dtrace.c revision 241088
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/9/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 241088 2012-10-01 06:42:07Z hselasky $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * DTrace - Dynamic Tracing for Solaris
33 *
34 * This is the implementation of the Solaris Dynamic Tracing framework
35 * (DTrace).  The user-visible interface to DTrace is described at length in
36 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37 * library, the in-kernel DTrace framework, and the DTrace providers are
38 * described in the block comments in the <sys/dtrace.h> header file.  The
39 * internal architecture of DTrace is described in the block comments in the
40 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41 * implementation very much assume mastery of all of these sources; if one has
42 * an unanswered question about the implementation, one should consult them
43 * first.
44 *
45 * The functions here are ordered roughly as follows:
46 *
47 *   - Probe context functions
48 *   - Probe hashing functions
49 *   - Non-probe context utility functions
50 *   - Matching functions
51 *   - Provider-to-Framework API functions
52 *   - Probe management functions
53 *   - DIF object functions
54 *   - Format functions
55 *   - Predicate functions
56 *   - ECB functions
57 *   - Buffer functions
58 *   - Enabling functions
59 *   - DOF functions
60 *   - Anonymous enabling functions
61 *   - Consumer state functions
62 *   - Helper functions
63 *   - Hook functions
64 *   - Driver cookbook functions
65 *
66 * Each group of functions begins with a block comment labelled the "DTrace
67 * [Group] Functions", allowing one to find each block by searching forward
68 * on capital-f functions.
69 */
70#include <sys/errno.h>
71#if !defined(sun)
72#include <sys/time.h>
73#endif
74#include <sys/stat.h>
75#include <sys/modctl.h>
76#include <sys/conf.h>
77#include <sys/systm.h>
78#if defined(sun)
79#include <sys/ddi.h>
80#include <sys/sunddi.h>
81#endif
82#include <sys/cpuvar.h>
83#include <sys/kmem.h>
84#if defined(sun)
85#include <sys/strsubr.h>
86#endif
87#include <sys/sysmacros.h>
88#include <sys/dtrace_impl.h>
89#include <sys/atomic.h>
90#include <sys/cmn_err.h>
91#if defined(sun)
92#include <sys/mutex_impl.h>
93#include <sys/rwlock_impl.h>
94#endif
95#include <sys/ctf_api.h>
96#if defined(sun)
97#include <sys/panic.h>
98#include <sys/priv_impl.h>
99#endif
100#include <sys/policy.h>
101#if defined(sun)
102#include <sys/cred_impl.h>
103#include <sys/procfs_isa.h>
104#endif
105#include <sys/taskq.h>
106#if defined(sun)
107#include <sys/mkdev.h>
108#include <sys/kdi.h>
109#endif
110#include <sys/zone.h>
111#include <sys/socket.h>
112#include <netinet/in.h>
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/limits.h>
119#include <sys/kdb.h>
120#include <sys/kernel.h>
121#include <sys/malloc.h>
122#include <sys/sysctl.h>
123#include <sys/lock.h>
124#include <sys/mutex.h>
125#include <sys/rwlock.h>
126#include <sys/sx.h>
127#include <sys/dtrace_bsd.h>
128#include <netinet/in.h>
129#include "dtrace_cddl.h"
130#include "dtrace_debug.c"
131#endif
132
133/*
134 * DTrace Tunable Variables
135 *
136 * The following variables may be tuned by adding a line to /etc/system that
137 * includes both the name of the DTrace module ("dtrace") and the name of the
138 * variable.  For example:
139 *
140 *   set dtrace:dtrace_destructive_disallow = 1
141 *
142 * In general, the only variables that one should be tuning this way are those
143 * that affect system-wide DTrace behavior, and for which the default behavior
144 * is undesirable.  Most of these variables are tunable on a per-consumer
145 * basis using DTrace options, and need not be tuned on a system-wide basis.
146 * When tuning these variables, avoid pathological values; while some attempt
147 * is made to verify the integrity of these variables, they are not considered
148 * part of the supported interface to DTrace, and they are therefore not
149 * checked comprehensively.  Further, these variables should not be tuned
150 * dynamically via "mdb -kw" or other means; they should only be tuned via
151 * /etc/system.
152 */
153int		dtrace_destructive_disallow = 0;
154dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155size_t		dtrace_difo_maxsize = (256 * 1024);
156dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
157size_t		dtrace_global_maxsize = (16 * 1024);
158size_t		dtrace_actions_max = (16 * 1024);
159size_t		dtrace_retain_max = 1024;
160dtrace_optval_t	dtrace_helper_actions_max = 128;
161dtrace_optval_t	dtrace_helper_providers_max = 32;
162dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
163size_t		dtrace_strsize_default = 256;
164dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
165dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
166dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
167dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
168dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
170dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
171dtrace_optval_t	dtrace_nspec_default = 1;
172dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
173dtrace_optval_t dtrace_stackframes_default = 20;
174dtrace_optval_t dtrace_ustackframes_default = 20;
175dtrace_optval_t dtrace_jstackframes_default = 50;
176dtrace_optval_t dtrace_jstackstrsize_default = 512;
177int		dtrace_msgdsize_max = 128;
178hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
179hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
180int		dtrace_devdepth_max = 32;
181int		dtrace_err_verbose;
182hrtime_t	dtrace_deadman_interval = NANOSEC;
183hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185
186/*
187 * DTrace External Variables
188 *
189 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
190 * available to DTrace consumers via the backtick (`) syntax.  One of these,
191 * dtrace_zero, is made deliberately so:  it is provided as a source of
192 * well-known, zero-filled memory.  While this variable is not documented,
193 * it is used by some translators as an implementation detail.
194 */
195const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
196
197/*
198 * DTrace Internal Variables
199 */
200#if defined(sun)
201static dev_info_t	*dtrace_devi;		/* device info */
202#endif
203#if defined(sun)
204static vmem_t		*dtrace_arena;		/* probe ID arena */
205static vmem_t		*dtrace_minor;		/* minor number arena */
206static taskq_t		*dtrace_taskq;		/* task queue */
207#else
208static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
209#endif
210static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
211static int		dtrace_nprobes;		/* number of probes */
212static dtrace_provider_t *dtrace_provider;	/* provider list */
213static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
214static int		dtrace_opens;		/* number of opens */
215static int		dtrace_helpers;		/* number of helpers */
216#if defined(sun)
217static void		*dtrace_softstate;	/* softstate pointer */
218#endif
219static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
220static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
221static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
222static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
223static int		dtrace_toxranges;	/* number of toxic ranges */
224static int		dtrace_toxranges_max;	/* size of toxic range array */
225static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
226static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
227static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
228static kthread_t	*dtrace_panicked;	/* panicking thread */
229static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
230static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
231static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
232static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
233static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
234#if !defined(sun)
235static struct mtx	dtrace_unr_mtx;
236MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
237int		dtrace_in_probe;	/* non-zero if executing a probe */
238#if defined(__i386__) || defined(__amd64__)
239uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
240#endif
241#endif
242
243/*
244 * DTrace Locking
245 * DTrace is protected by three (relatively coarse-grained) locks:
246 *
247 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
248 *     including enabling state, probes, ECBs, consumer state, helper state,
249 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
250 *     probe context is lock-free -- synchronization is handled via the
251 *     dtrace_sync() cross call mechanism.
252 *
253 * (2) dtrace_provider_lock is required when manipulating provider state, or
254 *     when provider state must be held constant.
255 *
256 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
257 *     when meta provider state must be held constant.
258 *
259 * The lock ordering between these three locks is dtrace_meta_lock before
260 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
261 * several places where dtrace_provider_lock is held by the framework as it
262 * calls into the providers -- which then call back into the framework,
263 * grabbing dtrace_lock.)
264 *
265 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
266 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
267 * role as a coarse-grained lock; it is acquired before both of these locks.
268 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
269 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
270 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
271 * acquired _between_ dtrace_provider_lock and dtrace_lock.
272 */
273static kmutex_t		dtrace_lock;		/* probe state lock */
274static kmutex_t		dtrace_provider_lock;	/* provider state lock */
275static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
276
277#if !defined(sun)
278/* XXX FreeBSD hacks. */
279static kmutex_t		mod_lock;
280
281#define cr_suid		cr_svuid
282#define cr_sgid		cr_svgid
283#define	ipaddr_t	in_addr_t
284#define mod_modname	pathname
285#define vuprintf	vprintf
286#define ttoproc(_a)	((_a)->td_proc)
287#define crgetzoneid(_a)	0
288#define	NCPU		MAXCPU
289#define SNOCD		0
290#define CPU_ON_INTR(_a)	0
291
292#define PRIV_EFFECTIVE		(1 << 0)
293#define PRIV_DTRACE_KERNEL	(1 << 1)
294#define PRIV_DTRACE_PROC	(1 << 2)
295#define PRIV_DTRACE_USER	(1 << 3)
296#define PRIV_PROC_OWNER		(1 << 4)
297#define PRIV_PROC_ZONE		(1 << 5)
298#define PRIV_ALL		~0
299
300SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
301#endif
302
303#if defined(sun)
304#define curcpu	CPU->cpu_id
305#endif
306
307
308/*
309 * DTrace Provider Variables
310 *
311 * These are the variables relating to DTrace as a provider (that is, the
312 * provider of the BEGIN, END, and ERROR probes).
313 */
314static dtrace_pattr_t	dtrace_provider_attr = {
315{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320};
321
322static void
323dtrace_nullop(void)
324{}
325
326static dtrace_pops_t	dtrace_provider_ops = {
327	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
328	(void (*)(void *, modctl_t *))dtrace_nullop,
329	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333	NULL,
334	NULL,
335	NULL,
336	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
337};
338
339static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
340static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
341dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
342
343/*
344 * DTrace Helper Tracing Variables
345 */
346uint32_t dtrace_helptrace_next = 0;
347uint32_t dtrace_helptrace_nlocals;
348char	*dtrace_helptrace_buffer;
349int	dtrace_helptrace_bufsize = 512 * 1024;
350
351#ifdef DEBUG
352int	dtrace_helptrace_enabled = 1;
353#else
354int	dtrace_helptrace_enabled = 0;
355#endif
356
357/*
358 * DTrace Error Hashing
359 *
360 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
361 * table.  This is very useful for checking coverage of tests that are
362 * expected to induce DIF or DOF processing errors, and may be useful for
363 * debugging problems in the DIF code generator or in DOF generation .  The
364 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
365 */
366#ifdef DEBUG
367static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
368static const char *dtrace_errlast;
369static kthread_t *dtrace_errthread;
370static kmutex_t dtrace_errlock;
371#endif
372
373/*
374 * DTrace Macros and Constants
375 *
376 * These are various macros that are useful in various spots in the
377 * implementation, along with a few random constants that have no meaning
378 * outside of the implementation.  There is no real structure to this cpp
379 * mishmash -- but is there ever?
380 */
381#define	DTRACE_HASHSTR(hash, probe)	\
382	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
383
384#define	DTRACE_HASHNEXT(hash, probe)	\
385	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
386
387#define	DTRACE_HASHPREV(hash, probe)	\
388	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
389
390#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
391	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
392	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
393
394#define	DTRACE_AGGHASHSIZE_SLEW		17
395
396#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
397
398/*
399 * The key for a thread-local variable consists of the lower 61 bits of the
400 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
401 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
402 * equal to a variable identifier.  This is necessary (but not sufficient) to
403 * assure that global associative arrays never collide with thread-local
404 * variables.  To guarantee that they cannot collide, we must also define the
405 * order for keying dynamic variables.  That order is:
406 *
407 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
408 *
409 * Because the variable-key and the tls-key are in orthogonal spaces, there is
410 * no way for a global variable key signature to match a thread-local key
411 * signature.
412 */
413#if defined(sun)
414#define	DTRACE_TLS_THRKEY(where) { \
415	uint_t intr = 0; \
416	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
417	for (; actv; actv >>= 1) \
418		intr++; \
419	ASSERT(intr < (1 << 3)); \
420	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
421	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
422}
423#else
424#define	DTRACE_TLS_THRKEY(where) { \
425	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
426	uint_t intr = 0; \
427	uint_t actv = _c->cpu_intr_actv; \
428	for (; actv; actv >>= 1) \
429		intr++; \
430	ASSERT(intr < (1 << 3)); \
431	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
432	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
433}
434#endif
435
436#define	DT_BSWAP_8(x)	((x) & 0xff)
437#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
438#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
439#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
440
441#define	DT_MASK_LO 0x00000000FFFFFFFFULL
442
443#define	DTRACE_STORE(type, tomax, offset, what) \
444	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
445
446#ifndef __i386
447#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
448	if (addr & (size - 1)) {					\
449		*flags |= CPU_DTRACE_BADALIGN;				\
450		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
451		return (0);						\
452	}
453#else
454#define	DTRACE_ALIGNCHECK(addr, size, flags)
455#endif
456
457/*
458 * Test whether a range of memory starting at testaddr of size testsz falls
459 * within the range of memory described by addr, sz.  We take care to avoid
460 * problems with overflow and underflow of the unsigned quantities, and
461 * disallow all negative sizes.  Ranges of size 0 are allowed.
462 */
463#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
464	((testaddr) - (baseaddr) < (basesz) && \
465	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
466	(testaddr) + (testsz) >= (testaddr))
467
468/*
469 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
470 * alloc_sz on the righthand side of the comparison in order to avoid overflow
471 * or underflow in the comparison with it.  This is simpler than the INRANGE
472 * check above, because we know that the dtms_scratch_ptr is valid in the
473 * range.  Allocations of size zero are allowed.
474 */
475#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
476	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
477	(mstate)->dtms_scratch_ptr >= (alloc_sz))
478
479#define	DTRACE_LOADFUNC(bits)						\
480/*CSTYLED*/								\
481uint##bits##_t								\
482dtrace_load##bits(uintptr_t addr)					\
483{									\
484	size_t size = bits / NBBY;					\
485	/*CSTYLED*/							\
486	uint##bits##_t rval;						\
487	int i;								\
488	volatile uint16_t *flags = (volatile uint16_t *)		\
489	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
490									\
491	DTRACE_ALIGNCHECK(addr, size, flags);				\
492									\
493	for (i = 0; i < dtrace_toxranges; i++) {			\
494		if (addr >= dtrace_toxrange[i].dtt_limit)		\
495			continue;					\
496									\
497		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
498			continue;					\
499									\
500		/*							\
501		 * This address falls within a toxic region; return 0.	\
502		 */							\
503		*flags |= CPU_DTRACE_BADADDR;				\
504		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
505		return (0);						\
506	}								\
507									\
508	*flags |= CPU_DTRACE_NOFAULT;					\
509	/*CSTYLED*/							\
510	rval = *((volatile uint##bits##_t *)addr);			\
511	*flags &= ~CPU_DTRACE_NOFAULT;					\
512									\
513	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
514}
515
516#ifdef _LP64
517#define	dtrace_loadptr	dtrace_load64
518#else
519#define	dtrace_loadptr	dtrace_load32
520#endif
521
522#define	DTRACE_DYNHASH_FREE	0
523#define	DTRACE_DYNHASH_SINK	1
524#define	DTRACE_DYNHASH_VALID	2
525
526#define	DTRACE_MATCH_NEXT	0
527#define	DTRACE_MATCH_DONE	1
528#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
529#define	DTRACE_STATE_ALIGN	64
530
531#define	DTRACE_FLAGS2FLT(flags)						\
532	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
533	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
534	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
535	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
536	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
537	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
538	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
539	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
540	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
541	DTRACEFLT_UNKNOWN)
542
543#define	DTRACEACT_ISSTRING(act)						\
544	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
545	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
546
547/* Function prototype definitions: */
548static size_t dtrace_strlen(const char *, size_t);
549static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
550static void dtrace_enabling_provide(dtrace_provider_t *);
551static int dtrace_enabling_match(dtrace_enabling_t *, int *);
552static void dtrace_enabling_matchall(void);
553static dtrace_state_t *dtrace_anon_grab(void);
554static uint64_t dtrace_helper(int, dtrace_mstate_t *,
555    dtrace_state_t *, uint64_t, uint64_t);
556static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
557static void dtrace_buffer_drop(dtrace_buffer_t *);
558static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
559    dtrace_state_t *, dtrace_mstate_t *);
560static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
561    dtrace_optval_t);
562static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
563static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
564uint16_t dtrace_load16(uintptr_t);
565uint32_t dtrace_load32(uintptr_t);
566uint64_t dtrace_load64(uintptr_t);
567uint8_t dtrace_load8(uintptr_t);
568void dtrace_dynvar_clean(dtrace_dstate_t *);
569dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
570    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
571uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
572
573/*
574 * DTrace Probe Context Functions
575 *
576 * These functions are called from probe context.  Because probe context is
577 * any context in which C may be called, arbitrarily locks may be held,
578 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
579 * As a result, functions called from probe context may only call other DTrace
580 * support functions -- they may not interact at all with the system at large.
581 * (Note that the ASSERT macro is made probe-context safe by redefining it in
582 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
583 * loads are to be performed from probe context, they _must_ be in terms of
584 * the safe dtrace_load*() variants.
585 *
586 * Some functions in this block are not actually called from probe context;
587 * for these functions, there will be a comment above the function reading
588 * "Note:  not called from probe context."
589 */
590void
591dtrace_panic(const char *format, ...)
592{
593	va_list alist;
594
595	va_start(alist, format);
596	dtrace_vpanic(format, alist);
597	va_end(alist);
598}
599
600int
601dtrace_assfail(const char *a, const char *f, int l)
602{
603	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
604
605	/*
606	 * We just need something here that even the most clever compiler
607	 * cannot optimize away.
608	 */
609	return (a[(uintptr_t)f]);
610}
611
612/*
613 * Atomically increment a specified error counter from probe context.
