static dtrace_probe_t *
7952dtrace_probe_lookup_id(dtrace_id_t id)
7953{
7954	ASSERT(MUTEX_HELD(&dtrace_lock));
7955
7956	if (id == 0 || id > dtrace_nprobes)
7957		return (NULL);
7958
7959	return (dtrace_probes[id - 1]);
7960}
7961
7962static int
7963dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7964{
7965	*((dtrace_id_t *)arg) = probe->dtpr_id;
7966
7967	return (DTRACE_MATCH_DONE);
7968}
7969
7970/*
7971 * Look up a probe based on provider and one or more of module name, function
7972 * name and probe name.
7973 */
7974dtrace_id_t
7975dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7976    char *func, char *name)
7977{
7978	dtrace_probekey_t pkey;
7979	dtrace_id_t id;
7980	int match;
7981
7982	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7983	pkey.dtpk_pmatch = &dtrace_match_string;
7984	pkey.dtpk_mod = mod;
7985	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7986	pkey.dtpk_func = func;
7987	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7988	pkey.dtpk_name = name;
7989	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7990	pkey.dtpk_id = DTRACE_IDNONE;
7991
7992	mutex_enter(&dtrace_lock);
7993	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7994	    dtrace_probe_lookup_match, &id);
7995	mutex_exit(&dtrace_lock);
7996
7997	ASSERT(match == 1 || match == 0);
7998	return (match ? id : 0);
7999}
8000
8001/*
8002 * Returns the probe argument associated with the specified probe.
8003 */
8004void *
8005dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8006{
8007	dtrace_probe_t *probe;
8008	void *rval = NULL;
8009
8010	mutex_enter(&dtrace_lock);
8011
8012	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8013	    probe->dtpr_provider == (dtrace_provider_t *)id)
8014		rval = probe->dtpr_arg;
8015
8016	mutex_exit(&dtrace_lock);
8017
8018	return (rval);
8019}
8020
8021/*
8022 * Copy a probe into a probe description.
8023 */
8024static void
8025dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8026{
8027	bzero(pdp, sizeof (dtrace_probedesc_t));
8028	pdp->dtpd_id = prp->dtpr_id;
8029
8030	(void) strncpy(pdp->dtpd_provider,
8031	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8032
8033	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8034	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8035	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8036}
8037
8038#if !defined(sun)
8039static int
8040dtrace_probe_provide_cb(linker_file_t lf, void *arg)
8041{
8042	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
8043
8044	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
8045
8046	return(0);
8047}
8048#endif
8049
8050
8051/*
8052 * Called to indicate that a probe -- or probes -- should be provided by a
8053 * specfied provider.  If the specified description is NULL, the provider will
8054 * be told to provide all of its probes.  (This is done whenever a new
8055 * consumer comes along, or whenever a retained enabling is to be matched.) If
8056 * the specified description is non-NULL, the provider is given the
8057 * opportunity to dynamically provide the specified probe, allowing providers
8058 * to support the creation of probes on-the-fly.  (So-called _autocreated_
8059 * probes.)  If the provider is NULL, the operations will be applied to all
8060 * providers; if the provider is non-NULL the operations will only be applied
8061 * to the specified provider.  The dtrace_provider_lock must be held, and the
8062 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8063 * will need to grab the dtrace_lock when it reenters the framework through
8064 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8065 */
8066static void
8067dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8068{
8069#if defined(sun)
8070	modctl_t *ctl;
8071#endif
8072	int all = 0;
8073
8074	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8075
8076	if (prv == NULL) {
8077		all = 1;
8078		prv = dtrace_provider;
8079	}
8080
8081	do {
8082		/*
8083		 * First, call the blanket provide operation.
8084		 */
8085		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8086
8087		/*
8088		 * Now call the per-module provide operation.  We will grab
8089		 * mod_lock to prevent the list from being modified.  Note
8090		 * that this also prevents the mod_busy bits from changing.
8091		 * (mod_busy can only be changed with mod_lock held.)
8092		 */
8093		mutex_enter(&mod_lock);
8094
8095#if defined(sun)
8096		ctl = &modules;
8097		do {
8098			if (ctl->mod_busy || ctl->mod_mp == NULL)
8099				continue;
8100
8101			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8102
8103		} while ((ctl = ctl->mod_next) != &modules);
8104#else
8105		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
8106#endif
8107
8108		mutex_exit(&mod_lock);
8109	} while (all && (prv = prv->dtpv_next) != NULL);
8110}
8111
8112#if defined(sun)
8113/*
8114 * Iterate over each probe, and call the Framework-to-Provider API function
8115 * denoted by offs.
8116 */
8117static void
8118dtrace_probe_foreach(uintptr_t offs)
8119{
8120	dtrace_provider_t *prov;
8121	void (*func)(void *, dtrace_id_t, void *);
8122	dtrace_probe_t *probe;
8123	dtrace_icookie_t cookie;
8124	int i;
8125
8126	/*
8127	 * We disable interrupts to walk through the probe array.  This is
8128	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8129	 * won't see stale data.
8130	 */
8131	cookie = dtrace_interrupt_disable();
8132
8133	for (i = 0; i < dtrace_nprobes; i++) {
8134		if ((probe = dtrace_probes[i]) == NULL)
8135			continue;
8136
8137		if (probe->dtpr_ecb == NULL) {
8138			/*
8139			 * This probe isn't enabled -- don't call the function.
8140			 */
8141			continue;
8142		}
8143
8144		prov = probe->dtpr_provider;
8145		func = *((void(**)(void *, dtrace_id_t, void *))
8146		    ((uintptr_t)&prov->dtpv_pops + offs));
8147
8148		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8149	}
8150
8151	dtrace_interrupt_enable(cookie);
8152}
8153#endif
8154
8155static int
8156dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8157{
8158	dtrace_probekey_t pkey;
8159	uint32_t priv;
8160	uid_t uid;
8161	zoneid_t zoneid;
8162
8163	ASSERT(MUTEX_HELD(&dtrace_lock));
8164	dtrace_ecb_create_cache = NULL;
8165
8166	if (desc == NULL) {
8167		/*
8168		 * If we're passed a NULL description, we're being asked to
8169		 * create an ECB with a NULL probe.
8170		 */
8171		(void) dtrace_ecb_create_enable(NULL, enab);
8172		return (0);
8173	}
8174
8175	dtrace_probekey(desc, &pkey);
8176	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8177	    &priv, &uid, &zoneid);
8178
8179	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8180	    enab));
8181}
8182
8183/*
8184 * DTrace Helper Provider Functions
8185 */
8186static void
8187dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8188{
8189	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8190	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8191	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8192}
8193
8194static void
8195dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8196    const dof_provider_t *dofprov, char *strtab)
8197{
8198	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8199	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8200	    dofprov->dofpv_provattr);
8201	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8202	    dofprov->dofpv_modattr);
8203	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8204	    dofprov->dofpv_funcattr);
8205	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8206	    dofprov->dofpv_nameattr);
8207	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8208	    dofprov->dofpv_argsattr);
8209}
8210
8211static void
8212dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8213{
8214	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8215	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8216	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8217	dof_provider_t *provider;
8218	dof_probe_t *probe;
8219	uint32_t *off, *enoff;
8220	uint8_t *arg;
8221	char *strtab;
8222	uint_t i, nprobes;
8223	dtrace_helper_provdesc_t dhpv;
8224	dtrace_helper_probedesc_t dhpb;
8225	dtrace_meta_t *meta = dtrace_meta_pid;
8226	dtrace_mops_t *mops = &meta->dtm_mops;
8227	void *parg;
8228
8229	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8230	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8231	    provider->dofpv_strtab * dof->dofh_secsize);
8232	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8233	    provider->dofpv_probes * dof->dofh_secsize);
8234	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8235	    provider->dofpv_prargs * dof->dofh_secsize);
8236	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8237	    provider->dofpv_proffs * dof->dofh_secsize);
8238
8239	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8240	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8241	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8242	enoff = NULL;
8243
8244	/*
8245	 * See dtrace_helper_provider_validate().
8246	 */
8247	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8248	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8249		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8250		    provider->dofpv_prenoffs * dof->dofh_secsize);
8251		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8252	}
8253
8254	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8255
8256	/*
8257	 * Create the provider.
8258	 */
8259	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8260
8261	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8262		return;
8263
8264	meta->dtm_count++;
8265
8266	/*
8267	 * Create the probes.
8268	 */
8269	for (i = 0; i < nprobes; i++) {
8270		probe = (dof_probe_t *)(uintptr_t)(daddr +
8271		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8272
8273		dhpb.dthpb_mod = dhp->dofhp_mod;
8274		dhpb.dthpb_func = strtab + probe->dofpr_func;
8275		dhpb.dthpb_name = strtab + probe->dofpr_name;
8276		dhpb.dthpb_base = probe->dofpr_addr;
8277		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8278		dhpb.dthpb_noffs = probe->dofpr_noffs;
8279		if (enoff != NULL) {
8280			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8281			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8282		} else {
8283			dhpb.dthpb_enoffs = NULL;
8284			dhpb.dthpb_nenoffs = 0;
8285		}
8286		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8287		dhpb.dthpb_nargc = probe->dofpr_nargc;
8288		dhpb.dthpb_xargc = probe->dofpr_xargc;
8289		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8290		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8291
8292		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8293	}
8294}
8295
8296static void
8297dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8298{
8299	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8300	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8301	int i;
8302
8303	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8304
8305	for (i = 0; i < dof->dofh_secnum; i++) {
8306		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8307		    dof->dofh_secoff + i * dof->dofh_secsize);
8308
8309		if (sec->dofs_type != DOF_SECT_PROVIDER)
8310			continue;
8311
8312		dtrace_helper_provide_one(dhp, sec, pid);
8313	}
8314
8315	/*
8316	 * We may have just created probes, so we must now rematch against
8317	 * any retained enablings.  Note that this call will acquire both
8318	 * cpu_lock and dtrace_lock; the fact that we are holding
8319	 * dtrace_meta_lock now is what defines the ordering with respect to
8320	 * these three locks.
8321	 */
8322	dtrace_enabling_matchall();
8323}
8324
8325static void
8326dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8327{
8328	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8329	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8330	dof_sec_t *str_sec;
8331	dof_provider_t *provider;
8332	char *strtab;
8333	dtrace_helper_provdesc_t dhpv;
8334	dtrace_meta_t *meta = dtrace_meta_pid;
8335	dtrace_mops_t *mops = &meta->dtm_mops;
8336
8337	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8338	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8339	    provider->dofpv_strtab * dof->dofh_secsize);
8340
8341	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8342
8343	/*
8344	 * Create the provider.
8345	 */
8346	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8347
8348	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8349
8350	meta->dtm_count--;
8351}
8352
8353static void
8354dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8355{
8356	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8357	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8358	int i;
8359
8360	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8361
8362	for (i = 0; i < dof->dofh_secnum; i++) {
8363		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8364		    dof->dofh_secoff + i * dof->dofh_secsize);
8365
8366		if (sec->dofs_type != DOF_SECT_PROVIDER)
8367			continue;
8368
8369		dtrace_helper_provider_remove_one(dhp, sec, pid);
8370	}
8371}
8372
8373/*
8374 * DTrace Meta Provider-to-Framework API Functions
8375 *
8376 * These functions implement the Meta Provider-to-Framework API, as described
8377 * in <sys/dtrace.h>.
8378 */
8379int
8380dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8381    dtrace_meta_provider_id_t *idp)
8382{
8383	dtrace_meta_t *meta;
8384	dtrace_helpers_t *help, *next;
8385	int i;
8386
8387	*idp = DTRACE_METAPROVNONE;
8388
8389	/*
8390	 * We strictly don't need the name, but we hold onto it for
8391	 * debuggability. All hail error queues!
8392	 */
8393	if (name == NULL) {
8394		cmn_err(CE_WARN, "failed to register meta-provider: "
8395		    "invalid name");
8396		return (EINVAL);
8397	}
8398
8399	if (mops == NULL ||
8400	    mops->dtms_create_probe == NULL ||
8401	    mops->dtms_provide_pid == NULL ||
8402	    mops->dtms_remove_pid == NULL) {
8403		cmn_err(CE_WARN, "failed to register meta-register %s: "
8404		    "invalid ops", name);
8405		return (EINVAL);
8406	}
8407
8408	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8409	meta->dtm_mops = *mops;
8410	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8411	(void) strcpy(meta->dtm_name, name);
8412	meta->dtm_arg = arg;
8413
8414	mutex_enter(&dtrace_meta_lock);
8415	mutex_enter(&dtrace_lock);
8416
8417	if (dtrace_meta_pid != NULL) {
8418		mutex_exit(&dtrace_lock);
8419		mutex_exit(&dtrace_meta_lock);
8420		cmn_err(CE_WARN, "failed to register meta-register %s: "
8421		    "user-land meta-provider exists", name);
8422		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8423		kmem_free(meta, sizeof (dtrace_meta_t));
8424		return (EINVAL);
8425	}
8426
8427	dtrace_meta_pid = meta;
8428	*idp = (dtrace_meta_provider_id_t)meta;
8429
8430	/*
8431	 * If there are providers and probes ready to go, pass them
8432	 * off to the new meta provider now.
8433	 */
8434
8435	help = dtrace_deferred_pid;
8436	dtrace_deferred_pid = NULL;
8437
8438	mutex_exit(&dtrace_lock);
8439
8440	while (help != NULL) {
8441		for (i = 0; i < help->dthps_nprovs; i++) {
8442			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8443			    help->dthps_pid);
8444		}
8445
8446		next = help->dthps_next;
8447		help->dthps_next = NULL;
8448		help->dthps_prev = NULL;
8449		help->dthps_deferred = 0;
8450		help = next;
8451	}
8452
8453	mutex_exit(&dtrace_meta_lock);
8454
8455	return (0);
8456}
8457
8458int
8459dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8460{
8461	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8462
8463	mutex_enter(&dtrace_meta_lock);
8464	mutex_enter(&dtrace_lock);
8465
8466	if (old == dtrace_meta_pid) {
8467		pp = &dtrace_meta_pid;
8468	} else {
8469		panic("attempt to unregister non-existent "
8470		    "dtrace meta-provider %p\n", (void *)old);
8471	}
8472
8473	if (old->dtm_count != 0) {
8474		mutex_exit(&dtrace_lock);
8475		mutex_exit(&dtrace_meta_lock);
8476		return (EBUSY);
8477	}
8478
8479	*pp = NULL;
8480
8481	mutex_exit(&dtrace_lock);
8482	mutex_exit(&dtrace_meta_lock);
8483
8484	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8485	kmem_free(old, sizeof (dtrace_meta_t));
8486
8487	return (0);
8488}
8489
8490
8491/*
8492 * DTrace DIF Object Functions
8493 */
8494static int
8495dtrace_difo_err(uint_t pc, const char *format, ...)
8496{
8497	if (dtrace_err_verbose) {
8498		va_list alist;
8499
8500		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8501		va_start(alist, format);
8502		(void) vuprintf(format, alist);
8503		va_end(alist);
8504	}
8505
8506#ifdef DTRACE_ERRDEBUG
8507	dtrace_errdebug(format);
8508#endif
8509	return (1);
8510}
8511
8512/*
8513 * Validate a DTrace DIF object by checking the IR instructions.  The following
8514 * rules are currently enforced by dtrace_difo_validate():
8515 *
8516 * 1. Each instruction must have a valid opcode
8517 * 2. Each register, string, variable, or subroutine reference must be valid
8518 * 3. No instruction can modify register %r0 (must be zero)
8519 * 4. All instruction reserved bits must be set to zero
8520 * 5. The last instruction must be a "ret" instruction
8521 * 6. All branch targets must reference a valid instruction _after_ the branch
8522 */
8523static int
8524dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8525    cred_t *cr)
8526{
8527	int err = 0, i;
8528	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8529	int kcheckload;
8530	uint_t pc;
8531
8532	kcheckload = cr == NULL ||
8533	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8534
8535	dp->dtdo_destructive = 0;
8536
8537	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8538		dif_instr_t instr = dp->dtdo_buf[pc];
8539
8540		uint_t r1 = DIF_INSTR_R1(instr);
8541		uint_t r2 = DIF_INSTR_R2(instr);
8542		uint_t rd = DIF_INSTR_RD(instr);
8543		uint_t rs = DIF_INSTR_RS(instr);
8544		uint_t label = DIF_INSTR_LABEL(instr);
8545		uint_t v = DIF_INSTR_VAR(instr);
8546		uint_t subr = DIF_INSTR_SUBR(instr);
8547		uint_t type = DIF_INSTR_TYPE(instr);
8548		uint_t op = DIF_INSTR_OP(instr);
8549
8550		switch (op) {
8551		case DIF_OP_OR:
8552		case DIF_OP_XOR:
8553		case DIF_OP_AND:
8554		case DIF_OP_SLL:
8555		case DIF_OP_SRL:
8556		case DIF_OP_SRA:
8557		case DIF_OP_SUB:
8558		case DIF_OP_ADD:
8559		case DIF_OP_MUL:
8560		case DIF_OP_SDIV:
8561		case DIF_OP_UDIV:
8562		case DIF_OP_SREM:
8563		case DIF_OP_UREM:
8564		case DIF_OP_COPYS:
8565			if (r1 >= nregs)
8566				err += efunc(pc, "invalid register %u\n", r1);
8567			if (r2 >= nregs)
8568				err += efunc(pc, "invalid register %u\n", r2);
8569			if (rd >= nregs)
8570				err += efunc(pc, "invalid register %u\n", rd);
8571			if (rd == 0)
8572				err += efunc(pc, "cannot write to %r0\n");
8573			break;
8574		case DIF_OP_NOT:
8575		case DIF_OP_MOV:
8576		case DIF_OP_ALLOCS:
8577			if (r1 >= nregs)
8578				err += efunc(pc, "invalid register %u\n", r1);
8579			if (r2 != 0)
8580				err += efunc(pc, "non-zero reserved bits\n");
8581			if (rd >= nregs)
8582				err += efunc(pc, "invalid register %u\n", rd);
8583			if (rd == 0)
8584				err += efunc(pc, "cannot write to %r0\n");
8585			break;
8586		case DIF_OP_LDSB:
8587		case DIF_OP_LDSH:
8588		case DIF_OP_LDSW:
8589		case DIF_OP_LDUB:
8590		case DIF_OP_LDUH:
8591		case DIF_OP_LDUW:
8592		case DIF_OP_LDX:
8593			if (r1 >= nregs)
8594				err += efunc(pc, "invalid register %u\n", r1);
8595			if (r2 != 0)
8596				err += efunc(pc, "non-zero reserved bits\n");
8597			if (rd >= nregs)
8598				err += efunc(pc, "invalid register %u\n", rd);
8599			if (rd == 0)
8600				err += efunc(pc, "cannot write to %r0\n");
8601			if (kcheckload)
8602				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8603				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8604			break;
8605		case DIF_OP_RLDSB:
8606		case DIF_OP_RLDSH:
8607		case DIF_OP_RLDSW:
8608		case DIF_OP_RLDUB:
8609		case DIF_OP_RLDUH:
8610		case DIF_OP_RLDUW:
8611		case DIF_OP_RLDX:
8612			if (r1 >= nregs)
8613				err += efunc(pc, "invalid register %u\n", r1);
8614			if (r2 != 0)
8615				err += efunc(pc, "non-zero reserved bits\n");
8616			if (rd >= nregs)
8617				err += efunc(pc, "invalid register %u\n", rd);
8618			if (rd == 0)
8619				err += efunc(pc, "cannot write to %r0\n");
8620			break;
8621		case DIF_OP_ULDSB:
8622		case DIF_OP_ULDSH:
8623		case DIF_OP_ULDSW:
8624		case DIF_OP_ULDUB:
8625		case DIF_OP_ULDUH:
8626		case DIF_OP_ULDUW:
8627		case DIF_OP_ULDX:
8628			if (r1 >= nregs)
8629				err += efunc(pc, "invalid register %u\n", r1);
8630			if (r2 != 0)
8631				err += efunc(pc, "non-zero reserved bits\n");
8632			if (rd >= nregs)
8633				err += efunc(pc, "invalid register %u\n", rd);
8634			if (rd == 0)
8635				err += efunc(pc, "cannot write to %r0\n");
8636			break;
8637		case DIF_OP_STB:
8638		case DIF_OP_STH:
8639		case DIF_OP_STW:
8640		case DIF_OP_STX:
8641			if (r1 >= nregs)
8642				err += efunc(pc, "invalid register %u\n", r1);
8643			if (r2 != 0)
8644				err += efunc(pc, "non-zero reserved bits\n");
8645			if (rd >= nregs)
8646				err += efunc(pc, "invalid register %u\n", rd);
8647			if (rd == 0)
8648				err += efunc(pc, "cannot write to 0 address\n");
8649			break;
8650		case DIF_OP_CMP:
8651		case DIF_OP_SCMP:
8652			if (r1 >= nregs)
8653				err += efunc(pc, "invalid register %u\n", r1);
8654			if (r2 >= nregs)
8655				err += efunc(pc, "invalid register %u\n", r2);
8656			if (rd != 0)
8657				err += efunc(pc, "non-zero reserved bits\n");
8658			break;
8659		case DIF_OP_TST:
8660			if (r1 >= nregs)
8661				err += efunc(pc, "invalid register %u\n", r1);
8662			if (r2 != 0 || rd != 0)
8663				err += efunc(pc, "non-zero reserved bits\n");
8664			break;
8665		case DIF_OP_BA:
8666		case DIF_OP_BE:
8667		case DIF_OP_BNE:
8668		case DIF_OP_BG:
8669		case DIF_OP_BGU:
8670		case DIF_OP_BGE:
8671		case DIF_OP_BGEU:
8672		case DIF_OP_BL:
8673		case DIF_OP_BLU:
8674		case DIF_OP_BLE:
8675		case DIF_OP_BLEU:
8676			if (label >= dp->dtdo_len) {
8677				err += efunc(pc, "invalid branch target %u\n",
8678				    label);
8679			}
8680			if (label <= pc) {
8681				err += efunc(pc, "backward branch to %u\n",
8682				    label);
8683			}
8684			break;
8685		case DIF_OP_RET:
8686			if (r1 != 0 || r2 != 0)
8687				err += efunc(pc, "non-zero reserved bits\n");
8688			if (rd >= nregs)
8689				err += efunc(pc, "invalid register %u\n", rd);
8690			break;
8691		case DIF_OP_NOP:
8692		case DIF_OP_POPTS:
8693		case DIF_OP_FLUSHTS:
8694			if (r1 != 0 || r2 != 0 || rd != 0)
8695				err += efunc(pc, "non-zero reserved bits\n");
8696			break;
8697		case DIF_OP_SETX:
8698			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8699				err += efunc(pc, "invalid integer ref %u\n",
8700				    DIF_INSTR_INTEGER(instr));
8701			}
8702			if (rd >= nregs)
8703				err += efunc(pc, "invalid register %u\n", rd);
8704			if (rd == 0)
8705				err += efunc(pc, "cannot write to %r0\n");
8706			break;
8707		case DIF_OP_SETS:
8708			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8709				err += efunc(pc, "invalid string ref %u\n",
8710				    DIF_INSTR_STRING(instr));
8711			}
8712			if (rd >= nregs)
8713				err += efunc(pc, "invalid register %u\n", rd);
8714			if (rd == 0)
8715				err += efunc(pc, "cannot write to %r0\n");
8716			break;
8717		case DIF_OP_LDGA:
8718		case DIF_OP_LDTA:
8719			if (r1 > DIF_VAR_ARRAY_MAX)
8720				err += efunc(pc, "invalid array %u\n", r1);
8721			if (r2 >= nregs)
8722				err += efunc(pc, "invalid register %u\n", r2);
8723			if (rd >= nregs)
8724				err += efunc(pc, "invalid register %u\n", rd);
8725			if (rd == 0)
8726				err += efunc(pc, "cannot write to %r0\n");
8727			break;
8728		case DIF_OP_LDGS:
8729		case DIF_OP_LDTS:
8730		case DIF_OP_LDLS:
8731		case DIF_OP_LDGAA:
8732		case DIF_OP_LDTAA:
8733			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8734				err += efunc(pc, "invalid variable %u\n", v);
8735			if (rd >= nregs)
8736				err += efunc(pc, "invalid register %u\n", rd);
8737			if (rd == 0)
8738				err += efunc(pc, "cannot write to %r0\n");
8739			break;
8740		case DIF_OP_STGS:
8741		case DIF_OP_STTS:
8742		case DIF_OP_STLS:
8743		case DIF_OP_STGAA:
8744		case DIF_OP_STTAA:
8745			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8746				err += efunc(pc, "invalid variable %u\n", v);
8747			if (rs >= nregs)
8748				err += efunc(pc, "invalid register %u\n", rd);
8749			break;
8750		case DIF_OP_CALL:
8751			if (subr > DIF_SUBR_MAX)
8752				err += efunc(pc, "invalid subr %u\n", subr);
8753			if (rd >= nregs)
8754				err += efunc(pc, "invalid register %u\n", rd);
8755			if (rd == 0)
8756				err += efunc(pc, "cannot write to %r0\n");
8757
8758			if (subr == DIF_SUBR_COPYOUT ||
8759			    subr == DIF_SUBR_COPYOUTSTR) {
8760				dp->dtdo_destructive = 1;
8761			}
8762			break;
8763		case DIF_OP_PUSHTR:
8764			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8765				err += efunc(pc, "invalid ref type %u\n", type);
8766			if (r2 >= nregs)
8767				err += efunc(pc, "invalid register %u\n", r2);
8768			if (rs >= nregs)
8769				err += efunc(pc, "invalid register %u\n", rs);
8770			break;
8771		case DIF_OP_PUSHTV:
8772			if (type != DIF_TYPE_CTF)
8773				err += efunc(pc, "invalid val type %u\n", type);
8774			if (r2 >= nregs)
8775				err += efunc(pc, "invalid register %u\n", r2);
8776			if (rs >= nregs)
8777				err += efunc(pc, "invalid register %u\n", rs);
8778			break;
8779		default:
8780			err += efunc(pc, "invalid opcode %u\n",
8781			    DIF_INSTR_OP(instr));
8782		}
8783	}
8784
8785	if (dp->dtdo_len != 0 &&
8786	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8787		err += efunc(dp->dtdo_len - 1,
8788		    "expected 'ret' as last DIF instruction\n");
8789	}
8790
8791	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8792		/*
8793		 * If we're not returning by reference, the size must be either
8794		 * 0 or the size of one of the base types.
8795		 */
8796		switch (dp->dtdo_rtype.dtdt_size) {
8797		case 0:
8798		case sizeof (uint8_t):
8799		case sizeof (uint16_t):
8800		case sizeof (uint32_t):
8801		case sizeof (uint64_t):
8802			break;
8803
8804		default:
8805			err += efunc(dp->dtdo_len - 1, "bad return size");
8806		}
8807	}
8808
8809	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8810		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8811		dtrace_diftype_t *vt, *et;
8812		uint_t id, ndx;
8813
8814		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8815		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8816		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8817			err += efunc(i, "unrecognized variable scope %d\n",
8818			    v->dtdv_scope);
8819			break;
8820		}
8821
8822		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8823		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8824			err += efunc(i, "unrecognized variable type %d\n",
8825			    v->dtdv_kind);
8826			break;
8827		}
8828
8829		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8830			err += efunc(i, "%d exceeds variable id limit\n", id);
8831			break;
8832		}
8833
8834		if (id < DIF_VAR_OTHER_UBASE)
8835			continue;
8836
8837		/*
8838		 * For user-defined variables, we need to check that this
8839		 * definition is identical to any previous definition that we
8840		 * encountered.
8841		 */
8842		ndx = id - DIF_VAR_OTHER_UBASE;
8843
8844		switch (v->dtdv_scope) {
8845		case DIFV_SCOPE_GLOBAL:
8846			if (ndx < vstate->dtvs_nglobals) {
8847				dtrace_statvar_t *svar;
8848
8849				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8850					existing = &svar->dtsv_var;
8851			}
8852
8853			break;
8854
8855		case DIFV_SCOPE_THREAD:
8856			if (ndx < vstate->dtvs_ntlocals)
8857				existing = &vstate->dtvs_tlocals[ndx];
8858			break;
8859
8860		case DIFV_SCOPE_LOCAL:
8861			if (ndx < vstate->dtvs_nlocals) {
8862				dtrace_statvar_t *svar;
8863
8864				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8865					existing = &svar->dtsv_var;
8866			}
8867
8868			break;
8869		}
8870
8871		vt = &v->dtdv_type;
8872
8873		if (vt->dtdt_flags & DIF_TF_BYREF) {
8874			if (vt->dtdt_size == 0) {
8875				err += efunc(i, "zero-sized variable\n");
8876				break;
8877			}
8878
8879			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8880			    vt->dtdt_size > dtrace_global_maxsize) {
8881				err += efunc(i, "oversized by-ref global\n");
8882				break;
8883			}
8884		}
8885
8886		if (existing == NULL || existing->dtdv_id == 0)
8887			continue;
8888
8889		ASSERT(existing->dtdv_id == v->dtdv_id);
8890		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8891
8892		if (existing->dtdv_kind != v->dtdv_kind)
8893			err += efunc(i, "%d changed variable kind\n", id);
8894
8895		et = &existing->dtdv_type;
8896
8897		if (vt->dtdt_flags != et->dtdt_flags) {
8898			err += efunc(i, "%d changed variable type flags\n", id);
8899			break;
8900		}
8901
8902		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8903			err += efunc(i, "%d changed variable type size\n", id);
8904			break;
8905		}
8906	}
8907
8908	return (err);
8909}
8910
8911/*
8912 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8913 * are much more constrained than normal DIFOs.  Specifically, they may
8914 * not:
8915 *
8916 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8917 *    miscellaneous string routines
8918 * 2. Access DTrace variables other than the args[] array, and the
8919 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8920 * 3. Have thread-local variables.
8921 * 4. Have dynamic variables.
