dtrace.c revision 249856
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/9/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 249856 2013-04-24 20:10:52Z pfg $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * DTrace - Dynamic Tracing for Solaris
33 *
34 * This is the implementation of the Solaris Dynamic Tracing framework
35 * (DTrace).  The user-visible interface to DTrace is described at length in
36 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37 * library, the in-kernel DTrace framework, and the DTrace providers are
38 * described in the block comments in the <sys/dtrace.h> header file.  The
39 * internal architecture of DTrace is described in the block comments in the
40 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41 * implementation very much assume mastery of all of these sources; if one has
42 * an unanswered question about the implementation, one should consult them
43 * first.
44 *
45 * The functions here are ordered roughly as follows:
46 *
47 *   - Probe context functions
48 *   - Probe hashing functions
49 *   - Non-probe context utility functions
50 *   - Matching functions
51 *   - Provider-to-Framework API functions
52 *   - Probe management functions
53 *   - DIF object functions
54 *   - Format functions
55 *   - Predicate functions
56 *   - ECB functions
57 *   - Buffer functions
58 *   - Enabling functions
59 *   - DOF functions
60 *   - Anonymous enabling functions
61 *   - Consumer state functions
62 *   - Helper functions
63 *   - Hook functions
64 *   - Driver cookbook functions
65 *
66 * Each group of functions begins with a block comment labelled the "DTrace
67 * [Group] Functions", allowing one to find each block by searching forward
68 * on capital-f functions.
69 */
70#include <sys/errno.h>
71#if !defined(sun)
72#include <sys/time.h>
73#endif
74#include <sys/stat.h>
75#include <sys/modctl.h>
76#include <sys/conf.h>
77#include <sys/systm.h>
78#if defined(sun)
79#include <sys/ddi.h>
80#include <sys/sunddi.h>
81#endif
82#include <sys/cpuvar.h>
83#include <sys/kmem.h>
84#if defined(sun)
85#include <sys/strsubr.h>
86#endif
87#include <sys/sysmacros.h>
88#include <sys/dtrace_impl.h>
89#include <sys/atomic.h>
90#include <sys/cmn_err.h>
91#if defined(sun)
92#include <sys/mutex_impl.h>
93#include <sys/rwlock_impl.h>
94#endif
95#include <sys/ctf_api.h>
96#if defined(sun)
97#include <sys/panic.h>
98#include <sys/priv_impl.h>
99#endif
100#include <sys/policy.h>
101#if defined(sun)
102#include <sys/cred_impl.h>
103#include <sys/procfs_isa.h>
104#endif
105#include <sys/taskq.h>
106#if defined(sun)
107#include <sys/mkdev.h>
108#include <sys/kdi.h>
109#endif
110#include <sys/zone.h>
111#include <sys/socket.h>
112#include <netinet/in.h>
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/limits.h>
119#include <sys/kdb.h>
120#include <sys/kernel.h>
121#include <sys/malloc.h>
122#include <sys/sysctl.h>
123#include <sys/lock.h>
124#include <sys/mutex.h>
125#include <sys/rwlock.h>
126#include <sys/sx.h>
127#include <sys/dtrace_bsd.h>
128#include <netinet/in.h>
129#include "dtrace_cddl.h"
130#include "dtrace_debug.c"
131#endif
132
133/*
134 * DTrace Tunable Variables
135 *
136 * The following variables may be tuned by adding a line to /etc/system that
137 * includes both the name of the DTrace module ("dtrace") and the name of the
138 * variable.  For example:
139 *
140 *   set dtrace:dtrace_destructive_disallow = 1
141 *
142 * In general, the only variables that one should be tuning this way are those
143 * that affect system-wide DTrace behavior, and for which the default behavior
144 * is undesirable.  Most of these variables are tunable on a per-consumer
145 * basis using DTrace options, and need not be tuned on a system-wide basis.
146 * When tuning these variables, avoid pathological values; while some attempt
147 * is made to verify the integrity of these variables, they are not considered
148 * part of the supported interface to DTrace, and they are therefore not
149 * checked comprehensively.  Further, these variables should not be tuned
150 * dynamically via "mdb -kw" or other means; they should only be tuned via
151 * /etc/system.
152 */
153int		dtrace_destructive_disallow = 0;
154dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155size_t		dtrace_difo_maxsize = (256 * 1024);
156dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
157size_t		dtrace_global_maxsize = (16 * 1024);
158size_t		dtrace_actions_max = (16 * 1024);
159size_t		dtrace_retain_max = 1024;
160dtrace_optval_t	dtrace_helper_actions_max = 128;
161dtrace_optval_t	dtrace_helper_providers_max = 32;
162dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
163size_t		dtrace_strsize_default = 256;
164dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
165dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
166dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
167dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
168dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
170dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
171dtrace_optval_t	dtrace_nspec_default = 1;
172dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
173dtrace_optval_t dtrace_stackframes_default = 20;
174dtrace_optval_t dtrace_ustackframes_default = 20;
175dtrace_optval_t dtrace_jstackframes_default = 50;
176dtrace_optval_t dtrace_jstackstrsize_default = 512;
177int		dtrace_msgdsize_max = 128;
178hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
179hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
180int		dtrace_devdepth_max = 32;
181int		dtrace_err_verbose;
182hrtime_t	dtrace_deadman_interval = NANOSEC;
183hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185
186/*
187 * DTrace External Variables
188 *
189 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
190 * available to DTrace consumers via the backtick (`) syntax.  One of these,
191 * dtrace_zero, is made deliberately so:  it is provided as a source of
192 * well-known, zero-filled memory.  While this variable is not documented,
193 * it is used by some translators as an implementation detail.
194 */
195const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
196
197/*
198 * DTrace Internal Variables
199 */
200#if defined(sun)
201static dev_info_t	*dtrace_devi;		/* device info */
202#endif
203#if defined(sun)
204static vmem_t		*dtrace_arena;		/* probe ID arena */
205static vmem_t		*dtrace_minor;		/* minor number arena */
206static taskq_t		*dtrace_taskq;		/* task queue */
207#else
208static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
209#endif
210static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
211static int		dtrace_nprobes;		/* number of probes */
212static dtrace_provider_t *dtrace_provider;	/* provider list */
213static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
214static int		dtrace_opens;		/* number of opens */
215static int		dtrace_helpers;		/* number of helpers */
216#if defined(sun)
217static void		*dtrace_softstate;	/* softstate pointer */
218#endif
219static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
220static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
221static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
222static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
223static int		dtrace_toxranges;	/* number of toxic ranges */
224static int		dtrace_toxranges_max;	/* size of toxic range array */
225static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
226static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
227static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
228static kthread_t	*dtrace_panicked;	/* panicking thread */
229static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
230static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
231static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
232static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
233static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
234#if !defined(sun)
235static struct mtx	dtrace_unr_mtx;
236MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
237int		dtrace_in_probe;	/* non-zero if executing a probe */
238#if defined(__i386__) || defined(__amd64__)
239uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
240#endif
241#endif
242
243/*
244 * DTrace Locking
245 * DTrace is protected by three (relatively coarse-grained) locks:
246 *
247 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
248 *     including enabling state, probes, ECBs, consumer state, helper state,
249 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
250 *     probe context is lock-free -- synchronization is handled via the
251 *     dtrace_sync() cross call mechanism.
252 *
253 * (2) dtrace_provider_lock is required when manipulating provider state, or
254 *     when provider state must be held constant.
255 *
256 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
257 *     when meta provider state must be held constant.
258 *
259 * The lock ordering between these three locks is dtrace_meta_lock before
260 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
261 * several places where dtrace_provider_lock is held by the framework as it
262 * calls into the providers -- which then call back into the framework,
263 * grabbing dtrace_lock.)
264 *
265 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
266 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
267 * role as a coarse-grained lock; it is acquired before both of these locks.
268 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
269 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
270 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
271 * acquired _between_ dtrace_provider_lock and dtrace_lock.
272 */
273static kmutex_t		dtrace_lock;		/* probe state lock */
274static kmutex_t		dtrace_provider_lock;	/* provider state lock */
275static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
276
277#if !defined(sun)
278/* XXX FreeBSD hacks. */
279static kmutex_t		mod_lock;
280
281#define cr_suid		cr_svuid
282#define cr_sgid		cr_svgid
283#define	ipaddr_t	in_addr_t
284#define mod_modname	pathname
285#define vuprintf	vprintf
286#define ttoproc(_a)	((_a)->td_proc)
287#define crgetzoneid(_a)	0
288#define	NCPU		MAXCPU
289#define SNOCD		0
290#define CPU_ON_INTR(_a)	0
291
292#define PRIV_EFFECTIVE		(1 << 0)
293#define PRIV_DTRACE_KERNEL	(1 << 1)
294#define PRIV_DTRACE_PROC	(1 << 2)
295#define PRIV_DTRACE_USER	(1 << 3)
296#define PRIV_PROC_OWNER		(1 << 4)
297#define PRIV_PROC_ZONE		(1 << 5)
298#define PRIV_ALL		~0
299
300SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
301#endif
302
303#if defined(sun)
304#define curcpu	CPU->cpu_id
305#endif
306
307
308/*
309 * DTrace Provider Variables
310 *
311 * These are the variables relating to DTrace as a provider (that is, the
312 * provider of the BEGIN, END, and ERROR probes).
313 */
314static dtrace_pattr_t	dtrace_provider_attr = {
315{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320};
321
322static void
323dtrace_nullop(void)
324{}
325
326static dtrace_pops_t	dtrace_provider_ops = {
327	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
328	(void (*)(void *, modctl_t *))dtrace_nullop,
329	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333	NULL,
334	NULL,
335	NULL,
336	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
337};
338
339static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
340static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
341dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
342
343/*
344 * DTrace Helper Tracing Variables
345 */
346uint32_t dtrace_helptrace_next = 0;
347uint32_t dtrace_helptrace_nlocals;
348char	*dtrace_helptrace_buffer;
349int	dtrace_helptrace_bufsize = 512 * 1024;
350
351#ifdef DEBUG
352int	dtrace_helptrace_enabled = 1;
353#else
354int	dtrace_helptrace_enabled = 0;
355#endif
356
357/*
358 * DTrace Error Hashing
359 *
360 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
361 * table.  This is very useful for checking coverage of tests that are
362 * expected to induce DIF or DOF processing errors, and may be useful for
363 * debugging problems in the DIF code generator or in DOF generation .  The
364 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
365 */
366#ifdef DEBUG
367static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
368static const char *dtrace_errlast;
369static kthread_t *dtrace_errthread;
370static kmutex_t dtrace_errlock;
371#endif
372
373/*
374 * DTrace Macros and Constants
375 *
376 * These are various macros that are useful in various spots in the
377 * implementation, along with a few random constants that have no meaning
378 * outside of the implementation.  There is no real structure to this cpp
379 * mishmash -- but is there ever?
380 */
381#define	DTRACE_HASHSTR(hash, probe)	\
382	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
383
384#define	DTRACE_HASHNEXT(hash, probe)	\
385	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
386
387#define	DTRACE_HASHPREV(hash, probe)	\
388	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
389
390#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
391	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
392	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
393
394#define	DTRACE_AGGHASHSIZE_SLEW		17
395
396#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
397
398/*
399 * The key for a thread-local variable consists of the lower 61 bits of the
400 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
401 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
402 * equal to a variable identifier.  This is necessary (but not sufficient) to
403 * assure that global associative arrays never collide with thread-local
404 * variables.  To guarantee that they cannot collide, we must also define the
405 * order for keying dynamic variables.  That order is:
406 *
407 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
408 *
409 * Because the variable-key and the tls-key are in orthogonal spaces, there is
410 * no way for a global variable key signature to match a thread-local key
411 * signature.
412 */
413#if defined(sun)
414#define	DTRACE_TLS_THRKEY(where) { \
415	uint_t intr = 0; \
416	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
417	for (; actv; actv >>= 1) \
418		intr++; \
419	ASSERT(intr < (1 << 3)); \
420	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
421	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
422}
423#else
424#define	DTRACE_TLS_THRKEY(where) { \
425	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
426	uint_t intr = 0; \
427	uint_t actv = _c->cpu_intr_actv; \
428	for (; actv; actv >>= 1) \
429		intr++; \
430	ASSERT(intr < (1 << 3)); \
431	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
432	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
433}
434#endif
435
436#define	DT_BSWAP_8(x)	((x) & 0xff)
437#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
438#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
439#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
440
441#define	DT_MASK_LO 0x00000000FFFFFFFFULL
442
443#define	DTRACE_STORE(type, tomax, offset, what) \
444	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
445
446#ifndef __x86
447#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
448	if (addr & (size - 1)) {					\
449		*flags |= CPU_DTRACE_BADALIGN;				\
450		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
451		return (0);						\
452	}
453#else
454#define	DTRACE_ALIGNCHECK(addr, size, flags)
455#endif
456
457/*
458 * Test whether a range of memory starting at testaddr of size testsz falls
459 * within the range of memory described by addr, sz.  We take care to avoid
460 * problems with overflow and underflow of the unsigned quantities, and
461 * disallow all negative sizes.  Ranges of size 0 are allowed.
462 */
463#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
464	((testaddr) - (baseaddr) < (basesz) && \
465	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
466	(testaddr) + (testsz) >= (testaddr))
467
468/*
469 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
470 * alloc_sz on the righthand side of the comparison in order to avoid overflow
471 * or underflow in the comparison with it.  This is simpler than the INRANGE
472 * check above, because we know that the dtms_scratch_ptr is valid in the
473 * range.  Allocations of size zero are allowed.
474 */
475#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
476	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
477	(mstate)->dtms_scratch_ptr >= (alloc_sz))
478
479#define	DTRACE_LOADFUNC(bits)						\
480/*CSTYLED*/								\
481uint##bits##_t								\
482dtrace_load##bits(uintptr_t addr)					\
483{									\
484	size_t size = bits / NBBY;					\
485	/*CSTYLED*/							\
486	uint##bits##_t rval;						\
487	int i;								\
488	volatile uint16_t *flags = (volatile uint16_t *)		\
489	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
490									\
491	DTRACE_ALIGNCHECK(addr, size, flags);				\
492									\
493	for (i = 0; i < dtrace_toxranges; i++) {			\
494		if (addr >= dtrace_toxrange[i].dtt_limit)		\
495			continue;					\
496									\
497		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
498			continue;					\
499									\
500		/*							\
501		 * This address falls within a toxic region; return 0.	\
502		 */							\
503		*flags |= CPU_DTRACE_BADADDR;				\
504		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
505		return (0);						\
506	}								\
507									\
508	*flags |= CPU_DTRACE_NOFAULT;					\
509	/*CSTYLED*/							\
510	rval = *((volatile uint##bits##_t *)addr);			\
511	*flags &= ~CPU_DTRACE_NOFAULT;					\
512									\
513	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
514}
515
516#ifdef _LP64
517#define	dtrace_loadptr	dtrace_load64
518#else
519#define	dtrace_loadptr	dtrace_load32
520#endif
521
522#define	DTRACE_DYNHASH_FREE	0
523#define	DTRACE_DYNHASH_SINK	1
524#define	DTRACE_DYNHASH_VALID	2
525
526#define	DTRACE_MATCH_NEXT	0
527#define	DTRACE_MATCH_DONE	1
528#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
529#define	DTRACE_STATE_ALIGN	64
530
531#define	DTRACE_FLAGS2FLT(flags)						\
532	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
533	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
534	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
535	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
536	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
537	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
538	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
539	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
540	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
541	DTRACEFLT_UNKNOWN)
542
543#define	DTRACEACT_ISSTRING(act)						\
544	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
545	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
546
547/* Function prototype definitions: */
548static size_t dtrace_strlen(const char *, size_t);
549static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
550static void dtrace_enabling_provide(dtrace_provider_t *);
551static int dtrace_enabling_match(dtrace_enabling_t *, int *);
552static void dtrace_enabling_matchall(void);
553static dtrace_state_t *dtrace_anon_grab(void);
554static uint64_t dtrace_helper(int, dtrace_mstate_t *,
555    dtrace_state_t *, uint64_t, uint64_t);
556static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
557static void dtrace_buffer_drop(dtrace_buffer_t *);
558static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
559    dtrace_state_t *, dtrace_mstate_t *);
560static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
561    dtrace_optval_t);
562static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
563static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
564uint16_t dtrace_load16(uintptr_t);
565uint32_t dtrace_load32(uintptr_t);
566uint64_t dtrace_load64(uintptr_t);
567uint8_t dtrace_load8(uintptr_t);
568void dtrace_dynvar_clean(dtrace_dstate_t *);
569dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
570    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
571uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
572
573/*
574 * DTrace Probe Context Functions
575 *
576 * These functions are called from probe context.  Because probe context is
577 * any context in which C may be called, arbitrarily locks may be held,
578 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
579 * As a result, functions called from probe context may only call other DTrace
580 * support functions -- they may not interact at all with the system at large.
581 * (Note that the ASSERT macro is made probe-context safe by redefining it in
582 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
583 * loads are to be performed from probe context, they _must_ be in terms of
584 * the safe dtrace_load*() variants.
585 *
586 * Some functions in this block are not actually called from probe context;
587 * for these functions, there will be a comment above the function reading
588 * "Note:  not called from probe context."
589 */
590void
591dtrace_panic(const char *format, ...)
592{
593	va_list alist;
594
595	va_start(alist, format);
596	dtrace_vpanic(format, alist);
597	va_end(alist);
598}
599
600int
601dtrace_assfail(const char *a, const char *f, int l)
602{
603	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
604
605	/*
606	 * We just need something here that even the most clever compiler
607	 * cannot optimize away.
608	 */
609	return (a[(uintptr_t)f]);
610}
611
612/*
613 * Atomically increment a specified error counter from probe context.
614 */
615static void
616dtrace_error(uint32_t *counter)
617{
618	/*
619	 * Most counters stored to in probe context are per-CPU counters.
620	 * However, there are some error conditions that are sufficiently
621	 * arcane that they don't merit per-CPU storage.  If these counters
622	 * are incremented concurrently on different CPUs, scalability will be
623	 * adversely affected -- but we don't expect them to be white-hot in a
624	 * correctly constructed enabling...
625	 */
626	uint32_t oval, nval;
627
628	do {
629		oval = *counter;
630
631		if ((nval = oval + 1) == 0) {
632			/*
633			 * If the counter would wrap, set it to 1 -- assuring
634			 * that the counter is never zero when we have seen
635			 * errors.  (The counter must be 32-bits because we
636			 * aren't guaranteed a 64-bit compare&swap operation.)
637			 * To save this code both the infamy of being fingered
638			 * by a priggish news story and the indignity of being
639			 * the target of a neo-puritan witch trial, we're
640			 * carefully avoiding any colorful description of the
641			 * likelihood of this condition -- but suffice it to
642			 * say that it is only slightly more likely than the
643			 * overflow of predicate cache IDs, as discussed in
644			 * dtrace_predicate_create().
645			 */
646			nval = 1;
647		}
648	} while (dtrace_cas32(counter, oval, nval) != oval);
649}
650
651/*
652 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
653 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
654 */
655DTRACE_LOADFUNC(8)
656DTRACE_LOADFUNC(16)
657DTRACE_LOADFUNC(32)
658DTRACE_LOADFUNC(64)
659
660static int
661dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
662{
663	if (dest < mstate->dtms_scratch_base)
664		return (0);
665
666	if (dest + size < dest)
667		return (0);
668
669	if (dest + size > mstate->dtms_scratch_ptr)
670		return (0);
671
672	return (1);
673}
674
675static int
676dtrace_canstore_statvar(uint64_t addr, size_t sz,
677    dtrace_statvar_t **svars, int nsvars)
678{
679	int i;
680
681	for (i = 0; i < nsvars; i++) {
682		dtrace_statvar_t *svar = svars[i];
683
684		if (svar == NULL || svar->dtsv_size == 0)
685			continue;
686
687		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
688			return (1);
689	}
690
691	return (0);
692}
693
694/*
695 * Check to see if the address is within a memory region to which a store may
696 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
697 * region.  The caller of dtrace_canstore() is responsible for performing any
698 * alignment checks that are needed before stores are actually executed.
699 */
700static int
701dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
702    dtrace_vstate_t *vstate)
703{
704	/*
705	 * First, check to see if the address is in scratch space...
706	 */
707	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
708	    mstate->dtms_scratch_size))
709		return (1);
710
711	/*
712	 * Now check to see if it's a dynamic variable.  This check will pick
713	 * up both thread-local variables and any global dynamically-allocated
714	 * variables.
715	 */
716	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
717	    vstate->dtvs_dynvars.dtds_size)) {
718		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
719		uintptr_t base = (uintptr_t)dstate->dtds_base +
720		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
721		uintptr_t chunkoffs;
722
723		/*
724		 * Before we assume that we can store here, we need to make
725		 * sure that it isn't in our metadata -- storing to our
726		 * dynamic variable metadata would corrupt our state.  For
727		 * the range to not include any dynamic variable metadata,
728		 * it must:
729		 *
730		 *	(1) Start above the hash table that is at the base of
731		 *	the dynamic variable space
732		 *
733		 *	(2) Have a starting chunk offset that is beyond the
734		 *	dtrace_dynvar_t that is at the base of every chunk
735		 *
736		 *	(3) Not span a chunk boundary
737		 *
738		 */
739		if (addr < base)
740			return (0);
741
742		chunkoffs = (addr - base) % dstate->dtds_chunksize;
743
744		if (chunkoffs < sizeof (dtrace_dynvar_t))
745			return (0);
746
747		if (chunkoffs + sz > dstate->dtds_chunksize)
748			return (0);
749
750		return (1);
751	}
752
753	/*
754	 * Finally, check the static local and global variables.  These checks
755	 * take the longest, so we perform them last.
756	 */
757	if (dtrace_canstore_statvar(addr, sz,
758	    vstate->dtvs_locals, vstate->dtvs_nlocals))
759		return (1);
760
761	if (dtrace_canstore_statvar(addr, sz,
762	    vstate->dtvs_globals, vstate->dtvs_nglobals))
763		return (1);
764
765	return (0);
766}
767
768
769/*
770 * Convenience routine to check to see if the address is within a memory
771 * region in which a load may be issued given the user's privilege level;
772 * if not, it sets the appropriate error flags and loads 'addr' into the
773 * illegal value slot.
774 *
775 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
776 * appropriate memory access protection.
777 */
778static int
779dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780    dtrace_vstate_t *vstate)
781{
782	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
783
784	/*
785	 * If we hold the privilege to read from kernel memory, then
786	 * everything is readable.
787	 */
788	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
789		return (1);
790
791	/*
792	 * You can obviously read that which you can store.
793	 */
794	if (dtrace_canstore(addr, sz, mstate, vstate))
795		return (1);
796
797	/*
798	 * We're allowed to read from our own string table.
799	 */
800	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
801	    mstate->dtms_difo->dtdo_strlen))
802		return (1);
803
804	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805	*illval = addr;
806	return (0);
807}
808
809/*
810 * Convenience routine to check to see if a given string is within a memory
811 * region in which a load may be issued given the user's privilege level;
812 * this exists so that we don't need to issue unnecessary dtrace_strlen()
813 * calls in the event that the user has all privileges.
814 */
815static int
816dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817    dtrace_vstate_t *vstate)
818{
819	size_t strsz;
820
821	/*
822	 * If we hold the privilege to read from kernel memory, then
823	 * everything is readable.
824	 */
825	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826		return (1);
827
828	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829	if (dtrace_canload(addr, strsz, mstate, vstate))
830		return (1);
831
832	return (0);
833}
834
835/*
836 * Convenience routine to check to see if a given variable is within a memory
837 * region in which a load may be issued given the user's privilege level.
838 */
839static int
840dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841    dtrace_vstate_t *vstate)
842{
843	size_t sz;
844	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845
846	/*
847	 * If we hold the privilege to read from kernel memory, then
848	 * everything is readable.
849	 */
850	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851		return (1);
852
853	if (type->dtdt_kind == DIF_TYPE_STRING)
854		sz = dtrace_strlen(src,
855		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856	else
857		sz = type->dtdt_size;
858
859	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860}
861
862/*
863 * Compare two strings using safe loads.
864 */
865static int
866dtrace_strncmp(char *s1, char *s2, size_t limit)
867{
868	uint8_t c1, c2;
869	volatile uint16_t *flags;
870
871	if (s1 == s2 || limit == 0)
872		return (0);
873
874	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
875
876	do {
877		if (s1 == NULL) {
878			c1 = '\0';
879		} else {
880			c1 = dtrace_load8((uintptr_t)s1++);
881		}
882
883		if (s2 == NULL) {
884			c2 = '\0';
885		} else {
886			c2 = dtrace_load8((uintptr_t)s2++);
887		}
888
889		if (c1 != c2)
890			return (c1 - c2);
891	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
892
893	return (0);
894}
895
896/*
897 * Compute strlen(s) for a string using safe memory accesses.  The additional
898 * len parameter is used to specify a maximum length to ensure completion.
899 */
900static size_t
901dtrace_strlen(const char *s, size_t lim)
902{
903	uint_t len;
904
905	for (len = 0; len != lim; len++) {
906		if (dtrace_load8((uintptr_t)s++) == '\0')
907			break;
908	}
909
910	return (len);
911}
912
913/*
914 * Check if an address falls within a toxic region.
915 */
916static int
917dtrace_istoxic(uintptr_t kaddr, size_t size)
918{
919	uintptr_t taddr, tsize;
920	int i;
921
922	for (i = 0; i < dtrace_toxranges; i++) {
923		taddr = dtrace_toxrange[i].dtt_base;
924		tsize = dtrace_toxrange[i].dtt_limit - taddr;
925
926		if (kaddr - taddr < tsize) {
927			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
928			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
929			return (1);
930		}
931
932		if (taddr - kaddr < size) {
933			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
935			return (1);
936		}
937	}
938
939	return (0);
940}
941
942/*
943 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
944 * memory specified by the DIF program.  The dst is assumed to be safe memory
945 * that we can store to directly because it is managed by DTrace.  As with
946 * standard bcopy, overlapping copies are handled properly.
947 */
948static void
949dtrace_bcopy(const void *src, void *dst, size_t len)
950{
951	if (len != 0) {
952		uint8_t *s1 = dst;
953		const uint8_t *s2 = src;
954
955		if (s1 <= s2) {
956			do {
957				*s1++ = dtrace_load8((uintptr_t)s2++);
958			} while (--len != 0);
959		} else {
960			s2 += len;
961			s1 += len;
962
963			do {
964				*--s1 = dtrace_load8((uintptr_t)--s2);
965			} while (--len != 0);
966		}
967	}
968}
969
970/*
971 * Copy src to dst using safe memory accesses, up to either the specified
972 * length, or the point that a nul byte is encountered.  The src is assumed to
973 * be unsafe memory specified by the DIF program.  The dst is assumed to be
974 * safe memory that we can store to directly because it is managed by DTrace.
975 * Unlike dtrace_bcopy(), overlapping regions are not handled.
976 */
977static void
978dtrace_strcpy(const void *src, void *dst, size_t len)
979{
980	if (len != 0) {
981		uint8_t *s1 = dst, c;
982		const uint8_t *s2 = src;
983
984		do {
985			*s1++ = c = dtrace_load8((uintptr_t)s2++);
986		} while (--len != 0 && c != '\0');
987	}
988}
989
990/*
991 * Copy src to dst, deriving the size and type from the specified (BYREF)
992 * variable type.  The src is assumed to be unsafe memory specified by the DIF
993 * program.  The dst is assumed to be DTrace variable memory that is of the
994 * specified type; we assume that we can store to directly.
995 */
996static void
997dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
998{
999	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1000
1001	if (type->dtdt_kind == DIF_TYPE_STRING) {
1002		dtrace_strcpy(src, dst, type->dtdt_size);
1003	} else {
1004		dtrace_bcopy(src, dst, type->dtdt_size);
1005	}
1006}
1007
1008/*
1009 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1010 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1011 * safe memory that we can access directly because it is managed by DTrace.
1012 */
1013static int
1014dtrace_bcmp(const void *s1, const void *s2, size_t len)
1015{
1016	volatile uint16_t *flags;
1017
1018	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1019
1020	if (s1 == s2)
1021		return (0);
1022
1023	if (s1 == NULL || s2 == NULL)
1024		return (1);
1025
1026	if (s1 != s2 && len != 0) {
1027		const uint8_t *ps1 = s1;
1028		const uint8_t *ps2 = s2;
1029
1030		do {
1031			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1032				return (1);
1033		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1034	}
1035	return (0);
1036}
1037
1038/*
1039 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1040 * is for safe DTrace-managed memory only.
1041 */
1042static void
1043dtrace_bzero(void *dst, size_t len)
1044{
1045	uchar_t *cp;
1046
1047	for (cp = dst; len != 0; len--)
1048		*cp++ = 0;
1049}
1050
1051static void
1052dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1053{
1054	uint64_t result[2];
1055
1056	result[0] = addend1[0] + addend2[0];
1057	result[1] = addend1[1] + addend2[1] +
1058	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1059
1060	sum[0] = result[0];
1061	sum[1] = result[1];
1062}
1063
1064/*
1065 * Shift the 128-bit value in a by b. If b is positive, shift left.
1066 * If b is negative, shift right.
1067 */
1068static void
1069dtrace_shift_128(uint64_t *a, int b)
1070{
1071	uint64_t mask;
1072
1073	if (b == 0)
1074		return;
1075
1076	if (b < 0) {
1077		b = -b;
1078		if (b >= 64) {
1079			a[0] = a[1] >> (b - 64);
1080			a[1] = 0;
1081		} else {
1082			a[0] >>= b;
1083			mask = 1LL << (64 - b);
1084			mask -= 1;
1085			a[0] |= ((a[1] & mask) << (64 - b));
1086			a[1] >>= b;
1087		}
1088	} else {
1089		if (b >= 64) {
1090			a[1] = a[0] << (b - 64);
1091			a[0] = 0;
1092		} else {
1093			a[1] <<= b;
1094			mask = a[0] >> (64 - b);
1095			a[1] |= mask;
1096			a[0] <<= b;
1097		}
1098	}
1099}
1100
1101/*
1102 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1103 * use native multiplication on those, and then re-combine into the
1104 * resulting 128-bit value.
1105 *
1106 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1107 *     hi1 * hi2 << 64 +
1108 *     hi1 * lo2 << 32 +
1109 *     hi2 * lo1 << 32 +
1110 *     lo1 * lo2
1111 */
1112static void
1113dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1114{
1115	uint64_t hi1, hi2, lo1, lo2;
1116	uint64_t tmp[2];
1117
1118	hi1 = factor1 >> 32;
1119	hi2 = factor2 >> 32;
1120
1121	lo1 = factor1 & DT_MASK_LO;
1122	lo2 = factor2 & DT_MASK_LO;
1123
1124	product[0] = lo1 * lo2;
1125	product[1] = hi1 * hi2;
1126
1127	tmp[0] = hi1 * lo2;
1128	tmp[1] = 0;
1129	dtrace_shift_128(tmp, 32);
1130	dtrace_add_128(product, tmp, product);
1131
1132	tmp[0] = hi2 * lo1;
1133	tmp[1] = 0;
1134	dtrace_shift_128(tmp, 32);
1135	dtrace_add_128(product, tmp, product);
1136}
1137
1138/*
1139 * This privilege check should be used by actions and subroutines to
1140 * verify that the user credentials of the process that enabled the
1141 * invoking ECB match the target credentials
1142 */
1143static int
1144dtrace_priv_proc_common_user(dtrace_state_t *state)
1145{
1146	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1147
1148	/*
1149	 * We should always have a non-NULL state cred here, since if cred
1150	 * is null (anonymous tracing), we fast-path bypass this routine.
1151	 */
1152	ASSERT(s_cr != NULL);
1153
1154	if ((cr = CRED()) != NULL &&
1155	    s_cr->cr_uid == cr->cr_uid &&
1156	    s_cr->cr_uid == cr->cr_ruid &&
1157	    s_cr->cr_uid == cr->cr_suid &&
1158	    s_cr->cr_gid == cr->cr_gid &&
1159	    s_cr->cr_gid == cr->cr_rgid &&
1160	    s_cr->cr_gid == cr->cr_sgid)
1161		return (1);
1162
1163	return (0);
1164}
1165
1166/*
1167 * This privilege check should be used by actions and subroutines to
1168 * verify that the zone of the process that enabled the invoking ECB
1169 * matches the target credentials
1170 */
1171static int
1172dtrace_priv_proc_common_zone(dtrace_state_t *state)
1173{
1174#if defined(sun)
1175	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1176
1177	/*
1178	 * We should always have a non-NULL state cred here, since if cred
1179	 * is null (anonymous tracing), we fast-path bypass this routine.
1180	 */
1181	ASSERT(s_cr != NULL);
1182
1183	if ((cr = CRED()) != NULL &&
1184	    s_cr->cr_zone == cr->cr_zone)
1185		return (1);
1186
1187	return (0);
1188#else
1189	return (1);
1190#endif
1191}
1192
1193/*
1194 * This privilege check should be used by actions and subroutines to
1195 * verify that the process has not setuid or changed credentials.
1196 */
1197static int
1198dtrace_priv_proc_common_nocd(void)
1199{
1200	proc_t *proc;
1201
1202	if ((proc = ttoproc(curthread)) != NULL &&
1203	    !(proc->p_flag & SNOCD))
1204		return (1);
1205
1206	return (0);
1207}
1208
1209static int
1210dtrace_priv_proc_destructive(dtrace_state_t *state)
1211{
1212	int action = state->dts_cred.dcr_action;
1213
1214	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1215	    dtrace_priv_proc_common_zone(state) == 0)
1216		goto bad;
1217
1218	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1219	    dtrace_priv_proc_common_user(state) == 0)
1220		goto bad;
1221
1222	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1223	    dtrace_priv_proc_common_nocd() == 0)
1224		goto bad;
1225
1226	return (1);
1227
1228bad:
1229	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1230
1231	return (0);
1232}
1233
1234static int
1235dtrace_priv_proc_control(dtrace_state_t *state)
1236{
1237	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1238		return (1);
1239
1240	if (dtrace_priv_proc_common_zone(state) &&
1241	    dtrace_priv_proc_common_user(state) &&
1242	    dtrace_priv_proc_common_nocd())
1243		return (1);
1244
1245	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1246
1247	return (0);
1248}
1249
1250static int
1251dtrace_priv_proc(dtrace_state_t *state)
1252{
1253	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1254		return (1);
1255
1256	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257
1258	return (0);
1259}
1260
1261static int
1262dtrace_priv_kernel(dtrace_state_t *state)
1263{
1264	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265		return (1);
1266
1267	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268
1269	return (0);
1270}
1271
1272static int
1273dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274{
1275	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276		return (1);
1277
1278	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279
1280	return (0);
1281}
1282
1283/*
1284 * Note:  not called from probe context.  This function is called
1285 * asynchronously (and at a regular interval) from outside of probe context to
1286 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1287 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1288 */
1289void
1290dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1291{
1292	dtrace_dynvar_t *dirty;
1293	dtrace_dstate_percpu_t *dcpu;
1294	int i, work = 0;
1295
1296	for (i = 0; i < NCPU; i++) {
1297		dcpu = &dstate->dtds_percpu[i];
1298
1299		ASSERT(dcpu->dtdsc_rinsing == NULL);
1300
1301		/*
1302		 * If the dirty list is NULL, there is no dirty work to do.
1303		 */
1304		if (dcpu->dtdsc_dirty == NULL)
1305			continue;
1306
1307		/*
1308		 * If the clean list is non-NULL, then we're not going to do
1309		 * any work for this CPU -- it means that there has not been
1310		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1311		 * since the last time we cleaned house.
1312		 */
1313		if (dcpu->dtdsc_clean != NULL)
1314			continue;
1315
1316		work = 1;
1317
1318		/*
1319		 * Atomically move the dirty list aside.
1320		 */
1321		do {
1322			dirty = dcpu->dtdsc_dirty;
1323
1324			/*
1325			 * Before we zap the dirty list, set the rinsing list.
1326			 * (This allows for a potential assertion in
1327			 * dtrace_dynvar():  if a free dynamic variable appears
1328			 * on a hash chain, either the dirty list or the
1329			 * rinsing list for some CPU must be non-NULL.)
1330			 */
1331			dcpu->dtdsc_rinsing = dirty;
1332			dtrace_membar_producer();
1333		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1334		    dirty, NULL) != dirty);
1335	}
1336
1337	if (!work) {
1338		/*
1339		 * We have no work to do; we can simply return.
1340		 */
1341		return;
1342	}
1343
1344	dtrace_sync();
1345
1346	for (i = 0; i < NCPU; i++) {
1347		dcpu = &dstate->dtds_percpu[i];
1348
1349		if (dcpu->dtdsc_rinsing == NULL)
1350			continue;
1351
1352		/*
1353		 * We are now guaranteed that no hash chain contains a pointer
1354		 * into this dirty list; we can make it clean.
1355		 */
1356		ASSERT(dcpu->dtdsc_clean == NULL);
1357		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1358		dcpu->dtdsc_rinsing = NULL;
1359	}
1360
1361	/*
1362	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1363	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1364	 * This prevents a race whereby a CPU incorrectly decides that
1365	 * the state should be something other than DTRACE_DSTATE_CLEAN
1366	 * after dtrace_dynvar_clean() has completed.
1367	 */
1368	dtrace_sync();
1369
1370	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1371}
1372
1373/*
1374 * Depending on the value of the op parameter, this function looks-up,
1375 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1376 * allocation is requested, this function will return a pointer to a
1377 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1378 * variable can be allocated.  If NULL is returned, the appropriate counter
1379 * will be incremented.
1380 */
1381dtrace_dynvar_t *
1382dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1383    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1384    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1385{
1386	uint64_t hashval = DTRACE_DYNHASH_VALID;
1387	dtrace_dynhash_t *hash = dstate->dtds_hash;
1388	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1389	processorid_t me = curcpu, cpu = me;
1390	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1391	size_t bucket, ksize;
1392	size_t chunksize = dstate->dtds_chunksize;
1393	uintptr_t kdata, lock, nstate;
1394	uint_t i;
1395
1396	ASSERT(nkeys != 0);
1397
1398	/*
1399	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1400	 * algorithm.  For the by-value portions, we perform the algorithm in
1401	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1402	 * bit, and seems to have only a minute effect on distribution.  For
1403	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1404	 * over each referenced byte.  It's painful to do this, but it's much
1405	 * better than pathological hash distribution.  The efficacy of the
1406	 * hashing algorithm (and a comparison with other algorithms) may be
1407	 * found by running the ::dtrace_dynstat MDB dcmd.
1408	 */
1409	for (i = 0; i < nkeys; i++) {
1410		if (key[i].dttk_size == 0) {
1411			uint64_t val = key[i].dttk_value;
1412
1413			hashval += (val >> 48) & 0xffff;
1414			hashval += (hashval << 10);
1415			hashval ^= (hashval >> 6);
1416
1417			hashval += (val >> 32) & 0xffff;
1418			hashval += (hashval << 10);
1419			hashval ^= (hashval >> 6);
1420
1421			hashval += (val >> 16) & 0xffff;
1422			hashval += (hashval << 10);
1423			hashval ^= (hashval >> 6);
1424
1425			hashval += val & 0xffff;
1426			hashval += (hashval << 10);
1427			hashval ^= (hashval >> 6);
1428		} else {
1429			/*
1430			 * This is incredibly painful, but it beats the hell
1431			 * out of the alternative.
1432			 */
1433			uint64_t j, size = key[i].dttk_size;
1434			uintptr_t base = (uintptr_t)key[i].dttk_value;
1435
1436			if (!dtrace_canload(base, size, mstate, vstate))
1437				break;
1438
1439			for (j = 0; j < size; j++) {
1440				hashval += dtrace_load8(base + j);
1441				hashval += (hashval << 10);
1442				hashval ^= (hashval >> 6);
1443			}
1444		}
1445	}
1446
1447	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1448		return (NULL);
1449
1450	hashval += (hashval << 3);
1451	hashval ^= (hashval >> 11);
1452	hashval += (hashval << 15);
1453
1454	/*
1455	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1456	 * comes out to be one of our two sentinel hash values.  If this
1457	 * actually happens, we set the hashval to be a value known to be a
1458	 * non-sentinel value.
1459	 */
1460	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1461		hashval = DTRACE_DYNHASH_VALID;
1462
1463	/*
1464	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1465	 * important here, tricks can be pulled to reduce it.  (However, it's
1466	 * critical that hash collisions be kept to an absolute minimum;
1467	 * they're much more painful than a divide.)  It's better to have a
1468	 * solution that generates few collisions and still keeps things
1469	 * relatively simple.
1470	 */
1471	bucket = hashval % dstate->dtds_hashsize;
1472
1473	if (op == DTRACE_DYNVAR_DEALLOC) {
1474		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1475
1476		for (;;) {
1477			while ((lock = *lockp) & 1)
1478				continue;
1479
1480			if (dtrace_casptr((volatile void *)lockp,
1481			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1482				break;
1483		}
1484
1485		dtrace_membar_producer();
1486	}
1487
1488top:
1489	prev = NULL;
1490	lock = hash[bucket].dtdh_lock;
1491
1492	dtrace_membar_consumer();
1493
1494	start = hash[bucket].dtdh_chain;
1495	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1496	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1497	    op != DTRACE_DYNVAR_DEALLOC));
1498
1499	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1500		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1501		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1502
1503		if (dvar->dtdv_hashval != hashval) {
1504			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1505				/*
1506				 * We've reached the sink, and therefore the
1507				 * end of the hash chain; we can kick out of
1508				 * the loop knowing that we have seen a valid
1509				 * snapshot of state.
1510				 */
1511				ASSERT(dvar->dtdv_next == NULL);
1512				ASSERT(dvar == &dtrace_dynhash_sink);
1513				break;
1514			}
1515
1516			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1517				/*
1518				 * We've gone off the rails:  somewhere along
1519				 * the line, one of the members of this hash
1520				 * chain was deleted.  Note that we could also
1521				 * detect this by simply letting this loop run
1522				 * to completion, as we would eventually hit
1523				 * the end of the dirty list.  However, we
1524				 * want to avoid running the length of the
1525				 * dirty list unnecessarily (it might be quite
1526				 * long), so we catch this as early as
1527				 * possible by detecting the hash marker.  In
1528				 * this case, we simply set dvar to NULL and
1529				 * break; the conditional after the loop will
1530				 * send us back to top.
1531				 */
1532				dvar = NULL;
1533				break;
1534			}
1535
1536			goto next;
1537		}
1538
1539		if (dtuple->dtt_nkeys != nkeys)
1540			goto next;
1541
1542		for (i = 0; i < nkeys; i++, dkey++) {
1543			if (dkey->dttk_size != key[i].dttk_size)
1544				goto next; /* size or type mismatch */
1545
1546			if (dkey->dttk_size != 0) {
1547				if (dtrace_bcmp(
1548				    (void *)(uintptr_t)key[i].dttk_value,
1549				    (void *)(uintptr_t)dkey->dttk_value,
1550				    dkey->dttk_size))
1551					goto next;
1552			} else {
1553				if (dkey->dttk_value != key[i].dttk_value)
1554					goto next;
1555			}
1556		}
1557
1558		if (op != DTRACE_DYNVAR_DEALLOC)
1559			return (dvar);
1560
1561		ASSERT(dvar->dtdv_next == NULL ||
1562		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1563
1564		if (prev != NULL) {
1565			ASSERT(hash[bucket].dtdh_chain != dvar);
1566			ASSERT(start != dvar);
1567			ASSERT(prev->dtdv_next == dvar);
1568			prev->dtdv_next = dvar->dtdv_next;
1569		} else {
1570			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1571			    start, dvar->dtdv_next) != start) {
1572				/*
1573				 * We have failed to atomically swing the
1574				 * hash table head pointer, presumably because
1575				 * of a conflicting allocation on another CPU.
1576				 * We need to reread the hash chain and try
1577				 * again.
1578				 */
1579				goto top;
1580			}
1581		}
1582
1583		dtrace_membar_producer();
1584
1585		/*
1586		 * Now set the hash value to indicate that it's free.
1587		 */
1588		ASSERT(hash[bucket].dtdh_chain != dvar);
1589		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1590
1591		dtrace_membar_producer();
1592
1593		/*
1594		 * Set the next pointer to point at the dirty list, and
1595		 * atomically swing the dirty pointer to the newly freed dvar.
1596		 */
1597		do {
1598			next = dcpu->dtdsc_dirty;
1599			dvar->dtdv_next = next;
1600		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1601
1602		/*
1603		 * Finally, unlock this hash bucket.
1604		 */
1605		ASSERT(hash[bucket].dtdh_lock == lock);
1606		ASSERT(lock & 1);
1607		hash[bucket].dtdh_lock++;
1608
1609		return (NULL);
1610next:
1611		prev = dvar;
1612		continue;
1613	}
1614
1615	if (dvar == NULL) {
1616		/*
1617		 * If dvar is NULL, it is because we went off the rails:
1618		 * one of the elements that we traversed in the hash chain
1619		 * was deleted while we were traversing it.  In this case,
1620		 * we assert that we aren't doing a dealloc (deallocs lock
1621		 * the hash bucket to prevent themselves from racing with
1622		 * one another), and retry the hash chain traversal.
1623		 */
1624		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1625		goto top;
1626	}
1627
1628	if (op != DTRACE_DYNVAR_ALLOC) {
1629		/*
1630		 * If we are not to allocate a new variable, we want to
1631		 * return NULL now.  Before we return, check that the value
1632		 * of the lock word hasn't changed.  If it has, we may have
1633		 * seen an inconsistent snapshot.
1634		 */
1635		if (op == DTRACE_DYNVAR_NOALLOC) {
1636			if (hash[bucket].dtdh_lock != lock)
1637				goto top;
1638		} else {
1639			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1640			ASSERT(hash[bucket].dtdh_lock == lock);
1641			ASSERT(lock & 1);
1642			hash[bucket].dtdh_lock++;
1643		}
1644
1645		return (NULL);
1646	}
1647
1648	/*
1649	 * We need to allocate a new dynamic variable.  The size we need is the
1650	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1651	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1652	 * the size of any referred-to data (dsize).  We then round the final
1653	 * size up to the chunksize for allocation.
1654	 */
1655	for (ksize = 0, i = 0; i < nkeys; i++)
1656		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1657
1658	/*
1659	 * This should be pretty much impossible, but could happen if, say,
1660	 * strange DIF specified the tuple.  Ideally, this should be an
1661	 * assertion and not an error condition -- but that requires that the
1662	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1663	 * bullet-proof.  (That is, it must not be able to be fooled by
1664	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1665	 * solving this would presumably not amount to solving the Halting
1666	 * Problem -- but it still seems awfully hard.
1667	 */
1668	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1669	    ksize + dsize > chunksize) {
1670		dcpu->dtdsc_drops++;
1671		return (NULL);
1672	}
1673
1674	nstate = DTRACE_DSTATE_EMPTY;
1675
1676	do {
1677retry:
1678		free = dcpu->dtdsc_free;
1679
1680		if (free == NULL) {
1681			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1682			void *rval;
1683
1684			if (clean == NULL) {
1685				/*
1686				 * We're out of dynamic variable space on
1687				 * this CPU.  Unless we have tried all CPUs,
1688				 * we'll try to allocate from a different
1689				 * CPU.
1690				 */
1691				switch (dstate->dtds_state) {
1692				case DTRACE_DSTATE_CLEAN: {
1693					void *sp = &dstate->dtds_state;
1694
1695					if (++cpu >= NCPU)
1696						cpu = 0;
1697
1698					if (dcpu->dtdsc_dirty != NULL &&
1699					    nstate == DTRACE_DSTATE_EMPTY)
1700						nstate = DTRACE_DSTATE_DIRTY;
1701
1702					if (dcpu->dtdsc_rinsing != NULL)
1703						nstate = DTRACE_DSTATE_RINSING;
1704
1705					dcpu = &dstate->dtds_percpu[cpu];
1706
1707					if (cpu != me)
1708						goto retry;
1709
1710					(void) dtrace_cas32(sp,
1711					    DTRACE_DSTATE_CLEAN, nstate);
1712
1713					/*
1714					 * To increment the correct bean
1715					 * counter, take another lap.
1716					 */
1717					goto retry;
1718				}
1719
1720				case DTRACE_DSTATE_DIRTY:
1721					dcpu->dtdsc_dirty_drops++;
1722					break;
1723
1724				case DTRACE_DSTATE_RINSING:
1725					dcpu->dtdsc_rinsing_drops++;
1726					break;
1727
1728				case DTRACE_DSTATE_EMPTY:
1729					dcpu->dtdsc_drops++;
1730					break;
1731				}
1732
1733				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1734				return (NULL);
1735			}
1736
1737			/*
1738			 * The clean list appears to be non-empty.  We want to
1739			 * move the clean list to the free list; we start by
1740			 * moving the clean pointer aside.
1741			 */
1742			if (dtrace_casptr(&dcpu->dtdsc_clean,
1743			    clean, NULL) != clean) {
1744				/*
1745				 * We are in one of two situations:
1746				 *
1747				 *  (a)	The clean list was switched to the
1748				 *	free list by another CPU.
1749				 *
1750				 *  (b)	The clean list was added to by the
1751				 *	cleansing cyclic.
1752				 *
1753				 * In either of these situations, we can
1754				 * just reattempt the free list allocation.
1755				 */
1756				goto retry;
1757			}
1758
1759			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1760
1761			/*
1762			 * Now we'll move the clean list to the free list.
1763			 * It's impossible for this to fail:  the only way
1764			 * the free list can be updated is through this
1765			 * code path, and only one CPU can own the clean list.
1766			 * Thus, it would only be possible for this to fail if
1767			 * this code were racing with dtrace_dynvar_clean().
1768			 * (That is, if dtrace_dynvar_clean() updated the clean
1769			 * list, and we ended up racing to update the free
1770			 * list.)  This race is prevented by the dtrace_sync()
1771			 * in dtrace_dynvar_clean() -- which flushes the
1772			 * owners of the clean lists out before resetting
1773			 * the clean lists.
1774			 */
1775			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1776			ASSERT(rval == NULL);
1777			goto retry;
1778		}
1779
1780		dvar = free;
1781		new_free = dvar->dtdv_next;
1782	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1783
1784	/*
1785	 * We have now allocated a new chunk.  We copy the tuple keys into the
1786	 * tuple array and copy any referenced key data into the data space
1787	 * following the tuple array.  As we do this, we relocate dttk_value
1788	 * in the final tuple to point to the key data address in the chunk.
1789	 */
1790	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1791	dvar->dtdv_data = (void *)(kdata + ksize);
1792	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1793
1794	for (i = 0; i < nkeys; i++) {
1795		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1796		size_t kesize = key[i].dttk_size;
1797
1798		if (kesize != 0) {
1799			dtrace_bcopy(
1800			    (const void *)(uintptr_t)key[i].dttk_value,
1801			    (void *)kdata, kesize);
1802			dkey->dttk_value = kdata;
1803			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1804		} else {
1805			dkey->dttk_value = key[i].dttk_value;
1806		}
1807
1808		dkey->dttk_size = kesize;
1809	}
1810
1811	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1812	dvar->dtdv_hashval = hashval;
1813	dvar->dtdv_next = start;
1814
1815	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1816		return (dvar);
1817
1818	/*
1819	 * The cas has failed.  Either another CPU is adding an element to
1820	 * this hash chain, or another CPU is deleting an element from this
1821	 * hash chain.  The simplest way to deal with both of these cases
1822	 * (though not necessarily the most efficient) is to free our
1823	 * allocated block and tail-call ourselves.  Note that the free is
1824	 * to the dirty list and _not_ to the free list.  This is to prevent
1825	 * races with allocators, above.
1826	 */
1827	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1828
1829	dtrace_membar_producer();
1830
1831	do {
1832		free = dcpu->dtdsc_dirty;
1833		dvar->dtdv_next = free;
1834	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1835
1836	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1837}
1838
1839/*ARGSUSED*/
1840static void
1841dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1842{
1843	if ((int64_t)nval < (int64_t)*oval)
1844		*oval = nval;
1845}
1846
1847/*ARGSUSED*/
1848static void
1849dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1850{
1851	if ((int64_t)nval > (int64_t)*oval)
1852		*oval = nval;
1853}
1854
1855static void
1856dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1857{
1858	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1859	int64_t val = (int64_t)nval;
1860
1861	if (val < 0) {
1862		for (i = 0; i < zero; i++) {
1863			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1864				quanta[i] += incr;
1865				return;
1866			}
1867		}
1868	} else {
1869		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1870			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1871				quanta[i - 1] += incr;
1872				return;
1873			}
1874		}
1875
1876		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1877		return;
1878	}
1879
1880	ASSERT(0);
1881}
1882
1883static void
1884dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1885{
1886	uint64_t arg = *lquanta++;
1887	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1888	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1889	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1890	int32_t val = (int32_t)nval, level;
1891
1892	ASSERT(step != 0);
1893	ASSERT(levels != 0);
1894
1895	if (val < base) {
1896		/*
1897		 * This is an underflow.
1898		 */
1899		lquanta[0] += incr;
1900		return;
1901	}
1902
1903	level = (val - base) / step;
1904
1905	if (level < levels) {
1906		lquanta[level + 1] += incr;
1907		return;
1908	}
1909
1910	/*
1911	 * This is an overflow.
1912	 */
1913	lquanta[levels + 1] += incr;
1914}
1915
1916static int
1917dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1918    uint16_t high, uint16_t nsteps, int64_t value)
1919{
1920	int64_t this = 1, last, next;
1921	int base = 1, order;
1922
1923	ASSERT(factor <= nsteps);
1924	ASSERT(nsteps % factor == 0);
1925
1926	for (order = 0; order < low; order++)
1927		this *= factor;
1928
1929	/*
1930	 * If our value is less than our factor taken to the power of the
1931	 * low order of magnitude, it goes into the zeroth bucket.
1932	 */
1933	if (value < (last = this))
1934		return (0);
1935
1936	for (this *= factor; order <= high; order++) {
1937		int nbuckets = this > nsteps ? nsteps : this;
1938
1939		if ((next = this * factor) < this) {
1940			/*
1941			 * We should not generally get log/linear quantizations
1942			 * with a high magnitude that allows 64-bits to
1943			 * overflow, but we nonetheless protect against this
1944			 * by explicitly checking for overflow, and clamping
1945			 * our value accordingly.
1946			 */
1947			value = this - 1;
1948		}
1949
1950		if (value < this) {
1951			/*
1952			 * If our value lies within this order of magnitude,
1953			 * determine its position by taking the offset within
1954			 * the order of magnitude, dividing by the bucket
1955			 * width, and adding to our (accumulated) base.
1956			 */
1957			return (base + (value - last) / (this / nbuckets));
1958		}
1959
1960		base += nbuckets - (nbuckets / factor);
1961		last = this;
1962		this = next;
1963	}
1964
1965	/*
1966	 * Our value is greater than or equal to our factor taken to the
1967	 * power of one plus the high magnitude -- return the top bucket.
1968	 */
1969	return (base);
1970}
1971
1972static void
1973dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1974{
1975	uint64_t arg = *llquanta++;
1976	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1977	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1978	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1979	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1980
1981	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1982	    low, high, nsteps, nval)] += incr;
1983}
1984
1985/*ARGSUSED*/
1986static void
1987dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1988{
1989	data[0]++;
1990	data[1] += nval;
1991}
1992
1993/*ARGSUSED*/
1994static void
1995dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1996{
1997	int64_t snval = (int64_t)nval;
1998	uint64_t tmp[2];
1999
2000	data[0]++;
2001	data[1] += nval;
2002
2003	/*
2004	 * What we want to say here is:
2005	 *
2006	 * data[2] += nval * nval;
2007	 *
2008	 * But given that nval is 64-bit, we could easily overflow, so
2009	 * we do this as 128-bit arithmetic.
2010	 */
2011	if (snval < 0)
2012		snval = -snval;
2013
2014	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2015	dtrace_add_128(data + 2, tmp, data + 2);
2016}
2017
2018/*ARGSUSED*/
2019static void
2020dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2021{
2022	*oval = *oval + 1;
2023}
2024
2025/*ARGSUSED*/
2026static void
2027dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2028{
2029	*oval += nval;
2030}
2031
2032/*
2033 * Aggregate given the tuple in the principal data buffer, and the aggregating
2034 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2035 * buffer is specified as the buf parameter.  This routine does not return
2036 * failure; if there is no space in the aggregation buffer, the data will be
2037 * dropped, and a corresponding counter incremented.
2038 */
2039static void
2040dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2041    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2042{
2043	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2044	uint32_t i, ndx, size, fsize;
2045	uint32_t align = sizeof (uint64_t) - 1;
2046	dtrace_aggbuffer_t *agb;
2047	dtrace_aggkey_t *key;
2048	uint32_t hashval = 0, limit, isstr;
2049	caddr_t tomax, data, kdata;
2050	dtrace_actkind_t action;
2051	dtrace_action_t *act;
2052	uintptr_t offs;
2053
2054	if (buf == NULL)
2055		return;
2056
2057	if (!agg->dtag_hasarg) {
2058		/*
2059		 * Currently, only quantize() and lquantize() take additional
2060		 * arguments, and they have the same semantics:  an increment
2061		 * value that defaults to 1 when not present.  If additional
2062		 * aggregating actions take arguments, the setting of the
2063		 * default argument value will presumably have to become more
2064		 * sophisticated...
2065		 */
2066		arg = 1;
2067	}
2068
2069	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2070	size = rec->dtrd_offset - agg->dtag_base;
2071	fsize = size + rec->dtrd_size;
2072
2073	ASSERT(dbuf->dtb_tomax != NULL);
2074	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2075
2076	if ((tomax = buf->dtb_tomax) == NULL) {
2077		dtrace_buffer_drop(buf);
2078		return;
2079	}
2080
2081	/*
2082	 * The metastructure is always at the bottom of the buffer.
2083	 */
2084	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2085	    sizeof (dtrace_aggbuffer_t));
2086
2087	if (buf->dtb_offset == 0) {
2088		/*
2089		 * We just kludge up approximately 1/8th of the size to be
2090		 * buckets.  If this guess ends up being routinely
2091		 * off-the-mark, we may need to dynamically readjust this
2092		 * based on past performance.
2093		 */
2094		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2095
2096		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2097		    (uintptr_t)tomax || hashsize == 0) {
2098			/*
2099			 * We've been given a ludicrously small buffer;
2100			 * increment our drop count and leave.
2101			 */
2102			dtrace_buffer_drop(buf);
2103			return;
2104		}
2105
2106		/*
2107		 * And now, a pathetic attempt to try to get a an odd (or
2108		 * perchance, a prime) hash size for better hash distribution.
2109		 */
2110		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2111			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2112
2113		agb->dtagb_hashsize = hashsize;
2114		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2115		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2116		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2117
2118		for (i = 0; i < agb->dtagb_hashsize; i++)
2119			agb->dtagb_hash[i] = NULL;
2120	}
2121
2122	ASSERT(agg->dtag_first != NULL);
2123	ASSERT(agg->dtag_first->dta_intuple);
2124
2125	/*
2126	 * Calculate the hash value based on the key.  Note that we _don't_
2127	 * include the aggid in the hashing (but we will store it as part of
2128	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2129	 * algorithm: a simple, quick algorithm that has no known funnels, and
2130	 * gets good distribution in practice.  The efficacy of the hashing
2131	 * algorithm (and a comparison with other algorithms) may be found by
2132	 * running the ::dtrace_aggstat MDB dcmd.