614 */
615static void
616dtrace_error(uint32_t *counter)
617{
618	/*
619	 * Most counters stored to in probe context are per-CPU counters.
620	 * However, there are some error conditions that are sufficiently
621	 * arcane that they don't merit per-CPU storage.  If these counters
622	 * are incremented concurrently on different CPUs, scalability will be
623	 * adversely affected -- but we don't expect them to be white-hot in a
624	 * correctly constructed enabling...
625	 */
626	uint32_t oval, nval;
627
628	do {
629		oval = *counter;
630
631		if ((nval = oval + 1) == 0) {
632			/*
633			 * If the counter would wrap, set it to 1 -- assuring
634			 * that the counter is never zero when we have seen
635			 * errors.  (The counter must be 32-bits because we
636			 * aren't guaranteed a 64-bit compare&swap operation.)
637			 * To save this code both the infamy of being fingered
638			 * by a priggish news story and the indignity of being
639			 * the target of a neo-puritan witch trial, we're
640			 * carefully avoiding any colorful description of the
641			 * likelihood of this condition -- but suffice it to
642			 * say that it is only slightly more likely than the
643			 * overflow of predicate cache IDs, as discussed in
644			 * dtrace_predicate_create().
645			 */
646			nval = 1;
647		}
648	} while (dtrace_cas32(counter, oval, nval) != oval);
649}
650
651/*
652 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
653 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
654 */
655DTRACE_LOADFUNC(8)
656DTRACE_LOADFUNC(16)
657DTRACE_LOADFUNC(32)
658DTRACE_LOADFUNC(64)
659
660static int
661dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
662{
663	if (dest < mstate->dtms_scratch_base)
664		return (0);
665
666	if (dest + size < dest)
667		return (0);
668
669	if (dest + size > mstate->dtms_scratch_ptr)
670		return (0);
671
672	return (1);
673}
674
675static int
676dtrace_canstore_statvar(uint64_t addr, size_t sz,
677    dtrace_statvar_t **svars, int nsvars)
678{
679	int i;
680
681	for (i = 0; i < nsvars; i++) {
682		dtrace_statvar_t *svar = svars[i];
683
684		if (svar == NULL || svar->dtsv_size == 0)
685			continue;
686
687		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
688			return (1);
689	}
690
691	return (0);
692}
693
694/*
695 * Check to see if the address is within a memory region to which a store may
696 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
697 * region.  The caller of dtrace_canstore() is responsible for performing any
698 * alignment checks that are needed before stores are actually executed.
699 */
700static int
701dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
702    dtrace_vstate_t *vstate)
703{
704	/*
705	 * First, check to see if the address is in scratch space...
706	 */
707	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
708	    mstate->dtms_scratch_size))
709		return (1);
710
711	/*
712	 * Now check to see if it's a dynamic variable.  This check will pick
713	 * up both thread-local variables and any global dynamically-allocated
714	 * variables.
715	 */
716	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
717	    vstate->dtvs_dynvars.dtds_size)) {
718		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
719		uintptr_t base = (uintptr_t)dstate->dtds_base +
720		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
721		uintptr_t chunkoffs;
722
723		/*
724		 * Before we assume that we can store here, we need to make
725		 * sure that it isn't in our metadata -- storing to our
726		 * dynamic variable metadata would corrupt our state.  For
727		 * the range to not include any dynamic variable metadata,
728		 * it must:
729		 *
730		 *	(1) Start above the hash table that is at the base of
731		 *	the dynamic variable space
732		 *
733		 *	(2) Have a starting chunk offset that is beyond the
734		 *	dtrace_dynvar_t that is at the base of every chunk
735		 *
736		 *	(3) Not span a chunk boundary
737		 *
738		 */
739		if (addr < base)
740			return (0);
741
742		chunkoffs = (addr - base) % dstate->dtds_chunksize;
743
744		if (chunkoffs < sizeof (dtrace_dynvar_t))
745			return (0);
746
747		if (chunkoffs + sz > dstate->dtds_chunksize)
748			return (0);
749
750		return (1);
751	}
752
753	/*
754	 * Finally, check the static local and global variables.  These checks
755	 * take the longest, so we perform them last.
756	 */
757	if (dtrace_canstore_statvar(addr, sz,
758	    vstate->dtvs_locals, vstate->dtvs_nlocals))
759		return (1);
760
761	if (dtrace_canstore_statvar(addr, sz,
762	    vstate->dtvs_globals, vstate->dtvs_nglobals))
763		return (1);
764
765	return (0);
766}
767
768
769/*
770 * Convenience routine to check to see if the address is within a memory
771 * region in which a load may be issued given the user's privilege level;
772 * if not, it sets the appropriate error flags and loads 'addr' into the
773 * illegal value slot.
774 *
775 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
776 * appropriate memory access protection.
777 */
778static int
779dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780    dtrace_vstate_t *vstate)
781{
782	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
783
784	/*
785	 * If we hold the privilege to read from kernel memory, then
786	 * everything is readable.
787	 */
788	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
789		return (1);
790
791	/*
792	 * You can obviously read that which you can store.
793	 */
794	if (dtrace_canstore(addr, sz, mstate, vstate))
795		return (1);
796
797	/*
798	 * We're allowed to read from our own string table.
799	 */
800	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
801	    mstate->dtms_difo->dtdo_strlen))
802		return (1);
803
804	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805	*illval = addr;
806	return (0);
807}
808
809/*
810 * Convenience routine to check to see if a given string is within a memory
811 * region in which a load may be issued given the user's privilege level;
812 * this exists so that we don't need to issue unnecessary dtrace_strlen()
813 * calls in the event that the user has all privileges.
814 */
815static int
816dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817    dtrace_vstate_t *vstate)
818{
819	size_t strsz;
820
821	/*
822	 * If we hold the privilege to read from kernel memory, then
823	 * everything is readable.
824	 */
825	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826		return (1);
827
828	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829	if (dtrace_canload(addr, strsz, mstate, vstate))
830		return (1);
831
832	return (0);
833}
834
835/*
836 * Convenience routine to check to see if a given variable is within a memory
837 * region in which a load may be issued given the user's privilege level.
838 */
839static int
840dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841    dtrace_vstate_t *vstate)
842{
843	size_t sz;
844	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845
846	/*
847	 * If we hold the privilege to read from kernel memory, then
848	 * everything is readable.
849	 */
850	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851		return (1);
852
853	if (type->dtdt_kind == DIF_TYPE_STRING)
854		sz = dtrace_strlen(src,
855		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856	else
857		sz = type->dtdt_size;
858
859	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860}
861
862/*
863 * Compare two strings using safe loads.
864 */
865static int
866dtrace_strncmp(char *s1, char *s2, size_t limit)
867{
868	uint8_t c1, c2;
869	volatile uint16_t *flags;
870
871	if (s1 == s2 || limit == 0)
872		return (0);
873
874	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
875
876	do {
877		if (s1 == NULL) {
878			c1 = '\0';
879		} else {
880			c1 = dtrace_load8((uintptr_t)s1++);
881		}
882
883		if (s2 == NULL) {
884			c2 = '\0';
885		} else {
886			c2 = dtrace_load8((uintptr_t)s2++);
887		}
888
889		if (c1 != c2)
890			return (c1 - c2);
891	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
892
893	return (0);
894}
895
896/*
897 * Compute strlen(s) for a string using safe memory accesses.  The additional
898 * len parameter is used to specify a maximum length to ensure completion.
899 */
900static size_t
901dtrace_strlen(const char *s, size_t lim)
902{
903	uint_t len;
904
905	for (len = 0; len != lim; len++) {
906		if (dtrace_load8((uintptr_t)s++) == '\0')
907			break;
908	}
909
910	return (len);
911}
912
913/*
914 * Check if an address falls within a toxic region.
915 */
916static int
917dtrace_istoxic(uintptr_t kaddr, size_t size)
918{
919	uintptr_t taddr, tsize;
920	int i;
921
922	for (i = 0; i < dtrace_toxranges; i++) {
923		taddr = dtrace_toxrange[i].dtt_base;
924		tsize = dtrace_toxrange[i].dtt_limit - taddr;
925
926		if (kaddr - taddr < tsize) {
927			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
928			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
929			return (1);
930		}
931
932		if (taddr - kaddr < size) {
933			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
935			return (1);
936		}
937	}
938
939	return (0);
940}
941
942/*
943 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
944 * memory specified by the DIF program.  The dst is assumed to be safe memory
945 * that we can store to directly because it is managed by DTrace.  As with
946 * standard bcopy, overlapping copies are handled properly.
947 */
948static void
949dtrace_bcopy(const void *src, void *dst, size_t len)
950{
951	if (len != 0) {
952		uint8_t *s1 = dst;
953		const uint8_t *s2 = src;
954
955		if (s1 <= s2) {
956			do {
957				*s1++ = dtrace_load8((uintptr_t)s2++);
958			} while (--len != 0);
959		} else {
960			s2 += len;
961			s1 += len;
962
963			do {
964				*--s1 = dtrace_load8((uintptr_t)--s2);
965			} while (--len != 0);
966		}
967	}
968}
969
970/*
971 * Copy src to dst using safe memory accesses, up to either the specified
972 * length, or the point that a nul byte is encountered.  The src is assumed to
973 * be unsafe memory specified by the DIF program.  The dst is assumed to be
974 * safe memory that we can store to directly because it is managed by DTrace.
975 * Unlike dtrace_bcopy(), overlapping regions are not handled.
976 */
977static void
978dtrace_strcpy(const void *src, void *dst, size_t len)
979{
980	if (len != 0) {
981		uint8_t *s1 = dst, c;
982		const uint8_t *s2 = src;
983
984		do {
985			*s1++ = c = dtrace_load8((uintptr_t)s2++);
986		} while (--len != 0 && c != '\0');
987	}
988}
989
990/*
991 * Copy src to dst, deriving the size and type from the specified (BYREF)
992 * variable type.  The src is assumed to be unsafe memory specified by the DIF
993 * program.  The dst is assumed to be DTrace variable memory that is of the
994 * specified type; we assume that we can store to directly.
995 */
996static void
997dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
998{
999	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1000
1001	if (type->dtdt_kind == DIF_TYPE_STRING) {
1002		dtrace_strcpy(src, dst, type->dtdt_size);
1003	} else {
1004		dtrace_bcopy(src, dst, type->dtdt_size);
1005	}
1006}
1007
1008/*
1009 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1010 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1011 * safe memory that we can access directly because it is managed by DTrace.
1012 */
1013static int
1014dtrace_bcmp(const void *s1, const void *s2, size_t len)
1015{
1016	volatile uint16_t *flags;
1017
1018	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1019
1020	if (s1 == s2)
1021		return (0);
1022
1023	if (s1 == NULL || s2 == NULL)
1024		return (1);
1025
1026	if (s1 != s2 && len != 0) {
1027		const uint8_t *ps1 = s1;
1028		const uint8_t *ps2 = s2;
1029
1030		do {
1031			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1032				return (1);
1033		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1034	}
1035	return (0);
1036}
1037
1038/*
1039 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1040 * is for safe DTrace-managed memory only.
1041 */
1042static void
1043dtrace_bzero(void *dst, size_t len)
1044{
1045	uchar_t *cp;
1046
1047	for (cp = dst; len != 0; len--)
1048		*cp++ = 0;
1049}
1050
1051static void
1052dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1053{
1054	uint64_t result[2];
1055
1056	result[0] = addend1[0] + addend2[0];
1057	result[1] = addend1[1] + addend2[1] +
1058	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1059
1060	sum[0] = result[0];
1061	sum[1] = result[1];
1062}
1063
1064/*
1065 * Shift the 128-bit value in a by b. If b is positive, shift left.
1066 * If b is negative, shift right.
1067 */
1068static void
1069dtrace_shift_128(uint64_t *a, int b)
1070{
1071	uint64_t mask;
1072
1073	if (b == 0)
1074		return;
1075
1076	if (b < 0) {
1077		b = -b;
1078		if (b >= 64) {
1079			a[0] = a[1] >> (b - 64);
1080			a[1] = 0;
1081		} else {
1082			a[0] >>= b;
1083			mask = 1LL << (64 - b);
1084			mask -= 1;
1085			a[0] |= ((a[1] & mask) << (64 - b));
1086			a[1] >>= b;
1087		}
1088	} else {
1089		if (b >= 64) {
1090			a[1] = a[0] << (b - 64);
1091			a[0] = 0;
1092		} else {
1093			a[1] <<= b;
1094			mask = a[0] >> (64 - b);
1095			a[1] |= mask;
1096			a[0] <<= b;
1097		}
1098	}
1099}
1100
1101/*
1102 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1103 * use native multiplication on those, and then re-combine into the
1104 * resulting 128-bit value.
1105 *
1106 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1107 *     hi1 * hi2 << 64 +
1108 *     hi1 * lo2 << 32 +
1109 *     hi2 * lo1 << 32 +
1110 *     lo1 * lo2
1111 */
1112static void
1113dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1114{
1115	uint64_t hi1, hi2, lo1, lo2;
1116	uint64_t tmp[2];
1117
1118	hi1 = factor1 >> 32;
1119	hi2 = factor2 >> 32;
1120
1121	lo1 = factor1 & DT_MASK_LO;
1122	lo2 = factor2 & DT_MASK_LO;
1123
1124	product[0] = lo1 * lo2;
1125	product[1] = hi1 * hi2;
1126
1127	tmp[0] = hi1 * lo2;
1128	tmp[1] = 0;
1129	dtrace_shift_128(tmp, 32);
1130	dtrace_add_128(product, tmp, product);
1131
1132	tmp[0] = hi2 * lo1;
1133	tmp[1] = 0;
1134	dtrace_shift_128(tmp, 32);
1135	dtrace_add_128(product, tmp, product);
1136}
1137
1138/*
1139 * This privilege check should be used by actions and subroutines to
1140 * verify that the user credentials of the process that enabled the
1141 * invoking ECB match the target credentials
1142 */
1143static int
1144dtrace_priv_proc_common_user(dtrace_state_t *state)
1145{
1146	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1147
1148	/*
1149	 * We should always have a non-NULL state cred here, since if cred
1150	 * is null (anonymous tracing), we fast-path bypass this routine.
1151	 */
1152	ASSERT(s_cr != NULL);
1153
1154	if ((cr = CRED()) != NULL &&
1155	    s_cr->cr_uid == cr->cr_uid &&
1156	    s_cr->cr_uid == cr->cr_ruid &&
1157	    s_cr->cr_uid == cr->cr_suid &&
1158	    s_cr->cr_gid == cr->cr_gid &&
1159	    s_cr->cr_gid == cr->cr_rgid &&
1160	    s_cr->cr_gid == cr->cr_sgid)
1161		return (1);
1162
1163	return (0);
1164}
1165
1166/*
1167 * This privilege check should be used by actions and subroutines to
1168 * verify that the zone of the process that enabled the invoking ECB
1169 * matches the target credentials
1170 */
1171static int
1172dtrace_priv_proc_common_zone(dtrace_state_t *state)
1173{
1174#if defined(sun)
1175	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1176
1177	/*
1178	 * We should always have a non-NULL state cred here, since if cred
1179	 * is null (anonymous tracing), we fast-path bypass this routine.
1180	 */
1181	ASSERT(s_cr != NULL);
1182
1183	if ((cr = CRED()) != NULL &&
1184	    s_cr->cr_zone == cr->cr_zone)
1185		return (1);
1186
1187	return (0);
1188#else
1189	return (1);
1190#endif
1191}
1192
1193/*
1194 * This privilege check should be used by actions and subroutines to
1195 * verify that the process has not setuid or changed credentials.
1196 */
1197static int
1198dtrace_priv_proc_common_nocd(void)
1199{
1200	proc_t *proc;
1201
1202	if ((proc = ttoproc(curthread)) != NULL &&
1203	    !(proc->p_flag & SNOCD))
1204		return (1);
1205
1206	return (0);
1207}
1208
1209static int
1210dtrace_priv_proc_destructive(dtrace_state_t *state)
1211{
1212	int action = state->dts_cred.dcr_action;
1213
1214	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1215	    dtrace_priv_proc_common_zone(state) == 0)
1216		goto bad;
1217
1218	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1219	    dtrace_priv_proc_common_user(state) == 0)
1220		goto bad;
1221
1222	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1223	    dtrace_priv_proc_common_nocd() == 0)
1224		goto bad;
1225
1226	return (1);
1227
1228bad:
1229	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1230
1231	return (0);
1232}
1233
1234static int
1235dtrace_priv_proc_control(dtrace_state_t *state)
1236{
1237	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1238		return (1);
1239
1240	if (dtrace_priv_proc_common_zone(state) &&
1241	    dtrace_priv_proc_common_user(state) &&
1242	    dtrace_priv_proc_common_nocd())
1243		return (1);
1244
1245	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1246
1247	return (0);
1248}
1249
1250static int
1251dtrace_priv_proc(dtrace_state_t *state)
1252{
1253	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1254		return (1);
1255
1256	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257
1258	return (0);
1259}
1260
1261static int
1262dtrace_priv_kernel(dtrace_state_t *state)
1263{
1264	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265		return (1);
1266
1267	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268
1269	return (0);
1270}
1271
1272static int
1273dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274{
1275	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276		return (1);
1277
1278	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279
1280	return (0);
1281}
1282
1283/*
1284 * Note:  not called from probe context.  This function is called
1285 * asynchronously (and at a regular interval) from outside of probe context to
1286 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1287 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1288 */
1289void
1290dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1291{
1292	dtrace_dynvar_t *dirty;
1293	dtrace_dstate_percpu_t *dcpu;
1294	int i, work = 0;
1295
1296	for (i = 0; i < NCPU; i++) {
1297		dcpu = &dstate->dtds_percpu[i];
1298
1299		ASSERT(dcpu->dtdsc_rinsing == NULL);
1300
1301		/*
1302		 * If the dirty list is NULL, there is no dirty work to do.