8922 */
8923static int
8924dtrace_difo_validate_helper(dtrace_difo_t *dp)
8925{
8926	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8927	int err = 0;
8928	uint_t pc;
8929
8930	for (pc = 0; pc < dp->dtdo_len; pc++) {
8931		dif_instr_t instr = dp->dtdo_buf[pc];
8932
8933		uint_t v = DIF_INSTR_VAR(instr);
8934		uint_t subr = DIF_INSTR_SUBR(instr);
8935		uint_t op = DIF_INSTR_OP(instr);
8936
8937		switch (op) {
8938		case DIF_OP_OR:
8939		case DIF_OP_XOR:
8940		case DIF_OP_AND:
8941		case DIF_OP_SLL:
8942		case DIF_OP_SRL:
8943		case DIF_OP_SRA:
8944		case DIF_OP_SUB:
8945		case DIF_OP_ADD:
8946		case DIF_OP_MUL:
8947		case DIF_OP_SDIV:
8948		case DIF_OP_UDIV:
8949		case DIF_OP_SREM:
8950		case DIF_OP_UREM:
8951		case DIF_OP_COPYS:
8952		case DIF_OP_NOT:
8953		case DIF_OP_MOV:
8954		case DIF_OP_RLDSB:
8955		case DIF_OP_RLDSH:
8956		case DIF_OP_RLDSW:
8957		case DIF_OP_RLDUB:
8958		case DIF_OP_RLDUH:
8959		case DIF_OP_RLDUW:
8960		case DIF_OP_RLDX:
8961		case DIF_OP_ULDSB:
8962		case DIF_OP_ULDSH:
8963		case DIF_OP_ULDSW:
8964		case DIF_OP_ULDUB:
8965		case DIF_OP_ULDUH:
8966		case DIF_OP_ULDUW:
8967		case DIF_OP_ULDX:
8968		case DIF_OP_STB:
8969		case DIF_OP_STH:
8970		case DIF_OP_STW:
8971		case DIF_OP_STX:
8972		case DIF_OP_ALLOCS:
8973		case DIF_OP_CMP:
8974		case DIF_OP_SCMP:
8975		case DIF_OP_TST:
8976		case DIF_OP_BA:
8977		case DIF_OP_BE:
8978		case DIF_OP_BNE:
8979		case DIF_OP_BG:
8980		case DIF_OP_BGU:
8981		case DIF_OP_BGE:
8982		case DIF_OP_BGEU:
8983		case DIF_OP_BL:
8984		case DIF_OP_BLU:
8985		case DIF_OP_BLE:
8986		case DIF_OP_BLEU:
8987		case DIF_OP_RET:
8988		case DIF_OP_NOP:
8989		case DIF_OP_POPTS:
8990		case DIF_OP_FLUSHTS:
8991		case DIF_OP_SETX:
8992		case DIF_OP_SETS:
8993		case DIF_OP_LDGA:
8994		case DIF_OP_LDLS:
8995		case DIF_OP_STGS:
8996		case DIF_OP_STLS:
8997		case DIF_OP_PUSHTR:
8998		case DIF_OP_PUSHTV:
8999			break;
9000
9001		case DIF_OP_LDGS:
9002			if (v >= DIF_VAR_OTHER_UBASE)
9003				break;
9004
9005			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9006				break;
9007
9008			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9009			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9010			    v == DIF_VAR_EXECARGS ||
9011			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9012			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9013				break;
9014
9015			err += efunc(pc, "illegal variable %u\n", v);
9016			break;
9017
9018		case DIF_OP_LDTA:
9019		case DIF_OP_LDTS:
9020		case DIF_OP_LDGAA:
9021		case DIF_OP_LDTAA:
9022			err += efunc(pc, "illegal dynamic variable load\n");
9023			break;
9024
9025		case DIF_OP_STTS:
9026		case DIF_OP_STGAA:
9027		case DIF_OP_STTAA:
9028			err += efunc(pc, "illegal dynamic variable store\n");
9029			break;
9030
9031		case DIF_OP_CALL:
9032			if (subr == DIF_SUBR_ALLOCA ||
9033			    subr == DIF_SUBR_BCOPY ||
9034			    subr == DIF_SUBR_COPYIN ||
9035			    subr == DIF_SUBR_COPYINTO ||
9036			    subr == DIF_SUBR_COPYINSTR ||
9037			    subr == DIF_SUBR_INDEX ||
9038			    subr == DIF_SUBR_INET_NTOA ||
9039			    subr == DIF_SUBR_INET_NTOA6 ||
9040			    subr == DIF_SUBR_INET_NTOP ||
9041			    subr == DIF_SUBR_LLTOSTR ||
9042			    subr == DIF_SUBR_RINDEX ||
9043			    subr == DIF_SUBR_STRCHR ||
9044			    subr == DIF_SUBR_STRJOIN ||
9045			    subr == DIF_SUBR_STRRCHR ||
9046			    subr == DIF_SUBR_STRSTR ||
9047			    subr == DIF_SUBR_HTONS ||
9048			    subr == DIF_SUBR_HTONL ||
9049			    subr == DIF_SUBR_HTONLL ||
9050			    subr == DIF_SUBR_NTOHS ||
9051			    subr == DIF_SUBR_NTOHL ||
9052			    subr == DIF_SUBR_NTOHLL ||
9053			    subr == DIF_SUBR_MEMREF ||
9054			    subr == DIF_SUBR_TYPEREF)
9055				break;
9056
9057			err += efunc(pc, "invalid subr %u\n", subr);
9058			break;
9059
9060		default:
9061			err += efunc(pc, "invalid opcode %u\n",
9062			    DIF_INSTR_OP(instr));
9063		}
9064	}
9065
9066	return (err);
9067}
9068
9069/*
9070 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9071 * basis; 0 if not.
9072 */
9073static int
9074dtrace_difo_cacheable(dtrace_difo_t *dp)
9075{
9076	int i;
9077
9078	if (dp == NULL)
9079		return (0);
9080
9081	for (i = 0; i < dp->dtdo_varlen; i++) {
9082		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9083
9084		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9085			continue;
9086
9087		switch (v->dtdv_id) {
9088		case DIF_VAR_CURTHREAD:
9089		case DIF_VAR_PID:
9090		case DIF_VAR_TID:
9091		case DIF_VAR_EXECARGS:
9092		case DIF_VAR_EXECNAME:
9093		case DIF_VAR_ZONENAME:
9094			break;
9095
9096		default:
9097			return (0);
9098		}
9099	}
9100
9101	/*
9102	 * This DIF object may be cacheable.  Now we need to look for any
9103	 * array loading instructions, any memory loading instructions, or
9104	 * any stores to thread-local variables.
9105	 */
9106	for (i = 0; i < dp->dtdo_len; i++) {
9107		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9108
9109		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9110		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9111		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9112		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9113			return (0);
9114	}
9115
9116	return (1);
9117}
9118
9119static void
9120dtrace_difo_hold(dtrace_difo_t *dp)
9121{
9122	int i;
9123
9124	ASSERT(MUTEX_HELD(&dtrace_lock));
9125
9126	dp->dtdo_refcnt++;
9127	ASSERT(dp->dtdo_refcnt != 0);
9128
9129	/*
9130	 * We need to check this DIF object for references to the variable
9131	 * DIF_VAR_VTIMESTAMP.
9132	 */
9133	for (i = 0; i < dp->dtdo_varlen; i++) {
9134		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9135
9136		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9137			continue;
9138
9139		if (dtrace_vtime_references++ == 0)
9140			dtrace_vtime_enable();
9141	}
9142}
9143
9144/*
9145 * This routine calculates the dynamic variable chunksize for a given DIF
9146 * object.  The calculation is not fool-proof, and can probably be tricked by
9147 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9148 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9149 * if a dynamic variable size exceeds the chunksize.
9150 */
9151static void
9152dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9153{
9154	uint64_t sval = 0;
9155	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9156	const dif_instr_t *text = dp->dtdo_buf;
9157	uint_t pc, srd = 0;
9158	uint_t ttop = 0;
9159	size_t size, ksize;
9160	uint_t id, i;
9161
9162	for (pc = 0; pc < dp->dtdo_len; pc++) {
9163		dif_instr_t instr = text[pc];
9164		uint_t op = DIF_INSTR_OP(instr);
9165		uint_t rd = DIF_INSTR_RD(instr);
9166		uint_t r1 = DIF_INSTR_R1(instr);
9167		uint_t nkeys = 0;
9168		uchar_t scope = 0;
9169
9170		dtrace_key_t *key = tupregs;
9171
9172		switch (op) {
9173		case DIF_OP_SETX:
9174			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9175			srd = rd;
9176			continue;
9177
9178		case DIF_OP_STTS:
9179			key = &tupregs[DIF_DTR_NREGS];
9180			key[0].dttk_size = 0;
9181			key[1].dttk_size = 0;
9182			nkeys = 2;
9183			scope = DIFV_SCOPE_THREAD;
9184			break;
9185
9186		case DIF_OP_STGAA:
9187		case DIF_OP_STTAA:
9188			nkeys = ttop;
9189
9190			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9191				key[nkeys++].dttk_size = 0;
9192
9193			key[nkeys++].dttk_size = 0;
9194
9195			if (op == DIF_OP_STTAA) {
9196				scope = DIFV_SCOPE_THREAD;
9197			} else {
9198				scope = DIFV_SCOPE_GLOBAL;
9199			}
9200
9201			break;
9202
9203		case DIF_OP_PUSHTR:
9204			if (ttop == DIF_DTR_NREGS)
9205				return;
9206
9207			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9208				/*
9209				 * If the register for the size of the "pushtr"
9210				 * is %r0 (or the value is 0) and the type is
9211				 * a string, we'll use the system-wide default
9212				 * string size.
9213				 */
9214				tupregs[ttop++].dttk_size =
9215				    dtrace_strsize_default;
9216			} else {
9217				if (srd == 0)
9218					return;
9219
9220				tupregs[ttop++].dttk_size = sval;
9221			}
9222
9223			break;
9224
9225		case DIF_OP_PUSHTV:
9226			if (ttop == DIF_DTR_NREGS)
9227				return;
9228
9229			tupregs[ttop++].dttk_size = 0;
9230			break;
9231
9232		case DIF_OP_FLUSHTS:
9233			ttop = 0;
9234			break;
9235
9236		case DIF_OP_POPTS:
9237			if (ttop != 0)
9238				ttop--;
9239			break;
9240		}
9241
9242		sval = 0;
9243		srd = 0;
9244
9245		if (nkeys == 0)
9246			continue;
9247
9248		/*
9249		 * We have a dynamic variable allocation; calculate its size.
9250		 */
9251		for (ksize = 0, i = 0; i < nkeys; i++)
9252			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9253
9254		size = sizeof (dtrace_dynvar_t);
9255		size += sizeof (dtrace_key_t) * (nkeys - 1);
9256		size += ksize;
9257
9258		/*
9259		 * Now we need to determine the size of the stored data.
9260		 */
9261		id = DIF_INSTR_VAR(instr);
9262
9263		for (i = 0; i < dp->dtdo_varlen; i++) {
9264			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9265
9266			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9267				size += v->dtdv_type.dtdt_size;
9268				break;
9269			}
9270		}
9271
9272		if (i == dp->dtdo_varlen)
9273			return;
9274
9275		/*
9276		 * We have the size.  If this is larger than the chunk size
9277		 * for our dynamic variable state, reset the chunk size.
9278		 */
9279		size = P2ROUNDUP(size, sizeof (uint64_t));
9280
9281		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9282			vstate->dtvs_dynvars.dtds_chunksize = size;
9283	}
9284}
9285
9286static void
9287dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9288{
9289	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9290	uint_t id;
9291
9292	ASSERT(MUTEX_HELD(&dtrace_lock));
9293	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9294
9295	for (i = 0; i < dp->dtdo_varlen; i++) {
9296		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9297		dtrace_statvar_t *svar, ***svarp = NULL;
9298		size_t dsize = 0;
9299		uint8_t scope = v->dtdv_scope;
9300		int *np = NULL;
9301
9302		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9303			continue;
9304
9305		id -= DIF_VAR_OTHER_UBASE;
9306
9307		switch (scope) {
9308		case DIFV_SCOPE_THREAD:
9309			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9310				dtrace_difv_t *tlocals;
9311
9312				if ((ntlocals = (otlocals << 1)) == 0)
9313					ntlocals = 1;
9314
9315				osz = otlocals * sizeof (dtrace_difv_t);
9316				nsz = ntlocals * sizeof (dtrace_difv_t);
9317
9318				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9319
9320				if (osz != 0) {
9321					bcopy(vstate->dtvs_tlocals,
9322					    tlocals, osz);
9323					kmem_free(vstate->dtvs_tlocals, osz);
9324				}
9325
9326				vstate->dtvs_tlocals = tlocals;
9327				vstate->dtvs_ntlocals = ntlocals;
9328			}
9329
9330			vstate->dtvs_tlocals[id] = *v;
9331			continue;
9332
9333		case DIFV_SCOPE_LOCAL:
9334			np = &vstate->dtvs_nlocals;
9335			svarp = &vstate->dtvs_locals;
9336
9337			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9338				dsize = NCPU * (v->dtdv_type.dtdt_size +
9339				    sizeof (uint64_t));
9340			else
9341				dsize = NCPU * sizeof (uint64_t);
9342
9343			break;
9344
9345		case DIFV_SCOPE_GLOBAL:
9346			np = &vstate->dtvs_nglobals;
9347			svarp = &vstate->dtvs_globals;
9348
9349			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9350				dsize = v->dtdv_type.dtdt_size +
9351				    sizeof (uint64_t);
9352
9353			break;
9354
9355		default:
9356			ASSERT(0);
9357		}
9358
9359		while (id >= (oldsvars = *np)) {
9360			dtrace_statvar_t **statics;
9361			int newsvars, oldsize, newsize;
9362
9363			if ((newsvars = (oldsvars << 1)) == 0)
9364				newsvars = 1;
9365
9366			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9367			newsize = newsvars * sizeof (dtrace_statvar_t *);
9368
9369			statics = kmem_zalloc(newsize, KM_SLEEP);
9370
9371			if (oldsize != 0) {
9372				bcopy(*svarp, statics, oldsize);
9373				kmem_free(*svarp, oldsize);
9374			}
9375
9376			*svarp = statics;
9377			*np = newsvars;
9378		}
9379
9380		if ((svar = (*svarp)[id]) == NULL) {
9381			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9382			svar->dtsv_var = *v;
9383
9384			if ((svar->dtsv_size = dsize) != 0) {
9385				svar->dtsv_data = (uint64_t)(uintptr_t)
9386				    kmem_zalloc(dsize, KM_SLEEP);
9387			}
9388
9389			(*svarp)[id] = svar;
9390		}
9391
9392		svar->dtsv_refcnt++;
9393	}
9394
9395	dtrace_difo_chunksize(dp, vstate);
9396	dtrace_difo_hold(dp);
9397}
9398
9399static dtrace_difo_t *
9400dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9401{
9402	dtrace_difo_t *new;
9403	size_t sz;
9404
9405	ASSERT(dp->dtdo_buf != NULL);
9406	ASSERT(dp->dtdo_refcnt != 0);
9407
9408	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9409
9410	ASSERT(dp->dtdo_buf != NULL);
9411	sz = dp->dtdo_len * sizeof (dif_instr_t);
9412	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9413	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9414	new->dtdo_len = dp->dtdo_len;
9415
9416	if (dp->dtdo_strtab != NULL) {
9417		ASSERT(dp->dtdo_strlen != 0);
9418		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9419		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9420		new->dtdo_strlen = dp->dtdo_strlen;
9421	}
9422
9423	if (dp->dtdo_inttab != NULL) {
9424		ASSERT(dp->dtdo_intlen != 0);
9425		sz = dp->dtdo_intlen * sizeof (uint64_t);
9426		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9427		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9428		new->dtdo_intlen = dp->dtdo_intlen;
9429	}
9430
9431	if (dp->dtdo_vartab != NULL) {
9432		ASSERT(dp->dtdo_varlen != 0);
9433		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9434		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9435		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9436		new->dtdo_varlen = dp->dtdo_varlen;
9437	}
9438
9439	dtrace_difo_init(new, vstate);
9440	return (new);
9441}
9442
9443static void
9444dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9445{
9446	int i;
9447
9448	ASSERT(dp->dtdo_refcnt == 0);
9449
9450	for (i = 0; i < dp->dtdo_varlen; i++) {
9451		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9452		dtrace_statvar_t *svar, **svarp = NULL;
9453		uint_t id;
9454		uint8_t scope = v->dtdv_scope;
9455		int *np = NULL;
9456
9457		switch (scope) {
9458		case DIFV_SCOPE_THREAD:
9459			continue;
9460
9461		case DIFV_SCOPE_LOCAL:
9462			np = &vstate->dtvs_nlocals;
9463			svarp = vstate->dtvs_locals;
9464			break;
9465
9466		case DIFV_SCOPE_GLOBAL:
9467			np = &vstate->dtvs_nglobals;
9468			svarp = vstate->dtvs_globals;
9469			break;
9470
9471		default:
9472			ASSERT(0);
9473		}
9474
9475		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9476			continue;
9477
9478		id -= DIF_VAR_OTHER_UBASE;
9479		ASSERT(id < *np);
9480
9481		svar = svarp[id];
9482		ASSERT(svar != NULL);
9483		ASSERT(svar->dtsv_refcnt > 0);
9484
9485		if (--svar->dtsv_refcnt > 0)
9486			continue;
9487
9488		if (svar->dtsv_size != 0) {
9489			ASSERT(svar->dtsv_data != 0);
9490			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9491			    svar->dtsv_size);
9492		}
9493
9494		kmem_free(svar, sizeof (dtrace_statvar_t));
9495		svarp[id] = NULL;
9496	}
9497
9498	if (dp->dtdo_buf != NULL)
9499		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9500	if (dp->dtdo_inttab != NULL)
9501		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9502	if (dp->dtdo_strtab != NULL)
9503		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9504	if (dp->dtdo_vartab != NULL)
9505		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9506
9507	kmem_free(dp, sizeof (dtrace_difo_t));
9508}
9509
9510static void
9511dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9512{
9513	int i;
9514
9515	ASSERT(MUTEX_HELD(&dtrace_lock));
9516	ASSERT(dp->dtdo_refcnt != 0);
9517
9518	for (i = 0; i < dp->dtdo_varlen; i++) {
9519		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9520
9521		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9522			continue;
9523
9524		ASSERT(dtrace_vtime_references > 0);
9525		if (--dtrace_vtime_references == 0)
9526			dtrace_vtime_disable();
9527	}
9528
9529	if (--dp->dtdo_refcnt == 0)
9530		dtrace_difo_destroy(dp, vstate);
9531}
9532
9533/*
9534 * DTrace Format Functions
9535 */
9536static uint16_t
9537dtrace_format_add(dtrace_state_t *state, char *str)
9538{
9539	char *fmt, **new;
9540	uint16_t ndx, len = strlen(str) + 1;
9541
9542	fmt = kmem_zalloc(len, KM_SLEEP);
9543	bcopy(str, fmt, len);
9544
9545	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9546		if (state->dts_formats[ndx] == NULL) {
9547			state->dts_formats[ndx] = fmt;
9548			return (ndx + 1);
9549		}
9550	}
9551
9552	if (state->dts_nformats == USHRT_MAX) {
9553		/*
9554		 * This is only likely if a denial-of-service attack is being
9555		 * attempted.  As such, it's okay to fail silently here.
9556		 */
9557		kmem_free(fmt, len);
9558		return (0);
9559	}
9560
9561	/*
9562	 * For simplicity, we always resize the formats array to be exactly the
9563	 * number of formats.
9564	 */
9565	ndx = state->dts_nformats++;
9566	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9567
9568	if (state->dts_formats != NULL) {
9569		ASSERT(ndx != 0);
9570		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9571		kmem_free(state->dts_formats, ndx * sizeof (char *));
9572	}
9573
9574	state->dts_formats = new;
9575	state->dts_formats[ndx] = fmt;
9576
9577	return (ndx + 1);
9578}
9579
9580static void
9581dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9582{
9583	char *fmt;
9584
9585	ASSERT(state->dts_formats != NULL);
9586	ASSERT(format <= state->dts_nformats);
9587	ASSERT(state->dts_formats[format - 1] != NULL);
9588
9589	fmt = state->dts_formats[format - 1];
9590	kmem_free(fmt, strlen(fmt) + 1);
9591	state->dts_formats[format - 1] = NULL;
9592}
9593
9594static void
9595dtrace_format_destroy(dtrace_state_t *state)
9596{
9597	int i;
9598
9599	if (state->dts_nformats == 0) {
9600		ASSERT(state->dts_formats == NULL);
9601		return;
9602	}
9603
9604	ASSERT(state->dts_formats != NULL);
9605
9606	for (i = 0; i < state->dts_nformats; i++) {
9607		char *fmt = state->dts_formats[i];
9608
9609		if (fmt == NULL)
9610			continue;
9611
9612		kmem_free(fmt, strlen(fmt) + 1);
9613	}
9614
9615	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9616	state->dts_nformats = 0;
9617	state->dts_formats = NULL;
9618}
9619
9620/*
9621 * DTrace Predicate Functions
9622 */
9623static dtrace_predicate_t *
9624dtrace_predicate_create(dtrace_difo_t *dp)
9625{
9626	dtrace_predicate_t *pred;
9627
9628	ASSERT(MUTEX_HELD(&dtrace_lock));
9629	ASSERT(dp->dtdo_refcnt != 0);
9630
9631	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9632	pred->dtp_difo = dp;
9633	pred->dtp_refcnt = 1;
9634
9635	if (!dtrace_difo_cacheable(dp))
9636		return (pred);
9637
9638	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9639		/*
9640		 * This is only theoretically possible -- we have had 2^32
9641		 * cacheable predicates on this machine.  We cannot allow any
9642		 * more predicates to become cacheable:  as unlikely as it is,
9643		 * there may be a thread caching a (now stale) predicate cache
9644		 * ID. (N.B.: the temptation is being successfully resisted to
9645		 * have this cmn_err() "Holy shit -- we executed this code!")
9646		 */
9647		return (pred);
9648	}
9649
9650	pred->dtp_cacheid = dtrace_predcache_id++;
9651
9652	return (pred);
9653}
9654
9655static void
9656dtrace_predicate_hold(dtrace_predicate_t *pred)
9657{
9658	ASSERT(MUTEX_HELD(&dtrace_lock));
9659	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9660	ASSERT(pred->dtp_refcnt > 0);
9661
9662	pred->dtp_refcnt++;
9663}
9664
9665static void
9666dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9667{
9668	dtrace_difo_t *dp = pred->dtp_difo;
9669
9670	ASSERT(MUTEX_HELD(&dtrace_lock));
9671	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9672	ASSERT(pred->dtp_refcnt > 0);
9673
9674	if (--pred->dtp_refcnt == 0) {
9675		dtrace_difo_release(pred->dtp_difo, vstate);
9676		kmem_free(pred, sizeof (dtrace_predicate_t));
9677	}
9678}
9679
9680/*
9681 * DTrace Action Description Functions
9682 */
9683static dtrace_actdesc_t *
9684dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9685    uint64_t uarg, uint64_t arg)
9686{
9687	dtrace_actdesc_t *act;
9688
9689#if defined(sun)
9690	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9691	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9692#endif
9693
9694	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9695	act->dtad_kind = kind;
9696	act->dtad_ntuple = ntuple;
9697	act->dtad_uarg = uarg;
9698	act->dtad_arg = arg;
9699	act->dtad_refcnt = 1;
9700
9701	return (act);
9702}
9703
9704static void
9705dtrace_actdesc_hold(dtrace_actdesc_t *act)
9706{
9707	ASSERT(act->dtad_refcnt >= 1);
9708	act->dtad_refcnt++;
9709}
9710
9711static void
9712dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9713{
9714	dtrace_actkind_t kind = act->dtad_kind;
9715	dtrace_difo_t *dp;
9716
9717	ASSERT(act->dtad_refcnt >= 1);
9718
9719	if (--act->dtad_refcnt != 0)
9720		return;
9721
9722	if ((dp = act->dtad_difo) != NULL)
9723		dtrace_difo_release(dp, vstate);
9724
9725	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9726		char *str = (char *)(uintptr_t)act->dtad_arg;
9727
9728#if defined(sun)
9729		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9730		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9731#endif
9732
9733		if (str != NULL)
9734			kmem_free(str, strlen(str) + 1);
9735	}
9736
9737	kmem_free(act, sizeof (dtrace_actdesc_t));
9738}
9739
9740/*
9741 * DTrace ECB Functions
9742 */
9743static dtrace_ecb_t *
9744dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9745{
9746	dtrace_ecb_t *ecb;
9747	dtrace_epid_t epid;
9748
9749	ASSERT(MUTEX_HELD(&dtrace_lock));
9750
9751	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9752	ecb->dte_predicate = NULL;
9753	ecb->dte_probe = probe;
9754
9755	/*
9756	 * The default size is the size of the default action: recording
9757	 * the epid.
9758	 */
9759	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9760	ecb->dte_alignment = sizeof (dtrace_epid_t);
9761
9762	epid = state->dts_epid++;
9763
9764	if (epid - 1 >= state->dts_necbs) {
9765		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9766		int necbs = state->dts_necbs << 1;
9767
9768		ASSERT(epid == state->dts_necbs + 1);
9769
9770		if (necbs == 0) {
9771			ASSERT(oecbs == NULL);
9772			necbs = 1;
9773		}
9774
9775		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9776
9777		if (oecbs != NULL)
9778			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9779
9780		dtrace_membar_producer();
9781		state->dts_ecbs = ecbs;
9782
9783		if (oecbs != NULL) {
9784			/*
9785			 * If this state is active, we must dtrace_sync()
9786			 * before we can free the old dts_ecbs array:  we're
9787			 * coming in hot, and there may be active ring
9788			 * buffer processing (which indexes into the dts_ecbs
9789			 * array) on another CPU.
9790			 */
9791			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9792				dtrace_sync();
9793
9794			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9795		}
9796
9797		dtrace_membar_producer();
9798		state->dts_necbs = necbs;
9799	}
9800
9801	ecb->dte_state = state;
9802
9803	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9804	dtrace_membar_producer();
9805	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9806
9807	return (ecb);
9808}
9809
9810static void
9811dtrace_ecb_enable(dtrace_ecb_t *ecb)
9812{
9813	dtrace_probe_t *probe = ecb->dte_probe;
9814
9815	ASSERT(MUTEX_HELD(&cpu_lock));
9816	ASSERT(MUTEX_HELD(&dtrace_lock));
9817	ASSERT(ecb->dte_next == NULL);
9818
9819	if (probe == NULL) {
9820		/*
9821		 * This is the NULL probe -- there's nothing to do.
9822		 */
9823		return;
9824	}
9825
9826	if (probe->dtpr_ecb == NULL) {
9827		dtrace_provider_t *prov = probe->dtpr_provider;
9828
9829		/*
9830		 * We're the first ECB on this probe.
9831		 */
9832		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9833
9834		if (ecb->dte_predicate != NULL)
9835			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9836
9837		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9838		    probe->dtpr_id, probe->dtpr_arg);
9839	} else {
9840		/*
9841		 * This probe is already active.  Swing the last pointer to
9842		 * point to the new ECB, and issue a dtrace_sync() to assure
9843		 * that all CPUs have seen the change.
9844		 */
9845		ASSERT(probe->dtpr_ecb_last != NULL);
9846		probe->dtpr_ecb_last->dte_next = ecb;
9847		probe->dtpr_ecb_last = ecb;
9848		probe->dtpr_predcache = 0;
9849
9850		dtrace_sync();
9851	}
9852}
9853
9854static void
9855dtrace_ecb_resize(dtrace_ecb_t *ecb)
9856{
9857	uint32_t maxalign = sizeof (dtrace_epid_t);
9858	uint32_t align = sizeof (uint8_t), offs, diff;
9859	dtrace_action_t *act;
9860	int wastuple = 0;
9861	uint32_t aggbase = UINT32_MAX;
9862	dtrace_state_t *state = ecb->dte_state;
9863
9864	/*
9865	 * If we record anything, we always record the epid.  (And we always
9866	 * record it first.)
9867	 */
9868	offs = sizeof (dtrace_epid_t);
9869	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9870
9871	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9872		dtrace_recdesc_t *rec = &act->dta_rec;
9873
9874		if ((align = rec->dtrd_alignment) > maxalign)
9875			maxalign = align;
9876
9877		if (!wastuple && act->dta_intuple) {
9878			/*
9879			 * This is the first record in a tuple.  Align the
9880			 * offset to be at offset 4 in an 8-byte aligned
9881			 * block.
9882			 */
9883			diff = offs + sizeof (dtrace_aggid_t);
9884
9885			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9886				offs += sizeof (uint64_t) - diff;
9887
9888			aggbase = offs - sizeof (dtrace_aggid_t);
9889			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9890		}
9891
9892		/*LINTED*/
9893		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9894			/*
9895			 * The current offset is not properly aligned; align it.
9896			 */
9897			offs += align - diff;
9898		}
9899
9900		rec->dtrd_offset = offs;
9901
9902		if (offs + rec->dtrd_size > ecb->dte_needed) {
9903			ecb->dte_needed = offs + rec->dtrd_size;
9904
9905			if (ecb->dte_needed > state->dts_needed)
9906				state->dts_needed = ecb->dte_needed;
9907		}
9908
9909		if (DTRACEACT_ISAGG(act->dta_kind)) {
9910			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9911			dtrace_action_t *first = agg->dtag_first, *prev;
9912
9913			ASSERT(rec->dtrd_size != 0 && first != NULL);
9914			ASSERT(wastuple);
9915			ASSERT(aggbase != UINT32_MAX);
9916
9917			agg->dtag_base = aggbase;
9918
9919			while ((prev = first->dta_prev) != NULL &&
9920			    DTRACEACT_ISAGG(prev->dta_kind)) {
9921				agg = (dtrace_aggregation_t *)prev;
9922				first = agg->dtag_first;
9923			}
9924
9925			if (prev != NULL) {
9926				offs = prev->dta_rec.dtrd_offset +
9927				    prev->dta_rec.dtrd_size;
9928			} else {
9929				offs = sizeof (dtrace_epid_t);
9930			}
9931			wastuple = 0;
9932		} else {
9933			if (!act->dta_intuple)
9934				ecb->dte_size = offs + rec->dtrd_size;
9935
9936			offs += rec->dtrd_size;
9937		}
9938
9939		wastuple = act->dta_intuple;
9940	}
9941
9942	if ((act = ecb->dte_action) != NULL &&
9943	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9944	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9945		/*
9946		 * If the size is still sizeof (dtrace_epid_t), then all
9947		 * actions store no data; set the size to 0.
9948		 */
9949		ecb->dte_alignment = maxalign;
9950		ecb->dte_size = 0;
9951
9952		/*
9953		 * If the needed space is still sizeof (dtrace_epid_t), then
9954		 * all actions need no additional space; set the needed
9955		 * size to 0.
9956		 */
9957		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9958			ecb->dte_needed = 0;
9959
9960		return;
9961	}
9962
9963	/*
9964	 * Set our alignment, and make sure that the dte_size and dte_needed
9965	 * are aligned to the size of an EPID.
9966	 */
9967	ecb->dte_alignment = maxalign;
9968	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9969	    ~(sizeof (dtrace_epid_t) - 1);
9970	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9971	    ~(sizeof (dtrace_epid_t) - 1);
9972	ASSERT(ecb->dte_size <= ecb->dte_needed);
9973}
9974
9975static dtrace_action_t *
9976dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9977{
9978	dtrace_aggregation_t *agg;
9979	size_t size = sizeof (uint64_t);
9980	int ntuple = desc->dtad_ntuple;
9981	dtrace_action_t *act;
9982	dtrace_recdesc_t *frec;
9983	dtrace_aggid_t aggid;
9984	dtrace_state_t *state = ecb->dte_state;
9985
9986	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9987	agg->dtag_ecb = ecb;
9988
9989	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9990
9991	switch (desc->dtad_kind) {
9992	case DTRACEAGG_MIN:
9993		agg->dtag_initial = INT64_MAX;
9994		agg->dtag_aggregate = dtrace_aggregate_min;
9995		break;
9996
9997	case DTRACEAGG_MAX:
9998		agg->dtag_initial = INT64_MIN;
9999		agg->dtag_aggregate = dtrace_aggregate_max;
10000		break;
10001
10002	case DTRACEAGG_COUNT:
10003		agg->dtag_aggregate = dtrace_aggregate_count;
10004		break;
10005
10006	case DTRACEAGG_QUANTIZE:
10007		agg->dtag_aggregate = dtrace_aggregate_quantize;
10008		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10009		    sizeof (uint64_t);
10010		break;
10011
10012	case DTRACEAGG_LQUANTIZE: {
10013		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10014		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10015
10016		agg->dtag_initial = desc->dtad_arg;
10017		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10018
10019		if (step == 0 || levels == 0)
10020			goto err;
10021
10022		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10023		break;
10024	}
10025
10026	case DTRACEAGG_LLQUANTIZE: {
10027		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10028		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10029		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10030		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10031		int64_t v;
10032
10033		agg->dtag_initial = desc->dtad_arg;
10034		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10035
10036		if (factor < 2 || low >= high || nsteps < factor)
10037			goto err;
10038
10039		/*
10040		 * Now check that the number of steps evenly divides a power
10041		 * of the factor.  (This assures both integer bucket size and
10042		 * linearity within each magnitude.)
10043		 */
10044		for (v = factor; v < nsteps; v *= factor)
10045			continue;
10046
10047		if ((v % nsteps) || (nsteps % factor))
10048			goto err;
10049
10050		size = (dtrace_aggregate_llquantize_bucket(factor,
10051		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10052		break;
10053	}
10054
10055	case DTRACEAGG_AVG:
10056		agg->dtag_aggregate = dtrace_aggregate_avg;
10057		size = sizeof (uint64_t) * 2;
10058		break;
10059
10060	case DTRACEAGG_STDDEV:
10061		agg->dtag_aggregate = dtrace_aggregate_stddev;
10062		size = sizeof (uint64_t) * 4;
10063		break;
10064
10065	case DTRACEAGG_SUM:
10066		agg->dtag_aggregate = dtrace_aggregate_sum;
10067		break;
10068
10069	default:
10070		goto err;
10071	}
10072
10073	agg->dtag_action.dta_rec.dtrd_size = size;
10074
10075	if (ntuple == 0)
10076		goto err;
10077
10078	/*
10079	 * We must make sure that we have enough actions for the n-tuple.