2133	 */
2134	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2135		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2136		limit = i + act->dta_rec.dtrd_size;
2137		ASSERT(limit <= size);
2138		isstr = DTRACEACT_ISSTRING(act);
2139
2140		for (; i < limit; i++) {
2141			hashval += data[i];
2142			hashval += (hashval << 10);
2143			hashval ^= (hashval >> 6);
2144
2145			if (isstr && data[i] == '\0')
2146				break;
2147		}
2148	}
2149
2150	hashval += (hashval << 3);
2151	hashval ^= (hashval >> 11);
2152	hashval += (hashval << 15);
2153
2154	/*
2155	 * Yes, the divide here is expensive -- but it's generally the least
2156	 * of the performance issues given the amount of data that we iterate
2157	 * over to compute hash values, compare data, etc.
2158	 */
2159	ndx = hashval % agb->dtagb_hashsize;
2160
2161	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2162		ASSERT((caddr_t)key >= tomax);
2163		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2164
2165		if (hashval != key->dtak_hashval || key->dtak_size != size)
2166			continue;
2167
2168		kdata = key->dtak_data;
2169		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2170
2171		for (act = agg->dtag_first; act->dta_intuple;
2172		    act = act->dta_next) {
2173			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2174			limit = i + act->dta_rec.dtrd_size;
2175			ASSERT(limit <= size);
2176			isstr = DTRACEACT_ISSTRING(act);
2177
2178			for (; i < limit; i++) {
2179				if (kdata[i] != data[i])
2180					goto next;
2181
2182				if (isstr && data[i] == '\0')
2183					break;
2184			}
2185		}
2186
2187		if (action != key->dtak_action) {
2188			/*
2189			 * We are aggregating on the same value in the same
2190			 * aggregation with two different aggregating actions.
2191			 * (This should have been picked up in the compiler,
2192			 * so we may be dealing with errant or devious DIF.)
2193			 * This is an error condition; we indicate as much,
2194			 * and return.
2195			 */
2196			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2197			return;
2198		}
2199
2200		/*
2201		 * This is a hit:  we need to apply the aggregator to
2202		 * the value at this key.
2203		 */
2204		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2205		return;
2206next:
2207		continue;
2208	}
2209
2210	/*
2211	 * We didn't find it.  We need to allocate some zero-filled space,
2212	 * link it into the hash table appropriately, and apply the aggregator
2213	 * to the (zero-filled) value.
2214	 */
2215	offs = buf->dtb_offset;
2216	while (offs & (align - 1))
2217		offs += sizeof (uint32_t);
2218
2219	/*
2220	 * If we don't have enough room to both allocate a new key _and_
2221	 * its associated data, increment the drop count and return.
2222	 */
2223	if ((uintptr_t)tomax + offs + fsize >
2224	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2225		dtrace_buffer_drop(buf);
2226		return;
2227	}
2228
2229	/*CONSTCOND*/
2230	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2231	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2232	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2233
2234	key->dtak_data = kdata = tomax + offs;
2235	buf->dtb_offset = offs + fsize;
2236
2237	/*
2238	 * Now copy the data across.
2239	 */
2240	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2241
2242	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2243		kdata[i] = data[i];
2244
2245	/*
2246	 * Because strings are not zeroed out by default, we need to iterate
2247	 * looking for actions that store strings, and we need to explicitly
2248	 * pad these strings out with zeroes.
2249	 */
2250	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2251		int nul;
2252
2253		if (!DTRACEACT_ISSTRING(act))
2254			continue;
2255
2256		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2257		limit = i + act->dta_rec.dtrd_size;
2258		ASSERT(limit <= size);
2259
2260		for (nul = 0; i < limit; i++) {
2261			if (nul) {
2262				kdata[i] = '\0';
2263				continue;
2264			}
2265
2266			if (data[i] != '\0')
2267				continue;
2268
2269			nul = 1;
2270		}
2271	}
2272
2273	for (i = size; i < fsize; i++)
2274		kdata[i] = 0;
2275
2276	key->dtak_hashval = hashval;
2277	key->dtak_size = size;
2278	key->dtak_action = action;
2279	key->dtak_next = agb->dtagb_hash[ndx];
2280	agb->dtagb_hash[ndx] = key;
2281
2282	/*
2283	 * Finally, apply the aggregator.
2284	 */
2285	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2286	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2287}
2288
2289/*
2290 * Given consumer state, this routine finds a speculation in the INACTIVE
2291 * state and transitions it into the ACTIVE state.  If there is no speculation
2292 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2293 * incremented -- it is up to the caller to take appropriate action.
2294 */
2295static int
2296dtrace_speculation(dtrace_state_t *state)
2297{
2298	int i = 0;
2299	dtrace_speculation_state_t current;
2300	uint32_t *stat = &state->dts_speculations_unavail, count;
2301
2302	while (i < state->dts_nspeculations) {
2303		dtrace_speculation_t *spec = &state->dts_speculations[i];
2304
2305		current = spec->dtsp_state;
2306
2307		if (current != DTRACESPEC_INACTIVE) {
2308			if (current == DTRACESPEC_COMMITTINGMANY ||
2309			    current == DTRACESPEC_COMMITTING ||
2310			    current == DTRACESPEC_DISCARDING)
2311				stat = &state->dts_speculations_busy;
2312			i++;
2313			continue;
2314		}
2315
2316		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2317		    current, DTRACESPEC_ACTIVE) == current)
2318			return (i + 1);
2319	}
2320
2321	/*
2322	 * We couldn't find a speculation.  If we found as much as a single
2323	 * busy speculation buffer, we'll attribute this failure as "busy"
2324	 * instead of "unavail".
2325	 */
2326	do {
2327		count = *stat;
2328	} while (dtrace_cas32(stat, count, count + 1) != count);
2329
2330	return (0);
2331}
2332
2333/*
2334 * This routine commits an active speculation.  If the specified speculation
2335 * is not in a valid state to perform a commit(), this routine will silently do
2336 * nothing.  The state of the specified speculation is transitioned according
2337 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2338 */
2339static void
2340dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2341    dtrace_specid_t which)
2342{
2343	dtrace_speculation_t *spec;
2344	dtrace_buffer_t *src, *dest;
2345	uintptr_t daddr, saddr, dlimit;
2346	dtrace_speculation_state_t current, new = 0;
2347	intptr_t offs;
2348
2349	if (which == 0)
2350		return;
2351
2352	if (which > state->dts_nspeculations) {
2353		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2354		return;
2355	}
2356
2357	spec = &state->dts_speculations[which - 1];
2358	src = &spec->dtsp_buffer[cpu];
2359	dest = &state->dts_buffer[cpu];
2360
2361	do {
2362		current = spec->dtsp_state;
2363
2364		if (current == DTRACESPEC_COMMITTINGMANY)
2365			break;
2366
2367		switch (current) {
2368		case DTRACESPEC_INACTIVE:
2369		case DTRACESPEC_DISCARDING:
2370			return;
2371
2372		case DTRACESPEC_COMMITTING:
2373			/*
2374			 * This is only possible if we are (a) commit()'ing
2375			 * without having done a prior speculate() on this CPU
2376			 * and (b) racing with another commit() on a different
2377			 * CPU.  There's nothing to do -- we just assert that
2378			 * our offset is 0.
2379			 */
2380			ASSERT(src->dtb_offset == 0);
2381			return;
2382
2383		case DTRACESPEC_ACTIVE:
2384			new = DTRACESPEC_COMMITTING;
2385			break;
2386
2387		case DTRACESPEC_ACTIVEONE:
2388			/*
2389			 * This speculation is active on one CPU.  If our
2390			 * buffer offset is non-zero, we know that the one CPU
2391			 * must be us.  Otherwise, we are committing on a
2392			 * different CPU from the speculate(), and we must
2393			 * rely on being asynchronously cleaned.
2394			 */
2395			if (src->dtb_offset != 0) {
2396				new = DTRACESPEC_COMMITTING;
2397				break;
2398			}
2399			/*FALLTHROUGH*/
2400
2401		case DTRACESPEC_ACTIVEMANY:
2402			new = DTRACESPEC_COMMITTINGMANY;
2403			break;
2404
2405		default:
2406			ASSERT(0);
2407		}
2408	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2409	    current, new) != current);
2410
2411	/*
2412	 * We have set the state to indicate that we are committing this
2413	 * speculation.  Now reserve the necessary space in the destination
2414	 * buffer.
2415	 */
2416	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2417	    sizeof (uint64_t), state, NULL)) < 0) {
2418		dtrace_buffer_drop(dest);
2419		goto out;
2420	}
2421
2422	/*
2423	 * We have the space; copy the buffer across.  (Note that this is a
2424	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2425	 * a serious performance issue, a high-performance DTrace-specific
2426	 * bcopy() should obviously be invented.)
2427	 */
2428	daddr = (uintptr_t)dest->dtb_tomax + offs;
2429	dlimit = daddr + src->dtb_offset;
2430	saddr = (uintptr_t)src->dtb_tomax;
2431
2432	/*
2433	 * First, the aligned portion.
2434	 */
2435	while (dlimit - daddr >= sizeof (uint64_t)) {
2436		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2437
2438		daddr += sizeof (uint64_t);
2439		saddr += sizeof (uint64_t);
2440	}
2441
2442	/*
2443	 * Now any left-over bit...
2444	 */
2445	while (dlimit - daddr)
2446		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2447
2448	/*
2449	 * Finally, commit the reserved space in the destination buffer.
2450	 */
2451	dest->dtb_offset = offs + src->dtb_offset;
2452
2453out:
2454	/*
2455	 * If we're lucky enough to be the only active CPU on this speculation
2456	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2457	 */
2458	if (current == DTRACESPEC_ACTIVE ||
2459	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2460		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2461		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2462
2463		ASSERT(rval == DTRACESPEC_COMMITTING);
2464	}
2465
2466	src->dtb_offset = 0;
2467	src->dtb_xamot_drops += src->dtb_drops;
2468	src->dtb_drops = 0;
2469}
2470
2471/*
2472 * This routine discards an active speculation.  If the specified speculation
2473 * is not in a valid state to perform a discard(), this routine will silently
2474 * do nothing.  The state of the specified speculation is transitioned
2475 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2476 */
2477static void
2478dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2479    dtrace_specid_t which)
2480{
2481	dtrace_speculation_t *spec;
2482	dtrace_speculation_state_t current, new = 0;
2483	dtrace_buffer_t *buf;
2484
2485	if (which == 0)
2486		return;
2487
2488	if (which > state->dts_nspeculations) {
2489		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2490		return;
2491	}
2492
2493	spec = &state->dts_speculations[which - 1];
2494	buf = &spec->dtsp_buffer[cpu];
2495
2496	do {
2497		current = spec->dtsp_state;
2498
2499		switch (current) {
2500		case DTRACESPEC_INACTIVE:
2501		case DTRACESPEC_COMMITTINGMANY:
2502		case DTRACESPEC_COMMITTING:
2503		case DTRACESPEC_DISCARDING:
2504			return;
2505
2506		case DTRACESPEC_ACTIVE:
2507		case DTRACESPEC_ACTIVEMANY:
2508			new = DTRACESPEC_DISCARDING;
2509			break;
2510
2511		case DTRACESPEC_ACTIVEONE:
2512			if (buf->dtb_offset != 0) {
2513				new = DTRACESPEC_INACTIVE;
2514			} else {
2515				new = DTRACESPEC_DISCARDING;
2516			}
2517			break;
2518
2519		default:
2520			ASSERT(0);
2521		}
2522	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2523	    current, new) != current);
2524
2525	buf->dtb_offset = 0;
2526	buf->dtb_drops = 0;
2527}
2528
2529/*
2530 * Note:  not called from probe context.  This function is called
2531 * asynchronously from cross call context to clean any speculations that are
2532 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2533 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2534 * speculation.
2535 */
2536static void
2537dtrace_speculation_clean_here(dtrace_state_t *state)
2538{
2539	dtrace_icookie_t cookie;
2540	processorid_t cpu = curcpu;
2541	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2542	dtrace_specid_t i;
2543
2544	cookie = dtrace_interrupt_disable();
2545
2546	if (dest->dtb_tomax == NULL) {
2547		dtrace_interrupt_enable(cookie);
2548		return;
2549	}
2550
2551	for (i = 0; i < state->dts_nspeculations; i++) {
2552		dtrace_speculation_t *spec = &state->dts_speculations[i];
2553		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2554
2555		if (src->dtb_tomax == NULL)
2556			continue;
2557
2558		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2559			src->dtb_offset = 0;
2560			continue;
2561		}
2562
2563		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2564			continue;
2565
2566		if (src->dtb_offset == 0)
2567			continue;
2568
2569		dtrace_speculation_commit(state, cpu, i + 1);
2570	}
2571
2572	dtrace_interrupt_enable(cookie);
2573}
2574
2575/*
2576 * Note:  not called from probe context.  This function is called
2577 * asynchronously (and at a regular interval) to clean any speculations that
2578 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2579 * is work to be done, it cross calls all CPUs to perform that work;
2580 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2581 * INACTIVE state until they have been cleaned by all CPUs.
2582 */
2583static void
2584dtrace_speculation_clean(dtrace_state_t *state)
2585{
2586	int work = 0, rv;
2587	dtrace_specid_t i;
2588
2589	for (i = 0; i < state->dts_nspeculations; i++) {
2590		dtrace_speculation_t *spec = &state->dts_speculations[i];
2591
2592		ASSERT(!spec->dtsp_cleaning);
2593
2594		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2595		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2596			continue;
2597
2598		work++;
2599		spec->dtsp_cleaning = 1;
2600	}
2601
2602	if (!work)
2603		return;
2604
2605	dtrace_xcall(DTRACE_CPUALL,
2606	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2607
2608	/*
2609	 * We now know that all CPUs have committed or discarded their
2610	 * speculation buffers, as appropriate.  We can now set the state
2611	 * to inactive.
2612	 */
2613	for (i = 0; i < state->dts_nspeculations; i++) {
2614		dtrace_speculation_t *spec = &state->dts_speculations[i];
2615		dtrace_speculation_state_t current, new;
2616
2617		if (!spec->dtsp_cleaning)
2618			continue;
2619
2620		current = spec->dtsp_state;
2621		ASSERT(current == DTRACESPEC_DISCARDING ||
2622		    current == DTRACESPEC_COMMITTINGMANY);
2623
2624		new = DTRACESPEC_INACTIVE;
2625
2626		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2627		ASSERT(rv == current);
2628		spec->dtsp_cleaning = 0;
2629	}
2630}
2631
2632/*
2633 * Called as part of a speculate() to get the speculative buffer associated
2634 * with a given speculation.  Returns NULL if the specified speculation is not
2635 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2636 * the active CPU is not the specified CPU -- the speculation will be
2637 * atomically transitioned into the ACTIVEMANY state.
2638 */
2639static dtrace_buffer_t *
2640dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2641    dtrace_specid_t which)
2642{
2643	dtrace_speculation_t *spec;
2644	dtrace_speculation_state_t current, new = 0;
2645	dtrace_buffer_t *buf;
2646
2647	if (which == 0)
2648		return (NULL);
2649
2650	if (which > state->dts_nspeculations) {
2651		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2652		return (NULL);
2653	}
2654
2655	spec = &state->dts_speculations[which - 1];
2656	buf = &spec->dtsp_buffer[cpuid];
2657
2658	do {
2659		current = spec->dtsp_state;
2660
2661		switch (current) {
2662		case DTRACESPEC_INACTIVE:
2663		case DTRACESPEC_COMMITTINGMANY:
2664		case DTRACESPEC_DISCARDING:
2665			return (NULL);
2666
2667		case DTRACESPEC_COMMITTING:
2668			ASSERT(buf->dtb_offset == 0);
2669			return (NULL);
2670
2671		case DTRACESPEC_ACTIVEONE:
2672			/*
2673			 * This speculation is currently active on one CPU.
2674			 * Check the offset in the buffer; if it's non-zero,
2675			 * that CPU must be us (and we leave the state alone).
2676			 * If it's zero, assume that we're starting on a new
2677			 * CPU -- and change the state to indicate that the
2678			 * speculation is active on more than one CPU.
2679			 */
2680			if (buf->dtb_offset != 0)
2681				return (buf);
2682
2683			new = DTRACESPEC_ACTIVEMANY;
2684			break;
2685
2686		case DTRACESPEC_ACTIVEMANY:
2687			return (buf);
2688
2689		case DTRACESPEC_ACTIVE:
2690			new = DTRACESPEC_ACTIVEONE;
2691			break;
2692
2693		default:
2694			ASSERT(0);
2695		}
2696	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2697	    current, new) != current);
2698
2699	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2700	return (buf);
2701}
2702
2703/*
2704 * Return a string.  In the event that the user lacks the privilege to access
2705 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2706 * don't fail access checking.
2707 *
2708 * dtrace_dif_variable() uses this routine as a helper for various
2709 * builtin values such as 'execname' and 'probefunc.'
2710 */
2711uintptr_t
2712dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2713    dtrace_mstate_t *mstate)
2714{
2715	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2716	uintptr_t ret;
2717	size_t strsz;
2718
2719	/*
2720	 * The easy case: this probe is allowed to read all of memory, so
2721	 * we can just return this as a vanilla pointer.
2722	 */
2723	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2724		return (addr);
2725
2726	/*
2727	 * This is the tougher case: we copy the string in question from
2728	 * kernel memory into scratch memory and return it that way: this
2729	 * ensures that we won't trip up when access checking tests the
2730	 * BYREF return value.
2731	 */
2732	strsz = dtrace_strlen((char *)addr, size) + 1;
2733
2734	if (mstate->dtms_scratch_ptr + strsz >
2735	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2736		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2737		return (0);
2738	}
2739
2740	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2741	    strsz);
2742	ret = mstate->dtms_scratch_ptr;
2743	mstate->dtms_scratch_ptr += strsz;
2744	return (ret);
2745}
2746
2747/*
2748 * Return a string from a memoy address which is known to have one or
2749 * more concatenated, individually zero terminated, sub-strings.
2750 * In the event that the user lacks the privilege to access
2751 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2752 * don't fail access checking.
2753 *
2754 * dtrace_dif_variable() uses this routine as a helper for various
2755 * builtin values such as 'execargs'.
2756 */
2757static uintptr_t
2758dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2759    dtrace_mstate_t *mstate)
2760{
2761	char *p;
2762	size_t i;
2763	uintptr_t ret;
2764
2765	if (mstate->dtms_scratch_ptr + strsz >
2766	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2767		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2768		return (0);
2769	}
2770
2771	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2772	    strsz);
2773
2774	/* Replace sub-string termination characters with a space. */
2775	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2776	    p++, i++)
2777		if (*p == '\0')
2778			*p = ' ';
2779
2780	ret = mstate->dtms_scratch_ptr;
2781	mstate->dtms_scratch_ptr += strsz;
2782	return (ret);
2783}
2784
2785/*
2786 * This function implements the DIF emulator's variable lookups.  The emulator
2787 * passes a reserved variable identifier and optional built-in array index.
2788 */
2789static uint64_t
2790dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2791    uint64_t ndx)
2792{
2793	/*
2794	 * If we're accessing one of the uncached arguments, we'll turn this
2795	 * into a reference in the args array.
2796	 */
2797	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2798		ndx = v - DIF_VAR_ARG0;
2799		v = DIF_VAR_ARGS;
2800	}
2801
2802	switch (v) {
2803	case DIF_VAR_ARGS:
2804		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2805		if (ndx >= sizeof (mstate->dtms_arg) /
2806		    sizeof (mstate->dtms_arg[0])) {
2807			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2808			dtrace_provider_t *pv;
2809			uint64_t val;
2810
2811			pv = mstate->dtms_probe->dtpr_provider;
2812			if (pv->dtpv_pops.dtps_getargval != NULL)
2813				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2814				    mstate->dtms_probe->dtpr_id,
2815				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2816			else
2817				val = dtrace_getarg(ndx, aframes);
2818
2819			/*
2820			 * This is regrettably required to keep the compiler
2821			 * from tail-optimizing the call to dtrace_getarg().
2822			 * The condition always evaluates to true, but the
2823			 * compiler has no way of figuring that out a priori.
2824			 * (None of this would be necessary if the compiler
2825			 * could be relied upon to _always_ tail-optimize
2826			 * the call to dtrace_getarg() -- but it can't.)
2827			 */
2828			if (mstate->dtms_probe != NULL)
2829				return (val);
2830
2831			ASSERT(0);
2832		}
2833
2834		return (mstate->dtms_arg[ndx]);
2835
2836#if defined(sun)
2837	case DIF_VAR_UREGS: {
2838		klwp_t *lwp;
2839
2840		if (!dtrace_priv_proc(state))
2841			return (0);
2842
2843		if ((lwp = curthread->t_lwp) == NULL) {
2844			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2845			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2846			return (0);
2847		}
2848
2849		return (dtrace_getreg(lwp->lwp_regs, ndx));
2850		return (0);
2851	}
2852#else
2853	case DIF_VAR_UREGS: {
2854		struct trapframe *tframe;
2855
2856		if (!dtrace_priv_proc(state))
2857			return (0);
2858
2859		if ((tframe = curthread->td_frame) == NULL) {
2860			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2861			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2862			return (0);
2863		}
2864
2865		return (dtrace_getreg(tframe, ndx));
2866	}
2867#endif
2868
2869	case DIF_VAR_CURTHREAD:
2870		if (!dtrace_priv_kernel(state))
2871			return (0);
2872		return ((uint64_t)(uintptr_t)curthread);
2873
2874	case DIF_VAR_TIMESTAMP:
2875		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2876			mstate->dtms_timestamp = dtrace_gethrtime();
2877			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2878		}
2879		return (mstate->dtms_timestamp);
2880
2881	case DIF_VAR_VTIMESTAMP:
2882		ASSERT(dtrace_vtime_references != 0);
2883		return (curthread->t_dtrace_vtime);
2884
2885	case DIF_VAR_WALLTIMESTAMP:
2886		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2887			mstate->dtms_walltimestamp = dtrace_gethrestime();
2888			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2889		}
2890		return (mstate->dtms_walltimestamp);
2891
2892#if defined(sun)
2893	case DIF_VAR_IPL:
2894		if (!dtrace_priv_kernel(state))
2895			return (0);
2896		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2897			mstate->dtms_ipl = dtrace_getipl();
2898			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2899		}
2900		return (mstate->dtms_ipl);
2901#endif
2902
2903	case DIF_VAR_EPID:
2904		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2905		return (mstate->dtms_epid);
2906
2907	case DIF_VAR_ID:
2908		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2909		return (mstate->dtms_probe->dtpr_id);
2910
2911	case DIF_VAR_STACKDEPTH:
2912		if (!dtrace_priv_kernel(state))
2913			return (0);
2914		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2915			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2916
2917			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2918			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2919		}
2920		return (mstate->dtms_stackdepth);
2921
2922	case DIF_VAR_USTACKDEPTH:
2923		if (!dtrace_priv_proc(state))
2924			return (0);
2925		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2926			/*
2927			 * See comment in DIF_VAR_PID.
2928			 */
2929			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2930			    CPU_ON_INTR(CPU)) {
2931				mstate->dtms_ustackdepth = 0;
2932			} else {
2933				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2934				mstate->dtms_ustackdepth =
2935				    dtrace_getustackdepth();
2936				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2937			}
2938			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2939		}
2940		return (mstate->dtms_ustackdepth);
2941
2942	case DIF_VAR_CALLER:
2943		if (!dtrace_priv_kernel(state))
2944			return (0);
2945		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2946			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2947
2948			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2949				/*
2950				 * If this is an unanchored probe, we are
2951				 * required to go through the slow path:
2952				 * dtrace_caller() only guarantees correct
2953				 * results for anchored probes.
2954				 */
2955				pc_t caller[2] = {0, 0};
2956
2957				dtrace_getpcstack(caller, 2, aframes,
2958				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2959				mstate->dtms_caller = caller[1];
2960			} else if ((mstate->dtms_caller =
2961			    dtrace_caller(aframes)) == -1) {
2962				/*
2963				 * We have failed to do this the quick way;
2964				 * we must resort to the slower approach of
2965				 * calling dtrace_getpcstack().
2966				 */
2967				pc_t caller = 0;
2968
2969				dtrace_getpcstack(&caller, 1, aframes, NULL);
2970				mstate->dtms_caller = caller;
2971			}
2972
2973			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2974		}
2975		return (mstate->dtms_caller);
2976
2977	case DIF_VAR_UCALLER:
2978		if (!dtrace_priv_proc(state))
2979			return (0);
2980
2981		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2982			uint64_t ustack[3];
2983
2984			/*
2985			 * dtrace_getupcstack() fills in the first uint64_t
2986			 * with the current PID.  The second uint64_t will
2987			 * be the program counter at user-level.  The third
2988			 * uint64_t will contain the caller, which is what
2989			 * we're after.
2990			 */
2991			ustack[2] = 0;
2992			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2993			dtrace_getupcstack(ustack, 3);
2994			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2995			mstate->dtms_ucaller = ustack[2];
2996			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2997		}
2998
2999		return (mstate->dtms_ucaller);
3000
3001	case DIF_VAR_PROBEPROV:
3002		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3003		return (dtrace_dif_varstr(
3004		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3005		    state, mstate));
3006
3007	case DIF_VAR_PROBEMOD:
3008		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3009		return (dtrace_dif_varstr(
3010		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3011		    state, mstate));
3012
3013	case DIF_VAR_PROBEFUNC:
3014		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3015		return (dtrace_dif_varstr(
3016		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3017		    state, mstate));
3018
3019	case DIF_VAR_PROBENAME:
3020		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3021		return (dtrace_dif_varstr(
3022		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3023		    state, mstate));
3024
3025	case DIF_VAR_PID:
3026		if (!dtrace_priv_proc(state))
3027			return (0);
3028
3029#if defined(sun)
3030		/*
3031		 * Note that we are assuming that an unanchored probe is
3032		 * always due to a high-level interrupt.  (And we're assuming
3033		 * that there is only a single high level interrupt.)
3034		 */
3035		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3036			return (pid0.pid_id);
3037
3038		/*
3039		 * It is always safe to dereference one's own t_procp pointer:
3040		 * it always points to a valid, allocated proc structure.
3041		 * Further, it is always safe to dereference the p_pidp member
3042		 * of one's own proc structure.  (These are truisms becuase
3043		 * threads and processes don't clean up their own state --
3044		 * they leave that task to whomever reaps them.)
3045		 */
3046		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3047#else
3048		return ((uint64_t)curproc->p_pid);
3049#endif
3050
3051	case DIF_VAR_PPID:
3052		if (!dtrace_priv_proc(state))
3053			return (0);
3054
3055#if defined(sun)
3056		/*
3057		 * See comment in DIF_VAR_PID.
3058		 */
3059		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3060			return (pid0.pid_id);
3061
3062		/*
3063		 * It is always safe to dereference one's own t_procp pointer:
3064		 * it always points to a valid, allocated proc structure.
3065		 * (This is true because threads don't clean up their own
3066		 * state -- they leave that task to whomever reaps them.)
3067		 */
3068		return ((uint64_t)curthread->t_procp->p_ppid);
3069#else
3070		return ((uint64_t)curproc->p_pptr->p_pid);
3071#endif
3072
3073	case DIF_VAR_TID:
3074#if defined(sun)
3075		/*
3076		 * See comment in DIF_VAR_PID.
3077		 */
3078		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3079			return (0);
3080#endif
3081
3082		return ((uint64_t)curthread->t_tid);
3083
3084	case DIF_VAR_EXECARGS: {
3085		struct pargs *p_args = curthread->td_proc->p_args;
3086
3087		if (p_args == NULL)
3088			return(0);
3089
3090		return (dtrace_dif_varstrz(
3091		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3092	}
3093
3094	case DIF_VAR_EXECNAME:
3095#if defined(sun)
3096		if (!dtrace_priv_proc(state))
3097			return (0);
3098
3099		/*
3100		 * See comment in DIF_VAR_PID.
3101		 */
3102		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3103			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3104
3105		/*
3106		 * It is always safe to dereference one's own t_procp pointer:
3107		 * it always points to a valid, allocated proc structure.
3108		 * (This is true because threads don't clean up their own
3109		 * state -- they leave that task to whomever reaps them.)
3110		 */
3111		return (dtrace_dif_varstr(
3112		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3113		    state, mstate));
3114#else
3115		return (dtrace_dif_varstr(
3116		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3117#endif
3118
3119	case DIF_VAR_ZONENAME:
3120#if defined(sun)
3121		if (!dtrace_priv_proc(state))
3122			return (0);
3123
3124		/*
3125		 * See comment in DIF_VAR_PID.
3126		 */
3127		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3128			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3129
3130		/*
3131		 * It is always safe to dereference one's own t_procp pointer:
3132		 * it always points to a valid, allocated proc structure.
3133		 * (This is true because threads don't clean up their own
3134		 * state -- they leave that task to whomever reaps them.)
3135		 */
3136		return (dtrace_dif_varstr(
3137		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3138		    state, mstate));
3139#else
3140		return (0);
3141#endif
3142
3143	case DIF_VAR_UID:
3144		if (!dtrace_priv_proc(state))
3145			return (0);
3146
3147#if defined(sun)
3148		/*
3149		 * See comment in DIF_VAR_PID.
3150		 */
3151		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3152			return ((uint64_t)p0.p_cred->cr_uid);
3153#endif
3154
3155		/*
3156		 * It is always safe to dereference one's own t_procp pointer:
3157		 * it always points to a valid, allocated proc structure.
3158		 * (This is true because threads don't clean up their own
3159		 * state -- they leave that task to whomever reaps them.)
3160		 *
3161		 * Additionally, it is safe to dereference one's own process
3162		 * credential, since this is never NULL after process birth.
3163		 */
3164		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3165
3166	case DIF_VAR_GID:
3167		if (!dtrace_priv_proc(state))
3168			return (0);
3169
3170#if defined(sun)
3171		/*
3172		 * See comment in DIF_VAR_PID.
3173		 */
3174		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3175			return ((uint64_t)p0.p_cred->cr_gid);
3176#endif
3177
3178		/*
3179		 * It is always safe to dereference one's own t_procp pointer:
3180		 * it always points to a valid, allocated proc structure.
3181		 * (This is true because threads don't clean up their own
3182		 * state -- they leave that task to whomever reaps them.)
3183		 *
3184		 * Additionally, it is safe to dereference one's own process
3185		 * credential, since this is never NULL after process birth.
3186		 */
3187		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3188
3189	case DIF_VAR_ERRNO: {
3190#if defined(sun)
3191		klwp_t *lwp;
3192		if (!dtrace_priv_proc(state))
3193			return (0);
3194
3195		/*
3196		 * See comment in DIF_VAR_PID.
3197		 */
3198		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3199			return (0);
3200
3201		/*
3202		 * It is always safe to dereference one's own t_lwp pointer in
3203		 * the event that this pointer is non-NULL.  (This is true
3204		 * because threads and lwps don't clean up their own state --
3205		 * they leave that task to whomever reaps them.)
3206		 */
3207		if ((lwp = curthread->t_lwp) == NULL)
3208			return (0);
3209
3210		return ((uint64_t)lwp->lwp_errno);
3211#else
3212		return (curthread->td_errno);
3213#endif
3214	}
3215#if !defined(sun)
3216	case DIF_VAR_CPU: {
3217		return curcpu;
3218	}
3219#endif
3220	default:
3221		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3222		return (0);
3223	}
3224}
3225
3226/*
3227 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3228 * Notice that we don't bother validating the proper number of arguments or
3229 * their types in the tuple stack.  This isn't needed because all argument
3230 * interpretation is safe because of our load safety -- the worst that can
3231 * happen is that a bogus program can obtain bogus results.
3232 */
3233static void
3234dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3235    dtrace_key_t *tupregs, int nargs,
3236    dtrace_mstate_t *mstate, dtrace_state_t *state)
3237{
3238	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3239	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3240	dtrace_vstate_t *vstate = &state->dts_vstate;
3241
3242#if defined(sun)
3243	union {
3244		mutex_impl_t mi;
3245		uint64_t mx;
3246	} m;
3247
3248	union {
3249		krwlock_t ri;
3250		uintptr_t rw;
3251	} r;
3252#else
3253	struct thread *lowner;
3254	union {
3255		struct lock_object *li;
3256		uintptr_t lx;
3257	} l;
3258#endif
3259
3260	switch (subr) {
3261	case DIF_SUBR_RAND:
3262		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3263		break;
3264
3265#if defined(sun)
3266	case DIF_SUBR_MUTEX_OWNED:
3267		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3268		    mstate, vstate)) {
3269			regs[rd] = 0;
3270			break;
3271		}
3272
3273		m.mx = dtrace_load64(tupregs[0].dttk_value);
3274		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3275			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3276		else
3277			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3278		break;
3279
3280	case DIF_SUBR_MUTEX_OWNER:
3281		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3282		    mstate, vstate)) {
3283			regs[rd] = 0;
3284			break;
3285		}
3286
3287		m.mx = dtrace_load64(tupregs[0].dttk_value);
3288		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3289		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3290			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3291		else
3292			regs[rd] = 0;
3293		break;
3294
3295	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3296		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3297		    mstate, vstate)) {
3298			regs[rd] = 0;
3299			break;
3300		}
3301
3302		m.mx = dtrace_load64(tupregs[0].dttk_value);
3303		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3304		break;
3305
3306	case DIF_SUBR_MUTEX_TYPE_SPIN:
3307		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3308		    mstate, vstate)) {
3309			regs[rd] = 0;
3310			break;
3311		}
3312
3313		m.mx = dtrace_load64(tupregs[0].dttk_value);
3314		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3315		break;
3316
3317	case DIF_SUBR_RW_READ_HELD: {
3318		uintptr_t tmp;
3319
3320		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3321		    mstate, vstate)) {
3322			regs[rd] = 0;
3323			break;
3324		}
3325
3326		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3327		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3328		break;
3329	}
3330
3331	case DIF_SUBR_RW_WRITE_HELD:
3332		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3333		    mstate, vstate)) {
3334			regs[rd] = 0;
3335			break;
3336		}
3337
3338		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3339		regs[rd] = _RW_WRITE_HELD(&r.ri);
3340		break;
3341
3342	case DIF_SUBR_RW_ISWRITER:
3343		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3344		    mstate, vstate)) {
3345			regs[rd] = 0;
3346			break;
3347		}
3348
3349		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3350		regs[rd] = _RW_ISWRITER(&r.ri);
3351		break;
3352
3353#else
3354	case DIF_SUBR_MUTEX_OWNED:
3355		if (!dtrace_canload(tupregs[0].dttk_value,
3356			sizeof (struct lock_object), mstate, vstate)) {
3357			regs[rd] = 0;
3358			break;
3359		}
3360		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3361		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3362		break;
3363
3364	case DIF_SUBR_MUTEX_OWNER:
3365		if (!dtrace_canload(tupregs[0].dttk_value,
3366			sizeof (struct lock_object), mstate, vstate)) {
3367			regs[rd] = 0;
3368			break;
3369		}
3370		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3371		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3372		regs[rd] = (uintptr_t)lowner;
3373		break;
3374
3375	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3376		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3377		    mstate, vstate)) {
3378			regs[rd] = 0;
3379			break;
3380		}
3381		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3382		/* XXX - should be only LC_SLEEPABLE? */
3383		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3384		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3385		break;
3386
3387	case DIF_SUBR_MUTEX_TYPE_SPIN:
3388		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3389		    mstate, vstate)) {
3390			regs[rd] = 0;
3391			break;
3392		}
3393		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3394		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3395		break;
3396
3397	case DIF_SUBR_RW_READ_HELD:
3398	case DIF_SUBR_SX_SHARED_HELD:
3399		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3400		    mstate, vstate)) {
3401			regs[rd] = 0;
3402			break;
3403		}
3404		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3405		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3406		    lowner == NULL;
3407		break;
3408
3409	case DIF_SUBR_RW_WRITE_HELD:
3410	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3411		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3412		    mstate, vstate)) {
3413			regs[rd] = 0;
3414			break;
3415		}
3416		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3417		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3418		regs[rd] = (lowner == curthread);
3419		break;
3420
3421	case DIF_SUBR_RW_ISWRITER:
3422	case DIF_SUBR_SX_ISEXCLUSIVE:
3423		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3424		    mstate, vstate)) {
3425			regs[rd] = 0;
3426			break;
3427		}
3428		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3429		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3430		    lowner != NULL;
3431		break;
3432#endif /* ! defined(sun) */
3433
3434	case DIF_SUBR_BCOPY: {
3435		/*
3436		 * We need to be sure that the destination is in the scratch
3437		 * region -- no other region is allowed.
3438		 */
3439		uintptr_t src = tupregs[0].dttk_value;
3440		uintptr_t dest = tupregs[1].dttk_value;
3441		size_t size = tupregs[2].dttk_value;
3442
3443		if (!dtrace_inscratch(dest, size, mstate)) {
3444			*flags |= CPU_DTRACE_BADADDR;
3445			*illval = regs[rd];
3446			break;
3447		}
3448
3449		if (!dtrace_canload(src, size, mstate, vstate)) {
3450			regs[rd] = 0;
3451			break;
3452		}
3453
3454		dtrace_bcopy((void *)src, (void *)dest, size);
3455		break;
3456	}
3457
3458	case DIF_SUBR_ALLOCA:
3459	case DIF_SUBR_COPYIN: {
3460		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3461		uint64_t size =
3462		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3463		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3464
3465		/*
3466		 * This action doesn't require any credential checks since
3467		 * probes will not activate in user contexts to which the
3468		 * enabling user does not have permissions.
3469		 */
3470
3471		/*
3472		 * Rounding up the user allocation size could have overflowed
3473		 * a large, bogus allocation (like -1ULL) to 0.
3474		 */
3475		if (scratch_size < size ||
3476		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3477			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3478			regs[rd] = 0;
3479			break;
3480		}
3481
3482		if (subr == DIF_SUBR_COPYIN) {
3483			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3484			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3485			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3486		}
3487
3488		mstate->dtms_scratch_ptr += scratch_size;
3489		regs[rd] = dest;
3490		break;
3491	}
3492
3493	case DIF_SUBR_COPYINTO: {
3494		uint64_t size = tupregs[1].dttk_value;
3495		uintptr_t dest = tupregs[2].dttk_value;
3496
3497		/*
3498		 * This action doesn't require any credential checks since
3499		 * probes will not activate in user contexts to which the
3500		 * enabling user does not have permissions.
3501		 */
3502		if (!dtrace_inscratch(dest, size, mstate)) {
3503			*flags |= CPU_DTRACE_BADADDR;
3504			*illval = regs[rd];
3505			break;
3506		}
3507
3508		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3509		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3510		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3511		break;
3512	}
3513
3514	case DIF_SUBR_COPYINSTR: {
3515		uintptr_t dest = mstate->dtms_scratch_ptr;
3516		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3517
3518		if (nargs > 1 && tupregs[1].dttk_value < size)
3519			size = tupregs[1].dttk_value + 1;
3520
3521		/*
3522		 * This action doesn't require any credential checks since
3523		 * probes will not activate in user contexts to which the
3524		 * enabling user does not have permissions.
3525		 */
3526		if (!DTRACE_INSCRATCH(mstate, size)) {
3527			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3528			regs[rd] = 0;
3529			break;
3530		}
3531
3532		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3533		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3534		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3535
3536		((char *)dest)[size - 1] = '\0';
3537		mstate->dtms_scratch_ptr += size;
3538		regs[rd] = dest;
3539		break;
3540	}
3541
3542#if defined(sun)
3543	case DIF_SUBR_MSGSIZE:
3544	case DIF_SUBR_MSGDSIZE: {
3545		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3546		uintptr_t wptr, rptr;
3547		size_t count = 0;
3548		int cont = 0;
3549
3550		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3551
3552			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3553			    vstate)) {
3554				regs[rd] = 0;
3555				break;
3556			}
3557
3558			wptr = dtrace_loadptr(baddr +
3559			    offsetof(mblk_t, b_wptr));
3560
3561			rptr = dtrace_loadptr(baddr +
3562			    offsetof(mblk_t, b_rptr));
3563
3564			if (wptr < rptr) {
3565				*flags |= CPU_DTRACE_BADADDR;
3566				*illval = tupregs[0].dttk_value;
3567				break;
3568			}
3569
3570			daddr = dtrace_loadptr(baddr +
3571			    offsetof(mblk_t, b_datap));
3572
3573			baddr = dtrace_loadptr(baddr +
3574			    offsetof(mblk_t, b_cont));
3575
3576			/*
3577			 * We want to prevent against denial-of-service here,
3578			 * so we're only going to search the list for
3579			 * dtrace_msgdsize_max mblks.
3580			 */
3581			if (cont++ > dtrace_msgdsize_max) {
3582				*flags |= CPU_DTRACE_ILLOP;
3583				break;
3584			}
3585
3586			if (subr == DIF_SUBR_MSGDSIZE) {
3587				if (dtrace_load8(daddr +
3588				    offsetof(dblk_t, db_type)) != M_DATA)
3589					continue;
3590			}
3591
3592			count += wptr - rptr;
3593		}
3594
3595		if (!(*flags & CPU_DTRACE_FAULT))
3596			regs[rd] = count;
3597
3598		break;
3599	}
3600#endif
3601
3602	case DIF_SUBR_PROGENYOF: {
3603		pid_t pid = tupregs[0].dttk_value;
3604		proc_t *p;
3605		int rval = 0;
3606
3607		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3608
3609		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3610#if defined(sun)
3611			if (p->p_pidp->pid_id == pid) {
3612#else
3613			if (p->p_pid == pid) {
3614#endif
3615				rval = 1;
3616				break;
3617			}
3618		}
3619
3620		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3621
3622		regs[rd] = rval;
3623		break;
3624	}
3625
3626	case DIF_SUBR_SPECULATION:
3627		regs[rd] = dtrace_speculation(state);
3628		break;
3629
3630	case DIF_SUBR_COPYOUT: {
3631		uintptr_t kaddr = tupregs[0].dttk_value;
3632		uintptr_t uaddr = tupregs[1].dttk_value;
3633		uint64_t size = tupregs[2].dttk_value;
3634
3635		if (!dtrace_destructive_disallow &&
3636		    dtrace_priv_proc_control(state) &&
3637		    !dtrace_istoxic(kaddr, size)) {
3638			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3639			dtrace_copyout(kaddr, uaddr, size, flags);
3640			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3641		}
3642		break;
3643	}
3644
3645	case DIF_SUBR_COPYOUTSTR: {
3646		uintptr_t kaddr = tupregs[0].dttk_value;
3647		uintptr_t uaddr = tupregs[1].dttk_value;
3648		uint64_t size = tupregs[2].dttk_value;
3649
3650		if (!dtrace_destructive_disallow &&
3651		    dtrace_priv_proc_control(state) &&
3652		    !dtrace_istoxic(kaddr, size)) {
3653			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3654			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3655			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3656		}
3657		break;
3658	}
3659
3660	case DIF_SUBR_STRLEN: {
3661		size_t sz;
3662		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3663		sz = dtrace_strlen((char *)addr,
3664		    state->dts_options[DTRACEOPT_STRSIZE]);
3665
3666		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3667			regs[rd] = 0;
3668			break;
3669		}
3670
3671		regs[rd] = sz;
3672
3673		break;
3674	}
3675
3676	case DIF_SUBR_STRCHR:
3677	case DIF_SUBR_STRRCHR: {
3678		/*
3679		 * We're going to iterate over the string looking for the
3680		 * specified character.  We will iterate until we have reached
3681		 * the string length or we have found the character.  If this
3682		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3683		 * of the specified character instead of the first.
3684		 */
3685		uintptr_t saddr = tupregs[0].dttk_value;
3686		uintptr_t addr = tupregs[0].dttk_value;
3687		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3688		char c, target = (char)tupregs[1].dttk_value;
3689
3690		for (regs[rd] = 0; addr < limit; addr++) {
3691			if ((c = dtrace_load8(addr)) == target) {
3692				regs[rd] = addr;
3693
3694				if (subr == DIF_SUBR_STRCHR)
3695					break;
3696			}
3697
3698			if (c == '\0')
3699				break;
3700		}
3701
3702		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3703			regs[rd] = 0;
3704			break;
3705		}
3706
3707		break;
3708	}
3709
3710	case DIF_SUBR_STRSTR:
3711	case DIF_SUBR_INDEX:
3712	case DIF_SUBR_RINDEX: {
3713		/*
3714		 * We're going to iterate over the string looking for the
3715		 * specified string.  We will iterate until we have reached
3716		 * the string length or we have found the string.  (Yes, this
3717		 * is done in the most naive way possible -- but considering
3718		 * that the string we're searching for is likely to be
3719		 * relatively short, the complexity of Rabin-Karp or similar
3720		 * hardly seems merited.)
3721		 */
3722		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3723		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3724		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3725		size_t len = dtrace_strlen(addr, size);
3726		size_t sublen = dtrace_strlen(substr, size);
3727		char *limit = addr + len, *orig = addr;
3728		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3729		int inc = 1;
3730
3731		regs[rd] = notfound;
3732
3733		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3734			regs[rd] = 0;
3735			break;
3736		}
3737
3738		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3739		    vstate)) {
3740			regs[rd] = 0;
3741			break;
3742		}
3743
3744		/*
3745		 * strstr() and index()/rindex() have similar semantics if
3746		 * both strings are the empty string: strstr() returns a
3747		 * pointer to the (empty) string, and index() and rindex()
3748		 * both return index 0 (regardless of any position argument).
3749		 */
3750		if (sublen == 0 && len == 0) {
3751			if (subr == DIF_SUBR_STRSTR)
3752				regs[rd] = (uintptr_t)addr;
3753			else
3754				regs[rd] = 0;
3755			break;
3756		}
3757
3758		if (subr != DIF_SUBR_STRSTR) {
3759			if (subr == DIF_SUBR_RINDEX) {
3760				limit = orig - 1;
3761				addr += len;
3762				inc = -1;
3763			}
3764
3765			/*
3766			 * Both index() and rindex() take an optional position
3767			 * argument that denotes the starting position.
3768			 */
3769			if (nargs == 3) {
3770				int64_t pos = (int64_t)tupregs[2].dttk_value;
3771
3772				/*
3773				 * If the position argument to index() is
3774				 * negative, Perl implicitly clamps it at
3775				 * zero.  This semantic is a little surprising
3776				 * given the special meaning of negative
3777				 * positions to similar Perl functions like
3778				 * substr(), but it appears to reflect a
3779				 * notion that index() can start from a
3780				 * negative index and increment its way up to
3781				 * the string.  Given this notion, Perl's
3782				 * rindex() is at least self-consistent in
3783				 * that it implicitly clamps positions greater
3784				 * than the string length to be the string
3785				 * length.  Where Perl completely loses
3786				 * coherence, however, is when the specified
3787				 * substring is the empty string ("").  In
3788				 * this case, even if the position is
3789				 * negative, rindex() returns 0 -- and even if
3790				 * the position is greater than the length,
3791				 * index() returns the string length.  These
3792				 * semantics violate the notion that index()
3793				 * should never return a value less than the
3794				 * specified position and that rindex() should
3795				 * never return a value greater than the
3796				 * specified position.  (One assumes that
3797				 * these semantics are artifacts of Perl's
3798				 * implementation and not the results of
3799				 * deliberate design -- it beggars belief that
3800				 * even Larry Wall could desire such oddness.)
3801				 * While in the abstract one would wish for
3802				 * consistent position semantics across
3803				 * substr(), index() and rindex() -- or at the
3804				 * very least self-consistent position
3805				 * semantics for index() and rindex() -- we
3806				 * instead opt to keep with the extant Perl
3807				 * semantics, in all their broken glory.  (Do
3808				 * we have more desire to maintain Perl's
3809				 * semantics than Perl does?  Probably.)
3810				 */
3811				if (subr == DIF_SUBR_RINDEX) {
3812					if (pos < 0) {
3813						if (sublen == 0)
3814							regs[rd] = 0;
3815						break;
3816					}
3817
3818					if (pos > len)
3819						pos = len;
3820				} else {
3821					if (pos < 0)
3822						pos = 0;
3823
3824					if (pos >= len) {
3825						if (sublen == 0)
3826							regs[rd] = len;
3827						break;
3828					}
3829				}
3830
3831				addr = orig + pos;
3832			}
3833		}
3834
3835		for (regs[rd] = notfound; addr != limit; addr += inc) {
3836			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3837				if (subr != DIF_SUBR_STRSTR) {
3838					/*
3839					 * As D index() and rindex() are
3840					 * modeled on Perl (and not on awk),
3841					 * we return a zero-based (and not a
3842					 * one-based) index.  (For you Perl
3843					 * weenies: no, we're not going to add
3844					 * $[ -- and shouldn't you be at a con
3845					 * or something?)
3846					 */
3847					regs[rd] = (uintptr_t)(addr - orig);
3848					break;
3849				}
3850
3851				ASSERT(subr == DIF_SUBR_STRSTR);
3852				regs[rd] = (uintptr_t)addr;
3853				break;
3854			}
3855		}
3856
3857		break;
3858	}
3859
3860	case DIF_SUBR_STRTOK: {
3861		uintptr_t addr = tupregs[0].dttk_value;
3862		uintptr_t tokaddr = tupregs[1].dttk_value;
3863		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3864		uintptr_t limit, toklimit = tokaddr + size;
3865		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3866		char *dest = (char *)mstate->dtms_scratch_ptr;
3867		int i;
3868
3869		/*
3870		 * Check both the token buffer and (later) the input buffer,
3871		 * since both could be non-scratch addresses.
3872		 */
3873		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3874			regs[rd] = 0;
3875			break;
3876		}
3877
3878		if (!DTRACE_INSCRATCH(mstate, size)) {
3879			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3880			regs[rd] = 0;
3881			break;
3882		}
3883
3884		if (addr == 0) {
3885			/*
3886			 * If the address specified is NULL, we use our saved
3887			 * strtok pointer from the mstate.  Note that this
3888			 * means that the saved strtok pointer is _only_
3889			 * valid within multiple enablings of the same probe --
3890			 * it behaves like an implicit clause-local variable.
3891			 */
3892			addr = mstate->dtms_strtok;
3893		} else {
3894			/*
3895			 * If the user-specified address is non-NULL we must
3896			 * access check it.  This is the only time we have
3897			 * a chance to do so, since this address may reside
3898			 * in the string table of this clause-- future calls
3899			 * (when we fetch addr from mstate->dtms_strtok)
3900			 * would fail this access check.
3901			 */
3902			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3903				regs[rd] = 0;
3904				break;
3905			}
3906		}
3907
3908		/*
3909		 * First, zero the token map, and then process the token
3910		 * string -- setting a bit in the map for every character
3911		 * found in the token string.
3912		 */
3913		for (i = 0; i < sizeof (tokmap); i++)
3914			tokmap[i] = 0;
3915
3916		for (; tokaddr < toklimit; tokaddr++) {
3917			if ((c = dtrace_load8(tokaddr)) == '\0')
3918				break;
3919
3920			ASSERT((c >> 3) < sizeof (tokmap));
3921			tokmap[c >> 3] |= (1 << (c & 0x7));
3922		}
3923
3924		for (limit = addr + size; addr < limit; addr++) {
3925			/*
3926			 * We're looking for a character that is _not_ contained
3927			 * in the token string.
3928			 */
3929			if ((c = dtrace_load8(addr)) == '\0')
3930				break;
3931
3932			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3933				break;
3934		}
3935
3936		if (c == '\0') {
3937			/*
3938			 * We reached the end of the string without finding
3939			 * any character that was not in the token string.
3940			 * We return NULL in this case, and we set the saved
3941			 * address to NULL as well.
3942			 */
3943			regs[rd] = 0;
3944			mstate->dtms_strtok = 0;
3945			break;
3946		}
3947
3948		/*
3949		 * From here on, we're copying into the destination string.
3950		 */
3951		for (i = 0; addr < limit && i < size - 1; addr++) {
3952			if ((c = dtrace_load8(addr)) == '\0')
3953				break;
3954
3955			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3956				break;
3957
3958			ASSERT(i < size);
3959			dest[i++] = c;
3960		}
3961
3962		ASSERT(i < size);
3963		dest[i] = '\0';
3964		regs[rd] = (uintptr_t)dest;
3965		mstate->dtms_scratch_ptr += size;
3966		mstate->dtms_strtok = addr;
3967		break;
3968	}
3969
3970	case DIF_SUBR_SUBSTR: {
3971		uintptr_t s = tupregs[0].dttk_value;
3972		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3973		char *d = (char *)mstate->dtms_scratch_ptr;
3974		int64_t index = (int64_t)tupregs[1].dttk_value;
3975		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3976		size_t len = dtrace_strlen((char *)s, size);
3977		int64_t i = 0;
3978
3979		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3980			regs[rd] = 0;
3981			break;
3982		}
3983
3984		if (!DTRACE_INSCRATCH(mstate, size)) {
3985			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3986			regs[rd] = 0;
3987			break;
3988		}
3989
3990		if (nargs <= 2)
3991			remaining = (int64_t)size;
3992
3993		if (index < 0) {
3994			index += len;
3995
3996			if (index < 0 && index + remaining > 0) {
3997				remaining += index;
3998				index = 0;
3999			}
4000		}
4001
4002		if (index >= len || index < 0) {
4003			remaining = 0;
4004		} else if (remaining < 0) {
4005			remaining += len - index;
4006		} else if (index + remaining > size) {
4007			remaining = size - index;
4008		}
4009
4010		for (i = 0; i < remaining; i++) {
4011			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4012				break;
4013		}
4014
4015		d[i] = '\0';
4016
4017		mstate->dtms_scratch_ptr += size;
4018		regs[rd] = (uintptr_t)d;
4019		break;
4020	}
4021
4022	case DIF_SUBR_TOUPPER:
4023	case DIF_SUBR_TOLOWER: {
4024		uintptr_t s = tupregs[0].dttk_value;
4025		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4026		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4027		size_t len = dtrace_strlen((char *)s, size);
4028		char lower, upper, convert;
4029		int64_t i;
4030
4031		if (subr == DIF_SUBR_TOUPPER) {
4032			lower = 'a';
4033			upper = 'z';
4034			convert = 'A';
4035		} else {
4036			lower = 'A';
4037			upper = 'Z';
4038			convert = 'a';
4039		}
4040
4041		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4042			regs[rd] = 0;
4043			break;
4044		}
4045
4046		if (!DTRACE_INSCRATCH(mstate, size)) {
4047			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4048			regs[rd] = 0;
4049			break;
4050		}
4051
4052		for (i = 0; i < size - 1; i++) {
4053			if ((c = dtrace_load8(s + i)) == '\0')
4054				break;
4055
4056			if (c >= lower && c <= upper)
4057				c = convert + (c - lower);
4058
4059			dest[i] = c;
4060		}
4061
4062		ASSERT(i < size);
4063		dest[i] = '\0';
4064		regs[rd] = (uintptr_t)dest;
4065		mstate->dtms_scratch_ptr += size;
4066		break;
4067	}
4068
4069#if defined(sun)
4070	case DIF_SUBR_GETMAJOR:
4071#ifdef _LP64
4072		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4073#else
4074		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4075#endif
4076		break;
4077
4078	case DIF_SUBR_GETMINOR:
4079#ifdef _LP64
4080		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4081#else
4082		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4083#endif
4084		break;
4085
4086	case DIF_SUBR_DDI_PATHNAME: {
4087		/*
4088		 * This one is a galactic mess.  We are going to roughly
4089		 * emulate ddi_pathname(), but it's made more complicated
4090		 * by the fact that we (a) want to include the minor name and
4091		 * (b) must proceed iteratively instead of recursively.
4092		 */
4093		uintptr_t dest = mstate->dtms_scratch_ptr;
4094		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4095		char *start = (char *)dest, *end = start + size - 1;
4096		uintptr_t daddr = tupregs[0].dttk_value;
4097		int64_t minor = (int64_t)tupregs[1].dttk_value;
4098		char *s;
4099		int i, len, depth = 0;
4100
4101		/*
4102		 * Due to all the pointer jumping we do and context we must
4103		 * rely upon, we just mandate that the user must have kernel
4104		 * read privileges to use this routine.
4105		 */
4106		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4107			*flags |= CPU_DTRACE_KPRIV;
4108			*illval = daddr;
4109			regs[rd] = 0;
4110		}
4111
4112		if (!DTRACE_INSCRATCH(mstate, size)) {
4113			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4114			regs[rd] = 0;
4115			break;
4116		}
4117
4118		*end = '\0';
4119
4120		/*
4121		 * We want to have a name for the minor.  In order to do this,
4122		 * we need to walk the minor list from the devinfo.  We want
4123		 * to be sure that we don't infinitely walk a circular list,
4124		 * so we check for circularity by sending a scout pointer
4125		 * ahead two elements for every element that we iterate over;
4126		 * if the list is circular, these will ultimately point to the
4127		 * same element.  You may recognize this little trick as the
4128		 * answer to a stupid interview question -- one that always
4129		 * seems to be asked by those who had to have it laboriously
4130		 * explained to them, and who can't even concisely describe
4131		 * the conditions under which one would be forced to resort to
4132		 * this technique.  Needless to say, those conditions are
4133		 * found here -- and probably only here.  Is this the only use
4134		 * of this infamous trick in shipping, production code?  If it
4135		 * isn't, it probably should be...
4136		 */
4137		if (minor != -1) {
4138			uintptr_t maddr = dtrace_loadptr(daddr +
4139			    offsetof(struct dev_info, devi_minor));
4140
4141			uintptr_t next = offsetof(struct ddi_minor_data, next);
4142			uintptr_t name = offsetof(struct ddi_minor_data,
4143			    d_minor) + offsetof(struct ddi_minor, name);
4144			uintptr_t dev = offsetof(struct ddi_minor_data,
4145			    d_minor) + offsetof(struct ddi_minor, dev);
4146			uintptr_t scout;
4147
4148			if (maddr != NULL)
4149				scout = dtrace_loadptr(maddr + next);
4150
4151			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4152				uint64_t m;
4153#ifdef _LP64
4154				m = dtrace_load64(maddr + dev) & MAXMIN64;
4155#else
4156				m = dtrace_load32(maddr + dev) & MAXMIN;
4157#endif
4158				if (m != minor) {
4159					maddr = dtrace_loadptr(maddr + next);
4160
4161					if (scout == NULL)
4162						continue;
4163
4164					scout = dtrace_loadptr(scout + next);
4165
4166					if (scout == NULL)
4167						continue;
4168
4169					scout = dtrace_loadptr(scout + next);
4170
4171					if (scout == NULL)
4172						continue;
4173
4174					if (scout == maddr) {
4175						*flags |= CPU_DTRACE_ILLOP;
4176						break;
4177					}
4178
4179					continue;
4180				}
4181
4182				/*
4183				 * We have the minor data.  Now we need to
4184				 * copy the minor's name into the end of the
4185				 * pathname.
4186				 */
4187				s = (char *)dtrace_loadptr(maddr + name);
4188				len = dtrace_strlen(s, size);
4189
4190				if (*flags & CPU_DTRACE_FAULT)
4191					break;
4192
4193				if (len != 0) {
4194					if ((end -= (len + 1)) < start)
4195						break;
4196
4197					*end = ':';
4198				}
4199
4200				for (i = 1; i <= len; i++)
4201					end[i] = dtrace_load8((uintptr_t)s++);
4202				break;
4203			}
4204		}
4205
4206		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4207			ddi_node_state_t devi_state;
4208
4209			devi_state = dtrace_load32(daddr +
4210			    offsetof(struct dev_info, devi_node_state));
4211
4212			if (*flags & CPU_DTRACE_FAULT)
4213				break;
4214
4215			if (devi_state >= DS_INITIALIZED) {
4216				s = (char *)dtrace_loadptr(daddr +
4217				    offsetof(struct dev_info, devi_addr));
4218				len = dtrace_strlen(s, size);
4219
4220				if (*flags & CPU_DTRACE_FAULT)
4221					break;
4222
4223				if (len != 0) {
4224					if ((end -= (len + 1)) < start)
4225						break;
4226
4227					*end = '@';
4228				}
4229
4230				for (i = 1; i <= len; i++)
4231					end[i] = dtrace_load8((uintptr_t)s++);
4232			}
4233
4234			/*
4235			 * Now for the node name...