1303		 */
1304		if (dcpu->dtdsc_dirty == NULL)
1305			continue;
1306
1307		/*
1308		 * If the clean list is non-NULL, then we're not going to do
1309		 * any work for this CPU -- it means that there has not been
1310		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1311		 * since the last time we cleaned house.
1312		 */
1313		if (dcpu->dtdsc_clean != NULL)
1314			continue;
1315
1316		work = 1;
1317
1318		/*
1319		 * Atomically move the dirty list aside.
1320		 */
1321		do {
1322			dirty = dcpu->dtdsc_dirty;
1323
1324			/*
1325			 * Before we zap the dirty list, set the rinsing list.
1326			 * (This allows for a potential assertion in
1327			 * dtrace_dynvar():  if a free dynamic variable appears
1328			 * on a hash chain, either the dirty list or the
1329			 * rinsing list for some CPU must be non-NULL.)
1330			 */
1331			dcpu->dtdsc_rinsing = dirty;
1332			dtrace_membar_producer();
1333		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1334		    dirty, NULL) != dirty);
1335	}
1336
1337	if (!work) {
1338		/*
1339		 * We have no work to do; we can simply return.
1340		 */
1341		return;
1342	}
1343
1344	dtrace_sync();
1345
1346	for (i = 0; i < NCPU; i++) {
1347		dcpu = &dstate->dtds_percpu[i];
1348
1349		if (dcpu->dtdsc_rinsing == NULL)
1350			continue;
1351
1352		/*
1353		 * We are now guaranteed that no hash chain contains a pointer
1354		 * into this dirty list; we can make it clean.
1355		 */
1356		ASSERT(dcpu->dtdsc_clean == NULL);
1357		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1358		dcpu->dtdsc_rinsing = NULL;
1359	}
1360
1361	/*
1362	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1363	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1364	 * This prevents a race whereby a CPU incorrectly decides that
1365	 * the state should be something other than DTRACE_DSTATE_CLEAN
1366	 * after dtrace_dynvar_clean() has completed.
1367	 */
1368	dtrace_sync();
1369
1370	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1371}
1372
1373/*
1374 * Depending on the value of the op parameter, this function looks-up,
1375 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1376 * allocation is requested, this function will return a pointer to a
1377 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1378 * variable can be allocated.  If NULL is returned, the appropriate counter
1379 * will be incremented.
1380 */
1381dtrace_dynvar_t *
1382dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1383    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1384    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1385{
1386	uint64_t hashval = DTRACE_DYNHASH_VALID;
1387	dtrace_dynhash_t *hash = dstate->dtds_hash;
1388	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1389	processorid_t me = curcpu, cpu = me;
1390	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1391	size_t bucket, ksize;
1392	size_t chunksize = dstate->dtds_chunksize;
1393	uintptr_t kdata, lock, nstate;
1394	uint_t i;
1395
1396	ASSERT(nkeys != 0);
1397
1398	/*
1399	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1400	 * algorithm.  For the by-value portions, we perform the algorithm in
1401	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1402	 * bit, and seems to have only a minute effect on distribution.  For
1403	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1404	 * over each referenced byte.  It's painful to do this, but it's much
1405	 * better than pathological hash distribution.  The efficacy of the
1406	 * hashing algorithm (and a comparison with other algorithms) may be
1407	 * found by running the ::dtrace_dynstat MDB dcmd.
1408	 */
1409	for (i = 0; i < nkeys; i++) {
1410		if (key[i].dttk_size == 0) {
1411			uint64_t val = key[i].dttk_value;
1412
1413			hashval += (val >> 48) & 0xffff;
1414			hashval += (hashval << 10);
1415			hashval ^= (hashval >> 6);
1416
1417			hashval += (val >> 32) & 0xffff;
1418			hashval += (hashval << 10);
1419			hashval ^= (hashval >> 6);
1420
1421			hashval += (val >> 16) & 0xffff;
1422			hashval += (hashval << 10);
1423			hashval ^= (hashval >> 6);
1424
1425			hashval += val & 0xffff;
1426			hashval += (hashval << 10);
1427			hashval ^= (hashval >> 6);
1428		} else {
1429			/*
1430			 * This is incredibly painful, but it beats the hell
1431			 * out of the alternative.
1432			 */
1433			uint64_t j, size = key[i].dttk_size;
1434			uintptr_t base = (uintptr_t)key[i].dttk_value;
1435
1436			if (!dtrace_canload(base, size, mstate, vstate))
1437				break;
1438
1439			for (j = 0; j < size; j++) {
1440				hashval += dtrace_load8(base + j);
1441				hashval += (hashval << 10);
1442				hashval ^= (hashval >> 6);
1443			}
1444		}
1445	}
1446
1447	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1448		return (NULL);
1449
1450	hashval += (hashval << 3);
1451	hashval ^= (hashval >> 11);
1452	hashval += (hashval << 15);
1453
1454	/*
1455	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1456	 * comes out to be one of our two sentinel hash values.  If this
1457	 * actually happens, we set the hashval to be a value known to be a
1458	 * non-sentinel value.
1459	 */
1460	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1461		hashval = DTRACE_DYNHASH_VALID;
1462
1463	/*
1464	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1465	 * important here, tricks can be pulled to reduce it.  (However, it's
1466	 * critical that hash collisions be kept to an absolute minimum;
1467	 * they're much more painful than a divide.)  It's better to have a
1468	 * solution that generates few collisions and still keeps things
1469	 * relatively simple.
1470	 */
1471	bucket = hashval % dstate->dtds_hashsize;
1472
1473	if (op == DTRACE_DYNVAR_DEALLOC) {
1474		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1475
1476		for (;;) {
1477			while ((lock = *lockp) & 1)
1478				continue;
1479
1480			if (dtrace_casptr((volatile void *)lockp,
1481			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1482				break;
1483		}
1484
1485		dtrace_membar_producer();
1486	}
1487
1488top:
1489	prev = NULL;
1490	lock = hash[bucket].dtdh_lock;
1491
1492	dtrace_membar_consumer();
1493
1494	start = hash[bucket].dtdh_chain;
1495	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1496	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1497	    op != DTRACE_DYNVAR_DEALLOC));
1498
1499	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1500		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1501		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1502
1503		if (dvar->dtdv_hashval != hashval) {
1504			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1505				/*
1506				 * We've reached the sink, and therefore the
1507				 * end of the hash chain; we can kick out of
1508				 * the loop knowing that we have seen a valid
1509				 * snapshot of state.
1510				 */
1511				ASSERT(dvar->dtdv_next == NULL);
1512				ASSERT(dvar == &dtrace_dynhash_sink);
1513				break;
1514			}
1515
1516			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1517				/*
1518				 * We've gone off the rails:  somewhere along
1519				 * the line, one of the members of this hash
1520				 * chain was deleted.  Note that we could also
1521				 * detect this by simply letting this loop run
1522				 * to completion, as we would eventually hit
1523				 * the end of the dirty list.  However, we
1524				 * want to avoid running the length of the
1525				 * dirty list unnecessarily (it might be quite
1526				 * long), so we catch this as early as
1527				 * possible by detecting the hash marker.  In
1528				 * this case, we simply set dvar to NULL and
1529				 * break; the conditional after the loop will
1530				 * send us back to top.
1531				 */
1532				dvar = NULL;
1533				break;
1534			}
1535
1536			goto next;
1537		}
1538
1539		if (dtuple->dtt_nkeys != nkeys)
1540			goto next;
1541
1542		for (i = 0; i < nkeys; i++, dkey++) {
1543			if (dkey->dttk_size != key[i].dttk_size)
1544				goto next; /* size or type mismatch */
1545
1546			if (dkey->dttk_size != 0) {
1547				if (dtrace_bcmp(
1548				    (void *)(uintptr_t)key[i].dttk_value,
1549				    (void *)(uintptr_t)dkey->dttk_value,
1550				    dkey->dttk_size))
1551					goto next;
1552			} else {
1553				if (dkey->dttk_value != key[i].dttk_value)
1554					goto next;
1555			}
1556		}
1557
1558		if (op != DTRACE_DYNVAR_DEALLOC)
1559			return (dvar);
1560
1561		ASSERT(dvar->dtdv_next == NULL ||
1562		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1563
1564		if (prev != NULL) {
1565			ASSERT(hash[bucket].dtdh_chain != dvar);
1566			ASSERT(start != dvar);
1567			ASSERT(prev->dtdv_next == dvar);
1568			prev->dtdv_next = dvar->dtdv_next;
1569		} else {
1570			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1571			    start, dvar->dtdv_next) != start) {
1572				/*
1573				 * We have failed to atomically swing the
1574				 * hash table head pointer, presumably because
1575				 * of a conflicting allocation on another CPU.
1576				 * We need to reread the hash chain and try
1577				 * again.
1578				 */
1579				goto top;
1580			}
1581		}
1582
1583		dtrace_membar_producer();
1584
1585		/*
1586		 * Now set the hash value to indicate that it's free.
1587		 */
1588		ASSERT(hash[bucket].dtdh_chain != dvar);
1589		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1590
1591		dtrace_membar_producer();
1592
1593		/*
1594		 * Set the next pointer to point at the dirty list, and
1595		 * atomically swing the dirty pointer to the newly freed dvar.
1596		 */
1597		do {
1598			next = dcpu->dtdsc_dirty;
1599			dvar->dtdv_next = next;
1600		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1601
1602		/*
1603		 * Finally, unlock this hash bucket.
1604		 */
1605		ASSERT(hash[bucket].dtdh_lock == lock);
1606		ASSERT(lock & 1);
1607		hash[bucket].dtdh_lock++;
1608
1609		return (NULL);
1610next:
1611		prev = dvar;
1612		continue;
1613	}
1614
1615	if (dvar == NULL) {
1616		/*
1617		 * If dvar is NULL, it is because we went off the rails:
1618		 * one of the elements that we traversed in the hash chain
1619		 * was deleted while we were traversing it.  In this case,
1620		 * we assert that we aren't doing a dealloc (deallocs lock
1621		 * the hash bucket to prevent themselves from racing with
1622		 * one another), and retry the hash chain traversal.
1623		 */
1624		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1625		goto top;
1626	}
1627
1628	if (op != DTRACE_DYNVAR_ALLOC) {
1629		/*
1630		 * If we are not to allocate a new variable, we want to
1631		 * return NULL now.  Before we return, check that the value
1632		 * of the lock word hasn't changed.  If it has, we may have
1633		 * seen an inconsistent snapshot.
1634		 */
1635		if (op == DTRACE_DYNVAR_NOALLOC) {
1636			if (hash[bucket].dtdh_lock != lock)
1637				goto top;
1638		} else {
1639			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1640			ASSERT(hash[bucket].dtdh_lock == lock);
1641			ASSERT(lock & 1);
1642			hash[bucket].dtdh_lock++;
1643		}
1644
1645		return (NULL);
1646	}
1647
1648	/*
1649	 * We need to allocate a new dynamic variable.  The size we need is the
1650	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1651	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1652	 * the size of any referred-to data (dsize).  We then round the final
1653	 * size up to the chunksize for allocation.
1654	 */
1655	for (ksize = 0, i = 0; i < nkeys; i++)
1656		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1657
1658	/*
1659	 * This should be pretty much impossible, but could happen if, say,
1660	 * strange DIF specified the tuple.  Ideally, this should be an
1661	 * assertion and not an error condition -- but that requires that the
1662	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1663	 * bullet-proof.  (That is, it must not be able to be fooled by
1664	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1665	 * solving this would presumably not amount to solving the Halting
1666	 * Problem -- but it still seems awfully hard.
1667	 */
1668	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1669	    ksize + dsize > chunksize) {
1670		dcpu->dtdsc_drops++;
1671		return (NULL);
1672	}
1673
1674	nstate = DTRACE_DSTATE_EMPTY;
1675
1676	do {
1677retry:
1678		free = dcpu->dtdsc_free;
1679
1680		if (free == NULL) {
1681			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1682			void *rval;
1683
1684			if (clean == NULL) {
1685				/*
1686				 * We're out of dynamic variable space on
1687				 * this CPU.  Unless we have tried all CPUs,
1688				 * we'll try to allocate from a different
1689				 * CPU.
1690				 */
1691				switch (dstate->dtds_state) {
1692				case DTRACE_DSTATE_CLEAN: {
1693					void *sp = &dstate->dtds_state;
1694
1695					if (++cpu >= NCPU)
1696						cpu = 0;
1697
1698					if (dcpu->dtdsc_dirty != NULL &&
1699					    nstate == DTRACE_DSTATE_EMPTY)
1700						nstate = DTRACE_DSTATE_DIRTY;
1701
1702					if (dcpu->dtdsc_rinsing != NULL)
1703						nstate = DTRACE_DSTATE_RINSING;
1704
1705					dcpu = &dstate->dtds_percpu[cpu];
1706
1707					if (cpu != me)
1708						goto retry;
1709
1710					(void) dtrace_cas32(sp,
1711					    DTRACE_DSTATE_CLEAN, nstate);
1712
1713					/*
1714					 * To increment the correct bean
1715					 * counter, take another lap.
1716					 */
1717					goto retry;
1718				}
1719
1720				case DTRACE_DSTATE_DIRTY:
1721					dcpu->dtdsc_dirty_drops++;
1722					break;
1723
1724				case DTRACE_DSTATE_RINSING:
1725					dcpu->dtdsc_rinsing_drops++;
1726					break;
1727
1728				case DTRACE_DSTATE_EMPTY:
1729					dcpu->dtdsc_drops++;
1730					break;
1731				}
1732
1733				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1734				return (NULL);
1735			}
1736
1737			/*
1738			 * The clean list appears to be non-empty.  We want to
1739			 * move the clean list to the free list; we start by
1740			 * moving the clean pointer aside.
1741			 */
1742			if (dtrace_casptr(&dcpu->dtdsc_clean,
1743			    clean, NULL) != clean) {
1744				/*
1745				 * We are in one of two situations:
1746				 *
1747				 *  (a)	The clean list was switched to the
1748				 *	free list by another CPU.
1749				 *
1750				 *  (b)	The clean list was added to by the
1751				 *	cleansing cyclic.
1752				 *
1753				 * In either of these situations, we can
1754				 * just reattempt the free list allocation.
1755				 */
1756				goto retry;
1757			}
1758
1759			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1760
1761			/*
1762			 * Now we'll move the clean list to the free list.
1763			 * It's impossible for this to fail:  the only way
1764			 * the free list can be updated is through this
1765			 * code path, and only one CPU can own the clean list.
1766			 * Thus, it would only be possible for this to fail if
1767			 * this code were racing with dtrace_dynvar_clean().
1768			 * (That is, if dtrace_dynvar_clean() updated the clean
1769			 * list, and we ended up racing to update the free
1770			 * list.)  This race is prevented by the dtrace_sync()
1771			 * in dtrace_dynvar_clean() -- which flushes the
1772			 * owners of the clean lists out before resetting
1773			 * the clean lists.
1774			 */
1775			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1776			ASSERT(rval == NULL);
1777			goto retry;
1778		}
1779
1780		dvar = free;
1781		new_free = dvar->dtdv_next;
1782	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1783
1784	/*
1785	 * We have now allocated a new chunk.  We copy the tuple keys into the
1786	 * tuple array and copy any referenced key data into the data space
1787	 * following the tuple array.  As we do this, we relocate dttk_value
1788	 * in the final tuple to point to the key data address in the chunk.
1789	 */
1790	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1791	dvar->dtdv_data = (void *)(kdata + ksize);
1792	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1793
1794	for (i = 0; i < nkeys; i++) {
1795		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1796		size_t kesize = key[i].dttk_size;
1797
1798		if (kesize != 0) {
1799			dtrace_bcopy(
1800			    (const void *)(uintptr_t)key[i].dttk_value,
1801			    (void *)kdata, kesize);
1802			dkey->dttk_value = kdata;
1803			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1804		} else {
1805			dkey->dttk_value = key[i].dttk_value;
1806		}
1807
1808		dkey->dttk_size = kesize;
1809	}
1810
1811	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1812	dvar->dtdv_hashval = hashval;
1813	dvar->dtdv_next = start;
1814
1815	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1816		return (dvar);
1817
1818	/*
1819	 * The cas has failed.  Either another CPU is adding an element to
1820	 * this hash chain, or another CPU is deleting an element from this
1821	 * hash chain.  The simplest way to deal with both of these cases
1822	 * (though not necessarily the most efficient) is to free our
1823	 * allocated block and tail-call ourselves.  Note that the free is
1824	 * to the dirty list and _not_ to the free list.  This is to prevent
1825	 * races with allocators, above.
1826	 */
1827	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1828
1829	dtrace_membar_producer();
1830
1831	do {
1832		free = dcpu->dtdsc_dirty;
1833		dvar->dtdv_next = free;
1834	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1835
1836	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1837}
1838
1839/*ARGSUSED*/
1840static void
1841dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1842{
1843	if ((int64_t)nval < (int64_t)*oval)
1844		*oval = nval;
1845}
1846
1847/*ARGSUSED*/
1848static void
1849dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1850{
1851	if ((int64_t)nval > (int64_t)*oval)
1852		*oval = nval;
1853}
1854
1855static void
1856dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1857{
1858	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1859	int64_t val = (int64_t)nval;
1860
1861	if (val < 0) {
1862		for (i = 0; i < zero; i++) {
1863			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1864				quanta[i] += incr;
1865				return;
1866			}
1867		}
1868	} else {
1869		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1870			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1871				quanta[i - 1] += incr;
1872				return;
1873			}
1874		}
1875
1876		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1877		return;
1878	}
1879
1880	ASSERT(0);
1881}
1882
1883static void
1884dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1885{
1886	uint64_t arg = *lquanta++;
1887	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1888	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1889	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1890	int32_t val = (int32_t)nval, level;
1891
1892	ASSERT(step != 0);
1893	ASSERT(levels != 0);
1894
1895	if (val < base) {
1896		/*
1897		 * This is an underflow.