10080	 */
10081	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10082		if (DTRACEACT_ISAGG(act->dta_kind))
10083			break;
10084
10085		if (--ntuple == 0) {
10086			/*
10087			 * This is the action with which our n-tuple begins.
10088			 */
10089			agg->dtag_first = act;
10090			goto success;
10091		}
10092	}
10093
10094	/*
10095	 * This n-tuple is short by ntuple elements.  Return failure.
10096	 */
10097	ASSERT(ntuple != 0);
10098err:
10099	kmem_free(agg, sizeof (dtrace_aggregation_t));
10100	return (NULL);
10101
10102success:
10103	/*
10104	 * If the last action in the tuple has a size of zero, it's actually
10105	 * an expression argument for the aggregating action.
10106	 */
10107	ASSERT(ecb->dte_action_last != NULL);
10108	act = ecb->dte_action_last;
10109
10110	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10111		ASSERT(act->dta_difo != NULL);
10112
10113		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10114			agg->dtag_hasarg = 1;
10115	}
10116
10117	/*
10118	 * We need to allocate an id for this aggregation.
10119	 */
10120#if defined(sun)
10121	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10122	    VM_BESTFIT | VM_SLEEP);
10123#else
10124	aggid = alloc_unr(state->dts_aggid_arena);
10125#endif
10126
10127	if (aggid - 1 >= state->dts_naggregations) {
10128		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10129		dtrace_aggregation_t **aggs;
10130		int naggs = state->dts_naggregations << 1;
10131		int onaggs = state->dts_naggregations;
10132
10133		ASSERT(aggid == state->dts_naggregations + 1);
10134
10135		if (naggs == 0) {
10136			ASSERT(oaggs == NULL);
10137			naggs = 1;
10138		}
10139
10140		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10141
10142		if (oaggs != NULL) {
10143			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10144			kmem_free(oaggs, onaggs * sizeof (*aggs));
10145		}
10146
10147		state->dts_aggregations = aggs;
10148		state->dts_naggregations = naggs;
10149	}
10150
10151	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10152	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10153
10154	frec = &agg->dtag_first->dta_rec;
10155	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10156		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10157
10158	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10159		ASSERT(!act->dta_intuple);
10160		act->dta_intuple = 1;
10161	}
10162
10163	return (&agg->dtag_action);
10164}
10165
10166static void
10167dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10168{
10169	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10170	dtrace_state_t *state = ecb->dte_state;
10171	dtrace_aggid_t aggid = agg->dtag_id;
10172
10173	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10174#if defined(sun)
10175	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10176#else
10177	free_unr(state->dts_aggid_arena, aggid);
10178#endif
10179
10180	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10181	state->dts_aggregations[aggid - 1] = NULL;
10182
10183	kmem_free(agg, sizeof (dtrace_aggregation_t));
10184}
10185
10186static int
10187dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10188{
10189	dtrace_action_t *action, *last;
10190	dtrace_difo_t *dp = desc->dtad_difo;
10191	uint32_t size = 0, align = sizeof (uint8_t), mask;
10192	uint16_t format = 0;
10193	dtrace_recdesc_t *rec;
10194	dtrace_state_t *state = ecb->dte_state;
10195	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10196	uint64_t arg = desc->dtad_arg;
10197
10198	ASSERT(MUTEX_HELD(&dtrace_lock));
10199	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10200
10201	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10202		/*
10203		 * If this is an aggregating action, there must be neither
10204		 * a speculate nor a commit on the action chain.
10205		 */
10206		dtrace_action_t *act;
10207
10208		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10209			if (act->dta_kind == DTRACEACT_COMMIT)
10210				return (EINVAL);
10211
10212			if (act->dta_kind == DTRACEACT_SPECULATE)
10213				return (EINVAL);
10214		}
10215
10216		action = dtrace_ecb_aggregation_create(ecb, desc);
10217
10218		if (action == NULL)
10219			return (EINVAL);
10220	} else {
10221		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10222		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10223		    dp != NULL && dp->dtdo_destructive)) {
10224			state->dts_destructive = 1;
10225		}
10226
10227		switch (desc->dtad_kind) {
10228		case DTRACEACT_PRINTF:
10229		case DTRACEACT_PRINTA:
10230		case DTRACEACT_SYSTEM:
10231		case DTRACEACT_FREOPEN:
10232		case DTRACEACT_DIFEXPR:
10233			/*
10234			 * We know that our arg is a string -- turn it into a
10235			 * format.
10236			 */
10237			if (arg == 0) {
10238				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10239				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10240				format = 0;
10241			} else {
10242				ASSERT(arg != 0);
10243#if defined(sun)
10244				ASSERT(arg > KERNELBASE);
10245#endif
10246				format = dtrace_format_add(state,
10247				    (char *)(uintptr_t)arg);
10248			}
10249
10250			/*FALLTHROUGH*/
10251		case DTRACEACT_LIBACT:
10252		case DTRACEACT_TRACEMEM:
10253		case DTRACEACT_TRACEMEM_DYNSIZE:
10254			if (dp == NULL)
10255				return (EINVAL);
10256
10257			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10258				break;
10259
10260			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10261				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10262					return (EINVAL);
10263
10264				size = opt[DTRACEOPT_STRSIZE];
10265			}
10266
10267			break;
10268
10269		case DTRACEACT_STACK:
10270			if ((nframes = arg) == 0) {
10271				nframes = opt[DTRACEOPT_STACKFRAMES];
10272				ASSERT(nframes > 0);
10273				arg = nframes;
10274			}
10275
10276			size = nframes * sizeof (pc_t);
10277			break;
10278
10279		case DTRACEACT_JSTACK:
10280			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10281				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10282
10283			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10284				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10285
10286			arg = DTRACE_USTACK_ARG(nframes, strsize);
10287
10288			/*FALLTHROUGH*/
10289		case DTRACEACT_USTACK:
10290			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10291			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10292				strsize = DTRACE_USTACK_STRSIZE(arg);
10293				nframes = opt[DTRACEOPT_USTACKFRAMES];
10294				ASSERT(nframes > 0);
10295				arg = DTRACE_USTACK_ARG(nframes, strsize);
10296			}
10297
10298			/*
10299			 * Save a slot for the pid.
10300			 */
10301			size = (nframes + 1) * sizeof (uint64_t);
10302			size += DTRACE_USTACK_STRSIZE(arg);
10303			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10304
10305			break;
10306
10307		case DTRACEACT_SYM:
10308		case DTRACEACT_MOD:
10309			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10310			    sizeof (uint64_t)) ||
10311			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10312				return (EINVAL);
10313			break;
10314
10315		case DTRACEACT_USYM:
10316		case DTRACEACT_UMOD:
10317		case DTRACEACT_UADDR:
10318			if (dp == NULL ||
10319			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10320			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10321				return (EINVAL);
10322
10323			/*
10324			 * We have a slot for the pid, plus a slot for the
10325			 * argument.  To keep things simple (aligned with
10326			 * bitness-neutral sizing), we store each as a 64-bit
10327			 * quantity.
10328			 */
10329			size = 2 * sizeof (uint64_t);
10330			break;
10331
10332		case DTRACEACT_STOP:
10333		case DTRACEACT_BREAKPOINT:
10334		case DTRACEACT_PANIC:
10335			break;
10336
10337		case DTRACEACT_CHILL:
10338		case DTRACEACT_DISCARD:
10339		case DTRACEACT_RAISE:
10340			if (dp == NULL)
10341				return (EINVAL);
10342			break;
10343
10344		case DTRACEACT_EXIT:
10345			if (dp == NULL ||
10346			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10347			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10348				return (EINVAL);
10349			break;
10350
10351		case DTRACEACT_SPECULATE:
10352			if (ecb->dte_size > sizeof (dtrace_epid_t))
10353				return (EINVAL);
10354
10355			if (dp == NULL)
10356				return (EINVAL);
10357
10358			state->dts_speculates = 1;
10359			break;
10360
10361		case DTRACEACT_PRINTM:
10362		    	size = dp->dtdo_rtype.dtdt_size;
10363			break;
10364
10365		case DTRACEACT_PRINTT:
10366		    	size = dp->dtdo_rtype.dtdt_size;
10367			break;
10368
10369		case DTRACEACT_COMMIT: {
10370			dtrace_action_t *act = ecb->dte_action;
10371
10372			for (; act != NULL; act = act->dta_next) {
10373				if (act->dta_kind == DTRACEACT_COMMIT)
10374					return (EINVAL);
10375			}
10376
10377			if (dp == NULL)
10378				return (EINVAL);
10379			break;
10380		}
10381
10382		default:
10383			return (EINVAL);
10384		}
10385
10386		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10387			/*
10388			 * If this is a data-storing action or a speculate,
10389			 * we must be sure that there isn't a commit on the
10390			 * action chain.
10391			 */
10392			dtrace_action_t *act = ecb->dte_action;
10393
10394			for (; act != NULL; act = act->dta_next) {
10395				if (act->dta_kind == DTRACEACT_COMMIT)
10396					return (EINVAL);
10397			}
10398		}
10399
10400		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10401		action->dta_rec.dtrd_size = size;
10402	}
10403
10404	action->dta_refcnt = 1;
10405	rec = &action->dta_rec;
10406	size = rec->dtrd_size;
10407
10408	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10409		if (!(size & mask)) {
10410			align = mask + 1;
10411			break;
10412		}
10413	}
10414
10415	action->dta_kind = desc->dtad_kind;
10416
10417	if ((action->dta_difo = dp) != NULL)
10418		dtrace_difo_hold(dp);
10419
10420	rec->dtrd_action = action->dta_kind;
10421	rec->dtrd_arg = arg;
10422	rec->dtrd_uarg = desc->dtad_uarg;
10423	rec->dtrd_alignment = (uint16_t)align;
10424	rec->dtrd_format = format;
10425
10426	if ((last = ecb->dte_action_last) != NULL) {
10427		ASSERT(ecb->dte_action != NULL);
10428		action->dta_prev = last;
10429		last->dta_next = action;
10430	} else {
10431		ASSERT(ecb->dte_action == NULL);
10432		ecb->dte_action = action;
10433	}
10434
10435	ecb->dte_action_last = action;
10436
10437	return (0);
10438}
10439
10440static void
10441dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10442{
10443	dtrace_action_t *act = ecb->dte_action, *next;
10444	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10445	dtrace_difo_t *dp;
10446	uint16_t format;
10447
10448	if (act != NULL && act->dta_refcnt > 1) {
10449		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10450		act->dta_refcnt--;
10451	} else {
10452		for (; act != NULL; act = next) {
10453			next = act->dta_next;
10454			ASSERT(next != NULL || act == ecb->dte_action_last);
10455			ASSERT(act->dta_refcnt == 1);
10456
10457			if ((format = act->dta_rec.dtrd_format) != 0)
10458				dtrace_format_remove(ecb->dte_state, format);
10459
10460			if ((dp = act->dta_difo) != NULL)
10461				dtrace_difo_release(dp, vstate);
10462
10463			if (DTRACEACT_ISAGG(act->dta_kind)) {
10464				dtrace_ecb_aggregation_destroy(ecb, act);
10465			} else {
10466				kmem_free(act, sizeof (dtrace_action_t));
10467			}
10468		}
10469	}
10470
10471	ecb->dte_action = NULL;
10472	ecb->dte_action_last = NULL;
10473	ecb->dte_size = sizeof (dtrace_epid_t);
10474}
10475
10476static void
10477dtrace_ecb_disable(dtrace_ecb_t *ecb)
10478{
10479	/*
10480	 * We disable the ECB by removing it from its probe.
10481	 */
10482	dtrace_ecb_t *pecb, *prev = NULL;
10483	dtrace_probe_t *probe = ecb->dte_probe;
10484
10485	ASSERT(MUTEX_HELD(&dtrace_lock));
10486
10487	if (probe == NULL) {
10488		/*
10489		 * This is the NULL probe; there is nothing to disable.
10490		 */
10491		return;
10492	}
10493
10494	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10495		if (pecb == ecb)
10496			break;
10497		prev = pecb;
10498	}
10499
10500	ASSERT(pecb != NULL);
10501
10502	if (prev == NULL) {
10503		probe->dtpr_ecb = ecb->dte_next;
10504	} else {
10505		prev->dte_next = ecb->dte_next;
10506	}
10507
10508	if (ecb == probe->dtpr_ecb_last) {
10509		ASSERT(ecb->dte_next == NULL);
10510		probe->dtpr_ecb_last = prev;
10511	}
10512
10513	/*
10514	 * The ECB has been disconnected from the probe; now sync to assure
10515	 * that all CPUs have seen the change before returning.
10516	 */
10517	dtrace_sync();
10518
10519	if (probe->dtpr_ecb == NULL) {
10520		/*
10521		 * That was the last ECB on the probe; clear the predicate
10522		 * cache ID for the probe, disable it and sync one more time
10523		 * to assure that we'll never hit it again.
10524		 */
10525		dtrace_provider_t *prov = probe->dtpr_provider;
10526
10527		ASSERT(ecb->dte_next == NULL);
10528		ASSERT(probe->dtpr_ecb_last == NULL);
10529		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10530		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10531		    probe->dtpr_id, probe->dtpr_arg);
10532		dtrace_sync();
10533	} else {
10534		/*
10535		 * There is at least one ECB remaining on the probe.  If there
10536		 * is _exactly_ one, set the probe's predicate cache ID to be
10537		 * the predicate cache ID of the remaining ECB.
10538		 */
10539		ASSERT(probe->dtpr_ecb_last != NULL);
10540		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10541
10542		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10543			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10544
10545			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10546
10547			if (p != NULL)
10548				probe->dtpr_predcache = p->dtp_cacheid;
10549		}
10550
10551		ecb->dte_next = NULL;
10552	}
10553}
10554
10555static void
10556dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10557{
10558	dtrace_state_t *state = ecb->dte_state;
10559	dtrace_vstate_t *vstate = &state->dts_vstate;
10560	dtrace_predicate_t *pred;
10561	dtrace_epid_t epid = ecb->dte_epid;
10562
10563	ASSERT(MUTEX_HELD(&dtrace_lock));
10564	ASSERT(ecb->dte_next == NULL);
10565	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10566
10567	if ((pred = ecb->dte_predicate) != NULL)
10568		dtrace_predicate_release(pred, vstate);
10569
10570	dtrace_ecb_action_remove(ecb);
10571
10572	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10573	state->dts_ecbs[epid - 1] = NULL;
10574
10575	kmem_free(ecb, sizeof (dtrace_ecb_t));
10576}
10577
10578static dtrace_ecb_t *
10579dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10580    dtrace_enabling_t *enab)
10581{
10582	dtrace_ecb_t *ecb;
10583	dtrace_predicate_t *pred;
10584	dtrace_actdesc_t *act;
10585	dtrace_provider_t *prov;
10586	dtrace_ecbdesc_t *desc = enab->dten_current;
10587
10588	ASSERT(MUTEX_HELD(&dtrace_lock));
10589	ASSERT(state != NULL);
10590
10591	ecb = dtrace_ecb_add(state, probe);
10592	ecb->dte_uarg = desc->dted_uarg;
10593
10594	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10595		dtrace_predicate_hold(pred);
10596		ecb->dte_predicate = pred;
10597	}
10598
10599	if (probe != NULL) {
10600		/*
10601		 * If the provider shows more leg than the consumer is old
10602		 * enough to see, we need to enable the appropriate implicit
10603		 * predicate bits to prevent the ecb from activating at
10604		 * revealing times.
10605		 *
10606		 * Providers specifying DTRACE_PRIV_USER at register time
10607		 * are stating that they need the /proc-style privilege
10608		 * model to be enforced, and this is what DTRACE_COND_OWNER
10609		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10610		 */
10611		prov = probe->dtpr_provider;
10612		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10613		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10614			ecb->dte_cond |= DTRACE_COND_OWNER;
10615
10616		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10617		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10618			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10619
10620		/*
10621		 * If the provider shows us kernel innards and the user
10622		 * is lacking sufficient privilege, enable the
10623		 * DTRACE_COND_USERMODE implicit predicate.
10624		 */
10625		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10626		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10627			ecb->dte_cond |= DTRACE_COND_USERMODE;
10628	}
10629
10630	if (dtrace_ecb_create_cache != NULL) {
10631		/*
10632		 * If we have a cached ecb, we'll use its action list instead
10633		 * of creating our own (saving both time and space).
10634		 */
10635		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10636		dtrace_action_t *act = cached->dte_action;
10637
10638		if (act != NULL) {
10639			ASSERT(act->dta_refcnt > 0);
10640			act->dta_refcnt++;
10641			ecb->dte_action = act;
10642			ecb->dte_action_last = cached->dte_action_last;
10643			ecb->dte_needed = cached->dte_needed;
10644			ecb->dte_size = cached->dte_size;
10645			ecb->dte_alignment = cached->dte_alignment;
10646		}
10647
10648		return (ecb);
10649	}
10650
10651	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10652		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10653			dtrace_ecb_destroy(ecb);
10654			return (NULL);
10655		}
10656	}
10657
10658	dtrace_ecb_resize(ecb);
10659
10660	return (dtrace_ecb_create_cache = ecb);
10661}
10662
10663static int
10664dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10665{
10666	dtrace_ecb_t *ecb;
10667	dtrace_enabling_t *enab = arg;
10668	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10669
10670	ASSERT(state != NULL);
10671
10672	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10673		/*
10674		 * This probe was created in a generation for which this
10675		 * enabling has previously created ECBs; we don't want to
10676		 * enable it again, so just kick out.
10677		 */
10678		return (DTRACE_MATCH_NEXT);
10679	}
10680
10681	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10682		return (DTRACE_MATCH_DONE);
10683
10684	dtrace_ecb_enable(ecb);
10685	return (DTRACE_MATCH_NEXT);
10686}
10687
10688static dtrace_ecb_t *
10689dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10690{
10691	dtrace_ecb_t *ecb;
10692
10693	ASSERT(MUTEX_HELD(&dtrace_lock));
10694
10695	if (id == 0 || id > state->dts_necbs)
10696		return (NULL);
10697
10698	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10699	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10700
10701	return (state->dts_ecbs[id - 1]);
10702}
10703
10704static dtrace_aggregation_t *
10705dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10706{
10707	dtrace_aggregation_t *agg;
10708
10709	ASSERT(MUTEX_HELD(&dtrace_lock));
10710
10711	if (id == 0 || id > state->dts_naggregations)
10712		return (NULL);
10713
10714	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10715	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10716	    agg->dtag_id == id);
10717
10718	return (state->dts_aggregations[id - 1]);
10719}
10720
10721/*
10722 * DTrace Buffer Functions
10723 *
10724 * The following functions manipulate DTrace buffers.  Most of these functions
10725 * are called in the context of establishing or processing consumer state;
10726 * exceptions are explicitly noted.
10727 */
10728
10729/*
10730 * Note:  called from cross call context.  This function switches the two
10731 * buffers on a given CPU.  The atomicity of this operation is assured by
10732 * disabling interrupts while the actual switch takes place; the disabling of
10733 * interrupts serializes the execution with any execution of dtrace_probe() on
10734 * the same CPU.
10735 */
10736static void
10737dtrace_buffer_switch(dtrace_buffer_t *buf)
10738{
10739	caddr_t tomax = buf->dtb_tomax;
10740	caddr_t xamot = buf->dtb_xamot;
10741	dtrace_icookie_t cookie;
10742	hrtime_t now = dtrace_gethrtime();
10743
10744	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10745	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10746
10747	cookie = dtrace_interrupt_disable();
10748	buf->dtb_tomax = xamot;
10749	buf->dtb_xamot = tomax;
10750	buf->dtb_xamot_drops = buf->dtb_drops;
10751	buf->dtb_xamot_offset = buf->dtb_offset;
10752	buf->dtb_xamot_errors = buf->dtb_errors;
10753	buf->dtb_xamot_flags = buf->dtb_flags;
10754	buf->dtb_offset = 0;
10755	buf->dtb_drops = 0;
10756	buf->dtb_errors = 0;
10757	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10758	buf->dtb_interval = now - buf->dtb_switched;
10759	buf->dtb_switched = now;
10760	dtrace_interrupt_enable(cookie);
10761}
10762
10763/*
10764 * Note:  called from cross call context.  This function activates a buffer
10765 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10766 * is guaranteed by the disabling of interrupts.
10767 */
10768static void
10769dtrace_buffer_activate(dtrace_state_t *state)
10770{
10771	dtrace_buffer_t *buf;
10772	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10773
10774	buf = &state->dts_buffer[curcpu];
10775
10776	if (buf->dtb_tomax != NULL) {
10777		/*
10778		 * We might like to assert that the buffer is marked inactive,
10779		 * but this isn't necessarily true:  the buffer for the CPU
10780		 * that processes the BEGIN probe has its buffer activated
10781		 * manually.  In this case, we take the (harmless) action
10782		 * re-clearing the bit INACTIVE bit.
10783		 */
10784		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10785	}
10786
10787	dtrace_interrupt_enable(cookie);
10788}
10789
10790static int
10791dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10792    processorid_t cpu)
10793{
10794#if defined(sun)
10795	cpu_t *cp;
10796#endif
10797	dtrace_buffer_t *buf;
10798
10799#if defined(sun)
10800	ASSERT(MUTEX_HELD(&cpu_lock));
10801	ASSERT(MUTEX_HELD(&dtrace_lock));
10802
10803	if (size > dtrace_nonroot_maxsize &&
10804	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10805		return (EFBIG);
10806
10807	cp = cpu_list;
10808
10809	do {
10810		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10811			continue;
10812
10813		buf = &bufs[cp->cpu_id];
10814
10815		/*
10816		 * If there is already a buffer allocated for this CPU, it
10817		 * is only possible that this is a DR event.  In this case,
10818		 */
10819		if (buf->dtb_tomax != NULL) {
10820			ASSERT(buf->dtb_size == size);
10821			continue;
10822		}
10823
10824		ASSERT(buf->dtb_xamot == NULL);
10825
10826		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10827			goto err;
10828
10829		buf->dtb_size = size;
10830		buf->dtb_flags = flags;
10831		buf->dtb_offset = 0;
10832		buf->dtb_drops = 0;
10833
10834		if (flags & DTRACEBUF_NOSWITCH)
10835			continue;
10836
10837		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10838			goto err;
10839	} while ((cp = cp->cpu_next) != cpu_list);
10840
10841	return (0);
10842
10843err:
10844	cp = cpu_list;
10845
10846	do {
10847		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10848			continue;
10849
10850		buf = &bufs[cp->cpu_id];
10851
10852		if (buf->dtb_xamot != NULL) {
10853			ASSERT(buf->dtb_tomax != NULL);
10854			ASSERT(buf->dtb_size == size);
10855			kmem_free(buf->dtb_xamot, size);
10856		}
10857
10858		if (buf->dtb_tomax != NULL) {
10859			ASSERT(buf->dtb_size == size);
10860			kmem_free(buf->dtb_tomax, size);
10861		}
10862
10863		buf->dtb_tomax = NULL;
10864		buf->dtb_xamot = NULL;
10865		buf->dtb_size = 0;
10866	} while ((cp = cp->cpu_next) != cpu_list);
10867
10868	return (ENOMEM);
10869#else
10870	int i;
10871
10872#if defined(__amd64__)
10873	/*
10874	 * FreeBSD isn't good at limiting the amount of memory we
10875	 * ask to malloc, so let's place a limit here before trying
10876	 * to do something that might well end in tears at bedtime.
10877	 */
10878	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10879		return(ENOMEM);
10880#endif
10881
10882	ASSERT(MUTEX_HELD(&dtrace_lock));
10883	CPU_FOREACH(i) {
10884		if (cpu != DTRACE_CPUALL && cpu != i)
10885			continue;
10886
10887		buf = &bufs[i];
10888
10889		/*
10890		 * If there is already a buffer allocated for this CPU, it
10891		 * is only possible that this is a DR event.  In this case,
10892		 * the buffer size must match our specified size.
10893		 */
10894		if (buf->dtb_tomax != NULL) {
10895			ASSERT(buf->dtb_size == size);
10896			continue;
10897		}
10898
10899		ASSERT(buf->dtb_xamot == NULL);
10900
10901		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10902			goto err;
10903
10904		buf->dtb_size = size;
10905		buf->dtb_flags = flags;
10906		buf->dtb_offset = 0;
10907		buf->dtb_drops = 0;
10908
10909		if (flags & DTRACEBUF_NOSWITCH)
10910			continue;
10911
10912		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10913			goto err;
10914	}
10915
10916	return (0);
10917
10918err:
10919	/*
10920	 * Error allocating memory, so free the buffers that were
10921	 * allocated before the failed allocation.
10922	 */
10923	CPU_FOREACH(i) {
10924		if (cpu != DTRACE_CPUALL && cpu != i)
10925			continue;
10926
10927		buf = &bufs[i];
10928
10929		if (buf->dtb_xamot != NULL) {
10930			ASSERT(buf->dtb_tomax != NULL);
10931			ASSERT(buf->dtb_size == size);
10932			kmem_free(buf->dtb_xamot, size);
10933		}
10934
10935		if (buf->dtb_tomax != NULL) {
10936			ASSERT(buf->dtb_size == size);
10937			kmem_free(buf->dtb_tomax, size);
10938		}
10939
10940		buf->dtb_tomax = NULL;
10941		buf->dtb_xamot = NULL;
10942		buf->dtb_size = 0;
10943
10944	}
10945
10946	return (ENOMEM);
10947#endif
10948}
10949
10950/*
10951 * Note:  called from probe context.  This function just increments the drop
10952 * count on a buffer.  It has been made a function to allow for the
10953 * possibility of understanding the source of mysterious drop counts.  (A
10954 * problem for which one may be particularly disappointed that DTrace cannot
10955 * be used to understand DTrace.)
10956 */
10957static void
10958dtrace_buffer_drop(dtrace_buffer_t *buf)
10959{
10960	buf->dtb_drops++;
10961}
10962
10963/*
10964 * Note:  called from probe context.  This function is called to reserve space
10965 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10966 * mstate.  Returns the new offset in the buffer, or a negative value if an
10967 * error has occurred.
10968 */
10969static intptr_t
10970dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10971    dtrace_state_t *state, dtrace_mstate_t *mstate)
10972{
10973	intptr_t offs = buf->dtb_offset, soffs;
10974	intptr_t woffs;
10975	caddr_t tomax;
10976	size_t total;
10977
10978	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10979		return (-1);
10980
10981	if ((tomax = buf->dtb_tomax) == NULL) {
10982		dtrace_buffer_drop(buf);
10983		return (-1);
10984	}
10985
10986	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10987		while (offs & (align - 1)) {
10988			/*
10989			 * Assert that our alignment is off by a number which
10990			 * is itself sizeof (uint32_t) aligned.
10991			 */
10992			ASSERT(!((align - (offs & (align - 1))) &
10993			    (sizeof (uint32_t) - 1)));
10994			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10995			offs += sizeof (uint32_t);
10996		}
10997
10998		if ((soffs = offs + needed) > buf->dtb_size) {
10999			dtrace_buffer_drop(buf);
11000			return (-1);
11001		}
11002
11003		if (mstate == NULL)
11004			return (offs);
11005
11006		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11007		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11008		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11009
11010		return (offs);
11011	}
11012
11013	if (buf->dtb_flags & DTRACEBUF_FILL) {
11014		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11015		    (buf->dtb_flags & DTRACEBUF_FULL))
11016			return (-1);
11017		goto out;
11018	}
11019
11020	total = needed + (offs & (align - 1));
11021
11022	/*
11023	 * For a ring buffer, life is quite a bit more complicated.  Before
11024	 * we can store any padding, we need to adjust our wrapping offset.
11025	 * (If we've never before wrapped or we're not about to, no adjustment
11026	 * is required.)
11027	 */
11028	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11029	    offs + total > buf->dtb_size) {
11030		woffs = buf->dtb_xamot_offset;
11031
11032		if (offs + total > buf->dtb_size) {
11033			/*
11034			 * We can't fit in the end of the buffer.  First, a
11035			 * sanity check that we can fit in the buffer at all.
11036			 */
11037			if (total > buf->dtb_size) {
11038				dtrace_buffer_drop(buf);
11039				return (-1);
11040			}
11041
11042			/*
11043			 * We're going to be storing at the top of the buffer,
11044			 * so now we need to deal with the wrapped offset.  We
11045			 * only reset our wrapped offset to 0 if it is
11046			 * currently greater than the current offset.  If it
11047			 * is less than the current offset, it is because a
11048			 * previous allocation induced a wrap -- but the
11049			 * allocation didn't subsequently take the space due
11050			 * to an error or false predicate evaluation.  In this
11051			 * case, we'll just leave the wrapped offset alone: if
11052			 * the wrapped offset hasn't been advanced far enough
11053			 * for this allocation, it will be adjusted in the
11054			 * lower loop.
11055			 */
11056			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11057				if (woffs >= offs)
11058					woffs = 0;
11059			} else {
11060				woffs = 0;
11061			}
11062
11063			/*
11064			 * Now we know that we're going to be storing to the
11065			 * top of the buffer and that there is room for us
11066			 * there.  We need to clear the buffer from the current
11067			 * offset to the end (there may be old gunk there).
11068			 */
11069			while (offs < buf->dtb_size)
11070				tomax[offs++] = 0;
11071
11072			/*
11073			 * We need to set our offset to zero.  And because we
11074			 * are wrapping, we need to set the bit indicating as
11075			 * much.  We can also adjust our needed space back
11076			 * down to the space required by the ECB -- we know
11077			 * that the top of the buffer is aligned.
11078			 */
11079			offs = 0;
11080			total = needed;
11081			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11082		} else {
11083			/*
11084			 * There is room for us in the buffer, so we simply
11085			 * need to check the wrapped offset.
11086			 */
11087			if (woffs < offs) {
11088				/*
11089				 * The wrapped offset is less than the offset.
11090				 * This can happen if we allocated buffer space
11091				 * that induced a wrap, but then we didn't
11092				 * subsequently take the space due to an error
11093				 * or false predicate evaluation.  This is
11094				 * okay; we know that _this_ allocation isn't
11095				 * going to induce a wrap.  We still can't
11096				 * reset the wrapped offset to be zero,
11097				 * however: the space may have been trashed in
11098				 * the previous failed probe attempt.  But at
11099				 * least the wrapped offset doesn't need to
11100				 * be adjusted at all...
11101				 */
11102				goto out;
11103			}
11104		}
11105
11106		while (offs + total > woffs) {
11107			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11108			size_t size;
11109
11110			if (epid == DTRACE_EPIDNONE) {
11111				size = sizeof (uint32_t);
11112			} else {
11113				ASSERT(epid <= state->dts_necbs);
11114				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11115
11116				size = state->dts_ecbs[epid - 1]->dte_size;
11117			}
11118
11119			ASSERT(woffs + size <= buf->dtb_size);
11120			ASSERT(size != 0);
11121
11122			if (woffs + size == buf->dtb_size) {
11123				/*
11124				 * We've reached the end of the buffer; we want
11125				 * to set the wrapped offset to 0 and break
11126				 * out.  However, if the offs is 0, then we're
11127				 * in a strange edge-condition:  the amount of
11128				 * space that we want to reserve plus the size
11129				 * of the record that we're overwriting is
11130				 * greater than the size of the buffer.  This
11131				 * is problematic because if we reserve the
11132				 * space but subsequently don't consume it (due
11133				 * to a failed predicate or error) the wrapped
11134				 * offset will be 0 -- yet the EPID at offset 0
11135				 * will not be committed.  This situation is
11136				 * relatively easy to deal with:  if we're in
11137				 * this case, the buffer is indistinguishable
11138				 * from one that hasn't wrapped; we need only
11139				 * finish the job by clearing the wrapped bit,
11140				 * explicitly setting the offset to be 0, and
11141				 * zero'ing out the old data in the buffer.
11142				 */
11143				if (offs == 0) {
11144					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11145					buf->dtb_offset = 0;
11146					woffs = total;
11147
11148					while (woffs < buf->dtb_size)
11149						tomax[woffs++] = 0;
11150				}
11151
11152				woffs = 0;
11153				break;
11154			}
11155
11156			woffs += size;
11157		}
11158
11159		/*
11160		 * We have a wrapped offset.  It may be that the wrapped offset
11161		 * has become zero -- that's okay.