4236			 */
4237			s = (char *)dtrace_loadptr(daddr +
4238			    offsetof(struct dev_info, devi_node_name));
4239
4240			daddr = dtrace_loadptr(daddr +
4241			    offsetof(struct dev_info, devi_parent));
4242
4243			/*
4244			 * If our parent is NULL (that is, if we're the root
4245			 * node), we're going to use the special path
4246			 * "devices".
4247			 */
4248			if (daddr == 0)
4249				s = "devices";
4250
4251			len = dtrace_strlen(s, size);
4252			if (*flags & CPU_DTRACE_FAULT)
4253				break;
4254
4255			if ((end -= (len + 1)) < start)
4256				break;
4257
4258			for (i = 1; i <= len; i++)
4259				end[i] = dtrace_load8((uintptr_t)s++);
4260			*end = '/';
4261
4262			if (depth++ > dtrace_devdepth_max) {
4263				*flags |= CPU_DTRACE_ILLOP;
4264				break;
4265			}
4266		}
4267
4268		if (end < start)
4269			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4270
4271		if (daddr == 0) {
4272			regs[rd] = (uintptr_t)end;
4273			mstate->dtms_scratch_ptr += size;
4274		}
4275
4276		break;
4277	}
4278#endif
4279
4280	case DIF_SUBR_STRJOIN: {
4281		char *d = (char *)mstate->dtms_scratch_ptr;
4282		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4283		uintptr_t s1 = tupregs[0].dttk_value;
4284		uintptr_t s2 = tupregs[1].dttk_value;
4285		int i = 0;
4286
4287		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4288		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4289			regs[rd] = 0;
4290			break;
4291		}
4292
4293		if (!DTRACE_INSCRATCH(mstate, size)) {
4294			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4295			regs[rd] = 0;
4296			break;
4297		}
4298
4299		for (;;) {
4300			if (i >= size) {
4301				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4302				regs[rd] = 0;
4303				break;
4304			}
4305
4306			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4307				i--;
4308				break;
4309			}
4310		}
4311
4312		for (;;) {
4313			if (i >= size) {
4314				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4315				regs[rd] = 0;
4316				break;
4317			}
4318
4319			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4320				break;
4321		}
4322
4323		if (i < size) {
4324			mstate->dtms_scratch_ptr += i;
4325			regs[rd] = (uintptr_t)d;
4326		}
4327
4328		break;
4329	}
4330
4331	case DIF_SUBR_LLTOSTR: {
4332		int64_t i = (int64_t)tupregs[0].dttk_value;
4333		uint64_t val, digit;
4334		uint64_t size = 65;	/* enough room for 2^64 in binary */
4335		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4336		int base = 10;
4337
4338		if (nargs > 1) {
4339			if ((base = tupregs[1].dttk_value) <= 1 ||
4340			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4341				*flags |= CPU_DTRACE_ILLOP;
4342				break;
4343			}
4344		}
4345
4346		val = (base == 10 && i < 0) ? i * -1 : i;
4347
4348		if (!DTRACE_INSCRATCH(mstate, size)) {
4349			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4350			regs[rd] = 0;
4351			break;
4352		}
4353
4354		for (*end-- = '\0'; val; val /= base) {
4355			if ((digit = val % base) <= '9' - '0') {
4356				*end-- = '0' + digit;
4357			} else {
4358				*end-- = 'a' + (digit - ('9' - '0') - 1);
4359			}
4360		}
4361
4362		if (i == 0 && base == 16)
4363			*end-- = '0';
4364
4365		if (base == 16)
4366			*end-- = 'x';
4367
4368		if (i == 0 || base == 8 || base == 16)
4369			*end-- = '0';
4370
4371		if (i < 0 && base == 10)
4372			*end-- = '-';
4373
4374		regs[rd] = (uintptr_t)end + 1;
4375		mstate->dtms_scratch_ptr += size;
4376		break;
4377	}
4378
4379	case DIF_SUBR_HTONS:
4380	case DIF_SUBR_NTOHS:
4381#if BYTE_ORDER == BIG_ENDIAN
4382		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4383#else
4384		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4385#endif
4386		break;
4387
4388
4389	case DIF_SUBR_HTONL:
4390	case DIF_SUBR_NTOHL:
4391#if BYTE_ORDER == BIG_ENDIAN
4392		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4393#else
4394		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4395#endif
4396		break;
4397
4398
4399	case DIF_SUBR_HTONLL:
4400	case DIF_SUBR_NTOHLL:
4401#if BYTE_ORDER == BIG_ENDIAN
4402		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4403#else
4404		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4405#endif
4406		break;
4407
4408
4409	case DIF_SUBR_DIRNAME:
4410	case DIF_SUBR_BASENAME: {
4411		char *dest = (char *)mstate->dtms_scratch_ptr;
4412		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4413		uintptr_t src = tupregs[0].dttk_value;
4414		int i, j, len = dtrace_strlen((char *)src, size);
4415		int lastbase = -1, firstbase = -1, lastdir = -1;
4416		int start, end;
4417
4418		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4419			regs[rd] = 0;
4420			break;
4421		}
4422
4423		if (!DTRACE_INSCRATCH(mstate, size)) {
4424			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4425			regs[rd] = 0;
4426			break;
4427		}
4428
4429		/*
4430		 * The basename and dirname for a zero-length string is
4431		 * defined to be "."
4432		 */
4433		if (len == 0) {
4434			len = 1;
4435			src = (uintptr_t)".";
4436		}
4437
4438		/*
4439		 * Start from the back of the string, moving back toward the
4440		 * front until we see a character that isn't a slash.  That
4441		 * character is the last character in the basename.
4442		 */
4443		for (i = len - 1; i >= 0; i--) {
4444			if (dtrace_load8(src + i) != '/')
4445				break;
4446		}
4447
4448		if (i >= 0)
4449			lastbase = i;
4450
4451		/*
4452		 * Starting from the last character in the basename, move
4453		 * towards the front until we find a slash.  The character
4454		 * that we processed immediately before that is the first
4455		 * character in the basename.
4456		 */
4457		for (; i >= 0; i--) {
4458			if (dtrace_load8(src + i) == '/')
4459				break;
4460		}
4461
4462		if (i >= 0)
4463			firstbase = i + 1;
4464
4465		/*
4466		 * Now keep going until we find a non-slash character.  That
4467		 * character is the last character in the dirname.
4468		 */
4469		for (; i >= 0; i--) {
4470			if (dtrace_load8(src + i) != '/')
4471				break;
4472		}
4473
4474		if (i >= 0)
4475			lastdir = i;
4476
4477		ASSERT(!(lastbase == -1 && firstbase != -1));
4478		ASSERT(!(firstbase == -1 && lastdir != -1));
4479
4480		if (lastbase == -1) {
4481			/*
4482			 * We didn't find a non-slash character.  We know that
4483			 * the length is non-zero, so the whole string must be
4484			 * slashes.  In either the dirname or the basename
4485			 * case, we return '/'.
4486			 */
4487			ASSERT(firstbase == -1);
4488			firstbase = lastbase = lastdir = 0;
4489		}
4490
4491		if (firstbase == -1) {
4492			/*
4493			 * The entire string consists only of a basename
4494			 * component.  If we're looking for dirname, we need
4495			 * to change our string to be just "."; if we're
4496			 * looking for a basename, we'll just set the first
4497			 * character of the basename to be 0.
4498			 */
4499			if (subr == DIF_SUBR_DIRNAME) {
4500				ASSERT(lastdir == -1);
4501				src = (uintptr_t)".";
4502				lastdir = 0;
4503			} else {
4504				firstbase = 0;
4505			}
4506		}
4507
4508		if (subr == DIF_SUBR_DIRNAME) {
4509			if (lastdir == -1) {
4510				/*
4511				 * We know that we have a slash in the name --
4512				 * or lastdir would be set to 0, above.  And
4513				 * because lastdir is -1, we know that this
4514				 * slash must be the first character.  (That
4515				 * is, the full string must be of the form
4516				 * "/basename".)  In this case, the last
4517				 * character of the directory name is 0.
4518				 */
4519				lastdir = 0;
4520			}
4521
4522			start = 0;
4523			end = lastdir;
4524		} else {
4525			ASSERT(subr == DIF_SUBR_BASENAME);
4526			ASSERT(firstbase != -1 && lastbase != -1);
4527			start = firstbase;
4528			end = lastbase;
4529		}
4530
4531		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4532			dest[j] = dtrace_load8(src + i);
4533
4534		dest[j] = '\0';
4535		regs[rd] = (uintptr_t)dest;
4536		mstate->dtms_scratch_ptr += size;
4537		break;
4538	}
4539
4540	case DIF_SUBR_CLEANPATH: {
4541		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4542		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4543		uintptr_t src = tupregs[0].dttk_value;
4544		int i = 0, j = 0;
4545
4546		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4547			regs[rd] = 0;
4548			break;
4549		}
4550
4551		if (!DTRACE_INSCRATCH(mstate, size)) {
4552			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4553			regs[rd] = 0;
4554			break;
4555		}
4556
4557		/*
4558		 * Move forward, loading each character.
4559		 */
4560		do {
4561			c = dtrace_load8(src + i++);
4562next:
4563			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4564				break;
4565
4566			if (c != '/') {
4567				dest[j++] = c;
4568				continue;
4569			}
4570
4571			c = dtrace_load8(src + i++);
4572
4573			if (c == '/') {
4574				/*
4575				 * We have two slashes -- we can just advance
4576				 * to the next character.
4577				 */
4578				goto next;
4579			}
4580
4581			if (c != '.') {
4582				/*
4583				 * This is not "." and it's not ".." -- we can
4584				 * just store the "/" and this character and
4585				 * drive on.
4586				 */
4587				dest[j++] = '/';
4588				dest[j++] = c;
4589				continue;
4590			}
4591
4592			c = dtrace_load8(src + i++);
4593
4594			if (c == '/') {
4595				/*
4596				 * This is a "/./" component.  We're not going
4597				 * to store anything in the destination buffer;
4598				 * we're just going to go to the next component.
4599				 */
4600				goto next;
4601			}
4602
4603			if (c != '.') {
4604				/*
4605				 * This is not ".." -- we can just store the
4606				 * "/." and this character and continue
4607				 * processing.
4608				 */
4609				dest[j++] = '/';
4610				dest[j++] = '.';
4611				dest[j++] = c;
4612				continue;
4613			}
4614
4615			c = dtrace_load8(src + i++);
4616
4617			if (c != '/' && c != '\0') {
4618				/*
4619				 * This is not ".." -- it's "..[mumble]".
4620				 * We'll store the "/.." and this character
4621				 * and continue processing.
4622				 */
4623				dest[j++] = '/';
4624				dest[j++] = '.';
4625				dest[j++] = '.';
4626				dest[j++] = c;
4627				continue;
4628			}
4629
4630			/*
4631			 * This is "/../" or "/..\0".  We need to back up
4632			 * our destination pointer until we find a "/".
4633			 */
4634			i--;
4635			while (j != 0 && dest[--j] != '/')
4636				continue;
4637
4638			if (c == '\0')
4639				dest[++j] = '/';
4640		} while (c != '\0');
4641
4642		dest[j] = '\0';
4643		regs[rd] = (uintptr_t)dest;
4644		mstate->dtms_scratch_ptr += size;
4645		break;
4646	}
4647
4648	case DIF_SUBR_INET_NTOA:
4649	case DIF_SUBR_INET_NTOA6:
4650	case DIF_SUBR_INET_NTOP: {
4651		size_t size;
4652		int af, argi, i;
4653		char *base, *end;
4654
4655		if (subr == DIF_SUBR_INET_NTOP) {
4656			af = (int)tupregs[0].dttk_value;
4657			argi = 1;
4658		} else {
4659			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4660			argi = 0;
4661		}
4662
4663		if (af == AF_INET) {
4664			ipaddr_t ip4;
4665			uint8_t *ptr8, val;
4666
4667			/*
4668			 * Safely load the IPv4 address.
4669			 */
4670			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4671
4672			/*
4673			 * Check an IPv4 string will fit in scratch.
4674			 */
4675			size = INET_ADDRSTRLEN;
4676			if (!DTRACE_INSCRATCH(mstate, size)) {
4677				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4678				regs[rd] = 0;
4679				break;
4680			}
4681			base = (char *)mstate->dtms_scratch_ptr;
4682			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4683
4684			/*
4685			 * Stringify as a dotted decimal quad.
4686			 */
4687			*end-- = '\0';
4688			ptr8 = (uint8_t *)&ip4;
4689			for (i = 3; i >= 0; i--) {
4690				val = ptr8[i];
4691
4692				if (val == 0) {
4693					*end-- = '0';
4694				} else {
4695					for (; val; val /= 10) {
4696						*end-- = '0' + (val % 10);
4697					}
4698				}
4699
4700				if (i > 0)
4701					*end-- = '.';
4702			}
4703			ASSERT(end + 1 >= base);
4704
4705		} else if (af == AF_INET6) {
4706			struct in6_addr ip6;
4707			int firstzero, tryzero, numzero, v6end;
4708			uint16_t val;
4709			const char digits[] = "0123456789abcdef";
4710
4711			/*
4712			 * Stringify using RFC 1884 convention 2 - 16 bit
4713			 * hexadecimal values with a zero-run compression.
4714			 * Lower case hexadecimal digits are used.
4715			 * 	eg, fe80::214:4fff:fe0b:76c8.
4716			 * The IPv4 embedded form is returned for inet_ntop,
4717			 * just the IPv4 string is returned for inet_ntoa6.
4718			 */
4719
4720			/*
4721			 * Safely load the IPv6 address.
4722			 */
4723			dtrace_bcopy(
4724			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4725			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4726
4727			/*
4728			 * Check an IPv6 string will fit in scratch.
4729			 */
4730			size = INET6_ADDRSTRLEN;
4731			if (!DTRACE_INSCRATCH(mstate, size)) {
4732				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4733				regs[rd] = 0;
4734				break;
4735			}
4736			base = (char *)mstate->dtms_scratch_ptr;
4737			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4738			*end-- = '\0';
4739
4740			/*
4741			 * Find the longest run of 16 bit zero values
4742			 * for the single allowed zero compression - "::".
4743			 */
4744			firstzero = -1;
4745			tryzero = -1;
4746			numzero = 1;
4747			for (i = 0; i < sizeof (struct in6_addr); i++) {
4748#if defined(sun)
4749				if (ip6._S6_un._S6_u8[i] == 0 &&
4750#else
4751				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4752#endif
4753				    tryzero == -1 && i % 2 == 0) {
4754					tryzero = i;
4755					continue;
4756				}
4757
4758				if (tryzero != -1 &&
4759#if defined(sun)
4760				    (ip6._S6_un._S6_u8[i] != 0 ||
4761#else
4762				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4763#endif
4764				    i == sizeof (struct in6_addr) - 1)) {
4765
4766					if (i - tryzero <= numzero) {
4767						tryzero = -1;
4768						continue;
4769					}
4770
4771					firstzero = tryzero;
4772					numzero = i - i % 2 - tryzero;
4773					tryzero = -1;
4774
4775#if defined(sun)
4776					if (ip6._S6_un._S6_u8[i] == 0 &&
4777#else
4778					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4779#endif
4780					    i == sizeof (struct in6_addr) - 1)
4781						numzero += 2;
4782				}
4783			}
4784			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4785
4786			/*
4787			 * Check for an IPv4 embedded address.
4788			 */
4789			v6end = sizeof (struct in6_addr) - 2;
4790			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4791			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4792				for (i = sizeof (struct in6_addr) - 1;
4793				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4794					ASSERT(end >= base);
4795
4796#if defined(sun)
4797					val = ip6._S6_un._S6_u8[i];
4798#else
4799					val = ip6.__u6_addr.__u6_addr8[i];
4800#endif
4801
4802					if (val == 0) {
4803						*end-- = '0';
4804					} else {
4805						for (; val; val /= 10) {
4806							*end-- = '0' + val % 10;
4807						}
4808					}
4809
4810					if (i > DTRACE_V4MAPPED_OFFSET)
4811						*end-- = '.';
4812				}
4813
4814				if (subr == DIF_SUBR_INET_NTOA6)
4815					goto inetout;
4816
4817				/*
4818				 * Set v6end to skip the IPv4 address that
4819				 * we have already stringified.
4820				 */
4821				v6end = 10;
4822			}
4823
4824			/*
4825			 * Build the IPv6 string by working through the
4826			 * address in reverse.
4827			 */
4828			for (i = v6end; i >= 0; i -= 2) {
4829				ASSERT(end >= base);
4830
4831				if (i == firstzero + numzero - 2) {
4832					*end-- = ':';
4833					*end-- = ':';
4834					i -= numzero - 2;
4835					continue;
4836				}
4837
4838				if (i < 14 && i != firstzero - 2)
4839					*end-- = ':';
4840
4841#if defined(sun)
4842				val = (ip6._S6_un._S6_u8[i] << 8) +
4843				    ip6._S6_un._S6_u8[i + 1];
4844#else
4845				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4846				    ip6.__u6_addr.__u6_addr8[i + 1];
4847#endif
4848
4849				if (val == 0) {
4850					*end-- = '0';
4851				} else {
4852					for (; val; val /= 16) {
4853						*end-- = digits[val % 16];
4854					}
4855				}
4856			}
4857			ASSERT(end + 1 >= base);
4858
4859		} else {
4860			/*
4861			 * The user didn't use AH_INET or AH_INET6.
4862			 */
4863			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4864			regs[rd] = 0;
4865			break;
4866		}
4867
4868inetout:	regs[rd] = (uintptr_t)end + 1;
4869		mstate->dtms_scratch_ptr += size;
4870		break;
4871	}
4872
4873	case DIF_SUBR_MEMREF: {
4874		uintptr_t size = 2 * sizeof(uintptr_t);
4875		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4876		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4877
4878		/* address and length */
4879		memref[0] = tupregs[0].dttk_value;
4880		memref[1] = tupregs[1].dttk_value;
4881
4882		regs[rd] = (uintptr_t) memref;
4883		mstate->dtms_scratch_ptr += scratch_size;
4884		break;
4885	}
4886
4887	case DIF_SUBR_TYPEREF: {
4888		uintptr_t size = 4 * sizeof(uintptr_t);
4889		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4890		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4891
4892		/* address, num_elements, type_str, type_len */
4893		typeref[0] = tupregs[0].dttk_value;
4894		typeref[1] = tupregs[1].dttk_value;
4895		typeref[2] = tupregs[2].dttk_value;
4896		typeref[3] = tupregs[3].dttk_value;
4897
4898		regs[rd] = (uintptr_t) typeref;
4899		mstate->dtms_scratch_ptr += scratch_size;
4900		break;
4901	}
4902	}
4903}
4904
4905/*
4906 * Emulate the execution of DTrace IR instructions specified by the given
4907 * DIF object.  This function is deliberately void of assertions as all of
4908 * the necessary checks are handled by a call to dtrace_difo_validate().
4909 */
4910static uint64_t
4911dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4912    dtrace_vstate_t *vstate, dtrace_state_t *state)
4913{
4914	const dif_instr_t *text = difo->dtdo_buf;
4915	const uint_t textlen = difo->dtdo_len;
4916	const char *strtab = difo->dtdo_strtab;
4917	const uint64_t *inttab = difo->dtdo_inttab;
4918
4919	uint64_t rval = 0;
4920	dtrace_statvar_t *svar;
4921	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4922	dtrace_difv_t *v;
4923	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4924	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4925
4926	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4927	uint64_t regs[DIF_DIR_NREGS];
4928	uint64_t *tmp;
4929
4930	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4931	int64_t cc_r;
4932	uint_t pc = 0, id, opc = 0;
4933	uint8_t ttop = 0;
4934	dif_instr_t instr;
4935	uint_t r1, r2, rd;
4936
4937	/*
4938	 * We stash the current DIF object into the machine state: we need it
4939	 * for subsequent access checking.
4940	 */
4941	mstate->dtms_difo = difo;
4942
4943	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4944
4945	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4946		opc = pc;
4947
4948		instr = text[pc++];
4949		r1 = DIF_INSTR_R1(instr);
4950		r2 = DIF_INSTR_R2(instr);
4951		rd = DIF_INSTR_RD(instr);
4952
4953		switch (DIF_INSTR_OP(instr)) {
4954		case DIF_OP_OR:
4955			regs[rd] = regs[r1] | regs[r2];
4956			break;
4957		case DIF_OP_XOR:
4958			regs[rd] = regs[r1] ^ regs[r2];
4959			break;
4960		case DIF_OP_AND:
4961			regs[rd] = regs[r1] & regs[r2];
4962			break;
4963		case DIF_OP_SLL:
4964			regs[rd] = regs[r1] << regs[r2];
4965			break;
4966		case DIF_OP_SRL:
4967			regs[rd] = regs[r1] >> regs[r2];
4968			break;
4969		case DIF_OP_SUB:
4970			regs[rd] = regs[r1] - regs[r2];
4971			break;
4972		case DIF_OP_ADD:
4973			regs[rd] = regs[r1] + regs[r2];
4974			break;
4975		case DIF_OP_MUL:
4976			regs[rd] = regs[r1] * regs[r2];
4977			break;
4978		case DIF_OP_SDIV:
4979			if (regs[r2] == 0) {
4980				regs[rd] = 0;
4981				*flags |= CPU_DTRACE_DIVZERO;
4982			} else {
4983				regs[rd] = (int64_t)regs[r1] /
4984				    (int64_t)regs[r2];
4985			}
4986			break;
4987
4988		case DIF_OP_UDIV:
4989			if (regs[r2] == 0) {
4990				regs[rd] = 0;
4991				*flags |= CPU_DTRACE_DIVZERO;
4992			} else {
4993				regs[rd] = regs[r1] / regs[r2];
4994			}
4995			break;
4996
4997		case DIF_OP_SREM:
4998			if (regs[r2] == 0) {
4999				regs[rd] = 0;
5000				*flags |= CPU_DTRACE_DIVZERO;
5001			} else {
5002				regs[rd] = (int64_t)regs[r1] %
5003				    (int64_t)regs[r2];
5004			}
5005			break;
5006
5007		case DIF_OP_UREM:
5008			if (regs[r2] == 0) {
5009				regs[rd] = 0;
5010				*flags |= CPU_DTRACE_DIVZERO;
5011			} else {
5012				regs[rd] = regs[r1] % regs[r2];
5013			}
5014			break;
5015
5016		case DIF_OP_NOT:
5017			regs[rd] = ~regs[r1];
5018			break;
5019		case DIF_OP_MOV:
5020			regs[rd] = regs[r1];
5021			break;
5022		case DIF_OP_CMP:
5023			cc_r = regs[r1] - regs[r2];
5024			cc_n = cc_r < 0;
5025			cc_z = cc_r == 0;
5026			cc_v = 0;
5027			cc_c = regs[r1] < regs[r2];
5028			break;
5029		case DIF_OP_TST:
5030			cc_n = cc_v = cc_c = 0;
5031			cc_z = regs[r1] == 0;
5032			break;
5033		case DIF_OP_BA:
5034			pc = DIF_INSTR_LABEL(instr);
5035			break;
5036		case DIF_OP_BE:
5037			if (cc_z)
5038				pc = DIF_INSTR_LABEL(instr);
5039			break;
5040		case DIF_OP_BNE:
5041			if (cc_z == 0)
5042				pc = DIF_INSTR_LABEL(instr);
5043			break;
5044		case DIF_OP_BG:
5045			if ((cc_z | (cc_n ^ cc_v)) == 0)
5046				pc = DIF_INSTR_LABEL(instr);
5047			break;
5048		case DIF_OP_BGU:
5049			if ((cc_c | cc_z) == 0)
5050				pc = DIF_INSTR_LABEL(instr);
5051			break;
5052		case DIF_OP_BGE:
5053			if ((cc_n ^ cc_v) == 0)
5054				pc = DIF_INSTR_LABEL(instr);
5055			break;
5056		case DIF_OP_BGEU:
5057			if (cc_c == 0)
5058				pc = DIF_INSTR_LABEL(instr);
5059			break;
5060		case DIF_OP_BL:
5061			if (cc_n ^ cc_v)
5062				pc = DIF_INSTR_LABEL(instr);
5063			break;
5064		case DIF_OP_BLU:
5065			if (cc_c)
5066				pc = DIF_INSTR_LABEL(instr);
5067			break;
5068		case DIF_OP_BLE:
5069			if (cc_z | (cc_n ^ cc_v))
5070				pc = DIF_INSTR_LABEL(instr);
5071			break;
5072		case DIF_OP_BLEU:
5073			if (cc_c | cc_z)
5074				pc = DIF_INSTR_LABEL(instr);
5075			break;
5076		case DIF_OP_RLDSB:
5077			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5078				*flags |= CPU_DTRACE_KPRIV;
5079				*illval = regs[r1];
5080				break;
5081			}
5082			/*FALLTHROUGH*/
5083		case DIF_OP_LDSB:
5084			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5085			break;
5086		case DIF_OP_RLDSH:
5087			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5088				*flags |= CPU_DTRACE_KPRIV;
5089				*illval = regs[r1];
5090				break;
5091			}
5092			/*FALLTHROUGH*/
5093		case DIF_OP_LDSH:
5094			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5095			break;
5096		case DIF_OP_RLDSW:
5097			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5098				*flags |= CPU_DTRACE_KPRIV;
5099				*illval = regs[r1];
5100				break;
5101			}
5102			/*FALLTHROUGH*/
5103		case DIF_OP_LDSW:
5104			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5105			break;
5106		case DIF_OP_RLDUB:
5107			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5108				*flags |= CPU_DTRACE_KPRIV;
5109				*illval = regs[r1];
5110				break;
5111			}
5112			/*FALLTHROUGH*/
5113		case DIF_OP_LDUB:
5114			regs[rd] = dtrace_load8(regs[r1]);
5115			break;
5116		case DIF_OP_RLDUH:
5117			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5118				*flags |= CPU_DTRACE_KPRIV;
5119				*illval = regs[r1];
5120				break;
5121			}
5122			/*FALLTHROUGH*/
5123		case DIF_OP_LDUH:
5124			regs[rd] = dtrace_load16(regs[r1]);
5125			break;
5126		case DIF_OP_RLDUW:
5127			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5128				*flags |= CPU_DTRACE_KPRIV;
5129				*illval = regs[r1];
5130				break;
5131			}
5132			/*FALLTHROUGH*/
5133		case DIF_OP_LDUW:
5134			regs[rd] = dtrace_load32(regs[r1]);
5135			break;
5136		case DIF_OP_RLDX:
5137			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5138				*flags |= CPU_DTRACE_KPRIV;
5139				*illval = regs[r1];
5140				break;
5141			}
5142			/*FALLTHROUGH*/
5143		case DIF_OP_LDX:
5144			regs[rd] = dtrace_load64(regs[r1]);
5145			break;
5146		case DIF_OP_ULDSB:
5147			regs[rd] = (int8_t)
5148			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5149			break;
5150		case DIF_OP_ULDSH:
5151			regs[rd] = (int16_t)
5152			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5153			break;
5154		case DIF_OP_ULDSW:
5155			regs[rd] = (int32_t)
5156			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5157			break;
5158		case DIF_OP_ULDUB:
5159			regs[rd] =
5160			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5161			break;
5162		case DIF_OP_ULDUH:
5163			regs[rd] =
5164			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5165			break;
5166		case DIF_OP_ULDUW:
5167			regs[rd] =
5168			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5169			break;
5170		case DIF_OP_ULDX:
5171			regs[rd] =
5172			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5173			break;
5174		case DIF_OP_RET:
5175			rval = regs[rd];
5176			pc = textlen;
5177			break;
5178		case DIF_OP_NOP:
5179			break;
5180		case DIF_OP_SETX:
5181			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5182			break;
5183		case DIF_OP_SETS:
5184			regs[rd] = (uint64_t)(uintptr_t)
5185			    (strtab + DIF_INSTR_STRING(instr));
5186			break;
5187		case DIF_OP_SCMP: {
5188			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5189			uintptr_t s1 = regs[r1];
5190			uintptr_t s2 = regs[r2];
5191
5192			if (s1 != 0 &&
5193			    !dtrace_strcanload(s1, sz, mstate, vstate))
5194				break;
5195			if (s2 != 0 &&
5196			    !dtrace_strcanload(s2, sz, mstate, vstate))
5197				break;
5198
5199			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5200
5201			cc_n = cc_r < 0;
5202			cc_z = cc_r == 0;
5203			cc_v = cc_c = 0;
5204			break;
5205		}
5206		case DIF_OP_LDGA:
5207			regs[rd] = dtrace_dif_variable(mstate, state,
5208			    r1, regs[r2]);
5209			break;
5210		case DIF_OP_LDGS:
5211			id = DIF_INSTR_VAR(instr);
5212
5213			if (id >= DIF_VAR_OTHER_UBASE) {
5214				uintptr_t a;
5215
5216				id -= DIF_VAR_OTHER_UBASE;
5217				svar = vstate->dtvs_globals[id];
5218				ASSERT(svar != NULL);
5219				v = &svar->dtsv_var;
5220
5221				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5222					regs[rd] = svar->dtsv_data;
5223					break;
5224				}
5225
5226				a = (uintptr_t)svar->dtsv_data;
5227
5228				if (*(uint8_t *)a == UINT8_MAX) {
5229					/*
5230					 * If the 0th byte is set to UINT8_MAX
5231					 * then this is to be treated as a
5232					 * reference to a NULL variable.
5233					 */
5234					regs[rd] = 0;
5235				} else {
5236					regs[rd] = a + sizeof (uint64_t);
5237				}
5238
5239				break;
5240			}
5241
5242			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5243			break;
5244
5245		case DIF_OP_STGS:
5246			id = DIF_INSTR_VAR(instr);
5247
5248			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5249			id -= DIF_VAR_OTHER_UBASE;
5250
5251			svar = vstate->dtvs_globals[id];
5252			ASSERT(svar != NULL);
5253			v = &svar->dtsv_var;
5254
5255			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5256				uintptr_t a = (uintptr_t)svar->dtsv_data;
5257
5258				ASSERT(a != 0);
5259				ASSERT(svar->dtsv_size != 0);
5260
5261				if (regs[rd] == 0) {
5262					*(uint8_t *)a = UINT8_MAX;
5263					break;
5264				} else {
5265					*(uint8_t *)a = 0;
5266					a += sizeof (uint64_t);
5267				}
5268				if (!dtrace_vcanload(
5269				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5270				    mstate, vstate))
5271					break;
5272
5273				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5274				    (void *)a, &v->dtdv_type);
5275				break;
5276			}
5277
5278			svar->dtsv_data = regs[rd];
5279			break;
5280
5281		case DIF_OP_LDTA:
5282			/*
5283			 * There are no DTrace built-in thread-local arrays at
5284			 * present.  This opcode is saved for future work.
5285			 */
5286			*flags |= CPU_DTRACE_ILLOP;
5287			regs[rd] = 0;
5288			break;
5289
5290		case DIF_OP_LDLS:
5291			id = DIF_INSTR_VAR(instr);
5292
5293			if (id < DIF_VAR_OTHER_UBASE) {
5294				/*
5295				 * For now, this has no meaning.
5296				 */
5297				regs[rd] = 0;
5298				break;
5299			}
5300
5301			id -= DIF_VAR_OTHER_UBASE;
5302
5303			ASSERT(id < vstate->dtvs_nlocals);
5304			ASSERT(vstate->dtvs_locals != NULL);
5305
5306			svar = vstate->dtvs_locals[id];
5307			ASSERT(svar != NULL);
5308			v = &svar->dtsv_var;
5309
5310			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5311				uintptr_t a = (uintptr_t)svar->dtsv_data;
5312				size_t sz = v->dtdv_type.dtdt_size;
5313
5314				sz += sizeof (uint64_t);
5315				ASSERT(svar->dtsv_size == NCPU * sz);
5316				a += curcpu * sz;
5317
5318				if (*(uint8_t *)a == UINT8_MAX) {
5319					/*
5320					 * If the 0th byte is set to UINT8_MAX
5321					 * then this is to be treated as a
5322					 * reference to a NULL variable.
5323					 */
5324					regs[rd] = 0;
5325				} else {
5326					regs[rd] = a + sizeof (uint64_t);
5327				}
5328
5329				break;
5330			}
5331
5332			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5333			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5334			regs[rd] = tmp[curcpu];
5335			break;
5336
5337		case DIF_OP_STLS:
5338			id = DIF_INSTR_VAR(instr);
5339
5340			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5341			id -= DIF_VAR_OTHER_UBASE;
5342			ASSERT(id < vstate->dtvs_nlocals);
5343
5344			ASSERT(vstate->dtvs_locals != NULL);
5345			svar = vstate->dtvs_locals[id];
5346			ASSERT(svar != NULL);
5347			v = &svar->dtsv_var;
5348
5349			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5350				uintptr_t a = (uintptr_t)svar->dtsv_data;
5351				size_t sz = v->dtdv_type.dtdt_size;
5352
5353				sz += sizeof (uint64_t);
5354				ASSERT(svar->dtsv_size == NCPU * sz);
5355				a += curcpu * sz;
5356
5357				if (regs[rd] == 0) {
5358					*(uint8_t *)a = UINT8_MAX;
5359					break;
5360				} else {
5361					*(uint8_t *)a = 0;
5362					a += sizeof (uint64_t);
5363				}
5364
5365				if (!dtrace_vcanload(
5366				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5367				    mstate, vstate))
5368					break;
5369
5370				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5371				    (void *)a, &v->dtdv_type);
5372				break;
5373			}
5374
5375			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5376			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5377			tmp[curcpu] = regs[rd];
5378			break;
5379
5380		case DIF_OP_LDTS: {
5381			dtrace_dynvar_t *dvar;
5382			dtrace_key_t *key;
5383
5384			id = DIF_INSTR_VAR(instr);
5385			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5386			id -= DIF_VAR_OTHER_UBASE;
5387			v = &vstate->dtvs_tlocals[id];
5388
5389			key = &tupregs[DIF_DTR_NREGS];
5390			key[0].dttk_value = (uint64_t)id;
5391			key[0].dttk_size = 0;
5392			DTRACE_TLS_THRKEY(key[1].dttk_value);
5393			key[1].dttk_size = 0;
5394
5395			dvar = dtrace_dynvar(dstate, 2, key,
5396			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5397			    mstate, vstate);
5398
5399			if (dvar == NULL) {
5400				regs[rd] = 0;
5401				break;
5402			}
5403
5404			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5405				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5406			} else {
5407				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5408			}
5409
5410			break;
5411		}
5412
5413		case DIF_OP_STTS: {
5414			dtrace_dynvar_t *dvar;
5415			dtrace_key_t *key;
5416
5417			id = DIF_INSTR_VAR(instr);
5418			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5419			id -= DIF_VAR_OTHER_UBASE;
5420
5421			key = &tupregs[DIF_DTR_NREGS];
5422			key[0].dttk_value = (uint64_t)id;
5423			key[0].dttk_size = 0;
5424			DTRACE_TLS_THRKEY(key[1].dttk_value);
5425			key[1].dttk_size = 0;
5426			v = &vstate->dtvs_tlocals[id];
5427
5428			dvar = dtrace_dynvar(dstate, 2, key,
5429			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5430			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5431			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5432			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5433
5434			/*
5435			 * Given that we're storing to thread-local data,
5436			 * we need to flush our predicate cache.
5437			 */
5438			curthread->t_predcache = 0;
5439
5440			if (dvar == NULL)
5441				break;
5442
5443			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5444				if (!dtrace_vcanload(
5445				    (void *)(uintptr_t)regs[rd],
5446				    &v->dtdv_type, mstate, vstate))
5447					break;
5448
5449				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5450				    dvar->dtdv_data, &v->dtdv_type);
5451			} else {
5452				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5453			}
5454
5455			break;
5456		}
5457
5458		case DIF_OP_SRA:
5459			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5460			break;
5461
5462		case DIF_OP_CALL:
5463			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5464			    regs, tupregs, ttop, mstate, state);
5465			break;
5466
5467		case DIF_OP_PUSHTR:
5468			if (ttop == DIF_DTR_NREGS) {
5469				*flags |= CPU_DTRACE_TUPOFLOW;
5470				break;
5471			}
5472
5473			if (r1 == DIF_TYPE_STRING) {
5474				/*
5475				 * If this is a string type and the size is 0,
5476				 * we'll use the system-wide default string
5477				 * size.  Note that we are _not_ looking at
5478				 * the value of the DTRACEOPT_STRSIZE option;
5479				 * had this been set, we would expect to have
5480				 * a non-zero size value in the "pushtr".
5481				 */
5482				tupregs[ttop].dttk_size =
5483				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5484				    regs[r2] ? regs[r2] :
5485				    dtrace_strsize_default) + 1;
5486			} else {
5487				tupregs[ttop].dttk_size = regs[r2];
5488			}
5489
5490			tupregs[ttop++].dttk_value = regs[rd];
5491			break;
5492
5493		case DIF_OP_PUSHTV:
5494			if (ttop == DIF_DTR_NREGS) {
5495				*flags |= CPU_DTRACE_TUPOFLOW;
5496				break;
5497			}
5498
5499			tupregs[ttop].dttk_value = regs[rd];
5500			tupregs[ttop++].dttk_size = 0;
5501			break;
5502
5503		case DIF_OP_POPTS:
5504			if (ttop != 0)
5505				ttop--;
5506			break;
5507
5508		case DIF_OP_FLUSHTS:
5509			ttop = 0;
5510			break;
5511
5512		case DIF_OP_LDGAA:
5513		case DIF_OP_LDTAA: {
5514			dtrace_dynvar_t *dvar;
5515			dtrace_key_t *key = tupregs;
5516			uint_t nkeys = ttop;
5517
5518			id = DIF_INSTR_VAR(instr);
5519			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5520			id -= DIF_VAR_OTHER_UBASE;
5521
5522			key[nkeys].dttk_value = (uint64_t)id;
5523			key[nkeys++].dttk_size = 0;
5524
5525			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5526				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5527				key[nkeys++].dttk_size = 0;
5528				v = &vstate->dtvs_tlocals[id];
5529			} else {
5530				v = &vstate->dtvs_globals[id]->dtsv_var;
5531			}
5532
5533			dvar = dtrace_dynvar(dstate, nkeys, key,
5534			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5535			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5536			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5537
5538			if (dvar == NULL) {
5539				regs[rd] = 0;
5540				break;
5541			}
5542
5543			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5544				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5545			} else {
5546				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5547			}
5548
5549			break;
5550		}
5551
5552		case DIF_OP_STGAA:
5553		case DIF_OP_STTAA: {
5554			dtrace_dynvar_t *dvar;
5555			dtrace_key_t *key = tupregs;
5556			uint_t nkeys = ttop;
5557
5558			id = DIF_INSTR_VAR(instr);
5559			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5560			id -= DIF_VAR_OTHER_UBASE;
5561
5562			key[nkeys].dttk_value = (uint64_t)id;
5563			key[nkeys++].dttk_size = 0;
5564
5565			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5566				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5567				key[nkeys++].dttk_size = 0;
5568				v = &vstate->dtvs_tlocals[id];
5569			} else {
5570				v = &vstate->dtvs_globals[id]->dtsv_var;
5571			}
5572
5573			dvar = dtrace_dynvar(dstate, nkeys, key,
5574			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5575			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5576			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5577			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5578
5579			if (dvar == NULL)
5580				break;
5581
5582			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5583				if (!dtrace_vcanload(
5584				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5585				    mstate, vstate))
5586					break;
5587
5588				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5589				    dvar->dtdv_data, &v->dtdv_type);
5590			} else {
5591				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5592			}
5593
5594			break;
5595		}
5596
5597		case DIF_OP_ALLOCS: {
5598			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5599			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5600
5601			/*
5602			 * Rounding up the user allocation size could have
5603			 * overflowed large, bogus allocations (like -1ULL) to
5604			 * 0.
5605			 */
5606			if (size < regs[r1] ||
5607			    !DTRACE_INSCRATCH(mstate, size)) {
5608				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5609				regs[rd] = 0;
5610				break;
5611			}
5612
5613			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5614			mstate->dtms_scratch_ptr += size;
5615			regs[rd] = ptr;
5616			break;
5617		}
5618
5619		case DIF_OP_COPYS:
5620			if (!dtrace_canstore(regs[rd], regs[r2],
5621			    mstate, vstate)) {
5622				*flags |= CPU_DTRACE_BADADDR;
5623				*illval = regs[rd];
5624				break;
5625			}
5626
5627			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5628				break;
5629
5630			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5631			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5632			break;
5633
5634		case DIF_OP_STB:
5635			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5636				*flags |= CPU_DTRACE_BADADDR;
5637				*illval = regs[rd];
5638				break;
5639			}
5640			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5641			break;
5642
5643		case DIF_OP_STH:
5644			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5645				*flags |= CPU_DTRACE_BADADDR;
5646				*illval = regs[rd];
5647				break;
5648			}
5649			if (regs[rd] & 1) {
5650				*flags |= CPU_DTRACE_BADALIGN;
5651				*illval = regs[rd];
5652				break;
5653			}
5654			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5655			break;
5656
5657		case DIF_OP_STW:
5658			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5659				*flags |= CPU_DTRACE_BADADDR;
5660				*illval = regs[rd];
5661				break;
5662			}
5663			if (regs[rd] & 3) {
5664				*flags |= CPU_DTRACE_BADALIGN;
5665				*illval = regs[rd];
5666				break;
5667			}
5668			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5669			break;
5670
5671		case DIF_OP_STX:
5672			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5673				*flags |= CPU_DTRACE_BADADDR;
5674				*illval = regs[rd];
5675				break;
5676			}
5677			if (regs[rd] & 7) {
5678				*flags |= CPU_DTRACE_BADALIGN;
5679				*illval = regs[rd];
5680				break;
5681			}
5682			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5683			break;
5684		}
5685	}
5686
5687	if (!(*flags & CPU_DTRACE_FAULT))
5688		return (rval);
5689
5690	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5691	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5692
5693	return (0);
5694}
5695
5696static void
5697dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5698{
5699	dtrace_probe_t *probe = ecb->dte_probe;
5700	dtrace_provider_t *prov = probe->dtpr_provider;
5701	char c[DTRACE_FULLNAMELEN + 80], *str;
5702	char *msg = "dtrace: breakpoint action at probe ";
5703	char *ecbmsg = " (ecb ";
5704	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5705	uintptr_t val = (uintptr_t)ecb;
5706	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5707
5708	if (dtrace_destructive_disallow)
5709		return;
5710
5711	/*
5712	 * It's impossible to be taking action on the NULL probe.
5713	 */
5714	ASSERT(probe != NULL);
5715
5716	/*
5717	 * This is a poor man's (destitute man's?) sprintf():  we want to
5718	 * print the provider name, module name, function name and name of
5719	 * the probe, along with the hex address of the ECB with the breakpoint
5720	 * action -- all of which we must place in the character buffer by
5721	 * hand.
5722	 */
5723	while (*msg != '\0')
5724		c[i++] = *msg++;
5725
5726	for (str = prov->dtpv_name; *str != '\0'; str++)
5727		c[i++] = *str;
5728	c[i++] = ':';
5729
5730	for (str = probe->dtpr_mod; *str != '\0'; str++)
5731		c[i++] = *str;
5732	c[i++] = ':';
5733
5734	for (str = probe->dtpr_func; *str != '\0'; str++)
5735		c[i++] = *str;
5736	c[i++] = ':';
5737
5738	for (str = probe->dtpr_name; *str != '\0'; str++)
5739		c[i++] = *str;
5740
5741	while (*ecbmsg != '\0')
5742		c[i++] = *ecbmsg++;
5743
5744	while (shift >= 0) {
5745		mask = (uintptr_t)0xf << shift;
5746
5747		if (val >= ((uintptr_t)1 << shift))
5748			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5749		shift -= 4;
5750	}
5751
5752	c[i++] = ')';
5753	c[i] = '\0';
5754
5755#if defined(sun)
5756	debug_enter(c);
5757#else
5758	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5759#endif
5760}
5761
5762static void
5763dtrace_action_panic(dtrace_ecb_t *ecb)
5764{
5765	dtrace_probe_t *probe = ecb->dte_probe;
5766
5767	/*
5768	 * It's impossible to be taking action on the NULL probe.
5769	 */
5770	ASSERT(probe != NULL);
5771
5772	if (dtrace_destructive_disallow)
5773		return;
5774
5775	if (dtrace_panicked != NULL)
5776		return;
5777
5778	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5779		return;
5780
5781	/*
5782	 * We won the right to panic.  (We want to be sure that only one
5783	 * thread calls panic() from dtrace_probe(), and that panic() is
5784	 * called exactly once.)
5785	 */
5786	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5787	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5788	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5789}
5790
5791static void
5792dtrace_action_raise(uint64_t sig)
5793{
5794	if (dtrace_destructive_disallow)
5795		return;
5796
5797	if (sig >= NSIG) {
5798		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5799		return;
5800	}
5801
5802#if defined(sun)
5803	/*
5804	 * raise() has a queue depth of 1 -- we ignore all subsequent
5805	 * invocations of the raise() action.
5806	 */
5807	if (curthread->t_dtrace_sig == 0)
5808		curthread->t_dtrace_sig = (uint8_t)sig;
5809
5810	curthread->t_sig_check = 1;
5811	aston(curthread);
5812#else
5813	struct proc *p = curproc;
5814	PROC_LOCK(p);
5815	kern_psignal(p, sig);
5816	PROC_UNLOCK(p);
5817#endif
5818}
5819
5820static void
5821dtrace_action_stop(void)
5822{
5823	if (dtrace_destructive_disallow)
5824		return;
5825
5826#if defined(sun)
5827	if (!curthread->t_dtrace_stop) {
5828		curthread->t_dtrace_stop = 1;
5829		curthread->t_sig_check = 1;
5830		aston(curthread);
5831	}
5832#else
5833	struct proc *p = curproc;
5834	PROC_LOCK(p);
5835	kern_psignal(p, SIGSTOP);
5836	PROC_UNLOCK(p);
5837#endif
5838}
5839
5840static void
5841dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5842{
5843	hrtime_t now;
5844	volatile uint16_t *flags;
5845#if defined(sun)
5846	cpu_t *cpu = CPU;
5847#else
5848	cpu_t *cpu = &solaris_cpu[curcpu];
5849#endif
5850
5851	if (dtrace_destructive_disallow)
5852		return;
5853
5854	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5855
5856	now = dtrace_gethrtime();
5857
5858	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5859		/*
5860		 * We need to advance the mark to the current time.
5861		 */
5862		cpu->cpu_dtrace_chillmark = now;
5863		cpu->cpu_dtrace_chilled = 0;
5864	}
5865
5866	/*
5867	 * Now check to see if the requested chill time would take us over
5868	 * the maximum amount of time allowed in the chill interval.  (Or
5869	 * worse, if the calculation itself induces overflow.)
5870	 */
5871	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5872	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5873		*flags |= CPU_DTRACE_ILLOP;
5874		return;
5875	}
5876
5877	while (dtrace_gethrtime() - now < val)
5878		continue;
5879
5880	/*
5881	 * Normally, we assure that the value of the variable "timestamp" does
5882	 * not change within an ECB.  The presence of chill() represents an
5883	 * exception to this rule, however.
5884	 */
5885	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5886	cpu->cpu_dtrace_chilled += val;
5887}
5888
5889static void
5890dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5891    uint64_t *buf, uint64_t arg)
5892{
5893	int nframes = DTRACE_USTACK_NFRAMES(arg);
5894	int strsize = DTRACE_USTACK_STRSIZE(arg);
5895	uint64_t *pcs = &buf[1], *fps;
5896	char *str = (char *)&pcs[nframes];
5897	int size, offs = 0, i, j;
5898	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5899	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5900	char *sym;
5901
5902	/*
5903	 * Should be taking a faster path if string space has not been
5904	 * allocated.
5905	 */
5906	ASSERT(strsize != 0);
5907
5908	/*
5909	 * We will first allocate some temporary space for the frame pointers.
5910	 */
5911	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5912	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5913	    (nframes * sizeof (uint64_t));
5914
5915	if (!DTRACE_INSCRATCH(mstate, size)) {
5916		/*
5917		 * Not enough room for our frame pointers -- need to indicate
5918		 * that we ran out of scratch space.
5919		 */
5920		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5921		return;
5922	}
5923
5924	mstate->dtms_scratch_ptr += size;
5925	saved = mstate->dtms_scratch_ptr;
5926
5927	/*
5928	 * Now get a stack with both program counters and frame pointers.
5929	 */
5930	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5931	dtrace_getufpstack(buf, fps, nframes + 1);
5932	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5933
5934	/*
5935	 * If that faulted, we're cooked.
5936	 */
5937	if (*flags & CPU_DTRACE_FAULT)
5938		goto out;
5939
5940	/*
5941	 * Now we want to walk up the stack, calling the USTACK helper.  For
5942	 * each iteration, we restore the scratch pointer.
5943	 */
5944	for (i = 0; i < nframes; i++) {
5945		mstate->dtms_scratch_ptr = saved;
5946
5947		if (offs >= strsize)
5948			break;
5949
5950		sym = (char *)(uintptr_t)dtrace_helper(
5951		    DTRACE_HELPER_ACTION_USTACK,
5952		    mstate, state, pcs[i], fps[i]);
5953
5954		/*
5955		 * If we faulted while running the helper, we're going to
5956		 * clear the fault and null out the corresponding string.
5957		 */
5958		if (*flags & CPU_DTRACE_FAULT) {
5959			*flags &= ~CPU_DTRACE_FAULT;
5960			str[offs++] = '\0';
5961			continue;
5962		}
5963
5964		if (sym == NULL) {
5965			str[offs++] = '\0';
5966			continue;
5967		}
5968
5969		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5970
5971		/*
5972		 * Now copy in the string that the helper returned to us.
5973		 */
5974		for (j = 0; offs + j < strsize; j++) {
5975			if ((str[offs + j] = sym[j]) == '\0')
5976				break;
5977		}
5978
5979		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5980
5981		offs += j + 1;
5982	}
5983
5984	if (offs >= strsize) {
5985		/*
5986		 * If we didn't have room for all of the strings, we don't
5987		 * abort processing -- this needn't be a fatal error -- but we
5988		 * still want to increment a counter (dts_stkstroverflows) to
5989		 * allow this condition to be warned about.  (If this is from
5990		 * a jstack() action, it is easily tuned via jstackstrsize.)
5991		 */
5992		dtrace_error(&state->dts_stkstroverflows);
5993	}
5994
5995	while (offs < strsize)
5996		str[offs++] = '\0';
5997
5998out:
5999	mstate->dtms_scratch_ptr = old;
6000}
6001
6002/*
6003 * If you're looking for the epicenter of DTrace, you just found it.  This
6004 * is the function called by the provider to fire a probe -- from which all
6005 * subsequent probe-context DTrace activity emanates.
6006 */
6007void
6008dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6009    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6010{
6011	processorid_t cpuid;
6012	dtrace_icookie_t cookie;
6013	dtrace_probe_t *probe;
6014	dtrace_mstate_t mstate;
6015	dtrace_ecb_t *ecb;
6016	dtrace_action_t *act;
6017	intptr_t offs;
6018	size_t size;
6019	int vtime, onintr;
6020	volatile uint16_t *flags;
6021	hrtime_t now;
6022
6023	if (panicstr != NULL)
6024		return;
6025
6026#if defined(sun)
6027	/*
6028	 * Kick out immediately if this CPU is still being born (in which case
6029	 * curthread will be set to -1) or the current thread can't allow
6030	 * probes in its current context.
6031	 */
6032	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6033		return;
6034#endif
6035
6036	cookie = dtrace_interrupt_disable();
6037	probe = dtrace_probes[id - 1];
6038	cpuid = curcpu;
6039	onintr = CPU_ON_INTR(CPU);
6040
6041	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6042	    probe->dtpr_predcache == curthread->t_predcache) {
6043		/*
6044		 * We have hit in the predicate cache; we know that
6045		 * this predicate would evaluate to be false.
6046		 */
6047		dtrace_interrupt_enable(cookie);
6048		return;
6049	}
6050
6051#if defined(sun)
6052	if (panic_quiesce) {
6053#else
6054	if (panicstr != NULL) {
6055#endif
6056		/*
6057		 * We don't trace anything if we're panicking.
6058		 */
6059		dtrace_interrupt_enable(cookie);
6060		return;
6061	}
6062
6063	now = dtrace_gethrtime();
6064	vtime = dtrace_vtime_references != 0;
6065
6066	if (vtime && curthread->t_dtrace_start)
6067		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6068
6069	mstate.dtms_difo = NULL;
6070	mstate.dtms_probe = probe;
6071	mstate.dtms_strtok = 0;
6072	mstate.dtms_arg[0] = arg0;
6073	mstate.dtms_arg[1] = arg1;
6074	mstate.dtms_arg[2] = arg2;
6075	mstate.dtms_arg[3] = arg3;
6076	mstate.dtms_arg[4] = arg4;
6077
6078	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6079
6080	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6081		dtrace_predicate_t *pred = ecb->dte_predicate;
6082		dtrace_state_t *state = ecb->dte_state;
6083		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6084		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6085		dtrace_vstate_t *vstate = &state->dts_vstate;
6086		dtrace_provider_t *prov = probe->dtpr_provider;
6087		uint64_t tracememsize = 0;
6088		int committed = 0;
6089		caddr_t tomax;
6090
6091		/*
6092		 * A little subtlety with the following (seemingly innocuous)
6093		 * declaration of the automatic 'val':  by looking at the
6094		 * code, you might think that it could be declared in the
6095		 * action processing loop, below.  (That is, it's only used in
6096		 * the action processing loop.)  However, it must be declared
6097		 * out of that scope because in the case of DIF expression
6098		 * arguments to aggregating actions, one iteration of the
6099		 * action loop will use the last iteration's value.
6100		 */
6101		uint64_t val = 0;
6102
6103		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6104		*flags &= ~CPU_DTRACE_ERROR;
6105
6106		if (prov == dtrace_provider) {
6107			/*
6108			 * If dtrace itself is the provider of this probe,
6109			 * we're only going to continue processing the ECB if
6110			 * arg0 (the dtrace_state_t) is equal to the ECB's
6111			 * creating state.  (This prevents disjoint consumers
6112			 * from seeing one another's metaprobes.)
6113			 */
6114			if (arg0 != (uint64_t)(uintptr_t)state)
6115				continue;
6116		}
6117
6118		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6119			/*
6120			 * We're not currently active.  If our provider isn't
6121			 * the dtrace pseudo provider, we're not interested.
6122			 */
6123			if (prov != dtrace_provider)
6124				continue;
6125
6126			/*
6127			 * Now we must further check if we are in the BEGIN
6128			 * probe.  If we are, we will only continue processing
6129			 * if we're still in WARMUP -- if one BEGIN enabling
6130			 * has invoked the exit() action, we don't want to
6131			 * evaluate subsequent BEGIN enablings.
6132			 */
6133			if (probe->dtpr_id == dtrace_probeid_begin &&
6134			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6135				ASSERT(state->dts_activity ==
6136				    DTRACE_ACTIVITY_DRAINING);
6137				continue;
6138			}
6139		}
6140
6141		if (ecb->dte_cond) {
6142			/*
6143			 * If the dte_cond bits indicate that this
6144			 * consumer is only allowed to see user-mode firings
6145			 * of this probe, call the provider's dtps_usermode()
6146			 * entry point to check that the probe was fired
6147			 * while in a user context. Skip this ECB if that's
6148			 * not the case.
6149			 */
6150			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6151			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6152			    probe->dtpr_id, probe->dtpr_arg) == 0)
6153				continue;
6154
6155#if defined(sun)
6156			/*
6157			 * This is more subtle than it looks. We have to be
6158			 * absolutely certain that CRED() isn't going to
6159			 * change out from under us so it's only legit to
6160			 * examine that structure if we're in constrained
6161			 * situations. Currently, the only times we'll this
6162			 * check is if a non-super-user has enabled the
6163			 * profile or syscall providers -- providers that
6164			 * allow visibility of all processes. For the
6165			 * profile case, the check above will ensure that
6166			 * we're examining a user context.
6167			 */
6168			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6169				cred_t *cr;
6170				cred_t *s_cr =
6171				    ecb->dte_state->dts_cred.dcr_cred;
6172				proc_t *proc;
6173
6174				ASSERT(s_cr != NULL);
6175
6176				if ((cr = CRED()) == NULL ||
6177				    s_cr->cr_uid != cr->cr_uid ||
6178				    s_cr->cr_uid != cr->cr_ruid ||
6179				    s_cr->cr_uid != cr->cr_suid ||
6180				    s_cr->cr_gid != cr->cr_gid ||
6181				    s_cr->cr_gid != cr->cr_rgid ||
6182				    s_cr->cr_gid != cr->cr_sgid ||
6183				    (proc = ttoproc(curthread)) == NULL ||
6184				    (proc->p_flag & SNOCD))
6185					continue;
6186			}
6187
6188			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6189				cred_t *cr;
6190				cred_t *s_cr =
6191				    ecb->dte_state->dts_cred.dcr_cred;
6192
6193				ASSERT(s_cr != NULL);
6194
6195				if ((cr = CRED()) == NULL ||
6196				    s_cr->cr_zone->zone_id !=
6197				    cr->cr_zone->zone_id)
6198					continue;
6199			}
6200#endif
6201		}
6202
6203		if (now - state->dts_alive > dtrace_deadman_timeout) {
6204			/*
6205			 * We seem to be dead.  Unless we (a) have kernel
6206			 * destructive permissions (b) have expicitly enabled
6207			 * destructive actions and (c) destructive actions have
6208			 * not been disabled, we're going to transition into
6209			 * the KILLED state, from which no further processing
6210			 * on this state will be performed.
6211			 */
6212			if (!dtrace_priv_kernel_destructive(state) ||
6213			    !state->dts_cred.dcr_destructive ||
6214			    dtrace_destructive_disallow) {
6215				void *activity = &state->dts_activity;
6216				dtrace_activity_t current;
6217
6218				do {
6219					current = state->dts_activity;
6220				} while (dtrace_cas32(activity, current,
6221				    DTRACE_ACTIVITY_KILLED) != current);
6222
6223				continue;
6224			}
6225		}
6226
6227		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6228		    ecb->dte_alignment, state, &mstate)) < 0)
6229			continue;
6230
6231		tomax = buf->dtb_tomax;
6232		ASSERT(tomax != NULL);
6233
6234		if (ecb->dte_size != 0)
6235			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6236
6237		mstate.dtms_epid = ecb->dte_epid;
6238		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6239
6240		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6241			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6242		else
6243			mstate.dtms_access = 0;
6244
6245		if (pred != NULL) {
6246			dtrace_difo_t *dp = pred->dtp_difo;
6247			int rval;
6248
6249			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6250
6251			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6252				dtrace_cacheid_t cid = probe->dtpr_predcache;
6253
6254				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6255					/*
6256					 * Update the predicate cache...
6257					 */
6258					ASSERT(cid == pred->dtp_cacheid);
6259					curthread->t_predcache = cid;
6260				}
6261
6262				continue;
6263			}
6264		}
6265
6266		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6267		    act != NULL; act = act->dta_next) {
6268			size_t valoffs;
6269			dtrace_difo_t *dp;
6270			dtrace_recdesc_t *rec = &act->dta_rec;
6271
6272			size = rec->dtrd_size;
6273			valoffs = offs + rec->dtrd_offset;
6274
6275			if (DTRACEACT_ISAGG(act->dta_kind)) {
6276				uint64_t v = 0xbad;
6277				dtrace_aggregation_t *agg;
6278
6279				agg = (dtrace_aggregation_t *)act;
6280
6281				if ((dp = act->dta_difo) != NULL)
6282					v = dtrace_dif_emulate(dp,
6283					    &mstate, vstate, state);
6284
6285				if (*flags & CPU_DTRACE_ERROR)
6286					continue;
6287
6288				/*
6289				 * Note that we always pass the expression
6290				 * value from the previous iteration of the
6291				 * action loop.  This value will only be used
6292				 * if there is an expression argument to the
6293				 * aggregating action, denoted by the
6294				 * dtag_hasarg field.