1898		 */
1899		lquanta[0] += incr;
1900		return;
1901	}
1902
1903	level = (val - base) / step;
1904
1905	if (level < levels) {
1906		lquanta[level + 1] += incr;
1907		return;
1908	}
1909
1910	/*
1911	 * This is an overflow.
1912	 */
1913	lquanta[levels + 1] += incr;
1914}
1915
1916static int
1917dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1918    uint16_t high, uint16_t nsteps, int64_t value)
1919{
1920	int64_t this = 1, last, next;
1921	int base = 1, order;
1922
1923	ASSERT(factor <= nsteps);
1924	ASSERT(nsteps % factor == 0);
1925
1926	for (order = 0; order < low; order++)
1927		this *= factor;
1928
1929	/*
1930	 * If our value is less than our factor taken to the power of the
1931	 * low order of magnitude, it goes into the zeroth bucket.
1932	 */
1933	if (value < (last = this))
1934		return (0);
1935
1936	for (this *= factor; order <= high; order++) {
1937		int nbuckets = this > nsteps ? nsteps : this;
1938
1939		if ((next = this * factor) < this) {
1940			/*
1941			 * We should not generally get log/linear quantizations
1942			 * with a high magnitude that allows 64-bits to
1943			 * overflow, but we nonetheless protect against this
1944			 * by explicitly checking for overflow, and clamping
1945			 * our value accordingly.
1946			 */
1947			value = this - 1;
1948		}
1949
1950		if (value < this) {
1951			/*
1952			 * If our value lies within this order of magnitude,
1953			 * determine its position by taking the offset within
1954			 * the order of magnitude, dividing by the bucket
1955			 * width, and adding to our (accumulated) base.
1956			 */
1957			return (base + (value - last) / (this / nbuckets));
1958		}
1959
1960		base += nbuckets - (nbuckets / factor);
1961		last = this;
1962		this = next;
1963	}
1964
1965	/*
1966	 * Our value is greater than or equal to our factor taken to the
1967	 * power of one plus the high magnitude -- return the top bucket.
1968	 */
1969	return (base);
1970}
1971
1972static void
1973dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1974{
1975	uint64_t arg = *llquanta++;
1976	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1977	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1978	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1979	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1980
1981	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1982	    low, high, nsteps, nval)] += incr;
1983}
1984
1985/*ARGSUSED*/
1986static void
1987dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1988{
1989	data[0]++;
1990	data[1] += nval;
1991}
1992
1993/*ARGSUSED*/
1994static void
1995dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1996{
1997	int64_t snval = (int64_t)nval;
1998	uint64_t tmp[2];
1999
2000	data[0]++;
2001	data[1] += nval;
2002
2003	/*
2004	 * What we want to say here is:
2005	 *
2006	 * data[2] += nval * nval;
2007	 *
2008	 * But given that nval is 64-bit, we could easily overflow, so
2009	 * we do this as 128-bit arithmetic.
2010	 */
2011	if (snval < 0)
2012		snval = -snval;
2013
2014	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2015	dtrace_add_128(data + 2, tmp, data + 2);
2016}
2017
2018/*ARGSUSED*/
2019static void
2020dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2021{
2022	*oval = *oval + 1;
2023}
2024
2025/*ARGSUSED*/
2026static void
2027dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2028{
2029	*oval += nval;
2030}
2031
2032/*
2033 * Aggregate given the tuple in the principal data buffer, and the aggregating
2034 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2035 * buffer is specified as the buf parameter.  This routine does not return
2036 * failure; if there is no space in the aggregation buffer, the data will be
2037 * dropped, and a corresponding counter incremented.
2038 */
2039static void
2040dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2041    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2042{
2043	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2044	uint32_t i, ndx, size, fsize;
2045	uint32_t align = sizeof (uint64_t) - 1;
2046	dtrace_aggbuffer_t *agb;
2047	dtrace_aggkey_t *key;
2048	uint32_t hashval = 0, limit, isstr;
2049	caddr_t tomax, data, kdata;
2050	dtrace_actkind_t action;
2051	dtrace_action_t *act;
2052	uintptr_t offs;
2053
2054	if (buf == NULL)
2055		return;
2056
2057	if (!agg->dtag_hasarg) {
2058		/*
2059		 * Currently, only quantize() and lquantize() take additional
2060		 * arguments, and they have the same semantics:  an increment
2061		 * value that defaults to 1 when not present.  If additional
2062		 * aggregating actions take arguments, the setting of the
2063		 * default argument value will presumably have to become more
2064		 * sophisticated...
2065		 */
2066		arg = 1;
2067	}
2068
2069	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2070	size = rec->dtrd_offset - agg->dtag_base;
2071	fsize = size + rec->dtrd_size;
2072
2073	ASSERT(dbuf->dtb_tomax != NULL);
2074	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2075
2076	if ((tomax = buf->dtb_tomax) == NULL) {
2077		dtrace_buffer_drop(buf);
2078		return;
2079	}
2080
2081	/*
2082	 * The metastructure is always at the bottom of the buffer.
2083	 */
2084	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2085	    sizeof (dtrace_aggbuffer_t));
2086
2087	if (buf->dtb_offset == 0) {
2088		/*
2089		 * We just kludge up approximately 1/8th of the size to be
2090		 * buckets.  If this guess ends up being routinely
2091		 * off-the-mark, we may need to dynamically readjust this
2092		 * based on past performance.
2093		 */
2094		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2095
2096		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2097		    (uintptr_t)tomax || hashsize == 0) {
2098			/*
2099			 * We've been given a ludicrously small buffer;
2100			 * increment our drop count and leave.
2101			 */
2102			dtrace_buffer_drop(buf);
2103			return;
2104		}
2105
2106		/*
2107		 * And now, a pathetic attempt to try to get a an odd (or
2108		 * perchance, a prime) hash size for better hash distribution.
2109		 */
2110		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2111			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2112
2113		agb->dtagb_hashsize = hashsize;
2114		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2115		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2116		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2117
2118		for (i = 0; i < agb->dtagb_hashsize; i++)
2119			agb->dtagb_hash[i] = NULL;
2120	}
2121
2122	ASSERT(agg->dtag_first != NULL);
2123	ASSERT(agg->dtag_first->dta_intuple);
2124
2125	/*
2126	 * Calculate the hash value based on the key.  Note that we _don't_
2127	 * include the aggid in the hashing (but we will store it as part of
2128	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2129	 * algorithm: a simple, quick algorithm that has no known funnels, and
2130	 * gets good distribution in practice.  The efficacy of the hashing
2131	 * algorithm (and a comparison with other algorithms) may be found by
2132	 * running the ::dtrace_aggstat MDB dcmd.
2133	 */
2134	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2135		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2136		limit = i + act->dta_rec.dtrd_size;
2137		ASSERT(limit <= size);
2138		isstr = DTRACEACT_ISSTRING(act);
2139
2140		for (; i < limit; i++) {
2141			hashval += data[i];
2142			hashval += (hashval << 10);
2143			hashval ^= (hashval >> 6);
2144
2145			if (isstr && data[i] == '\0')
2146				break;
2147		}
2148	}
2149
2150	hashval += (hashval << 3);
2151	hashval ^= (hashval >> 11);
2152	hashval += (hashval << 15);
2153
2154	/*
2155	 * Yes, the divide here is expensive -- but it's generally the least
2156	 * of the performance issues given the amount of data that we iterate
2157	 * over to compute hash values, compare data, etc.
2158	 */
2159	ndx = hashval % agb->dtagb_hashsize;
2160
2161	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2162		ASSERT((caddr_t)key >= tomax);
2163		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2164
2165		if (hashval != key->dtak_hashval || key->dtak_size != size)
2166			continue;
2167
2168		kdata = key->dtak_data;
2169		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2170
2171		for (act = agg->dtag_first; act->dta_intuple;
2172		    act = act->dta_next) {
2173			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2174			limit = i + act->dta_rec.dtrd_size;
2175			ASSERT(limit <= size);
2176			isstr = DTRACEACT_ISSTRING(act);
2177
2178			for (; i < limit; i++) {
2179				if (kdata[i] != data[i])
2180					goto next;
2181
2182				if (isstr && data[i] == '\0')
2183					break;
2184			}
2185		}
2186
2187		if (action != key->dtak_action) {
2188			/*
2189			 * We are aggregating on the same value in the same
2190			 * aggregation with two different aggregating actions.
2191			 * (This should have been picked up in the compiler,
2192			 * so we may be dealing with errant or devious DIF.)
2193			 * This is an error condition; we indicate as much,
2194			 * and return.
2195			 */
2196			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2197			return;
2198		}
2199
2200		/*
2201		 * This is a hit:  we need to apply the aggregator to
2202		 * the value at this key.
2203		 */
2204		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2205		return;
2206next:
2207		continue;
2208	}
2209
2210	/*
2211	 * We didn't find it.  We need to allocate some zero-filled space,
2212	 * link it into the hash table appropriately, and apply the aggregator
2213	 * to the (zero-filled) value.
2214	 */
2215	offs = buf->dtb_offset;
2216	while (offs & (align - 1))
2217		offs += sizeof (uint32_t);
2218
2219	/*
2220	 * If we don't have enough room to both allocate a new key _and_
2221	 * its associated data, increment the drop count and return.
2222	 */
2223	if ((uintptr_t)tomax + offs + fsize >
2224	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2225		dtrace_buffer_drop(buf);
2226		return;
2227	}
2228
2229	/*CONSTCOND*/
2230	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2231	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2232	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2233
2234	key->dtak_data = kdata = tomax + offs;
2235	buf->dtb_offset = offs + fsize;
2236
2237	/*
2238	 * Now copy the data across.
2239	 */
2240	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2241
2242	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2243		kdata[i] = data[i];
2244
2245	/*
2246	 * Because strings are not zeroed out by default, we need to iterate
2247	 * looking for actions that store strings, and we need to explicitly
2248	 * pad these strings out with zeroes.
2249	 */
2250	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2251		int nul;
2252
2253		if (!DTRACEACT_ISSTRING(act))
2254			continue;
2255
2256		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2257		limit = i + act->dta_rec.dtrd_size;
2258		ASSERT(limit <= size);
2259
2260		for (nul = 0; i < limit; i++) {
2261			if (nul) {
2262				kdata[i] = '\0';
2263				continue;
2264			}
2265
2266			if (data[i] != '\0')
2267				continue;
2268
2269			nul = 1;
2270		}
2271	}
2272
2273	for (i = size; i < fsize; i++)
2274		kdata[i] = 0;
2275
2276	key->dtak_hashval = hashval;
2277	key->dtak_size = size;
2278	key->dtak_action = action;
2279	key->dtak_next = agb->dtagb_hash[ndx];
2280	agb->dtagb_hash[ndx] = key;
2281
2282	/*
2283	 * Finally, apply the aggregator.
2284	 */
2285	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2286	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2287}
2288
2289/*
2290 * Given consumer state, this routine finds a speculation in the INACTIVE
2291 * state and transitions it into the ACTIVE state.  If there is no speculation
2292 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2293 * incremented -- it is up to the caller to take appropriate action.
2294 */
2295static int
2296dtrace_speculation(dtrace_state_t *state)
2297{
2298	int i = 0;
2299	dtrace_speculation_state_t current;
2300	uint32_t *stat = &state->dts_speculations_unavail, count;
2301
2302	while (i < state->dts_nspeculations) {
2303		dtrace_speculation_t *spec = &state->dts_speculations[i];
2304
2305		current = spec->dtsp_state;
2306
2307		if (current != DTRACESPEC_INACTIVE) {
2308			if (current == DTRACESPEC_COMMITTINGMANY ||
2309			    current == DTRACESPEC_COMMITTING ||
2310			    current == DTRACESPEC_DISCARDING)
2311				stat = &state->dts_speculations_busy;
2312			i++;
2313			continue;
2314		}
2315
2316		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2317		    current, DTRACESPEC_ACTIVE) == current)
2318			return (i + 1);
2319	}
2320
2321	/*
2322	 * We couldn't find a speculation.  If we found as much as a single
2323	 * busy speculation buffer, we'll attribute this failure as "busy"
2324	 * instead of "unavail".
2325	 */
2326	do {
2327		count = *stat;
2328	} while (dtrace_cas32(stat, count, count + 1) != count);
2329
2330	return (0);
2331}
2332
2333/*
2334 * This routine commits an active speculation.  If the specified speculation
2335 * is not in a valid state to perform a commit(), this routine will silently do
2336 * nothing.  The state of the specified speculation is transitioned according
2337 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2338 */
2339static void
2340dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2341    dtrace_specid_t which)
2342{
2343	dtrace_speculation_t *spec;
2344	dtrace_buffer_t *src, *dest;
2345	uintptr_t daddr, saddr, dlimit;
2346	dtrace_speculation_state_t current, new = 0;
2347	intptr_t offs;
2348
2349	if (which == 0)
2350		return;
2351
2352	if (which > state->dts_nspeculations) {
2353		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2354		return;
2355	}
2356
2357	spec = &state->dts_speculations[which - 1];
2358	src = &spec->dtsp_buffer[cpu];
2359	dest = &state->dts_buffer[cpu];
2360
2361	do {
2362		current = spec->dtsp_state;
2363
2364		if (current == DTRACESPEC_COMMITTINGMANY)
2365			break;
2366
2367		switch (current) {
2368		case DTRACESPEC_INACTIVE:
2369		case DTRACESPEC_DISCARDING:
2370			return;
2371
2372		case DTRACESPEC_COMMITTING:
2373			/*
2374			 * This is only possible if we are (a) commit()'ing
2375			 * without having done a prior speculate() on this CPU
2376			 * and (b) racing with another commit() on a different
2377			 * CPU.  There's nothing to do -- we just assert that
2378			 * our offset is 0.
2379			 */
2380			ASSERT(src->dtb_offset == 0);
2381			return;
2382
2383		case DTRACESPEC_ACTIVE:
2384			new = DTRACESPEC_COMMITTING;
2385			break;
2386
2387		case DTRACESPEC_ACTIVEONE:
2388			/*
2389			 * This speculation is active on one CPU.  If our
2390			 * buffer offset is non-zero, we know that the one CPU
2391			 * must be us.  Otherwise, we are committing on a
2392			 * different CPU from the speculate(), and we must
2393			 * rely on being asynchronously cleaned.
2394			 */
2395			if (src->dtb_offset != 0) {
2396				new = DTRACESPEC_COMMITTING;
2397				break;
2398			}
2399			/*FALLTHROUGH*/
2400
2401		case DTRACESPEC_ACTIVEMANY:
2402			new = DTRACESPEC_COMMITTINGMANY;
2403			break;
2404
2405		default:
2406			ASSERT(0);
2407		}
2408	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2409	    current, new) != current);
2410
2411	/*
2412	 * We have set the state to indicate that we are committing this
2413	 * speculation.  Now reserve the necessary space in the destination
2414	 * buffer.
2415	 */
2416	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2417	    sizeof (uint64_t), state, NULL)) < 0) {
2418		dtrace_buffer_drop(dest);
2419		goto out;
2420	}
2421
2422	/*
2423	 * We have the space; copy the buffer across.  (Note that this is a
2424	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2425	 * a serious performance issue, a high-performance DTrace-specific
2426	 * bcopy() should obviously be invented.)
2427	 */
2428	daddr = (uintptr_t)dest->dtb_tomax + offs;
2429	dlimit = daddr + src->dtb_offset;
2430	saddr = (uintptr_t)src->dtb_tomax;
2431
2432	/*
2433	 * First, the aligned portion.
2434	 */
2435	while (dlimit - daddr >= sizeof (uint64_t)) {
2436		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2437
2438		daddr += sizeof (uint64_t);
2439		saddr += sizeof (uint64_t);
2440	}
2441
2442	/*
2443	 * Now any left-over bit...
2444	 */
2445	while (dlimit - daddr)
2446		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2447
2448	/*
2449	 * Finally, commit the reserved space in the destination buffer.
2450	 */
2451	dest->dtb_offset = offs + src->dtb_offset;
2452
2453out:
2454	/*
2455	 * If we're lucky enough to be the only active CPU on this speculation
2456	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2457	 */
2458	if (current == DTRACESPEC_ACTIVE ||
2459	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2460		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2461		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2462
2463		ASSERT(rval == DTRACESPEC_COMMITTING);
2464	}
2465
2466	src->dtb_offset = 0;
2467	src->dtb_xamot_drops += src->dtb_drops;
2468	src->dtb_drops = 0;
2469}
2470
2471/*
2472 * This routine discards an active speculation.  If the specified speculation
2473 * is not in a valid state to perform a discard(), this routine will silently
2474 * do nothing.  The state of the specified speculation is transitioned
2475 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2476 */
2477static void
2478dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2479    dtrace_specid_t which)
2480{
2481	dtrace_speculation_t *spec;
2482	dtrace_speculation_state_t current, new = 0;
2483	dtrace_buffer_t *buf;
2484
2485	if (which == 0)
2486		return;
2487
2488	if (which > state->dts_nspeculations) {
2489		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2490		return;
2491	}
2492
2493	spec = &state->dts_speculations[which - 1];
2494	buf = &spec->dtsp_buffer[cpu];
2495
2496	do {
2497		current = spec->dtsp_state;
2498
2499		switch (current) {
2500		case DTRACESPEC_INACTIVE:
2501		case DTRACESPEC_COMMITTINGMANY:
2502		case DTRACESPEC_COMMITTING:
2503		case DTRACESPEC_DISCARDING:
2504			return;
2505
2506		case DTRACESPEC_ACTIVE:
2507		case DTRACESPEC_ACTIVEMANY:
2508			new = DTRACESPEC_DISCARDING;
2509			break;
2510
2511		case DTRACESPEC_ACTIVEONE:
2512			if (buf->dtb_offset != 0) {
2513				new = DTRACESPEC_INACTIVE;
2514			} else {
2515				new = DTRACESPEC_DISCARDING;
2516			}
2517			break;
2518
2519		default:
2520			ASSERT(0);
2521		}
2522	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2523	    current, new) != current);
2524
2525	buf->dtb_offset = 0;
2526	buf->dtb_drops = 0;
2527}
2528
2529/*
2530 * Note:  not called from probe context.  This function is called
2531 * asynchronously from cross call context to clean any speculations that are
2532 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2533 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2534 * speculation.