11162		 */
11163		buf->dtb_xamot_offset = woffs;
11164	}
11165
11166out:
11167	/*
11168	 * Now we can plow the buffer with any necessary padding.
11169	 */
11170	while (offs & (align - 1)) {
11171		/*
11172		 * Assert that our alignment is off by a number which
11173		 * is itself sizeof (uint32_t) aligned.
11174		 */
11175		ASSERT(!((align - (offs & (align - 1))) &
11176		    (sizeof (uint32_t) - 1)));
11177		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11178		offs += sizeof (uint32_t);
11179	}
11180
11181	if (buf->dtb_flags & DTRACEBUF_FILL) {
11182		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11183			buf->dtb_flags |= DTRACEBUF_FULL;
11184			return (-1);
11185		}
11186	}
11187
11188	if (mstate == NULL)
11189		return (offs);
11190
11191	/*
11192	 * For ring buffers and fill buffers, the scratch space is always
11193	 * the inactive buffer.
11194	 */
11195	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11196	mstate->dtms_scratch_size = buf->dtb_size;
11197	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11198
11199	return (offs);
11200}
11201
11202static void
11203dtrace_buffer_polish(dtrace_buffer_t *buf)
11204{
11205	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11206	ASSERT(MUTEX_HELD(&dtrace_lock));
11207
11208	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11209		return;
11210
11211	/*
11212	 * We need to polish the ring buffer.  There are three cases:
11213	 *
11214	 * - The first (and presumably most common) is that there is no gap
11215	 *   between the buffer offset and the wrapped offset.  In this case,
11216	 *   there is nothing in the buffer that isn't valid data; we can
11217	 *   mark the buffer as polished and return.
11218	 *
11219	 * - The second (less common than the first but still more common
11220	 *   than the third) is that there is a gap between the buffer offset
11221	 *   and the wrapped offset, and the wrapped offset is larger than the
11222	 *   buffer offset.  This can happen because of an alignment issue, or
11223	 *   can happen because of a call to dtrace_buffer_reserve() that
11224	 *   didn't subsequently consume the buffer space.  In this case,
11225	 *   we need to zero the data from the buffer offset to the wrapped
11226	 *   offset.
11227	 *
11228	 * - The third (and least common) is that there is a gap between the
11229	 *   buffer offset and the wrapped offset, but the wrapped offset is
11230	 *   _less_ than the buffer offset.  This can only happen because a
11231	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11232	 *   was not subsequently consumed.  In this case, we need to zero the
11233	 *   space from the offset to the end of the buffer _and_ from the
11234	 *   top of the buffer to the wrapped offset.
11235	 */
11236	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11237		bzero(buf->dtb_tomax + buf->dtb_offset,
11238		    buf->dtb_xamot_offset - buf->dtb_offset);
11239	}
11240
11241	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11242		bzero(buf->dtb_tomax + buf->dtb_offset,
11243		    buf->dtb_size - buf->dtb_offset);
11244		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11245	}
11246}
11247
11248/*
11249 * This routine determines if data generated at the specified time has likely
11250 * been entirely consumed at user-level.  This routine is called to determine
11251 * if an ECB on a defunct probe (but for an active enabling) can be safely
11252 * disabled and destroyed.
11253 */
11254static int
11255dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11256{
11257	int i;
11258
11259	for (i = 0; i < NCPU; i++) {
11260		dtrace_buffer_t *buf = &bufs[i];
11261
11262		if (buf->dtb_size == 0)
11263			continue;
11264
11265		if (buf->dtb_flags & DTRACEBUF_RING)
11266			return (0);
11267
11268		if (!buf->dtb_switched && buf->dtb_offset != 0)
11269			return (0);
11270
11271		if (buf->dtb_switched - buf->dtb_interval < when)
11272			return (0);
11273	}
11274
11275	return (1);
11276}
11277
11278static void
11279dtrace_buffer_free(dtrace_buffer_t *bufs)
11280{
11281	int i;
11282
11283	for (i = 0; i < NCPU; i++) {
11284		dtrace_buffer_t *buf = &bufs[i];
11285
11286		if (buf->dtb_tomax == NULL) {
11287			ASSERT(buf->dtb_xamot == NULL);
11288			ASSERT(buf->dtb_size == 0);
11289			continue;
11290		}
11291
11292		if (buf->dtb_xamot != NULL) {
11293			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11294			kmem_free(buf->dtb_xamot, buf->dtb_size);
11295		}
11296
11297		kmem_free(buf->dtb_tomax, buf->dtb_size);
11298		buf->dtb_size = 0;
11299		buf->dtb_tomax = NULL;
11300		buf->dtb_xamot = NULL;
11301	}
11302}
11303
11304/*
11305 * DTrace Enabling Functions
11306 */
11307static dtrace_enabling_t *
11308dtrace_enabling_create(dtrace_vstate_t *vstate)
11309{
11310	dtrace_enabling_t *enab;
11311
11312	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11313	enab->dten_vstate = vstate;
11314
11315	return (enab);
11316}
11317
11318static void
11319dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11320{
11321	dtrace_ecbdesc_t **ndesc;
11322	size_t osize, nsize;
11323
11324	/*
11325	 * We can't add to enablings after we've enabled them, or after we've
11326	 * retained them.
11327	 */
11328	ASSERT(enab->dten_probegen == 0);
11329	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11330
11331	if (enab->dten_ndesc < enab->dten_maxdesc) {
11332		enab->dten_desc[enab->dten_ndesc++] = ecb;
11333		return;
11334	}
11335
11336	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11337
11338	if (enab->dten_maxdesc == 0) {
11339		enab->dten_maxdesc = 1;
11340	} else {
11341		enab->dten_maxdesc <<= 1;
11342	}
11343
11344	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11345
11346	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11347	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11348	bcopy(enab->dten_desc, ndesc, osize);
11349	if (enab->dten_desc != NULL)
11350		kmem_free(enab->dten_desc, osize);
11351
11352	enab->dten_desc = ndesc;
11353	enab->dten_desc[enab->dten_ndesc++] = ecb;
11354}
11355
11356static void
11357dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11358    dtrace_probedesc_t *pd)
11359{
11360	dtrace_ecbdesc_t *new;
11361	dtrace_predicate_t *pred;
11362	dtrace_actdesc_t *act;
11363
11364	/*
11365	 * We're going to create a new ECB description that matches the
11366	 * specified ECB in every way, but has the specified probe description.
11367	 */
11368	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11369
11370	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11371		dtrace_predicate_hold(pred);
11372
11373	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11374		dtrace_actdesc_hold(act);
11375
11376	new->dted_action = ecb->dted_action;
11377	new->dted_pred = ecb->dted_pred;
11378	new->dted_probe = *pd;
11379	new->dted_uarg = ecb->dted_uarg;
11380
11381	dtrace_enabling_add(enab, new);
11382}
11383
11384static void
11385dtrace_enabling_dump(dtrace_enabling_t *enab)
11386{
11387	int i;
11388
11389	for (i = 0; i < enab->dten_ndesc; i++) {
11390		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11391
11392		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11393		    desc->dtpd_provider, desc->dtpd_mod,
11394		    desc->dtpd_func, desc->dtpd_name);
11395	}
11396}
11397
11398static void
11399dtrace_enabling_destroy(dtrace_enabling_t *enab)
11400{
11401	int i;
11402	dtrace_ecbdesc_t *ep;
11403	dtrace_vstate_t *vstate = enab->dten_vstate;
11404
11405	ASSERT(MUTEX_HELD(&dtrace_lock));
11406
11407	for (i = 0; i < enab->dten_ndesc; i++) {
11408		dtrace_actdesc_t *act, *next;
11409		dtrace_predicate_t *pred;
11410
11411		ep = enab->dten_desc[i];
11412
11413		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11414			dtrace_predicate_release(pred, vstate);
11415
11416		for (act = ep->dted_action; act != NULL; act = next) {
11417			next = act->dtad_next;
11418			dtrace_actdesc_release(act, vstate);
11419		}
11420
11421		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11422	}
11423
11424	if (enab->dten_desc != NULL)
11425		kmem_free(enab->dten_desc,
11426		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11427
11428	/*
11429	 * If this was a retained enabling, decrement the dts_nretained count
11430	 * and take it off of the dtrace_retained list.
11431	 */
11432	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11433	    dtrace_retained == enab) {
11434		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11435		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11436		enab->dten_vstate->dtvs_state->dts_nretained--;
11437	}
11438
11439	if (enab->dten_prev == NULL) {
11440		if (dtrace_retained == enab) {
11441			dtrace_retained = enab->dten_next;
11442
11443			if (dtrace_retained != NULL)
11444				dtrace_retained->dten_prev = NULL;
11445		}
11446	} else {
11447		ASSERT(enab != dtrace_retained);
11448		ASSERT(dtrace_retained != NULL);
11449		enab->dten_prev->dten_next = enab->dten_next;
11450	}
11451
11452	if (enab->dten_next != NULL) {
11453		ASSERT(dtrace_retained != NULL);
11454		enab->dten_next->dten_prev = enab->dten_prev;
11455	}
11456
11457	kmem_free(enab, sizeof (dtrace_enabling_t));
11458}
11459
11460static int
11461dtrace_enabling_retain(dtrace_enabling_t *enab)
11462{
11463	dtrace_state_t *state;
11464
11465	ASSERT(MUTEX_HELD(&dtrace_lock));
11466	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11467	ASSERT(enab->dten_vstate != NULL);
11468
11469	state = enab->dten_vstate->dtvs_state;
11470	ASSERT(state != NULL);
11471
11472	/*
11473	 * We only allow each state to retain dtrace_retain_max enablings.
11474	 */
11475	if (state->dts_nretained >= dtrace_retain_max)
11476		return (ENOSPC);
11477
11478	state->dts_nretained++;
11479
11480	if (dtrace_retained == NULL) {
11481		dtrace_retained = enab;
11482		return (0);
11483	}
11484
11485	enab->dten_next = dtrace_retained;
11486	dtrace_retained->dten_prev = enab;
11487	dtrace_retained = enab;
11488
11489	return (0);
11490}
11491
11492static int
11493dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11494    dtrace_probedesc_t *create)
11495{
11496	dtrace_enabling_t *new, *enab;
11497	int found = 0, err = ENOENT;
11498
11499	ASSERT(MUTEX_HELD(&dtrace_lock));
11500	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11501	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11502	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11503	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11504
11505	new = dtrace_enabling_create(&state->dts_vstate);
11506
11507	/*
11508	 * Iterate over all retained enablings, looking for enablings that
11509	 * match the specified state.
11510	 */
11511	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11512		int i;
11513
11514		/*
11515		 * dtvs_state can only be NULL for helper enablings -- and
11516		 * helper enablings can't be retained.
11517		 */
11518		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11519
11520		if (enab->dten_vstate->dtvs_state != state)
11521			continue;
11522
11523		/*
11524		 * Now iterate over each probe description; we're looking for
11525		 * an exact match to the specified probe description.
11526		 */
11527		for (i = 0; i < enab->dten_ndesc; i++) {
11528			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11529			dtrace_probedesc_t *pd = &ep->dted_probe;
11530
11531			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11532				continue;
11533
11534			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11535				continue;
11536
11537			if (strcmp(pd->dtpd_func, match->dtpd_func))
11538				continue;
11539
11540			if (strcmp(pd->dtpd_name, match->dtpd_name))
11541				continue;
11542
11543			/*
11544			 * We have a winning probe!  Add it to our growing
11545			 * enabling.
11546			 */
11547			found = 1;
11548			dtrace_enabling_addlike(new, ep, create);
11549		}
11550	}
11551
11552	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11553		dtrace_enabling_destroy(new);
11554		return (err);
11555	}
11556
11557	return (0);
11558}
11559
11560static void
11561dtrace_enabling_retract(dtrace_state_t *state)
11562{
11563	dtrace_enabling_t *enab, *next;
11564
11565	ASSERT(MUTEX_HELD(&dtrace_lock));
11566
11567	/*
11568	 * Iterate over all retained enablings, destroy the enablings retained
11569	 * for the specified state.
11570	 */
11571	for (enab = dtrace_retained; enab != NULL; enab = next) {
11572		next = enab->dten_next;
11573
11574		/*
11575		 * dtvs_state can only be NULL for helper enablings -- and
11576		 * helper enablings can't be retained.
11577		 */
11578		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11579
11580		if (enab->dten_vstate->dtvs_state == state) {
11581			ASSERT(state->dts_nretained > 0);
11582			dtrace_enabling_destroy(enab);
11583		}
11584	}
11585
11586	ASSERT(state->dts_nretained == 0);
11587}
11588
11589static int
11590dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11591{
11592	int i = 0;
11593	int matched = 0;
11594
11595	ASSERT(MUTEX_HELD(&cpu_lock));
11596	ASSERT(MUTEX_HELD(&dtrace_lock));
11597
11598	for (i = 0; i < enab->dten_ndesc; i++) {
11599		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11600
11601		enab->dten_current = ep;
11602		enab->dten_error = 0;
11603
11604		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11605
11606		if (enab->dten_error != 0) {
11607			/*
11608			 * If we get an error half-way through enabling the
11609			 * probes, we kick out -- perhaps with some number of
11610			 * them enabled.  Leaving enabled probes enabled may
11611			 * be slightly confusing for user-level, but we expect
11612			 * that no one will attempt to actually drive on in
11613			 * the face of such errors.  If this is an anonymous
11614			 * enabling (indicated with a NULL nmatched pointer),
11615			 * we cmn_err() a message.  We aren't expecting to
11616			 * get such an error -- such as it can exist at all,
11617			 * it would be a result of corrupted DOF in the driver
11618			 * properties.
11619			 */
11620			if (nmatched == NULL) {
11621				cmn_err(CE_WARN, "dtrace_enabling_match() "
11622				    "error on %p: %d", (void *)ep,
11623				    enab->dten_error);
11624			}
11625
11626			return (enab->dten_error);
11627		}
11628	}
11629
11630	enab->dten_probegen = dtrace_probegen;
11631	if (nmatched != NULL)
11632		*nmatched = matched;
11633
11634	return (0);
11635}
11636
11637static void
11638dtrace_enabling_matchall(void)
11639{
11640	dtrace_enabling_t *enab;
11641
11642	mutex_enter(&cpu_lock);
11643	mutex_enter(&dtrace_lock);
11644
11645	/*
11646	 * Iterate over all retained enablings to see if any probes match
11647	 * against them.  We only perform this operation on enablings for which
11648	 * we have sufficient permissions by virtue of being in the global zone
11649	 * or in the same zone as the DTrace client.  Because we can be called
11650	 * after dtrace_detach() has been called, we cannot assert that there
11651	 * are retained enablings.  We can safely load from dtrace_retained,
11652	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11653	 * block pending our completion.
11654	 */
11655	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11656#if defined(sun)
11657		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11658
11659		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11660#endif
11661			(void) dtrace_enabling_match(enab, NULL);
11662	}
11663
11664	mutex_exit(&dtrace_lock);
11665	mutex_exit(&cpu_lock);
11666}
11667
11668/*
11669 * If an enabling is to be enabled without having matched probes (that is, if
11670 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11671 * enabling must be _primed_ by creating an ECB for every ECB description.
11672 * This must be done to assure that we know the number of speculations, the
11673 * number of aggregations, the minimum buffer size needed, etc. before we
11674 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11675 * enabling any probes, we create ECBs for every ECB decription, but with a
11676 * NULL probe -- which is exactly what this function does.
11677 */
11678static void
11679dtrace_enabling_prime(dtrace_state_t *state)
11680{
11681	dtrace_enabling_t *enab;
11682	int i;
11683
11684	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11685		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11686
11687		if (enab->dten_vstate->dtvs_state != state)
11688			continue;
11689
11690		/*
11691		 * We don't want to prime an enabling more than once, lest
11692		 * we allow a malicious user to induce resource exhaustion.
11693		 * (The ECBs that result from priming an enabling aren't
11694		 * leaked -- but they also aren't deallocated until the
11695		 * consumer state is destroyed.)
11696		 */
11697		if (enab->dten_primed)
11698			continue;
11699
11700		for (i = 0; i < enab->dten_ndesc; i++) {
11701			enab->dten_current = enab->dten_desc[i];
11702			(void) dtrace_probe_enable(NULL, enab);
11703		}
11704
11705		enab->dten_primed = 1;
11706	}
11707}
11708
11709/*
11710 * Called to indicate that probes should be provided due to retained
11711 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11712 * must take an initial lap through the enabling calling the dtps_provide()
11713 * entry point explicitly to allow for autocreated probes.
11714 */
11715static void
11716dtrace_enabling_provide(dtrace_provider_t *prv)
11717{
11718	int i, all = 0;
11719	dtrace_probedesc_t desc;
11720
11721	ASSERT(MUTEX_HELD(&dtrace_lock));
11722	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11723
11724	if (prv == NULL) {
11725		all = 1;
11726		prv = dtrace_provider;
11727	}
11728
11729	do {
11730		dtrace_enabling_t *enab = dtrace_retained;
11731		void *parg = prv->dtpv_arg;
11732
11733		for (; enab != NULL; enab = enab->dten_next) {
11734			for (i = 0; i < enab->dten_ndesc; i++) {
11735				desc = enab->dten_desc[i]->dted_probe;
11736				mutex_exit(&dtrace_lock);
11737				prv->dtpv_pops.dtps_provide(parg, &desc);
11738				mutex_enter(&dtrace_lock);
11739			}
11740		}
11741	} while (all && (prv = prv->dtpv_next) != NULL);
11742
11743	mutex_exit(&dtrace_lock);
11744	dtrace_probe_provide(NULL, all ? NULL : prv);
11745	mutex_enter(&dtrace_lock);
11746}
11747
11748/*
11749 * Called to reap ECBs that are attached to probes from defunct providers.
11750 */
11751static void
11752dtrace_enabling_reap(void)
11753{
11754	dtrace_provider_t *prov;
11755	dtrace_probe_t *probe;
11756	dtrace_ecb_t *ecb;
11757	hrtime_t when;
11758	int i;
11759
11760	mutex_enter(&cpu_lock);
11761	mutex_enter(&dtrace_lock);
11762
11763	for (i = 0; i < dtrace_nprobes; i++) {
11764		if ((probe = dtrace_probes[i]) == NULL)
11765			continue;
11766
11767		if (probe->dtpr_ecb == NULL)
11768			continue;
11769
11770		prov = probe->dtpr_provider;
11771
11772		if ((when = prov->dtpv_defunct) == 0)
11773			continue;
11774
11775		/*
11776		 * We have ECBs on a defunct provider:  we want to reap these
11777		 * ECBs to allow the provider to unregister.  The destruction
11778		 * of these ECBs must be done carefully:  if we destroy the ECB
11779		 * and the consumer later wishes to consume an EPID that
11780		 * corresponds to the destroyed ECB (and if the EPID metadata
11781		 * has not been previously consumed), the consumer will abort
11782		 * processing on the unknown EPID.  To reduce (but not, sadly,
11783		 * eliminate) the possibility of this, we will only destroy an
11784		 * ECB for a defunct provider if, for the state that
11785		 * corresponds to the ECB:
11786		 *
11787		 *  (a)	There is no speculative tracing (which can effectively
11788		 *	cache an EPID for an arbitrary amount of time).
11789		 *
11790		 *  (b)	The principal buffers have been switched twice since the
11791		 *	provider became defunct.
11792		 *
11793		 *  (c)	The aggregation buffers are of zero size or have been
11794		 *	switched twice since the provider became defunct.
11795		 *
11796		 * We use dts_speculates to determine (a) and call a function
11797		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11798		 * that as soon as we've been unable to destroy one of the ECBs
11799		 * associated with the probe, we quit trying -- reaping is only
11800		 * fruitful in as much as we can destroy all ECBs associated
11801		 * with the defunct provider's probes.
11802		 */
11803		while ((ecb = probe->dtpr_ecb) != NULL) {
11804			dtrace_state_t *state = ecb->dte_state;
11805			dtrace_buffer_t *buf = state->dts_buffer;
11806			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11807
11808			if (state->dts_speculates)
11809				break;
11810
11811			if (!dtrace_buffer_consumed(buf, when))
11812				break;
11813
11814			if (!dtrace_buffer_consumed(aggbuf, when))
11815				break;
11816
11817			dtrace_ecb_disable(ecb);
11818			ASSERT(probe->dtpr_ecb != ecb);
11819			dtrace_ecb_destroy(ecb);
11820		}
11821	}
11822
11823	mutex_exit(&dtrace_lock);
11824	mutex_exit(&cpu_lock);
11825}
11826
11827/*
11828 * DTrace DOF Functions
11829 */
11830/*ARGSUSED*/
11831static void
11832dtrace_dof_error(dof_hdr_t *dof, const char *str)
11833{
11834	if (dtrace_err_verbose)
11835		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11836
11837#ifdef DTRACE_ERRDEBUG
11838	dtrace_errdebug(str);
11839#endif
11840}
11841
11842/*
11843 * Create DOF out of a currently enabled state.  Right now, we only create
11844 * DOF containing the run-time options -- but this could be expanded to create
11845 * complete DOF representing the enabled state.
11846 */
11847static dof_hdr_t *
11848dtrace_dof_create(dtrace_state_t *state)
11849{
11850	dof_hdr_t *dof;
11851	dof_sec_t *sec;
11852	dof_optdesc_t *opt;
11853	int i, len = sizeof (dof_hdr_t) +
11854	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11855	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11856
11857	ASSERT(MUTEX_HELD(&dtrace_lock));
11858
11859	dof = kmem_zalloc(len, KM_SLEEP);
11860	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11861	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11862	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11863	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11864
11865	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11866	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11867	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11868	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11869	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11870	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11871
11872	dof->dofh_flags = 0;
11873	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11874	dof->dofh_secsize = sizeof (dof_sec_t);
11875	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11876	dof->dofh_secoff = sizeof (dof_hdr_t);
11877	dof->dofh_loadsz = len;
11878	dof->dofh_filesz = len;
11879	dof->dofh_pad = 0;
11880
11881	/*
11882	 * Fill in the option section header...
11883	 */
11884	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11885	sec->dofs_type = DOF_SECT_OPTDESC;
11886	sec->dofs_align = sizeof (uint64_t);
11887	sec->dofs_flags = DOF_SECF_LOAD;
11888	sec->dofs_entsize = sizeof (dof_optdesc_t);
11889
11890	opt = (dof_optdesc_t *)((uintptr_t)sec +
11891	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11892
11893	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11894	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11895
11896	for (i = 0; i < DTRACEOPT_MAX; i++) {
11897		opt[i].dofo_option = i;
11898		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11899		opt[i].dofo_value = state->dts_options[i];
11900	}
11901
11902	return (dof);
11903}
11904
11905static dof_hdr_t *
11906dtrace_dof_copyin(uintptr_t uarg, int *errp)
11907{
11908	dof_hdr_t hdr, *dof;
11909
11910	ASSERT(!MUTEX_HELD(&dtrace_lock));
11911
11912	/*
11913	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11914	 */
11915	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11916		dtrace_dof_error(NULL, "failed to copyin DOF header");
11917		*errp = EFAULT;
11918		return (NULL);
11919	}
11920
11921	/*
11922	 * Now we'll allocate the entire DOF and copy it in -- provided
11923	 * that the length isn't outrageous.
11924	 */
11925	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11926		dtrace_dof_error(&hdr, "load size exceeds maximum");
11927		*errp = E2BIG;
11928		return (NULL);
11929	}
11930
11931	if (hdr.dofh_loadsz < sizeof (hdr)) {
11932		dtrace_dof_error(&hdr, "invalid load size");
11933		*errp = EINVAL;
11934		return (NULL);
11935	}
11936
11937	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11938
11939	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11940		kmem_free(dof, hdr.dofh_loadsz);
11941		*errp = EFAULT;
11942		return (NULL);
11943	}
11944
11945	return (dof);
11946}
11947
11948#if !defined(sun)
11949static __inline uchar_t
11950dtrace_dof_char(char c) {
11951	switch (c) {
11952	case '0':
11953	case '1':
11954	case '2':
11955	case '3':
11956	case '4':
11957	case '5':
11958	case '6':
11959	case '7':
11960	case '8':
11961	case '9':
11962		return (c - '0');
11963	case 'A':
11964	case 'B':
11965	case 'C':
11966	case 'D':
11967	case 'E':
11968	case 'F':
11969		return (c - 'A' + 10);
11970	case 'a':
11971	case 'b':
11972	case 'c':
11973	case 'd':
11974	case 'e':
11975	case 'f':
11976		return (c - 'a' + 10);
11977	}
11978	/* Should not reach here. */
11979	return (0);
11980}
11981#endif
11982
11983static dof_hdr_t *
11984dtrace_dof_property(const char *name)
11985{
11986	uchar_t *buf;
11987	uint64_t loadsz;
11988	unsigned int len, i;
11989	dof_hdr_t *dof;
11990
11991#if defined(sun)
11992	/*
11993	 * Unfortunately, array of values in .conf files are always (and
11994	 * only) interpreted to be integer arrays.  We must read our DOF
11995	 * as an integer array, and then squeeze it into a byte array.
11996	 */
11997	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11998	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11999		return (NULL);
12000
12001	for (i = 0; i < len; i++)
12002		buf[i] = (uchar_t)(((int *)buf)[i]);
12003
12004	if (len < sizeof (dof_hdr_t)) {
12005		ddi_prop_free(buf);
12006		dtrace_dof_error(NULL, "truncated header");
12007		return (NULL);
12008	}
12009
12010	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12011		ddi_prop_free(buf);
12012		dtrace_dof_error(NULL, "truncated DOF");
12013		return (NULL);
12014	}
12015
12016	if (loadsz >= dtrace_dof_maxsize) {
12017		ddi_prop_free(buf);
12018		dtrace_dof_error(NULL, "oversized DOF");
12019		return (NULL);
12020	}
12021
12022	dof = kmem_alloc(loadsz, KM_SLEEP);
12023	bcopy(buf, dof, loadsz);
12024	ddi_prop_free(buf);
12025#else
12026	char *p;
12027	char *p_env;
12028
12029	if ((p_env = getenv(name)) == NULL)
12030		return (NULL);
12031
12032	len = strlen(p_env) / 2;
12033
12034	buf = kmem_alloc(len, KM_SLEEP);
12035
12036	dof = (dof_hdr_t *) buf;
12037
12038	p = p_env;
12039
12040	for (i = 0; i < len; i++) {
12041		buf[i] = (dtrace_dof_char(p[0]) << 4) |
12042		     dtrace_dof_char(p[1]);
12043		p += 2;
12044	}
12045
12046	freeenv(p_env);
12047
12048	if (len < sizeof (dof_hdr_t)) {
12049		kmem_free(buf, 0);
12050		dtrace_dof_error(NULL, "truncated header");
12051		return (NULL);
12052	}
12053
12054	if (len < (loadsz = dof->dofh_loadsz)) {
12055		kmem_free(buf, 0);
12056		dtrace_dof_error(NULL, "truncated DOF");
12057		return (NULL);
12058	}
12059
12060	if (loadsz >= dtrace_dof_maxsize) {
12061		kmem_free(buf, 0);
12062		dtrace_dof_error(NULL, "oversized DOF");
12063		return (NULL);
12064	}
12065#endif
12066
12067	return (dof);
12068}
12069
12070static void
12071dtrace_dof_destroy(dof_hdr_t *dof)
12072{
12073	kmem_free(dof, dof->dofh_loadsz);
12074}
12075
12076/*
12077 * Return the dof_sec_t pointer corresponding to a given section index.  If the
12078 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12079 * a type other than DOF_SECT_NONE is specified, the header is checked against
12080 * this type and NULL is returned if the types do not match.
12081 */
12082static dof_sec_t *
12083dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12084{
12085	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12086	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12087
12088	if (i >= dof->dofh_secnum) {
12089		dtrace_dof_error(dof, "referenced section index is invalid");
12090		return (NULL);
12091	}
12092
12093	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12094		dtrace_dof_error(dof, "referenced section is not loadable");
12095		return (NULL);
12096	}
12097
12098	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12099		dtrace_dof_error(dof, "referenced section is the wrong type");
12100		return (NULL);
12101	}
12102
12103	return (sec);
12104}
12105
12106static dtrace_probedesc_t *
12107dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12108{
12109	dof_probedesc_t *probe;
12110	dof_sec_t *strtab;
12111	uintptr_t daddr = (uintptr_t)dof;
12112	uintptr_t str;
12113	size_t size;
12114
12115	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12116		dtrace_dof_error(dof, "invalid probe section");
12117		return (NULL);
12118	}
12119
12120	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12121		dtrace_dof_error(dof, "bad alignment in probe description");
12122		return (NULL);
12123	}
12124
12125	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12126		dtrace_dof_error(dof, "truncated probe description");
12127		return (NULL);
12128	}
12129
12130	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12131	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12132
12133	if (strtab == NULL)
12134		return (NULL);
12135
12136	str = daddr + strtab->dofs_offset;
12137	size = strtab->dofs_size;
12138
12139	if (probe->dofp_provider >= strtab->dofs_size) {
12140		dtrace_dof_error(dof, "corrupt probe provider");
12141		return (NULL);
12142	}
12143
12144	(void) strncpy(desc->dtpd_provider,
12145	    (char *)(str + probe->dofp_provider),
12146	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12147
12148	if (probe->dofp_mod >= strtab->dofs_size) {
12149		dtrace_dof_error(dof, "corrupt probe module");
12150		return (NULL);
12151	}
12152
12153	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12154	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12155
12156	if (probe->dofp_func >= strtab->dofs_size) {
12157		dtrace_dof_error(dof, "corrupt probe function");
12158		return (NULL);
12159	}
12160
12161	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12162	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12163
12164	if (probe->dofp_name >= strtab->dofs_size) {
12165		dtrace_dof_error(dof, "corrupt probe name");
12166		return (NULL);
12167	}
12168
12169	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12170	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12171
12172	return (desc);
12173}
12174
12175static dtrace_difo_t *
12176dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12177    cred_t *cr)
12178{
12179	dtrace_difo_t *dp;
12180	size_t ttl = 0;
12181	dof_difohdr_t *dofd;
12182	uintptr_t daddr = (uintptr_t)dof;
12183	size_t max = dtrace_difo_maxsize;
12184	int i, l, n;
12185
12186	static const struct {
12187		int section;
12188		int bufoffs;
12189		int lenoffs;
12190		int entsize;
12191		int align;
12192		const char *msg;
12193	} difo[] = {
12194		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12195		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12196		sizeof (dif_instr_t), "multiple DIF sections" },
12197
12198		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12199		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12200		sizeof (uint64_t), "multiple integer tables" },
12201
12202		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12203		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12204		sizeof (char), "multiple string tables" },
12205
12206		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12207		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12208		sizeof (uint_t), "multiple variable tables" },
12209
12210		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12211	};
12212
12213	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12214		dtrace_dof_error(dof, "invalid DIFO header section");
12215		return (NULL);
12216	}
12217
12218	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12219		dtrace_dof_error(dof, "bad alignment in DIFO header");
12220		return (NULL);
12221	}
12222
12223	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12224	    sec->dofs_size % sizeof (dof_secidx_t)) {
12225		dtrace_dof_error(dof, "bad size in DIFO header");
12226		return (NULL);
12227	}
12228
12229	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12230	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12231
12232	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12233	dp->dtdo_rtype = dofd->dofd_rtype;
12234
12235	for (l = 0; l < n; l++) {
12236		dof_sec_t *subsec;
12237		void **bufp;
12238		uint32_t *lenp;
12239
12240		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12241		    dofd->dofd_links[l])) == NULL)
12242			goto err; /* invalid section link */
12243
12244		if (ttl + subsec->dofs_size > max) {
12245			dtrace_dof_error(dof, "exceeds maximum size");
12246			goto err;
12247		}
12248
12249		ttl += subsec->dofs_size;
12250
12251		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12252			if (subsec->dofs_type != difo[i].section)
12253				continue;
12254
12255			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12256				dtrace_dof_error(dof, "section not loaded");
12257				goto err;
12258			}
12259
12260			if (subsec->dofs_align != difo[i].align) {
12261				dtrace_dof_error(dof, "bad alignment");
12262				goto err;
12263			}
12264
12265			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12266			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12267
12268			if (*bufp != NULL) {
12269				dtrace_dof_error(dof, difo[i].msg);
12270				goto err;
12271			}
12272
12273			if (difo[i].entsize != subsec->dofs_entsize) {
12274				dtrace_dof_error(dof, "entry size mismatch");
12275				goto err;
12276			}
12277
12278			if (subsec->dofs_entsize != 0 &&
12279			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12280				dtrace_dof_error(dof, "corrupt entry size");
12281				goto err;
12282			}
12283
12284			*lenp = subsec->dofs_size;
12285			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12286			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12287			    *bufp, subsec->dofs_size);
12288
12289			if (subsec->dofs_entsize != 0)
12290				*lenp /= subsec->dofs_entsize;
12291
12292			break;
12293		}
12294
12295		/*
12296		 * If we encounter a loadable DIFO sub-section that is not
12297		 * known to us, assume this is a broken program and fail.