6295				 */
6296				dtrace_aggregate(agg, buf,
6297				    offs, aggbuf, v, val);
6298				continue;
6299			}
6300
6301			switch (act->dta_kind) {
6302			case DTRACEACT_STOP:
6303				if (dtrace_priv_proc_destructive(state))
6304					dtrace_action_stop();
6305				continue;
6306
6307			case DTRACEACT_BREAKPOINT:
6308				if (dtrace_priv_kernel_destructive(state))
6309					dtrace_action_breakpoint(ecb);
6310				continue;
6311
6312			case DTRACEACT_PANIC:
6313				if (dtrace_priv_kernel_destructive(state))
6314					dtrace_action_panic(ecb);
6315				continue;
6316
6317			case DTRACEACT_STACK:
6318				if (!dtrace_priv_kernel(state))
6319					continue;
6320
6321				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6322				    size / sizeof (pc_t), probe->dtpr_aframes,
6323				    DTRACE_ANCHORED(probe) ? NULL :
6324				    (uint32_t *)arg0);
6325				continue;
6326
6327			case DTRACEACT_JSTACK:
6328			case DTRACEACT_USTACK:
6329				if (!dtrace_priv_proc(state))
6330					continue;
6331
6332				/*
6333				 * See comment in DIF_VAR_PID.
6334				 */
6335				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6336				    CPU_ON_INTR(CPU)) {
6337					int depth = DTRACE_USTACK_NFRAMES(
6338					    rec->dtrd_arg) + 1;
6339
6340					dtrace_bzero((void *)(tomax + valoffs),
6341					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6342					    + depth * sizeof (uint64_t));
6343
6344					continue;
6345				}
6346
6347				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6348				    curproc->p_dtrace_helpers != NULL) {
6349					/*
6350					 * This is the slow path -- we have
6351					 * allocated string space, and we're
6352					 * getting the stack of a process that
6353					 * has helpers.  Call into a separate
6354					 * routine to perform this processing.
6355					 */
6356					dtrace_action_ustack(&mstate, state,
6357					    (uint64_t *)(tomax + valoffs),
6358					    rec->dtrd_arg);
6359					continue;
6360				}
6361
6362				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6363				dtrace_getupcstack((uint64_t *)
6364				    (tomax + valoffs),
6365				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6366				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6367				continue;
6368
6369			default:
6370				break;
6371			}
6372
6373			dp = act->dta_difo;
6374			ASSERT(dp != NULL);
6375
6376			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6377
6378			if (*flags & CPU_DTRACE_ERROR)
6379				continue;
6380
6381			switch (act->dta_kind) {
6382			case DTRACEACT_SPECULATE:
6383				ASSERT(buf == &state->dts_buffer[cpuid]);
6384				buf = dtrace_speculation_buffer(state,
6385				    cpuid, val);
6386
6387				if (buf == NULL) {
6388					*flags |= CPU_DTRACE_DROP;
6389					continue;
6390				}
6391
6392				offs = dtrace_buffer_reserve(buf,
6393				    ecb->dte_needed, ecb->dte_alignment,
6394				    state, NULL);
6395
6396				if (offs < 0) {
6397					*flags |= CPU_DTRACE_DROP;
6398					continue;
6399				}
6400
6401				tomax = buf->dtb_tomax;
6402				ASSERT(tomax != NULL);
6403
6404				if (ecb->dte_size != 0)
6405					DTRACE_STORE(uint32_t, tomax, offs,
6406					    ecb->dte_epid);
6407				continue;
6408
6409			case DTRACEACT_PRINTM: {
6410				/* The DIF returns a 'memref'. */
6411				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6412
6413				/* Get the size from the memref. */
6414				size = memref[1];
6415
6416				/*
6417				 * Check if the size exceeds the allocated
6418				 * buffer size.
6419				 */
6420				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6421					/* Flag a drop! */
6422					*flags |= CPU_DTRACE_DROP;
6423					continue;
6424				}
6425
6426				/* Store the size in the buffer first. */
6427				DTRACE_STORE(uintptr_t, tomax,
6428				    valoffs, size);
6429
6430				/*
6431				 * Offset the buffer address to the start
6432				 * of the data.
6433				 */
6434				valoffs += sizeof(uintptr_t);
6435
6436				/*
6437				 * Reset to the memory address rather than
6438				 * the memref array, then let the BYREF
6439				 * code below do the work to store the
6440				 * memory data in the buffer.
6441				 */
6442				val = memref[0];
6443				break;
6444			}
6445
6446			case DTRACEACT_PRINTT: {
6447				/* The DIF returns a 'typeref'. */
6448				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6449				char c = '\0' + 1;
6450				size_t s;
6451
6452				/*
6453				 * Get the type string length and round it
6454				 * up so that the data that follows is
6455				 * aligned for easy access.
6456				 */
6457				size_t typs = strlen((char *) typeref[2]) + 1;
6458				typs = roundup(typs,  sizeof(uintptr_t));
6459
6460				/*
6461				 *Get the size from the typeref using the
6462				 * number of elements and the type size.
6463				 */
6464				size = typeref[1] * typeref[3];
6465
6466				/*
6467				 * Check if the size exceeds the allocated
6468				 * buffer size.
6469				 */
6470				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6471					/* Flag a drop! */
6472					*flags |= CPU_DTRACE_DROP;
6473
6474				}
6475
6476				/* Store the size in the buffer first. */
6477				DTRACE_STORE(uintptr_t, tomax,
6478				    valoffs, size);
6479				valoffs += sizeof(uintptr_t);
6480
6481				/* Store the type size in the buffer. */
6482				DTRACE_STORE(uintptr_t, tomax,
6483				    valoffs, typeref[3]);
6484				valoffs += sizeof(uintptr_t);
6485
6486				val = typeref[2];
6487
6488				for (s = 0; s < typs; s++) {
6489					if (c != '\0')
6490						c = dtrace_load8(val++);
6491
6492					DTRACE_STORE(uint8_t, tomax,
6493					    valoffs++, c);
6494				}
6495
6496				/*
6497				 * Reset to the memory address rather than
6498				 * the typeref array, then let the BYREF
6499				 * code below do the work to store the
6500				 * memory data in the buffer.
6501				 */
6502				val = typeref[0];
6503				break;
6504			}
6505
6506			case DTRACEACT_CHILL:
6507				if (dtrace_priv_kernel_destructive(state))
6508					dtrace_action_chill(&mstate, val);
6509				continue;
6510
6511			case DTRACEACT_RAISE:
6512				if (dtrace_priv_proc_destructive(state))
6513					dtrace_action_raise(val);
6514				continue;
6515
6516			case DTRACEACT_COMMIT:
6517				ASSERT(!committed);
6518
6519				/*
6520				 * We need to commit our buffer state.
6521				 */
6522				if (ecb->dte_size)
6523					buf->dtb_offset = offs + ecb->dte_size;
6524				buf = &state->dts_buffer[cpuid];
6525				dtrace_speculation_commit(state, cpuid, val);
6526				committed = 1;
6527				continue;
6528
6529			case DTRACEACT_DISCARD:
6530				dtrace_speculation_discard(state, cpuid, val);
6531				continue;
6532
6533			case DTRACEACT_DIFEXPR:
6534			case DTRACEACT_LIBACT:
6535			case DTRACEACT_PRINTF:
6536			case DTRACEACT_PRINTA:
6537			case DTRACEACT_SYSTEM:
6538			case DTRACEACT_FREOPEN:
6539			case DTRACEACT_TRACEMEM:
6540				break;
6541
6542			case DTRACEACT_TRACEMEM_DYNSIZE:
6543				tracememsize = val;
6544				break;
6545
6546			case DTRACEACT_SYM:
6547			case DTRACEACT_MOD:
6548				if (!dtrace_priv_kernel(state))
6549					continue;
6550				break;
6551
6552			case DTRACEACT_USYM:
6553			case DTRACEACT_UMOD:
6554			case DTRACEACT_UADDR: {
6555#if defined(sun)
6556				struct pid *pid = curthread->t_procp->p_pidp;
6557#endif
6558
6559				if (!dtrace_priv_proc(state))
6560					continue;
6561
6562				DTRACE_STORE(uint64_t, tomax,
6563#if defined(sun)
6564				    valoffs, (uint64_t)pid->pid_id);
6565#else
6566				    valoffs, (uint64_t) curproc->p_pid);
6567#endif
6568				DTRACE_STORE(uint64_t, tomax,
6569				    valoffs + sizeof (uint64_t), val);
6570
6571				continue;
6572			}
6573
6574			case DTRACEACT_EXIT: {
6575				/*
6576				 * For the exit action, we are going to attempt
6577				 * to atomically set our activity to be
6578				 * draining.  If this fails (either because
6579				 * another CPU has beat us to the exit action,
6580				 * or because our current activity is something
6581				 * other than ACTIVE or WARMUP), we will
6582				 * continue.  This assures that the exit action
6583				 * can be successfully recorded at most once
6584				 * when we're in the ACTIVE state.  If we're
6585				 * encountering the exit() action while in
6586				 * COOLDOWN, however, we want to honor the new
6587				 * status code.  (We know that we're the only
6588				 * thread in COOLDOWN, so there is no race.)
6589				 */
6590				void *activity = &state->dts_activity;
6591				dtrace_activity_t current = state->dts_activity;
6592
6593				if (current == DTRACE_ACTIVITY_COOLDOWN)
6594					break;
6595
6596				if (current != DTRACE_ACTIVITY_WARMUP)
6597					current = DTRACE_ACTIVITY_ACTIVE;
6598
6599				if (dtrace_cas32(activity, current,
6600				    DTRACE_ACTIVITY_DRAINING) != current) {
6601					*flags |= CPU_DTRACE_DROP;
6602					continue;
6603				}
6604
6605				break;
6606			}
6607
6608			default:
6609				ASSERT(0);
6610			}
6611
6612			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6613				uintptr_t end = valoffs + size;
6614
6615				if (tracememsize != 0 &&
6616				    valoffs + tracememsize < end) {
6617					end = valoffs + tracememsize;
6618					tracememsize = 0;
6619				}
6620
6621				if (!dtrace_vcanload((void *)(uintptr_t)val,
6622				    &dp->dtdo_rtype, &mstate, vstate))
6623					continue;
6624
6625				/*
6626				 * If this is a string, we're going to only
6627				 * load until we find the zero byte -- after
6628				 * which we'll store zero bytes.
6629				 */
6630				if (dp->dtdo_rtype.dtdt_kind ==
6631				    DIF_TYPE_STRING) {
6632					char c = '\0' + 1;
6633					int intuple = act->dta_intuple;
6634					size_t s;
6635
6636					for (s = 0; s < size; s++) {
6637						if (c != '\0')
6638							c = dtrace_load8(val++);
6639
6640						DTRACE_STORE(uint8_t, tomax,
6641						    valoffs++, c);
6642
6643						if (c == '\0' && intuple)
6644							break;
6645					}
6646
6647					continue;
6648				}
6649
6650				while (valoffs < end) {
6651					DTRACE_STORE(uint8_t, tomax, valoffs++,
6652					    dtrace_load8(val++));
6653				}
6654
6655				continue;
6656			}
6657
6658			switch (size) {
6659			case 0:
6660				break;
6661
6662			case sizeof (uint8_t):
6663				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6664				break;
6665			case sizeof (uint16_t):
6666				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6667				break;
6668			case sizeof (uint32_t):
6669				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6670				break;
6671			case sizeof (uint64_t):
6672				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6673				break;
6674			default:
6675				/*
6676				 * Any other size should have been returned by
6677				 * reference, not by value.
6678				 */
6679				ASSERT(0);
6680				break;
6681			}
6682		}
6683
6684		if (*flags & CPU_DTRACE_DROP)
6685			continue;
6686
6687		if (*flags & CPU_DTRACE_FAULT) {
6688			int ndx;
6689			dtrace_action_t *err;
6690
6691			buf->dtb_errors++;
6692
6693			if (probe->dtpr_id == dtrace_probeid_error) {
6694				/*
6695				 * There's nothing we can do -- we had an
6696				 * error on the error probe.  We bump an
6697				 * error counter to at least indicate that
6698				 * this condition happened.
6699				 */
6700				dtrace_error(&state->dts_dblerrors);
6701				continue;
6702			}
6703
6704			if (vtime) {
6705				/*
6706				 * Before recursing on dtrace_probe(), we
6707				 * need to explicitly clear out our start
6708				 * time to prevent it from being accumulated
6709				 * into t_dtrace_vtime.
6710				 */
6711				curthread->t_dtrace_start = 0;
6712			}
6713
6714			/*
6715			 * Iterate over the actions to figure out which action
6716			 * we were processing when we experienced the error.
6717			 * Note that act points _past_ the faulting action; if
6718			 * act is ecb->dte_action, the fault was in the
6719			 * predicate, if it's ecb->dte_action->dta_next it's
6720			 * in action #1, and so on.
6721			 */
6722			for (err = ecb->dte_action, ndx = 0;
6723			    err != act; err = err->dta_next, ndx++)
6724				continue;
6725
6726			dtrace_probe_error(state, ecb->dte_epid, ndx,
6727			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6728			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6729			    cpu_core[cpuid].cpuc_dtrace_illval);
6730
6731			continue;
6732		}
6733
6734		if (!committed)
6735			buf->dtb_offset = offs + ecb->dte_size;
6736	}
6737
6738	if (vtime)
6739		curthread->t_dtrace_start = dtrace_gethrtime();
6740
6741	dtrace_interrupt_enable(cookie);
6742}
6743
6744/*
6745 * DTrace Probe Hashing Functions
6746 *
6747 * The functions in this section (and indeed, the functions in remaining
6748 * sections) are not _called_ from probe context.  (Any exceptions to this are
6749 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6750 * DTrace framework to look-up probes in, add probes to and remove probes from
6751 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6752 * probe tuple -- allowing for fast lookups, regardless of what was
6753 * specified.)
6754 */
6755static uint_t
6756dtrace_hash_str(const char *p)
6757{
6758	unsigned int g;
6759	uint_t hval = 0;
6760
6761	while (*p) {
6762		hval = (hval << 4) + *p++;
6763		if ((g = (hval & 0xf0000000)) != 0)
6764			hval ^= g >> 24;
6765		hval &= ~g;
6766	}
6767	return (hval);
6768}
6769
6770static dtrace_hash_t *
6771dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6772{
6773	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6774
6775	hash->dth_stroffs = stroffs;
6776	hash->dth_nextoffs = nextoffs;
6777	hash->dth_prevoffs = prevoffs;
6778
6779	hash->dth_size = 1;
6780	hash->dth_mask = hash->dth_size - 1;
6781
6782	hash->dth_tab = kmem_zalloc(hash->dth_size *
6783	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6784
6785	return (hash);
6786}
6787
6788static void
6789dtrace_hash_destroy(dtrace_hash_t *hash)
6790{
6791#ifdef DEBUG
6792	int i;
6793
6794	for (i = 0; i < hash->dth_size; i++)
6795		ASSERT(hash->dth_tab[i] == NULL);
6796#endif
6797
6798	kmem_free(hash->dth_tab,
6799	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6800	kmem_free(hash, sizeof (dtrace_hash_t));
6801}
6802
6803static void
6804dtrace_hash_resize(dtrace_hash_t *hash)
6805{
6806	int size = hash->dth_size, i, ndx;
6807	int new_size = hash->dth_size << 1;
6808	int new_mask = new_size - 1;
6809	dtrace_hashbucket_t **new_tab, *bucket, *next;
6810
6811	ASSERT((new_size & new_mask) == 0);
6812
6813	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6814
6815	for (i = 0; i < size; i++) {
6816		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6817			dtrace_probe_t *probe = bucket->dthb_chain;
6818
6819			ASSERT(probe != NULL);
6820			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6821
6822			next = bucket->dthb_next;
6823			bucket->dthb_next = new_tab[ndx];
6824			new_tab[ndx] = bucket;
6825		}
6826	}
6827
6828	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6829	hash->dth_tab = new_tab;
6830	hash->dth_size = new_size;
6831	hash->dth_mask = new_mask;
6832}
6833
6834static void
6835dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6836{
6837	int hashval = DTRACE_HASHSTR(hash, new);
6838	int ndx = hashval & hash->dth_mask;
6839	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6840	dtrace_probe_t **nextp, **prevp;
6841
6842	for (; bucket != NULL; bucket = bucket->dthb_next) {
6843		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6844			goto add;
6845	}
6846
6847	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6848		dtrace_hash_resize(hash);
6849		dtrace_hash_add(hash, new);
6850		return;
6851	}
6852
6853	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6854	bucket->dthb_next = hash->dth_tab[ndx];
6855	hash->dth_tab[ndx] = bucket;
6856	hash->dth_nbuckets++;
6857
6858add:
6859	nextp = DTRACE_HASHNEXT(hash, new);
6860	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6861	*nextp = bucket->dthb_chain;
6862
6863	if (bucket->dthb_chain != NULL) {
6864		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6865		ASSERT(*prevp == NULL);
6866		*prevp = new;
6867	}
6868
6869	bucket->dthb_chain = new;
6870	bucket->dthb_len++;
6871}
6872
6873static dtrace_probe_t *
6874dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6875{
6876	int hashval = DTRACE_HASHSTR(hash, template);
6877	int ndx = hashval & hash->dth_mask;
6878	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6879
6880	for (; bucket != NULL; bucket = bucket->dthb_next) {
6881		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6882			return (bucket->dthb_chain);
6883	}
6884
6885	return (NULL);
6886}
6887
6888static int
6889dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6890{
6891	int hashval = DTRACE_HASHSTR(hash, template);
6892	int ndx = hashval & hash->dth_mask;
6893	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6894
6895	for (; bucket != NULL; bucket = bucket->dthb_next) {
6896		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6897			return (bucket->dthb_len);
6898	}
6899
6900	return (0);
6901}
6902
6903static void
6904dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6905{
6906	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6907	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6908
6909	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6910	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6911
6912	/*
6913	 * Find the bucket that we're removing this probe from.
6914	 */
6915	for (; bucket != NULL; bucket = bucket->dthb_next) {
6916		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6917			break;
6918	}
6919
6920	ASSERT(bucket != NULL);
6921
6922	if (*prevp == NULL) {
6923		if (*nextp == NULL) {
6924			/*
6925			 * The removed probe was the only probe on this
6926			 * bucket; we need to remove the bucket.
6927			 */
6928			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6929
6930			ASSERT(bucket->dthb_chain == probe);
6931			ASSERT(b != NULL);
6932
6933			if (b == bucket) {
6934				hash->dth_tab[ndx] = bucket->dthb_next;
6935			} else {
6936				while (b->dthb_next != bucket)
6937					b = b->dthb_next;
6938				b->dthb_next = bucket->dthb_next;
6939			}
6940
6941			ASSERT(hash->dth_nbuckets > 0);
6942			hash->dth_nbuckets--;
6943			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6944			return;
6945		}
6946
6947		bucket->dthb_chain = *nextp;
6948	} else {
6949		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6950	}
6951
6952	if (*nextp != NULL)
6953		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6954}
6955
6956/*
6957 * DTrace Utility Functions
6958 *
6959 * These are random utility functions that are _not_ called from probe context.
6960 */
6961static int
6962dtrace_badattr(const dtrace_attribute_t *a)
6963{
6964	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6965	    a->dtat_data > DTRACE_STABILITY_MAX ||
6966	    a->dtat_class > DTRACE_CLASS_MAX);
6967}
6968
6969/*
6970 * Return a duplicate copy of a string.  If the specified string is NULL,
6971 * this function returns a zero-length string.
6972 */
6973static char *
6974dtrace_strdup(const char *str)
6975{
6976	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6977
6978	if (str != NULL)
6979		(void) strcpy(new, str);
6980
6981	return (new);
6982}
6983
6984#define	DTRACE_ISALPHA(c)	\
6985	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6986
6987static int
6988dtrace_badname(const char *s)
6989{
6990	char c;
6991
6992	if (s == NULL || (c = *s++) == '\0')
6993		return (0);
6994
6995	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6996		return (1);
6997
6998	while ((c = *s++) != '\0') {
6999		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7000		    c != '-' && c != '_' && c != '.' && c != '`')
7001			return (1);
7002	}
7003
7004	return (0);
7005}
7006
7007static void
7008dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7009{
7010	uint32_t priv;
7011
7012#if defined(sun)
7013	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7014		/*
7015		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7016		 */
7017		priv = DTRACE_PRIV_ALL;
7018	} else {
7019		*uidp = crgetuid(cr);
7020		*zoneidp = crgetzoneid(cr);
7021
7022		priv = 0;
7023		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7024			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7025		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7026			priv |= DTRACE_PRIV_USER;
7027		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7028			priv |= DTRACE_PRIV_PROC;
7029		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7030			priv |= DTRACE_PRIV_OWNER;
7031		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7032			priv |= DTRACE_PRIV_ZONEOWNER;
7033	}
7034#else
7035	priv = DTRACE_PRIV_ALL;
7036#endif
7037
7038	*privp = priv;
7039}
7040
7041#ifdef DTRACE_ERRDEBUG
7042static void
7043dtrace_errdebug(const char *str)
7044{
7045	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7046	int occupied = 0;
7047
7048	mutex_enter(&dtrace_errlock);
7049	dtrace_errlast = str;
7050	dtrace_errthread = curthread;
7051
7052	while (occupied++ < DTRACE_ERRHASHSZ) {
7053		if (dtrace_errhash[hval].dter_msg == str) {
7054			dtrace_errhash[hval].dter_count++;
7055			goto out;
7056		}
7057
7058		if (dtrace_errhash[hval].dter_msg != NULL) {
7059			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7060			continue;
7061		}
7062
7063		dtrace_errhash[hval].dter_msg = str;
7064		dtrace_errhash[hval].dter_count = 1;
7065		goto out;
7066	}
7067
7068	panic("dtrace: undersized error hash");
7069out:
7070	mutex_exit(&dtrace_errlock);
7071}
7072#endif
7073
7074/*
7075 * DTrace Matching Functions
7076 *
7077 * These functions are used to match groups of probes, given some elements of
7078 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7079 */
7080static int
7081dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7082    zoneid_t zoneid)
7083{
7084	if (priv != DTRACE_PRIV_ALL) {
7085		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7086		uint32_t match = priv & ppriv;
7087
7088		/*
7089		 * No PRIV_DTRACE_* privileges...
7090		 */
7091		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7092		    DTRACE_PRIV_KERNEL)) == 0)
7093			return (0);
7094
7095		/*
7096		 * No matching bits, but there were bits to match...
7097		 */
7098		if (match == 0 && ppriv != 0)
7099			return (0);
7100
7101		/*
7102		 * Need to have permissions to the process, but don't...
7103		 */
7104		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7105		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7106			return (0);
7107		}
7108
7109		/*
7110		 * Need to be in the same zone unless we possess the
7111		 * privilege to examine all zones.
7112		 */
7113		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7114		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7115			return (0);
7116		}
7117	}
7118
7119	return (1);
7120}
7121
7122/*
7123 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7124 * consists of input pattern strings and an ops-vector to evaluate them.
7125 * This function returns >0 for match, 0 for no match, and <0 for error.
7126 */
7127static int
7128dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7129    uint32_t priv, uid_t uid, zoneid_t zoneid)
7130{
7131	dtrace_provider_t *pvp = prp->dtpr_provider;
7132	int rv;
7133
7134	if (pvp->dtpv_defunct)
7135		return (0);
7136
7137	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7138		return (rv);
7139
7140	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7141		return (rv);
7142
7143	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7144		return (rv);
7145
7146	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7147		return (rv);
7148
7149	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7150		return (0);
7151
7152	return (rv);
7153}
7154
7155/*
7156 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7157 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7158 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7159 * In addition, all of the recursion cases except for '*' matching have been
7160 * unwound.  For '*', we still implement recursive evaluation, but a depth
7161 * counter is maintained and matching is aborted if we recurse too deep.
7162 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7163 */
7164static int
7165dtrace_match_glob(const char *s, const char *p, int depth)
7166{
7167	const char *olds;
7168	char s1, c;
7169	int gs;
7170
7171	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7172		return (-1);
7173
7174	if (s == NULL)
7175		s = ""; /* treat NULL as empty string */
7176
7177top:
7178	olds = s;
7179	s1 = *s++;
7180
7181	if (p == NULL)
7182		return (0);
7183
7184	if ((c = *p++) == '\0')
7185		return (s1 == '\0');
7186
7187	switch (c) {
7188	case '[': {
7189		int ok = 0, notflag = 0;
7190		char lc = '\0';
7191
7192		if (s1 == '\0')
7193			return (0);
7194
7195		if (*p == '!') {
7196			notflag = 1;
7197			p++;
7198		}
7199
7200		if ((c = *p++) == '\0')
7201			return (0);
7202
7203		do {
7204			if (c == '-' && lc != '\0' && *p != ']') {
7205				if ((c = *p++) == '\0')
7206					return (0);
7207				if (c == '\\' && (c = *p++) == '\0')
7208					return (0);
7209
7210				if (notflag) {
7211					if (s1 < lc || s1 > c)
7212						ok++;
7213					else
7214						return (0);
7215				} else if (lc <= s1 && s1 <= c)
7216					ok++;
7217
7218			} else if (c == '\\' && (c = *p++) == '\0')
7219				return (0);
7220
7221			lc = c; /* save left-hand 'c' for next iteration */
7222
7223			if (notflag) {
7224				if (s1 != c)
7225					ok++;
7226				else
7227					return (0);
7228			} else if (s1 == c)
7229				ok++;
7230
7231			if ((c = *p++) == '\0')
7232				return (0);
7233
7234		} while (c != ']');
7235
7236		if (ok)
7237			goto top;
7238
7239		return (0);
7240	}
7241
7242	case '\\':
7243		if ((c = *p++) == '\0')
7244			return (0);
7245		/*FALLTHRU*/
7246
7247	default:
7248		if (c != s1)
7249			return (0);
7250		/*FALLTHRU*/
7251
7252	case '?':
7253		if (s1 != '\0')
7254			goto top;
7255		return (0);
7256
7257	case '*':
7258		while (*p == '*')
7259			p++; /* consecutive *'s are identical to a single one */
7260
7261		if (*p == '\0')
7262			return (1);
7263
7264		for (s = olds; *s != '\0'; s++) {
7265			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7266				return (gs);
7267		}
7268
7269		return (0);
7270	}
7271}
7272
7273/*ARGSUSED*/
7274static int
7275dtrace_match_string(const char *s, const char *p, int depth)
7276{
7277	return (s != NULL && strcmp(s, p) == 0);
7278}
7279
7280/*ARGSUSED*/
7281static int
7282dtrace_match_nul(const char *s, const char *p, int depth)
7283{
7284	return (1); /* always match the empty pattern */
7285}
7286
7287/*ARGSUSED*/
7288static int
7289dtrace_match_nonzero(const char *s, const char *p, int depth)
7290{
7291	return (s != NULL && s[0] != '\0');
7292}
7293
7294static int
7295dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7296    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7297{
7298	dtrace_probe_t template, *probe;
7299	dtrace_hash_t *hash = NULL;
7300	int len, best = INT_MAX, nmatched = 0;
7301	dtrace_id_t i;
7302
7303	ASSERT(MUTEX_HELD(&dtrace_lock));
7304
7305	/*
7306	 * If the probe ID is specified in the key, just lookup by ID and
7307	 * invoke the match callback once if a matching probe is found.
7308	 */
7309	if (pkp->dtpk_id != DTRACE_IDNONE) {
7310		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7311		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7312			(void) (*matched)(probe, arg);
7313			nmatched++;
7314		}
7315		return (nmatched);
7316	}
7317
7318	template.dtpr_mod = (char *)pkp->dtpk_mod;
7319	template.dtpr_func = (char *)pkp->dtpk_func;
7320	template.dtpr_name = (char *)pkp->dtpk_name;
7321
7322	/*
7323	 * We want to find the most distinct of the module name, function
7324	 * name, and name.  So for each one that is not a glob pattern or
7325	 * empty string, we perform a lookup in the corresponding hash and
7326	 * use the hash table with the fewest collisions to do our search.
7327	 */
7328	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7329	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7330		best = len;
7331		hash = dtrace_bymod;
7332	}
7333
7334	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7335	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7336		best = len;
7337		hash = dtrace_byfunc;
7338	}
7339
7340	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7341	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7342		best = len;
7343		hash = dtrace_byname;
7344	}
7345
7346	/*
7347	 * If we did not select a hash table, iterate over every probe and
7348	 * invoke our callback for each one that matches our input probe key.
7349	 */
7350	if (hash == NULL) {
7351		for (i = 0; i < dtrace_nprobes; i++) {
7352			if ((probe = dtrace_probes[i]) == NULL ||
7353			    dtrace_match_probe(probe, pkp, priv, uid,
7354			    zoneid) <= 0)
7355				continue;
7356
7357			nmatched++;
7358
7359			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7360				break;
7361		}
7362
7363		return (nmatched);
7364	}
7365
7366	/*
7367	 * If we selected a hash table, iterate over each probe of the same key
7368	 * name and invoke the callback for every probe that matches the other
7369	 * attributes of our input probe key.
7370	 */
7371	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7372	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7373
7374		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7375			continue;
7376
7377		nmatched++;
7378
7379		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7380			break;
7381	}
7382
7383	return (nmatched);
7384}
7385
7386/*
7387 * Return the function pointer dtrace_probecmp() should use to compare the
7388 * specified pattern with a string.  For NULL or empty patterns, we select
7389 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7390 * For non-empty non-glob strings, we use dtrace_match_string().
7391 */
7392static dtrace_probekey_f *
7393dtrace_probekey_func(const char *p)
7394{
7395	char c;
7396
7397	if (p == NULL || *p == '\0')
7398		return (&dtrace_match_nul);
7399
7400	while ((c = *p++) != '\0') {
7401		if (c == '[' || c == '?' || c == '*' || c == '\\')
7402			return (&dtrace_match_glob);
7403	}
7404
7405	return (&dtrace_match_string);
7406}
7407
7408/*
7409 * Build a probe comparison key for use with dtrace_match_probe() from the
7410 * given probe description.  By convention, a null key only matches anchored
7411 * probes: if each field is the empty string, reset dtpk_fmatch to
7412 * dtrace_match_nonzero().
7413 */
7414static void
7415dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7416{
7417	pkp->dtpk_prov = pdp->dtpd_provider;
7418	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7419
7420	pkp->dtpk_mod = pdp->dtpd_mod;
7421	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7422
7423	pkp->dtpk_func = pdp->dtpd_func;
7424	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7425
7426	pkp->dtpk_name = pdp->dtpd_name;
7427	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7428
7429	pkp->dtpk_id = pdp->dtpd_id;
7430
7431	if (pkp->dtpk_id == DTRACE_IDNONE &&
7432	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7433	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7434	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7435	    pkp->dtpk_nmatch == &dtrace_match_nul)
7436		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7437}
7438
7439/*
7440 * DTrace Provider-to-Framework API Functions
7441 *
7442 * These functions implement much of the Provider-to-Framework API, as
7443 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7444 * the functions in the API for probe management (found below), and
7445 * dtrace_probe() itself (found above).
7446 */
7447
7448/*
7449 * Register the calling provider with the DTrace framework.  This should
7450 * generally be called by DTrace providers in their attach(9E) entry point.
7451 */
7452int
7453dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7454    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7455{
7456	dtrace_provider_t *provider;
7457
7458	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7459		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7460		    "arguments", name ? name : "<NULL>");
7461		return (EINVAL);
7462	}
7463
7464	if (name[0] == '\0' || dtrace_badname(name)) {
7465		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7466		    "provider name", name);
7467		return (EINVAL);
7468	}
7469
7470	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7471	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7472	    pops->dtps_destroy == NULL ||
7473	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7474		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7475		    "provider ops", name);
7476		return (EINVAL);
7477	}
7478
7479	if (dtrace_badattr(&pap->dtpa_provider) ||
7480	    dtrace_badattr(&pap->dtpa_mod) ||
7481	    dtrace_badattr(&pap->dtpa_func) ||
7482	    dtrace_badattr(&pap->dtpa_name) ||
7483	    dtrace_badattr(&pap->dtpa_args)) {
7484		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7485		    "provider attributes", name);
7486		return (EINVAL);
7487	}
7488
7489	if (priv & ~DTRACE_PRIV_ALL) {
7490		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7491		    "privilege attributes", name);
7492		return (EINVAL);
7493	}
7494
7495	if ((priv & DTRACE_PRIV_KERNEL) &&
7496	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7497	    pops->dtps_usermode == NULL) {
7498		cmn_err(CE_WARN, "failed to register provider '%s': need "
7499		    "dtps_usermode() op for given privilege attributes", name);
7500		return (EINVAL);
7501	}
7502
7503	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7504	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7505	(void) strcpy(provider->dtpv_name, name);
7506
7507	provider->dtpv_attr = *pap;
7508	provider->dtpv_priv.dtpp_flags = priv;
7509	if (cr != NULL) {
7510		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7511		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7512	}
7513	provider->dtpv_pops = *pops;
7514
7515	if (pops->dtps_provide == NULL) {
7516		ASSERT(pops->dtps_provide_module != NULL);
7517		provider->dtpv_pops.dtps_provide =
7518		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7519	}
7520
7521	if (pops->dtps_provide_module == NULL) {
7522		ASSERT(pops->dtps_provide != NULL);
7523		provider->dtpv_pops.dtps_provide_module =
7524		    (void (*)(void *, modctl_t *))dtrace_nullop;
7525	}
7526
7527	if (pops->dtps_suspend == NULL) {
7528		ASSERT(pops->dtps_resume == NULL);
7529		provider->dtpv_pops.dtps_suspend =
7530		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7531		provider->dtpv_pops.dtps_resume =
7532		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7533	}
7534
7535	provider->dtpv_arg = arg;
7536	*idp = (dtrace_provider_id_t)provider;
7537
7538	if (pops == &dtrace_provider_ops) {
7539		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7540		ASSERT(MUTEX_HELD(&dtrace_lock));
7541		ASSERT(dtrace_anon.dta_enabling == NULL);
7542
7543		/*
7544		 * We make sure that the DTrace provider is at the head of
7545		 * the provider chain.
7546		 */
7547		provider->dtpv_next = dtrace_provider;
7548		dtrace_provider = provider;
7549		return (0);
7550	}
7551
7552	mutex_enter(&dtrace_provider_lock);
7553	mutex_enter(&dtrace_lock);
7554
7555	/*
7556	 * If there is at least one provider registered, we'll add this
7557	 * provider after the first provider.
7558	 */
7559	if (dtrace_provider != NULL) {
7560		provider->dtpv_next = dtrace_provider->dtpv_next;
7561		dtrace_provider->dtpv_next = provider;
7562	} else {
7563		dtrace_provider = provider;
7564	}
7565
7566	if (dtrace_retained != NULL) {
7567		dtrace_enabling_provide(provider);
7568
7569		/*
7570		 * Now we need to call dtrace_enabling_matchall() -- which
7571		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7572		 * to drop all of our locks before calling into it...
7573		 */
7574		mutex_exit(&dtrace_lock);
7575		mutex_exit(&dtrace_provider_lock);
7576		dtrace_enabling_matchall();
7577
7578		return (0);
7579	}
7580
7581	mutex_exit(&dtrace_lock);
7582	mutex_exit(&dtrace_provider_lock);
7583
7584	return (0);
7585}
7586
7587/*
7588 * Unregister the specified provider from the DTrace framework.  This should
7589 * generally be called by DTrace providers in their detach(9E) entry point.
7590 */
7591int
7592dtrace_unregister(dtrace_provider_id_t id)
7593{
7594	dtrace_provider_t *old = (dtrace_provider_t *)id;
7595	dtrace_provider_t *prev = NULL;
7596	int i, self = 0;
7597	dtrace_probe_t *probe, *first = NULL;
7598
7599	if (old->dtpv_pops.dtps_enable ==
7600	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7601		/*
7602		 * If DTrace itself is the provider, we're called with locks
7603		 * already held.
7604		 */
7605		ASSERT(old == dtrace_provider);
7606#if defined(sun)
7607		ASSERT(dtrace_devi != NULL);
7608#endif
7609		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7610		ASSERT(MUTEX_HELD(&dtrace_lock));
7611		self = 1;
7612
7613		if (dtrace_provider->dtpv_next != NULL) {
7614			/*
7615			 * There's another provider here; return failure.
7616			 */
7617			return (EBUSY);
7618		}
7619	} else {
7620		mutex_enter(&dtrace_provider_lock);
7621		mutex_enter(&mod_lock);
7622		mutex_enter(&dtrace_lock);
7623	}
7624
7625	/*
7626	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7627	 * probes, we refuse to let providers slither away, unless this
7628	 * provider has already been explicitly invalidated.
7629	 */
7630	if (!old->dtpv_defunct &&
7631	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7632	    dtrace_anon.dta_state->dts_necbs > 0))) {
7633		if (!self) {
7634			mutex_exit(&dtrace_lock);
7635			mutex_exit(&mod_lock);
7636			mutex_exit(&dtrace_provider_lock);
7637		}
7638		return (EBUSY);
7639	}
7640
7641	/*
7642	 * Attempt to destroy the probes associated with this provider.
7643	 */
7644	for (i = 0; i < dtrace_nprobes; i++) {
7645		if ((probe = dtrace_probes[i]) == NULL)
7646			continue;
7647
7648		if (probe->dtpr_provider != old)
7649			continue;
7650
7651		if (probe->dtpr_ecb == NULL)
7652			continue;
7653
7654		/*
7655		 * We have at least one ECB; we can't remove this provider.
7656		 */
7657		if (!self) {
7658			mutex_exit(&dtrace_lock);
7659			mutex_exit(&mod_lock);
7660			mutex_exit(&dtrace_provider_lock);
7661		}
7662		return (EBUSY);
7663	}
7664
7665	/*
7666	 * All of the probes for this provider are disabled; we can safely
7667	 * remove all of them from their hash chains and from the probe array.
7668	 */
7669	for (i = 0; i < dtrace_nprobes; i++) {
7670		if ((probe = dtrace_probes[i]) == NULL)
7671			continue;
7672
7673		if (probe->dtpr_provider != old)
7674			continue;
7675
7676		dtrace_probes[i] = NULL;
7677
7678		dtrace_hash_remove(dtrace_bymod, probe);
7679		dtrace_hash_remove(dtrace_byfunc, probe);
7680		dtrace_hash_remove(dtrace_byname, probe);
7681
7682		if (first == NULL) {
7683			first = probe;
7684			probe->dtpr_nextmod = NULL;
7685		} else {
7686			probe->dtpr_nextmod = first;
7687			first = probe;
7688		}
7689	}
7690
7691	/*
7692	 * The provider's probes have been removed from the hash chains and
7693	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7694	 * everyone has cleared out from any probe array processing.
7695	 */
7696	dtrace_sync();
7697
7698	for (probe = first; probe != NULL; probe = first) {
7699		first = probe->dtpr_nextmod;
7700
7701		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7702		    probe->dtpr_arg);
7703		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7704		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7705		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7706#if defined(sun)
7707		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7708#else
7709		free_unr(dtrace_arena, probe->dtpr_id);
7710#endif
7711		kmem_free(probe, sizeof (dtrace_probe_t));
7712	}
7713
7714	if ((prev = dtrace_provider) == old) {
7715#if defined(sun)
7716		ASSERT(self || dtrace_devi == NULL);
7717		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7718#endif
7719		dtrace_provider = old->dtpv_next;
7720	} else {
7721		while (prev != NULL && prev->dtpv_next != old)
7722			prev = prev->dtpv_next;
7723
7724		if (prev == NULL) {
7725			panic("attempt to unregister non-existent "
7726			    "dtrace provider %p\n", (void *)id);
7727		}
7728
7729		prev->dtpv_next = old->dtpv_next;
7730	}
7731
7732	if (!self) {
7733		mutex_exit(&dtrace_lock);
7734		mutex_exit(&mod_lock);
7735		mutex_exit(&dtrace_provider_lock);
7736	}
7737
7738	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7739	kmem_free(old, sizeof (dtrace_provider_t));
7740
7741	return (0);
7742}
7743
7744/*
7745 * Invalidate the specified provider.  All subsequent probe lookups for the
7746 * specified provider will fail, but its probes will not be removed.
7747 */
7748void
7749dtrace_invalidate(dtrace_provider_id_t id)
7750{
7751	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7752
7753	ASSERT(pvp->dtpv_pops.dtps_enable !=
7754	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7755
7756	mutex_enter(&dtrace_provider_lock);
7757	mutex_enter(&dtrace_lock);
7758
7759	pvp->dtpv_defunct = 1;
7760
7761	mutex_exit(&dtrace_lock);
7762	mutex_exit(&dtrace_provider_lock);
7763}
7764
7765/*
7766 * Indicate whether or not DTrace has attached.
7767 */
7768int
7769dtrace_attached(void)
7770{
7771	/*
7772	 * dtrace_provider will be non-NULL iff the DTrace driver has
7773	 * attached.  (It's non-NULL because DTrace is always itself a
7774	 * provider.)
7775	 */
7776	return (dtrace_provider != NULL);
7777}
7778
7779/*
7780 * Remove all the unenabled probes for the given provider.  This function is
7781 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7782 * -- just as many of its associated probes as it can.
7783 */
7784int
7785dtrace_condense(dtrace_provider_id_t id)
7786{
7787	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7788	int i;
7789	dtrace_probe_t *probe;
7790
7791	/*
7792	 * Make sure this isn't the dtrace provider itself.
7793	 */
7794	ASSERT(prov->dtpv_pops.dtps_enable !=
7795	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7796
7797	mutex_enter(&dtrace_provider_lock);
7798	mutex_enter(&dtrace_lock);
7799
7800	/*
7801	 * Attempt to destroy the probes associated with this provider.
7802	 */
7803	for (i = 0; i < dtrace_nprobes; i++) {
7804		if ((probe = dtrace_probes[i]) == NULL)
7805			continue;
7806
7807		if (probe->dtpr_provider != prov)
7808			continue;
7809
7810		if (probe->dtpr_ecb != NULL)
7811			continue;
7812
7813		dtrace_probes[i] = NULL;
7814
7815		dtrace_hash_remove(dtrace_bymod, probe);
7816		dtrace_hash_remove(dtrace_byfunc, probe);
7817		dtrace_hash_remove(dtrace_byname, probe);
7818
7819		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7820		    probe->dtpr_arg);
7821		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7822		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7823		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7824		kmem_free(probe, sizeof (dtrace_probe_t));
7825#if defined(sun)
7826		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7827#else
7828		free_unr(dtrace_arena, i + 1);
7829#endif
7830	}
7831
7832	mutex_exit(&dtrace_lock);
7833	mutex_exit(&dtrace_provider_lock);
7834
7835	return (0);
7836}
7837
7838/*
7839 * DTrace Probe Management Functions
7840 *
7841 * The functions in this section perform the DTrace probe management,
7842 * including functions to create probes, look-up probes, and call into the
7843 * providers to request that probes be provided.  Some of these functions are
7844 * in the Provider-to-Framework API; these functions can be identified by the
7845 * fact that they are not declared "static".
7846 */
7847
7848/*
7849 * Create a probe with the specified module name, function name, and name.
7850 */
7851dtrace_id_t
7852dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7853    const char *func, const char *name, int aframes, void *arg)
7854{
7855	dtrace_probe_t *probe, **probes;
7856	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7857	dtrace_id_t id;
7858
7859	if (provider == dtrace_provider) {
7860		ASSERT(MUTEX_HELD(&dtrace_lock));
7861	} else {
7862		mutex_enter(&dtrace_lock);
7863	}
7864
7865#if defined(sun)
7866	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7867	    VM_BESTFIT | VM_SLEEP);
7868#else
7869	id = alloc_unr(dtrace_arena);
7870#endif
7871	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7872
7873	probe->dtpr_id = id;
7874	probe->dtpr_gen = dtrace_probegen++;
7875	probe->dtpr_mod = dtrace_strdup(mod);
7876	probe->dtpr_func = dtrace_strdup(func);
7877	probe->dtpr_name = dtrace_strdup(name);
7878	probe->dtpr_arg = arg;
7879	probe->dtpr_aframes = aframes;
7880	probe->dtpr_provider = provider;
7881
7882	dtrace_hash_add(dtrace_bymod, probe);
7883	dtrace_hash_add(dtrace_byfunc, probe);
7884	dtrace_hash_add(dtrace_byname, probe);
7885
7886	if (id - 1 >= dtrace_nprobes) {
7887		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7888		size_t nsize = osize << 1;
7889
7890		if (nsize == 0) {
7891			ASSERT(osize == 0);
7892			ASSERT(dtrace_probes == NULL);
7893			nsize = sizeof (dtrace_probe_t *);
7894		}
7895
7896		probes = kmem_zalloc(nsize, KM_SLEEP);
7897
7898		if (dtrace_probes == NULL) {
7899			ASSERT(osize == 0);
7900			dtrace_probes = probes;
7901			dtrace_nprobes = 1;
7902		} else {
7903			dtrace_probe_t **oprobes = dtrace_probes;
7904
7905			bcopy(oprobes, probes, osize);
7906			dtrace_membar_producer();
7907			dtrace_probes = probes;
7908
7909			dtrace_sync();
7910
7911			/*
7912			 * All CPUs are now seeing the new probes array; we can
7913			 * safely free the old array.
7914			 */
7915			kmem_free(oprobes, osize);
7916			dtrace_nprobes <<= 1;
7917		}
7918
7919		ASSERT(id - 1 < dtrace_nprobes);
7920	}
7921
7922	ASSERT(dtrace_probes[id - 1] == NULL);
7923	dtrace_probes[id - 1] = probe;
7924
7925	if (provider != dtrace_provider)
7926		mutex_exit(&dtrace_lock);
7927
7928	return (id);
7929}
7930
7931static dtrace_probe_t *
7932dtrace_probe_lookup_id(dtrace_id_t id)
7933{
7934	ASSERT(MUTEX_HELD(&dtrace_lock));
7935
7936	if (id == 0 || id > dtrace_nprobes)
7937		return (NULL);
7938
7939	return (dtrace_probes[id - 1]);
7940}
7941
7942static int
7943dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7944{
7945	*((dtrace_id_t *)arg) = probe->dtpr_id;
7946
7947	return (DTRACE_MATCH_DONE);
7948}
7949
7950/*
7951 * Look up a probe based on provider and one or more of module name, function
7952 * name and probe name.
7953 */
7954dtrace_id_t
7955dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7956    char *func, char *name)
7957{
7958	dtrace_probekey_t pkey;
7959	dtrace_id_t id;
7960	int match;
7961
7962	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7963	pkey.dtpk_pmatch = &dtrace_match_string;
7964	pkey.dtpk_mod = mod;
7965	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7966	pkey.dtpk_func = func;
7967	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7968	pkey.dtpk_name = name;
7969	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7970	pkey.dtpk_id = DTRACE_IDNONE;
7971
7972	mutex_enter(&dtrace_lock);
7973	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7974	    dtrace_probe_lookup_match, &id);
7975	mutex_exit(&dtrace_lock);
7976
7977	ASSERT(match == 1 || match == 0);
7978	return (match ? id : 0);
7979}
7980
7981/*
7982 * Returns the probe argument associated with the specified probe.
7983 */
7984void *
7985dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7986{
7987	dtrace_probe_t *probe;
7988	void *rval = NULL;
7989
7990	mutex_enter(&dtrace_lock);
7991
7992	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7993	    probe->dtpr_provider == (dtrace_provider_t *)id)
7994		rval = probe->dtpr_arg;
7995
7996	mutex_exit(&dtrace_lock);
7997
7998	return (rval);
7999}
8000
8001/*
8002 * Copy a probe into a probe description.
8003 */
8004static void
8005dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8006{
8007	bzero(pdp, sizeof (dtrace_probedesc_t));
8008	pdp->dtpd_id = prp->dtpr_id;
8009
8010	(void) strncpy(pdp->dtpd_provider,
8011	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8012
8013	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8014	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8015	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8016}
8017
8018#if !defined(sun)
8019static int
8020dtrace_probe_provide_cb(linker_file_t lf, void *arg)
8021{
8022	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
8023
8024	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
8025
8026	return(0);
8027}
8028#endif
8029
8030
8031/*
8032 * Called to indicate that a probe -- or probes -- should be provided by a
8033 * specfied provider.  If the specified description is NULL, the provider will
8034 * be told to provide all of its probes.  (This is done whenever a new
8035 * consumer comes along, or whenever a retained enabling is to be matched.) If
8036 * the specified description is non-NULL, the provider is given the
8037 * opportunity to dynamically provide the specified probe, allowing providers
8038 * to support the creation of probes on-the-fly.  (So-called _autocreated_
8039 * probes.)  If the provider is NULL, the operations will be applied to all
8040 * providers; if the provider is non-NULL the operations will only be applied
8041 * to the specified provider.  The dtrace_provider_lock must be held, and the
8042 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8043 * will need to grab the dtrace_lock when it reenters the framework through
8044 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8045 */
8046static void
8047dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8048{
8049#if defined(sun)
8050	modctl_t *ctl;
8051#endif
8052	int all = 0;
8053
8054	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8055
8056	if (prv == NULL) {
8057		all = 1;
8058		prv = dtrace_provider;
8059	}
8060
8061	do {
8062		/*
8063		 * First, call the blanket provide operation.
8064		 */
8065		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8066
8067		/*
8068		 * Now call the per-module provide operation.  We will grab
8069		 * mod_lock to prevent the list from being modified.  Note
8070		 * that this also prevents the mod_busy bits from changing.
8071		 * (mod_busy can only be changed with mod_lock held.)
8072		 */
8073		mutex_enter(&mod_lock);
8074
8075#if defined(sun)
8076		ctl = &modules;
8077		do {
8078			if (ctl->mod_busy || ctl->mod_mp == NULL)
8079				continue;
8080
8081			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8082
8083		} while ((ctl = ctl->mod_next) != &modules);
8084#else
8085		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
8086#endif
8087
8088		mutex_exit(&mod_lock);
8089	} while (all && (prv = prv->dtpv_next) != NULL);
8090}
8091
8092#if defined(sun)
8093/*
8094 * Iterate over each probe, and call the Framework-to-Provider API function
8095 * denoted by offs.
8096 */
8097static void
8098dtrace_probe_foreach(uintptr_t offs)
8099{
8100	dtrace_provider_t *prov;
8101	void (*func)(void *, dtrace_id_t, void *);
8102	dtrace_probe_t *probe;
8103	dtrace_icookie_t cookie;
8104	int i;
8105
8106	/*
8107	 * We disable interrupts to walk through the probe array.  This is
8108	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8109	 * won't see stale data.
8110	 */
8111	cookie = dtrace_interrupt_disable();
8112
8113	for (i = 0; i < dtrace_nprobes; i++) {
8114		if ((probe = dtrace_probes[i]) == NULL)
8115			continue;
8116
8117		if (probe->dtpr_ecb == NULL) {
8118			/*
8119			 * This probe isn't enabled -- don't call the function.
8120			 */
8121			continue;
8122		}
8123
8124		prov = probe->dtpr_provider;
8125		func = *((void(**)(void *, dtrace_id_t, void *))
8126		    ((uintptr_t)&prov->dtpv_pops + offs));
8127
8128		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8129	}
8130
8131	dtrace_interrupt_enable(cookie);
8132}
8133#endif
8134
8135static int
8136dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8137{
8138	dtrace_probekey_t pkey;
8139	uint32_t priv;
8140	uid_t uid;
8141	zoneid_t zoneid;
8142
8143	ASSERT(MUTEX_HELD(&dtrace_lock));
8144	dtrace_ecb_create_cache = NULL;
8145
8146	if (desc == NULL) {
8147		/*
8148		 * If we're passed a NULL description, we're being asked to
8149		 * create an ECB with a NULL probe.
8150		 */
8151		(void) dtrace_ecb_create_enable(NULL, enab);
8152		return (0);
8153	}
8154
8155	dtrace_probekey(desc, &pkey);
8156	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8157	    &priv, &uid, &zoneid);
8158
8159	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8160	    enab));
8161}
8162
8163/*
8164 * DTrace Helper Provider Functions
8165 */
8166static void
8167dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8168{
8169	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8170	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8171	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8172}
8173
8174static void
8175dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8176    const dof_provider_t *dofprov, char *strtab)
8177{
8178	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8179	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8180	    dofprov->dofpv_provattr);
8181	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8182	    dofprov->dofpv_modattr);
8183	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8184	    dofprov->dofpv_funcattr);
8185	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8186	    dofprov->dofpv_nameattr);
8187	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8188	    dofprov->dofpv_argsattr);
8189}
8190
8191static void
8192dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8193{
8194	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8195	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8196	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8197	dof_provider_t *provider;
8198	dof_probe_t *probe;
8199	uint32_t *off, *enoff;
8200	uint8_t *arg;
8201	char *strtab;
8202	uint_t i, nprobes;
8203	dtrace_helper_provdesc_t dhpv;
8204	dtrace_helper_probedesc_t dhpb;
8205	dtrace_meta_t *meta = dtrace_meta_pid;
8206	dtrace_mops_t *mops = &meta->dtm_mops;
8207	void *parg;
8208
8209	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8210	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8211	    provider->dofpv_strtab * dof->dofh_secsize);
8212	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8213	    provider->dofpv_probes * dof->dofh_secsize);
8214	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8215	    provider->dofpv_prargs * dof->dofh_secsize);
8216	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8217	    provider->dofpv_proffs * dof->dofh_secsize);
8218
8219	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8220	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8221	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8222	enoff = NULL;
8223
8224	/*
8225	 * See dtrace_helper_provider_validate().
8226	 */
8227	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8228	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8229		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8230		    provider->dofpv_prenoffs * dof->dofh_secsize);
8231		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8232	}
8233
8234	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8235
8236	/*
8237	 * Create the provider.
8238	 */
8239	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8240
8241	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8242		return;
8243
8244	meta->dtm_count++;
8245
8246	/*
8247	 * Create the probes.
8248	 */
8249	for (i = 0; i < nprobes; i++) {
8250		probe = (dof_probe_t *)(uintptr_t)(daddr +
8251		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8252
8253		dhpb.dthpb_mod = dhp->dofhp_mod;
8254		dhpb.dthpb_func = strtab + probe->dofpr_func;
8255		dhpb.dthpb_name = strtab + probe->dofpr_name;
8256		dhpb.dthpb_base = probe->dofpr_addr;
8257		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8258		dhpb.dthpb_noffs = probe->dofpr_noffs;
8259		if (enoff != NULL) {
8260			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8261			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8262		} else {
8263			dhpb.dthpb_enoffs = NULL;
8264			dhpb.dthpb_nenoffs = 0;
8265		}
8266		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8267		dhpb.dthpb_nargc = probe->dofpr_nargc;
8268		dhpb.dthpb_xargc = probe->dofpr_xargc;
8269		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8270		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8271
8272		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8273	}
8274}
8275
8276static void
8277dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8278{
8279	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8280	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8281	int i;
8282
8283	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8284
8285	for (i = 0; i < dof->dofh_secnum; i++) {
8286		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8287		    dof->dofh_secoff + i * dof->dofh_secsize);
8288
8289		if (sec->dofs_type != DOF_SECT_PROVIDER)
8290			continue;
8291
8292		dtrace_helper_provide_one(dhp, sec, pid);
8293	}
8294
8295	/*
8296	 * We may have just created probes, so we must now rematch against
8297	 * any retained enablings.  Note that this call will acquire both
8298	 * cpu_lock and dtrace_lock; the fact that we are holding
8299	 * dtrace_meta_lock now is what defines the ordering with respect to
8300	 * these three locks.
8301	 */
8302	dtrace_enabling_matchall();
8303}
8304
8305static void
8306dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8307{
8308	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8309	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8310	dof_sec_t *str_sec;
8311	dof_provider_t *provider;
8312	char *strtab;
8313	dtrace_helper_provdesc_t dhpv;
8314	dtrace_meta_t *meta = dtrace_meta_pid;
8315	dtrace_mops_t *mops = &meta->dtm_mops;
8316
8317	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8318	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8319	    provider->dofpv_strtab * dof->dofh_secsize);
8320
8321	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8322
8323	/*
8324	 * Create the provider.
8325	 */
8326	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8327
8328	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8329
8330	meta->dtm_count--;
8331}
8332
8333static void
8334dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8335{
8336	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8337	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8338	int i;
8339
8340	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8341
8342	for (i = 0; i < dof->dofh_secnum; i++) {
8343		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8344		    dof->dofh_secoff + i * dof->dofh_secsize);
8345
8346		if (sec->dofs_type != DOF_SECT_PROVIDER)
8347			continue;
8348
8349		dtrace_helper_provider_remove_one(dhp, sec, pid);
8350	}
8351}
8352
8353/*
8354 * DTrace Meta Provider-to-Framework API Functions
8355 *
8356 * These functions implement the Meta Provider-to-Framework API, as described
8357 * in <sys/dtrace.h>.
8358 */
8359int
8360dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8361    dtrace_meta_provider_id_t *idp)
8362{
8363	dtrace_meta_t *meta;
8364	dtrace_helpers_t *help, *next;
8365	int i;
8366
8367	*idp = DTRACE_METAPROVNONE;
8368
8369	/*
8370	 * We strictly don't need the name, but we hold onto it for
8371	 * debuggability. All hail error queues!
8372	 */
8373	if (name == NULL) {
8374		cmn_err(CE_WARN, "failed to register meta-provider: "
8375		    "invalid name");
8376		return (EINVAL);
8377	}
8378
8379	if (mops == NULL ||
8380	    mops->dtms_create_probe == NULL ||
8381	    mops->dtms_provide_pid == NULL ||
8382	    mops->dtms_remove_pid == NULL) {
8383		cmn_err(CE_WARN, "failed to register meta-register %s: "
8384		    "invalid ops", name);
8385		return (EINVAL);
8386	}
8387
8388	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8389	meta->dtm_mops = *mops;
8390	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8391	(void) strcpy(meta->dtm_name, name);
8392	meta->dtm_arg = arg;
8393
8394	mutex_enter(&dtrace_meta_lock);
8395	mutex_enter(&dtrace_lock);
8396
8397	if (dtrace_meta_pid != NULL) {
8398		mutex_exit(&dtrace_lock);
8399		mutex_exit(&dtrace_meta_lock);
8400		cmn_err(CE_WARN, "failed to register meta-register %s: "
8401		    "user-land meta-provider exists", name);
8402		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8403		kmem_free(meta, sizeof (dtrace_meta_t));
8404		return (EINVAL);
8405	}
8406
8407	dtrace_meta_pid = meta;
8408	*idp = (dtrace_meta_provider_id_t)meta;
8409
8410	/*
8411	 * If there are providers and probes ready to go, pass them
8412	 * off to the new meta provider now.