2535 */
2536static void
2537dtrace_speculation_clean_here(dtrace_state_t *state)
2538{
2539	dtrace_icookie_t cookie;
2540	processorid_t cpu = curcpu;
2541	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2542	dtrace_specid_t i;
2543
2544	cookie = dtrace_interrupt_disable();
2545
2546	if (dest->dtb_tomax == NULL) {
2547		dtrace_interrupt_enable(cookie);
2548		return;
2549	}
2550
2551	for (i = 0; i < state->dts_nspeculations; i++) {
2552		dtrace_speculation_t *spec = &state->dts_speculations[i];
2553		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2554
2555		if (src->dtb_tomax == NULL)
2556			continue;
2557
2558		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2559			src->dtb_offset = 0;
2560			continue;
2561		}
2562
2563		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2564			continue;
2565
2566		if (src->dtb_offset == 0)
2567			continue;
2568
2569		dtrace_speculation_commit(state, cpu, i + 1);
2570	}
2571
2572	dtrace_interrupt_enable(cookie);
2573}
2574
2575/*
2576 * Note:  not called from probe context.  This function is called
2577 * asynchronously (and at a regular interval) to clean any speculations that
2578 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2579 * is work to be done, it cross calls all CPUs to perform that work;
2580 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2581 * INACTIVE state until they have been cleaned by all CPUs.
2582 */
2583static void
2584dtrace_speculation_clean(dtrace_state_t *state)
2585{
2586	int work = 0, rv;
2587	dtrace_specid_t i;
2588
2589	for (i = 0; i < state->dts_nspeculations; i++) {
2590		dtrace_speculation_t *spec = &state->dts_speculations[i];
2591
2592		ASSERT(!spec->dtsp_cleaning);
2593
2594		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2595		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2596			continue;
2597
2598		work++;
2599		spec->dtsp_cleaning = 1;
2600	}
2601
2602	if (!work)
2603		return;
2604
2605	dtrace_xcall(DTRACE_CPUALL,
2606	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2607
2608	/*
2609	 * We now know that all CPUs have committed or discarded their
2610	 * speculation buffers, as appropriate.  We can now set the state
2611	 * to inactive.
2612	 */
2613	for (i = 0; i < state->dts_nspeculations; i++) {
2614		dtrace_speculation_t *spec = &state->dts_speculations[i];
2615		dtrace_speculation_state_t current, new;
2616
2617		if (!spec->dtsp_cleaning)
2618			continue;
2619
2620		current = spec->dtsp_state;
2621		ASSERT(current == DTRACESPEC_DISCARDING ||
2622		    current == DTRACESPEC_COMMITTINGMANY);
2623
2624		new = DTRACESPEC_INACTIVE;
2625
2626		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2627		ASSERT(rv == current);
2628		spec->dtsp_cleaning = 0;
2629	}
2630}
2631
2632/*
2633 * Called as part of a speculate() to get the speculative buffer associated
2634 * with a given speculation.  Returns NULL if the specified speculation is not
2635 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2636 * the active CPU is not the specified CPU -- the speculation will be
2637 * atomically transitioned into the ACTIVEMANY state.
2638 */
2639static dtrace_buffer_t *
2640dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2641    dtrace_specid_t which)
2642{
2643	dtrace_speculation_t *spec;
2644	dtrace_speculation_state_t current, new = 0;
2645	dtrace_buffer_t *buf;
2646
2647	if (which == 0)
2648		return (NULL);
2649
2650	if (which > state->dts_nspeculations) {
2651		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2652		return (NULL);
2653	}
2654
2655	spec = &state->dts_speculations[which - 1];
2656	buf = &spec->dtsp_buffer[cpuid];
2657
2658	do {
2659		current = spec->dtsp_state;
2660
2661		switch (current) {
2662		case DTRACESPEC_INACTIVE:
2663		case DTRACESPEC_COMMITTINGMANY:
2664		case DTRACESPEC_DISCARDING:
2665			return (NULL);
2666
2667		case DTRACESPEC_COMMITTING:
2668			ASSERT(buf->dtb_offset == 0);
2669			return (NULL);
2670
2671		case DTRACESPEC_ACTIVEONE:
2672			/*
2673			 * This speculation is currently active on one CPU.
2674			 * Check the offset in the buffer; if it's non-zero,
2675			 * that CPU must be us (and we leave the state alone).
2676			 * If it's zero, assume that we're starting on a new
2677			 * CPU -- and change the state to indicate that the
2678			 * speculation is active on more than one CPU.
2679			 */
2680			if (buf->dtb_offset != 0)
2681				return (buf);
2682
2683			new = DTRACESPEC_ACTIVEMANY;
2684			break;
2685
2686		case DTRACESPEC_ACTIVEMANY:
2687			return (buf);
2688
2689		case DTRACESPEC_ACTIVE:
2690			new = DTRACESPEC_ACTIVEONE;
2691			break;
2692
2693		default:
2694			ASSERT(0);
2695		}
2696	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2697	    current, new) != current);
2698
2699	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2700	return (buf);
2701}
2702
2703/*
2704 * Return a string.  In the event that the user lacks the privilege to access
2705 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2706 * don't fail access checking.
2707 *
2708 * dtrace_dif_variable() uses this routine as a helper for various
2709 * builtin values such as 'execname' and 'probefunc.'
2710 */
2711uintptr_t
2712dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2713    dtrace_mstate_t *mstate)
2714{
2715	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2716	uintptr_t ret;
2717	size_t strsz;
2718
2719	/*
2720	 * The easy case: this probe is allowed to read all of memory, so
2721	 * we can just return this as a vanilla pointer.
2722	 */
2723	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2724		return (addr);
2725
2726	/*
2727	 * This is the tougher case: we copy the string in question from
2728	 * kernel memory into scratch memory and return it that way: this
2729	 * ensures that we won't trip up when access checking tests the
2730	 * BYREF return value.
2731	 */
2732	strsz = dtrace_strlen((char *)addr, size) + 1;
2733
2734	if (mstate->dtms_scratch_ptr + strsz >
2735	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2736		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2737		return (0);
2738	}
2739
2740	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2741	    strsz);
2742	ret = mstate->dtms_scratch_ptr;
2743	mstate->dtms_scratch_ptr += strsz;
2744	return (ret);
2745}
2746
2747/*
2748 * Return a string from a memoy address which is known to have one or
2749 * more concatenated, individually zero terminated, sub-strings.
2750 * In the event that the user lacks the privilege to access
2751 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2752 * don't fail access checking.
2753 *
2754 * dtrace_dif_variable() uses this routine as a helper for various
2755 * builtin values such as 'execargs'.
2756 */
2757static uintptr_t
2758dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2759    dtrace_mstate_t *mstate)
2760{
2761	char *p;
2762	size_t i;
2763	uintptr_t ret;
2764
2765	if (mstate->dtms_scratch_ptr + strsz >
2766	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2767		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2768		return (0);
2769	}
2770
2771	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2772	    strsz);
2773
2774	/* Replace sub-string termination characters with a space. */
2775	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2776	    p++, i++)
2777		if (*p == '\0')
2778			*p = ' ';
2779
2780	ret = mstate->dtms_scratch_ptr;
2781	mstate->dtms_scratch_ptr += strsz;
2782	return (ret);
2783}
2784
2785/*
2786 * This function implements the DIF emulator's variable lookups.  The emulator
2787 * passes a reserved variable identifier and optional built-in array index.
2788 */
2789static uint64_t
2790dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2791    uint64_t ndx)
2792{
2793	/*
2794	 * If we're accessing one of the uncached arguments, we'll turn this
2795	 * into a reference in the args array.
2796	 */
2797	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2798		ndx = v - DIF_VAR_ARG0;
2799		v = DIF_VAR_ARGS;
2800	}
2801
2802	switch (v) {
2803	case DIF_VAR_ARGS:
2804		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2805		if (ndx >= sizeof (mstate->dtms_arg) /
2806		    sizeof (mstate->dtms_arg[0])) {
2807			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2808			dtrace_provider_t *pv;
2809			uint64_t val;
2810
2811			pv = mstate->dtms_probe->dtpr_provider;
2812			if (pv->dtpv_pops.dtps_getargval != NULL)
2813				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2814				    mstate->dtms_probe->dtpr_id,
2815				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2816			else
2817				val = dtrace_getarg(ndx, aframes);
2818
2819			/*
2820			 * This is regrettably required to keep the compiler
2821			 * from tail-optimizing the call to dtrace_getarg().
2822			 * The condition always evaluates to true, but the
2823			 * compiler has no way of figuring that out a priori.
2824			 * (None of this would be necessary if the compiler
2825			 * could be relied upon to _always_ tail-optimize
2826			 * the call to dtrace_getarg() -- but it can't.)
2827			 */
2828			if (mstate->dtms_probe != NULL)
2829				return (val);
2830
2831			ASSERT(0);
2832		}
2833
2834		return (mstate->dtms_arg[ndx]);
2835
2836#if defined(sun)
2837	case DIF_VAR_UREGS: {
2838		klwp_t *lwp;
2839
2840		if (!dtrace_priv_proc(state))
2841			return (0);
2842
2843		if ((lwp = curthread->t_lwp) == NULL) {
2844			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2845			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2846			return (0);
2847		}
2848
2849		return (dtrace_getreg(lwp->lwp_regs, ndx));
2850		return (0);
2851	}
2852#else
2853	case DIF_VAR_UREGS: {
2854		struct trapframe *tframe;
2855
2856		if (!dtrace_priv_proc(state))
2857			return (0);
2858
2859		if ((tframe = curthread->td_frame) == NULL) {
2860			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2861			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2862			return (0);
2863		}
2864
2865		return (dtrace_getreg(tframe, ndx));
2866	}
2867#endif
2868
2869	case DIF_VAR_CURTHREAD:
2870		if (!dtrace_priv_kernel(state))
2871			return (0);
2872		return ((uint64_t)(uintptr_t)curthread);
2873
2874	case DIF_VAR_TIMESTAMP:
2875		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2876			mstate->dtms_timestamp = dtrace_gethrtime();
2877			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2878		}
2879		return (mstate->dtms_timestamp);
2880
2881	case DIF_VAR_VTIMESTAMP:
2882		ASSERT(dtrace_vtime_references != 0);
2883		return (curthread->t_dtrace_vtime);
2884
2885	case DIF_VAR_WALLTIMESTAMP:
2886		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2887			mstate->dtms_walltimestamp = dtrace_gethrestime();
2888			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2889		}
2890		return (mstate->dtms_walltimestamp);
2891
2892#if defined(sun)
2893	case DIF_VAR_IPL:
2894		if (!dtrace_priv_kernel(state))
2895			return (0);
2896		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2897			mstate->dtms_ipl = dtrace_getipl();
2898			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2899		}
2900		return (mstate->dtms_ipl);
2901#endif
2902
2903	case DIF_VAR_EPID:
2904		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2905		return (mstate->dtms_epid);
2906
2907	case DIF_VAR_ID:
2908		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2909		return (mstate->dtms_probe->dtpr_id);
2910
2911	case DIF_VAR_STACKDEPTH:
2912		if (!dtrace_priv_kernel(state))
2913			return (0);
2914		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2915			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2916
2917			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2918			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2919		}
2920		return (mstate->dtms_stackdepth);
2921
2922	case DIF_VAR_USTACKDEPTH:
2923		if (!dtrace_priv_proc(state))
2924			return (0);
2925		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2926			/*
2927			 * See comment in DIF_VAR_PID.
2928			 */
2929			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2930			    CPU_ON_INTR(CPU)) {
2931				mstate->dtms_ustackdepth = 0;
2932			} else {
2933				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2934				mstate->dtms_ustackdepth =
2935				    dtrace_getustackdepth();
2936				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2937			}
2938			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2939		}
2940		return (mstate->dtms_ustackdepth);
2941
2942	case DIF_VAR_CALLER:
2943		if (!dtrace_priv_kernel(state))
2944			return (0);
2945		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2946			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2947
2948			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2949				/*
2950				 * If this is an unanchored probe, we are
2951				 * required to go through the slow path:
2952				 * dtrace_caller() only guarantees correct
2953				 * results for anchored probes.
2954				 */
2955				pc_t caller[2] = {0, 0};
2956
2957				dtrace_getpcstack(caller, 2, aframes,
2958				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2959				mstate->dtms_caller = caller[1];
2960			} else if ((mstate->dtms_caller =
2961			    dtrace_caller(aframes)) == -1) {
2962				/*
2963				 * We have failed to do this the quick way;
2964				 * we must resort to the slower approach of
2965				 * calling dtrace_getpcstack().
2966				 */
2967				pc_t caller = 0;
2968
2969				dtrace_getpcstack(&caller, 1, aframes, NULL);
2970				mstate->dtms_caller = caller;
2971			}
2972
2973			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2974		}
2975		return (mstate->dtms_caller);
2976
2977	case DIF_VAR_UCALLER:
2978		if (!dtrace_priv_proc(state))
2979			return (0);
2980
2981		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2982			uint64_t ustack[3];
2983
2984			/*
2985			 * dtrace_getupcstack() fills in the first uint64_t
2986			 * with the current PID.  The second uint64_t will
2987			 * be the program counter at user-level.  The third
2988			 * uint64_t will contain the caller, which is what
2989			 * we're after.
2990			 */
2991			ustack[2] = 0;
2992			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2993			dtrace_getupcstack(ustack, 3);
2994			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2995			mstate->dtms_ucaller = ustack[2];
2996			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2997		}
2998
2999		return (mstate->dtms_ucaller);
3000
3001	case DIF_VAR_PROBEPROV:
3002		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3003		return (dtrace_dif_varstr(
3004		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3005		    state, mstate));
3006
3007	case DIF_VAR_PROBEMOD:
3008		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3009		return (dtrace_dif_varstr(
3010		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3011		    state, mstate));
3012
3013	case DIF_VAR_PROBEFUNC:
3014		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3015		return (dtrace_dif_varstr(
3016		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3017		    state, mstate));
3018
3019	case DIF_VAR_PROBENAME:
3020		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3021		return (dtrace_dif_varstr(
3022		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3023		    state, mstate));
3024
3025	case DIF_VAR_PID:
3026		if (!dtrace_priv_proc(state))
3027			return (0);
3028
3029#if defined(sun)
3030		/*
3031		 * Note that we are assuming that an unanchored probe is
3032		 * always due to a high-level interrupt.  (And we're assuming
3033		 * that there is only a single high level interrupt.)
3034		 */
3035		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3036			return (pid0.pid_id);
3037
3038		/*
3039		 * It is always safe to dereference one's own t_procp pointer:
3040		 * it always points to a valid, allocated proc structure.
3041		 * Further, it is always safe to dereference the p_pidp member
3042		 * of one's own proc structure.  (These are truisms becuase
3043		 * threads and processes don't clean up their own state --
3044		 * they leave that task to whomever reaps them.)
3045		 */
3046		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3047#else
3048		return ((uint64_t)curproc->p_pid);
3049#endif
3050
3051	case DIF_VAR_PPID:
3052		if (!dtrace_priv_proc(state))
3053			return (0);
3054
3055#if defined(sun)
3056		/*
3057		 * See comment in DIF_VAR_PID.
3058		 */
3059		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3060			return (pid0.pid_id);
3061
3062		/*
3063		 * It is always safe to dereference one's own t_procp pointer:
3064		 * it always points to a valid, allocated proc structure.
3065		 * (This is true because threads don't clean up their own
3066		 * state -- they leave that task to whomever reaps them.)
3067		 */
3068		return ((uint64_t)curthread->t_procp->p_ppid);
3069#else
3070		return ((uint64_t)curproc->p_pptr->p_pid);
3071#endif
3072
3073	case DIF_VAR_TID:
3074#if defined(sun)
3075		/*
3076		 * See comment in DIF_VAR_PID.
3077		 */
3078		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3079			return (0);
3080#endif
3081
3082		return ((uint64_t)curthread->t_tid);
3083
3084	case DIF_VAR_EXECARGS: {
3085		struct pargs *p_args = curthread->td_proc->p_args;
3086
3087		if (p_args == NULL)
3088			return(0);
3089
3090		return (dtrace_dif_varstrz(
3091		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3092	}
3093
3094	case DIF_VAR_EXECNAME:
3095#if defined(sun)
3096		if (!dtrace_priv_proc(state))
3097			return (0);
3098
3099		/*
3100		 * See comment in DIF_VAR_PID.
3101		 */
3102		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3103			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3104
3105		/*
3106		 * It is always safe to dereference one's own t_procp pointer:
3107		 * it always points to a valid, allocated proc structure.
3108		 * (This is true because threads don't clean up their own
3109		 * state -- they leave that task to whomever reaps them.)