12298		 */
12299		if (difo[i].section == DOF_SECT_NONE &&
12300		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12301			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12302			goto err;
12303		}
12304	}
12305
12306	if (dp->dtdo_buf == NULL) {
12307		/*
12308		 * We can't have a DIF object without DIF text.
12309		 */
12310		dtrace_dof_error(dof, "missing DIF text");
12311		goto err;
12312	}
12313
12314	/*
12315	 * Before we validate the DIF object, run through the variable table
12316	 * looking for the strings -- if any of their size are under, we'll set
12317	 * their size to be the system-wide default string size.  Note that
12318	 * this should _not_ happen if the "strsize" option has been set --
12319	 * in this case, the compiler should have set the size to reflect the
12320	 * setting of the option.
12321	 */
12322	for (i = 0; i < dp->dtdo_varlen; i++) {
12323		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12324		dtrace_diftype_t *t = &v->dtdv_type;
12325
12326		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12327			continue;
12328
12329		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12330			t->dtdt_size = dtrace_strsize_default;
12331	}
12332
12333	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12334		goto err;
12335
12336	dtrace_difo_init(dp, vstate);
12337	return (dp);
12338
12339err:
12340	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12341	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12342	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12343	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12344
12345	kmem_free(dp, sizeof (dtrace_difo_t));
12346	return (NULL);
12347}
12348
12349static dtrace_predicate_t *
12350dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12351    cred_t *cr)
12352{
12353	dtrace_difo_t *dp;
12354
12355	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12356		return (NULL);
12357
12358	return (dtrace_predicate_create(dp));
12359}
12360
12361static dtrace_actdesc_t *
12362dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12363    cred_t *cr)
12364{
12365	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12366	dof_actdesc_t *desc;
12367	dof_sec_t *difosec;
12368	size_t offs;
12369	uintptr_t daddr = (uintptr_t)dof;
12370	uint64_t arg;
12371	dtrace_actkind_t kind;
12372
12373	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12374		dtrace_dof_error(dof, "invalid action section");
12375		return (NULL);
12376	}
12377
12378	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12379		dtrace_dof_error(dof, "truncated action description");
12380		return (NULL);
12381	}
12382
12383	if (sec->dofs_align != sizeof (uint64_t)) {
12384		dtrace_dof_error(dof, "bad alignment in action description");
12385		return (NULL);
12386	}
12387
12388	if (sec->dofs_size < sec->dofs_entsize) {
12389		dtrace_dof_error(dof, "section entry size exceeds total size");
12390		return (NULL);
12391	}
12392
12393	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12394		dtrace_dof_error(dof, "bad entry size in action description");
12395		return (NULL);
12396	}
12397
12398	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12399		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12400		return (NULL);
12401	}
12402
12403	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12404		desc = (dof_actdesc_t *)(daddr +
12405		    (uintptr_t)sec->dofs_offset + offs);
12406		kind = (dtrace_actkind_t)desc->dofa_kind;
12407
12408		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12409		    (kind != DTRACEACT_PRINTA ||
12410		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12411		    (kind == DTRACEACT_DIFEXPR &&
12412		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12413			dof_sec_t *strtab;
12414			char *str, *fmt;
12415			uint64_t i;
12416
12417			/*
12418			 * The argument to these actions is an index into the
12419			 * DOF string table.  For printf()-like actions, this
12420			 * is the format string.  For print(), this is the
12421			 * CTF type of the expression result.
12422			 */
12423			if ((strtab = dtrace_dof_sect(dof,
12424			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12425				goto err;
12426
12427			str = (char *)((uintptr_t)dof +
12428			    (uintptr_t)strtab->dofs_offset);
12429
12430			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12431				if (str[i] == '\0')
12432					break;
12433			}
12434
12435			if (i >= strtab->dofs_size) {
12436				dtrace_dof_error(dof, "bogus format string");
12437				goto err;
12438			}
12439
12440			if (i == desc->dofa_arg) {
12441				dtrace_dof_error(dof, "empty format string");
12442				goto err;
12443			}
12444
12445			i -= desc->dofa_arg;
12446			fmt = kmem_alloc(i + 1, KM_SLEEP);
12447			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12448			arg = (uint64_t)(uintptr_t)fmt;
12449		} else {
12450			if (kind == DTRACEACT_PRINTA) {
12451				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12452				arg = 0;
12453			} else {
12454				arg = desc->dofa_arg;
12455			}
12456		}
12457
12458		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12459		    desc->dofa_uarg, arg);
12460
12461		if (last != NULL) {
12462			last->dtad_next = act;
12463		} else {
12464			first = act;
12465		}
12466
12467		last = act;
12468
12469		if (desc->dofa_difo == DOF_SECIDX_NONE)
12470			continue;
12471
12472		if ((difosec = dtrace_dof_sect(dof,
12473		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12474			goto err;
12475
12476		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12477
12478		if (act->dtad_difo == NULL)
12479			goto err;
12480	}
12481
12482	ASSERT(first != NULL);
12483	return (first);
12484
12485err:
12486	for (act = first; act != NULL; act = next) {
12487		next = act->dtad_next;
12488		dtrace_actdesc_release(act, vstate);
12489	}
12490
12491	return (NULL);
12492}
12493
12494static dtrace_ecbdesc_t *
12495dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12496    cred_t *cr)
12497{
12498	dtrace_ecbdesc_t *ep;
12499	dof_ecbdesc_t *ecb;
12500	dtrace_probedesc_t *desc;
12501	dtrace_predicate_t *pred = NULL;
12502
12503	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12504		dtrace_dof_error(dof, "truncated ECB description");
12505		return (NULL);
12506	}
12507
12508	if (sec->dofs_align != sizeof (uint64_t)) {
12509		dtrace_dof_error(dof, "bad alignment in ECB description");
12510		return (NULL);
12511	}
12512
12513	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12514	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12515
12516	if (sec == NULL)
12517		return (NULL);
12518
12519	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12520	ep->dted_uarg = ecb->dofe_uarg;
12521	desc = &ep->dted_probe;
12522
12523	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12524		goto err;
12525
12526	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12527		if ((sec = dtrace_dof_sect(dof,
12528		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12529			goto err;
12530
12531		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12532			goto err;
12533
12534		ep->dted_pred.dtpdd_predicate = pred;
12535	}
12536
12537	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12538		if ((sec = dtrace_dof_sect(dof,
12539		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12540			goto err;
12541
12542		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12543
12544		if (ep->dted_action == NULL)
12545			goto err;
12546	}
12547
12548	return (ep);
12549
12550err:
12551	if (pred != NULL)
12552		dtrace_predicate_release(pred, vstate);
12553	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12554	return (NULL);
12555}
12556
12557/*
12558 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12559 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12560 * site of any user SETX relocations to account for load object base address.
12561 * In the future, if we need other relocations, this function can be extended.
12562 */
12563static int
12564dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12565{
12566	uintptr_t daddr = (uintptr_t)dof;
12567	dof_relohdr_t *dofr =
12568	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12569	dof_sec_t *ss, *rs, *ts;
12570	dof_relodesc_t *r;
12571	uint_t i, n;
12572
12573	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12574	    sec->dofs_align != sizeof (dof_secidx_t)) {
12575		dtrace_dof_error(dof, "invalid relocation header");
12576		return (-1);
12577	}
12578
12579	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12580	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12581	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12582
12583	if (ss == NULL || rs == NULL || ts == NULL)
12584		return (-1); /* dtrace_dof_error() has been called already */
12585
12586	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12587	    rs->dofs_align != sizeof (uint64_t)) {
12588		dtrace_dof_error(dof, "invalid relocation section");
12589		return (-1);
12590	}
12591
12592	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12593	n = rs->dofs_size / rs->dofs_entsize;
12594
12595	for (i = 0; i < n; i++) {
12596		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12597
12598		switch (r->dofr_type) {
12599		case DOF_RELO_NONE:
12600			break;
12601		case DOF_RELO_SETX:
12602			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12603			    sizeof (uint64_t) > ts->dofs_size) {
12604				dtrace_dof_error(dof, "bad relocation offset");
12605				return (-1);
12606			}
12607
12608			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12609				dtrace_dof_error(dof, "misaligned setx relo");
12610				return (-1);
12611			}
12612
12613			*(uint64_t *)taddr += ubase;
12614			break;
12615		default:
12616			dtrace_dof_error(dof, "invalid relocation type");
12617			return (-1);
12618		}
12619
12620		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12621	}
12622
12623	return (0);
12624}
12625
12626/*
12627 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12628 * header:  it should be at the front of a memory region that is at least
12629 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12630 * size.  It need not be validated in any other way.
12631 */
12632static int
12633dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12634    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12635{
12636	uint64_t len = dof->dofh_loadsz, seclen;
12637	uintptr_t daddr = (uintptr_t)dof;
12638	dtrace_ecbdesc_t *ep;
12639	dtrace_enabling_t *enab;
12640	uint_t i;
12641
12642	ASSERT(MUTEX_HELD(&dtrace_lock));
12643	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12644
12645	/*
12646	 * Check the DOF header identification bytes.  In addition to checking
12647	 * valid settings, we also verify that unused bits/bytes are zeroed so
12648	 * we can use them later without fear of regressing existing binaries.
12649	 */
12650	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12651	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12652		dtrace_dof_error(dof, "DOF magic string mismatch");
12653		return (-1);
12654	}
12655
12656	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12657	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12658		dtrace_dof_error(dof, "DOF has invalid data model");
12659		return (-1);
12660	}
12661
12662	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12663		dtrace_dof_error(dof, "DOF encoding mismatch");
12664		return (-1);
12665	}
12666
12667	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12668	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12669		dtrace_dof_error(dof, "DOF version mismatch");
12670		return (-1);
12671	}
12672
12673	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12674		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12675		return (-1);
12676	}
12677
12678	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12679		dtrace_dof_error(dof, "DOF uses too many integer registers");
12680		return (-1);
12681	}
12682
12683	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12684		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12685		return (-1);
12686	}
12687
12688	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12689		if (dof->dofh_ident[i] != 0) {
12690			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12691			return (-1);
12692		}
12693	}
12694
12695	if (dof->dofh_flags & ~DOF_FL_VALID) {
12696		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12697		return (-1);
12698	}
12699
12700	if (dof->dofh_secsize == 0) {
12701		dtrace_dof_error(dof, "zero section header size");
12702		return (-1);
12703	}
12704
12705	/*
12706	 * Check that the section headers don't exceed the amount of DOF
12707	 * data.  Note that we cast the section size and number of sections
12708	 * to uint64_t's to prevent possible overflow in the multiplication.
12709	 */
12710	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12711
12712	if (dof->dofh_secoff > len || seclen > len ||
12713	    dof->dofh_secoff + seclen > len) {
12714		dtrace_dof_error(dof, "truncated section headers");
12715		return (-1);
12716	}
12717
12718	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12719		dtrace_dof_error(dof, "misaligned section headers");
12720		return (-1);
12721	}
12722
12723	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12724		dtrace_dof_error(dof, "misaligned section size");
12725		return (-1);
12726	}
12727
12728	/*
12729	 * Take an initial pass through the section headers to be sure that
12730	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12731	 * set, do not permit sections relating to providers, probes, or args.
12732	 */
12733	for (i = 0; i < dof->dofh_secnum; i++) {
12734		dof_sec_t *sec = (dof_sec_t *)(daddr +
12735		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12736
12737		if (noprobes) {
12738			switch (sec->dofs_type) {
12739			case DOF_SECT_PROVIDER:
12740			case DOF_SECT_PROBES:
12741			case DOF_SECT_PRARGS:
12742			case DOF_SECT_PROFFS:
12743				dtrace_dof_error(dof, "illegal sections "
12744				    "for enabling");
12745				return (-1);
12746			}
12747		}
12748
12749		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12750			continue; /* just ignore non-loadable sections */
12751
12752		if (sec->dofs_align & (sec->dofs_align - 1)) {
12753			dtrace_dof_error(dof, "bad section alignment");
12754			return (-1);
12755		}
12756
12757		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12758			dtrace_dof_error(dof, "misaligned section");
12759			return (-1);
12760		}
12761
12762		if (sec->dofs_offset > len || sec->dofs_size > len ||
12763		    sec->dofs_offset + sec->dofs_size > len) {
12764			dtrace_dof_error(dof, "corrupt section header");
12765			return (-1);
12766		}
12767
12768		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12769		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12770			dtrace_dof_error(dof, "non-terminating string table");
12771			return (-1);
12772		}
12773	}
12774
12775	/*
12776	 * Take a second pass through the sections and locate and perform any
12777	 * relocations that are present.  We do this after the first pass to
12778	 * be sure that all sections have had their headers validated.
12779	 */
12780	for (i = 0; i < dof->dofh_secnum; i++) {
12781		dof_sec_t *sec = (dof_sec_t *)(daddr +
12782		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12783
12784		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12785			continue; /* skip sections that are not loadable */
12786
12787		switch (sec->dofs_type) {
12788		case DOF_SECT_URELHDR:
12789			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12790				return (-1);
12791			break;
12792		}
12793	}
12794
12795	if ((enab = *enabp) == NULL)
12796		enab = *enabp = dtrace_enabling_create(vstate);
12797
12798	for (i = 0; i < dof->dofh_secnum; i++) {
12799		dof_sec_t *sec = (dof_sec_t *)(daddr +
12800		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12801
12802		if (sec->dofs_type != DOF_SECT_ECBDESC)
12803			continue;
12804
12805		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12806			dtrace_enabling_destroy(enab);
12807			*enabp = NULL;
12808			return (-1);
12809		}
12810
12811		dtrace_enabling_add(enab, ep);
12812	}
12813
12814	return (0);
12815}
12816
12817/*
12818 * Process DOF for any options.  This routine assumes that the DOF has been
12819 * at least processed by dtrace_dof_slurp().
12820 */
12821static int
12822dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12823{
12824	int i, rval;
12825	uint32_t entsize;
12826	size_t offs;
12827	dof_optdesc_t *desc;
12828
12829	for (i = 0; i < dof->dofh_secnum; i++) {
12830		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12831		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12832
12833		if (sec->dofs_type != DOF_SECT_OPTDESC)
12834			continue;
12835
12836		if (sec->dofs_align != sizeof (uint64_t)) {
12837			dtrace_dof_error(dof, "bad alignment in "
12838			    "option description");
12839			return (EINVAL);
12840		}
12841
12842		if ((entsize = sec->dofs_entsize) == 0) {
12843			dtrace_dof_error(dof, "zeroed option entry size");
12844			return (EINVAL);
12845		}
12846
12847		if (entsize < sizeof (dof_optdesc_t)) {
12848			dtrace_dof_error(dof, "bad option entry size");
12849			return (EINVAL);
12850		}
12851
12852		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12853			desc = (dof_optdesc_t *)((uintptr_t)dof +
12854			    (uintptr_t)sec->dofs_offset + offs);
12855
12856			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12857				dtrace_dof_error(dof, "non-zero option string");
12858				return (EINVAL);
12859			}
12860
12861			if (desc->dofo_value == DTRACEOPT_UNSET) {
12862				dtrace_dof_error(dof, "unset option");
12863				return (EINVAL);
12864			}
12865
12866			if ((rval = dtrace_state_option(state,
12867			    desc->dofo_option, desc->dofo_value)) != 0) {
12868				dtrace_dof_error(dof, "rejected option");
12869				return (rval);
12870			}
12871		}
12872	}
12873
12874	return (0);
12875}
12876
12877/*
12878 * DTrace Consumer State Functions
12879 */
12880static int
12881dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12882{
12883	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12884	void *base;
12885	uintptr_t limit;
12886	dtrace_dynvar_t *dvar, *next, *start;
12887	int i;
12888
12889	ASSERT(MUTEX_HELD(&dtrace_lock));
12890	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12891
12892	bzero(dstate, sizeof (dtrace_dstate_t));
12893
12894	if ((dstate->dtds_chunksize = chunksize) == 0)
12895		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12896
12897	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12898		size = min;
12899
12900	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12901		return (ENOMEM);
12902
12903	dstate->dtds_size = size;
12904	dstate->dtds_base = base;
12905	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12906	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12907
12908	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12909
12910	if (hashsize != 1 && (hashsize & 1))
12911		hashsize--;
12912
12913	dstate->dtds_hashsize = hashsize;
12914	dstate->dtds_hash = dstate->dtds_base;
12915
12916	/*
12917	 * Set all of our hash buckets to point to the single sink, and (if
12918	 * it hasn't already been set), set the sink's hash value to be the
12919	 * sink sentinel value.  The sink is needed for dynamic variable
12920	 * lookups to know that they have iterated over an entire, valid hash
12921	 * chain.
12922	 */
12923	for (i = 0; i < hashsize; i++)
12924		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12925
12926	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12927		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12928
12929	/*
12930	 * Determine number of active CPUs.  Divide free list evenly among
12931	 * active CPUs.
12932	 */
12933	start = (dtrace_dynvar_t *)
12934	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12935	limit = (uintptr_t)base + size;
12936
12937	maxper = (limit - (uintptr_t)start) / NCPU;
12938	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12939
12940#if !defined(sun)
12941	CPU_FOREACH(i) {
12942#else
12943	for (i = 0; i < NCPU; i++) {
12944#endif
12945		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12946
12947		/*
12948		 * If we don't even have enough chunks to make it once through
12949		 * NCPUs, we're just going to allocate everything to the first
12950		 * CPU.  And if we're on the last CPU, we're going to allocate
12951		 * whatever is left over.  In either case, we set the limit to
12952		 * be the limit of the dynamic variable space.
12953		 */
12954		if (maxper == 0 || i == NCPU - 1) {
12955			limit = (uintptr_t)base + size;
12956			start = NULL;
12957		} else {
12958			limit = (uintptr_t)start + maxper;
12959			start = (dtrace_dynvar_t *)limit;
12960		}
12961
12962		ASSERT(limit <= (uintptr_t)base + size);
12963
12964		for (;;) {
12965			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12966			    dstate->dtds_chunksize);
12967
12968			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12969				break;
12970
12971			dvar->dtdv_next = next;
12972			dvar = next;
12973		}
12974
12975		if (maxper == 0)
12976			break;
12977	}
12978
12979	return (0);
12980}
12981
12982static void
12983dtrace_dstate_fini(dtrace_dstate_t *dstate)
12984{
12985	ASSERT(MUTEX_HELD(&cpu_lock));
12986
12987	if (dstate->dtds_base == NULL)
12988		return;
12989
12990	kmem_free(dstate->dtds_base, dstate->dtds_size);
12991	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12992}
12993
12994static void
12995dtrace_vstate_fini(dtrace_vstate_t *vstate)
12996{
12997	/*
12998	 * Logical XOR, where are you?
12999	 */
13000	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13001
13002	if (vstate->dtvs_nglobals > 0) {
13003		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13004		    sizeof (dtrace_statvar_t *));
13005	}
13006
13007	if (vstate->dtvs_ntlocals > 0) {
13008		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13009		    sizeof (dtrace_difv_t));
13010	}
13011
13012	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13013
13014	if (vstate->dtvs_nlocals > 0) {
13015		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13016		    sizeof (dtrace_statvar_t *));
13017	}
13018}
13019
13020#if defined(sun)
13021static void
13022dtrace_state_clean(dtrace_state_t *state)
13023{
13024	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13025		return;
13026
13027	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13028	dtrace_speculation_clean(state);
13029}
13030
13031static void
13032dtrace_state_deadman(dtrace_state_t *state)
13033{
13034	hrtime_t now;
13035
13036	dtrace_sync();
13037
13038	now = dtrace_gethrtime();
13039
13040	if (state != dtrace_anon.dta_state &&
13041	    now - state->dts_laststatus >= dtrace_deadman_user)
13042		return;
13043
13044	/*
13045	 * We must be sure that dts_alive never appears to be less than the
13046	 * value upon entry to dtrace_state_deadman(), and because we lack a
13047	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13048	 * store INT64_MAX to it, followed by a memory barrier, followed by
13049	 * the new value.  This assures that dts_alive never appears to be
13050	 * less than its true value, regardless of the order in which the
13051	 * stores to the underlying storage are issued.
13052	 */
13053	state->dts_alive = INT64_MAX;
13054	dtrace_membar_producer();
13055	state->dts_alive = now;
13056}
13057#else
13058static void
13059dtrace_state_clean(void *arg)
13060{
13061	dtrace_state_t *state = arg;
13062	dtrace_optval_t *opt = state->dts_options;
13063
13064	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13065		return;
13066
13067	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13068	dtrace_speculation_clean(state);
13069
13070	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13071	    dtrace_state_clean, state);
13072}
13073
13074static void
13075dtrace_state_deadman(void *arg)
13076{
13077	dtrace_state_t *state = arg;
13078	hrtime_t now;
13079
13080	dtrace_sync();
13081
13082	dtrace_debug_output();
13083
13084	now = dtrace_gethrtime();
13085
13086	if (state != dtrace_anon.dta_state &&
13087	    now - state->dts_laststatus >= dtrace_deadman_user)
13088		return;
13089
13090	/*
13091	 * We must be sure that dts_alive never appears to be less than the
13092	 * value upon entry to dtrace_state_deadman(), and because we lack a
13093	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13094	 * store INT64_MAX to it, followed by a memory barrier, followed by
13095	 * the new value.  This assures that dts_alive never appears to be
13096	 * less than its true value, regardless of the order in which the
13097	 * stores to the underlying storage are issued.
13098	 */
13099	state->dts_alive = INT64_MAX;
13100	dtrace_membar_producer();
13101	state->dts_alive = now;
13102
13103	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13104	    dtrace_state_deadman, state);
13105}
13106#endif
13107
13108static dtrace_state_t *
13109#if defined(sun)
13110dtrace_state_create(dev_t *devp, cred_t *cr)
13111#else
13112dtrace_state_create(struct cdev *dev)
13113#endif
13114{
13115#if defined(sun)
13116	minor_t minor;
13117	major_t major;
13118#else
13119	cred_t *cr = NULL;
13120	int m = 0;
13121#endif
13122	char c[30];
13123	dtrace_state_t *state;
13124	dtrace_optval_t *opt;
13125	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13126
13127	ASSERT(MUTEX_HELD(&dtrace_lock));
13128	ASSERT(MUTEX_HELD(&cpu_lock));
13129
13130#if defined(sun)
13131	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13132	    VM_BESTFIT | VM_SLEEP);
13133
13134	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13135		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13136		return (NULL);
13137	}
13138
13139	state = ddi_get_soft_state(dtrace_softstate, minor);
13140#else
13141	if (dev != NULL) {
13142		cr = dev->si_cred;
13143		m = dev2unit(dev);
13144		}
13145
13146	/* Allocate memory for the state. */
13147	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13148#endif
13149
13150	state->dts_epid = DTRACE_EPIDNONE + 1;
13151
13152	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13153#if defined(sun)
13154	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13155	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13156
13157	if (devp != NULL) {
13158		major = getemajor(*devp);
13159	} else {
13160		major = ddi_driver_major(dtrace_devi);
13161	}
13162
13163	state->dts_dev = makedevice(major, minor);
13164
13165	if (devp != NULL)
13166		*devp = state->dts_dev;
13167#else
13168	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13169	state->dts_dev = dev;
13170#endif
13171
13172	/*
13173	 * We allocate NCPU buffers.  On the one hand, this can be quite
13174	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13175	 * other hand, it saves an additional memory reference in the probe
13176	 * path.
13177	 */
13178	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13179	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13180
13181#if defined(sun)
13182	state->dts_cleaner = CYCLIC_NONE;
13183	state->dts_deadman = CYCLIC_NONE;
13184#else
13185	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13186	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13187#endif
13188	state->dts_vstate.dtvs_state = state;
13189
13190	for (i = 0; i < DTRACEOPT_MAX; i++)
13191		state->dts_options[i] = DTRACEOPT_UNSET;
13192
13193	/*
13194	 * Set the default options.
13195	 */
13196	opt = state->dts_options;
13197	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13198	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13199	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13200	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13201	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13202	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13203	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13204	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13205	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13206	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13207	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13208	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13209	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13210	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13211
13212	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13213
13214	/*
13215	 * Depending on the user credentials, we set flag bits which alter probe
13216	 * visibility or the amount of destructiveness allowed.  In the case of
13217	 * actual anonymous tracing, or the possession of all privileges, all of
13218	 * the normal checks are bypassed.
13219	 */
13220	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13221		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13222		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13223	} else {
13224		/*
13225		 * Set up the credentials for this instantiation.  We take a
13226		 * hold on the credential to prevent it from disappearing on
13227		 * us; this in turn prevents the zone_t referenced by this
13228		 * credential from disappearing.  This means that we can
13229		 * examine the credential and the zone from probe context.
13230		 */
13231		crhold(cr);
13232		state->dts_cred.dcr_cred = cr;
13233
13234		/*
13235		 * CRA_PROC means "we have *some* privilege for dtrace" and
13236		 * unlocks the use of variables like pid, zonename, etc.
13237		 */
13238		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13239		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13240			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13241		}
13242
13243		/*
13244		 * dtrace_user allows use of syscall and profile providers.
13245		 * If the user also has proc_owner and/or proc_zone, we
13246		 * extend the scope to include additional visibility and
13247		 * destructive power.
13248		 */
13249		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13250			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13251				state->dts_cred.dcr_visible |=
13252				    DTRACE_CRV_ALLPROC;
13253
13254				state->dts_cred.dcr_action |=
13255				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13256			}
13257
13258			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13259				state->dts_cred.dcr_visible |=
13260				    DTRACE_CRV_ALLZONE;
13261
13262				state->dts_cred.dcr_action |=
13263				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13264			}
13265
13266			/*
13267			 * If we have all privs in whatever zone this is,
13268			 * we can do destructive things to processes which
13269			 * have altered credentials.
13270			 */
13271#if defined(sun)
13272			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13273			    cr->cr_zone->zone_privset)) {
13274				state->dts_cred.dcr_action |=
13275				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13276			}
13277#endif
13278		}
13279
13280		/*
13281		 * Holding the dtrace_kernel privilege also implies that
13282		 * the user has the dtrace_user privilege from a visibility
13283		 * perspective.  But without further privileges, some
13284		 * destructive actions are not available.
13285		 */
13286		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13287			/*
13288			 * Make all probes in all zones visible.  However,
13289			 * this doesn't mean that all actions become available
13290			 * to all zones.
13291			 */
13292			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13293			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13294
13295			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13296			    DTRACE_CRA_PROC;
13297			/*
13298			 * Holding proc_owner means that destructive actions
13299			 * for *this* zone are allowed.
13300			 */
13301			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13302				state->dts_cred.dcr_action |=
13303				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13304
13305			/*
13306			 * Holding proc_zone means that destructive actions
13307			 * for this user/group ID in all zones is allowed.
13308			 */
13309			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13310				state->dts_cred.dcr_action |=
13311				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13312
13313#if defined(sun)
13314			/*
13315			 * If we have all privs in whatever zone this is,
13316			 * we can do destructive things to processes which
13317			 * have altered credentials.
13318			 */
13319			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13320			    cr->cr_zone->zone_privset)) {
13321				state->dts_cred.dcr_action |=
13322				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13323			}
13324#endif
13325		}
13326
13327		/*
13328		 * Holding the dtrace_proc privilege gives control over fasttrap
13329		 * and pid providers.  We need to grant wider destructive
13330		 * privileges in the event that the user has proc_owner and/or
13331		 * proc_zone.
13332		 */
13333		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13334			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13335				state->dts_cred.dcr_action |=
13336				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13337
13338			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13339				state->dts_cred.dcr_action |=
13340				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13341		}
13342	}
13343
13344	return (state);
13345}
13346
13347static int
13348dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13349{
13350	dtrace_optval_t *opt = state->dts_options, size;
13351	processorid_t cpu = 0;;
13352	int flags = 0, rval;
13353
13354	ASSERT(MUTEX_HELD(&dtrace_lock));
13355	ASSERT(MUTEX_HELD(&cpu_lock));
13356	ASSERT(which < DTRACEOPT_MAX);
13357	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13358	    (state == dtrace_anon.dta_state &&
13359	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13360
13361	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13362		return (0);
13363
13364	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13365		cpu = opt[DTRACEOPT_CPU];
13366
13367	if (which == DTRACEOPT_SPECSIZE)
13368		flags |= DTRACEBUF_NOSWITCH;
13369
13370	if (which == DTRACEOPT_BUFSIZE) {
13371		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13372			flags |= DTRACEBUF_RING;
13373
13374		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13375			flags |= DTRACEBUF_FILL;
13376
13377		if (state != dtrace_anon.dta_state ||
13378		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13379			flags |= DTRACEBUF_INACTIVE;
13380	}
13381
13382	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13383		/*
13384		 * The size must be 8-byte aligned.  If the size is not 8-byte
13385		 * aligned, drop it down by the difference.
13386		 */
13387		if (size & (sizeof (uint64_t) - 1))
13388			size -= size & (sizeof (uint64_t) - 1);
13389
13390		if (size < state->dts_reserve) {
13391			/*
13392			 * Buffers always must be large enough to accommodate
13393			 * their prereserved space.  We return E2BIG instead
13394			 * of ENOMEM in this case to allow for user-level
13395			 * software to differentiate the cases.
13396			 */
13397			return (E2BIG);
13398		}
13399
13400		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13401
13402		if (rval != ENOMEM) {
13403			opt[which] = size;
13404			return (rval);
13405		}
13406
13407		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13408			return (rval);
13409	}
13410
13411	return (ENOMEM);
13412}
13413
13414static int
13415dtrace_state_buffers(dtrace_state_t *state)
13416{
13417	dtrace_speculation_t *spec = state->dts_speculations;
13418	int rval, i;
13419
13420	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13421	    DTRACEOPT_BUFSIZE)) != 0)
13422		return (rval);
13423
13424	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13425	    DTRACEOPT_AGGSIZE)) != 0)
13426		return (rval);
13427
13428	for (i = 0; i < state->dts_nspeculations; i++) {
13429		if ((rval = dtrace_state_buffer(state,
13430		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13431			return (rval);
13432	}
13433
13434	return (0);
13435}
13436
13437static void
13438dtrace_state_prereserve(dtrace_state_t *state)
13439{
13440	dtrace_ecb_t *ecb;
13441	dtrace_probe_t *probe;
13442
13443	state->dts_reserve = 0;
13444
13445	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13446		return;
13447
13448	/*
13449	 * If our buffer policy is a "fill" buffer policy, we need to set the
13450	 * prereserved space to be the space required by the END probes.
13451	 */
13452	probe = dtrace_probes[dtrace_probeid_end - 1];
13453	ASSERT(probe != NULL);
13454
13455	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13456		if (ecb->dte_state != state)
13457			continue;
13458
13459		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13460	}
13461}
13462
13463static int
13464dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13465{
13466	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13467	dtrace_speculation_t *spec;
13468	dtrace_buffer_t *buf;
13469#if defined(sun)
13470	cyc_handler_t hdlr;
13471	cyc_time_t when;
13472#endif
13473	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13474	dtrace_icookie_t cookie;
13475
13476	mutex_enter(&cpu_lock);
13477	mutex_enter(&dtrace_lock);
13478
13479	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13480		rval = EBUSY;
13481		goto out;
13482	}
13483
13484	/*
13485	 * Before we can perform any checks, we must prime all of the
13486	 * retained enablings that correspond to this state.
13487	 */
13488	dtrace_enabling_prime(state);
13489
13490	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13491		rval = EACCES;
13492		goto out;
13493	}
13494
13495	dtrace_state_prereserve(state);
13496
13497	/*
13498	 * Now we want to do is try to allocate our speculations.