8413	 */
8414
8415	help = dtrace_deferred_pid;
8416	dtrace_deferred_pid = NULL;
8417
8418	mutex_exit(&dtrace_lock);
8419
8420	while (help != NULL) {
8421		for (i = 0; i < help->dthps_nprovs; i++) {
8422			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8423			    help->dthps_pid);
8424		}
8425
8426		next = help->dthps_next;
8427		help->dthps_next = NULL;
8428		help->dthps_prev = NULL;
8429		help->dthps_deferred = 0;
8430		help = next;
8431	}
8432
8433	mutex_exit(&dtrace_meta_lock);
8434
8435	return (0);
8436}
8437
8438int
8439dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8440{
8441	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8442
8443	mutex_enter(&dtrace_meta_lock);
8444	mutex_enter(&dtrace_lock);
8445
8446	if (old == dtrace_meta_pid) {
8447		pp = &dtrace_meta_pid;
8448	} else {
8449		panic("attempt to unregister non-existent "
8450		    "dtrace meta-provider %p\n", (void *)old);
8451	}
8452
8453	if (old->dtm_count != 0) {
8454		mutex_exit(&dtrace_lock);
8455		mutex_exit(&dtrace_meta_lock);
8456		return (EBUSY);
8457	}
8458
8459	*pp = NULL;
8460
8461	mutex_exit(&dtrace_lock);
8462	mutex_exit(&dtrace_meta_lock);
8463
8464	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8465	kmem_free(old, sizeof (dtrace_meta_t));
8466
8467	return (0);
8468}
8469
8470
8471/*
8472 * DTrace DIF Object Functions
8473 */
8474static int
8475dtrace_difo_err(uint_t pc, const char *format, ...)
8476{
8477	if (dtrace_err_verbose) {
8478		va_list alist;
8479
8480		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8481		va_start(alist, format);
8482		(void) vuprintf(format, alist);
8483		va_end(alist);
8484	}
8485
8486#ifdef DTRACE_ERRDEBUG
8487	dtrace_errdebug(format);
8488#endif
8489	return (1);
8490}
8491
8492/*
8493 * Validate a DTrace DIF object by checking the IR instructions.  The following
8494 * rules are currently enforced by dtrace_difo_validate():
8495 *
8496 * 1. Each instruction must have a valid opcode
8497 * 2. Each register, string, variable, or subroutine reference must be valid
8498 * 3. No instruction can modify register %r0 (must be zero)
8499 * 4. All instruction reserved bits must be set to zero
8500 * 5. The last instruction must be a "ret" instruction
8501 * 6. All branch targets must reference a valid instruction _after_ the branch
8502 */
8503static int
8504dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8505    cred_t *cr)
8506{
8507	int err = 0, i;
8508	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8509	int kcheckload;
8510	uint_t pc;
8511
8512	kcheckload = cr == NULL ||
8513	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8514
8515	dp->dtdo_destructive = 0;
8516
8517	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8518		dif_instr_t instr = dp->dtdo_buf[pc];
8519
8520		uint_t r1 = DIF_INSTR_R1(instr);
8521		uint_t r2 = DIF_INSTR_R2(instr);
8522		uint_t rd = DIF_INSTR_RD(instr);
8523		uint_t rs = DIF_INSTR_RS(instr);
8524		uint_t label = DIF_INSTR_LABEL(instr);
8525		uint_t v = DIF_INSTR_VAR(instr);
8526		uint_t subr = DIF_INSTR_SUBR(instr);
8527		uint_t type = DIF_INSTR_TYPE(instr);
8528		uint_t op = DIF_INSTR_OP(instr);
8529
8530		switch (op) {
8531		case DIF_OP_OR:
8532		case DIF_OP_XOR:
8533		case DIF_OP_AND:
8534		case DIF_OP_SLL:
8535		case DIF_OP_SRL:
8536		case DIF_OP_SRA:
8537		case DIF_OP_SUB:
8538		case DIF_OP_ADD:
8539		case DIF_OP_MUL:
8540		case DIF_OP_SDIV:
8541		case DIF_OP_UDIV:
8542		case DIF_OP_SREM:
8543		case DIF_OP_UREM:
8544		case DIF_OP_COPYS:
8545			if (r1 >= nregs)
8546				err += efunc(pc, "invalid register %u\n", r1);
8547			if (r2 >= nregs)
8548				err += efunc(pc, "invalid register %u\n", r2);
8549			if (rd >= nregs)
8550				err += efunc(pc, "invalid register %u\n", rd);
8551			if (rd == 0)
8552				err += efunc(pc, "cannot write to %r0\n");
8553			break;
8554		case DIF_OP_NOT:
8555		case DIF_OP_MOV:
8556		case DIF_OP_ALLOCS:
8557			if (r1 >= nregs)
8558				err += efunc(pc, "invalid register %u\n", r1);
8559			if (r2 != 0)
8560				err += efunc(pc, "non-zero reserved bits\n");
8561			if (rd >= nregs)
8562				err += efunc(pc, "invalid register %u\n", rd);
8563			if (rd == 0)
8564				err += efunc(pc, "cannot write to %r0\n");
8565			break;
8566		case DIF_OP_LDSB:
8567		case DIF_OP_LDSH:
8568		case DIF_OP_LDSW:
8569		case DIF_OP_LDUB:
8570		case DIF_OP_LDUH:
8571		case DIF_OP_LDUW:
8572		case DIF_OP_LDX:
8573			if (r1 >= nregs)
8574				err += efunc(pc, "invalid register %u\n", r1);
8575			if (r2 != 0)
8576				err += efunc(pc, "non-zero reserved bits\n");
8577			if (rd >= nregs)
8578				err += efunc(pc, "invalid register %u\n", rd);
8579			if (rd == 0)
8580				err += efunc(pc, "cannot write to %r0\n");
8581			if (kcheckload)
8582				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8583				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8584			break;
8585		case DIF_OP_RLDSB:
8586		case DIF_OP_RLDSH:
8587		case DIF_OP_RLDSW:
8588		case DIF_OP_RLDUB:
8589		case DIF_OP_RLDUH:
8590		case DIF_OP_RLDUW:
8591		case DIF_OP_RLDX:
8592			if (r1 >= nregs)
8593				err += efunc(pc, "invalid register %u\n", r1);
8594			if (r2 != 0)
8595				err += efunc(pc, "non-zero reserved bits\n");
8596			if (rd >= nregs)
8597				err += efunc(pc, "invalid register %u\n", rd);
8598			if (rd == 0)
8599				err += efunc(pc, "cannot write to %r0\n");
8600			break;
8601		case DIF_OP_ULDSB:
8602		case DIF_OP_ULDSH:
8603		case DIF_OP_ULDSW:
8604		case DIF_OP_ULDUB:
8605		case DIF_OP_ULDUH:
8606		case DIF_OP_ULDUW:
8607		case DIF_OP_ULDX:
8608			if (r1 >= nregs)
8609				err += efunc(pc, "invalid register %u\n", r1);
8610			if (r2 != 0)
8611				err += efunc(pc, "non-zero reserved bits\n");
8612			if (rd >= nregs)
8613				err += efunc(pc, "invalid register %u\n", rd);
8614			if (rd == 0)
8615				err += efunc(pc, "cannot write to %r0\n");
8616			break;
8617		case DIF_OP_STB:
8618		case DIF_OP_STH:
8619		case DIF_OP_STW:
8620		case DIF_OP_STX:
8621			if (r1 >= nregs)
8622				err += efunc(pc, "invalid register %u\n", r1);
8623			if (r2 != 0)
8624				err += efunc(pc, "non-zero reserved bits\n");
8625			if (rd >= nregs)
8626				err += efunc(pc, "invalid register %u\n", rd);
8627			if (rd == 0)
8628				err += efunc(pc, "cannot write to 0 address\n");
8629			break;
8630		case DIF_OP_CMP:
8631		case DIF_OP_SCMP:
8632			if (r1 >= nregs)
8633				err += efunc(pc, "invalid register %u\n", r1);
8634			if (r2 >= nregs)
8635				err += efunc(pc, "invalid register %u\n", r2);
8636			if (rd != 0)
8637				err += efunc(pc, "non-zero reserved bits\n");
8638			break;
8639		case DIF_OP_TST:
8640			if (r1 >= nregs)
8641				err += efunc(pc, "invalid register %u\n", r1);
8642			if (r2 != 0 || rd != 0)
8643				err += efunc(pc, "non-zero reserved bits\n");
8644			break;
8645		case DIF_OP_BA:
8646		case DIF_OP_BE:
8647		case DIF_OP_BNE:
8648		case DIF_OP_BG:
8649		case DIF_OP_BGU:
8650		case DIF_OP_BGE:
8651		case DIF_OP_BGEU:
8652		case DIF_OP_BL:
8653		case DIF_OP_BLU:
8654		case DIF_OP_BLE:
8655		case DIF_OP_BLEU:
8656			if (label >= dp->dtdo_len) {
8657				err += efunc(pc, "invalid branch target %u\n",
8658				    label);
8659			}
8660			if (label <= pc) {
8661				err += efunc(pc, "backward branch to %u\n",
8662				    label);
8663			}
8664			break;
8665		case DIF_OP_RET:
8666			if (r1 != 0 || r2 != 0)
8667				err += efunc(pc, "non-zero reserved bits\n");
8668			if (rd >= nregs)
8669				err += efunc(pc, "invalid register %u\n", rd);
8670			break;
8671		case DIF_OP_NOP:
8672		case DIF_OP_POPTS:
8673		case DIF_OP_FLUSHTS:
8674			if (r1 != 0 || r2 != 0 || rd != 0)
8675				err += efunc(pc, "non-zero reserved bits\n");
8676			break;
8677		case DIF_OP_SETX:
8678			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8679				err += efunc(pc, "invalid integer ref %u\n",
8680				    DIF_INSTR_INTEGER(instr));
8681			}
8682			if (rd >= nregs)
8683				err += efunc(pc, "invalid register %u\n", rd);
8684			if (rd == 0)
8685				err += efunc(pc, "cannot write to %r0\n");
8686			break;
8687		case DIF_OP_SETS:
8688			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8689				err += efunc(pc, "invalid string ref %u\n",
8690				    DIF_INSTR_STRING(instr));
8691			}
8692			if (rd >= nregs)
8693				err += efunc(pc, "invalid register %u\n", rd);
8694			if (rd == 0)
8695				err += efunc(pc, "cannot write to %r0\n");
8696			break;
8697		case DIF_OP_LDGA:
8698		case DIF_OP_LDTA:
8699			if (r1 > DIF_VAR_ARRAY_MAX)
8700				err += efunc(pc, "invalid array %u\n", r1);
8701			if (r2 >= nregs)
8702				err += efunc(pc, "invalid register %u\n", r2);
8703			if (rd >= nregs)
8704				err += efunc(pc, "invalid register %u\n", rd);
8705			if (rd == 0)
8706				err += efunc(pc, "cannot write to %r0\n");
8707			break;
8708		case DIF_OP_LDGS:
8709		case DIF_OP_LDTS:
8710		case DIF_OP_LDLS:
8711		case DIF_OP_LDGAA:
8712		case DIF_OP_LDTAA:
8713			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8714				err += efunc(pc, "invalid variable %u\n", v);
8715			if (rd >= nregs)
8716				err += efunc(pc, "invalid register %u\n", rd);
8717			if (rd == 0)
8718				err += efunc(pc, "cannot write to %r0\n");
8719			break;
8720		case DIF_OP_STGS:
8721		case DIF_OP_STTS:
8722		case DIF_OP_STLS:
8723		case DIF_OP_STGAA:
8724		case DIF_OP_STTAA:
8725			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8726				err += efunc(pc, "invalid variable %u\n", v);
8727			if (rs >= nregs)
8728				err += efunc(pc, "invalid register %u\n", rd);
8729			break;
8730		case DIF_OP_CALL:
8731			if (subr > DIF_SUBR_MAX)
8732				err += efunc(pc, "invalid subr %u\n", subr);
8733			if (rd >= nregs)
8734				err += efunc(pc, "invalid register %u\n", rd);
8735			if (rd == 0)
8736				err += efunc(pc, "cannot write to %r0\n");
8737
8738			if (subr == DIF_SUBR_COPYOUT ||
8739			    subr == DIF_SUBR_COPYOUTSTR) {
8740				dp->dtdo_destructive = 1;
8741			}
8742			break;
8743		case DIF_OP_PUSHTR:
8744			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8745				err += efunc(pc, "invalid ref type %u\n", type);
8746			if (r2 >= nregs)
8747				err += efunc(pc, "invalid register %u\n", r2);
8748			if (rs >= nregs)
8749				err += efunc(pc, "invalid register %u\n", rs);
8750			break;
8751		case DIF_OP_PUSHTV:
8752			if (type != DIF_TYPE_CTF)
8753				err += efunc(pc, "invalid val type %u\n", type);
8754			if (r2 >= nregs)
8755				err += efunc(pc, "invalid register %u\n", r2);
8756			if (rs >= nregs)
8757				err += efunc(pc, "invalid register %u\n", rs);
8758			break;
8759		default:
8760			err += efunc(pc, "invalid opcode %u\n",
8761			    DIF_INSTR_OP(instr));
8762		}
8763	}
8764
8765	if (dp->dtdo_len != 0 &&
8766	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8767		err += efunc(dp->dtdo_len - 1,
8768		    "expected 'ret' as last DIF instruction\n");
8769	}
8770
8771	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8772		/*
8773		 * If we're not returning by reference, the size must be either
8774		 * 0 or the size of one of the base types.
8775		 */
8776		switch (dp->dtdo_rtype.dtdt_size) {
8777		case 0:
8778		case sizeof (uint8_t):
8779		case sizeof (uint16_t):
8780		case sizeof (uint32_t):
8781		case sizeof (uint64_t):
8782			break;
8783
8784		default:
8785			err += efunc(dp->dtdo_len - 1, "bad return size");
8786		}
8787	}
8788
8789	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8790		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8791		dtrace_diftype_t *vt, *et;
8792		uint_t id, ndx;
8793
8794		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8795		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8796		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8797			err += efunc(i, "unrecognized variable scope %d\n",
8798			    v->dtdv_scope);
8799			break;
8800		}
8801
8802		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8803		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8804			err += efunc(i, "unrecognized variable type %d\n",
8805			    v->dtdv_kind);
8806			break;
8807		}
8808
8809		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8810			err += efunc(i, "%d exceeds variable id limit\n", id);
8811			break;
8812		}
8813
8814		if (id < DIF_VAR_OTHER_UBASE)
8815			continue;
8816
8817		/*
8818		 * For user-defined variables, we need to check that this
8819		 * definition is identical to any previous definition that we
8820		 * encountered.
8821		 */
8822		ndx = id - DIF_VAR_OTHER_UBASE;
8823
8824		switch (v->dtdv_scope) {
8825		case DIFV_SCOPE_GLOBAL:
8826			if (ndx < vstate->dtvs_nglobals) {
8827				dtrace_statvar_t *svar;
8828
8829				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8830					existing = &svar->dtsv_var;
8831			}
8832
8833			break;
8834
8835		case DIFV_SCOPE_THREAD:
8836			if (ndx < vstate->dtvs_ntlocals)
8837				existing = &vstate->dtvs_tlocals[ndx];
8838			break;
8839
8840		case DIFV_SCOPE_LOCAL:
8841			if (ndx < vstate->dtvs_nlocals) {
8842				dtrace_statvar_t *svar;
8843
8844				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8845					existing = &svar->dtsv_var;
8846			}
8847
8848			break;
8849		}
8850
8851		vt = &v->dtdv_type;
8852
8853		if (vt->dtdt_flags & DIF_TF_BYREF) {
8854			if (vt->dtdt_size == 0) {
8855				err += efunc(i, "zero-sized variable\n");
8856				break;
8857			}
8858
8859			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8860			    vt->dtdt_size > dtrace_global_maxsize) {
8861				err += efunc(i, "oversized by-ref global\n");
8862				break;
8863			}
8864		}
8865
8866		if (existing == NULL || existing->dtdv_id == 0)
8867			continue;
8868
8869		ASSERT(existing->dtdv_id == v->dtdv_id);
8870		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8871
8872		if (existing->dtdv_kind != v->dtdv_kind)
8873			err += efunc(i, "%d changed variable kind\n", id);
8874
8875		et = &existing->dtdv_type;
8876
8877		if (vt->dtdt_flags != et->dtdt_flags) {
8878			err += efunc(i, "%d changed variable type flags\n", id);
8879			break;
8880		}
8881
8882		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8883			err += efunc(i, "%d changed variable type size\n", id);
8884			break;
8885		}
8886	}
8887
8888	return (err);
8889}
8890
8891/*
8892 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8893 * are much more constrained than normal DIFOs.  Specifically, they may
8894 * not:
8895 *
8896 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8897 *    miscellaneous string routines
8898 * 2. Access DTrace variables other than the args[] array, and the
8899 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8900 * 3. Have thread-local variables.
8901 * 4. Have dynamic variables.
8902 */
8903static int
8904dtrace_difo_validate_helper(dtrace_difo_t *dp)
8905{
8906	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8907	int err = 0;
8908	uint_t pc;
8909
8910	for (pc = 0; pc < dp->dtdo_len; pc++) {
8911		dif_instr_t instr = dp->dtdo_buf[pc];
8912
8913		uint_t v = DIF_INSTR_VAR(instr);
8914		uint_t subr = DIF_INSTR_SUBR(instr);
8915		uint_t op = DIF_INSTR_OP(instr);
8916
8917		switch (op) {
8918		case DIF_OP_OR:
8919		case DIF_OP_XOR:
8920		case DIF_OP_AND:
8921		case DIF_OP_SLL:
8922		case DIF_OP_SRL:
8923		case DIF_OP_SRA:
8924		case DIF_OP_SUB:
8925		case DIF_OP_ADD:
8926		case DIF_OP_MUL:
8927		case DIF_OP_SDIV:
8928		case DIF_OP_UDIV:
8929		case DIF_OP_SREM:
8930		case DIF_OP_UREM:
8931		case DIF_OP_COPYS:
8932		case DIF_OP_NOT:
8933		case DIF_OP_MOV:
8934		case DIF_OP_RLDSB:
8935		case DIF_OP_RLDSH:
8936		case DIF_OP_RLDSW:
8937		case DIF_OP_RLDUB:
8938		case DIF_OP_RLDUH:
8939		case DIF_OP_RLDUW:
8940		case DIF_OP_RLDX:
8941		case DIF_OP_ULDSB:
8942		case DIF_OP_ULDSH:
8943		case DIF_OP_ULDSW:
8944		case DIF_OP_ULDUB:
8945		case DIF_OP_ULDUH:
8946		case DIF_OP_ULDUW:
8947		case DIF_OP_ULDX:
8948		case DIF_OP_STB:
8949		case DIF_OP_STH:
8950		case DIF_OP_STW:
8951		case DIF_OP_STX:
8952		case DIF_OP_ALLOCS:
8953		case DIF_OP_CMP:
8954		case DIF_OP_SCMP:
8955		case DIF_OP_TST:
8956		case DIF_OP_BA:
8957		case DIF_OP_BE:
8958		case DIF_OP_BNE:
8959		case DIF_OP_BG:
8960		case DIF_OP_BGU:
8961		case DIF_OP_BGE:
8962		case DIF_OP_BGEU:
8963		case DIF_OP_BL:
8964		case DIF_OP_BLU:
8965		case DIF_OP_BLE:
8966		case DIF_OP_BLEU:
8967		case DIF_OP_RET:
8968		case DIF_OP_NOP:
8969		case DIF_OP_POPTS:
8970		case DIF_OP_FLUSHTS:
8971		case DIF_OP_SETX:
8972		case DIF_OP_SETS:
8973		case DIF_OP_LDGA:
8974		case DIF_OP_LDLS:
8975		case DIF_OP_STGS:
8976		case DIF_OP_STLS:
8977		case DIF_OP_PUSHTR:
8978		case DIF_OP_PUSHTV:
8979			break;
8980
8981		case DIF_OP_LDGS:
8982			if (v >= DIF_VAR_OTHER_UBASE)
8983				break;
8984
8985			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8986				break;
8987
8988			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8989			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8990			    v == DIF_VAR_EXECARGS ||
8991			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8992			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8993				break;
8994
8995			err += efunc(pc, "illegal variable %u\n", v);
8996			break;
8997
8998		case DIF_OP_LDTA:
8999		case DIF_OP_LDTS:
9000		case DIF_OP_LDGAA:
9001		case DIF_OP_LDTAA:
9002			err += efunc(pc, "illegal dynamic variable load\n");
9003			break;
9004
9005		case DIF_OP_STTS:
9006		case DIF_OP_STGAA:
9007		case DIF_OP_STTAA:
9008			err += efunc(pc, "illegal dynamic variable store\n");
9009			break;
9010
9011		case DIF_OP_CALL:
9012			if (subr == DIF_SUBR_ALLOCA ||
9013			    subr == DIF_SUBR_BCOPY ||
9014			    subr == DIF_SUBR_COPYIN ||
9015			    subr == DIF_SUBR_COPYINTO ||
9016			    subr == DIF_SUBR_COPYINSTR ||
9017			    subr == DIF_SUBR_INDEX ||
9018			    subr == DIF_SUBR_INET_NTOA ||
9019			    subr == DIF_SUBR_INET_NTOA6 ||
9020			    subr == DIF_SUBR_INET_NTOP ||
9021			    subr == DIF_SUBR_LLTOSTR ||
9022			    subr == DIF_SUBR_RINDEX ||
9023			    subr == DIF_SUBR_STRCHR ||
9024			    subr == DIF_SUBR_STRJOIN ||
9025			    subr == DIF_SUBR_STRRCHR ||
9026			    subr == DIF_SUBR_STRSTR ||
9027			    subr == DIF_SUBR_HTONS ||
9028			    subr == DIF_SUBR_HTONL ||
9029			    subr == DIF_SUBR_HTONLL ||
9030			    subr == DIF_SUBR_NTOHS ||
9031			    subr == DIF_SUBR_NTOHL ||
9032			    subr == DIF_SUBR_NTOHLL ||
9033			    subr == DIF_SUBR_MEMREF ||
9034			    subr == DIF_SUBR_TYPEREF)
9035				break;
9036
9037			err += efunc(pc, "invalid subr %u\n", subr);
9038			break;
9039
9040		default:
9041			err += efunc(pc, "invalid opcode %u\n",
9042			    DIF_INSTR_OP(instr));
9043		}
9044	}
9045
9046	return (err);
9047}
9048
9049/*
9050 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9051 * basis; 0 if not.
9052 */
9053static int
9054dtrace_difo_cacheable(dtrace_difo_t *dp)
9055{
9056	int i;
9057
9058	if (dp == NULL)
9059		return (0);
9060
9061	for (i = 0; i < dp->dtdo_varlen; i++) {
9062		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9063
9064		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9065			continue;
9066
9067		switch (v->dtdv_id) {
9068		case DIF_VAR_CURTHREAD:
9069		case DIF_VAR_PID:
9070		case DIF_VAR_TID:
9071		case DIF_VAR_EXECARGS:
9072		case DIF_VAR_EXECNAME:
9073		case DIF_VAR_ZONENAME:
9074			break;
9075
9076		default:
9077			return (0);
9078		}
9079	}
9080
9081	/*
9082	 * This DIF object may be cacheable.  Now we need to look for any
9083	 * array loading instructions, any memory loading instructions, or
9084	 * any stores to thread-local variables.
9085	 */
9086	for (i = 0; i < dp->dtdo_len; i++) {
9087		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9088
9089		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9090		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9091		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9092		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9093			return (0);
9094	}
9095
9096	return (1);
9097}
9098
9099static void
9100dtrace_difo_hold(dtrace_difo_t *dp)
9101{
9102	int i;
9103
9104	ASSERT(MUTEX_HELD(&dtrace_lock));
9105
9106	dp->dtdo_refcnt++;
9107	ASSERT(dp->dtdo_refcnt != 0);
9108
9109	/*
9110	 * We need to check this DIF object for references to the variable
9111	 * DIF_VAR_VTIMESTAMP.
9112	 */
9113	for (i = 0; i < dp->dtdo_varlen; i++) {
9114		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9115
9116		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9117			continue;
9118
9119		if (dtrace_vtime_references++ == 0)
9120			dtrace_vtime_enable();
9121	}
9122}
9123
9124/*
9125 * This routine calculates the dynamic variable chunksize for a given DIF
9126 * object.  The calculation is not fool-proof, and can probably be tricked by
9127 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9128 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9129 * if a dynamic variable size exceeds the chunksize.
9130 */
9131static void
9132dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9133{
9134	uint64_t sval = 0;
9135	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9136	const dif_instr_t *text = dp->dtdo_buf;
9137	uint_t pc, srd = 0;
9138	uint_t ttop = 0;
9139	size_t size, ksize;
9140	uint_t id, i;
9141
9142	for (pc = 0; pc < dp->dtdo_len; pc++) {
9143		dif_instr_t instr = text[pc];
9144		uint_t op = DIF_INSTR_OP(instr);
9145		uint_t rd = DIF_INSTR_RD(instr);
9146		uint_t r1 = DIF_INSTR_R1(instr);
9147		uint_t nkeys = 0;
9148		uchar_t scope = 0;
9149
9150		dtrace_key_t *key = tupregs;
9151
9152		switch (op) {
9153		case DIF_OP_SETX:
9154			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9155			srd = rd;
9156			continue;
9157
9158		case DIF_OP_STTS:
9159			key = &tupregs[DIF_DTR_NREGS];
9160			key[0].dttk_size = 0;
9161			key[1].dttk_size = 0;
9162			nkeys = 2;
9163			scope = DIFV_SCOPE_THREAD;
9164			break;
9165
9166		case DIF_OP_STGAA:
9167		case DIF_OP_STTAA:
9168			nkeys = ttop;
9169
9170			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9171				key[nkeys++].dttk_size = 0;
9172
9173			key[nkeys++].dttk_size = 0;
9174
9175			if (op == DIF_OP_STTAA) {
9176				scope = DIFV_SCOPE_THREAD;
9177			} else {
9178				scope = DIFV_SCOPE_GLOBAL;
9179			}
9180
9181			break;
9182
9183		case DIF_OP_PUSHTR:
9184			if (ttop == DIF_DTR_NREGS)
9185				return;
9186
9187			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9188				/*
9189				 * If the register for the size of the "pushtr"
9190				 * is %r0 (or the value is 0) and the type is
9191				 * a string, we'll use the system-wide default
9192				 * string size.
9193				 */
9194				tupregs[ttop++].dttk_size =
9195				    dtrace_strsize_default;
9196			} else {
9197				if (srd == 0)
9198					return;
9199
9200				tupregs[ttop++].dttk_size = sval;
9201			}
9202
9203			break;
9204
9205		case DIF_OP_PUSHTV:
9206			if (ttop == DIF_DTR_NREGS)
9207				return;
9208
9209			tupregs[ttop++].dttk_size = 0;
9210			break;
9211
9212		case DIF_OP_FLUSHTS:
9213			ttop = 0;
9214			break;
9215
9216		case DIF_OP_POPTS:
9217			if (ttop != 0)
9218				ttop--;
9219			break;
9220		}
9221
9222		sval = 0;
9223		srd = 0;
9224
9225		if (nkeys == 0)
9226			continue;
9227
9228		/*
9229		 * We have a dynamic variable allocation; calculate its size.
9230		 */
9231		for (ksize = 0, i = 0; i < nkeys; i++)
9232			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9233
9234		size = sizeof (dtrace_dynvar_t);
9235		size += sizeof (dtrace_key_t) * (nkeys - 1);
9236		size += ksize;
9237
9238		/*
9239		 * Now we need to determine the size of the stored data.
9240		 */
9241		id = DIF_INSTR_VAR(instr);
9242
9243		for (i = 0; i < dp->dtdo_varlen; i++) {
9244			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9245
9246			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9247				size += v->dtdv_type.dtdt_size;
9248				break;
9249			}
9250		}
9251
9252		if (i == dp->dtdo_varlen)
9253			return;
9254
9255		/*
9256		 * We have the size.  If this is larger than the chunk size
9257		 * for our dynamic variable state, reset the chunk size.
9258		 */
9259		size = P2ROUNDUP(size, sizeof (uint64_t));
9260
9261		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9262			vstate->dtvs_dynvars.dtds_chunksize = size;
9263	}
9264}
9265
9266static void
9267dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9268{
9269	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9270	uint_t id;
9271
9272	ASSERT(MUTEX_HELD(&dtrace_lock));
9273	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9274
9275	for (i = 0; i < dp->dtdo_varlen; i++) {
9276		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9277		dtrace_statvar_t *svar, ***svarp = NULL;
9278		size_t dsize = 0;
9279		uint8_t scope = v->dtdv_scope;
9280		int *np = NULL;
9281
9282		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9283			continue;
9284
9285		id -= DIF_VAR_OTHER_UBASE;
9286
9287		switch (scope) {
9288		case DIFV_SCOPE_THREAD:
9289			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9290				dtrace_difv_t *tlocals;
9291
9292				if ((ntlocals = (otlocals << 1)) == 0)
9293					ntlocals = 1;
9294
9295				osz = otlocals * sizeof (dtrace_difv_t);
9296				nsz = ntlocals * sizeof (dtrace_difv_t);
9297
9298				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9299
9300				if (osz != 0) {
9301					bcopy(vstate->dtvs_tlocals,
9302					    tlocals, osz);
9303					kmem_free(vstate->dtvs_tlocals, osz);
9304				}
9305
9306				vstate->dtvs_tlocals = tlocals;
9307				vstate->dtvs_ntlocals = ntlocals;
9308			}
9309
9310			vstate->dtvs_tlocals[id] = *v;
9311			continue;
9312
9313		case DIFV_SCOPE_LOCAL:
9314			np = &vstate->dtvs_nlocals;
9315			svarp = &vstate->dtvs_locals;
9316
9317			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9318				dsize = NCPU * (v->dtdv_type.dtdt_size +
9319				    sizeof (uint64_t));
9320			else
9321				dsize = NCPU * sizeof (uint64_t);
9322
9323			break;
9324
9325		case DIFV_SCOPE_GLOBAL:
9326			np = &vstate->dtvs_nglobals;
9327			svarp = &vstate->dtvs_globals;
9328
9329			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9330				dsize = v->dtdv_type.dtdt_size +
9331				    sizeof (uint64_t);
9332
9333			break;
9334
9335		default:
9336			ASSERT(0);
9337		}
9338
9339		while (id >= (oldsvars = *np)) {
9340			dtrace_statvar_t **statics;
9341			int newsvars, oldsize, newsize;
9342
9343			if ((newsvars = (oldsvars << 1)) == 0)
9344				newsvars = 1;
9345
9346			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9347			newsize = newsvars * sizeof (dtrace_statvar_t *);
9348
9349			statics = kmem_zalloc(newsize, KM_SLEEP);
9350
9351			if (oldsize != 0) {
9352				bcopy(*svarp, statics, oldsize);
9353				kmem_free(*svarp, oldsize);
9354			}
9355
9356			*svarp = statics;
9357			*np = newsvars;
9358		}
9359
9360		if ((svar = (*svarp)[id]) == NULL) {
9361			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9362			svar->dtsv_var = *v;
9363
9364			if ((svar->dtsv_size = dsize) != 0) {
9365				svar->dtsv_data = (uint64_t)(uintptr_t)
9366				    kmem_zalloc(dsize, KM_SLEEP);
9367			}
9368
9369			(*svarp)[id] = svar;
9370		}
9371
9372		svar->dtsv_refcnt++;
9373	}
9374
9375	dtrace_difo_chunksize(dp, vstate);
9376	dtrace_difo_hold(dp);
9377}
9378
9379static dtrace_difo_t *
9380dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9381{
9382	dtrace_difo_t *new;
9383	size_t sz;
9384
9385	ASSERT(dp->dtdo_buf != NULL);
9386	ASSERT(dp->dtdo_refcnt != 0);
9387
9388	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9389
9390	ASSERT(dp->dtdo_buf != NULL);
9391	sz = dp->dtdo_len * sizeof (dif_instr_t);
9392	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9393	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9394	new->dtdo_len = dp->dtdo_len;
9395
9396	if (dp->dtdo_strtab != NULL) {
9397		ASSERT(dp->dtdo_strlen != 0);
9398		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9399		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9400		new->dtdo_strlen = dp->dtdo_strlen;
9401	}
9402
9403	if (dp->dtdo_inttab != NULL) {
9404		ASSERT(dp->dtdo_intlen != 0);
9405		sz = dp->dtdo_intlen * sizeof (uint64_t);
9406		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9407		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9408		new->dtdo_intlen = dp->dtdo_intlen;
9409	}
9410
9411	if (dp->dtdo_vartab != NULL) {
9412		ASSERT(dp->dtdo_varlen != 0);
9413		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9414		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9415		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9416		new->dtdo_varlen = dp->dtdo_varlen;
9417	}
9418
9419	dtrace_difo_init(new, vstate);
9420	return (new);
9421}
9422
9423static void
9424dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9425{
9426	int i;
9427
9428	ASSERT(dp->dtdo_refcnt == 0);
9429
9430	for (i = 0; i < dp->dtdo_varlen; i++) {
9431		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9432		dtrace_statvar_t *svar, **svarp = NULL;
9433		uint_t id;
9434		uint8_t scope = v->dtdv_scope;
9435		int *np = NULL;
9436
9437		switch (scope) {
9438		case DIFV_SCOPE_THREAD:
9439			continue;
9440
9441		case DIFV_SCOPE_LOCAL:
9442			np = &vstate->dtvs_nlocals;
9443			svarp = vstate->dtvs_locals;
9444			break;
9445
9446		case DIFV_SCOPE_GLOBAL:
9447			np = &vstate->dtvs_nglobals;
9448			svarp = vstate->dtvs_globals;
9449			break;
9450
9451		default:
9452			ASSERT(0);
9453		}
9454
9455		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9456			continue;
9457
9458		id -= DIF_VAR_OTHER_UBASE;
9459		ASSERT(id < *np);
9460
9461		svar = svarp[id];
9462		ASSERT(svar != NULL);
9463		ASSERT(svar->dtsv_refcnt > 0);
9464
9465		if (--svar->dtsv_refcnt > 0)
9466			continue;
9467
9468		if (svar->dtsv_size != 0) {
9469			ASSERT(svar->dtsv_data != 0);
9470			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9471			    svar->dtsv_size);
9472		}
9473
9474		kmem_free(svar, sizeof (dtrace_statvar_t));
9475		svarp[id] = NULL;
9476	}
9477
9478	if (dp->dtdo_buf != NULL)
9479		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9480	if (dp->dtdo_inttab != NULL)
9481		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9482	if (dp->dtdo_strtab != NULL)
9483		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9484	if (dp->dtdo_vartab != NULL)
9485		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9486
9487	kmem_free(dp, sizeof (dtrace_difo_t));
9488}
9489
9490static void
9491dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9492{
9493	int i;
9494
9495	ASSERT(MUTEX_HELD(&dtrace_lock));
9496	ASSERT(dp->dtdo_refcnt != 0);
9497
9498	for (i = 0; i < dp->dtdo_varlen; i++) {
9499		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9500
9501		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9502			continue;
9503
9504		ASSERT(dtrace_vtime_references > 0);
9505		if (--dtrace_vtime_references == 0)
9506			dtrace_vtime_disable();
9507	}
9508
9509	if (--dp->dtdo_refcnt == 0)
9510		dtrace_difo_destroy(dp, vstate);
9511}
9512
9513/*
9514 * DTrace Format Functions
9515 */
9516static uint16_t
9517dtrace_format_add(dtrace_state_t *state, char *str)
9518{
9519	char *fmt, **new;
9520	uint16_t ndx, len = strlen(str) + 1;
9521
9522	fmt = kmem_zalloc(len, KM_SLEEP);
9523	bcopy(str, fmt, len);
9524
9525	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9526		if (state->dts_formats[ndx] == NULL) {
9527			state->dts_formats[ndx] = fmt;
9528			return (ndx + 1);
9529		}
9530	}
9531
9532	if (state->dts_nformats == USHRT_MAX) {
9533		/*
9534		 * This is only likely if a denial-of-service attack is being
9535		 * attempted.  As such, it's okay to fail silently here.
9536		 */
9537		kmem_free(fmt, len);
9538		return (0);
9539	}
9540
9541	/*
9542	 * For simplicity, we always resize the formats array to be exactly the
9543	 * number of formats.
9544	 */
9545	ndx = state->dts_nformats++;
9546	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9547
9548	if (state->dts_formats != NULL) {
9549		ASSERT(ndx != 0);
9550		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9551		kmem_free(state->dts_formats, ndx * sizeof (char *));
9552	}
9553
9554	state->dts_formats = new;
9555	state->dts_formats[ndx] = fmt;
9556
9557	return (ndx + 1);
9558}
9559
9560static void
9561dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9562{
9563	char *fmt;
9564
9565	ASSERT(state->dts_formats != NULL);
9566	ASSERT(format <= state->dts_nformats);
9567	ASSERT(state->dts_formats[format - 1] != NULL);
9568
9569	fmt = state->dts_formats[format - 1];
9570	kmem_free(fmt, strlen(fmt) + 1);
9571	state->dts_formats[format - 1] = NULL;
9572}
9573
9574static void
9575dtrace_format_destroy(dtrace_state_t *state)
9576{
9577	int i;
9578
9579	if (state->dts_nformats == 0) {
9580		ASSERT(state->dts_formats == NULL);
9581		return;
9582	}
9583
9584	ASSERT(state->dts_formats != NULL);
9585
9586	for (i = 0; i < state->dts_nformats; i++) {
9587		char *fmt = state->dts_formats[i];
9588
9589		if (fmt == NULL)
9590			continue;
9591
9592		kmem_free(fmt, strlen(fmt) + 1);
9593	}
9594
9595	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9596	state->dts_nformats = 0;
9597	state->dts_formats = NULL;
9598}
9599
9600/*
9601 * DTrace Predicate Functions
9602 */
9603static dtrace_predicate_t *
9604dtrace_predicate_create(dtrace_difo_t *dp)
9605{
9606	dtrace_predicate_t *pred;
9607
9608	ASSERT(MUTEX_HELD(&dtrace_lock));
9609	ASSERT(dp->dtdo_refcnt != 0);
9610
9611	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9612	pred->dtp_difo = dp;
9613	pred->dtp_refcnt = 1;
9614
9615	if (!dtrace_difo_cacheable(dp))
9616		return (pred);
9617
9618	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9619		/*
9620		 * This is only theoretically possible -- we have had 2^32
9621		 * cacheable predicates on this machine.  We cannot allow any
9622		 * more predicates to become cacheable:  as unlikely as it is,
9623		 * there may be a thread caching a (now stale) predicate cache
9624		 * ID. (N.B.: the temptation is being successfully resisted to
9625		 * have this cmn_err() "Holy shit -- we executed this code!")
9626		 */
9627		return (pred);
9628	}
9629
9630	pred->dtp_cacheid = dtrace_predcache_id++;
9631
9632	return (pred);
9633}
9634
9635static void
9636dtrace_predicate_hold(dtrace_predicate_t *pred)
9637{
9638	ASSERT(MUTEX_HELD(&dtrace_lock));
9639	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9640	ASSERT(pred->dtp_refcnt > 0);
9641
9642	pred->dtp_refcnt++;
9643}
9644
9645static void
9646dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9647{
9648	dtrace_difo_t *dp = pred->dtp_difo;
9649
9650	ASSERT(MUTEX_HELD(&dtrace_lock));
9651	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9652	ASSERT(pred->dtp_refcnt > 0);
9653
9654	if (--pred->dtp_refcnt == 0) {
9655		dtrace_difo_release(pred->dtp_difo, vstate);
9656		kmem_free(pred, sizeof (dtrace_predicate_t));
9657	}
9658}
9659
9660/*
9661 * DTrace Action Description Functions
9662 */
9663static dtrace_actdesc_t *
9664dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9665    uint64_t uarg, uint64_t arg)
9666{
9667	dtrace_actdesc_t *act;
9668
9669#if defined(sun)
9670	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9671	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9672#endif
9673
9674	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9675	act->dtad_kind = kind;
9676	act->dtad_ntuple = ntuple;
9677	act->dtad_uarg = uarg;
9678	act->dtad_arg = arg;
9679	act->dtad_refcnt = 1;
9680
9681	return (act);
9682}
9683
9684static void
9685dtrace_actdesc_hold(dtrace_actdesc_t *act)
9686{
9687	ASSERT(act->dtad_refcnt >= 1);
9688	act->dtad_refcnt++;
9689}
9690
9691static void
9692dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9693{
9694	dtrace_actkind_t kind = act->dtad_kind;
9695	dtrace_difo_t *dp;
9696
9697	ASSERT(act->dtad_refcnt >= 1);
9698
9699	if (--act->dtad_refcnt != 0)
9700		return;
9701
9702	if ((dp = act->dtad_difo) != NULL)
9703		dtrace_difo_release(dp, vstate);
9704
9705	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9706		char *str = (char *)(uintptr_t)act->dtad_arg;
9707
9708#if defined(sun)
9709		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9710		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9711#endif
9712
9713		if (str != NULL)
9714			kmem_free(str, strlen(str) + 1);
9715	}
9716
9717	kmem_free(act, sizeof (dtrace_actdesc_t));
9718}
9719
9720/*
9721 * DTrace ECB Functions
9722 */
9723static dtrace_ecb_t *
9724dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9725{
9726	dtrace_ecb_t *ecb;
9727	dtrace_epid_t epid;
9728
9729	ASSERT(MUTEX_HELD(&dtrace_lock));
9730
9731	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9732	ecb->dte_predicate = NULL;
9733	ecb->dte_probe = probe;
9734
9735	/*
9736	 * The default size is the size of the default action: recording
9737	 * the epid.
9738	 */
9739	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9740	ecb->dte_alignment = sizeof (dtrace_epid_t);
9741
9742	epid = state->dts_epid++;
9743
9744	if (epid - 1 >= state->dts_necbs) {
9745		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9746		int necbs = state->dts_necbs << 1;
9747
9748		ASSERT(epid == state->dts_necbs + 1);
9749
9750		if (necbs == 0) {
9751			ASSERT(oecbs == NULL);
9752			necbs = 1;
9753		}
9754
9755		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9756
9757		if (oecbs != NULL)
9758			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9759
9760		dtrace_membar_producer();
9761		state->dts_ecbs = ecbs;
9762
9763		if (oecbs != NULL) {
9764			/*
9765			 * If this state is active, we must dtrace_sync()
9766			 * before we can free the old dts_ecbs array:  we're
9767			 * coming in hot, and there may be active ring
9768			 * buffer processing (which indexes into the dts_ecbs
9769			 * array) on another CPU.
9770			 */
9771			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9772				dtrace_sync();
9773
9774			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9775		}
9776
9777		dtrace_membar_producer();
9778		state->dts_necbs = necbs;
9779	}
9780
9781	ecb->dte_state = state;
9782
9783	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9784	dtrace_membar_producer();
9785	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9786
9787	return (ecb);
9788}
9789
9790static void
9791dtrace_ecb_enable(dtrace_ecb_t *ecb)
9792{
9793	dtrace_probe_t *probe = ecb->dte_probe;
9794
9795	ASSERT(MUTEX_HELD(&cpu_lock));
9796	ASSERT(MUTEX_HELD(&dtrace_lock));
9797	ASSERT(ecb->dte_next == NULL);
9798
9799	if (probe == NULL) {
9800		/*
9801		 * This is the NULL probe -- there's nothing to do.
9802		 */
9803		return;
9804	}
9805
9806	if (probe->dtpr_ecb == NULL) {
9807		dtrace_provider_t *prov = probe->dtpr_provider;
9808
9809		/*
9810		 * We're the first ECB on this probe.
9811		 */
9812		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9813
9814		if (ecb->dte_predicate != NULL)
9815			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9816
9817		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9818		    probe->dtpr_id, probe->dtpr_arg);
9819	} else {
9820		/*
9821		 * This probe is already active.  Swing the last pointer to
9822		 * point to the new ECB, and issue a dtrace_sync() to assure
9823		 * that all CPUs have seen the change.
9824		 */
9825		ASSERT(probe->dtpr_ecb_last != NULL);
9826		probe->dtpr_ecb_last->dte_next = ecb;
9827		probe->dtpr_ecb_last = ecb;
9828		probe->dtpr_predcache = 0;
9829
9830		dtrace_sync();
9831	}
9832}
9833
9834static void
9835dtrace_ecb_resize(dtrace_ecb_t *ecb)
9836{
9837	uint32_t maxalign = sizeof (dtrace_epid_t);
9838	uint32_t align = sizeof (uint8_t), offs, diff;
9839	dtrace_action_t *act;
9840	int wastuple = 0;
9841	uint32_t aggbase = UINT32_MAX;
9842	dtrace_state_t *state = ecb->dte_state;
9843
9844	/*
9845	 * If we record anything, we always record the epid.  (And we always
9846	 * record it first.)
9847	 */
9848	offs = sizeof (dtrace_epid_t);
9849	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9850
9851	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9852		dtrace_recdesc_t *rec = &act->dta_rec;
9853
9854		if ((align = rec->dtrd_alignment) > maxalign)
9855			maxalign = align;
9856
9857		if (!wastuple && act->dta_intuple) {
9858			/*
9859			 * This is the first record in a tuple.  Align the
9860			 * offset to be at offset 4 in an 8-byte aligned
9861			 * block.
9862			 */
9863			diff = offs + sizeof (dtrace_aggid_t);
9864
9865			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9866				offs += sizeof (uint64_t) - diff;
9867
9868			aggbase = offs - sizeof (dtrace_aggid_t);
9869			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9870		}
9871
9872		/*LINTED*/
9873		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9874			/*
9875			 * The current offset is not properly aligned; align it.
9876			 */
9877			offs += align - diff;
9878		}
9879
9880		rec->dtrd_offset = offs;
9881
9882		if (offs + rec->dtrd_size > ecb->dte_needed) {
9883			ecb->dte_needed = offs + rec->dtrd_size;
9884
9885			if (ecb->dte_needed > state->dts_needed)
9886				state->dts_needed = ecb->dte_needed;
9887		}
9888
9889		if (DTRACEACT_ISAGG(act->dta_kind)) {
9890			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9891			dtrace_action_t *first = agg->dtag_first, *prev;
9892
9893			ASSERT(rec->dtrd_size != 0 && first != NULL);
9894			ASSERT(wastuple);
9895			ASSERT(aggbase != UINT32_MAX);
9896
9897			agg->dtag_base = aggbase;
9898
9899			while ((prev = first->dta_prev) != NULL &&
9900			    DTRACEACT_ISAGG(prev->dta_kind)) {
9901				agg = (dtrace_aggregation_t *)prev;
9902				first = agg->dtag_first;
9903			}
9904
9905			if (prev != NULL) {
9906				offs = prev->dta_rec.dtrd_offset +
9907				    prev->dta_rec.dtrd_size;
9908			} else {
9909				offs = sizeof (dtrace_epid_t);
9910			}
9911			wastuple = 0;
9912		} else {
9913			if (!act->dta_intuple)
9914				ecb->dte_size = offs + rec->dtrd_size;
9915
9916			offs += rec->dtrd_size;
9917		}
9918
9919		wastuple = act->dta_intuple;
9920	}
9921
9922	if ((act = ecb->dte_action) != NULL &&
9923	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9924	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9925		/*
9926		 * If the size is still sizeof (dtrace_epid_t), then all
9927		 * actions store no data; set the size to 0.
9928		 */
9929		ecb->dte_alignment = maxalign;
9930		ecb->dte_size = 0;
9931
9932		/*
9933		 * If the needed space is still sizeof (dtrace_epid_t), then
9934		 * all actions need no additional space; set the needed
9935		 * size to 0.
9936		 */
9937		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9938			ecb->dte_needed = 0;
9939
9940		return;
9941	}
9942
9943	/*
9944	 * Set our alignment, and make sure that the dte_size and dte_needed
9945	 * are aligned to the size of an EPID.
9946	 */
9947	ecb->dte_alignment = maxalign;
9948	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9949	    ~(sizeof (dtrace_epid_t) - 1);
9950	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9951	    ~(sizeof (dtrace_epid_t) - 1);
9952	ASSERT(ecb->dte_size <= ecb->dte_needed);
9953}
9954
9955static dtrace_action_t *
9956dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9957{
9958	dtrace_aggregation_t *agg;
9959	size_t size = sizeof (uint64_t);
9960	int ntuple = desc->dtad_ntuple;
9961	dtrace_action_t *act;
9962	dtrace_recdesc_t *frec;
9963	dtrace_aggid_t aggid;
9964	dtrace_state_t *state = ecb->dte_state;
9965
9966	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9967	agg->dtag_ecb = ecb;
9968
9969	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9970
9971	switch (desc->dtad_kind) {
9972	case DTRACEAGG_MIN:
9973		agg->dtag_initial = INT64_MAX;
9974		agg->dtag_aggregate = dtrace_aggregate_min;
9975		break;
9976
9977	case DTRACEAGG_MAX:
9978		agg->dtag_initial = INT64_MIN;
9979		agg->dtag_aggregate = dtrace_aggregate_max;
9980		break;
9981
9982	case DTRACEAGG_COUNT:
9983		agg->dtag_aggregate = dtrace_aggregate_count;
9984		break;
9985
9986	case DTRACEAGG_QUANTIZE:
9987		agg->dtag_aggregate = dtrace_aggregate_quantize;
9988		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9989		    sizeof (uint64_t);
9990		break;
9991
9992	case DTRACEAGG_LQUANTIZE: {
9993		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9994		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9995
9996		agg->dtag_initial = desc->dtad_arg;
9997		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9998
9999		if (step == 0 || levels == 0)
10000			goto err;
10001
10002		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10003		break;
10004	}
10005
10006	case DTRACEAGG_LLQUANTIZE: {
10007		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10008		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10009		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10010		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10011		int64_t v;
10012
10013		agg->dtag_initial = desc->dtad_arg;
10014		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10015
10016		if (factor < 2 || low >= high || nsteps < factor)
10017			goto err;
10018
10019		/*
10020		 * Now check that the number of steps evenly divides a power
10021		 * of the factor.  (This assures both integer bucket size and
10022		 * linearity within each magnitude.)
10023		 */
10024		for (v = factor; v < nsteps; v *= factor)
10025			continue;
10026
10027		if ((v % nsteps) || (nsteps % factor))
10028			goto err;
10029
10030		size = (dtrace_aggregate_llquantize_bucket(factor,
10031		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10032		break;
10033	}
10034
10035	case DTRACEAGG_AVG:
10036		agg->dtag_aggregate = dtrace_aggregate_avg;
10037		size = sizeof (uint64_t) * 2;
10038		break;
10039
10040	case DTRACEAGG_STDDEV:
10041		agg->dtag_aggregate = dtrace_aggregate_stddev;
10042		size = sizeof (uint64_t) * 4;
10043		break;
10044
10045	case DTRACEAGG_SUM:
10046		agg->dtag_aggregate = dtrace_aggregate_sum;
10047		break;
10048
10049	default:
10050		goto err;
10051	}
10052
10053	agg->dtag_action.dta_rec.dtrd_size = size;
10054
10055	if (ntuple == 0)
10056		goto err;
10057
10058	/*
10059	 * We must make sure that we have enough actions for the n-tuple.
10060	 */
10061	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10062		if (DTRACEACT_ISAGG(act->dta_kind))
10063			break;
10064
10065		if (--ntuple == 0) {
10066			/*
10067			 * This is the action with which our n-tuple begins.
10068			 */
10069			agg->dtag_first = act;
10070			goto success;
10071		}
10072	}
10073
10074	/*
10075	 * This n-tuple is short by ntuple elements.  Return failure.
10076	 */
10077	ASSERT(ntuple != 0);
10078err:
10079	kmem_free(agg, sizeof (dtrace_aggregation_t));
10080	return (NULL);
10081
10082success:
10083	/*
10084	 * If the last action in the tuple has a size of zero, it's actually
10085	 * an expression argument for the aggregating action.
10086	 */
10087	ASSERT(ecb->dte_action_last != NULL);
10088	act = ecb->dte_action_last;
10089
10090	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10091		ASSERT(act->dta_difo != NULL);
10092
10093		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10094			agg->dtag_hasarg = 1;
10095	}
10096
10097	/*
10098	 * We need to allocate an id for this aggregation.
10099	 */
10100#if defined(sun)
10101	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10102	    VM_BESTFIT | VM_SLEEP);
10103#else
10104	aggid = alloc_unr(state->dts_aggid_arena);
10105#endif
10106
10107	if (aggid - 1 >= state->dts_naggregations) {
10108		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10109		dtrace_aggregation_t **aggs;
10110		int naggs = state->dts_naggregations << 1;
10111		int onaggs = state->dts_naggregations;
10112
10113		ASSERT(aggid == state->dts_naggregations + 1);
10114
10115		if (naggs == 0) {
10116			ASSERT(oaggs == NULL);
10117			naggs = 1;
10118		}
10119
10120		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10121
10122		if (oaggs != NULL) {
10123			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10124			kmem_free(oaggs, onaggs * sizeof (*aggs));
10125		}
10126
10127		state->dts_aggregations = aggs;
10128		state->dts_naggregations = naggs;
10129	}
10130
10131	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10132	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10133
10134	frec = &agg->dtag_first->dta_rec;
10135	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10136		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10137
10138	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10139		ASSERT(!act->dta_intuple);
10140		act->dta_intuple = 1;
10141	}
10142
10143	return (&agg->dtag_action);
10144}
10145
10146static void
10147dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10148{
10149	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10150	dtrace_state_t *state = ecb->dte_state;
10151	dtrace_aggid_t aggid = agg->dtag_id;
10152
10153	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10154#if defined(sun)
10155	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10156#else
10157	free_unr(state->dts_aggid_arena, aggid);
10158#endif
10159
10160	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10161	state->dts_aggregations[aggid - 1] = NULL;
10162
10163	kmem_free(agg, sizeof (dtrace_aggregation_t));
10164}
10165
10166static int
10167dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10168{
10169	dtrace_action_t *action, *last;
10170	dtrace_difo_t *dp = desc->dtad_difo;
10171	uint32_t size = 0, align = sizeof (uint8_t), mask;
10172	uint16_t format = 0;
10173	dtrace_recdesc_t *rec;
10174	dtrace_state_t *state = ecb->dte_state;
10175	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10176	uint64_t arg = desc->dtad_arg;
10177
10178	ASSERT(MUTEX_HELD(&dtrace_lock));
10179	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10180
10181	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10182		/*
10183		 * If this is an aggregating action, there must be neither
10184		 * a speculate nor a commit on the action chain.
10185		 */
10186		dtrace_action_t *act;
10187
10188		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10189			if (act->dta_kind == DTRACEACT_COMMIT)
10190				return (EINVAL);
10191
10192			if (act->dta_kind == DTRACEACT_SPECULATE)
10193				return (EINVAL);
10194		}
10195
10196		action = dtrace_ecb_aggregation_create(ecb, desc);
10197
10198		if (action == NULL)
10199			return (EINVAL);
10200	} else {
10201		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10202		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10203		    dp != NULL && dp->dtdo_destructive)) {
10204			state->dts_destructive = 1;
10205		}
10206
10207		switch (desc->dtad_kind) {
10208		case DTRACEACT_PRINTF:
10209		case DTRACEACT_PRINTA:
10210		case DTRACEACT_SYSTEM:
10211		case DTRACEACT_FREOPEN:
10212		case DTRACEACT_DIFEXPR:
10213			/*
10214			 * We know that our arg is a string -- turn it into a
10215			 * format.
10216			 */
10217			if (arg == 0) {
10218				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10219				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10220				format = 0;
10221			} else {
10222				ASSERT(arg != 0);
10223#if defined(sun)
10224				ASSERT(arg > KERNELBASE);
10225#endif
10226				format = dtrace_format_add(state,
10227				    (char *)(uintptr_t)arg);
10228			}
10229
10230			/*FALLTHROUGH*/
10231		case DTRACEACT_LIBACT:
10232		case DTRACEACT_TRACEMEM:
10233		case DTRACEACT_TRACEMEM_DYNSIZE:
10234			if (dp == NULL)
10235				return (EINVAL);
10236
10237			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10238				break;
10239
10240			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10241				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10242					return (EINVAL);
10243
10244				size = opt[DTRACEOPT_STRSIZE];
10245			}
10246
10247			break;
10248
10249		case DTRACEACT_STACK:
10250			if ((nframes = arg) == 0) {
10251				nframes = opt[DTRACEOPT_STACKFRAMES];
10252				ASSERT(nframes > 0);
10253				arg = nframes;
10254			}
10255
10256			size = nframes * sizeof (pc_t);
10257			break;
10258
10259		case DTRACEACT_JSTACK:
10260			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10261				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10262
10263			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10264				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10265
10266			arg = DTRACE_USTACK_ARG(nframes, strsize);
10267
10268			/*FALLTHROUGH*/
10269		case DTRACEACT_USTACK:
10270			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10271			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10272				strsize = DTRACE_USTACK_STRSIZE(arg);
10273				nframes = opt[DTRACEOPT_USTACKFRAMES];
10274				ASSERT(nframes > 0);
10275				arg = DTRACE_USTACK_ARG(nframes, strsize);
10276			}
10277
10278			/*
10279			 * Save a slot for the pid.
10280			 */
10281			size = (nframes + 1) * sizeof (uint64_t);
10282			size += DTRACE_USTACK_STRSIZE(arg);
10283			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10284
10285			break;
10286
10287		case DTRACEACT_SYM:
10288		case DTRACEACT_MOD:
10289			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10290			    sizeof (uint64_t)) ||
10291			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10292				return (EINVAL);
10293			break;
10294
10295		case DTRACEACT_USYM:
10296		case DTRACEACT_UMOD:
10297		case DTRACEACT_UADDR:
10298			if (dp == NULL ||
10299			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10300			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10301				return (EINVAL);
10302
10303			/*
10304			 * We have a slot for the pid, plus a slot for the
10305			 * argument.  To keep things simple (aligned with
10306			 * bitness-neutral sizing), we store each as a 64-bit
10307			 * quantity.
10308			 */
10309			size = 2 * sizeof (uint64_t);
10310			break;
10311
10312		case DTRACEACT_STOP:
10313		case DTRACEACT_BREAKPOINT:
10314		case DTRACEACT_PANIC:
10315			break;
10316
10317		case DTRACEACT_CHILL:
10318		case DTRACEACT_DISCARD:
10319		case DTRACEACT_RAISE:
10320			if (dp == NULL)
10321				return (EINVAL);
10322			break;
10323
10324		case DTRACEACT_EXIT:
10325			if (dp == NULL ||
10326			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10327			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10328				return (EINVAL);
10329			break;
10330
10331		case DTRACEACT_SPECULATE:
10332			if (ecb->dte_size > sizeof (dtrace_epid_t))
10333				return (EINVAL);
10334
10335			if (dp == NULL)
10336				return (EINVAL);
10337
10338			state->dts_speculates = 1;
10339			break;
10340
10341		case DTRACEACT_PRINTM:
10342		    	size = dp->dtdo_rtype.dtdt_size;
10343			break;
10344
10345		case DTRACEACT_PRINTT:
10346		    	size = dp->dtdo_rtype.dtdt_size;
10347			break;
10348
10349		case DTRACEACT_COMMIT: {
10350			dtrace_action_t *act = ecb->dte_action;
10351
10352			for (; act != NULL; act = act->dta_next) {
10353				if (act->dta_kind == DTRACEACT_COMMIT)
10354					return (EINVAL);
10355			}
10356
10357			if (dp == NULL)
10358				return (EINVAL);
10359			break;
10360		}
10361
10362		default:
10363			return (EINVAL);
10364		}
10365
10366		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10367			/*
10368			 * If this is a data-storing action or a speculate,
10369			 * we must be sure that there isn't a commit on the
10370			 * action chain.