3110		 */
3111		return (dtrace_dif_varstr(
3112		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3113		    state, mstate));
3114#else
3115		return (dtrace_dif_varstr(
3116		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3117#endif
3118
3119	case DIF_VAR_ZONENAME:
3120#if defined(sun)
3121		if (!dtrace_priv_proc(state))
3122			return (0);
3123
3124		/*
3125		 * See comment in DIF_VAR_PID.
3126		 */
3127		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3128			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3129
3130		/*
3131		 * It is always safe to dereference one's own t_procp pointer:
3132		 * it always points to a valid, allocated proc structure.
3133		 * (This is true because threads don't clean up their own
3134		 * state -- they leave that task to whomever reaps them.)
3135		 */
3136		return (dtrace_dif_varstr(
3137		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3138		    state, mstate));
3139#else
3140		return (0);
3141#endif
3142
3143	case DIF_VAR_UID:
3144		if (!dtrace_priv_proc(state))
3145			return (0);
3146
3147#if defined(sun)
3148		/*
3149		 * See comment in DIF_VAR_PID.
3150		 */
3151		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3152			return ((uint64_t)p0.p_cred->cr_uid);
3153#endif
3154
3155		/*
3156		 * It is always safe to dereference one's own t_procp pointer:
3157		 * it always points to a valid, allocated proc structure.
3158		 * (This is true because threads don't clean up their own
3159		 * state -- they leave that task to whomever reaps them.)
3160		 *
3161		 * Additionally, it is safe to dereference one's own process
3162		 * credential, since this is never NULL after process birth.
3163		 */
3164		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3165
3166	case DIF_VAR_GID:
3167		if (!dtrace_priv_proc(state))
3168			return (0);
3169
3170#if defined(sun)
3171		/*
3172		 * See comment in DIF_VAR_PID.
3173		 */
3174		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3175			return ((uint64_t)p0.p_cred->cr_gid);
3176#endif
3177
3178		/*
3179		 * It is always safe to dereference one's own t_procp pointer:
3180		 * it always points to a valid, allocated proc structure.
3181		 * (This is true because threads don't clean up their own
3182		 * state -- they leave that task to whomever reaps them.)
3183		 *
3184		 * Additionally, it is safe to dereference one's own process
3185		 * credential, since this is never NULL after process birth.
3186		 */
3187		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3188
3189	case DIF_VAR_ERRNO: {
3190#if defined(sun)
3191		klwp_t *lwp;
3192		if (!dtrace_priv_proc(state))
3193			return (0);
3194
3195		/*
3196		 * See comment in DIF_VAR_PID.
3197		 */
3198		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3199			return (0);
3200
3201		/*
3202		 * It is always safe to dereference one's own t_lwp pointer in
3203		 * the event that this pointer is non-NULL.  (This is true
3204		 * because threads and lwps don't clean up their own state --
3205		 * they leave that task to whomever reaps them.)
3206		 */
3207		if ((lwp = curthread->t_lwp) == NULL)
3208			return (0);
3209
3210		return ((uint64_t)lwp->lwp_errno);
3211#else
3212		return (curthread->td_errno);
3213#endif
3214	}
3215#if !defined(sun)
3216	case DIF_VAR_CPU: {
3217		return curcpu;
3218	}
3219#endif
3220	default:
3221		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3222		return (0);
3223	}
3224}
3225
3226/*
3227 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3228 * Notice that we don't bother validating the proper number of arguments or
3229 * their types in the tuple stack.  This isn't needed because all argument
3230 * interpretation is safe because of our load safety -- the worst that can
3231 * happen is that a bogus program can obtain bogus results.
3232 */
3233static void
3234dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3235    dtrace_key_t *tupregs, int nargs,
3236    dtrace_mstate_t *mstate, dtrace_state_t *state)
3237{
3238	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3239	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3240	dtrace_vstate_t *vstate = &state->dts_vstate;
3241
3242#if defined(sun)
3243	union {
3244		mutex_impl_t mi;
3245		uint64_t mx;
3246	} m;
3247
3248	union {
3249		krwlock_t ri;
3250		uintptr_t rw;
3251	} r;
3252#else
3253	struct thread *lowner;
3254	union {
3255		struct lock_object *li;
3256		uintptr_t lx;
3257	} l;
3258#endif
3259
3260	switch (subr) {
3261	case DIF_SUBR_RAND:
3262		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3263		break;
3264
3265#if defined(sun)
3266	case DIF_SUBR_MUTEX_OWNED:
3267		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3268		    mstate, vstate)) {
3269			regs[rd] = 0;
3270			break;
3271		}
3272
3273		m.mx = dtrace_load64(tupregs[0].dttk_value);
3274		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3275			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3276		else
3277			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3278		break;
3279
3280	case DIF_SUBR_MUTEX_OWNER:
3281		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3282		    mstate, vstate)) {
3283			regs[rd] = 0;
3284			break;
3285		}
3286
3287		m.mx = dtrace_load64(tupregs[0].dttk_value);
3288		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3289		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3290			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3291		else
3292			regs[rd] = 0;
3293		break;
3294
3295	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3296		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3297		    mstate, vstate)) {
3298			regs[rd] = 0;
3299			break;
3300		}
3301
3302		m.mx = dtrace_load64(tupregs[0].dttk_value);
3303		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3304		break;
3305
3306	case DIF_SUBR_MUTEX_TYPE_SPIN:
3307		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3308		    mstate, vstate)) {
3309			regs[rd] = 0;
3310			break;
3311		}
3312
3313		m.mx = dtrace_load64(tupregs[0].dttk_value);
3314		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3315		break;
3316
3317	case DIF_SUBR_RW_READ_HELD: {
3318		uintptr_t tmp;
3319
3320		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3321		    mstate, vstate)) {
3322			regs[rd] = 0;
3323			break;
3324		}
3325
3326		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3327		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3328		break;
3329	}
3330
3331	case DIF_SUBR_RW_WRITE_HELD:
3332		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3333		    mstate, vstate)) {
3334			regs[rd] = 0;
3335			break;
3336		}
3337
3338		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3339		regs[rd] = _RW_WRITE_HELD(&r.ri);
3340		break;
3341
3342	case DIF_SUBR_RW_ISWRITER:
3343		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3344		    mstate, vstate)) {
3345			regs[rd] = 0;
3346			break;
3347		}
3348
3349		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3350		regs[rd] = _RW_ISWRITER(&r.ri);
3351		break;
3352
3353#else
3354	case DIF_SUBR_MUTEX_OWNED:
3355		if (!dtrace_canload(tupregs[0].dttk_value,
3356			sizeof (struct lock_object), mstate, vstate)) {
3357			regs[rd] = 0;
3358			break;
3359		}
3360		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3361		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3362		break;
3363
3364	case DIF_SUBR_MUTEX_OWNER:
3365		if (!dtrace_canload(tupregs[0].dttk_value,
3366			sizeof (struct lock_object), mstate, vstate)) {
3367			regs[rd] = 0;
3368			break;
3369		}
3370		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3371		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3372		regs[rd] = (uintptr_t)lowner;
3373		break;
3374
3375	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3376		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3377		    mstate, vstate)) {
3378			regs[rd] = 0;
3379			break;
3380		}
3381		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3382		/* XXX - should be only LC_SLEEPABLE? */
3383		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3384		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3385		break;
3386
3387	case DIF_SUBR_MUTEX_TYPE_SPIN:
3388		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3389		    mstate, vstate)) {
3390			regs[rd] = 0;
3391			break;
3392		}
3393		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3394		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3395		break;
3396
3397	case DIF_SUBR_RW_READ_HELD:
3398	case DIF_SUBR_SX_SHARED_HELD:
3399		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3400		    mstate, vstate)) {
3401			regs[rd] = 0;
3402			break;
3403		}
3404		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3405		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3406		    lowner == NULL;
3407		break;
3408
3409	case DIF_SUBR_RW_WRITE_HELD:
3410	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3411		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3412		    mstate, vstate)) {
3413			regs[rd] = 0;
3414			break;
3415		}
3416		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3417		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3418		regs[rd] = (lowner == curthread);
3419		break;
3420
3421	case DIF_SUBR_RW_ISWRITER:
3422	case DIF_SUBR_SX_ISEXCLUSIVE:
3423		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3424		    mstate, vstate)) {
3425			regs[rd] = 0;
3426			break;
3427		}
3428		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3429		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3430		    lowner != NULL;
3431		break;
3432#endif /* ! defined(sun) */
3433
3434	case DIF_SUBR_BCOPY: {
3435		/*
3436		 * We need to be sure that the destination is in the scratch
3437		 * region -- no other region is allowed.
3438		 */
3439		uintptr_t src = tupregs[0].dttk_value;
3440		uintptr_t dest = tupregs[1].dttk_value;
3441		size_t size = tupregs[2].dttk_value;
3442
3443		if (!dtrace_inscratch(dest, size, mstate)) {
3444			*flags |= CPU_DTRACE_BADADDR;
3445			*illval = regs[rd];
3446			break;
3447		}
3448
3449		if (!dtrace_canload(src, size, mstate, vstate)) {
3450			regs[rd] = 0;
3451			break;
3452		}
3453
3454		dtrace_bcopy((void *)src, (void *)dest, size);
3455		break;
3456	}
3457
3458	case DIF_SUBR_ALLOCA:
3459	case DIF_SUBR_COPYIN: {
3460		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3461		uint64_t size =
3462		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3463		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3464
3465		/*
3466		 * This action doesn't require any credential checks since
3467		 * probes will not activate in user contexts to which the
3468		 * enabling user does not have permissions.
3469		 */
3470
3471		/*
3472		 * Rounding up the user allocation size could have overflowed
3473		 * a large, bogus allocation (like -1ULL) to 0.
3474		 */
3475		if (scratch_size < size ||
3476		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3477			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3478			regs[rd] = 0;
3479			break;
3480		}
3481
3482		if (subr == DIF_SUBR_COPYIN) {
3483			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3484			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3485			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3486		}
3487
3488		mstate->dtms_scratch_ptr += scratch_size;
3489		regs[rd] = dest;
3490		break;
3491	}
3492
3493	case DIF_SUBR_COPYINTO: {
3494		uint64_t size = tupregs[1].dttk_value;
3495		uintptr_t dest = tupregs[2].dttk_value;
3496
3497		/*
3498		 * This action doesn't require any credential checks since
3499		 * probes will not activate in user contexts to which the
3500		 * enabling user does not have permissions.
3501		 */
3502		if (!dtrace_inscratch(dest, size, mstate)) {
3503			*flags |= CPU_DTRACE_BADADDR;
3504			*illval = regs[rd];
3505			break;
3506		}
3507
3508		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3509		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3510		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3511		break;
3512	}
3513
3514	case DIF_SUBR_COPYINSTR: {
3515		uintptr_t dest = mstate->dtms_scratch_ptr;
3516		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3517
3518		if (nargs > 1 && tupregs[1].dttk_value < size)
3519			size = tupregs[1].dttk_value + 1;
3520
3521		/*
3522		 * This action doesn't require any credential checks since
3523		 * probes will not activate in user contexts to which the
3524		 * enabling user does not have permissions.
3525		 */
3526		if (!DTRACE_INSCRATCH(mstate, size)) {
3527			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3528			regs[rd] = 0;
3529			break;
3530		}
3531
3532		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3533		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3534		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3535
3536		((char *)dest)[size - 1] = '\0';
3537		mstate->dtms_scratch_ptr += size;
3538		regs[rd] = dest;
3539		break;
3540	}
3541
3542#if defined(sun)
3543	case DIF_SUBR_MSGSIZE:
3544	case DIF_SUBR_MSGDSIZE: {
3545		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3546		uintptr_t wptr, rptr;
3547		size_t count = 0;
3548		int cont = 0;
3549
3550		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3551
3552			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3553			    vstate)) {
3554				regs[rd] = 0;
3555				break;
3556			}
3557
3558			wptr = dtrace_loadptr(baddr +
3559			    offsetof(mblk_t, b_wptr));
3560
3561			rptr = dtrace_loadptr(baddr +
3562			    offsetof(mblk_t, b_rptr));
3563
3564			if (wptr < rptr) {
3565				*flags |= CPU_DTRACE_BADADDR;
3566				*illval = tupregs[0].dttk_value;
3567				break;
3568			}
3569
3570			daddr = dtrace_loadptr(baddr +
3571			    offsetof(mblk_t, b_datap));
3572
3573			baddr = dtrace_loadptr(baddr +
3574			    offsetof(mblk_t, b_cont));
3575
3576			/*
3577			 * We want to prevent against denial-of-service here,
3578			 * so we're only going to search the list for
3579			 * dtrace_msgdsize_max mblks.
3580			 */
3581			if (cont++ > dtrace_msgdsize_max) {
3582				*flags |= CPU_DTRACE_ILLOP;
3583				break;
3584			}
3585
3586			if (subr == DIF_SUBR_MSGDSIZE) {
3587				if (dtrace_load8(daddr +
3588				    offsetof(dblk_t, db_type)) != M_DATA)
3589					continue;
3590			}
3591
3592			count += wptr - rptr;
3593		}
3594
3595		if (!(*flags & CPU_DTRACE_FAULT))
3596			regs[rd] = count;
3597
3598		break;
3599	}
3600#endif
3601
3602	case DIF_SUBR_PROGENYOF: {
3603		pid_t pid = tupregs[0].dttk_value;
3604		proc_t *p;
3605		int rval = 0;
3606
3607		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3608
3609		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3610#if defined(sun)
3611			if (p->p_pidp->pid_id == pid) {
3612#else
3613			if (p->p_pid == pid) {
3614#endif
3615				rval = 1;
3616				break;
3617			}
3618		}
3619
3620		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3621
3622		regs[rd] = rval;
3623		break;
3624	}
3625
3626	case DIF_SUBR_SPECULATION:
3627		regs[rd] = dtrace_speculation(state);
3628		break;
3629
3630	case DIF_SUBR_COPYOUT: {
3631		uintptr_t kaddr = tupregs[0].dttk_value;
3632		uintptr_t uaddr = tupregs[1].dttk_value;
3633		uint64_t size = tupregs[2].dttk_value;
3634
3635		if (!dtrace_destructive_disallow &&
3636		    dtrace_priv_proc_control(state) &&
3637		    !dtrace_istoxic(kaddr, size)) {
3638			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3639			dtrace_copyout(kaddr, uaddr, size, flags);
3640			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3641		}
3642		break;
3643	}
3644
3645	case DIF_SUBR_COPYOUTSTR: {
3646		uintptr_t kaddr = tupregs[0].dttk_value;
3647		uintptr_t uaddr = tupregs[1].dttk_value;
3648		uint64_t size = tupregs[2].dttk_value;
3649
3650		if (!dtrace_destructive_disallow &&
3651		    dtrace_priv_proc_control(state) &&
3652		    !dtrace_istoxic(kaddr, size)) {
3653			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3654			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3655			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3656		}
3657		break;
3658	}
3659
3660	case DIF_SUBR_STRLEN: {
3661		size_t sz;
3662		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3663		sz = dtrace_strlen((char *)addr,
3664		    state->dts_options[DTRACEOPT_STRSIZE]);
3665
3666		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3667			regs[rd] = 0;
3668			break;
3669		}
3670
3671		regs[rd] = sz;
3672
3673		break;
3674	}
3675
3676	case DIF_SUBR_STRCHR:
3677	case DIF_SUBR_STRRCHR: {
3678		/*
3679		 * We're going to iterate over the string looking for the
3680		 * specified character.  We will iterate until we have reached
3681		 * the string length or we have found the character.  If this
3682		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3683		 * of the specified character instead of the first.
3684		 */
3685		uintptr_t saddr = tupregs[0].dttk_value;
3686		uintptr_t addr = tupregs[0].dttk_value;
3687		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3688		char c, target = (char)tupregs[1].dttk_value;
3689
3690		for (regs[rd] = 0; addr < limit; addr++) {
3691			if ((c = dtrace_load8(addr)) == target) {
3692				regs[rd] = addr;
3693
3694				if (subr == DIF_SUBR_STRCHR)
3695					break;
3696			}
3697
3698			if (c == '\0')
3699				break;
3700		}
3701
3702		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3703			regs[rd] = 0;
3704			break;
3705		}
3706
3707		break;
3708	}
3709
3710	case DIF_SUBR_STRSTR:
3711	case DIF_SUBR_INDEX:
3712	case DIF_SUBR_RINDEX: {
3713		/*
3714		 * We're going to iterate over the string looking for the
3715		 * specified string.  We will iterate until we have reached
3716		 * the string length or we have found the string.  (Yes, this
3717		 * is done in the most naive way possible -- but considering
3718		 * that the string we're searching for is likely to be
3719		 * relatively short, the complexity of Rabin-Karp or similar
3720		 * hardly seems merited.)
3721		 */
3722		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3723		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3724		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3725		size_t len = dtrace_strlen(addr, size);
3726		size_t sublen = dtrace_strlen(substr, size);
3727		char *limit = addr + len, *orig = addr;
3728		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3729		int inc = 1;
3730
3731		regs[rd] = notfound;
3732
3733		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3734			regs[rd] = 0;
3735			break;
3736		}
3737
3738		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3739		    vstate)) {
3740			regs[rd] = 0;
3741			break;
3742		}
3743
3744		/*
3745		 * strstr() and index()/rindex() have similar semantics if
3746		 * both strings are the empty string: strstr() returns a
3747		 * pointer to the (empty) string, and index() and rindex()
3748		 * both return index 0 (regardless of any position argument).