13499	 * We do not automatically resize the number of speculations; if
13500	 * this fails, we will fail the operation.
13501	 */
13502	nspec = opt[DTRACEOPT_NSPEC];
13503	ASSERT(nspec != DTRACEOPT_UNSET);
13504
13505	if (nspec > INT_MAX) {
13506		rval = ENOMEM;
13507		goto out;
13508	}
13509
13510	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13511
13512	if (spec == NULL) {
13513		rval = ENOMEM;
13514		goto out;
13515	}
13516
13517	state->dts_speculations = spec;
13518	state->dts_nspeculations = (int)nspec;
13519
13520	for (i = 0; i < nspec; i++) {
13521		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13522			rval = ENOMEM;
13523			goto err;
13524		}
13525
13526		spec[i].dtsp_buffer = buf;
13527	}
13528
13529	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13530		if (dtrace_anon.dta_state == NULL) {
13531			rval = ENOENT;
13532			goto out;
13533		}
13534
13535		if (state->dts_necbs != 0) {
13536			rval = EALREADY;
13537			goto out;
13538		}
13539
13540		state->dts_anon = dtrace_anon_grab();
13541		ASSERT(state->dts_anon != NULL);
13542		state = state->dts_anon;
13543
13544		/*
13545		 * We want "grabanon" to be set in the grabbed state, so we'll
13546		 * copy that option value from the grabbing state into the
13547		 * grabbed state.
13548		 */
13549		state->dts_options[DTRACEOPT_GRABANON] =
13550		    opt[DTRACEOPT_GRABANON];
13551
13552		*cpu = dtrace_anon.dta_beganon;
13553
13554		/*
13555		 * If the anonymous state is active (as it almost certainly
13556		 * is if the anonymous enabling ultimately matched anything),
13557		 * we don't allow any further option processing -- but we
13558		 * don't return failure.
13559		 */
13560		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13561			goto out;
13562	}
13563
13564	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13565	    opt[DTRACEOPT_AGGSIZE] != 0) {
13566		if (state->dts_aggregations == NULL) {
13567			/*
13568			 * We're not going to create an aggregation buffer
13569			 * because we don't have any ECBs that contain
13570			 * aggregations -- set this option to 0.
13571			 */
13572			opt[DTRACEOPT_AGGSIZE] = 0;
13573		} else {
13574			/*
13575			 * If we have an aggregation buffer, we must also have
13576			 * a buffer to use as scratch.
13577			 */
13578			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13579			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13580				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13581			}
13582		}
13583	}
13584
13585	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13586	    opt[DTRACEOPT_SPECSIZE] != 0) {
13587		if (!state->dts_speculates) {
13588			/*
13589			 * We're not going to create speculation buffers
13590			 * because we don't have any ECBs that actually
13591			 * speculate -- set the speculation size to 0.
13592			 */
13593			opt[DTRACEOPT_SPECSIZE] = 0;
13594		}
13595	}
13596
13597	/*
13598	 * The bare minimum size for any buffer that we're actually going to
13599	 * do anything to is sizeof (uint64_t).
13600	 */
13601	sz = sizeof (uint64_t);
13602
13603	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13604	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13605	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13606		/*
13607		 * A buffer size has been explicitly set to 0 (or to a size
13608		 * that will be adjusted to 0) and we need the space -- we
13609		 * need to return failure.  We return ENOSPC to differentiate
13610		 * it from failing to allocate a buffer due to failure to meet
13611		 * the reserve (for which we return E2BIG).
13612		 */
13613		rval = ENOSPC;
13614		goto out;
13615	}
13616
13617	if ((rval = dtrace_state_buffers(state)) != 0)
13618		goto err;
13619
13620	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13621		sz = dtrace_dstate_defsize;
13622
13623	do {
13624		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13625
13626		if (rval == 0)
13627			break;
13628
13629		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13630			goto err;
13631	} while (sz >>= 1);
13632
13633	opt[DTRACEOPT_DYNVARSIZE] = sz;
13634
13635	if (rval != 0)
13636		goto err;
13637
13638	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13639		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13640
13641	if (opt[DTRACEOPT_CLEANRATE] == 0)
13642		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13643
13644	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13645		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13646
13647	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13648		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13649
13650	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13651#if defined(sun)
13652	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13653	hdlr.cyh_arg = state;
13654	hdlr.cyh_level = CY_LOW_LEVEL;
13655
13656	when.cyt_when = 0;
13657	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13658
13659	state->dts_cleaner = cyclic_add(&hdlr, &when);
13660
13661	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13662	hdlr.cyh_arg = state;
13663	hdlr.cyh_level = CY_LOW_LEVEL;
13664
13665	when.cyt_when = 0;
13666	when.cyt_interval = dtrace_deadman_interval;
13667
13668	state->dts_deadman = cyclic_add(&hdlr, &when);
13669#else
13670	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13671	    dtrace_state_clean, state);
13672	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13673	    dtrace_state_deadman, state);
13674#endif
13675
13676	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13677
13678	/*
13679	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13680	 * interrupts here both to record the CPU on which we fired the BEGIN
13681	 * probe (the data from this CPU will be processed first at user
13682	 * level) and to manually activate the buffer for this CPU.
13683	 */
13684	cookie = dtrace_interrupt_disable();
13685	*cpu = curcpu;
13686	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13687	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13688
13689	dtrace_probe(dtrace_probeid_begin,
13690	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13691	dtrace_interrupt_enable(cookie);
13692	/*
13693	 * We may have had an exit action from a BEGIN probe; only change our
13694	 * state to ACTIVE if we're still in WARMUP.
13695	 */
13696	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13697	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13698
13699	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13700		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13701
13702	/*
13703	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13704	 * want each CPU to transition its principal buffer out of the
13705	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13706	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13707	 * atomically transition from processing none of a state's ECBs to
13708	 * processing all of them.
13709	 */
13710	dtrace_xcall(DTRACE_CPUALL,
13711	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13712	goto out;
13713
13714err:
13715	dtrace_buffer_free(state->dts_buffer);
13716	dtrace_buffer_free(state->dts_aggbuffer);
13717
13718	if ((nspec = state->dts_nspeculations) == 0) {
13719		ASSERT(state->dts_speculations == NULL);
13720		goto out;
13721	}
13722
13723	spec = state->dts_speculations;
13724	ASSERT(spec != NULL);
13725
13726	for (i = 0; i < state->dts_nspeculations; i++) {
13727		if ((buf = spec[i].dtsp_buffer) == NULL)
13728			break;
13729
13730		dtrace_buffer_free(buf);
13731		kmem_free(buf, bufsize);
13732	}
13733
13734	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13735	state->dts_nspeculations = 0;
13736	state->dts_speculations = NULL;
13737
13738out:
13739	mutex_exit(&dtrace_lock);
13740	mutex_exit(&cpu_lock);
13741
13742	return (rval);
13743}
13744
13745static int
13746dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13747{
13748	dtrace_icookie_t cookie;
13749
13750	ASSERT(MUTEX_HELD(&dtrace_lock));
13751
13752	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13753	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13754		return (EINVAL);
13755
13756	/*
13757	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13758	 * to be sure that every CPU has seen it.  See below for the details
13759	 * on why this is done.
13760	 */
13761	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13762	dtrace_sync();
13763
13764	/*
13765	 * By this point, it is impossible for any CPU to be still processing
13766	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13767	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13768	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13769	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13770	 * iff we're in the END probe.
13771	 */
13772	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13773	dtrace_sync();
13774	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13775
13776	/*
13777	 * Finally, we can release the reserve and call the END probe.  We
13778	 * disable interrupts across calling the END probe to allow us to
13779	 * return the CPU on which we actually called the END probe.  This
13780	 * allows user-land to be sure that this CPU's principal buffer is
13781	 * processed last.
13782	 */
13783	state->dts_reserve = 0;
13784
13785	cookie = dtrace_interrupt_disable();
13786	*cpu = curcpu;
13787	dtrace_probe(dtrace_probeid_end,
13788	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13789	dtrace_interrupt_enable(cookie);
13790
13791	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13792	dtrace_sync();
13793
13794	return (0);
13795}
13796
13797static int
13798dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13799    dtrace_optval_t val)
13800{
13801	ASSERT(MUTEX_HELD(&dtrace_lock));
13802
13803	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13804		return (EBUSY);
13805
13806	if (option >= DTRACEOPT_MAX)
13807		return (EINVAL);
13808
13809	if (option != DTRACEOPT_CPU && val < 0)
13810		return (EINVAL);
13811
13812	switch (option) {
13813	case DTRACEOPT_DESTRUCTIVE:
13814		if (dtrace_destructive_disallow)
13815			return (EACCES);
13816
13817		state->dts_cred.dcr_destructive = 1;
13818		break;
13819
13820	case DTRACEOPT_BUFSIZE:
13821	case DTRACEOPT_DYNVARSIZE:
13822	case DTRACEOPT_AGGSIZE:
13823	case DTRACEOPT_SPECSIZE:
13824	case DTRACEOPT_STRSIZE:
13825		if (val < 0)
13826			return (EINVAL);
13827
13828		if (val >= LONG_MAX) {
13829			/*
13830			 * If this is an otherwise negative value, set it to
13831			 * the highest multiple of 128m less than LONG_MAX.
13832			 * Technically, we're adjusting the size without
13833			 * regard to the buffer resizing policy, but in fact,
13834			 * this has no effect -- if we set the buffer size to
13835			 * ~LONG_MAX and the buffer policy is ultimately set to
13836			 * be "manual", the buffer allocation is guaranteed to
13837			 * fail, if only because the allocation requires two
13838			 * buffers.  (We set the the size to the highest
13839			 * multiple of 128m because it ensures that the size
13840			 * will remain a multiple of a megabyte when
13841			 * repeatedly halved -- all the way down to 15m.)
13842			 */
13843			val = LONG_MAX - (1 << 27) + 1;
13844		}
13845	}
13846
13847	state->dts_options[option] = val;
13848
13849	return (0);
13850}
13851
13852static void
13853dtrace_state_destroy(dtrace_state_t *state)
13854{
13855	dtrace_ecb_t *ecb;
13856	dtrace_vstate_t *vstate = &state->dts_vstate;
13857#if defined(sun)
13858	minor_t minor = getminor(state->dts_dev);
13859#endif
13860	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13861	dtrace_speculation_t *spec = state->dts_speculations;
13862	int nspec = state->dts_nspeculations;
13863	uint32_t match;
13864
13865	ASSERT(MUTEX_HELD(&dtrace_lock));
13866	ASSERT(MUTEX_HELD(&cpu_lock));
13867
13868	/*
13869	 * First, retract any retained enablings for this state.
13870	 */
13871	dtrace_enabling_retract(state);
13872	ASSERT(state->dts_nretained == 0);
13873
13874	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13875	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13876		/*
13877		 * We have managed to come into dtrace_state_destroy() on a
13878		 * hot enabling -- almost certainly because of a disorderly
13879		 * shutdown of a consumer.  (That is, a consumer that is
13880		 * exiting without having called dtrace_stop().) In this case,
13881		 * we're going to set our activity to be KILLED, and then
13882		 * issue a sync to be sure that everyone is out of probe
13883		 * context before we start blowing away ECBs.
13884		 */
13885		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13886		dtrace_sync();
13887	}
13888
13889	/*
13890	 * Release the credential hold we took in dtrace_state_create().
13891	 */
13892	if (state->dts_cred.dcr_cred != NULL)
13893		crfree(state->dts_cred.dcr_cred);
13894
13895	/*
13896	 * Now we can safely disable and destroy any enabled probes.  Because
13897	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13898	 * (especially if they're all enabled), we take two passes through the
13899	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13900	 * in the second we disable whatever is left over.
13901	 */
13902	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13903		for (i = 0; i < state->dts_necbs; i++) {
13904			if ((ecb = state->dts_ecbs[i]) == NULL)
13905				continue;
13906
13907			if (match && ecb->dte_probe != NULL) {
13908				dtrace_probe_t *probe = ecb->dte_probe;
13909				dtrace_provider_t *prov = probe->dtpr_provider;
13910
13911				if (!(prov->dtpv_priv.dtpp_flags & match))
13912					continue;
13913			}
13914
13915			dtrace_ecb_disable(ecb);
13916			dtrace_ecb_destroy(ecb);
13917		}
13918
13919		if (!match)
13920			break;
13921	}
13922
13923	/*
13924	 * Before we free the buffers, perform one more sync to assure that
13925	 * every CPU is out of probe context.
13926	 */
13927	dtrace_sync();
13928
13929	dtrace_buffer_free(state->dts_buffer);
13930	dtrace_buffer_free(state->dts_aggbuffer);
13931
13932	for (i = 0; i < nspec; i++)
13933		dtrace_buffer_free(spec[i].dtsp_buffer);
13934
13935#if defined(sun)
13936	if (state->dts_cleaner != CYCLIC_NONE)
13937		cyclic_remove(state->dts_cleaner);
13938
13939	if (state->dts_deadman != CYCLIC_NONE)
13940		cyclic_remove(state->dts_deadman);
13941#else
13942	callout_stop(&state->dts_cleaner);
13943	callout_drain(&state->dts_cleaner);
13944	callout_stop(&state->dts_deadman);
13945	callout_drain(&state->dts_deadman);
13946#endif
13947
13948	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13949	dtrace_vstate_fini(vstate);
13950	if (state->dts_ecbs != NULL)
13951		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13952
13953	if (state->dts_aggregations != NULL) {
13954#ifdef DEBUG
13955		for (i = 0; i < state->dts_naggregations; i++)
13956			ASSERT(state->dts_aggregations[i] == NULL);
13957#endif
13958		ASSERT(state->dts_naggregations > 0);
13959		kmem_free(state->dts_aggregations,
13960		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13961	}
13962
13963	kmem_free(state->dts_buffer, bufsize);
13964	kmem_free(state->dts_aggbuffer, bufsize);
13965
13966	for (i = 0; i < nspec; i++)
13967		kmem_free(spec[i].dtsp_buffer, bufsize);
13968
13969	if (spec != NULL)
13970		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13971
13972	dtrace_format_destroy(state);
13973
13974	if (state->dts_aggid_arena != NULL) {
13975#if defined(sun)
13976		vmem_destroy(state->dts_aggid_arena);
13977#else
13978		delete_unrhdr(state->dts_aggid_arena);
13979#endif
13980		state->dts_aggid_arena = NULL;
13981	}
13982#if defined(sun)
13983	ddi_soft_state_free(dtrace_softstate, minor);
13984	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13985#endif
13986}
13987
13988/*
13989 * DTrace Anonymous Enabling Functions
13990 */
13991static dtrace_state_t *
13992dtrace_anon_grab(void)
13993{
13994	dtrace_state_t *state;
13995
13996	ASSERT(MUTEX_HELD(&dtrace_lock));
13997
13998	if ((state = dtrace_anon.dta_state) == NULL) {
13999		ASSERT(dtrace_anon.dta_enabling == NULL);
14000		return (NULL);
14001	}
14002
14003	ASSERT(dtrace_anon.dta_enabling != NULL);
14004	ASSERT(dtrace_retained != NULL);
14005
14006	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14007	dtrace_anon.dta_enabling = NULL;
14008	dtrace_anon.dta_state = NULL;
14009
14010	return (state);
14011}
14012
14013static void
14014dtrace_anon_property(void)
14015{
14016	int i, rv;
14017	dtrace_state_t *state;
14018	dof_hdr_t *dof;
14019	char c[32];		/* enough for "dof-data-" + digits */
14020
14021	ASSERT(MUTEX_HELD(&dtrace_lock));
14022	ASSERT(MUTEX_HELD(&cpu_lock));
14023
14024	for (i = 0; ; i++) {
14025		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14026
14027		dtrace_err_verbose = 1;
14028
14029		if ((dof = dtrace_dof_property(c)) == NULL) {
14030			dtrace_err_verbose = 0;
14031			break;
14032		}
14033
14034#if defined(sun)
14035		/*
14036		 * We want to create anonymous state, so we need to transition
14037		 * the kernel debugger to indicate that DTrace is active.  If
14038		 * this fails (e.g. because the debugger has modified text in
14039		 * some way), we won't continue with the processing.
14040		 */
14041		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14042			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14043			    "enabling ignored.");
14044			dtrace_dof_destroy(dof);
14045			break;
14046		}
14047#endif
14048
14049		/*
14050		 * If we haven't allocated an anonymous state, we'll do so now.
14051		 */
14052		if ((state = dtrace_anon.dta_state) == NULL) {
14053#if defined(sun)
14054			state = dtrace_state_create(NULL, NULL);
14055#else
14056			state = dtrace_state_create(NULL);
14057#endif
14058			dtrace_anon.dta_state = state;
14059
14060			if (state == NULL) {
14061				/*
14062				 * This basically shouldn't happen:  the only
14063				 * failure mode from dtrace_state_create() is a
14064				 * failure of ddi_soft_state_zalloc() that
14065				 * itself should never happen.  Still, the
14066				 * interface allows for a failure mode, and
14067				 * we want to fail as gracefully as possible:
14068				 * we'll emit an error message and cease
14069				 * processing anonymous state in this case.
14070				 */
14071				cmn_err(CE_WARN, "failed to create "
14072				    "anonymous state");
14073				dtrace_dof_destroy(dof);
14074				break;
14075			}
14076		}
14077
14078		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14079		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14080
14081		if (rv == 0)
14082			rv = dtrace_dof_options(dof, state);
14083
14084		dtrace_err_verbose = 0;
14085		dtrace_dof_destroy(dof);
14086
14087		if (rv != 0) {
14088			/*
14089			 * This is malformed DOF; chuck any anonymous state
14090			 * that we created.
14091			 */
14092			ASSERT(dtrace_anon.dta_enabling == NULL);
14093			dtrace_state_destroy(state);
14094			dtrace_anon.dta_state = NULL;
14095			break;
14096		}
14097
14098		ASSERT(dtrace_anon.dta_enabling != NULL);
14099	}
14100
14101	if (dtrace_anon.dta_enabling != NULL) {
14102		int rval;
14103
14104		/*
14105		 * dtrace_enabling_retain() can only fail because we are
14106		 * trying to retain more enablings than are allowed -- but
14107		 * we only have one anonymous enabling, and we are guaranteed
14108		 * to be allowed at least one retained enabling; we assert
14109		 * that dtrace_enabling_retain() returns success.
14110		 */
14111		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14112		ASSERT(rval == 0);
14113
14114		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14115	}
14116}
14117
14118/*
14119 * DTrace Helper Functions
14120 */
14121static void
14122dtrace_helper_trace(dtrace_helper_action_t *helper,
14123    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14124{
14125	uint32_t size, next, nnext, i;
14126	dtrace_helptrace_t *ent;
14127	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14128
14129	if (!dtrace_helptrace_enabled)
14130		return;
14131
14132	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14133
14134	/*
14135	 * What would a tracing framework be without its own tracing
14136	 * framework?  (Well, a hell of a lot simpler, for starters...)
14137	 */
14138	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14139	    sizeof (uint64_t) - sizeof (uint64_t);
14140
14141	/*
14142	 * Iterate until we can allocate a slot in the trace buffer.
14143	 */
14144	do {
14145		next = dtrace_helptrace_next;
14146
14147		if (next + size < dtrace_helptrace_bufsize) {
14148			nnext = next + size;
14149		} else {
14150			nnext = size;
14151		}
14152	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14153
14154	/*
14155	 * We have our slot; fill it in.
14156	 */
14157	if (nnext == size)
14158		next = 0;
14159
14160	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14161	ent->dtht_helper = helper;
14162	ent->dtht_where = where;
14163	ent->dtht_nlocals = vstate->dtvs_nlocals;
14164
14165	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14166	    mstate->dtms_fltoffs : -1;
14167	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14168	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14169
14170	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14171		dtrace_statvar_t *svar;
14172
14173		if ((svar = vstate->dtvs_locals[i]) == NULL)
14174			continue;
14175
14176		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14177		ent->dtht_locals[i] =
14178		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14179	}
14180}
14181
14182static uint64_t
14183dtrace_helper(int which, dtrace_mstate_t *mstate,
14184    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14185{
14186	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14187	uint64_t sarg0 = mstate->dtms_arg[0];
14188	uint64_t sarg1 = mstate->dtms_arg[1];
14189	uint64_t rval = 0;
14190	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14191	dtrace_helper_action_t *helper;
14192	dtrace_vstate_t *vstate;
14193	dtrace_difo_t *pred;
14194	int i, trace = dtrace_helptrace_enabled;
14195
14196	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14197
14198	if (helpers == NULL)
14199		return (0);
14200
14201	if ((helper = helpers->dthps_actions[which]) == NULL)
14202		return (0);
14203
14204	vstate = &helpers->dthps_vstate;
14205	mstate->dtms_arg[0] = arg0;
14206	mstate->dtms_arg[1] = arg1;
14207
14208	/*
14209	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14210	 * we'll call the corresponding actions.  Note that the below calls
14211	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14212	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14213	 * the stored DIF offset with its own (which is the desired behavior).
14214	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14215	 * from machine state; this is okay, too.
14216	 */
14217	for (; helper != NULL; helper = helper->dtha_next) {
14218		if ((pred = helper->dtha_predicate) != NULL) {
14219			if (trace)
14220				dtrace_helper_trace(helper, mstate, vstate, 0);
14221
14222			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14223				goto next;
14224
14225			if (*flags & CPU_DTRACE_FAULT)
14226				goto err;
14227		}
14228
14229		for (i = 0; i < helper->dtha_nactions; i++) {
14230			if (trace)
14231				dtrace_helper_trace(helper,
14232				    mstate, vstate, i + 1);
14233
14234			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14235			    mstate, vstate, state);
14236
14237			if (*flags & CPU_DTRACE_FAULT)
14238				goto err;
14239		}
14240
14241next:
14242		if (trace)
14243			dtrace_helper_trace(helper, mstate, vstate,
14244			    DTRACE_HELPTRACE_NEXT);
14245	}
14246
14247	if (trace)
14248		dtrace_helper_trace(helper, mstate, vstate,
14249		    DTRACE_HELPTRACE_DONE);
14250
14251	/*
14252	 * Restore the arg0 that we saved upon entry.
14253	 */
14254	mstate->dtms_arg[0] = sarg0;
14255	mstate->dtms_arg[1] = sarg1;
14256
14257	return (rval);
14258
14259err:
14260	if (trace)
14261		dtrace_helper_trace(helper, mstate, vstate,
14262		    DTRACE_HELPTRACE_ERR);
14263
14264	/*
14265	 * Restore the arg0 that we saved upon entry.
14266	 */
14267	mstate->dtms_arg[0] = sarg0;
14268	mstate->dtms_arg[1] = sarg1;
14269
14270	return (0);
14271}
14272
14273static void
14274dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14275    dtrace_vstate_t *vstate)
14276{
14277	int i;
14278
14279	if (helper->dtha_predicate != NULL)
14280		dtrace_difo_release(helper->dtha_predicate, vstate);
14281
14282	for (i = 0; i < helper->dtha_nactions; i++) {
14283		ASSERT(helper->dtha_actions[i] != NULL);
14284		dtrace_difo_release(helper->dtha_actions[i], vstate);
14285	}
14286
14287	kmem_free(helper->dtha_actions,
14288	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14289	kmem_free(helper, sizeof (dtrace_helper_action_t));
14290}
14291
14292static int
14293dtrace_helper_destroygen(int gen)
14294{
14295	proc_t *p = curproc;
14296	dtrace_helpers_t *help = p->p_dtrace_helpers;
14297	dtrace_vstate_t *vstate;
14298	int i;
14299
14300	ASSERT(MUTEX_HELD(&dtrace_lock));
14301
14302	if (help == NULL || gen > help->dthps_generation)
14303		return (EINVAL);
14304
14305	vstate = &help->dthps_vstate;
14306
14307	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14308		dtrace_helper_action_t *last = NULL, *h, *next;
14309
14310		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14311			next = h->dtha_next;
14312
14313			if (h->dtha_generation == gen) {
14314				if (last != NULL) {
14315					last->dtha_next = next;
14316				} else {
14317					help->dthps_actions[i] = next;
14318				}
14319
14320				dtrace_helper_action_destroy(h, vstate);
14321			} else {
14322				last = h;
14323			}
14324		}
14325	}
14326
14327	/*
14328	 * Interate until we've cleared out all helper providers with the
14329	 * given generation number.
14330	 */
14331	for (;;) {
14332		dtrace_helper_provider_t *prov;
14333
14334		/*
14335		 * Look for a helper provider with the right generation. We
14336		 * have to start back at the beginning of the list each time
14337		 * because we drop dtrace_lock. It's unlikely that we'll make
14338		 * more than two passes.
14339		 */
14340		for (i = 0; i < help->dthps_nprovs; i++) {
14341			prov = help->dthps_provs[i];
14342
14343			if (prov->dthp_generation == gen)
14344				break;
14345		}
14346
14347		/*
14348		 * If there were no matches, we're done.
14349		 */
14350		if (i == help->dthps_nprovs)
14351			break;
14352
14353		/*
14354		 * Move the last helper provider into this slot.
14355		 */
14356		help->dthps_nprovs--;
14357		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14358		help->dthps_provs[help->dthps_nprovs] = NULL;
14359
14360		mutex_exit(&dtrace_lock);
14361
14362		/*
14363		 * If we have a meta provider, remove this helper provider.
14364		 */
14365		mutex_enter(&dtrace_meta_lock);
14366		if (dtrace_meta_pid != NULL) {
14367			ASSERT(dtrace_deferred_pid == NULL);
14368			dtrace_helper_provider_remove(&prov->dthp_prov,
14369			    p->p_pid);
14370		}
14371		mutex_exit(&dtrace_meta_lock);
14372
14373		dtrace_helper_provider_destroy(prov);
14374
14375		mutex_enter(&dtrace_lock);
14376	}
14377
14378	return (0);
14379}
14380
14381static int
14382dtrace_helper_validate(dtrace_helper_action_t *helper)
14383{
14384	int err = 0, i;
14385	dtrace_difo_t *dp;
14386
14387	if ((dp = helper->dtha_predicate) != NULL)
14388		err += dtrace_difo_validate_helper(dp);
14389
14390	for (i = 0; i < helper->dtha_nactions; i++)
14391		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14392
14393	return (err == 0);
14394}
14395
14396static int
14397dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14398{
14399	dtrace_helpers_t *help;
14400	dtrace_helper_action_t *helper, *last;
14401	dtrace_actdesc_t *act;
14402	dtrace_vstate_t *vstate;
14403	dtrace_predicate_t *pred;
14404	int count = 0, nactions = 0, i;
14405
14406	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14407		return (EINVAL);
14408
14409	help = curproc->p_dtrace_helpers;
14410	last = help->dthps_actions[which];
14411	vstate = &help->dthps_vstate;
14412
14413	for (count = 0; last != NULL; last = last->dtha_next) {
14414		count++;
14415		if (last->dtha_next == NULL)
14416			break;
14417	}
14418
14419	/*
14420	 * If we already have dtrace_helper_actions_max helper actions for this
14421	 * helper action type, we'll refuse to add a new one.
14422	 */
14423	if (count >= dtrace_helper_actions_max)
14424		return (ENOSPC);
14425
14426	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14427	helper->dtha_generation = help->dthps_generation;
14428
14429	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14430		ASSERT(pred->dtp_difo != NULL);
14431		dtrace_difo_hold(pred->dtp_difo);
14432		helper->dtha_predicate = pred->dtp_difo;
14433	}
14434
14435	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14436		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14437			goto err;
14438
14439		if (act->dtad_difo == NULL)
14440			goto err;
14441
14442		nactions++;
14443	}
14444
14445	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14446	    (helper->dtha_nactions = nactions), KM_SLEEP);
14447
14448	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14449		dtrace_difo_hold(act->dtad_difo);
14450		helper->dtha_actions[i++] = act->dtad_difo;
14451	}
14452
14453	if (!dtrace_helper_validate(helper))
14454		goto err;
14455
14456	if (last == NULL) {
14457		help->dthps_actions[which] = helper;
14458	} else {
14459		last->dtha_next = helper;
14460	}
14461
14462	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14463		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14464		dtrace_helptrace_next = 0;
14465	}
14466
14467	return (0);
14468err:
14469	dtrace_helper_action_destroy(helper, vstate);
14470	return (EINVAL);
14471}
14472
14473static void
14474dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14475    dof_helper_t *dofhp)
14476{
14477	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14478
14479	mutex_enter(&dtrace_meta_lock);
14480	mutex_enter(&dtrace_lock);
14481
14482	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14483		/*
14484		 * If the dtrace module is loaded but not attached, or if
14485		 * there aren't isn't a meta provider registered to deal with
14486		 * these provider descriptions, we need to postpone creating
14487		 * the actual providers until later.
14488		 */
14489
14490		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14491		    dtrace_deferred_pid != help) {
14492			help->dthps_deferred = 1;
14493			help->dthps_pid = p->p_pid;
14494			help->dthps_next = dtrace_deferred_pid;
14495			help->dthps_prev = NULL;
14496			if (dtrace_deferred_pid != NULL)
14497				dtrace_deferred_pid->dthps_prev = help;
14498			dtrace_deferred_pid = help;
14499		}
14500
14501		mutex_exit(&dtrace_lock);
14502
14503	} else if (dofhp != NULL) {
14504		/*
14505		 * If the dtrace module is loaded and we have a particular
14506		 * helper provider description, pass that off to the
14507		 * meta provider.
14508		 */
14509
14510		mutex_exit(&dtrace_lock);
14511
14512		dtrace_helper_provide(dofhp, p->p_pid);
14513
14514	} else {
14515		/*
14516		 * Otherwise, just pass all the helper provider descriptions
14517		 * off to the meta provider.
14518		 */
14519
14520		int i;
14521		mutex_exit(&dtrace_lock);
14522
14523		for (i = 0; i < help->dthps_nprovs; i++) {
14524			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14525			    p->p_pid);
14526		}
14527	}
14528
14529	mutex_exit(&dtrace_meta_lock);
14530}
14531
14532static int
14533dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14534{
14535	dtrace_helpers_t *help;
14536	dtrace_helper_provider_t *hprov, **tmp_provs;
14537	uint_t tmp_maxprovs, i;
14538
14539	ASSERT(MUTEX_HELD(&dtrace_lock));
14540
14541	help = curproc->p_dtrace_helpers;
14542	ASSERT(help != NULL);
14543
14544	/*
14545	 * If we already have dtrace_helper_providers_max helper providers,
14546	 * we're refuse to add a new one.
14547	 */
14548	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14549		return (ENOSPC);
14550
14551	/*
14552	 * Check to make sure this isn't a duplicate.
14553	 */
14554	for (i = 0; i < help->dthps_nprovs; i++) {
14555		if (dofhp->dofhp_addr ==
14556		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14557			return (EALREADY);
14558	}
14559
14560	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14561	hprov->dthp_prov = *dofhp;
14562	hprov->dthp_ref = 1;
14563	hprov->dthp_generation = gen;
14564
14565	/*
14566	 * Allocate a bigger table for helper providers if it's already full.
14567	 */
14568	if (help->dthps_maxprovs == help->dthps_nprovs) {
14569		tmp_maxprovs = help->dthps_maxprovs;
14570		tmp_provs = help->dthps_provs;
14571
14572		if (help->dthps_maxprovs == 0)
14573			help->dthps_maxprovs = 2;
14574		else
14575			help->dthps_maxprovs *= 2;
14576		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14577			help->dthps_maxprovs = dtrace_helper_providers_max;
14578
14579		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14580
14581		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14582		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14583
14584		if (tmp_provs != NULL) {
14585			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14586			    sizeof (dtrace_helper_provider_t *));
14587			kmem_free(tmp_provs, tmp_maxprovs *
14588			    sizeof (dtrace_helper_provider_t *));
14589		}
14590	}
14591
14592	help->dthps_provs[help->dthps_nprovs] = hprov;
14593	help->dthps_nprovs++;
14594
14595	return (0);
14596}
14597
14598static void
14599dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14600{
14601	mutex_enter(&dtrace_lock);
14602
14603	if (--hprov->dthp_ref == 0) {
14604		dof_hdr_t *dof;
14605		mutex_exit(&dtrace_lock);
14606		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14607		dtrace_dof_destroy(dof);
14608		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14609	} else {
14610		mutex_exit(&dtrace_lock);
14611	}
14612}
14613
14614static int
14615dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14616{
14617	uintptr_t daddr = (uintptr_t)dof;
14618	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14619	dof_provider_t *provider;
14620	dof_probe_t *probe;
14621	uint8_t *arg;
14622	char *strtab, *typestr;
14623	dof_stridx_t typeidx;
14624	size_t typesz;
14625	uint_t nprobes, j, k;
14626
14627	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14628
14629	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14630		dtrace_dof_error(dof, "misaligned section offset");
14631		return (-1);
14632	}
14633
14634	/*
14635	 * The section needs to be large enough to contain the DOF provider
14636	 * structure appropriate for the given version.