10371			 */
10372			dtrace_action_t *act = ecb->dte_action;
10373
10374			for (; act != NULL; act = act->dta_next) {
10375				if (act->dta_kind == DTRACEACT_COMMIT)
10376					return (EINVAL);
10377			}
10378		}
10379
10380		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10381		action->dta_rec.dtrd_size = size;
10382	}
10383
10384	action->dta_refcnt = 1;
10385	rec = &action->dta_rec;
10386	size = rec->dtrd_size;
10387
10388	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10389		if (!(size & mask)) {
10390			align = mask + 1;
10391			break;
10392		}
10393	}
10394
10395	action->dta_kind = desc->dtad_kind;
10396
10397	if ((action->dta_difo = dp) != NULL)
10398		dtrace_difo_hold(dp);
10399
10400	rec->dtrd_action = action->dta_kind;
10401	rec->dtrd_arg = arg;
10402	rec->dtrd_uarg = desc->dtad_uarg;
10403	rec->dtrd_alignment = (uint16_t)align;
10404	rec->dtrd_format = format;
10405
10406	if ((last = ecb->dte_action_last) != NULL) {
10407		ASSERT(ecb->dte_action != NULL);
10408		action->dta_prev = last;
10409		last->dta_next = action;
10410	} else {
10411		ASSERT(ecb->dte_action == NULL);
10412		ecb->dte_action = action;
10413	}
10414
10415	ecb->dte_action_last = action;
10416
10417	return (0);
10418}
10419
10420static void
10421dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10422{
10423	dtrace_action_t *act = ecb->dte_action, *next;
10424	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10425	dtrace_difo_t *dp;
10426	uint16_t format;
10427
10428	if (act != NULL && act->dta_refcnt > 1) {
10429		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10430		act->dta_refcnt--;
10431	} else {
10432		for (; act != NULL; act = next) {
10433			next = act->dta_next;
10434			ASSERT(next != NULL || act == ecb->dte_action_last);
10435			ASSERT(act->dta_refcnt == 1);
10436
10437			if ((format = act->dta_rec.dtrd_format) != 0)
10438				dtrace_format_remove(ecb->dte_state, format);
10439
10440			if ((dp = act->dta_difo) != NULL)
10441				dtrace_difo_release(dp, vstate);
10442
10443			if (DTRACEACT_ISAGG(act->dta_kind)) {
10444				dtrace_ecb_aggregation_destroy(ecb, act);
10445			} else {
10446				kmem_free(act, sizeof (dtrace_action_t));
10447			}
10448		}
10449	}
10450
10451	ecb->dte_action = NULL;
10452	ecb->dte_action_last = NULL;
10453	ecb->dte_size = sizeof (dtrace_epid_t);
10454}
10455
10456static void
10457dtrace_ecb_disable(dtrace_ecb_t *ecb)
10458{
10459	/*
10460	 * We disable the ECB by removing it from its probe.
10461	 */
10462	dtrace_ecb_t *pecb, *prev = NULL;
10463	dtrace_probe_t *probe = ecb->dte_probe;
10464
10465	ASSERT(MUTEX_HELD(&dtrace_lock));
10466
10467	if (probe == NULL) {
10468		/*
10469		 * This is the NULL probe; there is nothing to disable.
10470		 */
10471		return;
10472	}
10473
10474	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10475		if (pecb == ecb)
10476			break;
10477		prev = pecb;
10478	}
10479
10480	ASSERT(pecb != NULL);
10481
10482	if (prev == NULL) {
10483		probe->dtpr_ecb = ecb->dte_next;
10484	} else {
10485		prev->dte_next = ecb->dte_next;
10486	}
10487
10488	if (ecb == probe->dtpr_ecb_last) {
10489		ASSERT(ecb->dte_next == NULL);
10490		probe->dtpr_ecb_last = prev;
10491	}
10492
10493	/*
10494	 * The ECB has been disconnected from the probe; now sync to assure
10495	 * that all CPUs have seen the change before returning.
10496	 */
10497	dtrace_sync();
10498
10499	if (probe->dtpr_ecb == NULL) {
10500		/*
10501		 * That was the last ECB on the probe; clear the predicate
10502		 * cache ID for the probe, disable it and sync one more time
10503		 * to assure that we'll never hit it again.
10504		 */
10505		dtrace_provider_t *prov = probe->dtpr_provider;
10506
10507		ASSERT(ecb->dte_next == NULL);
10508		ASSERT(probe->dtpr_ecb_last == NULL);
10509		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10510		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10511		    probe->dtpr_id, probe->dtpr_arg);
10512		dtrace_sync();
10513	} else {
10514		/*
10515		 * There is at least one ECB remaining on the probe.  If there
10516		 * is _exactly_ one, set the probe's predicate cache ID to be
10517		 * the predicate cache ID of the remaining ECB.
10518		 */
10519		ASSERT(probe->dtpr_ecb_last != NULL);
10520		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10521
10522		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10523			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10524
10525			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10526
10527			if (p != NULL)
10528				probe->dtpr_predcache = p->dtp_cacheid;
10529		}
10530
10531		ecb->dte_next = NULL;
10532	}
10533}
10534
10535static void
10536dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10537{
10538	dtrace_state_t *state = ecb->dte_state;
10539	dtrace_vstate_t *vstate = &state->dts_vstate;
10540	dtrace_predicate_t *pred;
10541	dtrace_epid_t epid = ecb->dte_epid;
10542
10543	ASSERT(MUTEX_HELD(&dtrace_lock));
10544	ASSERT(ecb->dte_next == NULL);
10545	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10546
10547	if ((pred = ecb->dte_predicate) != NULL)
10548		dtrace_predicate_release(pred, vstate);
10549
10550	dtrace_ecb_action_remove(ecb);
10551
10552	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10553	state->dts_ecbs[epid - 1] = NULL;
10554
10555	kmem_free(ecb, sizeof (dtrace_ecb_t));
10556}
10557
10558static dtrace_ecb_t *
10559dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10560    dtrace_enabling_t *enab)
10561{
10562	dtrace_ecb_t *ecb;
10563	dtrace_predicate_t *pred;
10564	dtrace_actdesc_t *act;
10565	dtrace_provider_t *prov;
10566	dtrace_ecbdesc_t *desc = enab->dten_current;
10567
10568	ASSERT(MUTEX_HELD(&dtrace_lock));
10569	ASSERT(state != NULL);
10570
10571	ecb = dtrace_ecb_add(state, probe);
10572	ecb->dte_uarg = desc->dted_uarg;
10573
10574	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10575		dtrace_predicate_hold(pred);
10576		ecb->dte_predicate = pred;
10577	}
10578
10579	if (probe != NULL) {
10580		/*
10581		 * If the provider shows more leg than the consumer is old
10582		 * enough to see, we need to enable the appropriate implicit
10583		 * predicate bits to prevent the ecb from activating at
10584		 * revealing times.
10585		 *
10586		 * Providers specifying DTRACE_PRIV_USER at register time
10587		 * are stating that they need the /proc-style privilege
10588		 * model to be enforced, and this is what DTRACE_COND_OWNER
10589		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10590		 */
10591		prov = probe->dtpr_provider;
10592		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10593		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10594			ecb->dte_cond |= DTRACE_COND_OWNER;
10595
10596		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10597		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10598			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10599
10600		/*
10601		 * If the provider shows us kernel innards and the user
10602		 * is lacking sufficient privilege, enable the
10603		 * DTRACE_COND_USERMODE implicit predicate.
10604		 */
10605		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10606		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10607			ecb->dte_cond |= DTRACE_COND_USERMODE;
10608	}
10609
10610	if (dtrace_ecb_create_cache != NULL) {
10611		/*
10612		 * If we have a cached ecb, we'll use its action list instead
10613		 * of creating our own (saving both time and space).
10614		 */
10615		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10616		dtrace_action_t *act = cached->dte_action;
10617
10618		if (act != NULL) {
10619			ASSERT(act->dta_refcnt > 0);
10620			act->dta_refcnt++;
10621			ecb->dte_action = act;
10622			ecb->dte_action_last = cached->dte_action_last;
10623			ecb->dte_needed = cached->dte_needed;
10624			ecb->dte_size = cached->dte_size;
10625			ecb->dte_alignment = cached->dte_alignment;
10626		}
10627
10628		return (ecb);
10629	}
10630
10631	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10632		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10633			dtrace_ecb_destroy(ecb);
10634			return (NULL);
10635		}
10636	}
10637
10638	dtrace_ecb_resize(ecb);
10639
10640	return (dtrace_ecb_create_cache = ecb);
10641}
10642
10643static int
10644dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10645{
10646	dtrace_ecb_t *ecb;
10647	dtrace_enabling_t *enab = arg;
10648	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10649
10650	ASSERT(state != NULL);
10651
10652	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10653		/*
10654		 * This probe was created in a generation for which this
10655		 * enabling has previously created ECBs; we don't want to
10656		 * enable it again, so just kick out.
10657		 */
10658		return (DTRACE_MATCH_NEXT);
10659	}
10660
10661	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10662		return (DTRACE_MATCH_DONE);
10663
10664	dtrace_ecb_enable(ecb);
10665	return (DTRACE_MATCH_NEXT);
10666}
10667
10668static dtrace_ecb_t *
10669dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10670{
10671	dtrace_ecb_t *ecb;
10672
10673	ASSERT(MUTEX_HELD(&dtrace_lock));
10674
10675	if (id == 0 || id > state->dts_necbs)
10676		return (NULL);
10677
10678	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10679	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10680
10681	return (state->dts_ecbs[id - 1]);
10682}
10683
10684static dtrace_aggregation_t *
10685dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10686{
10687	dtrace_aggregation_t *agg;
10688
10689	ASSERT(MUTEX_HELD(&dtrace_lock));
10690
10691	if (id == 0 || id > state->dts_naggregations)
10692		return (NULL);
10693
10694	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10695	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10696	    agg->dtag_id == id);
10697
10698	return (state->dts_aggregations[id - 1]);
10699}
10700
10701/*
10702 * DTrace Buffer Functions
10703 *
10704 * The following functions manipulate DTrace buffers.  Most of these functions
10705 * are called in the context of establishing or processing consumer state;
10706 * exceptions are explicitly noted.
10707 */
10708
10709/*
10710 * Note:  called from cross call context.  This function switches the two
10711 * buffers on a given CPU.  The atomicity of this operation is assured by
10712 * disabling interrupts while the actual switch takes place; the disabling of
10713 * interrupts serializes the execution with any execution of dtrace_probe() on
10714 * the same CPU.
10715 */
10716static void
10717dtrace_buffer_switch(dtrace_buffer_t *buf)
10718{
10719	caddr_t tomax = buf->dtb_tomax;
10720	caddr_t xamot = buf->dtb_xamot;
10721	dtrace_icookie_t cookie;
10722
10723	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10724	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10725
10726	cookie = dtrace_interrupt_disable();
10727	buf->dtb_tomax = xamot;
10728	buf->dtb_xamot = tomax;
10729	buf->dtb_xamot_drops = buf->dtb_drops;
10730	buf->dtb_xamot_offset = buf->dtb_offset;
10731	buf->dtb_xamot_errors = buf->dtb_errors;
10732	buf->dtb_xamot_flags = buf->dtb_flags;
10733	buf->dtb_offset = 0;
10734	buf->dtb_drops = 0;
10735	buf->dtb_errors = 0;
10736	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10737	dtrace_interrupt_enable(cookie);
10738}
10739
10740/*
10741 * Note:  called from cross call context.  This function activates a buffer
10742 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10743 * is guaranteed by the disabling of interrupts.
10744 */
10745static void
10746dtrace_buffer_activate(dtrace_state_t *state)
10747{
10748	dtrace_buffer_t *buf;
10749	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10750
10751	buf = &state->dts_buffer[curcpu];
10752
10753	if (buf->dtb_tomax != NULL) {
10754		/*
10755		 * We might like to assert that the buffer is marked inactive,
10756		 * but this isn't necessarily true:  the buffer for the CPU
10757		 * that processes the BEGIN probe has its buffer activated
10758		 * manually.  In this case, we take the (harmless) action
10759		 * re-clearing the bit INACTIVE bit.
10760		 */
10761		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10762	}
10763
10764	dtrace_interrupt_enable(cookie);
10765}
10766
10767static int
10768dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10769    processorid_t cpu)
10770{
10771#if defined(sun)
10772	cpu_t *cp;
10773#endif
10774	dtrace_buffer_t *buf;
10775
10776#if defined(sun)
10777	ASSERT(MUTEX_HELD(&cpu_lock));
10778	ASSERT(MUTEX_HELD(&dtrace_lock));
10779
10780	if (size > dtrace_nonroot_maxsize &&
10781	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10782		return (EFBIG);
10783
10784	cp = cpu_list;
10785
10786	do {
10787		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10788			continue;
10789
10790		buf = &bufs[cp->cpu_id];
10791
10792		/*
10793		 * If there is already a buffer allocated for this CPU, it
10794		 * is only possible that this is a DR event.  In this case,
10795		 */
10796		if (buf->dtb_tomax != NULL) {
10797			ASSERT(buf->dtb_size == size);
10798			continue;
10799		}
10800
10801		ASSERT(buf->dtb_xamot == NULL);
10802
10803		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10804			goto err;
10805
10806		buf->dtb_size = size;
10807		buf->dtb_flags = flags;
10808		buf->dtb_offset = 0;
10809		buf->dtb_drops = 0;
10810
10811		if (flags & DTRACEBUF_NOSWITCH)
10812			continue;
10813
10814		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10815			goto err;
10816	} while ((cp = cp->cpu_next) != cpu_list);
10817
10818	return (0);
10819
10820err:
10821	cp = cpu_list;
10822
10823	do {
10824		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10825			continue;
10826
10827		buf = &bufs[cp->cpu_id];
10828
10829		if (buf->dtb_xamot != NULL) {
10830			ASSERT(buf->dtb_tomax != NULL);
10831			ASSERT(buf->dtb_size == size);
10832			kmem_free(buf->dtb_xamot, size);
10833		}
10834
10835		if (buf->dtb_tomax != NULL) {
10836			ASSERT(buf->dtb_size == size);
10837			kmem_free(buf->dtb_tomax, size);
10838		}
10839
10840		buf->dtb_tomax = NULL;
10841		buf->dtb_xamot = NULL;
10842		buf->dtb_size = 0;
10843	} while ((cp = cp->cpu_next) != cpu_list);
10844
10845	return (ENOMEM);
10846#else
10847	int i;
10848
10849#if defined(__amd64__)
10850	/*
10851	 * FreeBSD isn't good at limiting the amount of memory we
10852	 * ask to malloc, so let's place a limit here before trying
10853	 * to do something that might well end in tears at bedtime.
10854	 */
10855	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10856		return(ENOMEM);
10857#endif
10858
10859	ASSERT(MUTEX_HELD(&dtrace_lock));
10860	CPU_FOREACH(i) {
10861		if (cpu != DTRACE_CPUALL && cpu != i)
10862			continue;
10863
10864		buf = &bufs[i];
10865
10866		/*
10867		 * If there is already a buffer allocated for this CPU, it
10868		 * is only possible that this is a DR event.  In this case,
10869		 * the buffer size must match our specified size.
10870		 */
10871		if (buf->dtb_tomax != NULL) {
10872			ASSERT(buf->dtb_size == size);
10873			continue;
10874		}
10875
10876		ASSERT(buf->dtb_xamot == NULL);
10877
10878		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10879			goto err;
10880
10881		buf->dtb_size = size;
10882		buf->dtb_flags = flags;
10883		buf->dtb_offset = 0;
10884		buf->dtb_drops = 0;
10885
10886		if (flags & DTRACEBUF_NOSWITCH)
10887			continue;
10888
10889		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10890			goto err;
10891	}
10892
10893	return (0);
10894
10895err:
10896	/*
10897	 * Error allocating memory, so free the buffers that were
10898	 * allocated before the failed allocation.
10899	 */
10900	CPU_FOREACH(i) {
10901		if (cpu != DTRACE_CPUALL && cpu != i)
10902			continue;
10903
10904		buf = &bufs[i];
10905
10906		if (buf->dtb_xamot != NULL) {
10907			ASSERT(buf->dtb_tomax != NULL);
10908			ASSERT(buf->dtb_size == size);
10909			kmem_free(buf->dtb_xamot, size);
10910		}
10911
10912		if (buf->dtb_tomax != NULL) {
10913			ASSERT(buf->dtb_size == size);
10914			kmem_free(buf->dtb_tomax, size);
10915		}
10916
10917		buf->dtb_tomax = NULL;
10918		buf->dtb_xamot = NULL;
10919		buf->dtb_size = 0;
10920
10921	}
10922
10923	return (ENOMEM);
10924#endif
10925}
10926
10927/*
10928 * Note:  called from probe context.  This function just increments the drop
10929 * count on a buffer.  It has been made a function to allow for the
10930 * possibility of understanding the source of mysterious drop counts.  (A
10931 * problem for which one may be particularly disappointed that DTrace cannot
10932 * be used to understand DTrace.)
10933 */
10934static void
10935dtrace_buffer_drop(dtrace_buffer_t *buf)
10936{
10937	buf->dtb_drops++;
10938}
10939
10940/*
10941 * Note:  called from probe context.  This function is called to reserve space
10942 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10943 * mstate.  Returns the new offset in the buffer, or a negative value if an
10944 * error has occurred.
10945 */
10946static intptr_t
10947dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10948    dtrace_state_t *state, dtrace_mstate_t *mstate)
10949{
10950	intptr_t offs = buf->dtb_offset, soffs;
10951	intptr_t woffs;
10952	caddr_t tomax;
10953	size_t total;
10954
10955	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10956		return (-1);
10957
10958	if ((tomax = buf->dtb_tomax) == NULL) {
10959		dtrace_buffer_drop(buf);
10960		return (-1);
10961	}
10962
10963	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10964		while (offs & (align - 1)) {
10965			/*
10966			 * Assert that our alignment is off by a number which
10967			 * is itself sizeof (uint32_t) aligned.
10968			 */
10969			ASSERT(!((align - (offs & (align - 1))) &
10970			    (sizeof (uint32_t) - 1)));
10971			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10972			offs += sizeof (uint32_t);
10973		}
10974
10975		if ((soffs = offs + needed) > buf->dtb_size) {
10976			dtrace_buffer_drop(buf);
10977			return (-1);
10978		}
10979
10980		if (mstate == NULL)
10981			return (offs);
10982
10983		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10984		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10985		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10986
10987		return (offs);
10988	}
10989
10990	if (buf->dtb_flags & DTRACEBUF_FILL) {
10991		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10992		    (buf->dtb_flags & DTRACEBUF_FULL))
10993			return (-1);
10994		goto out;
10995	}
10996
10997	total = needed + (offs & (align - 1));
10998
10999	/*
11000	 * For a ring buffer, life is quite a bit more complicated.  Before
11001	 * we can store any padding, we need to adjust our wrapping offset.
11002	 * (If we've never before wrapped or we're not about to, no adjustment
11003	 * is required.)
11004	 */
11005	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11006	    offs + total > buf->dtb_size) {
11007		woffs = buf->dtb_xamot_offset;
11008
11009		if (offs + total > buf->dtb_size) {
11010			/*
11011			 * We can't fit in the end of the buffer.  First, a
11012			 * sanity check that we can fit in the buffer at all.
11013			 */
11014			if (total > buf->dtb_size) {
11015				dtrace_buffer_drop(buf);
11016				return (-1);
11017			}
11018
11019			/*
11020			 * We're going to be storing at the top of the buffer,
11021			 * so now we need to deal with the wrapped offset.  We
11022			 * only reset our wrapped offset to 0 if it is
11023			 * currently greater than the current offset.  If it
11024			 * is less than the current offset, it is because a
11025			 * previous allocation induced a wrap -- but the
11026			 * allocation didn't subsequently take the space due
11027			 * to an error or false predicate evaluation.  In this
11028			 * case, we'll just leave the wrapped offset alone: if
11029			 * the wrapped offset hasn't been advanced far enough
11030			 * for this allocation, it will be adjusted in the
11031			 * lower loop.
11032			 */
11033			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11034				if (woffs >= offs)
11035					woffs = 0;
11036			} else {
11037				woffs = 0;
11038			}
11039
11040			/*
11041			 * Now we know that we're going to be storing to the
11042			 * top of the buffer and that there is room for us
11043			 * there.  We need to clear the buffer from the current
11044			 * offset to the end (there may be old gunk there).
11045			 */
11046			while (offs < buf->dtb_size)
11047				tomax[offs++] = 0;
11048
11049			/*
11050			 * We need to set our offset to zero.  And because we
11051			 * are wrapping, we need to set the bit indicating as
11052			 * much.  We can also adjust our needed space back
11053			 * down to the space required by the ECB -- we know
11054			 * that the top of the buffer is aligned.
11055			 */
11056			offs = 0;
11057			total = needed;
11058			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11059		} else {
11060			/*
11061			 * There is room for us in the buffer, so we simply
11062			 * need to check the wrapped offset.
11063			 */
11064			if (woffs < offs) {
11065				/*
11066				 * The wrapped offset is less than the offset.
11067				 * This can happen if we allocated buffer space
11068				 * that induced a wrap, but then we didn't
11069				 * subsequently take the space due to an error
11070				 * or false predicate evaluation.  This is
11071				 * okay; we know that _this_ allocation isn't
11072				 * going to induce a wrap.  We still can't
11073				 * reset the wrapped offset to be zero,
11074				 * however: the space may have been trashed in
11075				 * the previous failed probe attempt.  But at
11076				 * least the wrapped offset doesn't need to
11077				 * be adjusted at all...
11078				 */
11079				goto out;
11080			}
11081		}
11082
11083		while (offs + total > woffs) {
11084			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11085			size_t size;
11086
11087			if (epid == DTRACE_EPIDNONE) {
11088				size = sizeof (uint32_t);
11089			} else {
11090				ASSERT(epid <= state->dts_necbs);
11091				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11092
11093				size = state->dts_ecbs[epid - 1]->dte_size;
11094			}
11095
11096			ASSERT(woffs + size <= buf->dtb_size);
11097			ASSERT(size != 0);
11098
11099			if (woffs + size == buf->dtb_size) {
11100				/*
11101				 * We've reached the end of the buffer; we want
11102				 * to set the wrapped offset to 0 and break
11103				 * out.  However, if the offs is 0, then we're
11104				 * in a strange edge-condition:  the amount of
11105				 * space that we want to reserve plus the size
11106				 * of the record that we're overwriting is
11107				 * greater than the size of the buffer.  This
11108				 * is problematic because if we reserve the
11109				 * space but subsequently don't consume it (due
11110				 * to a failed predicate or error) the wrapped
11111				 * offset will be 0 -- yet the EPID at offset 0
11112				 * will not be committed.  This situation is
11113				 * relatively easy to deal with:  if we're in
11114				 * this case, the buffer is indistinguishable
11115				 * from one that hasn't wrapped; we need only
11116				 * finish the job by clearing the wrapped bit,
11117				 * explicitly setting the offset to be 0, and
11118				 * zero'ing out the old data in the buffer.
11119				 */
11120				if (offs == 0) {
11121					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11122					buf->dtb_offset = 0;
11123					woffs = total;
11124
11125					while (woffs < buf->dtb_size)
11126						tomax[woffs++] = 0;
11127				}
11128
11129				woffs = 0;
11130				break;
11131			}
11132
11133			woffs += size;
11134		}
11135
11136		/*
11137		 * We have a wrapped offset.  It may be that the wrapped offset
11138		 * has become zero -- that's okay.
11139		 */
11140		buf->dtb_xamot_offset = woffs;
11141	}
11142
11143out:
11144	/*
11145	 * Now we can plow the buffer with any necessary padding.
11146	 */
11147	while (offs & (align - 1)) {
11148		/*
11149		 * Assert that our alignment is off by a number which
11150		 * is itself sizeof (uint32_t) aligned.
11151		 */
11152		ASSERT(!((align - (offs & (align - 1))) &
11153		    (sizeof (uint32_t) - 1)));
11154		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11155		offs += sizeof (uint32_t);
11156	}
11157
11158	if (buf->dtb_flags & DTRACEBUF_FILL) {
11159		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11160			buf->dtb_flags |= DTRACEBUF_FULL;
11161			return (-1);
11162		}
11163	}
11164
11165	if (mstate == NULL)
11166		return (offs);
11167
11168	/*
11169	 * For ring buffers and fill buffers, the scratch space is always
11170	 * the inactive buffer.
11171	 */
11172	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11173	mstate->dtms_scratch_size = buf->dtb_size;
11174	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11175
11176	return (offs);
11177}
11178
11179static void
11180dtrace_buffer_polish(dtrace_buffer_t *buf)
11181{
11182	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11183	ASSERT(MUTEX_HELD(&dtrace_lock));
11184
11185	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11186		return;
11187
11188	/*
11189	 * We need to polish the ring buffer.  There are three cases:
11190	 *
11191	 * - The first (and presumably most common) is that there is no gap
11192	 *   between the buffer offset and the wrapped offset.  In this case,
11193	 *   there is nothing in the buffer that isn't valid data; we can
11194	 *   mark the buffer as polished and return.
11195	 *
11196	 * - The second (less common than the first but still more common
11197	 *   than the third) is that there is a gap between the buffer offset
11198	 *   and the wrapped offset, and the wrapped offset is larger than the
11199	 *   buffer offset.  This can happen because of an alignment issue, or
11200	 *   can happen because of a call to dtrace_buffer_reserve() that
11201	 *   didn't subsequently consume the buffer space.  In this case,
11202	 *   we need to zero the data from the buffer offset to the wrapped
11203	 *   offset.
11204	 *
11205	 * - The third (and least common) is that there is a gap between the
11206	 *   buffer offset and the wrapped offset, but the wrapped offset is
11207	 *   _less_ than the buffer offset.  This can only happen because a
11208	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11209	 *   was not subsequently consumed.  In this case, we need to zero the
11210	 *   space from the offset to the end of the buffer _and_ from the
11211	 *   top of the buffer to the wrapped offset.
11212	 */
11213	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11214		bzero(buf->dtb_tomax + buf->dtb_offset,
11215		    buf->dtb_xamot_offset - buf->dtb_offset);
11216	}
11217
11218	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11219		bzero(buf->dtb_tomax + buf->dtb_offset,
11220		    buf->dtb_size - buf->dtb_offset);
11221		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11222	}
11223}
11224
11225static void
11226dtrace_buffer_free(dtrace_buffer_t *bufs)
11227{
11228	int i;
11229
11230	for (i = 0; i < NCPU; i++) {
11231		dtrace_buffer_t *buf = &bufs[i];
11232
11233		if (buf->dtb_tomax == NULL) {
11234			ASSERT(buf->dtb_xamot == NULL);
11235			ASSERT(buf->dtb_size == 0);
11236			continue;
11237		}
11238
11239		if (buf->dtb_xamot != NULL) {
11240			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11241			kmem_free(buf->dtb_xamot, buf->dtb_size);
11242		}
11243
11244		kmem_free(buf->dtb_tomax, buf->dtb_size);
11245		buf->dtb_size = 0;
11246		buf->dtb_tomax = NULL;
11247		buf->dtb_xamot = NULL;
11248	}
11249}
11250
11251/*
11252 * DTrace Enabling Functions
11253 */
11254static dtrace_enabling_t *
11255dtrace_enabling_create(dtrace_vstate_t *vstate)
11256{
11257	dtrace_enabling_t *enab;
11258
11259	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11260	enab->dten_vstate = vstate;
11261
11262	return (enab);
11263}
11264
11265static void
11266dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11267{
11268	dtrace_ecbdesc_t **ndesc;
11269	size_t osize, nsize;
11270
11271	/*
11272	 * We can't add to enablings after we've enabled them, or after we've
11273	 * retained them.
11274	 */
11275	ASSERT(enab->dten_probegen == 0);
11276	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11277
11278	if (enab->dten_ndesc < enab->dten_maxdesc) {
11279		enab->dten_desc[enab->dten_ndesc++] = ecb;
11280		return;
11281	}
11282
11283	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11284
11285	if (enab->dten_maxdesc == 0) {
11286		enab->dten_maxdesc = 1;
11287	} else {
11288		enab->dten_maxdesc <<= 1;
11289	}
11290
11291	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11292
11293	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11294	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11295	bcopy(enab->dten_desc, ndesc, osize);
11296	if (enab->dten_desc != NULL)
11297		kmem_free(enab->dten_desc, osize);
11298
11299	enab->dten_desc = ndesc;
11300	enab->dten_desc[enab->dten_ndesc++] = ecb;
11301}
11302
11303static void
11304dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11305    dtrace_probedesc_t *pd)
11306{
11307	dtrace_ecbdesc_t *new;
11308	dtrace_predicate_t *pred;
11309	dtrace_actdesc_t *act;
11310
11311	/*
11312	 * We're going to create a new ECB description that matches the
11313	 * specified ECB in every way, but has the specified probe description.
11314	 */
11315	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11316
11317	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11318		dtrace_predicate_hold(pred);
11319
11320	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11321		dtrace_actdesc_hold(act);
11322
11323	new->dted_action = ecb->dted_action;
11324	new->dted_pred = ecb->dted_pred;
11325	new->dted_probe = *pd;
11326	new->dted_uarg = ecb->dted_uarg;
11327
11328	dtrace_enabling_add(enab, new);
11329}
11330
11331static void
11332dtrace_enabling_dump(dtrace_enabling_t *enab)
11333{
11334	int i;
11335
11336	for (i = 0; i < enab->dten_ndesc; i++) {
11337		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11338
11339		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11340		    desc->dtpd_provider, desc->dtpd_mod,
11341		    desc->dtpd_func, desc->dtpd_name);
11342	}
11343}
11344
11345static void
11346dtrace_enabling_destroy(dtrace_enabling_t *enab)
11347{
11348	int i;
11349	dtrace_ecbdesc_t *ep;
11350	dtrace_vstate_t *vstate = enab->dten_vstate;
11351
11352	ASSERT(MUTEX_HELD(&dtrace_lock));
11353
11354	for (i = 0; i < enab->dten_ndesc; i++) {
11355		dtrace_actdesc_t *act, *next;
11356		dtrace_predicate_t *pred;
11357
11358		ep = enab->dten_desc[i];
11359
11360		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11361			dtrace_predicate_release(pred, vstate);
11362
11363		for (act = ep->dted_action; act != NULL; act = next) {
11364			next = act->dtad_next;
11365			dtrace_actdesc_release(act, vstate);
11366		}
11367
11368		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11369	}
11370
11371	if (enab->dten_desc != NULL)
11372		kmem_free(enab->dten_desc,
11373		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11374
11375	/*
11376	 * If this was a retained enabling, decrement the dts_nretained count
11377	 * and take it off of the dtrace_retained list.
11378	 */
11379	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11380	    dtrace_retained == enab) {
11381		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11382		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11383		enab->dten_vstate->dtvs_state->dts_nretained--;
11384	}
11385
11386	if (enab->dten_prev == NULL) {
11387		if (dtrace_retained == enab) {
11388			dtrace_retained = enab->dten_next;
11389
11390			if (dtrace_retained != NULL)
11391				dtrace_retained->dten_prev = NULL;
11392		}
11393	} else {
11394		ASSERT(enab != dtrace_retained);
11395		ASSERT(dtrace_retained != NULL);
11396		enab->dten_prev->dten_next = enab->dten_next;
11397	}
11398
11399	if (enab->dten_next != NULL) {
11400		ASSERT(dtrace_retained != NULL);
11401		enab->dten_next->dten_prev = enab->dten_prev;
11402	}
11403
11404	kmem_free(enab, sizeof (dtrace_enabling_t));
11405}
11406
11407static int
11408dtrace_enabling_retain(dtrace_enabling_t *enab)
11409{
11410	dtrace_state_t *state;
11411
11412	ASSERT(MUTEX_HELD(&dtrace_lock));
11413	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11414	ASSERT(enab->dten_vstate != NULL);
11415
11416	state = enab->dten_vstate->dtvs_state;
11417	ASSERT(state != NULL);
11418
11419	/*
11420	 * We only allow each state to retain dtrace_retain_max enablings.
11421	 */
11422	if (state->dts_nretained >= dtrace_retain_max)
11423		return (ENOSPC);
11424
11425	state->dts_nretained++;
11426
11427	if (dtrace_retained == NULL) {
11428		dtrace_retained = enab;
11429		return (0);
11430	}
11431
11432	enab->dten_next = dtrace_retained;
11433	dtrace_retained->dten_prev = enab;
11434	dtrace_retained = enab;
11435
11436	return (0);
11437}
11438
11439static int
11440dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11441    dtrace_probedesc_t *create)
11442{
11443	dtrace_enabling_t *new, *enab;
11444	int found = 0, err = ENOENT;
11445
11446	ASSERT(MUTEX_HELD(&dtrace_lock));
11447	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11448	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11449	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11450	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11451
11452	new = dtrace_enabling_create(&state->dts_vstate);
11453
11454	/*
11455	 * Iterate over all retained enablings, looking for enablings that
11456	 * match the specified state.
11457	 */
11458	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11459		int i;
11460
11461		/*
11462		 * dtvs_state can only be NULL for helper enablings -- and
11463		 * helper enablings can't be retained.
11464		 */
11465		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11466
11467		if (enab->dten_vstate->dtvs_state != state)
11468			continue;
11469
11470		/*
11471		 * Now iterate over each probe description; we're looking for
11472		 * an exact match to the specified probe description.
11473		 */
11474		for (i = 0; i < enab->dten_ndesc; i++) {
11475			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11476			dtrace_probedesc_t *pd = &ep->dted_probe;
11477
11478			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11479				continue;
11480
11481			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11482				continue;
11483
11484			if (strcmp(pd->dtpd_func, match->dtpd_func))
11485				continue;
11486
11487			if (strcmp(pd->dtpd_name, match->dtpd_name))
11488				continue;
11489
11490			/*
11491			 * We have a winning probe!  Add it to our growing
11492			 * enabling.
11493			 */
11494			found = 1;
11495			dtrace_enabling_addlike(new, ep, create);
11496		}
11497	}
11498
11499	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11500		dtrace_enabling_destroy(new);
11501		return (err);
11502	}
11503
11504	return (0);
11505}
11506
11507static void
11508dtrace_enabling_retract(dtrace_state_t *state)
11509{
11510	dtrace_enabling_t *enab, *next;
11511
11512	ASSERT(MUTEX_HELD(&dtrace_lock));
11513
11514	/*
11515	 * Iterate over all retained enablings, destroy the enablings retained
11516	 * for the specified state.
11517	 */
11518	for (enab = dtrace_retained; enab != NULL; enab = next) {
11519		next = enab->dten_next;
11520
11521		/*
11522		 * dtvs_state can only be NULL for helper enablings -- and
11523		 * helper enablings can't be retained.
11524		 */
11525		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11526
11527		if (enab->dten_vstate->dtvs_state == state) {
11528			ASSERT(state->dts_nretained > 0);
11529			dtrace_enabling_destroy(enab);
11530		}
11531	}
11532
11533	ASSERT(state->dts_nretained == 0);
11534}
11535
11536static int
11537dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11538{
11539	int i = 0;
11540	int matched = 0;
11541
11542	ASSERT(MUTEX_HELD(&cpu_lock));
11543	ASSERT(MUTEX_HELD(&dtrace_lock));
11544
11545	for (i = 0; i < enab->dten_ndesc; i++) {
11546		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11547
11548		enab->dten_current = ep;
11549		enab->dten_error = 0;
11550
11551		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11552
11553		if (enab->dten_error != 0) {
11554			/*
11555			 * If we get an error half-way through enabling the
11556			 * probes, we kick out -- perhaps with some number of
11557			 * them enabled.  Leaving enabled probes enabled may
11558			 * be slightly confusing for user-level, but we expect
11559			 * that no one will attempt to actually drive on in
11560			 * the face of such errors.  If this is an anonymous
11561			 * enabling (indicated with a NULL nmatched pointer),
11562			 * we cmn_err() a message.  We aren't expecting to
11563			 * get such an error -- such as it can exist at all,
11564			 * it would be a result of corrupted DOF in the driver
11565			 * properties.
11566			 */
11567			if (nmatched == NULL) {
11568				cmn_err(CE_WARN, "dtrace_enabling_match() "
11569				    "error on %p: %d", (void *)ep,
11570				    enab->dten_error);
11571			}
11572
11573			return (enab->dten_error);
11574		}
11575	}
11576
11577	enab->dten_probegen = dtrace_probegen;
11578	if (nmatched != NULL)
11579		*nmatched = matched;
11580
11581	return (0);
11582}
11583
11584static void
11585dtrace_enabling_matchall(void)
11586{
11587	dtrace_enabling_t *enab;
11588
11589	mutex_enter(&cpu_lock);
11590	mutex_enter(&dtrace_lock);
11591
11592	/*
11593	 * Iterate over all retained enablings to see if any probes match
11594	 * against them.  We only perform this operation on enablings for which
11595	 * we have sufficient permissions by virtue of being in the global zone
11596	 * or in the same zone as the DTrace client.  Because we can be called
11597	 * after dtrace_detach() has been called, we cannot assert that there
11598	 * are retained enablings.  We can safely load from dtrace_retained,
11599	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11600	 * block pending our completion.
11601	 */
11602	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11603#if defined(sun)
11604		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11605
11606		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11607#endif
11608			(void) dtrace_enabling_match(enab, NULL);
11609	}
11610
11611	mutex_exit(&dtrace_lock);
11612	mutex_exit(&cpu_lock);
11613}
11614
11615/*
11616 * If an enabling is to be enabled without having matched probes (that is, if
11617 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11618 * enabling must be _primed_ by creating an ECB for every ECB description.
11619 * This must be done to assure that we know the number of speculations, the
11620 * number of aggregations, the minimum buffer size needed, etc. before we
11621 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11622 * enabling any probes, we create ECBs for every ECB decription, but with a
11623 * NULL probe -- which is exactly what this function does.
11624 */
11625static void
11626dtrace_enabling_prime(dtrace_state_t *state)
11627{
11628	dtrace_enabling_t *enab;
11629	int i;
11630
11631	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11632		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11633
11634		if (enab->dten_vstate->dtvs_state != state)
11635			continue;
11636
11637		/*
11638		 * We don't want to prime an enabling more than once, lest
11639		 * we allow a malicious user to induce resource exhaustion.
11640		 * (The ECBs that result from priming an enabling aren't
11641		 * leaked -- but they also aren't deallocated until the
11642		 * consumer state is destroyed.)
11643		 */
11644		if (enab->dten_primed)
11645			continue;
11646
11647		for (i = 0; i < enab->dten_ndesc; i++) {
11648			enab->dten_current = enab->dten_desc[i];
11649			(void) dtrace_probe_enable(NULL, enab);
11650		}
11651
11652		enab->dten_primed = 1;
11653	}
11654}
11655
11656/*
11657 * Called to indicate that probes should be provided due to retained
11658 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11659 * must take an initial lap through the enabling calling the dtps_provide()
11660 * entry point explicitly to allow for autocreated probes.
11661 */
11662static void
11663dtrace_enabling_provide(dtrace_provider_t *prv)
11664{
11665	int i, all = 0;
11666	dtrace_probedesc_t desc;
11667
11668	ASSERT(MUTEX_HELD(&dtrace_lock));
11669	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11670
11671	if (prv == NULL) {
11672		all = 1;
11673		prv = dtrace_provider;
11674	}
11675
11676	do {
11677		dtrace_enabling_t *enab = dtrace_retained;
11678		void *parg = prv->dtpv_arg;
11679
11680		for (; enab != NULL; enab = enab->dten_next) {
11681			for (i = 0; i < enab->dten_ndesc; i++) {
11682				desc = enab->dten_desc[i]->dted_probe;
11683				mutex_exit(&dtrace_lock);
11684				prv->dtpv_pops.dtps_provide(parg, &desc);
11685				mutex_enter(&dtrace_lock);
11686			}
11687		}
11688	} while (all && (prv = prv->dtpv_next) != NULL);
11689
11690	mutex_exit(&dtrace_lock);
11691	dtrace_probe_provide(NULL, all ? NULL : prv);
11692	mutex_enter(&dtrace_lock);
11693}
11694
11695/*
11696 * DTrace DOF Functions
11697 */
11698/*ARGSUSED*/
11699static void
11700dtrace_dof_error(dof_hdr_t *dof, const char *str)
11701{
11702	if (dtrace_err_verbose)
11703		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11704
11705#ifdef DTRACE_ERRDEBUG
11706	dtrace_errdebug(str);
11707#endif
11708}
11709
11710/*
11711 * Create DOF out of a currently enabled state.  Right now, we only create
11712 * DOF containing the run-time options -- but this could be expanded to create
11713 * complete DOF representing the enabled state.
11714 */
11715static dof_hdr_t *
11716dtrace_dof_create(dtrace_state_t *state)
11717{
11718	dof_hdr_t *dof;
11719	dof_sec_t *sec;
11720	dof_optdesc_t *opt;
11721	int i, len = sizeof (dof_hdr_t) +
11722	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11723	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11724
11725	ASSERT(MUTEX_HELD(&dtrace_lock));
11726
11727	dof = kmem_zalloc(len, KM_SLEEP);
11728	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11729	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11730	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11731	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11732
11733	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11734	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11735	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11736	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11737	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11738	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11739
11740	dof->dofh_flags = 0;
11741	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11742	dof->dofh_secsize = sizeof (dof_sec_t);
11743	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11744	dof->dofh_secoff = sizeof (dof_hdr_t);
11745	dof->dofh_loadsz = len;
11746	dof->dofh_filesz = len;
11747	dof->dofh_pad = 0;
11748
11749	/*
11750	 * Fill in the option section header...
11751	 */
11752	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11753	sec->dofs_type = DOF_SECT_OPTDESC;
11754	sec->dofs_align = sizeof (uint64_t);
11755	sec->dofs_flags = DOF_SECF_LOAD;
11756	sec->dofs_entsize = sizeof (dof_optdesc_t);
11757
11758	opt = (dof_optdesc_t *)((uintptr_t)sec +
11759	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11760
11761	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11762	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11763
11764	for (i = 0; i < DTRACEOPT_MAX; i++) {
11765		opt[i].dofo_option = i;
11766		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11767		opt[i].dofo_value = state->dts_options[i];
11768	}
11769
11770	return (dof);
11771}
11772
11773static dof_hdr_t *
11774dtrace_dof_copyin(uintptr_t uarg, int *errp)
11775{
11776	dof_hdr_t hdr, *dof;
11777
11778	ASSERT(!MUTEX_HELD(&dtrace_lock));
11779
11780	/*
11781	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11782	 */
11783	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11784		dtrace_dof_error(NULL, "failed to copyin DOF header");
11785		*errp = EFAULT;
11786		return (NULL);
11787	}
11788
11789	/*
11790	 * Now we'll allocate the entire DOF and copy it in -- provided
11791	 * that the length isn't outrageous.
11792	 */
11793	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11794		dtrace_dof_error(&hdr, "load size exceeds maximum");
11795		*errp = E2BIG;
11796		return (NULL);
11797	}
11798
11799	if (hdr.dofh_loadsz < sizeof (hdr)) {
11800		dtrace_dof_error(&hdr, "invalid load size");
11801		*errp = EINVAL;
11802		return (NULL);
11803	}
11804
11805	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11806
11807	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11808		kmem_free(dof, hdr.dofh_loadsz);
11809		*errp = EFAULT;
11810		return (NULL);
11811	}
11812
11813	return (dof);
11814}
11815
11816#if !defined(sun)
11817static __inline uchar_t
11818dtrace_dof_char(char c) {
11819	switch (c) {
11820	case '0':
11821	case '1':
11822	case '2':
11823	case '3':
11824	case '4':
11825	case '5':
11826	case '6':
11827	case '7':
11828	case '8':
11829	case '9':
11830		return (c - '0');
11831	case 'A':
11832	case 'B':
11833	case 'C':
11834	case 'D':
11835	case 'E':
11836	case 'F':
11837		return (c - 'A' + 10);
11838	case 'a':
11839	case 'b':
11840	case 'c':
11841	case 'd':
11842	case 'e':
11843	case 'f':
11844		return (c - 'a' + 10);
11845	}
11846	/* Should not reach here. */
11847	return (0);
11848}
11849#endif
11850
11851static dof_hdr_t *
11852dtrace_dof_property(const char *name)
11853{
11854	uchar_t *buf;
11855	uint64_t loadsz;
11856	unsigned int len, i;
11857	dof_hdr_t *dof;
11858
11859#if defined(sun)
11860	/*
11861	 * Unfortunately, array of values in .conf files are always (and
11862	 * only) interpreted to be integer arrays.  We must read our DOF
11863	 * as an integer array, and then squeeze it into a byte array.
11864	 */
11865	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11866	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11867		return (NULL);
11868
11869	for (i = 0; i < len; i++)
11870		buf[i] = (uchar_t)(((int *)buf)[i]);
11871
11872	if (len < sizeof (dof_hdr_t)) {
11873		ddi_prop_free(buf);
11874		dtrace_dof_error(NULL, "truncated header");
11875		return (NULL);
11876	}
11877
11878	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11879		ddi_prop_free(buf);
11880		dtrace_dof_error(NULL, "truncated DOF");
11881		return (NULL);
11882	}
11883
11884	if (loadsz >= dtrace_dof_maxsize) {
11885		ddi_prop_free(buf);
11886		dtrace_dof_error(NULL, "oversized DOF");
11887		return (NULL);
11888	}
11889
11890	dof = kmem_alloc(loadsz, KM_SLEEP);
11891	bcopy(buf, dof, loadsz);
11892	ddi_prop_free(buf);
11893#else
11894	char *p;
11895	char *p_env;
11896
11897	if ((p_env = getenv(name)) == NULL)
11898		return (NULL);
11899
11900	len = strlen(p_env) / 2;
11901
11902	buf = kmem_alloc(len, KM_SLEEP);
11903
11904	dof = (dof_hdr_t *) buf;
11905
11906	p = p_env;
11907
11908	for (i = 0; i < len; i++) {
11909		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11910		     dtrace_dof_char(p[1]);
11911		p += 2;
11912	}
11913
11914	freeenv(p_env);
11915
11916	if (len < sizeof (dof_hdr_t)) {
11917		kmem_free(buf, 0);
11918		dtrace_dof_error(NULL, "truncated header");
11919		return (NULL);
11920	}
11921
11922	if (len < (loadsz = dof->dofh_loadsz)) {
11923		kmem_free(buf, 0);
11924		dtrace_dof_error(NULL, "truncated DOF");
11925		return (NULL);
11926	}
11927
11928	if (loadsz >= dtrace_dof_maxsize) {
11929		kmem_free(buf, 0);
11930		dtrace_dof_error(NULL, "oversized DOF");
11931		return (NULL);
11932	}
11933#endif
11934
11935	return (dof);
11936}
11937
11938static void
11939dtrace_dof_destroy(dof_hdr_t *dof)
11940{
11941	kmem_free(dof, dof->dofh_loadsz);
11942}
11943
11944/*
11945 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11946 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11947 * a type other than DOF_SECT_NONE is specified, the header is checked against
11948 * this type and NULL is returned if the types do not match.
11949 */
11950static dof_sec_t *
11951dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11952{
11953	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11954	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11955
11956	if (i >= dof->dofh_secnum) {
11957		dtrace_dof_error(dof, "referenced section index is invalid");
11958		return (NULL);
11959	}
11960
11961	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11962		dtrace_dof_error(dof, "referenced section is not loadable");
11963		return (NULL);
11964	}
11965
11966	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11967		dtrace_dof_error(dof, "referenced section is the wrong type");
11968		return (NULL);
11969	}
11970
11971	return (sec);
11972}
11973
11974static dtrace_probedesc_t *
11975dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11976{
11977	dof_probedesc_t *probe;
11978	dof_sec_t *strtab;
11979	uintptr_t daddr = (uintptr_t)dof;
11980	uintptr_t str;
11981	size_t size;
11982
11983	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11984		dtrace_dof_error(dof, "invalid probe section");
11985		return (NULL);
11986	}
11987
11988	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11989		dtrace_dof_error(dof, "bad alignment in probe description");
11990		return (NULL);
11991	}
11992
11993	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11994		dtrace_dof_error(dof, "truncated probe description");
11995		return (NULL);
11996	}
11997
11998	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11999	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12000
12001	if (strtab == NULL)
12002		return (NULL);
12003
12004	str = daddr + strtab->dofs_offset;
12005	size = strtab->dofs_size;
12006
12007	if (probe->dofp_provider >= strtab->dofs_size) {
12008		dtrace_dof_error(dof, "corrupt probe provider");
12009		return (NULL);
12010	}
12011
12012	(void) strncpy(desc->dtpd_provider,
12013	    (char *)(str + probe->dofp_provider),
12014	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12015
12016	if (probe->dofp_mod >= strtab->dofs_size) {
12017		dtrace_dof_error(dof, "corrupt probe module");
12018		return (NULL);
12019	}
12020
12021	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12022	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12023
12024	if (probe->dofp_func >= strtab->dofs_size) {
12025		dtrace_dof_error(dof, "corrupt probe function");
12026		return (NULL);
12027	}
12028
12029	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12030	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12031
12032	if (probe->dofp_name >= strtab->dofs_size) {
12033		dtrace_dof_error(dof, "corrupt probe name");
12034		return (NULL);
12035	}
12036
12037	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12038	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12039
12040	return (desc);
12041}
12042
12043static dtrace_difo_t *
12044dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12045    cred_t *cr)
12046{
12047	dtrace_difo_t *dp;
12048	size_t ttl = 0;
12049	dof_difohdr_t *dofd;
12050	uintptr_t daddr = (uintptr_t)dof;
12051	size_t max = dtrace_difo_maxsize;
12052	int i, l, n;
12053
12054	static const struct {
12055		int section;
12056		int bufoffs;
12057		int lenoffs;
12058		int entsize;
12059		int align;
12060		const char *msg;
12061	} difo[] = {
12062		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12063		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12064		sizeof (dif_instr_t), "multiple DIF sections" },
12065
12066		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12067		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12068		sizeof (uint64_t), "multiple integer tables" },
12069
12070		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12071		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12072		sizeof (char), "multiple string tables" },
12073
12074		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12075		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12076		sizeof (uint_t), "multiple variable tables" },
12077
12078		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12079	};
12080
12081	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12082		dtrace_dof_error(dof, "invalid DIFO header section");
12083		return (NULL);
12084	}
12085
12086	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12087		dtrace_dof_error(dof, "bad alignment in DIFO header");
12088		return (NULL);
12089	}
12090
12091	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12092	    sec->dofs_size % sizeof (dof_secidx_t)) {
12093		dtrace_dof_error(dof, "bad size in DIFO header");
12094		return (NULL);
12095	}
12096
12097	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12098	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12099
12100	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12101	dp->dtdo_rtype = dofd->dofd_rtype;
12102
12103	for (l = 0; l < n; l++) {
12104		dof_sec_t *subsec;
12105		void **bufp;
12106		uint32_t *lenp;
12107
12108		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12109		    dofd->dofd_links[l])) == NULL)
12110			goto err; /* invalid section link */
12111
12112		if (ttl + subsec->dofs_size > max) {
12113			dtrace_dof_error(dof, "exceeds maximum size");
12114			goto err;
12115		}
12116
12117		ttl += subsec->dofs_size;
12118
12119		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12120			if (subsec->dofs_type != difo[i].section)
12121				continue;
12122
12123			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12124				dtrace_dof_error(dof, "section not loaded");
12125				goto err;
12126			}
12127
12128			if (subsec->dofs_align != difo[i].align) {
12129				dtrace_dof_error(dof, "bad alignment");
12130				goto err;
12131			}
12132
12133			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12134			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12135
12136			if (*bufp != NULL) {
12137				dtrace_dof_error(dof, difo[i].msg);
12138				goto err;
12139			}
12140
12141			if (difo[i].entsize != subsec->dofs_entsize) {
12142				dtrace_dof_error(dof, "entry size mismatch");
12143				goto err;
12144			}
12145
12146			if (subsec->dofs_entsize != 0 &&
12147			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12148				dtrace_dof_error(dof, "corrupt entry size");
12149				goto err;
12150			}
12151
12152			*lenp = subsec->dofs_size;
12153			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12154			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12155			    *bufp, subsec->dofs_size);
12156
12157			if (subsec->dofs_entsize != 0)
12158				*lenp /= subsec->dofs_entsize;
12159
12160			break;
12161		}
12162
12163		/*
12164		 * If we encounter a loadable DIFO sub-section that is not
12165		 * known to us, assume this is a broken program and fail.
12166		 */
12167		if (difo[i].section == DOF_SECT_NONE &&
12168		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12169			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12170			goto err;
12171		}
12172	}
12173
12174	if (dp->dtdo_buf == NULL) {
12175		/*
12176		 * We can't have a DIF object without DIF text.
12177		 */
12178		dtrace_dof_error(dof, "missing DIF text");
12179		goto err;
12180	}
12181
12182	/*
12183	 * Before we validate the DIF object, run through the variable table
12184	 * looking for the strings -- if any of their size are under, we'll set
12185	 * their size to be the system-wide default string size.  Note that
12186	 * this should _not_ happen if the "strsize" option has been set --
12187	 * in this case, the compiler should have set the size to reflect the
12188	 * setting of the option.
12189	 */
12190	for (i = 0; i < dp->dtdo_varlen; i++) {
12191		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12192		dtrace_diftype_t *t = &v->dtdv_type;
12193
12194		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12195			continue;
12196
12197		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12198			t->dtdt_size = dtrace_strsize_default;
12199	}
12200
12201	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12202		goto err;
12203
12204	dtrace_difo_init(dp, vstate);
12205	return (dp);
12206
12207err:
12208	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12209	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12210	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12211	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12212
12213	kmem_free(dp, sizeof (dtrace_difo_t));
12214	return (NULL);
12215}
12216
12217static dtrace_predicate_t *
12218dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12219    cred_t *cr)
12220{
12221	dtrace_difo_t *dp;
12222
12223	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12224		return (NULL);
12225
12226	return (dtrace_predicate_create(dp));
12227}
12228
12229static dtrace_actdesc_t *
12230dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12231    cred_t *cr)
12232{
12233	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12234	dof_actdesc_t *desc;
12235	dof_sec_t *difosec;
12236	size_t offs;
12237	uintptr_t daddr = (uintptr_t)dof;
12238	uint64_t arg;
12239	dtrace_actkind_t kind;
12240
12241	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12242		dtrace_dof_error(dof, "invalid action section");
12243		return (NULL);
12244	}
12245
12246	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12247		dtrace_dof_error(dof, "truncated action description");
12248		return (NULL);
12249	}
12250
12251	if (sec->dofs_align != sizeof (uint64_t)) {
12252		dtrace_dof_error(dof, "bad alignment in action description");
12253		return (NULL);
12254	}
12255
12256	if (sec->dofs_size < sec->dofs_entsize) {
12257		dtrace_dof_error(dof, "section entry size exceeds total size");
12258		return (NULL);
12259	}
12260
12261	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12262		dtrace_dof_error(dof, "bad entry size in action description");
12263		return (NULL);
12264	}
12265
12266	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12267		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12268		return (NULL);
12269	}
12270
12271	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12272		desc = (dof_actdesc_t *)(daddr +
12273		    (uintptr_t)sec->dofs_offset + offs);
12274		kind = (dtrace_actkind_t)desc->dofa_kind;
12275
12276		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12277		    (kind != DTRACEACT_PRINTA ||
12278		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12279		    (kind == DTRACEACT_DIFEXPR &&
12280		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12281			dof_sec_t *strtab;
12282			char *str, *fmt;
12283			uint64_t i;
12284
12285			/*
12286			 * The argument to these actions is an index into the
12287			 * DOF string table.  For printf()-like actions, this
12288			 * is the format string.  For print(), this is the
12289			 * CTF type of the expression result.
12290			 */
12291			if ((strtab = dtrace_dof_sect(dof,
12292			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12293				goto err;
12294
12295			str = (char *)((uintptr_t)dof +
12296			    (uintptr_t)strtab->dofs_offset);
12297
12298			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12299				if (str[i] == '\0')
12300					break;
12301			}
12302
12303			if (i >= strtab->dofs_size) {
12304				dtrace_dof_error(dof, "bogus format string");
12305				goto err;
12306			}
12307
12308			if (i == desc->dofa_arg) {
12309				dtrace_dof_error(dof, "empty format string");
12310				goto err;
12311			}
12312
12313			i -= desc->dofa_arg;
12314			fmt = kmem_alloc(i + 1, KM_SLEEP);
12315			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12316			arg = (uint64_t)(uintptr_t)fmt;
12317		} else {
12318			if (kind == DTRACEACT_PRINTA) {
12319				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12320				arg = 0;
12321			} else {
12322				arg = desc->dofa_arg;
12323			}
12324		}
12325
12326		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12327		    desc->dofa_uarg, arg);
12328
12329		if (last != NULL) {
12330			last->dtad_next = act;
12331		} else {
12332			first = act;
12333		}
12334
12335		last = act;
12336
12337		if (desc->dofa_difo == DOF_SECIDX_NONE)
12338			continue;
12339
12340		if ((difosec = dtrace_dof_sect(dof,
12341		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12342			goto err;
12343
12344		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12345
12346		if (act->dtad_difo == NULL)
12347			goto err;
12348	}
12349
12350	ASSERT(first != NULL);
12351	return (first);
12352
12353err:
12354	for (act = first; act != NULL; act = next) {
12355		next = act->dtad_next;
12356		dtrace_actdesc_release(act, vstate);
12357	}
12358
12359	return (NULL);
12360}
12361
12362static dtrace_ecbdesc_t *
12363dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12364    cred_t *cr)
12365{
12366	dtrace_ecbdesc_t *ep;
12367	dof_ecbdesc_t *ecb;
12368	dtrace_probedesc_t *desc;
12369	dtrace_predicate_t *pred = NULL;
12370
12371	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12372		dtrace_dof_error(dof, "truncated ECB description");
12373		return (NULL);
12374	}
12375
12376	if (sec->dofs_align != sizeof (uint64_t)) {
12377		dtrace_dof_error(dof, "bad alignment in ECB description");
12378		return (NULL);
12379	}
12380
12381	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12382	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12383
12384	if (sec == NULL)
12385		return (NULL);
12386
12387	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12388	ep->dted_uarg = ecb->dofe_uarg;
12389	desc = &ep->dted_probe;
12390
12391	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12392		goto err;
12393
12394	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12395		if ((sec = dtrace_dof_sect(dof,
12396		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12397			goto err;
12398
12399		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12400			goto err;
12401
12402		ep->dted_pred.dtpdd_predicate = pred;
12403	}
12404
12405	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12406		if ((sec = dtrace_dof_sect(dof,
12407		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12408			goto err;
12409
12410		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12411
12412		if (ep->dted_action == NULL)
12413			goto err;
12414	}
12415
12416	return (ep);
12417
12418err:
12419	if (pred != NULL)
12420		dtrace_predicate_release(pred, vstate);
12421	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12422	return (NULL);
12423}
12424
12425/*
12426 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12427 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12428 * site of any user SETX relocations to account for load object base address.
12429 * In the future, if we need other relocations, this function can be extended.
12430 */
12431static int
12432dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12433{
12434	uintptr_t daddr = (uintptr_t)dof;
12435	dof_relohdr_t *dofr =
12436	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12437	dof_sec_t *ss, *rs, *ts;
12438	dof_relodesc_t *r;
12439	uint_t i, n;
12440
12441	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12442	    sec->dofs_align != sizeof (dof_secidx_t)) {
12443		dtrace_dof_error(dof, "invalid relocation header");
12444		return (-1);
12445	}
12446
12447	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12448	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12449	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12450
12451	if (ss == NULL || rs == NULL || ts == NULL)
12452		return (-1); /* dtrace_dof_error() has been called already */
12453
12454	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12455	    rs->dofs_align != sizeof (uint64_t)) {
12456		dtrace_dof_error(dof, "invalid relocation section");
12457		return (-1);
12458	}
12459
12460	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12461	n = rs->dofs_size / rs->dofs_entsize;
12462
12463	for (i = 0; i < n; i++) {
12464		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12465
12466		switch (r->dofr_type) {
12467		case DOF_RELO_NONE:
12468			break;
12469		case DOF_RELO_SETX:
12470			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12471			    sizeof (uint64_t) > ts->dofs_size) {
12472				dtrace_dof_error(dof, "bad relocation offset");
12473				return (-1);
12474			}
12475
12476			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12477				dtrace_dof_error(dof, "misaligned setx relo");
12478				return (-1);
12479			}
12480
12481			*(uint64_t *)taddr += ubase;
12482			break;
12483		default:
12484			dtrace_dof_error(dof, "invalid relocation type");
12485			return (-1);
12486		}
12487
12488		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12489	}
12490
12491	return (0);
12492}
12493
12494/*
12495 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12496 * header:  it should be at the front of a memory region that is at least
12497 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12498 * size.  It need not be validated in any other way.