3749		 */
3750		if (sublen == 0 && len == 0) {
3751			if (subr == DIF_SUBR_STRSTR)
3752				regs[rd] = (uintptr_t)addr;
3753			else
3754				regs[rd] = 0;
3755			break;
3756		}
3757
3758		if (subr != DIF_SUBR_STRSTR) {
3759			if (subr == DIF_SUBR_RINDEX) {
3760				limit = orig - 1;
3761				addr += len;
3762				inc = -1;
3763			}
3764
3765			/*
3766			 * Both index() and rindex() take an optional position
3767			 * argument that denotes the starting position.
3768			 */
3769			if (nargs == 3) {
3770				int64_t pos = (int64_t)tupregs[2].dttk_value;
3771
3772				/*
3773				 * If the position argument to index() is
3774				 * negative, Perl implicitly clamps it at
3775				 * zero.  This semantic is a little surprising
3776				 * given the special meaning of negative
3777				 * positions to similar Perl functions like
3778				 * substr(), but it appears to reflect a
3779				 * notion that index() can start from a
3780				 * negative index and increment its way up to
3781				 * the string.  Given this notion, Perl's
3782				 * rindex() is at least self-consistent in
3783				 * that it implicitly clamps positions greater
3784				 * than the string length to be the string
3785				 * length.  Where Perl completely loses
3786				 * coherence, however, is when the specified
3787				 * substring is the empty string ("").  In
3788				 * this case, even if the position is
3789				 * negative, rindex() returns 0 -- and even if
3790				 * the position is greater than the length,
3791				 * index() returns the string length.  These
3792				 * semantics violate the notion that index()
3793				 * should never return a value less than the
3794				 * specified position and that rindex() should
3795				 * never return a value greater than the
3796				 * specified position.  (One assumes that
3797				 * these semantics are artifacts of Perl's
3798				 * implementation and not the results of
3799				 * deliberate design -- it beggars belief that
3800				 * even Larry Wall could desire such oddness.)
3801				 * While in the abstract one would wish for
3802				 * consistent position semantics across
3803				 * substr(), index() and rindex() -- or at the
3804				 * very least self-consistent position
3805				 * semantics for index() and rindex() -- we
3806				 * instead opt to keep with the extant Perl
3807				 * semantics, in all their broken glory.  (Do
3808				 * we have more desire to maintain Perl's
3809				 * semantics than Perl does?  Probably.)
3810				 */
3811				if (subr == DIF_SUBR_RINDEX) {
3812					if (pos < 0) {
3813						if (sublen == 0)
3814							regs[rd] = 0;
3815						break;
3816					}
3817
3818					if (pos > len)
3819						pos = len;
3820				} else {
3821					if (pos < 0)
3822						pos = 0;
3823
3824					if (pos >= len) {
3825						if (sublen == 0)
3826							regs[rd] = len;
3827						break;
3828					}
3829				}
3830
3831				addr = orig + pos;
3832			}
3833		}
3834
3835		for (regs[rd] = notfound; addr != limit; addr += inc) {
3836			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3837				if (subr != DIF_SUBR_STRSTR) {
3838					/*
3839					 * As D index() and rindex() are
3840					 * modeled on Perl (and not on awk),
3841					 * we return a zero-based (and not a
3842					 * one-based) index.  (For you Perl
3843					 * weenies: no, we're not going to add
3844					 * $[ -- and shouldn't you be at a con
3845					 * or something?)
3846					 */
3847					regs[rd] = (uintptr_t)(addr - orig);
3848					break;
3849				}
3850
3851				ASSERT(subr == DIF_SUBR_STRSTR);
3852				regs[rd] = (uintptr_t)addr;
3853				break;
3854			}
3855		}
3856
3857		break;
3858	}
3859
3860	case DIF_SUBR_STRTOK: {
3861		uintptr_t addr = tupregs[0].dttk_value;
3862		uintptr_t tokaddr = tupregs[1].dttk_value;
3863		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3864		uintptr_t limit, toklimit = tokaddr + size;
3865		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3866		char *dest = (char *)mstate->dtms_scratch_ptr;
3867		int i;
3868
3869		/*
3870		 * Check both the token buffer and (later) the input buffer,
3871		 * since both could be non-scratch addresses.
3872		 */
3873		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3874			regs[rd] = 0;
3875			break;
3876		}
3877
3878		if (!DTRACE_INSCRATCH(mstate, size)) {
3879			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3880			regs[rd] = 0;
3881			break;
3882		}
3883
3884		if (addr == 0) {
3885			/*
3886			 * If the address specified is NULL, we use our saved
3887			 * strtok pointer from the mstate.  Note that this
3888			 * means that the saved strtok pointer is _only_
3889			 * valid within multiple enablings of the same probe --
3890			 * it behaves like an implicit clause-local variable.
3891			 */
3892			addr = mstate->dtms_strtok;
3893		} else {
3894			/*
3895			 * If the user-specified address is non-NULL we must
3896			 * access check it.  This is the only time we have
3897			 * a chance to do so, since this address may reside
3898			 * in the string table of this clause-- future calls
3899			 * (when we fetch addr from mstate->dtms_strtok)
3900			 * would fail this access check.
3901			 */
3902			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3903				regs[rd] = 0;
3904				break;
3905			}
3906		}
3907
3908		/*
3909		 * First, zero the token map, and then process the token
3910		 * string -- setting a bit in the map for every character
3911		 * found in the token string.
3912		 */
3913		for (i = 0; i < sizeof (tokmap); i++)
3914			tokmap[i] = 0;
3915
3916		for (; tokaddr < toklimit; tokaddr++) {
3917			if ((c = dtrace_load8(tokaddr)) == '\0')
3918				break;
3919
3920			ASSERT((c >> 3) < sizeof (tokmap));
3921			tokmap[c >> 3] |= (1 << (c & 0x7));
3922		}
3923
3924		for (limit = addr + size; addr < limit; addr++) {
3925			/*
3926			 * We're looking for a character that is _not_ contained
3927			 * in the token string.
3928			 */
3929			if ((c = dtrace_load8(addr)) == '\0')
3930				break;
3931
3932			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3933				break;
3934		}
3935
3936		if (c == '\0') {
3937			/*
3938			 * We reached the end of the string without finding
3939			 * any character that was not in the token string.
3940			 * We return NULL in this case, and we set the saved
3941			 * address to NULL as well.
3942			 */
3943			regs[rd] = 0;
3944			mstate->dtms_strtok = 0;
3945			break;
3946		}
3947
3948		/*
3949		 * From here on, we're copying into the destination string.
3950		 */
3951		for (i = 0; addr < limit && i < size - 1; addr++) {
3952			if ((c = dtrace_load8(addr)) == '\0')
3953				break;
3954
3955			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3956				break;
3957
3958			ASSERT(i < size);
3959			dest[i++] = c;
3960		}
3961
3962		ASSERT(i < size);
3963		dest[i] = '\0';
3964		regs[rd] = (uintptr_t)dest;
3965		mstate->dtms_scratch_ptr += size;
3966		mstate->dtms_strtok = addr;
3967		break;
3968	}
3969
3970	case DIF_SUBR_SUBSTR: {
3971		uintptr_t s = tupregs[0].dttk_value;
3972		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3973		char *d = (char *)mstate->dtms_scratch_ptr;
3974		int64_t index = (int64_t)tupregs[1].dttk_value;
3975		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3976		size_t len = dtrace_strlen((char *)s, size);
3977		int64_t i = 0;
3978
3979		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3980			regs[rd] = 0;
3981			break;
3982		}
3983
3984		if (!DTRACE_INSCRATCH(mstate, size)) {
3985			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3986			regs[rd] = 0;
3987			break;
3988		}
3989
3990		if (nargs <= 2)
3991			remaining = (int64_t)size;
3992
3993		if (index < 0) {
3994			index += len;
3995
3996			if (index < 0 && index + remaining > 0) {
3997				remaining += index;
3998				index = 0;
3999			}
4000		}
4001
4002		if (index >= len || index < 0) {
4003			remaining = 0;
4004		} else if (remaining < 0) {
4005			remaining += len - index;
4006		} else if (index + remaining > size) {
4007			remaining = size - index;
4008		}
4009
4010		for (i = 0; i < remaining; i++) {
4011			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4012				break;
4013		}
4014
4015		d[i] = '\0';
4016
4017		mstate->dtms_scratch_ptr += size;
4018		regs[rd] = (uintptr_t)d;
4019		break;
4020	}
4021
4022#if defined(sun)
4023	case DIF_SUBR_GETMAJOR:
4024#ifdef _LP64
4025		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4026#else
4027		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4028#endif
4029		break;
4030
4031	case DIF_SUBR_GETMINOR:
4032#ifdef _LP64
4033		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4034#else
4035		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4036#endif
4037		break;
4038
4039	case DIF_SUBR_DDI_PATHNAME: {
4040		/*
4041		 * This one is a galactic mess.  We are going to roughly
4042		 * emulate ddi_pathname(), but it's made more complicated
4043		 * by the fact that we (a) want to include the minor name and
4044		 * (b) must proceed iteratively instead of recursively.
4045		 */
4046		uintptr_t dest = mstate->dtms_scratch_ptr;
4047		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4048		char *start = (char *)dest, *end = start + size - 1;
4049		uintptr_t daddr = tupregs[0].dttk_value;
4050		int64_t minor = (int64_t)tupregs[1].dttk_value;
4051		char *s;
4052		int i, len, depth = 0;
4053
4054		/*
4055		 * Due to all the pointer jumping we do and context we must
4056		 * rely upon, we just mandate that the user must have kernel
4057		 * read privileges to use this routine.
4058		 */
4059		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4060			*flags |= CPU_DTRACE_KPRIV;
4061			*illval = daddr;
4062			regs[rd] = 0;
4063		}
4064
4065		if (!DTRACE_INSCRATCH(mstate, size)) {
4066			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4067			regs[rd] = 0;
4068			break;
4069		}
4070
4071		*end = '\0';
4072
4073		/*
4074		 * We want to have a name for the minor.  In order to do this,
4075		 * we need to walk the minor list from the devinfo.  We want
4076		 * to be sure that we don't infinitely walk a circular list,
4077		 * so we check for circularity by sending a scout pointer
4078		 * ahead two elements for every element that we iterate over;
4079		 * if the list is circular, these will ultimately point to the
4080		 * same element.  You may recognize this little trick as the
4081		 * answer to a stupid interview question -- one that always
4082		 * seems to be asked by those who had to have it laboriously
4083		 * explained to them, and who can't even concisely describe
4084		 * the conditions under which one would be forced to resort to
4085		 * this technique.  Needless to say, those conditions are
4086		 * found here -- and probably only here.  Is this the only use
4087		 * of this infamous trick in shipping, production code?  If it
4088		 * isn't, it probably should be...
4089		 */
4090		if (minor != -1) {
4091			uintptr_t maddr = dtrace_loadptr(daddr +
4092			    offsetof(struct dev_info, devi_minor));
4093
4094			uintptr_t next = offsetof(struct ddi_minor_data, next);
4095			uintptr_t name = offsetof(struct ddi_minor_data,
4096			    d_minor) + offsetof(struct ddi_minor, name);
4097			uintptr_t dev = offsetof(struct ddi_minor_data,
4098			    d_minor) + offsetof(struct ddi_minor, dev);
4099			uintptr_t scout;
4100
4101			if (maddr != NULL)
4102				scout = dtrace_loadptr(maddr + next);
4103
4104			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4105				uint64_t m;
4106#ifdef _LP64
4107				m = dtrace_load64(maddr + dev) & MAXMIN64;
4108#else
4109				m = dtrace_load32(maddr + dev) & MAXMIN;
4110#endif
4111				if (m != minor) {
4112					maddr = dtrace_loadptr(maddr + next);
4113
4114					if (scout == NULL)
4115						continue;
4116
4117					scout = dtrace_loadptr(scout + next);
4118
4119					if (scout == NULL)
4120						continue;
4121
4122					scout = dtrace_loadptr(scout + next);
4123
4124					if (scout == NULL)
4125						continue;
4126
4127					if (scout == maddr) {
4128						*flags |= CPU_DTRACE_ILLOP;
4129						break;
4130					}
4131
4132					continue;
4133				}
4134
4135				/*
4136				 * We have the minor data.  Now we need to
4137				 * copy the minor's name into the end of the
4138				 * pathname.
4139				 */
4140				s = (char *)dtrace_loadptr(maddr + name);
4141				len = dtrace_strlen(s, size);
4142
4143				if (*flags & CPU_DTRACE_FAULT)
4144					break;
4145
4146				if (len != 0) {
4147					if ((end -= (len + 1)) < start)
4148						break;
4149
4150					*end = ':';
4151				}
4152
4153				for (i = 1; i <= len; i++)
4154					end[i] = dtrace_load8((uintptr_t)s++);
4155				break;
4156			}
4157		}
4158
4159		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4160			ddi_node_state_t devi_state;
4161
4162			devi_state = dtrace_load32(daddr +
4163			    offsetof(struct dev_info, devi_node_state));
4164
4165			if (*flags & CPU_DTRACE_FAULT)
4166				break;
4167
4168			if (devi_state >= DS_INITIALIZED) {
4169				s = (char *)dtrace_loadptr(daddr +
4170				    offsetof(struct dev_info, devi_addr));
4171				len = dtrace_strlen(s, size);
4172
4173				if (*flags & CPU_DTRACE_FAULT)
4174					break;
4175
4176				if (len != 0) {
4177					if ((end -= (len + 1)) < start)
4178						break;
4179
4180					*end = '@';
4181				}
4182
4183				for (i = 1; i <= len; i++)
4184					end[i] = dtrace_load8((uintptr_t)s++);
4185			}
4186
4187			/*
4188			 * Now for the node name...
4189			 */
4190			s = (char *)dtrace_loadptr(daddr +
4191			    offsetof(struct dev_info, devi_node_name));
4192
4193			daddr = dtrace_loadptr(daddr +
4194			    offsetof(struct dev_info, devi_parent));
4195
4196			/*
4197			 * If our parent is NULL (that is, if we're the root
4198			 * node), we're going to use the special path
4199			 * "devices".
4200			 */
4201			if (daddr == 0)
4202				s = "devices";
4203
4204			len = dtrace_strlen(s, size);
4205			if (*flags & CPU_DTRACE_FAULT)
4206				break;
4207
4208			if ((end -= (len + 1)) < start)
4209				break;
4210
4211			for (i = 1; i <= len; i++)
4212				end[i] = dtrace_load8((uintptr_t)s++);
4213			*end = '/';
4214
4215			if (depth++ > dtrace_devdepth_max) {
4216				*flags |= CPU_DTRACE_ILLOP;
4217				break;
4218			}
4219		}
4220
4221		if (end < start)
4222			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4223
4224		if (daddr == 0) {
4225			regs[rd] = (uintptr_t)end;
4226			mstate->dtms_scratch_ptr += size;
4227		}
4228
4229		break;
4230	}
4231#endif
4232
4233	case DIF_SUBR_STRJOIN: {
4234		char *d = (char *)mstate->dtms_scratch_ptr;
4235		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4236		uintptr_t s1 = tupregs[0].dttk_value;
4237		uintptr_t s2 = tupregs[1].dttk_value;
4238		int i = 0;
4239
4240		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4241		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4242			regs[rd] = 0;
4243			break;
4244		}
4245
4246		if (!DTRACE_INSCRATCH(mstate, size)) {
4247			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4248			regs[rd] = 0;
4249			break;
4250		}
4251
4252		for (;;) {
4253			if (i >= size) {
4254				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4255				regs[rd] = 0;
4256				break;
4257			}
4258
4259			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4260				i--;
4261				break;
4262			}
4263		}
4264
4265		for (;;) {
4266			if (i >= size) {
4267				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4268				regs[rd] = 0;
4269				break;
4270			}
4271
4272			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4273				break;
4274		}
4275
4276		if (i < size) {
4277			mstate->dtms_scratch_ptr += i;
4278			regs[rd] = (uintptr_t)d;
4279		}
4280
4281		break;
4282	}
4283
4284	case DIF_SUBR_LLTOSTR: {
4285		int64_t i = (int64_t)tupregs[0].dttk_value;
4286		int64_t val = i < 0 ? i * -1 : i;
4287		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4288		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4289
4290		if (!DTRACE_INSCRATCH(mstate, size)) {
4291			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4292			regs[rd] = 0;
4293			break;
4294		}
4295
4296		for (*end-- = '\0'; val; val /= 10)
4297			*end-- = '0' + (val % 10);
4298
4299		if (i == 0)
4300			*end-- = '0';
4301
4302		if (i < 0)
4303			*end-- = '-';
4304
4305		regs[rd] = (uintptr_t)end + 1;
4306		mstate->dtms_scratch_ptr += size;
4307		break;
4308	}
4309
4310	case DIF_SUBR_HTONS:
4311	case DIF_SUBR_NTOHS:
4312#if BYTE_ORDER == BIG_ENDIAN
4313		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4314#else
4315		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4316#endif
4317		break;
4318
4319
4320	case DIF_SUBR_HTONL:
4321	case DIF_SUBR_NTOHL:
4322#if BYTE_ORDER == BIG_ENDIAN
4323		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4324#else
4325		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4326#endif
4327		break;
4328
4329
4330	case DIF_SUBR_HTONLL:
4331	case DIF_SUBR_NTOHLL:
4332#if BYTE_ORDER == BIG_ENDIAN
4333		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4334#else
4335		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4336#endif
4337		break;
4338
4339
4340	case DIF_SUBR_DIRNAME:
4341	case DIF_SUBR_BASENAME: {
4342		char *dest = (char *)mstate->dtms_scratch_ptr;
4343		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4344		uintptr_t src = tupregs[0].dttk_value;
4345		int i, j, len = dtrace_strlen((char *)src, size);
4346		int lastbase = -1, firstbase = -1, lastdir = -1;
4347		int start, end;
4348
4349		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4350			regs[rd] = 0;
4351			break;
4352		}
4353
4354		if (!DTRACE_INSCRATCH(mstate, size)) {
4355			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4356			regs[rd] = 0;
4357			break;
4358		}
4359
4360		/*
4361		 * The basename and dirname for a zero-length string is
4362		 * defined to be "."