14637	 */
14638	if (sec->dofs_size <
14639	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14640	    offsetof(dof_provider_t, dofpv_prenoffs) :
14641	    sizeof (dof_provider_t))) {
14642		dtrace_dof_error(dof, "provider section too small");
14643		return (-1);
14644	}
14645
14646	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14647	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14648	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14649	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14650	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14651
14652	if (str_sec == NULL || prb_sec == NULL ||
14653	    arg_sec == NULL || off_sec == NULL)
14654		return (-1);
14655
14656	enoff_sec = NULL;
14657
14658	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14659	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14660	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14661	    provider->dofpv_prenoffs)) == NULL)
14662		return (-1);
14663
14664	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14665
14666	if (provider->dofpv_name >= str_sec->dofs_size ||
14667	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14668		dtrace_dof_error(dof, "invalid provider name");
14669		return (-1);
14670	}
14671
14672	if (prb_sec->dofs_entsize == 0 ||
14673	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14674		dtrace_dof_error(dof, "invalid entry size");
14675		return (-1);
14676	}
14677
14678	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14679		dtrace_dof_error(dof, "misaligned entry size");
14680		return (-1);
14681	}
14682
14683	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14684		dtrace_dof_error(dof, "invalid entry size");
14685		return (-1);
14686	}
14687
14688	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14689		dtrace_dof_error(dof, "misaligned section offset");
14690		return (-1);
14691	}
14692
14693	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14694		dtrace_dof_error(dof, "invalid entry size");
14695		return (-1);
14696	}
14697
14698	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14699
14700	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14701
14702	/*
14703	 * Take a pass through the probes to check for errors.
14704	 */
14705	for (j = 0; j < nprobes; j++) {
14706		probe = (dof_probe_t *)(uintptr_t)(daddr +
14707		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14708
14709		if (probe->dofpr_func >= str_sec->dofs_size) {
14710			dtrace_dof_error(dof, "invalid function name");
14711			return (-1);
14712		}
14713
14714		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14715			dtrace_dof_error(dof, "function name too long");
14716			return (-1);
14717		}
14718
14719		if (probe->dofpr_name >= str_sec->dofs_size ||
14720		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14721			dtrace_dof_error(dof, "invalid probe name");
14722			return (-1);
14723		}
14724
14725		/*
14726		 * The offset count must not wrap the index, and the offsets
14727		 * must also not overflow the section's data.
14728		 */
14729		if (probe->dofpr_offidx + probe->dofpr_noffs <
14730		    probe->dofpr_offidx ||
14731		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14732		    off_sec->dofs_entsize > off_sec->dofs_size) {
14733			dtrace_dof_error(dof, "invalid probe offset");
14734			return (-1);
14735		}
14736
14737		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14738			/*
14739			 * If there's no is-enabled offset section, make sure
14740			 * there aren't any is-enabled offsets. Otherwise
14741			 * perform the same checks as for probe offsets
14742			 * (immediately above).
14743			 */
14744			if (enoff_sec == NULL) {
14745				if (probe->dofpr_enoffidx != 0 ||
14746				    probe->dofpr_nenoffs != 0) {
14747					dtrace_dof_error(dof, "is-enabled "
14748					    "offsets with null section");
14749					return (-1);
14750				}
14751			} else if (probe->dofpr_enoffidx +
14752			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14753			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14754			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14755				dtrace_dof_error(dof, "invalid is-enabled "
14756				    "offset");
14757				return (-1);
14758			}
14759
14760			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14761				dtrace_dof_error(dof, "zero probe and "
14762				    "is-enabled offsets");
14763				return (-1);
14764			}
14765		} else if (probe->dofpr_noffs == 0) {
14766			dtrace_dof_error(dof, "zero probe offsets");
14767			return (-1);
14768		}
14769
14770		if (probe->dofpr_argidx + probe->dofpr_xargc <
14771		    probe->dofpr_argidx ||
14772		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14773		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14774			dtrace_dof_error(dof, "invalid args");
14775			return (-1);
14776		}
14777
14778		typeidx = probe->dofpr_nargv;
14779		typestr = strtab + probe->dofpr_nargv;
14780		for (k = 0; k < probe->dofpr_nargc; k++) {
14781			if (typeidx >= str_sec->dofs_size) {
14782				dtrace_dof_error(dof, "bad "
14783				    "native argument type");
14784				return (-1);
14785			}
14786
14787			typesz = strlen(typestr) + 1;
14788			if (typesz > DTRACE_ARGTYPELEN) {
14789				dtrace_dof_error(dof, "native "
14790				    "argument type too long");
14791				return (-1);
14792			}
14793			typeidx += typesz;
14794			typestr += typesz;
14795		}
14796
14797		typeidx = probe->dofpr_xargv;
14798		typestr = strtab + probe->dofpr_xargv;
14799		for (k = 0; k < probe->dofpr_xargc; k++) {
14800			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14801				dtrace_dof_error(dof, "bad "
14802				    "native argument index");
14803				return (-1);
14804			}
14805
14806			if (typeidx >= str_sec->dofs_size) {
14807				dtrace_dof_error(dof, "bad "
14808				    "translated argument type");
14809				return (-1);
14810			}
14811
14812			typesz = strlen(typestr) + 1;
14813			if (typesz > DTRACE_ARGTYPELEN) {
14814				dtrace_dof_error(dof, "translated argument "
14815				    "type too long");
14816				return (-1);
14817			}
14818
14819			typeidx += typesz;
14820			typestr += typesz;
14821		}
14822	}
14823
14824	return (0);
14825}
14826
14827static int
14828dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14829{
14830	dtrace_helpers_t *help;
14831	dtrace_vstate_t *vstate;
14832	dtrace_enabling_t *enab = NULL;
14833	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14834	uintptr_t daddr = (uintptr_t)dof;
14835
14836	ASSERT(MUTEX_HELD(&dtrace_lock));
14837
14838	if ((help = curproc->p_dtrace_helpers) == NULL)
14839		help = dtrace_helpers_create(curproc);
14840
14841	vstate = &help->dthps_vstate;
14842
14843	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14844	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14845		dtrace_dof_destroy(dof);
14846		return (rv);
14847	}
14848
14849	/*
14850	 * Look for helper providers and validate their descriptions.
14851	 */
14852	if (dhp != NULL) {
14853		for (i = 0; i < dof->dofh_secnum; i++) {
14854			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14855			    dof->dofh_secoff + i * dof->dofh_secsize);
14856
14857			if (sec->dofs_type != DOF_SECT_PROVIDER)
14858				continue;
14859
14860			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14861				dtrace_enabling_destroy(enab);
14862				dtrace_dof_destroy(dof);
14863				return (-1);
14864			}
14865
14866			nprovs++;
14867		}
14868	}
14869
14870	/*
14871	 * Now we need to walk through the ECB descriptions in the enabling.
14872	 */
14873	for (i = 0; i < enab->dten_ndesc; i++) {
14874		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14875		dtrace_probedesc_t *desc = &ep->dted_probe;
14876
14877		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14878			continue;
14879
14880		if (strcmp(desc->dtpd_mod, "helper") != 0)
14881			continue;
14882
14883		if (strcmp(desc->dtpd_func, "ustack") != 0)
14884			continue;
14885
14886		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14887		    ep)) != 0) {
14888			/*
14889			 * Adding this helper action failed -- we are now going
14890			 * to rip out the entire generation and return failure.
14891			 */
14892			(void) dtrace_helper_destroygen(help->dthps_generation);
14893			dtrace_enabling_destroy(enab);
14894			dtrace_dof_destroy(dof);
14895			return (-1);
14896		}
14897
14898		nhelpers++;
14899	}
14900
14901	if (nhelpers < enab->dten_ndesc)
14902		dtrace_dof_error(dof, "unmatched helpers");
14903
14904	gen = help->dthps_generation++;
14905	dtrace_enabling_destroy(enab);
14906
14907	if (dhp != NULL && nprovs > 0) {
14908		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14909		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14910			mutex_exit(&dtrace_lock);
14911			dtrace_helper_provider_register(curproc, help, dhp);
14912			mutex_enter(&dtrace_lock);
14913
14914			destroy = 0;
14915		}
14916	}
14917
14918	if (destroy)
14919		dtrace_dof_destroy(dof);
14920
14921	return (gen);
14922}
14923
14924static dtrace_helpers_t *
14925dtrace_helpers_create(proc_t *p)
14926{
14927	dtrace_helpers_t *help;
14928
14929	ASSERT(MUTEX_HELD(&dtrace_lock));
14930	ASSERT(p->p_dtrace_helpers == NULL);
14931
14932	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14933	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14934	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14935
14936	p->p_dtrace_helpers = help;
14937	dtrace_helpers++;
14938
14939	return (help);
14940}
14941
14942#if defined(sun)
14943static
14944#endif
14945void
14946dtrace_helpers_destroy(proc_t *p)
14947{
14948	dtrace_helpers_t *help;
14949	dtrace_vstate_t *vstate;
14950#if defined(sun)
14951	proc_t *p = curproc;
14952#endif
14953	int i;
14954
14955	mutex_enter(&dtrace_lock);
14956
14957	ASSERT(p->p_dtrace_helpers != NULL);
14958	ASSERT(dtrace_helpers > 0);
14959
14960	help = p->p_dtrace_helpers;
14961	vstate = &help->dthps_vstate;
14962
14963	/*
14964	 * We're now going to lose the help from this process.
14965	 */
14966	p->p_dtrace_helpers = NULL;
14967	dtrace_sync();
14968
14969	/*
14970	 * Destory the helper actions.
14971	 */
14972	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14973		dtrace_helper_action_t *h, *next;
14974
14975		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14976			next = h->dtha_next;
14977			dtrace_helper_action_destroy(h, vstate);
14978			h = next;
14979		}
14980	}
14981
14982	mutex_exit(&dtrace_lock);
14983
14984	/*
14985	 * Destroy the helper providers.
14986	 */
14987	if (help->dthps_maxprovs > 0) {
14988		mutex_enter(&dtrace_meta_lock);
14989		if (dtrace_meta_pid != NULL) {
14990			ASSERT(dtrace_deferred_pid == NULL);
14991
14992			for (i = 0; i < help->dthps_nprovs; i++) {
14993				dtrace_helper_provider_remove(
14994				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14995			}
14996		} else {
14997			mutex_enter(&dtrace_lock);
14998			ASSERT(help->dthps_deferred == 0 ||
14999			    help->dthps_next != NULL ||
15000			    help->dthps_prev != NULL ||
15001			    help == dtrace_deferred_pid);
15002
15003			/*
15004			 * Remove the helper from the deferred list.
15005			 */
15006			if (help->dthps_next != NULL)
15007				help->dthps_next->dthps_prev = help->dthps_prev;
15008			if (help->dthps_prev != NULL)
15009				help->dthps_prev->dthps_next = help->dthps_next;
15010			if (dtrace_deferred_pid == help) {
15011				dtrace_deferred_pid = help->dthps_next;
15012				ASSERT(help->dthps_prev == NULL);
15013			}
15014
15015			mutex_exit(&dtrace_lock);
15016		}
15017
15018		mutex_exit(&dtrace_meta_lock);
15019
15020		for (i = 0; i < help->dthps_nprovs; i++) {
15021			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15022		}
15023
15024		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15025		    sizeof (dtrace_helper_provider_t *));
15026	}
15027
15028	mutex_enter(&dtrace_lock);
15029
15030	dtrace_vstate_fini(&help->dthps_vstate);
15031	kmem_free(help->dthps_actions,
15032	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15033	kmem_free(help, sizeof (dtrace_helpers_t));
15034
15035	--dtrace_helpers;
15036	mutex_exit(&dtrace_lock);
15037}
15038
15039#if defined(sun)
15040static
15041#endif
15042void
15043dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15044{
15045	dtrace_helpers_t *help, *newhelp;
15046	dtrace_helper_action_t *helper, *new, *last;
15047	dtrace_difo_t *dp;
15048	dtrace_vstate_t *vstate;
15049	int i, j, sz, hasprovs = 0;
15050
15051	mutex_enter(&dtrace_lock);
15052	ASSERT(from->p_dtrace_helpers != NULL);
15053	ASSERT(dtrace_helpers > 0);
15054
15055	help = from->p_dtrace_helpers;
15056	newhelp = dtrace_helpers_create(to);
15057	ASSERT(to->p_dtrace_helpers != NULL);
15058
15059	newhelp->dthps_generation = help->dthps_generation;
15060	vstate = &newhelp->dthps_vstate;
15061
15062	/*
15063	 * Duplicate the helper actions.
15064	 */
15065	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15066		if ((helper = help->dthps_actions[i]) == NULL)
15067			continue;
15068
15069		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15070			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15071			    KM_SLEEP);
15072			new->dtha_generation = helper->dtha_generation;
15073
15074			if ((dp = helper->dtha_predicate) != NULL) {
15075				dp = dtrace_difo_duplicate(dp, vstate);
15076				new->dtha_predicate = dp;
15077			}
15078
15079			new->dtha_nactions = helper->dtha_nactions;
15080			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15081			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15082
15083			for (j = 0; j < new->dtha_nactions; j++) {
15084				dtrace_difo_t *dp = helper->dtha_actions[j];
15085
15086				ASSERT(dp != NULL);
15087				dp = dtrace_difo_duplicate(dp, vstate);
15088				new->dtha_actions[j] = dp;
15089			}
15090
15091			if (last != NULL) {
15092				last->dtha_next = new;
15093			} else {
15094				newhelp->dthps_actions[i] = new;
15095			}
15096
15097			last = new;
15098		}
15099	}
15100
15101	/*
15102	 * Duplicate the helper providers and register them with the
15103	 * DTrace framework.
15104	 */
15105	if (help->dthps_nprovs > 0) {
15106		newhelp->dthps_nprovs = help->dthps_nprovs;
15107		newhelp->dthps_maxprovs = help->dthps_nprovs;
15108		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15109		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15110		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15111			newhelp->dthps_provs[i] = help->dthps_provs[i];
15112			newhelp->dthps_provs[i]->dthp_ref++;
15113		}
15114
15115		hasprovs = 1;
15116	}
15117
15118	mutex_exit(&dtrace_lock);
15119
15120	if (hasprovs)
15121		dtrace_helper_provider_register(to, newhelp, NULL);
15122}
15123
15124#if defined(sun)
15125/*
15126 * DTrace Hook Functions
15127 */
15128static void
15129dtrace_module_loaded(modctl_t *ctl)
15130{
15131	dtrace_provider_t *prv;
15132
15133	mutex_enter(&dtrace_provider_lock);
15134	mutex_enter(&mod_lock);
15135
15136	ASSERT(ctl->mod_busy);
15137
15138	/*
15139	 * We're going to call each providers per-module provide operation
15140	 * specifying only this module.
15141	 */
15142	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15143		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15144
15145	mutex_exit(&mod_lock);
15146	mutex_exit(&dtrace_provider_lock);
15147
15148	/*
15149	 * If we have any retained enablings, we need to match against them.
15150	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15151	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15152	 * module.  (In particular, this happens when loading scheduling
15153	 * classes.)  So if we have any retained enablings, we need to dispatch
15154	 * our task queue to do the match for us.
15155	 */
15156	mutex_enter(&dtrace_lock);
15157
15158	if (dtrace_retained == NULL) {
15159		mutex_exit(&dtrace_lock);
15160		return;
15161	}
15162
15163	(void) taskq_dispatch(dtrace_taskq,
15164	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15165
15166	mutex_exit(&dtrace_lock);
15167
15168	/*
15169	 * And now, for a little heuristic sleaze:  in general, we want to
15170	 * match modules as soon as they load.  However, we cannot guarantee
15171	 * this, because it would lead us to the lock ordering violation
15172	 * outlined above.  The common case, of course, is that cpu_lock is
15173	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15174	 * long enough for the task queue to do its work.  If it's not, it's
15175	 * not a serious problem -- it just means that the module that we
15176	 * just loaded may not be immediately instrumentable.
15177	 */
15178	delay(1);
15179}
15180
15181static void
15182dtrace_module_unloaded(modctl_t *ctl)
15183{
15184	dtrace_probe_t template, *probe, *first, *next;
15185	dtrace_provider_t *prov;
15186
15187	template.dtpr_mod = ctl->mod_modname;
15188
15189	mutex_enter(&dtrace_provider_lock);
15190	mutex_enter(&mod_lock);
15191	mutex_enter(&dtrace_lock);
15192
15193	if (dtrace_bymod == NULL) {
15194		/*
15195		 * The DTrace module is loaded (obviously) but not attached;
15196		 * we don't have any work to do.
15197		 */
15198		mutex_exit(&dtrace_provider_lock);
15199		mutex_exit(&mod_lock);
15200		mutex_exit(&dtrace_lock);
15201		return;
15202	}
15203
15204	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15205	    probe != NULL; probe = probe->dtpr_nextmod) {
15206		if (probe->dtpr_ecb != NULL) {
15207			mutex_exit(&dtrace_provider_lock);
15208			mutex_exit(&mod_lock);
15209			mutex_exit(&dtrace_lock);
15210
15211			/*
15212			 * This shouldn't _actually_ be possible -- we're
15213			 * unloading a module that has an enabled probe in it.
15214			 * (It's normally up to the provider to make sure that
15215			 * this can't happen.)  However, because dtps_enable()
15216			 * doesn't have a failure mode, there can be an
15217			 * enable/unload race.  Upshot:  we don't want to
15218			 * assert, but we're not going to disable the
15219			 * probe, either.
15220			 */
15221			if (dtrace_err_verbose) {
15222				cmn_err(CE_WARN, "unloaded module '%s' had "
15223				    "enabled probes", ctl->mod_modname);
15224			}
15225
15226			return;
15227		}
15228	}
15229
15230	probe = first;
15231
15232	for (first = NULL; probe != NULL; probe = next) {
15233		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15234
15235		dtrace_probes[probe->dtpr_id - 1] = NULL;
15236
15237		next = probe->dtpr_nextmod;
15238		dtrace_hash_remove(dtrace_bymod, probe);
15239		dtrace_hash_remove(dtrace_byfunc, probe);
15240		dtrace_hash_remove(dtrace_byname, probe);
15241
15242		if (first == NULL) {
15243			first = probe;
15244			probe->dtpr_nextmod = NULL;
15245		} else {
15246			probe->dtpr_nextmod = first;
15247			first = probe;
15248		}
15249	}
15250
15251	/*
15252	 * We've removed all of the module's probes from the hash chains and
15253	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15254	 * everyone has cleared out from any probe array processing.
15255	 */
15256	dtrace_sync();
15257
15258	for (probe = first; probe != NULL; probe = first) {
15259		first = probe->dtpr_nextmod;
15260		prov = probe->dtpr_provider;
15261		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15262		    probe->dtpr_arg);
15263		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15264		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15265		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15266		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15267		kmem_free(probe, sizeof (dtrace_probe_t));
15268	}
15269
15270	mutex_exit(&dtrace_lock);
15271	mutex_exit(&mod_lock);
15272	mutex_exit(&dtrace_provider_lock);
15273}
15274
15275static void
15276dtrace_suspend(void)
15277{
15278	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15279}
15280
15281static void
15282dtrace_resume(void)
15283{
15284	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15285}
15286#endif
15287
15288static int
15289dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15290{
15291	ASSERT(MUTEX_HELD(&cpu_lock));
15292	mutex_enter(&dtrace_lock);
15293
15294	switch (what) {
15295	case CPU_CONFIG: {
15296		dtrace_state_t *state;
15297		dtrace_optval_t *opt, rs, c;
15298
15299		/*
15300		 * For now, we only allocate a new buffer for anonymous state.
15301		 */
15302		if ((state = dtrace_anon.dta_state) == NULL)
15303			break;
15304
15305		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15306			break;
15307
15308		opt = state->dts_options;
15309		c = opt[DTRACEOPT_CPU];
15310
15311		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15312			break;
15313
15314		/*
15315		 * Regardless of what the actual policy is, we're going to
15316		 * temporarily set our resize policy to be manual.  We're
15317		 * also going to temporarily set our CPU option to denote
15318		 * the newly configured CPU.
15319		 */
15320		rs = opt[DTRACEOPT_BUFRESIZE];
15321		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15322		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15323
15324		(void) dtrace_state_buffers(state);
15325
15326		opt[DTRACEOPT_BUFRESIZE] = rs;
15327		opt[DTRACEOPT_CPU] = c;
15328
15329		break;
15330	}
15331
15332	case CPU_UNCONFIG:
15333		/*
15334		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15335		 * buffer will be freed when the consumer exits.)
15336		 */
15337		break;
15338
15339	default:
15340		break;
15341	}
15342
15343	mutex_exit(&dtrace_lock);
15344	return (0);
15345}
15346
15347#if defined(sun)
15348static void
15349dtrace_cpu_setup_initial(processorid_t cpu)
15350{
15351	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15352}
15353#endif
15354
15355static void
15356dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15357{
15358	if (dtrace_toxranges >= dtrace_toxranges_max) {
15359		int osize, nsize;
15360		dtrace_toxrange_t *range;
15361
15362		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15363
15364		if (osize == 0) {
15365			ASSERT(dtrace_toxrange == NULL);
15366			ASSERT(dtrace_toxranges_max == 0);
15367			dtrace_toxranges_max = 1;
15368		} else {
15369			dtrace_toxranges_max <<= 1;
15370		}
15371
15372		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15373		range = kmem_zalloc(nsize, KM_SLEEP);
15374
15375		if (dtrace_toxrange != NULL) {
15376			ASSERT(osize != 0);
15377			bcopy(dtrace_toxrange, range, osize);
15378			kmem_free(dtrace_toxrange, osize);
15379		}
15380
15381		dtrace_toxrange = range;
15382	}
15383
15384	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15385	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15386
15387	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15388	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15389	dtrace_toxranges++;
15390}
15391
15392/*
15393 * DTrace Driver Cookbook Functions
15394 */
15395#if defined(sun)
15396/*ARGSUSED*/
15397static int
15398dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15399{
15400	dtrace_provider_id_t id;
15401	dtrace_state_t *state = NULL;
15402	dtrace_enabling_t *enab;
15403
15404	mutex_enter(&cpu_lock);
15405	mutex_enter(&dtrace_provider_lock);
15406	mutex_enter(&dtrace_lock);
15407
15408	if (ddi_soft_state_init(&dtrace_softstate,
15409	    sizeof (dtrace_state_t), 0) != 0) {
15410		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15411		mutex_exit(&cpu_lock);
15412		mutex_exit(&dtrace_provider_lock);
15413		mutex_exit(&dtrace_lock);
15414		return (DDI_FAILURE);
15415	}
15416
15417	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15418	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15419	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15420	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15421		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15422		ddi_remove_minor_node(devi, NULL);
15423		ddi_soft_state_fini(&dtrace_softstate);
15424		mutex_exit(&cpu_lock);
15425		mutex_exit(&dtrace_provider_lock);
15426		mutex_exit(&dtrace_lock);
15427		return (DDI_FAILURE);
15428	}
15429
15430	ddi_report_dev(devi);
15431	dtrace_devi = devi;
15432
15433	dtrace_modload = dtrace_module_loaded;
15434	dtrace_modunload = dtrace_module_unloaded;
15435	dtrace_cpu_init = dtrace_cpu_setup_initial;
15436	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15437	dtrace_helpers_fork = dtrace_helpers_duplicate;
15438	dtrace_cpustart_init = dtrace_suspend;
15439	dtrace_cpustart_fini = dtrace_resume;
15440	dtrace_debugger_init = dtrace_suspend;
15441	dtrace_debugger_fini = dtrace_resume;
15442
15443	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15444
15445	ASSERT(MUTEX_HELD(&cpu_lock));
15446
15447	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15448	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15449	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15450	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15451	    VM_SLEEP | VMC_IDENTIFIER);
15452	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15453	    1, INT_MAX, 0);
15454
15455	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15456	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15457	    NULL, NULL, NULL, NULL, NULL, 0);
15458
15459	ASSERT(MUTEX_HELD(&cpu_lock));
15460	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15461	    offsetof(dtrace_probe_t, dtpr_nextmod),
15462	    offsetof(dtrace_probe_t, dtpr_prevmod));
15463
15464	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15465	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15466	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15467
15468	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15469	    offsetof(dtrace_probe_t, dtpr_nextname),
15470	    offsetof(dtrace_probe_t, dtpr_prevname));
15471
15472	if (dtrace_retain_max < 1) {
15473		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15474		    "setting to 1", dtrace_retain_max);
15475		dtrace_retain_max = 1;
15476	}
15477
15478	/*
15479	 * Now discover our toxic ranges.
15480	 */
15481	dtrace_toxic_ranges(dtrace_toxrange_add);
15482
15483	/*
15484	 * Before we register ourselves as a provider to our own framework,
15485	 * we would like to assert that dtrace_provider is NULL -- but that's
15486	 * not true if we were loaded as a dependency of a DTrace provider.
15487	 * Once we've registered, we can assert that dtrace_provider is our
15488	 * pseudo provider.
15489	 */
15490	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15491	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15492
15493	ASSERT(dtrace_provider != NULL);
15494	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15495
15496	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15497	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15498	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15499	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15500	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15501	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15502
15503	dtrace_anon_property();
15504	mutex_exit(&cpu_lock);
15505
15506	/*
15507	 * If DTrace helper tracing is enabled, we need to allocate the
15508	 * trace buffer and initialize the values.
15509	 */
15510	if (dtrace_helptrace_enabled) {
15511		ASSERT(dtrace_helptrace_buffer == NULL);
15512		dtrace_helptrace_buffer =
15513		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15514		dtrace_helptrace_next = 0;
15515	}
15516
15517	/*
15518	 * If there are already providers, we must ask them to provide their
15519	 * probes, and then match any anonymous enabling against them.  Note
15520	 * that there should be no other retained enablings at this time:
15521	 * the only retained enablings at this time should be the anonymous
15522	 * enabling.
15523	 */
15524	if (dtrace_anon.dta_enabling != NULL) {
15525		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15526
15527		dtrace_enabling_provide(NULL);
15528		state = dtrace_anon.dta_state;
15529
15530		/*
15531		 * We couldn't hold cpu_lock across the above call to
15532		 * dtrace_enabling_provide(), but we must hold it to actually
15533		 * enable the probes.  We have to drop all of our locks, pick
15534		 * up cpu_lock, and regain our locks before matching the
15535		 * retained anonymous enabling.
15536		 */
15537		mutex_exit(&dtrace_lock);
15538		mutex_exit(&dtrace_provider_lock);
15539
15540		mutex_enter(&cpu_lock);
15541		mutex_enter(&dtrace_provider_lock);
15542		mutex_enter(&dtrace_lock);
15543
15544		if ((enab = dtrace_anon.dta_enabling) != NULL)
15545			(void) dtrace_enabling_match(enab, NULL);
15546
15547		mutex_exit(&cpu_lock);
15548	}
15549
15550	mutex_exit(&dtrace_lock);
15551	mutex_exit(&dtrace_provider_lock);
15552
15553	if (state != NULL) {
15554		/*
15555		 * If we created any anonymous state, set it going now.
15556		 */
15557		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15558	}
15559
15560	return (DDI_SUCCESS);
15561}
15562#endif
15563
15564#if !defined(sun)
15565#if __FreeBSD_version >= 800039
15566static void
15567dtrace_dtr(void *data __unused)
15568{
15569}
15570#endif
15571#endif
15572
15573/*ARGSUSED*/
15574static int
15575#if defined(sun)
15576dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15577#else
15578dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15579#endif
15580{
15581	dtrace_state_t *state;
15582	uint32_t priv;
15583	uid_t uid;
15584	zoneid_t zoneid;
15585
15586#if defined(sun)
15587	if (getminor(*devp) == DTRACEMNRN_HELPER)
15588		return (0);
15589
15590	/*
15591	 * If this wasn't an open with the "helper" minor, then it must be
15592	 * the "dtrace" minor.
15593	 */
15594	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15595#else
15596	cred_t *cred_p = NULL;
15597
15598#if __FreeBSD_version < 800039
15599	/*
15600	 * The first minor device is the one that is cloned so there is
15601	 * nothing more to do here.
15602	 */
15603	if (dev2unit(dev) == 0)
15604		return 0;
15605
15606	/*
15607	 * Devices are cloned, so if the DTrace state has already
15608	 * been allocated, that means this device belongs to a
15609	 * different client. Each client should open '/dev/dtrace'
15610	 * to get a cloned device.
15611	 */
15612	if (dev->si_drv1 != NULL)
15613		return (EBUSY);
15614#endif
15615
15616	cred_p = dev->si_cred;
15617#endif
15618
15619	/*
15620	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15621	 * caller lacks sufficient permission to do anything with DTrace.
15622	 */
15623	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15624	if (priv == DTRACE_PRIV_NONE) {
15625#if !defined(sun)
15626#if __FreeBSD_version < 800039
15627		/* Destroy the cloned device. */
15628                destroy_dev(dev);
15629#endif
15630#endif
15631
15632		return (EACCES);
15633	}
15634
15635	/*
15636	 * Ask all providers to provide all their probes.
15637	 */
15638	mutex_enter(&dtrace_provider_lock);
15639	dtrace_probe_provide(NULL, NULL);
15640	mutex_exit(&dtrace_provider_lock);
15641
15642	mutex_enter(&cpu_lock);
15643	mutex_enter(&dtrace_lock);
15644	dtrace_opens++;
15645	dtrace_membar_producer();
15646
15647#if defined(sun)
15648	/*
15649	 * If the kernel debugger is active (that is, if the kernel debugger
15650	 * modified text in some way), we won't allow the open.
15651	 */
15652	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15653		dtrace_opens--;
15654		mutex_exit(&cpu_lock);
15655		mutex_exit(&dtrace_lock);
15656		return (EBUSY);
15657	}
15658
15659	state = dtrace_state_create(devp, cred_p);
15660#else
15661	state = dtrace_state_create(dev);
15662#if __FreeBSD_version < 800039
15663	dev->si_drv1 = state;
15664#else
15665	devfs_set_cdevpriv(state, dtrace_dtr);
15666#endif
15667	/* This code actually belongs in dtrace_attach() */
15668	if (dtrace_opens == 1)
15669		dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15670		    1, INT_MAX, 0);
15671#endif
15672
15673	mutex_exit(&cpu_lock);
15674
15675	if (state == NULL) {
15676#if defined(sun)
15677		if (--dtrace_opens == 0)
15678			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15679#else
15680		--dtrace_opens;
15681#endif
15682		mutex_exit(&dtrace_lock);
15683#if !defined(sun)
15684#if __FreeBSD_version < 800039
15685		/* Destroy the cloned device. */
15686                destroy_dev(dev);
15687#endif
15688#endif
15689		return (EAGAIN);
15690	}
15691
15692	mutex_exit(&dtrace_lock);
15693
15694	return (0);
15695}
15696
15697/*ARGSUSED*/
15698static int
15699#if defined(sun)
15700dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15701#else
15702dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15703#endif
15704{
15705#if defined(sun)
15706	minor_t minor = getminor(dev);
15707	dtrace_state_t *state;
15708
15709	if (minor == DTRACEMNRN_HELPER)
15710		return (0);
15711
15712	state = ddi_get_soft_state(dtrace_softstate, minor);
15713#else
15714#if __FreeBSD_version < 800039
15715	dtrace_state_t *state = dev->si_drv1;
15716
15717	/* Check if this is not a cloned device. */
15718	if (dev2unit(dev) == 0)
15719		return (0);
15720#else
15721	dtrace_state_t *state;
15722	devfs_get_cdevpriv((void **) &state);
15723#endif
15724
15725#endif
15726
15727	mutex_enter(&cpu_lock);
15728	mutex_enter(&dtrace_lock);
15729
15730	if (state != NULL) {
15731		if (state->dts_anon) {
15732			/*
15733			 * There is anonymous state. Destroy that first.