12499 */
12500static int
12501dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12502    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12503{
12504	uint64_t len = dof->dofh_loadsz, seclen;
12505	uintptr_t daddr = (uintptr_t)dof;
12506	dtrace_ecbdesc_t *ep;
12507	dtrace_enabling_t *enab;
12508	uint_t i;
12509
12510	ASSERT(MUTEX_HELD(&dtrace_lock));
12511	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12512
12513	/*
12514	 * Check the DOF header identification bytes.  In addition to checking
12515	 * valid settings, we also verify that unused bits/bytes are zeroed so
12516	 * we can use them later without fear of regressing existing binaries.
12517	 */
12518	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12519	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12520		dtrace_dof_error(dof, "DOF magic string mismatch");
12521		return (-1);
12522	}
12523
12524	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12525	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12526		dtrace_dof_error(dof, "DOF has invalid data model");
12527		return (-1);
12528	}
12529
12530	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12531		dtrace_dof_error(dof, "DOF encoding mismatch");
12532		return (-1);
12533	}
12534
12535	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12536	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12537		dtrace_dof_error(dof, "DOF version mismatch");
12538		return (-1);
12539	}
12540
12541	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12542		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12543		return (-1);
12544	}
12545
12546	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12547		dtrace_dof_error(dof, "DOF uses too many integer registers");
12548		return (-1);
12549	}
12550
12551	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12552		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12553		return (-1);
12554	}
12555
12556	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12557		if (dof->dofh_ident[i] != 0) {
12558			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12559			return (-1);
12560		}
12561	}
12562
12563	if (dof->dofh_flags & ~DOF_FL_VALID) {
12564		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12565		return (-1);
12566	}
12567
12568	if (dof->dofh_secsize == 0) {
12569		dtrace_dof_error(dof, "zero section header size");
12570		return (-1);
12571	}
12572
12573	/*
12574	 * Check that the section headers don't exceed the amount of DOF
12575	 * data.  Note that we cast the section size and number of sections
12576	 * to uint64_t's to prevent possible overflow in the multiplication.
12577	 */
12578	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12579
12580	if (dof->dofh_secoff > len || seclen > len ||
12581	    dof->dofh_secoff + seclen > len) {
12582		dtrace_dof_error(dof, "truncated section headers");
12583		return (-1);
12584	}
12585
12586	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12587		dtrace_dof_error(dof, "misaligned section headers");
12588		return (-1);
12589	}
12590
12591	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12592		dtrace_dof_error(dof, "misaligned section size");
12593		return (-1);
12594	}
12595
12596	/*
12597	 * Take an initial pass through the section headers to be sure that
12598	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12599	 * set, do not permit sections relating to providers, probes, or args.
12600	 */
12601	for (i = 0; i < dof->dofh_secnum; i++) {
12602		dof_sec_t *sec = (dof_sec_t *)(daddr +
12603		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12604
12605		if (noprobes) {
12606			switch (sec->dofs_type) {
12607			case DOF_SECT_PROVIDER:
12608			case DOF_SECT_PROBES:
12609			case DOF_SECT_PRARGS:
12610			case DOF_SECT_PROFFS:
12611				dtrace_dof_error(dof, "illegal sections "
12612				    "for enabling");
12613				return (-1);
12614			}
12615		}
12616
12617		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12618			continue; /* just ignore non-loadable sections */
12619
12620		if (sec->dofs_align & (sec->dofs_align - 1)) {
12621			dtrace_dof_error(dof, "bad section alignment");
12622			return (-1);
12623		}
12624
12625		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12626			dtrace_dof_error(dof, "misaligned section");
12627			return (-1);
12628		}
12629
12630		if (sec->dofs_offset > len || sec->dofs_size > len ||
12631		    sec->dofs_offset + sec->dofs_size > len) {
12632			dtrace_dof_error(dof, "corrupt section header");
12633			return (-1);
12634		}
12635
12636		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12637		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12638			dtrace_dof_error(dof, "non-terminating string table");
12639			return (-1);
12640		}
12641	}
12642
12643	/*
12644	 * Take a second pass through the sections and locate and perform any
12645	 * relocations that are present.  We do this after the first pass to
12646	 * be sure that all sections have had their headers validated.
12647	 */
12648	for (i = 0; i < dof->dofh_secnum; i++) {
12649		dof_sec_t *sec = (dof_sec_t *)(daddr +
12650		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12651
12652		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12653			continue; /* skip sections that are not loadable */
12654
12655		switch (sec->dofs_type) {
12656		case DOF_SECT_URELHDR:
12657			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12658				return (-1);
12659			break;
12660		}
12661	}
12662
12663	if ((enab = *enabp) == NULL)
12664		enab = *enabp = dtrace_enabling_create(vstate);
12665
12666	for (i = 0; i < dof->dofh_secnum; i++) {
12667		dof_sec_t *sec = (dof_sec_t *)(daddr +
12668		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12669
12670		if (sec->dofs_type != DOF_SECT_ECBDESC)
12671			continue;
12672
12673		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12674			dtrace_enabling_destroy(enab);
12675			*enabp = NULL;
12676			return (-1);
12677		}
12678
12679		dtrace_enabling_add(enab, ep);
12680	}
12681
12682	return (0);
12683}
12684
12685/*
12686 * Process DOF for any options.  This routine assumes that the DOF has been
12687 * at least processed by dtrace_dof_slurp().
12688 */
12689static int
12690dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12691{
12692	int i, rval;
12693	uint32_t entsize;
12694	size_t offs;
12695	dof_optdesc_t *desc;
12696
12697	for (i = 0; i < dof->dofh_secnum; i++) {
12698		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12699		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12700
12701		if (sec->dofs_type != DOF_SECT_OPTDESC)
12702			continue;
12703
12704		if (sec->dofs_align != sizeof (uint64_t)) {
12705			dtrace_dof_error(dof, "bad alignment in "
12706			    "option description");
12707			return (EINVAL);
12708		}
12709
12710		if ((entsize = sec->dofs_entsize) == 0) {
12711			dtrace_dof_error(dof, "zeroed option entry size");
12712			return (EINVAL);
12713		}
12714
12715		if (entsize < sizeof (dof_optdesc_t)) {
12716			dtrace_dof_error(dof, "bad option entry size");
12717			return (EINVAL);
12718		}
12719
12720		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12721			desc = (dof_optdesc_t *)((uintptr_t)dof +
12722			    (uintptr_t)sec->dofs_offset + offs);
12723
12724			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12725				dtrace_dof_error(dof, "non-zero option string");
12726				return (EINVAL);
12727			}
12728
12729			if (desc->dofo_value == DTRACEOPT_UNSET) {
12730				dtrace_dof_error(dof, "unset option");
12731				return (EINVAL);
12732			}
12733
12734			if ((rval = dtrace_state_option(state,
12735			    desc->dofo_option, desc->dofo_value)) != 0) {
12736				dtrace_dof_error(dof, "rejected option");
12737				return (rval);
12738			}
12739		}
12740	}
12741
12742	return (0);
12743}
12744
12745/*
12746 * DTrace Consumer State Functions
12747 */
12748static int
12749dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12750{
12751	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12752	void *base;
12753	uintptr_t limit;
12754	dtrace_dynvar_t *dvar, *next, *start;
12755	int i;
12756
12757	ASSERT(MUTEX_HELD(&dtrace_lock));
12758	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12759
12760	bzero(dstate, sizeof (dtrace_dstate_t));
12761
12762	if ((dstate->dtds_chunksize = chunksize) == 0)
12763		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12764
12765	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12766		size = min;
12767
12768	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12769		return (ENOMEM);
12770
12771	dstate->dtds_size = size;
12772	dstate->dtds_base = base;
12773	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12774	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12775
12776	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12777
12778	if (hashsize != 1 && (hashsize & 1))
12779		hashsize--;
12780
12781	dstate->dtds_hashsize = hashsize;
12782	dstate->dtds_hash = dstate->dtds_base;
12783
12784	/*
12785	 * Set all of our hash buckets to point to the single sink, and (if
12786	 * it hasn't already been set), set the sink's hash value to be the
12787	 * sink sentinel value.  The sink is needed for dynamic variable
12788	 * lookups to know that they have iterated over an entire, valid hash
12789	 * chain.
12790	 */
12791	for (i = 0; i < hashsize; i++)
12792		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12793
12794	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12795		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12796
12797	/*
12798	 * Determine number of active CPUs.  Divide free list evenly among
12799	 * active CPUs.
12800	 */
12801	start = (dtrace_dynvar_t *)
12802	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12803	limit = (uintptr_t)base + size;
12804
12805	maxper = (limit - (uintptr_t)start) / NCPU;
12806	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12807
12808#if !defined(sun)
12809	CPU_FOREACH(i) {
12810#else
12811	for (i = 0; i < NCPU; i++) {
12812#endif
12813		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12814
12815		/*
12816		 * If we don't even have enough chunks to make it once through
12817		 * NCPUs, we're just going to allocate everything to the first
12818		 * CPU.  And if we're on the last CPU, we're going to allocate
12819		 * whatever is left over.  In either case, we set the limit to
12820		 * be the limit of the dynamic variable space.
12821		 */
12822		if (maxper == 0 || i == NCPU - 1) {
12823			limit = (uintptr_t)base + size;
12824			start = NULL;
12825		} else {
12826			limit = (uintptr_t)start + maxper;
12827			start = (dtrace_dynvar_t *)limit;
12828		}
12829
12830		ASSERT(limit <= (uintptr_t)base + size);
12831
12832		for (;;) {
12833			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12834			    dstate->dtds_chunksize);
12835
12836			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12837				break;
12838
12839			dvar->dtdv_next = next;
12840			dvar = next;
12841		}
12842
12843		if (maxper == 0)
12844			break;
12845	}
12846
12847	return (0);
12848}
12849
12850static void
12851dtrace_dstate_fini(dtrace_dstate_t *dstate)
12852{
12853	ASSERT(MUTEX_HELD(&cpu_lock));
12854
12855	if (dstate->dtds_base == NULL)
12856		return;
12857
12858	kmem_free(dstate->dtds_base, dstate->dtds_size);
12859	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12860}
12861
12862static void
12863dtrace_vstate_fini(dtrace_vstate_t *vstate)
12864{
12865	/*
12866	 * Logical XOR, where are you?
12867	 */
12868	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12869
12870	if (vstate->dtvs_nglobals > 0) {
12871		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12872		    sizeof (dtrace_statvar_t *));
12873	}
12874
12875	if (vstate->dtvs_ntlocals > 0) {
12876		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12877		    sizeof (dtrace_difv_t));
12878	}
12879
12880	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12881
12882	if (vstate->dtvs_nlocals > 0) {
12883		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12884		    sizeof (dtrace_statvar_t *));
12885	}
12886}
12887
12888#if defined(sun)
12889static void
12890dtrace_state_clean(dtrace_state_t *state)
12891{
12892	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12893		return;
12894
12895	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12896	dtrace_speculation_clean(state);
12897}
12898
12899static void
12900dtrace_state_deadman(dtrace_state_t *state)
12901{
12902	hrtime_t now;
12903
12904	dtrace_sync();
12905
12906	now = dtrace_gethrtime();
12907
12908	if (state != dtrace_anon.dta_state &&
12909	    now - state->dts_laststatus >= dtrace_deadman_user)
12910		return;
12911
12912	/*
12913	 * We must be sure that dts_alive never appears to be less than the
12914	 * value upon entry to dtrace_state_deadman(), and because we lack a
12915	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12916	 * store INT64_MAX to it, followed by a memory barrier, followed by
12917	 * the new value.  This assures that dts_alive never appears to be
12918	 * less than its true value, regardless of the order in which the
12919	 * stores to the underlying storage are issued.
12920	 */
12921	state->dts_alive = INT64_MAX;
12922	dtrace_membar_producer();
12923	state->dts_alive = now;
12924}
12925#else
12926static void
12927dtrace_state_clean(void *arg)
12928{
12929	dtrace_state_t *state = arg;
12930	dtrace_optval_t *opt = state->dts_options;
12931
12932	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12933		return;
12934
12935	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12936	dtrace_speculation_clean(state);
12937
12938	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12939	    dtrace_state_clean, state);
12940}
12941
12942static void
12943dtrace_state_deadman(void *arg)
12944{
12945	dtrace_state_t *state = arg;
12946	hrtime_t now;
12947
12948	dtrace_sync();
12949
12950	dtrace_debug_output();
12951
12952	now = dtrace_gethrtime();
12953
12954	if (state != dtrace_anon.dta_state &&
12955	    now - state->dts_laststatus >= dtrace_deadman_user)
12956		return;
12957
12958	/*
12959	 * We must be sure that dts_alive never appears to be less than the
12960	 * value upon entry to dtrace_state_deadman(), and because we lack a
12961	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12962	 * store INT64_MAX to it, followed by a memory barrier, followed by
12963	 * the new value.  This assures that dts_alive never appears to be
12964	 * less than its true value, regardless of the order in which the
12965	 * stores to the underlying storage are issued.
12966	 */
12967	state->dts_alive = INT64_MAX;
12968	dtrace_membar_producer();
12969	state->dts_alive = now;
12970
12971	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12972	    dtrace_state_deadman, state);
12973}
12974#endif
12975
12976static dtrace_state_t *
12977#if defined(sun)
12978dtrace_state_create(dev_t *devp, cred_t *cr)
12979#else
12980dtrace_state_create(struct cdev *dev)
12981#endif
12982{
12983#if defined(sun)
12984	minor_t minor;
12985	major_t major;
12986#else
12987	cred_t *cr = NULL;
12988	int m = 0;
12989#endif
12990	char c[30];
12991	dtrace_state_t *state;
12992	dtrace_optval_t *opt;
12993	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12994
12995	ASSERT(MUTEX_HELD(&dtrace_lock));
12996	ASSERT(MUTEX_HELD(&cpu_lock));
12997
12998#if defined(sun)
12999	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13000	    VM_BESTFIT | VM_SLEEP);
13001
13002	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13003		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13004		return (NULL);
13005	}
13006
13007	state = ddi_get_soft_state(dtrace_softstate, minor);
13008#else
13009	if (dev != NULL) {
13010		cr = dev->si_cred;
13011		m = dev2unit(dev);
13012		}
13013
13014	/* Allocate memory for the state. */
13015	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13016#endif
13017
13018	state->dts_epid = DTRACE_EPIDNONE + 1;
13019
13020	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13021#if defined(sun)
13022	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13023	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13024
13025	if (devp != NULL) {
13026		major = getemajor(*devp);
13027	} else {
13028		major = ddi_driver_major(dtrace_devi);
13029	}
13030
13031	state->dts_dev = makedevice(major, minor);
13032
13033	if (devp != NULL)
13034		*devp = state->dts_dev;
13035#else
13036	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13037	state->dts_dev = dev;
13038#endif
13039
13040	/*
13041	 * We allocate NCPU buffers.  On the one hand, this can be quite
13042	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13043	 * other hand, it saves an additional memory reference in the probe
13044	 * path.
13045	 */
13046	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13047	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13048
13049#if defined(sun)
13050	state->dts_cleaner = CYCLIC_NONE;
13051	state->dts_deadman = CYCLIC_NONE;
13052#else
13053	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13054	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13055#endif
13056	state->dts_vstate.dtvs_state = state;
13057
13058	for (i = 0; i < DTRACEOPT_MAX; i++)
13059		state->dts_options[i] = DTRACEOPT_UNSET;
13060
13061	/*
13062	 * Set the default options.
13063	 */
13064	opt = state->dts_options;
13065	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13066	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13067	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13068	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13069	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13070	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13071	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13072	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13073	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13074	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13075	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13076	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13077	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13078	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13079
13080	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13081
13082	/*
13083	 * Depending on the user credentials, we set flag bits which alter probe
13084	 * visibility or the amount of destructiveness allowed.  In the case of
13085	 * actual anonymous tracing, or the possession of all privileges, all of
13086	 * the normal checks are bypassed.
13087	 */
13088	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13089		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13090		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13091	} else {
13092		/*
13093		 * Set up the credentials for this instantiation.  We take a
13094		 * hold on the credential to prevent it from disappearing on
13095		 * us; this in turn prevents the zone_t referenced by this
13096		 * credential from disappearing.  This means that we can
13097		 * examine the credential and the zone from probe context.
13098		 */
13099		crhold(cr);
13100		state->dts_cred.dcr_cred = cr;
13101
13102		/*
13103		 * CRA_PROC means "we have *some* privilege for dtrace" and
13104		 * unlocks the use of variables like pid, zonename, etc.
13105		 */
13106		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13107		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13108			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13109		}
13110
13111		/*
13112		 * dtrace_user allows use of syscall and profile providers.
13113		 * If the user also has proc_owner and/or proc_zone, we
13114		 * extend the scope to include additional visibility and
13115		 * destructive power.
13116		 */
13117		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13118			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13119				state->dts_cred.dcr_visible |=
13120				    DTRACE_CRV_ALLPROC;
13121
13122				state->dts_cred.dcr_action |=
13123				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13124			}
13125
13126			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13127				state->dts_cred.dcr_visible |=
13128				    DTRACE_CRV_ALLZONE;
13129
13130				state->dts_cred.dcr_action |=
13131				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13132			}
13133
13134			/*
13135			 * If we have all privs in whatever zone this is,
13136			 * we can do destructive things to processes which
13137			 * have altered credentials.
13138			 */
13139#if defined(sun)
13140			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13141			    cr->cr_zone->zone_privset)) {
13142				state->dts_cred.dcr_action |=
13143				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13144			}
13145#endif
13146		}
13147
13148		/*
13149		 * Holding the dtrace_kernel privilege also implies that
13150		 * the user has the dtrace_user privilege from a visibility
13151		 * perspective.  But without further privileges, some
13152		 * destructive actions are not available.
13153		 */
13154		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13155			/*
13156			 * Make all probes in all zones visible.  However,
13157			 * this doesn't mean that all actions become available
13158			 * to all zones.
13159			 */
13160			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13161			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13162
13163			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13164			    DTRACE_CRA_PROC;
13165			/*
13166			 * Holding proc_owner means that destructive actions
13167			 * for *this* zone are allowed.
13168			 */
13169			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13170				state->dts_cred.dcr_action |=
13171				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13172
13173			/*
13174			 * Holding proc_zone means that destructive actions
13175			 * for this user/group ID in all zones is allowed.
13176			 */
13177			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13178				state->dts_cred.dcr_action |=
13179				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13180
13181#if defined(sun)
13182			/*
13183			 * If we have all privs in whatever zone this is,
13184			 * we can do destructive things to processes which
13185			 * have altered credentials.
13186			 */
13187			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13188			    cr->cr_zone->zone_privset)) {
13189				state->dts_cred.dcr_action |=
13190				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13191			}
13192#endif
13193		}
13194
13195		/*
13196		 * Holding the dtrace_proc privilege gives control over fasttrap
13197		 * and pid providers.  We need to grant wider destructive
13198		 * privileges in the event that the user has proc_owner and/or
13199		 * proc_zone.
13200		 */
13201		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13202			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13203				state->dts_cred.dcr_action |=
13204				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13205
13206			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13207				state->dts_cred.dcr_action |=
13208				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13209		}
13210	}
13211
13212	return (state);
13213}
13214
13215static int
13216dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13217{
13218	dtrace_optval_t *opt = state->dts_options, size;
13219	processorid_t cpu = 0;;
13220	int flags = 0, rval;
13221
13222	ASSERT(MUTEX_HELD(&dtrace_lock));
13223	ASSERT(MUTEX_HELD(&cpu_lock));
13224	ASSERT(which < DTRACEOPT_MAX);
13225	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13226	    (state == dtrace_anon.dta_state &&
13227	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13228
13229	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13230		return (0);
13231
13232	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13233		cpu = opt[DTRACEOPT_CPU];
13234
13235	if (which == DTRACEOPT_SPECSIZE)
13236		flags |= DTRACEBUF_NOSWITCH;
13237
13238	if (which == DTRACEOPT_BUFSIZE) {
13239		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13240			flags |= DTRACEBUF_RING;
13241
13242		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13243			flags |= DTRACEBUF_FILL;
13244
13245		if (state != dtrace_anon.dta_state ||
13246		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13247			flags |= DTRACEBUF_INACTIVE;
13248	}
13249
13250	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13251		/*
13252		 * The size must be 8-byte aligned.  If the size is not 8-byte
13253		 * aligned, drop it down by the difference.
13254		 */
13255		if (size & (sizeof (uint64_t) - 1))
13256			size -= size & (sizeof (uint64_t) - 1);
13257
13258		if (size < state->dts_reserve) {
13259			/*
13260			 * Buffers always must be large enough to accommodate
13261			 * their prereserved space.  We return E2BIG instead
13262			 * of ENOMEM in this case to allow for user-level
13263			 * software to differentiate the cases.
13264			 */
13265			return (E2BIG);
13266		}
13267
13268		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13269
13270		if (rval != ENOMEM) {
13271			opt[which] = size;
13272			return (rval);
13273		}
13274
13275		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13276			return (rval);
13277	}
13278
13279	return (ENOMEM);
13280}
13281
13282static int
13283dtrace_state_buffers(dtrace_state_t *state)
13284{
13285	dtrace_speculation_t *spec = state->dts_speculations;
13286	int rval, i;
13287
13288	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13289	    DTRACEOPT_BUFSIZE)) != 0)
13290		return (rval);
13291
13292	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13293	    DTRACEOPT_AGGSIZE)) != 0)
13294		return (rval);
13295
13296	for (i = 0; i < state->dts_nspeculations; i++) {
13297		if ((rval = dtrace_state_buffer(state,
13298		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13299			return (rval);
13300	}
13301
13302	return (0);
13303}
13304
13305static void
13306dtrace_state_prereserve(dtrace_state_t *state)
13307{
13308	dtrace_ecb_t *ecb;
13309	dtrace_probe_t *probe;
13310
13311	state->dts_reserve = 0;
13312
13313	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13314		return;
13315
13316	/*
13317	 * If our buffer policy is a "fill" buffer policy, we need to set the
13318	 * prereserved space to be the space required by the END probes.
13319	 */
13320	probe = dtrace_probes[dtrace_probeid_end - 1];
13321	ASSERT(probe != NULL);
13322
13323	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13324		if (ecb->dte_state != state)
13325			continue;
13326
13327		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13328	}
13329}
13330
13331static int
13332dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13333{
13334	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13335	dtrace_speculation_t *spec;
13336	dtrace_buffer_t *buf;
13337#if defined(sun)
13338	cyc_handler_t hdlr;
13339	cyc_time_t when;
13340#endif
13341	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13342	dtrace_icookie_t cookie;
13343
13344	mutex_enter(&cpu_lock);
13345	mutex_enter(&dtrace_lock);
13346
13347	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13348		rval = EBUSY;
13349		goto out;
13350	}
13351
13352	/*
13353	 * Before we can perform any checks, we must prime all of the
13354	 * retained enablings that correspond to this state.
13355	 */
13356	dtrace_enabling_prime(state);
13357
13358	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13359		rval = EACCES;
13360		goto out;
13361	}
13362
13363	dtrace_state_prereserve(state);
13364
13365	/*
13366	 * Now we want to do is try to allocate our speculations.
13367	 * We do not automatically resize the number of speculations; if
13368	 * this fails, we will fail the operation.
13369	 */
13370	nspec = opt[DTRACEOPT_NSPEC];
13371	ASSERT(nspec != DTRACEOPT_UNSET);
13372
13373	if (nspec > INT_MAX) {
13374		rval = ENOMEM;
13375		goto out;
13376	}
13377
13378	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13379
13380	if (spec == NULL) {
13381		rval = ENOMEM;
13382		goto out;
13383	}
13384
13385	state->dts_speculations = spec;
13386	state->dts_nspeculations = (int)nspec;
13387
13388	for (i = 0; i < nspec; i++) {
13389		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13390			rval = ENOMEM;
13391			goto err;
13392		}
13393
13394		spec[i].dtsp_buffer = buf;
13395	}
13396
13397	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13398		if (dtrace_anon.dta_state == NULL) {
13399			rval = ENOENT;
13400			goto out;
13401		}
13402
13403		if (state->dts_necbs != 0) {
13404			rval = EALREADY;
13405			goto out;
13406		}
13407
13408		state->dts_anon = dtrace_anon_grab();
13409		ASSERT(state->dts_anon != NULL);
13410		state = state->dts_anon;
13411
13412		/*
13413		 * We want "grabanon" to be set in the grabbed state, so we'll
13414		 * copy that option value from the grabbing state into the
13415		 * grabbed state.
13416		 */
13417		state->dts_options[DTRACEOPT_GRABANON] =
13418		    opt[DTRACEOPT_GRABANON];
13419
13420		*cpu = dtrace_anon.dta_beganon;
13421
13422		/*
13423		 * If the anonymous state is active (as it almost certainly
13424		 * is if the anonymous enabling ultimately matched anything),
13425		 * we don't allow any further option processing -- but we
13426		 * don't return failure.
13427		 */
13428		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13429			goto out;
13430	}
13431
13432	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13433	    opt[DTRACEOPT_AGGSIZE] != 0) {
13434		if (state->dts_aggregations == NULL) {
13435			/*
13436			 * We're not going to create an aggregation buffer
13437			 * because we don't have any ECBs that contain
13438			 * aggregations -- set this option to 0.
13439			 */
13440			opt[DTRACEOPT_AGGSIZE] = 0;
13441		} else {
13442			/*
13443			 * If we have an aggregation buffer, we must also have
13444			 * a buffer to use as scratch.
13445			 */
13446			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13447			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13448				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13449			}
13450		}
13451	}
13452
13453	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13454	    opt[DTRACEOPT_SPECSIZE] != 0) {
13455		if (!state->dts_speculates) {
13456			/*
13457			 * We're not going to create speculation buffers
13458			 * because we don't have any ECBs that actually
13459			 * speculate -- set the speculation size to 0.
13460			 */
13461			opt[DTRACEOPT_SPECSIZE] = 0;
13462		}
13463	}
13464
13465	/*
13466	 * The bare minimum size for any buffer that we're actually going to
13467	 * do anything to is sizeof (uint64_t).
13468	 */
13469	sz = sizeof (uint64_t);
13470
13471	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13472	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13473	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13474		/*
13475		 * A buffer size has been explicitly set to 0 (or to a size
13476		 * that will be adjusted to 0) and we need the space -- we
13477		 * need to return failure.  We return ENOSPC to differentiate
13478		 * it from failing to allocate a buffer due to failure to meet
13479		 * the reserve (for which we return E2BIG).
13480		 */
13481		rval = ENOSPC;
13482		goto out;
13483	}
13484
13485	if ((rval = dtrace_state_buffers(state)) != 0)
13486		goto err;
13487
13488	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13489		sz = dtrace_dstate_defsize;
13490
13491	do {
13492		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13493
13494		if (rval == 0)
13495			break;
13496
13497		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13498			goto err;
13499	} while (sz >>= 1);
13500
13501	opt[DTRACEOPT_DYNVARSIZE] = sz;
13502
13503	if (rval != 0)
13504		goto err;
13505
13506	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13507		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13508
13509	if (opt[DTRACEOPT_CLEANRATE] == 0)
13510		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13511
13512	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13513		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13514
13515	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13516		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13517
13518	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13519#if defined(sun)
13520	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13521	hdlr.cyh_arg = state;
13522	hdlr.cyh_level = CY_LOW_LEVEL;
13523
13524	when.cyt_when = 0;
13525	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13526
13527	state->dts_cleaner = cyclic_add(&hdlr, &when);
13528
13529	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13530	hdlr.cyh_arg = state;
13531	hdlr.cyh_level = CY_LOW_LEVEL;
13532
13533	when.cyt_when = 0;
13534	when.cyt_interval = dtrace_deadman_interval;
13535
13536	state->dts_deadman = cyclic_add(&hdlr, &when);
13537#else
13538	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13539	    dtrace_state_clean, state);
13540	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13541	    dtrace_state_deadman, state);
13542#endif
13543
13544	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13545
13546	/*
13547	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13548	 * interrupts here both to record the CPU on which we fired the BEGIN
13549	 * probe (the data from this CPU will be processed first at user
13550	 * level) and to manually activate the buffer for this CPU.
13551	 */
13552	cookie = dtrace_interrupt_disable();
13553	*cpu = curcpu;
13554	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13555	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13556
13557	dtrace_probe(dtrace_probeid_begin,
13558	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13559	dtrace_interrupt_enable(cookie);
13560	/*
13561	 * We may have had an exit action from a BEGIN probe; only change our
13562	 * state to ACTIVE if we're still in WARMUP.
13563	 */
13564	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13565	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13566
13567	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13568		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13569
13570	/*
13571	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13572	 * want each CPU to transition its principal buffer out of the
13573	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13574	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13575	 * atomically transition from processing none of a state's ECBs to
13576	 * processing all of them.
13577	 */
13578	dtrace_xcall(DTRACE_CPUALL,
13579	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13580	goto out;
13581
13582err:
13583	dtrace_buffer_free(state->dts_buffer);
13584	dtrace_buffer_free(state->dts_aggbuffer);
13585
13586	if ((nspec = state->dts_nspeculations) == 0) {
13587		ASSERT(state->dts_speculations == NULL);
13588		goto out;
13589	}
13590
13591	spec = state->dts_speculations;
13592	ASSERT(spec != NULL);
13593
13594	for (i = 0; i < state->dts_nspeculations; i++) {
13595		if ((buf = spec[i].dtsp_buffer) == NULL)
13596			break;
13597
13598		dtrace_buffer_free(buf);
13599		kmem_free(buf, bufsize);
13600	}
13601
13602	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13603	state->dts_nspeculations = 0;
13604	state->dts_speculations = NULL;
13605
13606out:
13607	mutex_exit(&dtrace_lock);
13608	mutex_exit(&cpu_lock);
13609
13610	return (rval);
13611}
13612
13613static int
13614dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13615{
13616	dtrace_icookie_t cookie;
13617
13618	ASSERT(MUTEX_HELD(&dtrace_lock));
13619
13620	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13621	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13622		return (EINVAL);
13623
13624	/*
13625	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13626	 * to be sure that every CPU has seen it.  See below for the details
13627	 * on why this is done.
13628	 */
13629	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13630	dtrace_sync();
13631
13632	/*
13633	 * By this point, it is impossible for any CPU to be still processing
13634	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13635	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13636	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13637	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13638	 * iff we're in the END probe.
13639	 */
13640	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13641	dtrace_sync();
13642	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13643
13644	/*
13645	 * Finally, we can release the reserve and call the END probe.  We
13646	 * disable interrupts across calling the END probe to allow us to
13647	 * return the CPU on which we actually called the END probe.  This
13648	 * allows user-land to be sure that this CPU's principal buffer is
13649	 * processed last.
13650	 */
13651	state->dts_reserve = 0;
13652
13653	cookie = dtrace_interrupt_disable();
13654	*cpu = curcpu;
13655	dtrace_probe(dtrace_probeid_end,
13656	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13657	dtrace_interrupt_enable(cookie);
13658
13659	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13660	dtrace_sync();
13661
13662	return (0);
13663}
13664
13665static int
13666dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13667    dtrace_optval_t val)
13668{
13669	ASSERT(MUTEX_HELD(&dtrace_lock));
13670
13671	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13672		return (EBUSY);
13673
13674	if (option >= DTRACEOPT_MAX)
13675		return (EINVAL);
13676
13677	if (option != DTRACEOPT_CPU && val < 0)
13678		return (EINVAL);
13679
13680	switch (option) {
13681	case DTRACEOPT_DESTRUCTIVE:
13682		if (dtrace_destructive_disallow)
13683			return (EACCES);
13684
13685		state->dts_cred.dcr_destructive = 1;
13686		break;
13687
13688	case DTRACEOPT_BUFSIZE:
13689	case DTRACEOPT_DYNVARSIZE:
13690	case DTRACEOPT_AGGSIZE:
13691	case DTRACEOPT_SPECSIZE:
13692	case DTRACEOPT_STRSIZE:
13693		if (val < 0)
13694			return (EINVAL);
13695
13696		if (val >= LONG_MAX) {
13697			/*
13698			 * If this is an otherwise negative value, set it to
13699			 * the highest multiple of 128m less than LONG_MAX.
13700			 * Technically, we're adjusting the size without
13701			 * regard to the buffer resizing policy, but in fact,
13702			 * this has no effect -- if we set the buffer size to
13703			 * ~LONG_MAX and the buffer policy is ultimately set to
13704			 * be "manual", the buffer allocation is guaranteed to
13705			 * fail, if only because the allocation requires two
13706			 * buffers.  (We set the the size to the highest
13707			 * multiple of 128m because it ensures that the size
13708			 * will remain a multiple of a megabyte when
13709			 * repeatedly halved -- all the way down to 15m.)
13710			 */
13711			val = LONG_MAX - (1 << 27) + 1;
13712		}
13713	}
13714
13715	state->dts_options[option] = val;
13716
13717	return (0);
13718}
13719
13720static void
13721dtrace_state_destroy(dtrace_state_t *state)
13722{
13723	dtrace_ecb_t *ecb;
13724	dtrace_vstate_t *vstate = &state->dts_vstate;
13725#if defined(sun)
13726	minor_t minor = getminor(state->dts_dev);
13727#endif
13728	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13729	dtrace_speculation_t *spec = state->dts_speculations;
13730	int nspec = state->dts_nspeculations;
13731	uint32_t match;
13732
13733	ASSERT(MUTEX_HELD(&dtrace_lock));
13734	ASSERT(MUTEX_HELD(&cpu_lock));
13735
13736	/*
13737	 * First, retract any retained enablings for this state.
13738	 */
13739	dtrace_enabling_retract(state);
13740	ASSERT(state->dts_nretained == 0);
13741
13742	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13743	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13744		/*
13745		 * We have managed to come into dtrace_state_destroy() on a
13746		 * hot enabling -- almost certainly because of a disorderly
13747		 * shutdown of a consumer.  (That is, a consumer that is
13748		 * exiting without having called dtrace_stop().) In this case,
13749		 * we're going to set our activity to be KILLED, and then
13750		 * issue a sync to be sure that everyone is out of probe
13751		 * context before we start blowing away ECBs.
13752		 */
13753		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13754		dtrace_sync();
13755	}
13756
13757	/*
13758	 * Release the credential hold we took in dtrace_state_create().
13759	 */
13760	if (state->dts_cred.dcr_cred != NULL)
13761		crfree(state->dts_cred.dcr_cred);
13762
13763	/*
13764	 * Now we can safely disable and destroy any enabled probes.  Because
13765	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13766	 * (especially if they're all enabled), we take two passes through the
13767	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13768	 * in the second we disable whatever is left over.
13769	 */
13770	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13771		for (i = 0; i < state->dts_necbs; i++) {
13772			if ((ecb = state->dts_ecbs[i]) == NULL)
13773				continue;
13774
13775			if (match && ecb->dte_probe != NULL) {
13776				dtrace_probe_t *probe = ecb->dte_probe;
13777				dtrace_provider_t *prov = probe->dtpr_provider;
13778
13779				if (!(prov->dtpv_priv.dtpp_flags & match))
13780					continue;
13781			}
13782
13783			dtrace_ecb_disable(ecb);
13784			dtrace_ecb_destroy(ecb);
13785		}
13786
13787		if (!match)
13788			break;
13789	}
13790
13791	/*
13792	 * Before we free the buffers, perform one more sync to assure that
13793	 * every CPU is out of probe context.
13794	 */
13795	dtrace_sync();
13796
13797	dtrace_buffer_free(state->dts_buffer);
13798	dtrace_buffer_free(state->dts_aggbuffer);
13799
13800	for (i = 0; i < nspec; i++)
13801		dtrace_buffer_free(spec[i].dtsp_buffer);
13802
13803#if defined(sun)
13804	if (state->dts_cleaner != CYCLIC_NONE)
13805		cyclic_remove(state->dts_cleaner);
13806
13807	if (state->dts_deadman != CYCLIC_NONE)
13808		cyclic_remove(state->dts_deadman);
13809#else
13810	callout_stop(&state->dts_cleaner);
13811	callout_drain(&state->dts_cleaner);
13812	callout_stop(&state->dts_deadman);
13813	callout_drain(&state->dts_deadman);
13814#endif
13815
13816	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13817	dtrace_vstate_fini(vstate);
13818	if (state->dts_ecbs != NULL)
13819		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13820
13821	if (state->dts_aggregations != NULL) {
13822#ifdef DEBUG
13823		for (i = 0; i < state->dts_naggregations; i++)
13824			ASSERT(state->dts_aggregations[i] == NULL);
13825#endif
13826		ASSERT(state->dts_naggregations > 0);
13827		kmem_free(state->dts_aggregations,
13828		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13829	}
13830
13831	kmem_free(state->dts_buffer, bufsize);
13832	kmem_free(state->dts_aggbuffer, bufsize);
13833
13834	for (i = 0; i < nspec; i++)
13835		kmem_free(spec[i].dtsp_buffer, bufsize);
13836
13837	if (spec != NULL)
13838		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13839
13840	dtrace_format_destroy(state);
13841
13842	if (state->dts_aggid_arena != NULL) {
13843#if defined(sun)
13844		vmem_destroy(state->dts_aggid_arena);
13845#else
13846		delete_unrhdr(state->dts_aggid_arena);
13847#endif
13848		state->dts_aggid_arena = NULL;
13849	}
13850#if defined(sun)
13851	ddi_soft_state_free(dtrace_softstate, minor);
13852	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13853#endif
13854}
13855
13856/*
13857 * DTrace Anonymous Enabling Functions
13858 */
13859static dtrace_state_t *
13860dtrace_anon_grab(void)
13861{
13862	dtrace_state_t *state;
13863
13864	ASSERT(MUTEX_HELD(&dtrace_lock));
13865
13866	if ((state = dtrace_anon.dta_state) == NULL) {
13867		ASSERT(dtrace_anon.dta_enabling == NULL);
13868		return (NULL);
13869	}
13870
13871	ASSERT(dtrace_anon.dta_enabling != NULL);
13872	ASSERT(dtrace_retained != NULL);
13873
13874	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13875	dtrace_anon.dta_enabling = NULL;
13876	dtrace_anon.dta_state = NULL;
13877
13878	return (state);
13879}
13880
13881static void
13882dtrace_anon_property(void)
13883{
13884	int i, rv;
13885	dtrace_state_t *state;
13886	dof_hdr_t *dof;
13887	char c[32];		/* enough for "dof-data-" + digits */
13888
13889	ASSERT(MUTEX_HELD(&dtrace_lock));
13890	ASSERT(MUTEX_HELD(&cpu_lock));
13891
13892	for (i = 0; ; i++) {
13893		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13894
13895		dtrace_err_verbose = 1;
13896
13897		if ((dof = dtrace_dof_property(c)) == NULL) {
13898			dtrace_err_verbose = 0;
13899			break;
13900		}
13901
13902#if defined(sun)
13903		/*
13904		 * We want to create anonymous state, so we need to transition
13905		 * the kernel debugger to indicate that DTrace is active.  If
13906		 * this fails (e.g. because the debugger has modified text in
13907		 * some way), we won't continue with the processing.
13908		 */
13909		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13910			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13911			    "enabling ignored.");
13912			dtrace_dof_destroy(dof);
13913			break;
13914		}
13915#endif
13916
13917		/*
13918		 * If we haven't allocated an anonymous state, we'll do so now.
13919		 */
13920		if ((state = dtrace_anon.dta_state) == NULL) {
13921#if defined(sun)
13922			state = dtrace_state_create(NULL, NULL);
13923#else
13924			state = dtrace_state_create(NULL);
13925#endif
13926			dtrace_anon.dta_state = state;
13927
13928			if (state == NULL) {
13929				/*
13930				 * This basically shouldn't happen:  the only
13931				 * failure mode from dtrace_state_create() is a
13932				 * failure of ddi_soft_state_zalloc() that
13933				 * itself should never happen.  Still, the
13934				 * interface allows for a failure mode, and
13935				 * we want to fail as gracefully as possible:
13936				 * we'll emit an error message and cease
13937				 * processing anonymous state in this case.
13938				 */
13939				cmn_err(CE_WARN, "failed to create "
13940				    "anonymous state");
13941				dtrace_dof_destroy(dof);
13942				break;
13943			}
13944		}
13945
13946		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13947		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13948
13949		if (rv == 0)
13950			rv = dtrace_dof_options(dof, state);
13951
13952		dtrace_err_verbose = 0;
13953		dtrace_dof_destroy(dof);
13954
13955		if (rv != 0) {
13956			/*
13957			 * This is malformed DOF; chuck any anonymous state
13958			 * that we created.
13959			 */
13960			ASSERT(dtrace_anon.dta_enabling == NULL);
13961			dtrace_state_destroy(state);
13962			dtrace_anon.dta_state = NULL;
13963			break;
13964		}
13965
13966		ASSERT(dtrace_anon.dta_enabling != NULL);
13967	}
13968
13969	if (dtrace_anon.dta_enabling != NULL) {
13970		int rval;
13971
13972		/*
13973		 * dtrace_enabling_retain() can only fail because we are
13974		 * trying to retain more enablings than are allowed -- but
13975		 * we only have one anonymous enabling, and we are guaranteed
13976		 * to be allowed at least one retained enabling; we assert
13977		 * that dtrace_enabling_retain() returns success.
13978		 */
13979		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13980		ASSERT(rval == 0);
13981
13982		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13983	}
13984}
13985
13986/*
13987 * DTrace Helper Functions
13988 */
13989static void
13990dtrace_helper_trace(dtrace_helper_action_t *helper,
13991    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13992{
13993	uint32_t size, next, nnext, i;
13994	dtrace_helptrace_t *ent;
13995	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13996
13997	if (!dtrace_helptrace_enabled)
13998		return;
13999
14000	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14001
14002	/*
14003	 * What would a tracing framework be without its own tracing
14004	 * framework?  (Well, a hell of a lot simpler, for starters...)
14005	 */
14006	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14007	    sizeof (uint64_t) - sizeof (uint64_t);
14008
14009	/*
14010	 * Iterate until we can allocate a slot in the trace buffer.
14011	 */
14012	do {
14013		next = dtrace_helptrace_next;
14014
14015		if (next + size < dtrace_helptrace_bufsize) {
14016			nnext = next + size;
14017		} else {
14018			nnext = size;
14019		}
14020	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14021
14022	/*
14023	 * We have our slot; fill it in.
14024	 */
14025	if (nnext == size)
14026		next = 0;
14027
14028	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14029	ent->dtht_helper = helper;
14030	ent->dtht_where = where;
14031	ent->dtht_nlocals = vstate->dtvs_nlocals;
14032
14033	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14034	    mstate->dtms_fltoffs : -1;
14035	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14036	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14037
14038	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14039		dtrace_statvar_t *svar;
14040
14041		if ((svar = vstate->dtvs_locals[i]) == NULL)
14042			continue;
14043
14044		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14045		ent->dtht_locals[i] =
14046		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14047	}
14048}
14049
14050static uint64_t
14051dtrace_helper(int which, dtrace_mstate_t *mstate,
14052    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14053{
14054	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14055	uint64_t sarg0 = mstate->dtms_arg[0];
14056	uint64_t sarg1 = mstate->dtms_arg[1];
14057	uint64_t rval = 0;
14058	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14059	dtrace_helper_action_t *helper;
14060	dtrace_vstate_t *vstate;
14061	dtrace_difo_t *pred;
14062	int i, trace = dtrace_helptrace_enabled;
14063
14064	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14065
14066	if (helpers == NULL)
14067		return (0);
14068
14069	if ((helper = helpers->dthps_actions[which]) == NULL)
14070		return (0);
14071
14072	vstate = &helpers->dthps_vstate;
14073	mstate->dtms_arg[0] = arg0;
14074	mstate->dtms_arg[1] = arg1;
14075
14076	/*
14077	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14078	 * we'll call the corresponding actions.  Note that the below calls
14079	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14080	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14081	 * the stored DIF offset with its own (which is the desired behavior).
14082	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14083	 * from machine state; this is okay, too.
14084	 */
14085	for (; helper != NULL; helper = helper->dtha_next) {
14086		if ((pred = helper->dtha_predicate) != NULL) {
14087			if (trace)
14088				dtrace_helper_trace(helper, mstate, vstate, 0);
14089
14090			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14091				goto next;
14092
14093			if (*flags & CPU_DTRACE_FAULT)
14094				goto err;
14095		}
14096
14097		for (i = 0; i < helper->dtha_nactions; i++) {
14098			if (trace)
14099				dtrace_helper_trace(helper,
14100				    mstate, vstate, i + 1);
14101
14102			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14103			    mstate, vstate, state);
14104
14105			if (*flags & CPU_DTRACE_FAULT)
14106				goto err;
14107		}
14108
14109next:
14110		if (trace)
14111			dtrace_helper_trace(helper, mstate, vstate,
14112			    DTRACE_HELPTRACE_NEXT);
14113	}
14114
14115	if (trace)
14116		dtrace_helper_trace(helper, mstate, vstate,
14117		    DTRACE_HELPTRACE_DONE);
14118
14119	/*
14120	 * Restore the arg0 that we saved upon entry.
14121	 */
14122	mstate->dtms_arg[0] = sarg0;
14123	mstate->dtms_arg[1] = sarg1;
14124
14125	return (rval);
14126
14127err:
14128	if (trace)
14129		dtrace_helper_trace(helper, mstate, vstate,
14130		    DTRACE_HELPTRACE_ERR);
14131
14132	/*
14133	 * Restore the arg0 that we saved upon entry.
14134	 */
14135	mstate->dtms_arg[0] = sarg0;
14136	mstate->dtms_arg[1] = sarg1;
14137
14138	return (0);
14139}
14140
14141static void
14142dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14143    dtrace_vstate_t *vstate)
14144{
14145	int i;
14146
14147	if (helper->dtha_predicate != NULL)
14148		dtrace_difo_release(helper->dtha_predicate, vstate);
14149
14150	for (i = 0; i < helper->dtha_nactions; i++) {
14151		ASSERT(helper->dtha_actions[i] != NULL);
14152		dtrace_difo_release(helper->dtha_actions[i], vstate);
14153	}
14154
14155	kmem_free(helper->dtha_actions,
14156	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14157	kmem_free(helper, sizeof (dtrace_helper_action_t));
14158}
14159
14160static int
14161dtrace_helper_destroygen(int gen)
14162{
14163	proc_t *p = curproc;
14164	dtrace_helpers_t *help = p->p_dtrace_helpers;
14165	dtrace_vstate_t *vstate;
14166	int i;
14167
14168	ASSERT(MUTEX_HELD(&dtrace_lock));
14169
14170	if (help == NULL || gen > help->dthps_generation)
14171		return (EINVAL);
14172
14173	vstate = &help->dthps_vstate;
14174
14175	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14176		dtrace_helper_action_t *last = NULL, *h, *next;
14177
14178		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14179			next = h->dtha_next;
14180
14181			if (h->dtha_generation == gen) {
14182				if (last != NULL) {
14183					last->dtha_next = next;
14184				} else {
14185					help->dthps_actions[i] = next;
14186				}
14187
14188				dtrace_helper_action_destroy(h, vstate);
14189			} else {
14190				last = h;
14191			}
14192		}
14193	}
14194
14195	/*
14196	 * Interate until we've cleared out all helper providers with the
14197	 * given generation number.
14198	 */
14199	for (;;) {
14200		dtrace_helper_provider_t *prov;
14201
14202		/*
14203		 * Look for a helper provider with the right generation. We
14204		 * have to start back at the beginning of the list each time
14205		 * because we drop dtrace_lock. It's unlikely that we'll make
14206		 * more than two passes.
14207		 */
14208		for (i = 0; i < help->dthps_nprovs; i++) {
14209			prov = help->dthps_provs[i];
14210
14211			if (prov->dthp_generation == gen)
14212				break;
14213		}
14214
14215		/*
14216		 * If there were no matches, we're done.
14217		 */
14218		if (i == help->dthps_nprovs)
14219			break;
14220
14221		/*
14222		 * Move the last helper provider into this slot.
14223		 */
14224		help->dthps_nprovs--;
14225		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14226		help->dthps_provs[help->dthps_nprovs] = NULL;
14227
14228		mutex_exit(&dtrace_lock);
14229
14230		/*
14231		 * If we have a meta provider, remove this helper provider.
14232		 */
14233		mutex_enter(&dtrace_meta_lock);
14234		if (dtrace_meta_pid != NULL) {
14235			ASSERT(dtrace_deferred_pid == NULL);
14236			dtrace_helper_provider_remove(&prov->dthp_prov,
14237			    p->p_pid);
14238		}
14239		mutex_exit(&dtrace_meta_lock);
14240
14241		dtrace_helper_provider_destroy(prov);
14242
14243		mutex_enter(&dtrace_lock);
14244	}
14245
14246	return (0);
14247}
14248
14249static int
14250dtrace_helper_validate(dtrace_helper_action_t *helper)
14251{
14252	int err = 0, i;
14253	dtrace_difo_t *dp;
14254
14255	if ((dp = helper->dtha_predicate) != NULL)
14256		err += dtrace_difo_validate_helper(dp);
14257
14258	for (i = 0; i < helper->dtha_nactions; i++)
14259		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14260
14261	return (err == 0);
14262}
14263
14264static int
14265dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14266{
14267	dtrace_helpers_t *help;
14268	dtrace_helper_action_t *helper, *last;
14269	dtrace_actdesc_t *act;
14270	dtrace_vstate_t *vstate;
14271	dtrace_predicate_t *pred;
14272	int count = 0, nactions = 0, i;
14273
14274	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14275		return (EINVAL);
14276
14277	help = curproc->p_dtrace_helpers;
14278	last = help->dthps_actions[which];
14279	vstate = &help->dthps_vstate;
14280
14281	for (count = 0; last != NULL; last = last->dtha_next) {
14282		count++;
14283		if (last->dtha_next == NULL)
14284			break;
14285	}
14286
14287	/*
14288	 * If we already have dtrace_helper_actions_max helper actions for this
14289	 * helper action type, we'll refuse to add a new one.
14290	 */
14291	if (count >= dtrace_helper_actions_max)
14292		return (ENOSPC);
14293
14294	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14295	helper->dtha_generation = help->dthps_generation;
14296
14297	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14298		ASSERT(pred->dtp_difo != NULL);
14299		dtrace_difo_hold(pred->dtp_difo);
14300		helper->dtha_predicate = pred->dtp_difo;
14301	}
14302
14303	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14304		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14305			goto err;
14306
14307		if (act->dtad_difo == NULL)
14308			goto err;
14309
14310		nactions++;
14311	}
14312
14313	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14314	    (helper->dtha_nactions = nactions), KM_SLEEP);
14315
14316	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14317		dtrace_difo_hold(act->dtad_difo);
14318		helper->dtha_actions[i++] = act->dtad_difo;
14319	}
14320
14321	if (!dtrace_helper_validate(helper))
14322		goto err;
14323
14324	if (last == NULL) {
14325		help->dthps_actions[which] = helper;
14326	} else {
14327		last->dtha_next = helper;
14328	}
14329
14330	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14331		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14332		dtrace_helptrace_next = 0;
14333	}
14334
14335	return (0);
14336err:
14337	dtrace_helper_action_destroy(helper, vstate);
14338	return (EINVAL);
14339}
14340
14341static void
14342dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14343    dof_helper_t *dofhp)
14344{
14345	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14346
14347	mutex_enter(&dtrace_meta_lock);
14348	mutex_enter(&dtrace_lock);
14349
14350	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14351		/*
14352		 * If the dtrace module is loaded but not attached, or if
14353		 * there aren't isn't a meta provider registered to deal with
14354		 * these provider descriptions, we need to postpone creating
14355		 * the actual providers until later.
14356		 */
14357
14358		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14359		    dtrace_deferred_pid != help) {
14360			help->dthps_deferred = 1;
14361			help->dthps_pid = p->p_pid;
14362			help->dthps_next = dtrace_deferred_pid;
14363			help->dthps_prev = NULL;
14364			if (dtrace_deferred_pid != NULL)
14365				dtrace_deferred_pid->dthps_prev = help;
14366			dtrace_deferred_pid = help;
14367		}
14368
14369		mutex_exit(&dtrace_lock);
14370
14371	} else if (dofhp != NULL) {
14372		/*
14373		 * If the dtrace module is loaded and we have a particular
14374		 * helper provider description, pass that off to the
14375		 * meta provider.
14376		 */
14377
14378		mutex_exit(&dtrace_lock);
14379
14380		dtrace_helper_provide(dofhp, p->p_pid);
14381
14382	} else {
14383		/*
14384		 * Otherwise, just pass all the helper provider descriptions
14385		 * off to the meta provider.
14386		 */
14387
14388		int i;
14389		mutex_exit(&dtrace_lock);
14390
14391		for (i = 0; i < help->dthps_nprovs; i++) {
14392			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14393			    p->p_pid);
14394		}
14395	}
14396
14397	mutex_exit(&dtrace_meta_lock);
14398}
14399
14400static int
14401dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14402{
14403	dtrace_helpers_t *help;
14404	dtrace_helper_provider_t *hprov, **tmp_provs;
14405	uint_t tmp_maxprovs, i;
14406
14407	ASSERT(MUTEX_HELD(&dtrace_lock));
14408
14409	help = curproc->p_dtrace_helpers;
14410	ASSERT(help != NULL);
14411
14412	/*
14413	 * If we already have dtrace_helper_providers_max helper providers,
14414	 * we're refuse to add a new one.
14415	 */
14416	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14417		return (ENOSPC);
14418
14419	/*
14420	 * Check to make sure this isn't a duplicate.
14421	 */
14422	for (i = 0; i < help->dthps_nprovs; i++) {
14423		if (dofhp->dofhp_addr ==
14424		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14425			return (EALREADY);
14426	}
14427
14428	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14429	hprov->dthp_prov = *dofhp;
14430	hprov->dthp_ref = 1;
14431	hprov->dthp_generation = gen;
14432
14433	/*
14434	 * Allocate a bigger table for helper providers if it's already full.
14435	 */
14436	if (help->dthps_maxprovs == help->dthps_nprovs) {
14437		tmp_maxprovs = help->dthps_maxprovs;
14438		tmp_provs = help->dthps_provs;
14439
14440		if (help->dthps_maxprovs == 0)
14441			help->dthps_maxprovs = 2;
14442		else
14443			help->dthps_maxprovs *= 2;
14444		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14445			help->dthps_maxprovs = dtrace_helper_providers_max;
14446
14447		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14448
14449		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14450		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14451
14452		if (tmp_provs != NULL) {
14453			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14454			    sizeof (dtrace_helper_provider_t *));
14455			kmem_free(tmp_provs, tmp_maxprovs *
14456			    sizeof (dtrace_helper_provider_t *));
14457		}
14458	}
14459
14460	help->dthps_provs[help->dthps_nprovs] = hprov;
14461	help->dthps_nprovs++;
14462
14463	return (0);
14464}
14465
14466static void
14467dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14468{
14469	mutex_enter(&dtrace_lock);
14470
14471	if (--hprov->dthp_ref == 0) {
14472		dof_hdr_t *dof;
14473		mutex_exit(&dtrace_lock);
14474		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14475		dtrace_dof_destroy(dof);
14476		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14477	} else {
14478		mutex_exit(&dtrace_lock);
14479	}
14480}
14481
14482static int
14483dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14484{
14485	uintptr_t daddr = (uintptr_t)dof;
14486	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14487	dof_provider_t *provider;
14488	dof_probe_t *probe;
14489	uint8_t *arg;
14490	char *strtab, *typestr;
14491	dof_stridx_t typeidx;
14492	size_t typesz;
14493	uint_t nprobes, j, k;
14494
14495	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14496
14497	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14498		dtrace_dof_error(dof, "misaligned section offset");
14499		return (-1);
14500	}
14501
14502	/*
14503	 * The section needs to be large enough to contain the DOF provider
14504	 * structure appropriate for the given version.
14505	 */
14506	if (sec->dofs_size <
14507	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14508	    offsetof(dof_provider_t, dofpv_prenoffs) :
14509	    sizeof (dof_provider_t))) {
14510		dtrace_dof_error(dof, "provider section too small");
14511		return (-1);
14512	}
14513
14514	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14515	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14516	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14517	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14518	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14519
14520	if (str_sec == NULL || prb_sec == NULL ||
14521	    arg_sec == NULL || off_sec == NULL)
14522		return (-1);
14523
14524	enoff_sec = NULL;
14525
14526	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14527	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14528	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14529	    provider->dofpv_prenoffs)) == NULL)
14530		return (-1);
14531
14532	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14533
14534	if (provider->dofpv_name >= str_sec->dofs_size ||
14535	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14536		dtrace_dof_error(dof, "invalid provider name");
14537		return (-1);
14538	}
14539
14540	if (prb_sec->dofs_entsize == 0 ||
14541	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14542		dtrace_dof_error(dof, "invalid entry size");
14543		return (-1);
14544	}
14545
14546	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14547		dtrace_dof_error(dof, "misaligned entry size");
14548		return (-1);
14549	}
14550
14551	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14552		dtrace_dof_error(dof, "invalid entry size");
14553		return (-1);
14554	}
14555
14556	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14557		dtrace_dof_error(dof, "misaligned section offset");
14558		return (-1);
14559	}
14560
14561	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14562		dtrace_dof_error(dof, "invalid entry size");
14563		return (-1);
14564	}
14565
14566	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14567
14568	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14569
14570	/*
14571	 * Take a pass through the probes to check for errors.
14572	 */
14573	for (j = 0; j < nprobes; j++) {
14574		probe = (dof_probe_t *)(uintptr_t)(daddr +
14575		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14576
14577		if (probe->dofpr_func >= str_sec->dofs_size) {
14578			dtrace_dof_error(dof, "invalid function name");
14579			return (-1);
14580		}
14581
14582		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14583			dtrace_dof_error(dof, "function name too long");
14584			return (-1);
14585		}
14586
14587		if (probe->dofpr_name >= str_sec->dofs_size ||
14588		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14589			dtrace_dof_error(dof, "invalid probe name");
14590			return (-1);
14591		}
14592
14593		/*
14594		 * The offset count must not wrap the index, and the offsets
14595		 * must also not overflow the section's data.
14596		 */
14597		if (probe->dofpr_offidx + probe->dofpr_noffs <
14598		    probe->dofpr_offidx ||
14599		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14600		    off_sec->dofs_entsize > off_sec->dofs_size) {
14601			dtrace_dof_error(dof, "invalid probe offset");
14602			return (-1);
14603		}
14604
14605		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14606			/*
14607			 * If there's no is-enabled offset section, make sure
14608			 * there aren't any is-enabled offsets. Otherwise
14609			 * perform the same checks as for probe offsets
14610			 * (immediately above).
14611			 */
14612			if (enoff_sec == NULL) {
14613				if (probe->dofpr_enoffidx != 0 ||
14614				    probe->dofpr_nenoffs != 0) {
14615					dtrace_dof_error(dof, "is-enabled "
14616					    "offsets with null section");
14617					return (-1);
14618				}
14619			} else if (probe->dofpr_enoffidx +
14620			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14621			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14622			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14623				dtrace_dof_error(dof, "invalid is-enabled "
14624				    "offset");
14625				return (-1);
14626			}
14627
14628			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14629				dtrace_dof_error(dof, "zero probe and "
14630				    "is-enabled offsets");
14631				return (-1);
14632			}
14633		} else if (probe->dofpr_noffs == 0) {
14634			dtrace_dof_error(dof, "zero probe offsets");
14635			return (-1);
14636		}
14637
14638		if (probe->dofpr_argidx + probe->dofpr_xargc <
14639		    probe->dofpr_argidx ||
14640		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14641		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14642			dtrace_dof_error(dof, "invalid args");
14643			return (-1);
14644		}
14645
14646		typeidx = probe->dofpr_nargv;
14647		typestr = strtab + probe->dofpr_nargv;
14648		for (k = 0; k < probe->dofpr_nargc; k++) {
14649			if (typeidx >= str_sec->dofs_size) {
14650				dtrace_dof_error(dof, "bad "
14651				    "native argument type");
14652				return (-1);
14653			}
14654
14655			typesz = strlen(typestr) + 1;
14656			if (typesz > DTRACE_ARGTYPELEN) {
14657				dtrace_dof_error(dof, "native "
14658				    "argument type too long");
14659				return (-1);
14660			}
14661			typeidx += typesz;
14662			typestr += typesz;
14663		}
14664
14665		typeidx = probe->dofpr_xargv;
14666		typestr = strtab + probe->dofpr_xargv;
14667		for (k = 0; k < probe->dofpr_xargc; k++) {
14668			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14669				dtrace_dof_error(dof, "bad "
14670				    "native argument index");
14671				return (-1);
14672			}
14673
14674			if (typeidx >= str_sec->dofs_size) {
14675				dtrace_dof_error(dof, "bad "
14676				    "translated argument type");
14677				return (-1);
14678			}
14679
14680			typesz = strlen(typestr) + 1;
14681			if (typesz > DTRACE_ARGTYPELEN) {
14682				dtrace_dof_error(dof, "translated argument "
14683				    "type too long");
14684				return (-1);
14685			}
14686
14687			typeidx += typesz;
14688			typestr += typesz;
14689		}
14690	}
14691
14692	return (0);
14693}
14694
14695static int
14696dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14697{
14698	dtrace_helpers_t *help;
14699	dtrace_vstate_t *vstate;
14700	dtrace_enabling_t *enab = NULL;
14701	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14702	uintptr_t daddr = (uintptr_t)dof;
14703
14704	ASSERT(MUTEX_HELD(&dtrace_lock));
14705
14706	if ((help = curproc->p_dtrace_helpers) == NULL)
14707		help = dtrace_helpers_create(curproc);
14708
14709	vstate = &help->dthps_vstate;
14710
14711	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14712	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14713		dtrace_dof_destroy(dof);
14714		return (rv);
14715	}
14716
14717	/*
14718	 * Look for helper providers and validate their descriptions.
14719	 */
14720	if (dhp != NULL) {
14721		for (i = 0; i < dof->dofh_secnum; i++) {
14722			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14723			    dof->dofh_secoff + i * dof->dofh_secsize);
14724
14725			if (sec->dofs_type != DOF_SECT_PROVIDER)
14726				continue;
14727
14728			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14729				dtrace_enabling_destroy(enab);
14730				dtrace_dof_destroy(dof);
14731				return (-1);
14732			}
14733
14734			nprovs++;
14735		}
14736	}
14737
14738	/*
14739	 * Now we need to walk through the ECB descriptions in the enabling.
14740	 */
14741	for (i = 0; i < enab->dten_ndesc; i++) {
14742		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14743		dtrace_probedesc_t *desc = &ep->dted_probe;
14744
14745		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14746			continue;
14747
14748		if (strcmp(desc->dtpd_mod, "helper") != 0)
14749			continue;
14750
14751		if (strcmp(desc->dtpd_func, "ustack") != 0)
14752			continue;
14753
14754		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14755		    ep)) != 0) {
14756			/*
14757			 * Adding this helper action failed -- we are now going
14758			 * to rip out the entire generation and return failure.
14759			 */
14760			(void) dtrace_helper_destroygen(help->dthps_generation);
14761			dtrace_enabling_destroy(enab);
14762			dtrace_dof_destroy(dof);
14763			return (-1);
14764		}
14765
14766		nhelpers++;
14767	}
14768
14769	if (nhelpers < enab->dten_ndesc)
14770		dtrace_dof_error(dof, "unmatched helpers");
14771
14772	gen = help->dthps_generation++;
14773	dtrace_enabling_destroy(enab);
14774
14775	if (dhp != NULL && nprovs > 0) {
14776		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14777		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14778			mutex_exit(&dtrace_lock);
14779			dtrace_helper_provider_register(curproc, help, dhp);
14780			mutex_enter(&dtrace_lock);
14781
14782			destroy = 0;
14783		}
14784	}
14785
14786	if (destroy)
14787		dtrace_dof_destroy(dof);
14788
14789	return (gen);
14790}
14791
14792static dtrace_helpers_t *
14793dtrace_helpers_create(proc_t *p)
14794{
14795	dtrace_helpers_t *help;
14796
14797	ASSERT(MUTEX_HELD(&dtrace_lock));
14798	ASSERT(p->p_dtrace_helpers == NULL);
14799
14800	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14801	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14802	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14803
14804	p->p_dtrace_helpers = help;
14805	dtrace_helpers++;
14806
14807	return (help);
14808}
14809
14810#if defined(sun)
14811static
14812#endif
14813void
14814dtrace_helpers_destroy(proc_t *p)
14815{
14816	dtrace_helpers_t *help;
14817	dtrace_vstate_t *vstate;
14818#if defined(sun)
14819	proc_t *p = curproc;
14820#endif
14821	int i;
14822
14823	mutex_enter(&dtrace_lock);
14824
14825	ASSERT(p->p_dtrace_helpers != NULL);
14826	ASSERT(dtrace_helpers > 0);
14827
14828	help = p->p_dtrace_helpers;
14829	vstate = &help->dthps_vstate;
14830
14831	/*
14832	 * We're now going to lose the help from this process.
14833	 */
14834	p->p_dtrace_helpers = NULL;
14835	dtrace_sync();
14836
14837	/*
14838	 * Destory the helper actions.
14839	 */
14840	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14841		dtrace_helper_action_t *h, *next;
14842
14843		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14844			next = h->dtha_next;
14845			dtrace_helper_action_destroy(h, vstate);
14846			h = next;
14847		}
14848	}
14849
14850	mutex_exit(&dtrace_lock);
14851
14852	/*
14853	 * Destroy the helper providers.
14854	 */
14855	if (help->dthps_maxprovs > 0) {
14856		mutex_enter(&dtrace_meta_lock);
14857		if (dtrace_meta_pid != NULL) {
14858			ASSERT(dtrace_deferred_pid == NULL);
14859
14860			for (i = 0; i < help->dthps_nprovs; i++) {
14861				dtrace_helper_provider_remove(
14862				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14863			}
14864		} else {
14865			mutex_enter(&dtrace_lock);
14866			ASSERT(help->dthps_deferred == 0 ||
14867			    help->dthps_next != NULL ||
14868			    help->dthps_prev != NULL ||
14869			    help == dtrace_deferred_pid);
14870
14871			/*
14872			 * Remove the helper from the deferred list.
14873			 */
14874			if (help->dthps_next != NULL)
14875				help->dthps_next->dthps_prev = help->dthps_prev;
14876			if (help->dthps_prev != NULL)
14877				help->dthps_prev->dthps_next = help->dthps_next;
14878			if (dtrace_deferred_pid == help) {
14879				dtrace_deferred_pid = help->dthps_next;
14880				ASSERT(help->dthps_prev == NULL);
14881			}
14882
14883			mutex_exit(&dtrace_lock);
14884		}
14885
14886		mutex_exit(&dtrace_meta_lock);
14887
14888		for (i = 0; i < help->dthps_nprovs; i++) {
14889			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14890		}
14891
14892		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14893		    sizeof (dtrace_helper_provider_t *));
14894	}
14895
14896	mutex_enter(&dtrace_lock);
14897
14898	dtrace_vstate_fini(&help->dthps_vstate);
14899	kmem_free(help->dthps_actions,
14900	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14901	kmem_free(help, sizeof (dtrace_helpers_t));
14902
14903	--dtrace_helpers;
14904	mutex_exit(&dtrace_lock);
14905}
14906
14907#if defined(sun)
14908static
14909#endif
14910void
14911dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14912{
14913	dtrace_helpers_t *help, *newhelp;
14914	dtrace_helper_action_t *helper, *new, *last;
14915	dtrace_difo_t *dp;
14916	dtrace_vstate_t *vstate;
14917	int i, j, sz, hasprovs = 0;
14918
14919	mutex_enter(&dtrace_lock);
14920	ASSERT(from->p_dtrace_helpers != NULL);
14921	ASSERT(dtrace_helpers > 0);
14922
14923	help = from->p_dtrace_helpers;
14924	newhelp = dtrace_helpers_create(to);
14925	ASSERT(to->p_dtrace_helpers != NULL);
14926
14927	newhelp->dthps_generation = help->dthps_generation;
14928	vstate = &newhelp->dthps_vstate;
14929
14930	/*
14931	 * Duplicate the helper actions.
14932	 */
14933	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14934		if ((helper = help->dthps_actions[i]) == NULL)
14935			continue;
14936
14937		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14938			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14939			    KM_SLEEP);
14940			new->dtha_generation = helper->dtha_generation;
14941
14942			if ((dp = helper->dtha_predicate) != NULL) {
14943				dp = dtrace_difo_duplicate(dp, vstate);
14944				new->dtha_predicate = dp;
14945			}
14946
14947			new->dtha_nactions = helper->dtha_nactions;
14948			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14949			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14950
14951			for (j = 0; j < new->dtha_nactions; j++) {
14952				dtrace_difo_t *dp = helper->dtha_actions[j];
14953
14954				ASSERT(dp != NULL);
14955				dp = dtrace_difo_duplicate(dp, vstate);
14956				new->dtha_actions[j] = dp;
14957			}
14958
14959			if (last != NULL) {
14960				last->dtha_next = new;
14961			} else {
14962				newhelp->dthps_actions[i] = new;
14963			}
14964
14965			last = new;
14966		}
14967	}
14968
14969	/*
14970	 * Duplicate the helper providers and register them with the
14971	 * DTrace framework.
14972	 */
14973	if (help->dthps_nprovs > 0) {
14974		newhelp->dthps_nprovs = help->dthps_nprovs;
14975		newhelp->dthps_maxprovs = help->dthps_nprovs;
14976		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14977		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14978		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14979			newhelp->dthps_provs[i] = help->dthps_provs[i];
14980			newhelp->dthps_provs[i]->dthp_ref++;
14981		}
14982
14983		hasprovs = 1;
14984	}
14985
14986	mutex_exit(&dtrace_lock);
14987
14988	if (hasprovs)
14989		dtrace_helper_provider_register(to, newhelp, NULL);
14990}
14991
14992#if defined(sun)
14993/*
14994 * DTrace Hook Functions
14995 */
14996static void
14997dtrace_module_loaded(modctl_t *ctl)
14998{
14999	dtrace_provider_t *prv;
15000
15001	mutex_enter(&dtrace_provider_lock);
15002	mutex_enter(&mod_lock);
15003
15004	ASSERT(ctl->mod_busy);
15005
15006	/*
15007	 * We're going to call each providers per-module provide operation
15008	 * specifying only this module.
15009	 */
15010	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15011		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15012
15013	mutex_exit(&mod_lock);
15014	mutex_exit(&dtrace_provider_lock);
15015
15016	/*
15017	 * If we have any retained enablings, we need to match against them.
15018	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15019	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15020	 * module.  (In particular, this happens when loading scheduling
15021	 * classes.)  So if we have any retained enablings, we need to dispatch
15022	 * our task queue to do the match for us.
15023	 */
15024	mutex_enter(&dtrace_lock);
15025
15026	if (dtrace_retained == NULL) {
15027		mutex_exit(&dtrace_lock);
15028		return;
15029	}
15030
15031	(void) taskq_dispatch(dtrace_taskq,
15032	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15033
15034	mutex_exit(&dtrace_lock);
15035
15036	/*
15037	 * And now, for a little heuristic sleaze:  in general, we want to
15038	 * match modules as soon as they load.  However, we cannot guarantee
15039	 * this, because it would lead us to the lock ordering violation
15040	 * outlined above.  The common case, of course, is that cpu_lock is
15041	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15042	 * long enough for the task queue to do its work.  If it's not, it's
15043	 * not a serious problem -- it just means that the module that we
15044	 * just loaded may not be immediately instrumentable.
15045	 */
15046	delay(1);
15047}
15048
15049static void
15050dtrace_module_unloaded(modctl_t *ctl)
15051{
15052	dtrace_probe_t template, *probe, *first, *next;
15053	dtrace_provider_t *prov;
15054
15055	template.dtpr_mod = ctl->mod_modname;
15056
15057	mutex_enter(&dtrace_provider_lock);
15058	mutex_enter(&mod_lock);
15059	mutex_enter(&dtrace_lock);
15060
15061	if (dtrace_bymod == NULL) {
15062		/*
15063		 * The DTrace module is loaded (obviously) but not attached;
15064		 * we don't have any work to do.
15065		 */
15066		mutex_exit(&dtrace_provider_lock);
15067		mutex_exit(&mod_lock);
15068		mutex_exit(&dtrace_lock);
15069		return;
15070	}
15071
15072	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15073	    probe != NULL; probe = probe->dtpr_nextmod) {
15074		if (probe->dtpr_ecb != NULL) {
15075			mutex_exit(&dtrace_provider_lock);
15076			mutex_exit(&mod_lock);
15077			mutex_exit(&dtrace_lock);
15078
15079			/*
15080			 * This shouldn't _actually_ be possible -- we're
15081			 * unloading a module that has an enabled probe in it.
15082			 * (It's normally up to the provider to make sure that
15083			 * this can't happen.)  However, because dtps_enable()
15084			 * doesn't have a failure mode, there can be an
15085			 * enable/unload race.  Upshot:  we don't want to
15086			 * assert, but we're not going to disable the
15087			 * probe, either.
15088			 */
15089			if (dtrace_err_verbose) {
15090				cmn_err(CE_WARN, "unloaded module '%s' had "
15091				    "enabled probes", ctl->mod_modname);
15092			}
15093
15094			return;
15095		}
15096	}
15097
15098	probe = first;
15099
15100	for (first = NULL; probe != NULL; probe = next) {
15101		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15102
15103		dtrace_probes[probe->dtpr_id - 1] = NULL;
15104
15105		next = probe->dtpr_nextmod;
15106		dtrace_hash_remove(dtrace_bymod, probe);
15107		dtrace_hash_remove(dtrace_byfunc, probe);
15108		dtrace_hash_remove(dtrace_byname, probe);
15109
15110		if (first == NULL) {
15111			first = probe;
15112			probe->dtpr_nextmod = NULL;
15113		} else {
15114			probe->dtpr_nextmod = first;
15115			first = probe;
15116		}
15117	}
15118
15119	/*
15120	 * We've removed all of the module's probes from the hash chains and
15121	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15122	 * everyone has cleared out from any probe array processing.
15123	 */
15124	dtrace_sync();
15125
15126	for (probe = first; probe != NULL; probe = first) {
15127		first = probe->dtpr_nextmod;
15128		prov = probe->dtpr_provider;
15129		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15130		    probe->dtpr_arg);
15131		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15132		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15133		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15134		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15135		kmem_free(probe, sizeof (dtrace_probe_t));
15136	}
15137
15138	mutex_exit(&dtrace_lock);
15139	mutex_exit(&mod_lock);
15140	mutex_exit(&dtrace_provider_lock);
15141}
15142
15143static void
15144dtrace_suspend(void)
15145{
15146	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15147}
15148
15149static void
15150dtrace_resume(void)
15151{
15152	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15153}
15154#endif
15155
15156static int
15157dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15158{
15159	ASSERT(MUTEX_HELD(&cpu_lock));
15160	mutex_enter(&dtrace_lock);
15161
15162	switch (what) {
15163	case CPU_CONFIG: {
15164		dtrace_state_t *state;
15165		dtrace_optval_t *opt, rs, c;
15166
15167		/*
15168		 * For now, we only allocate a new buffer for anonymous state.
15169		 */
15170		if ((state = dtrace_anon.dta_state) == NULL)
15171			break;
15172
15173		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15174			break;
15175
15176		opt = state->dts_options;
15177		c = opt[DTRACEOPT_CPU];
15178
15179		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15180			break;
15181
15182		/*
15183		 * Regardless of what the actual policy is, we're going to
15184		 * temporarily set our resize policy to be manual.  We're
15185		 * also going to temporarily set our CPU option to denote
15186		 * the newly configured CPU.
15187		 */
15188		rs = opt[DTRACEOPT_BUFRESIZE];
15189		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15190		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15191
15192		(void) dtrace_state_buffers(state);
15193
15194		opt[DTRACEOPT_BUFRESIZE] = rs;
15195		opt[DTRACEOPT_CPU] = c;
15196
15197		break;
15198	}
15199
15200	case CPU_UNCONFIG:
15201		/*
15202		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15203		 * buffer will be freed when the consumer exits.)
15204		 */
15205		break;
15206
15207	default:
15208		break;
15209	}
15210
15211	mutex_exit(&dtrace_lock);
15212	return (0);
15213}
15214
15215#if defined(sun)
15216static void
15217dtrace_cpu_setup_initial(processorid_t cpu)
15218{
15219	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15220}
15221#endif
15222
15223static void
15224dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15225{
15226	if (dtrace_toxranges >= dtrace_toxranges_max) {
15227		int osize, nsize;
15228		dtrace_toxrange_t *range;
15229
15230		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15231
15232		if (osize == 0) {
15233			ASSERT(dtrace_toxrange == NULL);
15234			ASSERT(dtrace_toxranges_max == 0);
15235			dtrace_toxranges_max = 1;
15236		} else {
15237			dtrace_toxranges_max <<= 1;
15238		}
15239
15240		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15241		range = kmem_zalloc(nsize, KM_SLEEP);
15242
15243		if (dtrace_toxrange != NULL) {
15244			ASSERT(osize != 0);
15245			bcopy(dtrace_toxrange, range, osize);
15246			kmem_free(dtrace_toxrange, osize);
15247		}
15248
15249		dtrace_toxrange = range;
15250	}
15251
15252	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15253	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15254
15255	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15256	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15257	dtrace_toxranges++;
15258}
15259
15260/*
15261 * DTrace Driver Cookbook Functions
15262 */
15263#if defined(sun)
15264/*ARGSUSED*/
15265static int
15266dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15267{
15268	dtrace_provider_id_t id;
15269	dtrace_state_t *state = NULL;
15270	dtrace_enabling_t *enab;
15271
15272	mutex_enter(&cpu_lock);
15273	mutex_enter(&dtrace_provider_lock);
15274	mutex_enter(&dtrace_lock);
15275
15276	if (ddi_soft_state_init(&dtrace_softstate,
15277	    sizeof (dtrace_state_t), 0) != 0) {
15278		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15279		mutex_exit(&cpu_lock);
15280		mutex_exit(&dtrace_provider_lock);
15281		mutex_exit(&dtrace_lock);
15282		return (DDI_FAILURE);
15283	}
15284
15285	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15286	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15287	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15288	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15289		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15290		ddi_remove_minor_node(devi, NULL);
15291		ddi_soft_state_fini(&dtrace_softstate);
15292		mutex_exit(&cpu_lock);
15293		mutex_exit(&dtrace_provider_lock);
15294		mutex_exit(&dtrace_lock);
15295		return (DDI_FAILURE);
15296	}
15297
15298	ddi_report_dev(devi);
15299	dtrace_devi = devi;
15300
15301	dtrace_modload = dtrace_module_loaded;
15302	dtrace_modunload = dtrace_module_unloaded;
15303	dtrace_cpu_init = dtrace_cpu_setup_initial;
15304	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15305	dtrace_helpers_fork = dtrace_helpers_duplicate;
15306	dtrace_cpustart_init = dtrace_suspend;
15307	dtrace_cpustart_fini = dtrace_resume;
15308	dtrace_debugger_init = dtrace_suspend;
15309	dtrace_debugger_fini = dtrace_resume;
15310
15311	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15312
15313	ASSERT(MUTEX_HELD(&cpu_lock));
15314
15315	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15316	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15317	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15318	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15319	    VM_SLEEP | VMC_IDENTIFIER);
15320	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15321	    1, INT_MAX, 0);
15322
15323	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15324	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15325	    NULL, NULL, NULL, NULL, NULL, 0);
15326
15327	ASSERT(MUTEX_HELD(&cpu_lock));
15328	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15329	    offsetof(dtrace_probe_t, dtpr_nextmod),
15330	    offsetof(dtrace_probe_t, dtpr_prevmod));
15331
15332	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15333	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15334	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15335
15336	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15337	    offsetof(dtrace_probe_t, dtpr_nextname),
15338	    offsetof(dtrace_probe_t, dtpr_prevname));
15339
15340	if (dtrace_retain_max < 1) {
15341		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15342		    "setting to 1", dtrace_retain_max);
15343		dtrace_retain_max = 1;
15344	}
15345
15346	/*
15347	 * Now discover our toxic ranges.
15348	 */
15349	dtrace_toxic_ranges(dtrace_toxrange_add);
15350
15351	/*
15352	 * Before we register ourselves as a provider to our own framework,
15353	 * we would like to assert that dtrace_provider is NULL -- but that's
15354	 * not true if we were loaded as a dependency of a DTrace provider.
15355	 * Once we've registered, we can assert that dtrace_provider is our
15356	 * pseudo provider.
15357	 */
15358	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15359	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15360
15361	ASSERT(dtrace_provider != NULL);
15362	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15363
15364	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15365	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15366	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15367	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15368	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15369	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15370
15371	dtrace_anon_property();
15372	mutex_exit(&cpu_lock);
15373
15374	/*
15375	 * If DTrace helper tracing is enabled, we need to allocate the
15376	 * trace buffer and initialize the values.
15377	 */
15378	if (dtrace_helptrace_enabled) {
15379		ASSERT(dtrace_helptrace_buffer == NULL);
15380		dtrace_helptrace_buffer =
15381		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15382		dtrace_helptrace_next = 0;
15383	}
15384
15385	/*
15386	 * If there are already providers, we must ask them to provide their
15387	 * probes, and then match any anonymous enabling against them.  Note
15388	 * that there should be no other retained enablings at this time:
15389	 * the only retained enablings at this time should be the anonymous
15390	 * enabling.
15391	 */
15392	if (dtrace_anon.dta_enabling != NULL) {
15393		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15394
15395		dtrace_enabling_provide(NULL);
15396		state = dtrace_anon.dta_state;
15397
15398		/*
15399		 * We couldn't hold cpu_lock across the above call to
15400		 * dtrace_enabling_provide(), but we must hold it to actually
15401		 * enable the probes.  We have to drop all of our locks, pick
15402		 * up cpu_lock, and regain our locks before matching the
15403		 * retained anonymous enabling.
15404		 */
15405		mutex_exit(&dtrace_lock);
15406		mutex_exit(&dtrace_provider_lock);
15407
15408		mutex_enter(&cpu_lock);
15409		mutex_enter(&dtrace_provider_lock);
15410		mutex_enter(&dtrace_lock);
15411
15412		if ((enab = dtrace_anon.dta_enabling) != NULL)
15413			(void) dtrace_enabling_match(enab, NULL);
15414
15415		mutex_exit(&cpu_lock);
15416	}
15417
15418	mutex_exit(&dtrace_lock);
15419	mutex_exit(&dtrace_provider_lock);
15420
15421	if (state != NULL) {
15422		/*
15423		 * If we created any anonymous state, set it going now.
15424		 */
15425		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15426	}
15427
15428	return (DDI_SUCCESS);
15429}
15430#endif
15431
15432#if !defined(sun)
15433#if __FreeBSD_version >= 800039
15434static void
15435dtrace_dtr(void *data __unused)
15436{
15437}
15438#endif
15439#endif
15440
15441/*ARGSUSED*/
15442static int
15443#if defined(sun)
15444dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15445#else
15446dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15447#endif
15448{
15449	dtrace_state_t *state;
15450	uint32_t priv;
15451	uid_t uid;
15452	zoneid_t zoneid;
15453
15454#if defined(sun)
15455	if (getminor(*devp) == DTRACEMNRN_HELPER)
15456		return (0);
15457
15458	/*
15459	 * If this wasn't an open with the "helper" minor, then it must be
15460	 * the "dtrace" minor.
15461	 */
15462	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15463#else
15464	cred_t *cred_p = NULL;
15465
15466#if __FreeBSD_version < 800039
15467	/*
15468	 * The first minor device is the one that is cloned so there is
15469	 * nothing more to do here.
15470	 */
15471	if (dev2unit(dev) == 0)
15472		return 0;
15473
15474	/*
15475	 * Devices are cloned, so if the DTrace state has already
15476	 * been allocated, that means this device belongs to a
15477	 * different client. Each client should open '/dev/dtrace'
15478	 * to get a cloned device.
15479	 */
15480	if (dev->si_drv1 != NULL)
15481		return (EBUSY);
15482#endif
15483
15484	cred_p = dev->si_cred;
15485#endif
15486
15487	/*
15488	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15489	 * caller lacks sufficient permission to do anything with DTrace.
15490	 */
15491	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15492	if (priv == DTRACE_PRIV_NONE) {
15493#if !defined(sun)
15494#if __FreeBSD_version < 800039
15495		/* Destroy the cloned device. */
15496                destroy_dev(dev);
15497#endif
15498#endif
15499
15500		return (EACCES);
15501	}
15502
15503	/*
15504	 * Ask all providers to provide all their probes.
15505	 */
15506	mutex_enter(&dtrace_provider_lock);
15507	dtrace_probe_provide(NULL, NULL);
15508	mutex_exit(&dtrace_provider_lock);
15509
15510	mutex_enter(&cpu_lock);
15511	mutex_enter(&dtrace_lock);
15512	dtrace_opens++;
15513	dtrace_membar_producer();
15514
15515#if defined(sun)
15516	/*
15517	 * If the kernel debugger is active (that is, if the kernel debugger
15518	 * modified text in some way), we won't allow the open.
15519	 */
15520	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15521		dtrace_opens--;
15522		mutex_exit(&cpu_lock);
15523		mutex_exit(&dtrace_lock);
15524		return (EBUSY);
15525	}
15526
15527	state = dtrace_state_create(devp, cred_p);
15528#else
15529	state = dtrace_state_create(dev);
15530#if __FreeBSD_version < 800039
15531	dev->si_drv1 = state;
15532#else
15533	devfs_set_cdevpriv(state, dtrace_dtr);
15534#endif
15535#endif
15536
15537	mutex_exit(&cpu_lock);
15538
15539	if (state == NULL) {
15540#if defined(sun)
15541		if (--dtrace_opens == 0)
15542			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15543#else
15544		--dtrace_opens;
15545#endif
15546		mutex_exit(&dtrace_lock);
15547#if !defined(sun)
15548#if __FreeBSD_version < 800039
15549		/* Destroy the cloned device. */
15550                destroy_dev(dev);
15551#endif
15552#endif
15553		return (EAGAIN);
15554	}
15555
15556	mutex_exit(&dtrace_lock);
15557
15558	return (0);
15559}
15560
15561/*ARGSUSED*/
15562static int
15563#if defined(sun)
15564dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15565#else
15566dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15567#endif
15568{
15569#if defined(sun)
15570	minor_t minor = getminor(dev);
15571	dtrace_state_t *state;
15572
15573	if (minor == DTRACEMNRN_HELPER)
15574		return (0);
15575
15576	state = ddi_get_soft_state(dtrace_softstate, minor);
15577#else
15578#if __FreeBSD_version < 800039
15579	dtrace_state_t *state = dev->si_drv1;
15580
15581	/* Check if this is not a cloned device. */
15582	if (dev2unit(dev) == 0)
15583		return (0);
15584#else
15585	dtrace_state_t *state;
15586	devfs_get_cdevpriv((void **) &state);
15587#endif
15588
15589#endif
15590
15591	mutex_enter(&cpu_lock);
15592	mutex_enter(&dtrace_lock);
15593
15594	if (state != NULL) {
15595		if (state->dts_anon) {
15596			/*
15597			 * There is anonymous state. Destroy that first.
15598			 */
15599			ASSERT(dtrace_anon.dta_state == NULL);
15600			dtrace_state_destroy(state->dts_anon);
15601		}
15602
15603		dtrace_state_destroy(state);
15604
15605#if !defined(sun)
15606		kmem_free(state, 0);
15607#if __FreeBSD_version < 800039
15608		dev->si_drv1 = NULL;
15609#endif
15610#endif
15611	}
15612
15613	ASSERT(dtrace_opens > 0);
15614#if defined(sun)
15615	if (--dtrace_opens == 0)
15616		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15617#else
15618	--dtrace_opens;
15619#endif
15620
15621	mutex_exit(&dtrace_lock);
15622	mutex_exit(&cpu_lock);
15623
15624#if __FreeBSD_version < 800039
15625	/* Schedule this cloned device to be destroyed. */
15626	destroy_dev_sched(dev);
15627#endif
15628
15629	return (0);
15630}
15631
15632#if defined(sun)
15633/*ARGSUSED*/
15634static int
15635dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15636{
15637	int rval;
15638	dof_helper_t help, *dhp = NULL;
15639
15640	switch (cmd) {
15641	case DTRACEHIOC_ADDDOF:
15642		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15643			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15644			return (EFAULT);
15645		}
15646
15647		dhp = &help;
15648		arg = (intptr_t)help.dofhp_dof;
15649		/*FALLTHROUGH*/
15650
15651	case DTRACEHIOC_ADD: {
15652		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15653
15654		if (dof == NULL)
15655			return (rval);
15656
15657		mutex_enter(&dtrace_lock);
15658
15659		/*
15660		 * dtrace_helper_slurp() takes responsibility for the dof --
15661		 * it may free it now or it may save it and free it later.
15662		 */
15663		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15664			*rv = rval;
15665			rval = 0;
15666		} else {
15667			rval = EINVAL;
15668		}
15669
15670		mutex_exit(&dtrace_lock);
15671		return (rval);
15672	}
15673
15674	case DTRACEHIOC_REMOVE: {
15675		mutex_enter(&dtrace_lock);
15676		rval = dtrace_helper_destroygen(arg);
15677		mutex_exit(&dtrace_lock);
15678
15679		return (rval);
15680	}
15681
15682	default:
15683		break;
15684	}
15685
15686	return (ENOTTY);
15687}
15688
15689/*ARGSUSED*/
15690static int
15691dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15692{
15693	minor_t minor = getminor(dev);
15694	dtrace_state_t *state;
15695	int rval;
15696
15697	if (minor == DTRACEMNRN_HELPER)
15698		return (dtrace_ioctl_helper(cmd, arg, rv));
15699
15700	state = ddi_get_soft_state(dtrace_softstate, minor);
15701
15702	if (state->dts_anon) {
15703		ASSERT(dtrace_anon.dta_state == NULL);
15704		state = state->dts_anon;
15705	}
15706
15707	switch (cmd) {
15708	case DTRACEIOC_PROVIDER: {
15709		dtrace_providerdesc_t pvd;
15710		dtrace_provider_t *pvp;
15711
15712		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15713			return (EFAULT);
15714
15715		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15716		mutex_enter(&dtrace_provider_lock);
15717
15718		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15719			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15720				break;
15721		}
15722
15723		mutex_exit(&dtrace_provider_lock);
15724
15725		if (pvp == NULL)
15726			return (ESRCH);
15727
15728		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15729		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15730
15731		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15732			return (EFAULT);
15733
15734		return (0);
15735	}
15736
15737	case DTRACEIOC_EPROBE: {
15738		dtrace_eprobedesc_t epdesc;
15739		dtrace_ecb_t *ecb;
15740		dtrace_action_t *act;
15741		void *buf;
15742		size_t size;
15743		uintptr_t dest;
15744		int nrecs;
15745
15746		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15747			return (EFAULT);
15748
15749		mutex_enter(&dtrace_lock);
15750
15751		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15752			mutex_exit(&dtrace_lock);
15753			return (EINVAL);
15754		}
15755
15756		if (ecb->dte_probe == NULL) {
15757			mutex_exit(&dtrace_lock);
15758			return (EINVAL);
15759		}
15760
15761		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15762		epdesc.dtepd_uarg = ecb->dte_uarg;
15763		epdesc.dtepd_size = ecb->dte_size;
15764
15765		nrecs = epdesc.dtepd_nrecs;
15766		epdesc.dtepd_nrecs = 0;
15767		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15768			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15769				continue;
15770
15771			epdesc.dtepd_nrecs++;
15772		}
15773
15774		/*
15775		 * Now that we have the size, we need to allocate a temporary
15776		 * buffer in which to store the complete description.  We need
15777		 * the temporary buffer to be able to drop dtrace_lock()
15778		 * across the copyout(), below.
15779		 */
15780		size = sizeof (dtrace_eprobedesc_t) +
15781		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15782
15783		buf = kmem_alloc(size, KM_SLEEP);
15784		dest = (uintptr_t)buf;
15785
15786		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15787		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15788
15789		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15790			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15791				continue;
15792
15793			if (nrecs-- == 0)
15794				break;
15795
15796			bcopy(&act->dta_rec, (void *)dest,
15797			    sizeof (dtrace_recdesc_t));
15798			dest += sizeof (dtrace_recdesc_t);
15799		}
15800
15801		mutex_exit(&dtrace_lock);
15802
15803		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15804			kmem_free(buf, size);
15805			return (EFAULT);
15806		}
15807
15808		kmem_free(buf, size);
15809		return (0);
15810	}
15811
15812	case DTRACEIOC_AGGDESC: {
15813		dtrace_aggdesc_t aggdesc;
15814		dtrace_action_t *act;
15815		dtrace_aggregation_t *agg;
15816		int nrecs;
15817		uint32_t offs;
15818		dtrace_recdesc_t *lrec;
15819		void *buf;
15820		size_t size;
15821		uintptr_t dest;
15822
15823		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15824			return (EFAULT);
15825
15826		mutex_enter(&dtrace_lock);
15827
15828		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15829			mutex_exit(&dtrace_lock);
15830			return (EINVAL);
15831		}
15832
15833		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15834
15835		nrecs = aggdesc.dtagd_nrecs;
15836		aggdesc.dtagd_nrecs = 0;
15837
15838		offs = agg->dtag_base;
15839		lrec = &agg->dtag_action.dta_rec;
15840		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15841
15842		for (act = agg->dtag_first; ; act = act->dta_next) {
15843			ASSERT(act->dta_intuple ||
15844			    DTRACEACT_ISAGG(act->dta_kind));
15845
15846			/*
15847			 * If this action has a record size of zero, it
15848			 * denotes an argument to the aggregating action.
15849			 * Because the presence of this record doesn't (or
15850			 * shouldn't) affect the way the data is interpreted,
15851			 * we don't copy it out to save user-level the
15852			 * confusion of dealing with a zero-length record.
15853			 */
15854			if (act->dta_rec.dtrd_size == 0) {
15855				ASSERT(agg->dtag_hasarg);
15856				continue;
15857			}
15858
15859			aggdesc.dtagd_nrecs++;
15860
15861			if (act == &agg->dtag_action)
15862				break;
15863		}
15864
15865		/*
15866		 * Now that we have the size, we need to allocate a temporary
15867		 * buffer in which to store the complete description.  We need
15868		 * the temporary buffer to be able to drop dtrace_lock()
15869		 * across the copyout(), below.
15870		 */
15871		size = sizeof (dtrace_aggdesc_t) +
15872		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15873
15874		buf = kmem_alloc(size, KM_SLEEP);
15875		dest = (uintptr_t)buf;
15876
15877		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15878		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15879
15880		for (act = agg->dtag_first; ; act = act->dta_next) {
15881			dtrace_recdesc_t rec = act->dta_rec;
15882
15883			/*
15884			 * See the comment in the above loop for why we pass
15885			 * over zero-length records.
15886			 */
15887			if (rec.dtrd_size == 0) {
15888				ASSERT(agg->dtag_hasarg);
15889				continue;
15890			}
15891
15892			if (nrecs-- == 0)
15893				break;
15894
15895			rec.dtrd_offset -= offs;
15896			bcopy(&rec, (void *)dest, sizeof (rec));
15897			dest += sizeof (dtrace_recdesc_t);
15898
15899			if (act == &agg->dtag_action)
15900				break;
15901		}
15902
15903		mutex_exit(&dtrace_lock);
15904
15905		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15906			kmem_free(buf, size);
15907			return (EFAULT);
15908		}
15909
15910		kmem_free(buf, size);
15911		return (0);
15912	}
15913
15914	case DTRACEIOC_ENABLE: {
15915		dof_hdr_t *dof;
15916		dtrace_enabling_t *enab = NULL;
15917		dtrace_vstate_t *vstate;
15918		int err = 0;
15919
15920		*rv = 0;
15921
15922		/*
15923		 * If a NULL argument has been passed, we take this as our
15924		 * cue to reevaluate our enablings.
15925		 */
15926		if (arg == NULL) {
15927			dtrace_enabling_matchall();
15928
15929			return (0);
15930		}
15931
15932		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15933			return (rval);
15934
15935		mutex_enter(&cpu_lock);
15936		mutex_enter(&dtrace_lock);
15937		vstate = &state->dts_vstate;
15938
15939		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15940			mutex_exit(&dtrace_lock);
15941			mutex_exit(&cpu_lock);
15942			dtrace_dof_destroy(dof);
15943			return (EBUSY);
15944		}
15945
15946		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15947			mutex_exit(&dtrace_lock);
15948			mutex_exit(&cpu_lock);
15949			dtrace_dof_destroy(dof);
15950			return (EINVAL);
15951		}
15952
15953		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15954			dtrace_enabling_destroy(enab);
15955			mutex_exit(&dtrace_lock);
15956			mutex_exit(&cpu_lock);
15957			dtrace_dof_destroy(dof);
15958			return (rval);
15959		}
15960
15961		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15962			err = dtrace_enabling_retain(enab);
15963		} else {
15964			dtrace_enabling_destroy(enab);
15965		}
15966
15967		mutex_exit(&cpu_lock);
15968		mutex_exit(&dtrace_lock);
15969		dtrace_dof_destroy(dof);
15970
15971		return (err);
15972	}
15973
15974	case DTRACEIOC_REPLICATE: {
15975		dtrace_repldesc_t desc;
15976		dtrace_probedesc_t *match = &desc.dtrpd_match;
15977		dtrace_probedesc_t *create = &desc.dtrpd_create;
15978		int err;
15979
15980		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15981			return (EFAULT);
15982
15983		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15984		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15985		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15986		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15987
15988		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15989		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15990		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15991		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15992
15993		mutex_enter(&dtrace_lock);
15994		err = dtrace_enabling_replicate(state, match, create);
15995		mutex_exit(&dtrace_lock);
15996
15997		return (err);
15998	}
15999
16000	case DTRACEIOC_PROBEMATCH:
16001	case DTRACEIOC_PROBES: {
16002		dtrace_probe_t *probe = NULL;
16003		dtrace_probedesc_t desc;
16004		dtrace_probekey_t pkey;
16005		dtrace_id_t i;
16006		int m = 0;
16007		uint32_t priv;
16008		uid_t uid;
16009		zoneid_t zoneid;
16010
16011		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16012			return (EFAULT);
16013
16014		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16015		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16016		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16017		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16018
16019		/*
16020		 * Before we attempt to match this probe, we want to give
16021		 * all providers the opportunity to provide it.
16022		 */
16023		if (desc.dtpd_id == DTRACE_IDNONE) {
16024			mutex_enter(&dtrace_provider_lock);
16025			dtrace_probe_provide(&desc, NULL);
16026			mutex_exit(&dtrace_provider_lock);
16027			desc.dtpd_id++;
16028		}
16029
16030		if (cmd == DTRACEIOC_PROBEMATCH)  {
16031			dtrace_probekey(&desc, &pkey);
16032			pkey.dtpk_id = DTRACE_IDNONE;
16033		}
16034
16035		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16036
16037		mutex_enter(&dtrace_lock);
16038
16039		if (cmd == DTRACEIOC_PROBEMATCH) {
16040			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16041				if ((probe = dtrace_probes[i - 1]) != NULL &&
16042				    (m = dtrace_match_probe(probe, &pkey,
16043				    priv, uid, zoneid)) != 0)
16044					break;
16045			}
16046
16047			if (m < 0) {
16048				mutex_exit(&dtrace_lock);
16049				return (EINVAL);
16050			}
16051
16052		} else {
16053			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16054				if ((probe = dtrace_probes[i - 1]) != NULL &&
16055				    dtrace_match_priv(probe, priv, uid, zoneid))
16056					break;
16057			}
16058		}
16059
16060		if (probe == NULL) {
16061			mutex_exit(&dtrace_lock);
16062			return (ESRCH);
16063		}
16064
16065		dtrace_probe_description(probe, &desc);
16066		mutex_exit(&dtrace_lock);
16067
16068		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16069			return (EFAULT);
16070
16071		return (0);
16072	}
16073
16074	case DTRACEIOC_PROBEARG: {
16075		dtrace_argdesc_t desc;
16076		dtrace_probe_t *probe;
16077		dtrace_provider_t *prov;
16078
16079		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16080			return (EFAULT);
16081
16082		if (desc.dtargd_id == DTRACE_IDNONE)
16083			return (EINVAL);
16084
16085		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16086			return (EINVAL);
16087
16088		mutex_enter(&dtrace_provider_lock);
16089		mutex_enter(&mod_lock);
16090		mutex_enter(&dtrace_lock);
16091
16092		if (desc.dtargd_id > dtrace_nprobes) {
16093			mutex_exit(&dtrace_lock);
16094			mutex_exit(&mod_lock);
16095			mutex_exit(&dtrace_provider_lock);
16096			return (EINVAL);
16097		}
16098
16099		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16100			mutex_exit(&dtrace_lock);
16101			mutex_exit(&mod_lock);
16102			mutex_exit(&dtrace_provider_lock);
16103			return (EINVAL);
16104		}
16105
16106		mutex_exit(&dtrace_lock);
16107
16108		prov = probe->dtpr_provider;
16109
16110		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16111			/*
16112			 * There isn't any typed information for this probe.
16113			 * Set the argument number to DTRACE_ARGNONE.
16114			 */
16115			desc.dtargd_ndx = DTRACE_ARGNONE;
16116		} else {
16117			desc.dtargd_native[0] = '\0';
16118			desc.dtargd_xlate[0] = '\0';
16119			desc.dtargd_mapping = desc.dtargd_ndx;
16120
16121			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16122			    probe->dtpr_id, probe->dtpr_arg, &desc);
16123		}
16124
16125		mutex_exit(&mod_lock);
16126		mutex_exit(&dtrace_provider_lock);
16127
16128		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16129			return (EFAULT);
16130
16131		return (0);
16132	}
16133
16134	case DTRACEIOC_GO: {
16135		processorid_t cpuid;
16136		rval = dtrace_state_go(state, &cpuid);
16137
16138		if (rval != 0)
16139			return (rval);
16140
16141		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16142			return (EFAULT);
16143
16144		return (0);
16145	}
16146
16147	case DTRACEIOC_STOP: {
16148		processorid_t cpuid;
16149
16150		mutex_enter(&dtrace_lock);
16151		rval = dtrace_state_stop(state, &cpuid);
16152		mutex_exit(&dtrace_lock);
16153
16154		if (rval != 0)
16155			return (rval);
16156
16157		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16158			return (EFAULT);
16159
16160		return (0);
16161	}
16162
16163	case DTRACEIOC_DOFGET: {
16164		dof_hdr_t hdr, *dof;
16165		uint64_t len;
16166
16167		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16168			return (EFAULT);
16169
16170		mutex_enter(&dtrace_lock);
16171		dof = dtrace_dof_create(state);
16172		mutex_exit(&dtrace_lock);
16173
16174		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16175		rval = copyout(dof, (void *)arg, len);
16176		dtrace_dof_destroy(dof);
16177
16178		return (rval == 0 ? 0 : EFAULT);
16179	}
16180
16181	case DTRACEIOC_AGGSNAP:
16182	case DTRACEIOC_BUFSNAP: {
16183		dtrace_bufdesc_t desc;
16184		caddr_t cached;
16185		dtrace_buffer_t *buf;
16186
16187		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16188			return (EFAULT);
16189
16190		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16191			return (EINVAL);
16192
16193		mutex_enter(&dtrace_lock);
16194
16195		if (cmd == DTRACEIOC_BUFSNAP) {
16196			buf = &state->dts_buffer[desc.dtbd_cpu];
16197		} else {
16198			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16199		}
16200
16201		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16202			size_t sz = buf->dtb_offset;
16203
16204			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16205				mutex_exit(&dtrace_lock);
16206				return (EBUSY);
16207			}
16208
16209			/*
16210			 * If this buffer has already been consumed, we're
16211			 * going to indicate that there's nothing left here
16212			 * to consume.
16213			 */
16214			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16215				mutex_exit(&dtrace_lock);
16216
16217				desc.dtbd_size = 0;
16218				desc.dtbd_drops = 0;
16219				desc.dtbd_errors = 0;
16220				desc.dtbd_oldest = 0;
16221				sz = sizeof (desc);
16222
16223				if (copyout(&desc, (void *)arg, sz) != 0)
16224					return (EFAULT);
16225
16226				return (0);
16227			}
16228
16229			/*
16230			 * If this is a ring buffer that has wrapped, we want
16231			 * to copy the whole thing out.
16232			 */
16233			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16234				dtrace_buffer_polish(buf);
16235				sz = buf->dtb_size;
16236			}
16237
16238			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16239				mutex_exit(&dtrace_lock);
16240				return (EFAULT);
16241			}
16242
16243			desc.dtbd_size = sz;
16244			desc.dtbd_drops = buf->dtb_drops;
16245			desc.dtbd_errors = buf->dtb_errors;
16246			desc.dtbd_oldest = buf->dtb_xamot_offset;
16247
16248			mutex_exit(&dtrace_lock);
16249
16250			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16251				return (EFAULT);
16252
16253			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16254
16255			return (0);
16256		}
16257
16258		if (buf->dtb_tomax == NULL) {
16259			ASSERT(buf->dtb_xamot == NULL);
16260			mutex_exit(&dtrace_lock);
16261			return (ENOENT);
16262		}
16263
16264		cached = buf->dtb_tomax;
16265		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16266
16267		dtrace_xcall(desc.dtbd_cpu,
16268		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16269
16270		state->dts_errors += buf->dtb_xamot_errors;
16271
16272		/*
16273		 * If the buffers did not actually switch, then the cross call
16274		 * did not take place -- presumably because the given CPU is
16275		 * not in the ready set.  If this is the case, we'll return
16276		 * ENOENT.
16277		 */
16278		if (buf->dtb_tomax == cached) {
16279			ASSERT(buf->dtb_xamot != cached);
16280			mutex_exit(&dtrace_lock);
16281			return (ENOENT);
16282		}
16283
16284		ASSERT(cached == buf->dtb_xamot);
16285
16286		/*
16287		 * We have our snapshot; now copy it out.
16288		 */
16289		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16290		    buf->dtb_xamot_offset) != 0) {
16291			mutex_exit(&dtrace_lock);
16292			return (EFAULT);
16293		}
16294
16295		desc.dtbd_size = buf->dtb_xamot_offset;
16296		desc.dtbd_drops = buf->dtb_xamot_drops;
16297		desc.dtbd_errors = buf->dtb_xamot_errors;
16298		desc.dtbd_oldest = 0;
16299
16300		mutex_exit(&dtrace_lock);
16301
16302		/*
16303		 * Finally, copy out the buffer description.
16304		 */
16305		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16306			return (EFAULT);
16307
16308		return (0);
16309	}
16310
16311	case DTRACEIOC_CONF: {
16312		dtrace_conf_t conf;
16313
16314		bzero(&conf, sizeof (conf));
16315		conf.dtc_difversion = DIF_VERSION;
16316		conf.dtc_difintregs = DIF_DIR_NREGS;
16317		conf.dtc_diftupregs = DIF_DTR_NREGS;
16318		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16319
16320		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16321			return (EFAULT);
16322
16323		return (0);
16324	}
16325
16326	case DTRACEIOC_STATUS: {
16327		dtrace_status_t stat;
16328		dtrace_dstate_t *dstate;
16329		int i, j;
16330		uint64_t nerrs;
16331
16332		/*
16333		 * See the comment in dtrace_state_deadman() for the reason
16334		 * for setting dts_laststatus to INT64_MAX before setting
16335		 * it to the correct value.
16336		 */
16337		state->dts_laststatus = INT64_MAX;
16338		dtrace_membar_producer();
16339		state->dts_laststatus = dtrace_gethrtime();
16340
16341		bzero(&stat, sizeof (stat));
16342
16343		mutex_enter(&dtrace_lock);
16344
16345		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16346			mutex_exit(&dtrace_lock);
16347			return (ENOENT);
16348		}
16349
16350		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16351			stat.dtst_exiting = 1;
16352
16353		nerrs = state->dts_errors;
16354		dstate = &state->dts_vstate.dtvs_dynvars;
16355
16356		for (i = 0; i < NCPU; i++) {
16357			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16358
16359			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16360			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16361			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16362
16363			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16364				stat.dtst_filled++;
16365
16366			nerrs += state->dts_buffer[i].dtb_errors;
16367
16368			for (j = 0; j < state->dts_nspeculations; j++) {
16369				dtrace_speculation_t *spec;
16370				dtrace_buffer_t *buf;
16371
16372				spec = &state->dts_speculations[j];
16373				buf = &spec->dtsp_buffer[i];
16374				stat.dtst_specdrops += buf->dtb_xamot_drops;
16375			}
16376		}
16377
16378		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16379		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16380		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16381		stat.dtst_dblerrors = state->dts_dblerrors;
16382		stat.dtst_killed =
16383		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16384		stat.dtst_errors = nerrs;
16385
16386		mutex_exit(&dtrace_lock);
16387
16388		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16389			return (EFAULT);
16390
16391		return (0);
16392	}
16393
16394	case DTRACEIOC_FORMAT: {
16395		dtrace_fmtdesc_t fmt;
16396		char *str;
16397		int len;
16398
16399		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16400			return (EFAULT);
16401
16402		mutex_enter(&dtrace_lock);
16403
16404		if (fmt.dtfd_format == 0 ||
16405		    fmt.dtfd_format > state->dts_nformats) {
16406			mutex_exit(&dtrace_lock);
16407			return (EINVAL);
16408		}
16409
16410		/*
16411		 * Format strings are allocated contiguously and they are
16412		 * never freed; if a format index is less than the number
16413		 * of formats, we can assert that the format map is non-NULL
16414		 * and that the format for the specified index is non-NULL.
16415		 */
16416		ASSERT(state->dts_formats != NULL);
16417		str = state->dts_formats[fmt.dtfd_format - 1];
16418		ASSERT(str != NULL);
16419
16420		len = strlen(str) + 1;
16421
16422		if (len > fmt.dtfd_length) {
16423			fmt.dtfd_length = len;
16424
16425			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16426				mutex_exit(&dtrace_lock);
16427				return (EINVAL);
16428			}
16429		} else {
16430			if (copyout(str, fmt.dtfd_string, len) != 0) {
16431				mutex_exit(&dtrace_lock);
16432				return (EINVAL);
16433			}
16434		}
16435
16436		mutex_exit(&dtrace_lock);
16437		return (0);
16438	}
16439
16440	default:
16441		break;
16442	}
16443
16444	return (ENOTTY);
16445}
16446
16447/*ARGSUSED*/
16448static int
16449dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16450{
16451	dtrace_state_t *state;
16452
16453	switch (cmd) {
16454	case DDI_DETACH:
16455		break;
16456
16457	case DDI_SUSPEND:
16458		return (DDI_SUCCESS);
16459
16460	default:
16461		return (DDI_FAILURE);
16462	}
16463
16464	mutex_enter(&cpu_lock);
16465	mutex_enter(&dtrace_provider_lock);
16466	mutex_enter(&dtrace_lock);
16467
16468	ASSERT(dtrace_opens == 0);
16469
16470	if (dtrace_helpers > 0) {
16471		mutex_exit(&dtrace_provider_lock);
16472		mutex_exit(&dtrace_lock);
16473		mutex_exit(&cpu_lock);
16474		return (DDI_FAILURE);
16475	}
16476
16477	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16478		mutex_exit(&dtrace_provider_lock);
16479		mutex_exit(&dtrace_lock);
16480		mutex_exit(&cpu_lock);
16481		return (DDI_FAILURE);
16482	}
16483
16484	dtrace_provider = NULL;
16485
16486	if ((state = dtrace_anon_grab()) != NULL) {
16487		/*
16488		 * If there were ECBs on this state, the provider should
16489		 * have not been allowed to detach; assert that there is
16490		 * none.
16491		 */
16492		ASSERT(state->dts_necbs == 0);
16493		dtrace_state_destroy(state);
16494
16495		/*
16496		 * If we're being detached with anonymous state, we need to
16497		 * indicate to the kernel debugger that DTrace is now inactive.
16498		 */
16499		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16500	}
16501
16502	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16503	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16504	dtrace_cpu_init = NULL;
16505	dtrace_helpers_cleanup = NULL;
16506	dtrace_helpers_fork = NULL;
16507	dtrace_cpustart_init = NULL;
16508	dtrace_cpustart_fini = NULL;
16509	dtrace_debugger_init = NULL;
16510	dtrace_debugger_fini = NULL;
16511	dtrace_modload = NULL;
16512	dtrace_modunload = NULL;
16513
16514	mutex_exit(&cpu_lock);
16515
16516	if (dtrace_helptrace_enabled) {
16517		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16518		dtrace_helptrace_buffer = NULL;
16519	}
16520
16521	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16522	dtrace_probes = NULL;
16523	dtrace_nprobes = 0;
16524
16525	dtrace_hash_destroy(dtrace_bymod);
16526	dtrace_hash_destroy(dtrace_byfunc);
16527	dtrace_hash_destroy(dtrace_byname);
16528	dtrace_bymod = NULL;
16529	dtrace_byfunc = NULL;
16530	dtrace_byname = NULL;
16531
16532	kmem_cache_destroy(dtrace_state_cache);
16533	vmem_destroy(dtrace_minor);
16534	vmem_destroy(dtrace_arena);
16535
16536	if (dtrace_toxrange != NULL) {
16537		kmem_free(dtrace_toxrange,
16538		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16539		dtrace_toxrange = NULL;
16540		dtrace_toxranges = 0;
16541		dtrace_toxranges_max = 0;
16542	}
16543
16544	ddi_remove_minor_node(dtrace_devi, NULL);
16545	dtrace_devi = NULL;
16546
16547	ddi_soft_state_fini(&dtrace_softstate);
16548
16549	ASSERT(dtrace_vtime_references == 0);
16550	ASSERT(dtrace_opens == 0);
16551	ASSERT(dtrace_retained == NULL);
16552
16553	mutex_exit(&dtrace_lock);
16554	mutex_exit(&dtrace_provider_lock);
16555
16556	/*
16557	 * We don't destroy the task queue until after we have dropped our
16558	 * locks (taskq_destroy() may block on running tasks).  To prevent
16559	 * attempting to do work after we have effectively detached but before
16560	 * the task queue has been destroyed, all tasks dispatched via the
16561	 * task queue must check that DTrace is still attached before
16562	 * performing any operation.
16563	 */
16564	taskq_destroy(dtrace_taskq);
16565	dtrace_taskq = NULL;
16566
16567	return (DDI_SUCCESS);
16568}
16569#endif
16570
16571#if defined(sun)
16572/*ARGSUSED*/
16573static int
16574dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16575{
16576	int error;
16577
16578	switch (infocmd) {
16579	case DDI_INFO_DEVT2DEVINFO:
16580		*result = (void *)dtrace_devi;
16581		error = DDI_SUCCESS;
16582		break;
16583	case DDI_INFO_DEVT2INSTANCE:
16584		*result = (void *)0;
16585		error = DDI_SUCCESS;
16586		break;
16587	default:
16588		error = DDI_FAILURE;
16589	}
16590	return (error);
16591}
16592#endif
16593
16594#if defined(sun)
16595static struct cb_ops dtrace_cb_ops = {
16596	dtrace_open,		/* open */
16597	dtrace_close,		/* close */
16598	nulldev,		/* strategy */
16599	nulldev,		/* print */
16600	nodev,			/* dump */
16601	nodev,			/* read */
16602	nodev,			/* write */
16603	dtrace_ioctl,		/* ioctl */
16604	nodev,			/* devmap */
16605	nodev,			/* mmap */
16606	nodev,			/* segmap */
16607	nochpoll,		/* poll */
16608	ddi_prop_op,		/* cb_prop_op */
16609	0,			/* streamtab  */
16610	D_NEW | D_MP		/* Driver compatibility flag */
16611};
16612
16613static struct dev_ops dtrace_ops = {
16614	DEVO_REV,		/* devo_rev */
16615	0,			/* refcnt */
16616	dtrace_info,		/* get_dev_info */
16617	nulldev,		/* identify */
16618	nulldev,		/* probe */
16619	dtrace_attach,		/* attach */
16620	dtrace_detach,		/* detach */
16621	nodev,			/* reset */
16622	&dtrace_cb_ops,		/* driver operations */
16623	NULL,			/* bus operations */
16624	nodev			/* dev power */
16625};
16626
16627static struct modldrv modldrv = {
16628	&mod_driverops,		/* module type (this is a pseudo driver) */
16629	"Dynamic Tracing",	/* name of module */
16630	&dtrace_ops,		/* driver ops */
16631};
16632
16633static struct modlinkage modlinkage = {
16634	MODREV_1,
16635	(void *)&modldrv,
16636	NULL
16637};
16638
16639int
16640_init(void)
16641{
16642	return (mod_install(&modlinkage));
16643}
16644
16645int
16646_info(struct modinfo *modinfop)
16647{
16648	return (mod_info(&modlinkage, modinfop));
16649}
16650
16651int
16652_fini(void)
16653{
16654	return (mod_remove(&modlinkage));
16655}
16656#else
16657
16658static d_ioctl_t	dtrace_ioctl;
16659static d_ioctl_t	dtrace_ioctl_helper;
16660static void		dtrace_load(void *);
16661static int		dtrace_unload(void);
16662#if __FreeBSD_version < 800039
16663static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16664static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16665static eventhandler_tag	eh_tag;			/* Event handler tag. */
16666#else
16667static struct cdev	*dtrace_dev;
16668static struct cdev	*helper_dev;
16669#endif
16670
16671void dtrace_invop_init(void);
16672void dtrace_invop_uninit(void);
16673
16674static struct cdevsw dtrace_cdevsw = {
16675	.d_version	= D_VERSION,
16676	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16677	.d_close	= dtrace_close,
16678	.d_ioctl	= dtrace_ioctl,
16679	.d_open		= dtrace_open,
16680	.d_name		= "dtrace",
16681};
16682
16683static struct cdevsw helper_cdevsw = {
16684	.d_version	= D_VERSION,
16685	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16686	.d_ioctl	= dtrace_ioctl_helper,
16687	.d_name		= "helper",
16688};
16689
16690#include <dtrace_anon.c>
16691#if __FreeBSD_version < 800039
16692#include <dtrace_clone.c>
16693#endif
16694#include <dtrace_ioctl.c>
16695#include <dtrace_load.c>
16696#include <dtrace_modevent.c>
16697#include <dtrace_sysctl.c>
16698#include <dtrace_unload.c>
16699#include <dtrace_vtime.c>
16700#include <dtrace_hacks.c>
16701#include <dtrace_isa.c>
16702
16703SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16704SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16705SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16706
16707DEV_MODULE(dtrace, dtrace_modevent, NULL);
16708MODULE_VERSION(dtrace, 1);
16709MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16710MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16711#endif
16712