15734			 */
15735			ASSERT(dtrace_anon.dta_state == NULL);
15736			dtrace_state_destroy(state->dts_anon);
15737		}
15738
15739		dtrace_state_destroy(state);
15740
15741#if !defined(sun)
15742		kmem_free(state, 0);
15743#if __FreeBSD_version < 800039
15744		dev->si_drv1 = NULL;
15745#endif
15746#endif
15747	}
15748
15749	ASSERT(dtrace_opens > 0);
15750#if defined(sun)
15751	if (--dtrace_opens == 0)
15752		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15753#else
15754	--dtrace_opens;
15755	/* This code actually belongs in dtrace_detach() */
15756	if ((dtrace_opens == 0) && (dtrace_taskq != NULL)) {
15757		taskq_destroy(dtrace_taskq);
15758		dtrace_taskq = NULL;
15759	}
15760#endif
15761
15762	mutex_exit(&dtrace_lock);
15763	mutex_exit(&cpu_lock);
15764
15765#if __FreeBSD_version < 800039
15766	/* Schedule this cloned device to be destroyed. */
15767	destroy_dev_sched(dev);
15768#endif
15769
15770	return (0);
15771}
15772
15773#if defined(sun)
15774/*ARGSUSED*/
15775static int
15776dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15777{
15778	int rval;
15779	dof_helper_t help, *dhp = NULL;
15780
15781	switch (cmd) {
15782	case DTRACEHIOC_ADDDOF:
15783		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15784			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15785			return (EFAULT);
15786		}
15787
15788		dhp = &help;
15789		arg = (intptr_t)help.dofhp_dof;
15790		/*FALLTHROUGH*/
15791
15792	case DTRACEHIOC_ADD: {
15793		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15794
15795		if (dof == NULL)
15796			return (rval);
15797
15798		mutex_enter(&dtrace_lock);
15799
15800		/*
15801		 * dtrace_helper_slurp() takes responsibility for the dof --
15802		 * it may free it now or it may save it and free it later.
15803		 */
15804		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15805			*rv = rval;
15806			rval = 0;
15807		} else {
15808			rval = EINVAL;
15809		}
15810
15811		mutex_exit(&dtrace_lock);
15812		return (rval);
15813	}
15814
15815	case DTRACEHIOC_REMOVE: {
15816		mutex_enter(&dtrace_lock);
15817		rval = dtrace_helper_destroygen(arg);
15818		mutex_exit(&dtrace_lock);
15819
15820		return (rval);
15821	}
15822
15823	default:
15824		break;
15825	}
15826
15827	return (ENOTTY);
15828}
15829
15830/*ARGSUSED*/
15831static int
15832dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15833{
15834	minor_t minor = getminor(dev);
15835	dtrace_state_t *state;
15836	int rval;
15837
15838	if (minor == DTRACEMNRN_HELPER)
15839		return (dtrace_ioctl_helper(cmd, arg, rv));
15840
15841	state = ddi_get_soft_state(dtrace_softstate, minor);
15842
15843	if (state->dts_anon) {
15844		ASSERT(dtrace_anon.dta_state == NULL);
15845		state = state->dts_anon;
15846	}
15847
15848	switch (cmd) {
15849	case DTRACEIOC_PROVIDER: {
15850		dtrace_providerdesc_t pvd;
15851		dtrace_provider_t *pvp;
15852
15853		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15854			return (EFAULT);
15855
15856		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15857		mutex_enter(&dtrace_provider_lock);
15858
15859		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15860			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15861				break;
15862		}
15863
15864		mutex_exit(&dtrace_provider_lock);
15865
15866		if (pvp == NULL)
15867			return (ESRCH);
15868
15869		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15870		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15871
15872		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15873			return (EFAULT);
15874
15875		return (0);
15876	}
15877
15878	case DTRACEIOC_EPROBE: {
15879		dtrace_eprobedesc_t epdesc;
15880		dtrace_ecb_t *ecb;
15881		dtrace_action_t *act;
15882		void *buf;
15883		size_t size;
15884		uintptr_t dest;
15885		int nrecs;
15886
15887		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15888			return (EFAULT);
15889
15890		mutex_enter(&dtrace_lock);
15891
15892		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15893			mutex_exit(&dtrace_lock);
15894			return (EINVAL);
15895		}
15896
15897		if (ecb->dte_probe == NULL) {
15898			mutex_exit(&dtrace_lock);
15899			return (EINVAL);
15900		}
15901
15902		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15903		epdesc.dtepd_uarg = ecb->dte_uarg;
15904		epdesc.dtepd_size = ecb->dte_size;
15905
15906		nrecs = epdesc.dtepd_nrecs;
15907		epdesc.dtepd_nrecs = 0;
15908		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15909			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15910				continue;
15911
15912			epdesc.dtepd_nrecs++;
15913		}
15914
15915		/*
15916		 * Now that we have the size, we need to allocate a temporary
15917		 * buffer in which to store the complete description.  We need
15918		 * the temporary buffer to be able to drop dtrace_lock()
15919		 * across the copyout(), below.
15920		 */
15921		size = sizeof (dtrace_eprobedesc_t) +
15922		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15923
15924		buf = kmem_alloc(size, KM_SLEEP);
15925		dest = (uintptr_t)buf;
15926
15927		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15928		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15929
15930		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15931			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15932				continue;
15933
15934			if (nrecs-- == 0)
15935				break;
15936
15937			bcopy(&act->dta_rec, (void *)dest,
15938			    sizeof (dtrace_recdesc_t));
15939			dest += sizeof (dtrace_recdesc_t);
15940		}
15941
15942		mutex_exit(&dtrace_lock);
15943
15944		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15945			kmem_free(buf, size);
15946			return (EFAULT);
15947		}
15948
15949		kmem_free(buf, size);
15950		return (0);
15951	}
15952
15953	case DTRACEIOC_AGGDESC: {
15954		dtrace_aggdesc_t aggdesc;
15955		dtrace_action_t *act;
15956		dtrace_aggregation_t *agg;
15957		int nrecs;
15958		uint32_t offs;
15959		dtrace_recdesc_t *lrec;
15960		void *buf;
15961		size_t size;
15962		uintptr_t dest;
15963
15964		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15965			return (EFAULT);
15966
15967		mutex_enter(&dtrace_lock);
15968
15969		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15970			mutex_exit(&dtrace_lock);
15971			return (EINVAL);
15972		}
15973
15974		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15975
15976		nrecs = aggdesc.dtagd_nrecs;
15977		aggdesc.dtagd_nrecs = 0;
15978
15979		offs = agg->dtag_base;
15980		lrec = &agg->dtag_action.dta_rec;
15981		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15982
15983		for (act = agg->dtag_first; ; act = act->dta_next) {
15984			ASSERT(act->dta_intuple ||
15985			    DTRACEACT_ISAGG(act->dta_kind));
15986
15987			/*
15988			 * If this action has a record size of zero, it
15989			 * denotes an argument to the aggregating action.
15990			 * Because the presence of this record doesn't (or
15991			 * shouldn't) affect the way the data is interpreted,
15992			 * we don't copy it out to save user-level the
15993			 * confusion of dealing with a zero-length record.
15994			 */
15995			if (act->dta_rec.dtrd_size == 0) {
15996				ASSERT(agg->dtag_hasarg);
15997				continue;
15998			}
15999
16000			aggdesc.dtagd_nrecs++;
16001
16002			if (act == &agg->dtag_action)
16003				break;
16004		}
16005
16006		/*
16007		 * Now that we have the size, we need to allocate a temporary
16008		 * buffer in which to store the complete description.  We need
16009		 * the temporary buffer to be able to drop dtrace_lock()
16010		 * across the copyout(), below.
16011		 */
16012		size = sizeof (dtrace_aggdesc_t) +
16013		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16014
16015		buf = kmem_alloc(size, KM_SLEEP);
16016		dest = (uintptr_t)buf;
16017
16018		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16019		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16020
16021		for (act = agg->dtag_first; ; act = act->dta_next) {
16022			dtrace_recdesc_t rec = act->dta_rec;
16023
16024			/*
16025			 * See the comment in the above loop for why we pass
16026			 * over zero-length records.
16027			 */
16028			if (rec.dtrd_size == 0) {
16029				ASSERT(agg->dtag_hasarg);
16030				continue;
16031			}
16032
16033			if (nrecs-- == 0)
16034				break;
16035
16036			rec.dtrd_offset -= offs;
16037			bcopy(&rec, (void *)dest, sizeof (rec));
16038			dest += sizeof (dtrace_recdesc_t);
16039
16040			if (act == &agg->dtag_action)
16041				break;
16042		}
16043
16044		mutex_exit(&dtrace_lock);
16045
16046		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16047			kmem_free(buf, size);
16048			return (EFAULT);
16049		}
16050
16051		kmem_free(buf, size);
16052		return (0);
16053	}
16054
16055	case DTRACEIOC_ENABLE: {
16056		dof_hdr_t *dof;
16057		dtrace_enabling_t *enab = NULL;
16058		dtrace_vstate_t *vstate;
16059		int err = 0;
16060
16061		*rv = 0;
16062
16063		/*
16064		 * If a NULL argument has been passed, we take this as our
16065		 * cue to reevaluate our enablings.
16066		 */
16067		if (arg == NULL) {
16068			dtrace_enabling_matchall();
16069
16070			return (0);
16071		}
16072
16073		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16074			return (rval);
16075
16076		mutex_enter(&cpu_lock);
16077		mutex_enter(&dtrace_lock);
16078		vstate = &state->dts_vstate;
16079
16080		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16081			mutex_exit(&dtrace_lock);
16082			mutex_exit(&cpu_lock);
16083			dtrace_dof_destroy(dof);
16084			return (EBUSY);
16085		}
16086
16087		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16088			mutex_exit(&dtrace_lock);
16089			mutex_exit(&cpu_lock);
16090			dtrace_dof_destroy(dof);
16091			return (EINVAL);
16092		}
16093
16094		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16095			dtrace_enabling_destroy(enab);
16096			mutex_exit(&dtrace_lock);
16097			mutex_exit(&cpu_lock);
16098			dtrace_dof_destroy(dof);
16099			return (rval);
16100		}
16101
16102		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16103			err = dtrace_enabling_retain(enab);
16104		} else {
16105			dtrace_enabling_destroy(enab);
16106		}
16107
16108		mutex_exit(&cpu_lock);
16109		mutex_exit(&dtrace_lock);
16110		dtrace_dof_destroy(dof);
16111
16112		return (err);
16113	}
16114
16115	case DTRACEIOC_REPLICATE: {
16116		dtrace_repldesc_t desc;
16117		dtrace_probedesc_t *match = &desc.dtrpd_match;
16118		dtrace_probedesc_t *create = &desc.dtrpd_create;
16119		int err;
16120
16121		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16122			return (EFAULT);
16123
16124		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16125		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16126		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16127		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16128
16129		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16130		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16131		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16132		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16133
16134		mutex_enter(&dtrace_lock);
16135		err = dtrace_enabling_replicate(state, match, create);
16136		mutex_exit(&dtrace_lock);
16137
16138		return (err);
16139	}
16140
16141	case DTRACEIOC_PROBEMATCH:
16142	case DTRACEIOC_PROBES: {
16143		dtrace_probe_t *probe = NULL;
16144		dtrace_probedesc_t desc;
16145		dtrace_probekey_t pkey;
16146		dtrace_id_t i;
16147		int m = 0;
16148		uint32_t priv;
16149		uid_t uid;
16150		zoneid_t zoneid;
16151
16152		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16153			return (EFAULT);
16154
16155		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16156		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16157		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16158		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16159
16160		/*
16161		 * Before we attempt to match this probe, we want to give
16162		 * all providers the opportunity to provide it.
16163		 */
16164		if (desc.dtpd_id == DTRACE_IDNONE) {
16165			mutex_enter(&dtrace_provider_lock);
16166			dtrace_probe_provide(&desc, NULL);
16167			mutex_exit(&dtrace_provider_lock);
16168			desc.dtpd_id++;
16169		}
16170
16171		if (cmd == DTRACEIOC_PROBEMATCH)  {
16172			dtrace_probekey(&desc, &pkey);
16173			pkey.dtpk_id = DTRACE_IDNONE;
16174		}
16175
16176		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16177
16178		mutex_enter(&dtrace_lock);
16179
16180		if (cmd == DTRACEIOC_PROBEMATCH) {
16181			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16182				if ((probe = dtrace_probes[i - 1]) != NULL &&
16183				    (m = dtrace_match_probe(probe, &pkey,
16184				    priv, uid, zoneid)) != 0)
16185					break;
16186			}
16187
16188			if (m < 0) {
16189				mutex_exit(&dtrace_lock);
16190				return (EINVAL);
16191			}
16192
16193		} else {
16194			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16195				if ((probe = dtrace_probes[i - 1]) != NULL &&
16196				    dtrace_match_priv(probe, priv, uid, zoneid))
16197					break;
16198			}
16199		}
16200
16201		if (probe == NULL) {
16202			mutex_exit(&dtrace_lock);
16203			return (ESRCH);
16204		}
16205
16206		dtrace_probe_description(probe, &desc);
16207		mutex_exit(&dtrace_lock);
16208
16209		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16210			return (EFAULT);
16211
16212		return (0);
16213	}
16214
16215	case DTRACEIOC_PROBEARG: {
16216		dtrace_argdesc_t desc;
16217		dtrace_probe_t *probe;
16218		dtrace_provider_t *prov;
16219
16220		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16221			return (EFAULT);
16222
16223		if (desc.dtargd_id == DTRACE_IDNONE)
16224			return (EINVAL);
16225
16226		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16227			return (EINVAL);
16228
16229		mutex_enter(&dtrace_provider_lock);
16230		mutex_enter(&mod_lock);
16231		mutex_enter(&dtrace_lock);
16232
16233		if (desc.dtargd_id > dtrace_nprobes) {
16234			mutex_exit(&dtrace_lock);
16235			mutex_exit(&mod_lock);
16236			mutex_exit(&dtrace_provider_lock);
16237			return (EINVAL);
16238		}
16239
16240		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16241			mutex_exit(&dtrace_lock);
16242			mutex_exit(&mod_lock);
16243			mutex_exit(&dtrace_provider_lock);
16244			return (EINVAL);
16245		}
16246
16247		mutex_exit(&dtrace_lock);
16248
16249		prov = probe->dtpr_provider;
16250
16251		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16252			/*
16253			 * There isn't any typed information for this probe.
16254			 * Set the argument number to DTRACE_ARGNONE.
16255			 */
16256			desc.dtargd_ndx = DTRACE_ARGNONE;
16257		} else {
16258			desc.dtargd_native[0] = '\0';
16259			desc.dtargd_xlate[0] = '\0';
16260			desc.dtargd_mapping = desc.dtargd_ndx;
16261
16262			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16263			    probe->dtpr_id, probe->dtpr_arg, &desc);
16264		}
16265
16266		mutex_exit(&mod_lock);
16267		mutex_exit(&dtrace_provider_lock);
16268
16269		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16270			return (EFAULT);
16271
16272		return (0);
16273	}
16274
16275	case DTRACEIOC_GO: {
16276		processorid_t cpuid;
16277		rval = dtrace_state_go(state, &cpuid);
16278
16279		if (rval != 0)
16280			return (rval);
16281
16282		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16283			return (EFAULT);
16284
16285		return (0);
16286	}
16287
16288	case DTRACEIOC_STOP: {
16289		processorid_t cpuid;
16290
16291		mutex_enter(&dtrace_lock);
16292		rval = dtrace_state_stop(state, &cpuid);
16293		mutex_exit(&dtrace_lock);
16294
16295		if (rval != 0)
16296			return (rval);
16297
16298		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16299			return (EFAULT);
16300
16301		return (0);
16302	}
16303
16304	case DTRACEIOC_DOFGET: {
16305		dof_hdr_t hdr, *dof;
16306		uint64_t len;
16307
16308		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16309			return (EFAULT);
16310
16311		mutex_enter(&dtrace_lock);
16312		dof = dtrace_dof_create(state);
16313		mutex_exit(&dtrace_lock);
16314
16315		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16316		rval = copyout(dof, (void *)arg, len);
16317		dtrace_dof_destroy(dof);
16318
16319		return (rval == 0 ? 0 : EFAULT);
16320	}
16321
16322	case DTRACEIOC_AGGSNAP:
16323	case DTRACEIOC_BUFSNAP: {
16324		dtrace_bufdesc_t desc;
16325		caddr_t cached;
16326		dtrace_buffer_t *buf;
16327
16328		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16329			return (EFAULT);
16330
16331		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16332			return (EINVAL);
16333
16334		mutex_enter(&dtrace_lock);
16335
16336		if (cmd == DTRACEIOC_BUFSNAP) {
16337			buf = &state->dts_buffer[desc.dtbd_cpu];
16338		} else {
16339			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16340		}
16341
16342		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16343			size_t sz = buf->dtb_offset;
16344
16345			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16346				mutex_exit(&dtrace_lock);
16347				return (EBUSY);
16348			}
16349
16350			/*
16351			 * If this buffer has already been consumed, we're
16352			 * going to indicate that there's nothing left here
16353			 * to consume.
16354			 */
16355			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16356				mutex_exit(&dtrace_lock);
16357
16358				desc.dtbd_size = 0;
16359				desc.dtbd_drops = 0;
16360				desc.dtbd_errors = 0;
16361				desc.dtbd_oldest = 0;
16362				sz = sizeof (desc);
16363
16364				if (copyout(&desc, (void *)arg, sz) != 0)
16365					return (EFAULT);
16366
16367				return (0);
16368			}
16369
16370			/*
16371			 * If this is a ring buffer that has wrapped, we want
16372			 * to copy the whole thing out.
16373			 */
16374			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16375				dtrace_buffer_polish(buf);
16376				sz = buf->dtb_size;
16377			}
16378
16379			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16380				mutex_exit(&dtrace_lock);
16381				return (EFAULT);
16382			}
16383
16384			desc.dtbd_size = sz;
16385			desc.dtbd_drops = buf->dtb_drops;
16386			desc.dtbd_errors = buf->dtb_errors;
16387			desc.dtbd_oldest = buf->dtb_xamot_offset;
16388
16389			mutex_exit(&dtrace_lock);
16390
16391			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16392				return (EFAULT);
16393
16394			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16395
16396			return (0);
16397		}
16398
16399		if (buf->dtb_tomax == NULL) {
16400			ASSERT(buf->dtb_xamot == NULL);
16401			mutex_exit(&dtrace_lock);
16402			return (ENOENT);
16403		}
16404
16405		cached = buf->dtb_tomax;
16406		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16407
16408		dtrace_xcall(desc.dtbd_cpu,
16409		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16410
16411		state->dts_errors += buf->dtb_xamot_errors;
16412
16413		/*
16414		 * If the buffers did not actually switch, then the cross call
16415		 * did not take place -- presumably because the given CPU is
16416		 * not in the ready set.  If this is the case, we'll return
16417		 * ENOENT.
16418		 */
16419		if (buf->dtb_tomax == cached) {
16420			ASSERT(buf->dtb_xamot != cached);
16421			mutex_exit(&dtrace_lock);
16422			return (ENOENT);
16423		}
16424
16425		ASSERT(cached == buf->dtb_xamot);
16426
16427		/*
16428		 * We have our snapshot; now copy it out.
16429		 */
16430		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16431		    buf->dtb_xamot_offset) != 0) {
16432			mutex_exit(&dtrace_lock);
16433			return (EFAULT);
16434		}
16435
16436		desc.dtbd_size = buf->dtb_xamot_offset;
16437		desc.dtbd_drops = buf->dtb_xamot_drops;
16438		desc.dtbd_errors = buf->dtb_xamot_errors;
16439		desc.dtbd_oldest = 0;
16440
16441		mutex_exit(&dtrace_lock);
16442
16443		/*
16444		 * Finally, copy out the buffer description.
16445		 */
16446		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16447			return (EFAULT);
16448
16449		return (0);
16450	}
16451
16452	case DTRACEIOC_CONF: {
16453		dtrace_conf_t conf;
16454
16455		bzero(&conf, sizeof (conf));
16456		conf.dtc_difversion = DIF_VERSION;
16457		conf.dtc_difintregs = DIF_DIR_NREGS;
16458		conf.dtc_diftupregs = DIF_DTR_NREGS;
16459		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16460
16461		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16462			return (EFAULT);
16463
16464		return (0);
16465	}
16466
16467	case DTRACEIOC_STATUS: {
16468		dtrace_status_t stat;
16469		dtrace_dstate_t *dstate;
16470		int i, j;
16471		uint64_t nerrs;
16472
16473		/*
16474		 * See the comment in dtrace_state_deadman() for the reason
16475		 * for setting dts_laststatus to INT64_MAX before setting
16476		 * it to the correct value.
16477		 */
16478		state->dts_laststatus = INT64_MAX;
16479		dtrace_membar_producer();
16480		state->dts_laststatus = dtrace_gethrtime();
16481
16482		bzero(&stat, sizeof (stat));
16483
16484		mutex_enter(&dtrace_lock);
16485
16486		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16487			mutex_exit(&dtrace_lock);
16488			return (ENOENT);
16489		}
16490
16491		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16492			stat.dtst_exiting = 1;
16493
16494		nerrs = state->dts_errors;
16495		dstate = &state->dts_vstate.dtvs_dynvars;
16496
16497		for (i = 0; i < NCPU; i++) {
16498			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16499
16500			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16501			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16502			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16503
16504			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16505				stat.dtst_filled++;
16506
16507			nerrs += state->dts_buffer[i].dtb_errors;
16508
16509			for (j = 0; j < state->dts_nspeculations; j++) {
16510				dtrace_speculation_t *spec;
16511				dtrace_buffer_t *buf;
16512
16513				spec = &state->dts_speculations[j];
16514				buf = &spec->dtsp_buffer[i];
16515				stat.dtst_specdrops += buf->dtb_xamot_drops;
16516			}
16517		}
16518
16519		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16520		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16521		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16522		stat.dtst_dblerrors = state->dts_dblerrors;
16523		stat.dtst_killed =
16524		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16525		stat.dtst_errors = nerrs;
16526
16527		mutex_exit(&dtrace_lock);
16528
16529		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16530			return (EFAULT);
16531
16532		return (0);
16533	}
16534
16535	case DTRACEIOC_FORMAT: {
16536		dtrace_fmtdesc_t fmt;
16537		char *str;
16538		int len;
16539
16540		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16541			return (EFAULT);
16542
16543		mutex_enter(&dtrace_lock);
16544
16545		if (fmt.dtfd_format == 0 ||
16546		    fmt.dtfd_format > state->dts_nformats) {
16547			mutex_exit(&dtrace_lock);
16548			return (EINVAL);
16549		}
16550
16551		/*
16552		 * Format strings are allocated contiguously and they are
16553		 * never freed; if a format index is less than the number
16554		 * of formats, we can assert that the format map is non-NULL
16555		 * and that the format for the specified index is non-NULL.
16556		 */
16557		ASSERT(state->dts_formats != NULL);
16558		str = state->dts_formats[fmt.dtfd_format - 1];
16559		ASSERT(str != NULL);
16560
16561		len = strlen(str) + 1;
16562
16563		if (len > fmt.dtfd_length) {
16564			fmt.dtfd_length = len;
16565
16566			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16567				mutex_exit(&dtrace_lock);
16568				return (EINVAL);
16569			}
16570		} else {
16571			if (copyout(str, fmt.dtfd_string, len) != 0) {
16572				mutex_exit(&dtrace_lock);
16573				return (EINVAL);
16574			}
16575		}
16576
16577		mutex_exit(&dtrace_lock);
16578		return (0);
16579	}
16580
16581	default:
16582		break;
16583	}
16584
16585	return (ENOTTY);
16586}
16587
16588/*ARGSUSED*/
16589static int
16590dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16591{
16592	dtrace_state_t *state;
16593
16594	switch (cmd) {
16595	case DDI_DETACH:
16596		break;
16597
16598	case DDI_SUSPEND:
16599		return (DDI_SUCCESS);
16600
16601	default:
16602		return (DDI_FAILURE);
16603	}
16604
16605	mutex_enter(&cpu_lock);
16606	mutex_enter(&dtrace_provider_lock);
16607	mutex_enter(&dtrace_lock);
16608
16609	ASSERT(dtrace_opens == 0);
16610
16611	if (dtrace_helpers > 0) {
16612		mutex_exit(&dtrace_provider_lock);
16613		mutex_exit(&dtrace_lock);
16614		mutex_exit(&cpu_lock);
16615		return (DDI_FAILURE);
16616	}
16617
16618	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16619		mutex_exit(&dtrace_provider_lock);
16620		mutex_exit(&dtrace_lock);
16621		mutex_exit(&cpu_lock);
16622		return (DDI_FAILURE);
16623	}
16624
16625	dtrace_provider = NULL;
16626
16627	if ((state = dtrace_anon_grab()) != NULL) {
16628		/*
16629		 * If there were ECBs on this state, the provider should
16630		 * have not been allowed to detach; assert that there is
16631		 * none.
16632		 */
16633		ASSERT(state->dts_necbs == 0);
16634		dtrace_state_destroy(state);
16635
16636		/*
16637		 * If we're being detached with anonymous state, we need to
16638		 * indicate to the kernel debugger that DTrace is now inactive.
16639		 */
16640		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16641	}
16642
16643	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16644	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16645	dtrace_cpu_init = NULL;
16646	dtrace_helpers_cleanup = NULL;
16647	dtrace_helpers_fork = NULL;
16648	dtrace_cpustart_init = NULL;
16649	dtrace_cpustart_fini = NULL;
16650	dtrace_debugger_init = NULL;
16651	dtrace_debugger_fini = NULL;
16652	dtrace_modload = NULL;
16653	dtrace_modunload = NULL;
16654
16655	mutex_exit(&cpu_lock);
16656
16657	if (dtrace_helptrace_enabled) {
16658		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16659		dtrace_helptrace_buffer = NULL;
16660	}
16661
16662	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16663	dtrace_probes = NULL;
16664	dtrace_nprobes = 0;
16665
16666	dtrace_hash_destroy(dtrace_bymod);
16667	dtrace_hash_destroy(dtrace_byfunc);
16668	dtrace_hash_destroy(dtrace_byname);
16669	dtrace_bymod = NULL;
16670	dtrace_byfunc = NULL;
16671	dtrace_byname = NULL;
16672
16673	kmem_cache_destroy(dtrace_state_cache);
16674	vmem_destroy(dtrace_minor);
16675	vmem_destroy(dtrace_arena);
16676
16677	if (dtrace_toxrange != NULL) {
16678		kmem_free(dtrace_toxrange,
16679		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16680		dtrace_toxrange = NULL;
16681		dtrace_toxranges = 0;
16682		dtrace_toxranges_max = 0;
16683	}
16684
16685	ddi_remove_minor_node(dtrace_devi, NULL);
16686	dtrace_devi = NULL;
16687
16688	ddi_soft_state_fini(&dtrace_softstate);
16689
16690	ASSERT(dtrace_vtime_references == 0);
16691	ASSERT(dtrace_opens == 0);
16692	ASSERT(dtrace_retained == NULL);
16693
16694	mutex_exit(&dtrace_lock);
16695	mutex_exit(&dtrace_provider_lock);
16696
16697	/*
16698	 * We don't destroy the task queue until after we have dropped our
16699	 * locks (taskq_destroy() may block on running tasks).  To prevent
16700	 * attempting to do work after we have effectively detached but before
16701	 * the task queue has been destroyed, all tasks dispatched via the
16702	 * task queue must check that DTrace is still attached before
16703	 * performing any operation.
16704	 */
16705	taskq_destroy(dtrace_taskq);
16706	dtrace_taskq = NULL;
16707
16708	return (DDI_SUCCESS);
16709}
16710#endif
16711
16712#if defined(sun)
16713/*ARGSUSED*/
16714static int
16715dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16716{
16717	int error;
16718
16719	switch (infocmd) {
16720	case DDI_INFO_DEVT2DEVINFO:
16721		*result = (void *)dtrace_devi;
16722		error = DDI_SUCCESS;
16723		break;
16724	case DDI_INFO_DEVT2INSTANCE:
16725		*result = (void *)0;
16726		error = DDI_SUCCESS;
16727		break;
16728	default:
16729		error = DDI_FAILURE;
16730	}
16731	return (error);
16732}
16733#endif
16734
16735#if defined(sun)
16736static struct cb_ops dtrace_cb_ops = {
16737	dtrace_open,		/* open */
16738	dtrace_close,		/* close */
16739	nulldev,		/* strategy */
16740	nulldev,		/* print */
16741	nodev,			/* dump */
16742	nodev,			/* read */
16743	nodev,			/* write */
16744	dtrace_ioctl,		/* ioctl */
16745	nodev,			/* devmap */
16746	nodev,			/* mmap */
16747	nodev,			/* segmap */
16748	nochpoll,		/* poll */
16749	ddi_prop_op,		/* cb_prop_op */
16750	0,			/* streamtab  */
16751	D_NEW | D_MP		/* Driver compatibility flag */
16752};
16753
16754static struct dev_ops dtrace_ops = {
16755	DEVO_REV,		/* devo_rev */
16756	0,			/* refcnt */
16757	dtrace_info,		/* get_dev_info */
16758	nulldev,		/* identify */
16759	nulldev,		/* probe */
16760	dtrace_attach,		/* attach */
16761	dtrace_detach,		/* detach */
16762	nodev,			/* reset */
16763	&dtrace_cb_ops,		/* driver operations */
16764	NULL,			/* bus operations */
16765	nodev			/* dev power */
16766};
16767
16768static struct modldrv modldrv = {
16769	&mod_driverops,		/* module type (this is a pseudo driver) */
16770	"Dynamic Tracing",	/* name of module */
16771	&dtrace_ops,		/* driver ops */
16772};
16773
16774static struct modlinkage modlinkage = {
16775	MODREV_1,
16776	(void *)&modldrv,
16777	NULL
16778};
16779
16780int
16781_init(void)
16782{
16783	return (mod_install(&modlinkage));
16784}
16785
16786int
16787_info(struct modinfo *modinfop)
16788{
16789	return (mod_info(&modlinkage, modinfop));
16790}
16791
16792int
16793_fini(void)
16794{
16795	return (mod_remove(&modlinkage));
16796}
16797#else
16798
16799static d_ioctl_t	dtrace_ioctl;
16800static d_ioctl_t	dtrace_ioctl_helper;
16801static void		dtrace_load(void *);
16802static int		dtrace_unload(void);
16803#if __FreeBSD_version < 800039
16804static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16805static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16806static eventhandler_tag	eh_tag;			/* Event handler tag. */
16807#else
16808static struct cdev	*dtrace_dev;
16809static struct cdev	*helper_dev;
16810#endif
16811
16812void dtrace_invop_init(void);
16813void dtrace_invop_uninit(void);
16814
16815static struct cdevsw dtrace_cdevsw = {
16816	.d_version	= D_VERSION,
16817	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16818	.d_close	= dtrace_close,
16819	.d_ioctl	= dtrace_ioctl,
16820	.d_open		= dtrace_open,
16821	.d_name		= "dtrace",
16822};
16823
16824static struct cdevsw helper_cdevsw = {
16825	.d_version	= D_VERSION,
16826	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16827	.d_ioctl	= dtrace_ioctl_helper,
16828	.d_name		= "helper",
16829};
16830
16831#include <dtrace_anon.c>
16832#if __FreeBSD_version < 800039
16833#include <dtrace_clone.c>
16834#endif
16835#include <dtrace_ioctl.c>
16836#include <dtrace_load.c>
16837#include <dtrace_modevent.c>
16838#include <dtrace_sysctl.c>
16839#include <dtrace_unload.c>
16840#include <dtrace_vtime.c>
16841#include <dtrace_hacks.c>
16842#include <dtrace_isa.c>
16843
16844SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16845SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16846SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16847
16848DEV_MODULE(dtrace, dtrace_modevent, NULL);
16849MODULE_VERSION(dtrace, 1);
16850MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16851MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16852#endif
16853