4363		 */
4364		if (len == 0) {
4365			len = 1;
4366			src = (uintptr_t)".";
4367		}
4368
4369		/*
4370		 * Start from the back of the string, moving back toward the
4371		 * front until we see a character that isn't a slash.  That
4372		 * character is the last character in the basename.
4373		 */
4374		for (i = len - 1; i >= 0; i--) {
4375			if (dtrace_load8(src + i) != '/')
4376				break;
4377		}
4378
4379		if (i >= 0)
4380			lastbase = i;
4381
4382		/*
4383		 * Starting from the last character in the basename, move
4384		 * towards the front until we find a slash.  The character
4385		 * that we processed immediately before that is the first
4386		 * character in the basename.
4387		 */
4388		for (; i >= 0; i--) {
4389			if (dtrace_load8(src + i) == '/')
4390				break;
4391		}
4392
4393		if (i >= 0)
4394			firstbase = i + 1;
4395
4396		/*
4397		 * Now keep going until we find a non-slash character.  That
4398		 * character is the last character in the dirname.
4399		 */
4400		for (; i >= 0; i--) {
4401			if (dtrace_load8(src + i) != '/')
4402				break;
4403		}
4404
4405		if (i >= 0)
4406			lastdir = i;
4407
4408		ASSERT(!(lastbase == -1 && firstbase != -1));
4409		ASSERT(!(firstbase == -1 && lastdir != -1));
4410
4411		if (lastbase == -1) {
4412			/*
4413			 * We didn't find a non-slash character.  We know that
4414			 * the length is non-zero, so the whole string must be
4415			 * slashes.  In either the dirname or the basename
4416			 * case, we return '/'.
4417			 */
4418			ASSERT(firstbase == -1);
4419			firstbase = lastbase = lastdir = 0;
4420		}
4421
4422		if (firstbase == -1) {
4423			/*
4424			 * The entire string consists only of a basename
4425			 * component.  If we're looking for dirname, we need
4426			 * to change our string to be just "."; if we're
4427			 * looking for a basename, we'll just set the first
4428			 * character of the basename to be 0.
4429			 */
4430			if (subr == DIF_SUBR_DIRNAME) {
4431				ASSERT(lastdir == -1);
4432				src = (uintptr_t)".";
4433				lastdir = 0;
4434			} else {
4435				firstbase = 0;
4436			}
4437		}
4438
4439		if (subr == DIF_SUBR_DIRNAME) {
4440			if (lastdir == -1) {
4441				/*
4442				 * We know that we have a slash in the name --
4443				 * or lastdir would be set to 0, above.  And
4444				 * because lastdir is -1, we know that this
4445				 * slash must be the first character.  (That
4446				 * is, the full string must be of the form
4447				 * "/basename".)  In this case, the last
4448				 * character of the directory name is 0.
4449				 */
4450				lastdir = 0;
4451			}
4452
4453			start = 0;
4454			end = lastdir;
4455		} else {
4456			ASSERT(subr == DIF_SUBR_BASENAME);
4457			ASSERT(firstbase != -1 && lastbase != -1);
4458			start = firstbase;
4459			end = lastbase;
4460		}
4461
4462		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4463			dest[j] = dtrace_load8(src + i);
4464
4465		dest[j] = '\0';
4466		regs[rd] = (uintptr_t)dest;
4467		mstate->dtms_scratch_ptr += size;
4468		break;
4469	}
4470
4471	case DIF_SUBR_CLEANPATH: {
4472		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4473		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4474		uintptr_t src = tupregs[0].dttk_value;
4475		int i = 0, j = 0;
4476
4477		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4478			regs[rd] = 0;
4479			break;
4480		}
4481
4482		if (!DTRACE_INSCRATCH(mstate, size)) {
4483			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4484			regs[rd] = 0;
4485			break;
4486		}
4487
4488		/*
4489		 * Move forward, loading each character.
4490		 */
4491		do {
4492			c = dtrace_load8(src + i++);
4493next:
4494			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4495				break;
4496
4497			if (c != '/') {
4498				dest[j++] = c;
4499				continue;
4500			}
4501
4502			c = dtrace_load8(src + i++);
4503
4504			if (c == '/') {
4505				/*
4506				 * We have two slashes -- we can just advance
4507				 * to the next character.
4508				 */
4509				goto next;
4510			}
4511
4512			if (c != '.') {
4513				/*
4514				 * This is not "." and it's not ".." -- we can
4515				 * just store the "/" and this character and
4516				 * drive on.
4517				 */
4518				dest[j++] = '/';
4519				dest[j++] = c;
4520				continue;
4521			}
4522
4523			c = dtrace_load8(src + i++);
4524
4525			if (c == '/') {
4526				/*
4527				 * This is a "/./" component.  We're not going
4528				 * to store anything in the destination buffer;
4529				 * we're just going to go to the next component.
4530				 */
4531				goto next;
4532			}
4533
4534			if (c != '.') {
4535				/*
4536				 * This is not ".." -- we can just store the
4537				 * "/." and this character and continue
4538				 * processing.
4539				 */
4540				dest[j++] = '/';
4541				dest[j++] = '.';
4542				dest[j++] = c;
4543				continue;
4544			}
4545
4546			c = dtrace_load8(src + i++);
4547
4548			if (c != '/' && c != '\0') {
4549				/*
4550				 * This is not ".." -- it's "..[mumble]".
4551				 * We'll store the "/.." and this character
4552				 * and continue processing.
4553				 */
4554				dest[j++] = '/';
4555				dest[j++] = '.';
4556				dest[j++] = '.';
4557				dest[j++] = c;
4558				continue;
4559			}
4560
4561			/*
4562			 * This is "/../" or "/..\0".  We need to back up
4563			 * our destination pointer until we find a "/".
4564			 */
4565			i--;
4566			while (j != 0 && dest[--j] != '/')
4567				continue;
4568
4569			if (c == '\0')
4570				dest[++j] = '/';
4571		} while (c != '\0');
4572
4573		dest[j] = '\0';
4574		regs[rd] = (uintptr_t)dest;
4575		mstate->dtms_scratch_ptr += size;
4576		break;
4577	}
4578
4579	case DIF_SUBR_INET_NTOA:
4580	case DIF_SUBR_INET_NTOA6:
4581	case DIF_SUBR_INET_NTOP: {
4582		size_t size;
4583		int af, argi, i;
4584		char *base, *end;
4585
4586		if (subr == DIF_SUBR_INET_NTOP) {
4587			af = (int)tupregs[0].dttk_value;
4588			argi = 1;
4589		} else {
4590			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4591			argi = 0;
4592		}
4593
4594		if (af == AF_INET) {
4595			ipaddr_t ip4;
4596			uint8_t *ptr8, val;
4597
4598			/*
4599			 * Safely load the IPv4 address.
4600			 */
4601			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4602
4603			/*
4604			 * Check an IPv4 string will fit in scratch.
4605			 */
4606			size = INET_ADDRSTRLEN;
4607			if (!DTRACE_INSCRATCH(mstate, size)) {
4608				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4609				regs[rd] = 0;
4610				break;
4611			}
4612			base = (char *)mstate->dtms_scratch_ptr;
4613			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4614
4615			/*
4616			 * Stringify as a dotted decimal quad.
4617			 */
4618			*end-- = '\0';
4619			ptr8 = (uint8_t *)&ip4;
4620			for (i = 3; i >= 0; i--) {
4621				val = ptr8[i];
4622
4623				if (val == 0) {
4624					*end-- = '0';
4625				} else {
4626					for (; val; val /= 10) {
4627						*end-- = '0' + (val % 10);
4628					}
4629				}
4630
4631				if (i > 0)
4632					*end-- = '.';
4633			}
4634			ASSERT(end + 1 >= base);
4635
4636		} else if (af == AF_INET6) {
4637			struct in6_addr ip6;
4638			int firstzero, tryzero, numzero, v6end;
4639			uint16_t val;
4640			const char digits[] = "0123456789abcdef";
4641
4642			/*
4643			 * Stringify using RFC 1884 convention 2 - 16 bit
4644			 * hexadecimal values with a zero-run compression.
4645			 * Lower case hexadecimal digits are used.
4646			 * 	eg, fe80::214:4fff:fe0b:76c8.
4647			 * The IPv4 embedded form is returned for inet_ntop,
4648			 * just the IPv4 string is returned for inet_ntoa6.
4649			 */
4650
4651			/*
4652			 * Safely load the IPv6 address.
4653			 */
4654			dtrace_bcopy(
4655			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4656			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4657
4658			/*
4659			 * Check an IPv6 string will fit in scratch.
4660			 */
4661			size = INET6_ADDRSTRLEN;
4662			if (!DTRACE_INSCRATCH(mstate, size)) {
4663				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4664				regs[rd] = 0;
4665				break;
4666			}
4667			base = (char *)mstate->dtms_scratch_ptr;
4668			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4669			*end-- = '\0';
4670
4671			/*
4672			 * Find the longest run of 16 bit zero values
4673			 * for the single allowed zero compression - "::".
4674			 */
4675			firstzero = -1;
4676			tryzero = -1;
4677			numzero = 1;
4678			for (i = 0; i < sizeof (struct in6_addr); i++) {
4679#if defined(sun)
4680				if (ip6._S6_un._S6_u8[i] == 0 &&
4681#else
4682				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4683#endif
4684				    tryzero == -1 && i % 2 == 0) {
4685					tryzero = i;
4686					continue;
4687				}
4688
4689				if (tryzero != -1 &&
4690#if defined(sun)
4691				    (ip6._S6_un._S6_u8[i] != 0 ||
4692#else
4693				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4694#endif
4695				    i == sizeof (struct in6_addr) - 1)) {
4696
4697					if (i - tryzero <= numzero) {
4698						tryzero = -1;
4699						continue;
4700					}
4701
4702					firstzero = tryzero;
4703					numzero = i - i % 2 - tryzero;
4704					tryzero = -1;
4705
4706#if defined(sun)
4707					if (ip6._S6_un._S6_u8[i] == 0 &&
4708#else
4709					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4710#endif
4711					    i == sizeof (struct in6_addr) - 1)
4712						numzero += 2;
4713				}
4714			}
4715			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4716
4717			/*
4718			 * Check for an IPv4 embedded address.
4719			 */
4720			v6end = sizeof (struct in6_addr) - 2;
4721			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4722			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4723				for (i = sizeof (struct in6_addr) - 1;
4724				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4725					ASSERT(end >= base);
4726
4727#if defined(sun)
4728					val = ip6._S6_un._S6_u8[i];
4729#else
4730					val = ip6.__u6_addr.__u6_addr8[i];
4731#endif
4732
4733					if (val == 0) {
4734						*end-- = '0';
4735					} else {
4736						for (; val; val /= 10) {
4737							*end-- = '0' + val % 10;
4738						}
4739					}
4740
4741					if (i > DTRACE_V4MAPPED_OFFSET)
4742						*end-- = '.';
4743				}
4744
4745				if (subr == DIF_SUBR_INET_NTOA6)
4746					goto inetout;
4747
4748				/*
4749				 * Set v6end to skip the IPv4 address that
4750				 * we have already stringified.
4751				 */
4752				v6end = 10;
4753			}
4754
4755			/*
4756			 * Build the IPv6 string by working through the
4757			 * address in reverse.
4758			 */
4759			for (i = v6end; i >= 0; i -= 2) {
4760				ASSERT(end >= base);
4761
4762				if (i == firstzero + numzero - 2) {
4763					*end-- = ':';
4764					*end-- = ':';
4765					i -= numzero - 2;
4766					continue;
4767				}
4768
4769				if (i < 14 && i != firstzero - 2)
4770					*end-- = ':';
4771
4772#if defined(sun)
4773				val = (ip6._S6_un._S6_u8[i] << 8) +
4774				    ip6._S6_un._S6_u8[i + 1];
4775#else
4776				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4777				    ip6.__u6_addr.__u6_addr8[i + 1];
4778#endif
4779
4780				if (val == 0) {
4781					*end-- = '0';
4782				} else {
4783					for (; val; val /= 16) {
4784						*end-- = digits[val % 16];
4785					}
4786				}
4787			}
4788			ASSERT(end + 1 >= base);
4789
4790		} else {
4791			/*
4792			 * The user didn't use AH_INET or AH_INET6.
4793			 */
4794			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4795			regs[rd] = 0;
4796			break;
4797		}
4798
4799inetout:	regs[rd] = (uintptr_t)end + 1;
4800		mstate->dtms_scratch_ptr += size;
4801		break;
4802	}
4803
4804	case DIF_SUBR_MEMREF: {
4805		uintptr_t size = 2 * sizeof(uintptr_t);
4806		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4807		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4808
4809		/* address and length */
4810		memref[0] = tupregs[0].dttk_value;
4811		memref[1] = tupregs[1].dttk_value;
4812
4813		regs[rd] = (uintptr_t) memref;
4814		mstate->dtms_scratch_ptr += scratch_size;
4815		break;
4816	}
4817
4818	case DIF_SUBR_TYPEREF: {
4819		uintptr_t size = 4 * sizeof(uintptr_t);
4820		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4821		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4822
4823		/* address, num_elements, type_str, type_len */
4824		typeref[0] = tupregs[0].dttk_value;
4825		typeref[1] = tupregs[1].dttk_value;
4826		typeref[2] = tupregs[2].dttk_value;
4827		typeref[3] = tupregs[3].dttk_value;
4828
4829		regs[rd] = (uintptr_t) typeref;
4830		mstate->dtms_scratch_ptr += scratch_size;
4831		break;
4832	}
4833	}
4834}
4835
4836/*
4837 * Emulate the execution of DTrace IR instructions specified by the given
4838 * DIF object.  This function is deliberately void of assertions as all of
4839 * the necessary checks are handled by a call to dtrace_difo_validate().
4840 */
4841static uint64_t
4842dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4843    dtrace_vstate_t *vstate, dtrace_state_t *state)
4844{
4845	const dif_instr_t *text = difo->dtdo_buf;
4846	const uint_t textlen = difo->dtdo_len;
4847	const char *strtab = difo->dtdo_strtab;
4848	const uint64_t *inttab = difo->dtdo_inttab;
4849
4850	uint64_t rval = 0;
4851	dtrace_statvar_t *svar;
4852	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4853	dtrace_difv_t *v;
4854	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4855	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4856
4857	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4858	uint64_t regs[DIF_DIR_NREGS];
4859	uint64_t *tmp;
4860
4861	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4862	int64_t cc_r;
4863	uint_t pc = 0, id, opc = 0;
4864	uint8_t ttop = 0;
4865	dif_instr_t instr;
4866	uint_t r1, r2, rd;
4867
4868	/*
4869	 * We stash the current DIF object into the machine state: we need it
4870	 * for subsequent access checking.
4871	 */
4872	mstate->dtms_difo = difo;
4873
4874	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4875
4876	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4877		opc = pc;
4878
4879		instr = text[pc++];
4880		r1 = DIF_INSTR_R1(instr);
4881		r2 = DIF_INSTR_R2(instr);
4882		rd = DIF_INSTR_RD(instr);
4883
4884		switch (DIF_INSTR_OP(instr)) {
4885		case DIF_OP_OR:
4886			regs[rd] = regs[r1] | regs[r2];
4887			break;
4888		case DIF_OP_XOR:
4889			regs[rd] = regs[r1] ^ regs[r2];
4890			break;
4891		case DIF_OP_AND:
4892			regs[rd] = regs[r1] & regs[r2];
4893			break;
4894		case DIF_OP_SLL:
4895			regs[rd] = regs[r1] << regs[r2];
4896			break;
4897		case DIF_OP_SRL:
4898			regs[rd] = regs[r1] >> regs[r2];
4899			break;
4900		case DIF_OP_SUB:
4901			regs[rd] = regs[r1] - regs[r2];
4902			break;
4903		case DIF_OP_ADD:
4904			regs[rd] = regs[r1] + regs[r2];
4905			break;
4906		case DIF_OP_MUL:
4907			regs[rd] = regs[r1] * regs[r2];
4908			break;
4909		case DIF_OP_SDIV:
4910			if (regs[r2] == 0) {
4911				regs[rd] = 0;
4912				*flags |= CPU_DTRACE_DIVZERO;
4913			} else {
4914				regs[rd] = (int64_t)regs[r1] /
4915				    (int64_t)regs[r2];
4916			}
4917			break;
4918
4919		case DIF_OP_UDIV:
4920			if (regs[r2] == 0) {
4921				regs[rd] = 0;
4922				*flags |= CPU_DTRACE_DIVZERO;
4923			} else {
4924				regs[rd] = regs[r1] / regs[r2];
4925			}
4926			break;
4927
4928		case DIF_OP_SREM:
4929			if (regs[r2] == 0) {
4930				regs[rd] = 0;
4931				*flags |= CPU_DTRACE_DIVZERO;
4932			} else {
4933				regs[rd] = (int64_t)regs[r1] %
4934				    (int64_t)regs[r2];
4935			}
4936			break;
4937
4938		case DIF_OP_UREM:
4939			if (regs[r2] == 0) {
4940				regs[rd] = 0;
4941				*flags |= CPU_DTRACE_DIVZERO;
4942			} else {
4943				regs[rd] = regs[r1] % regs[r2];
4944			}
4945			break;
4946
4947		case DIF_OP_NOT:
4948			regs[rd] = ~regs[r1];
4949			break;
4950		case DIF_OP_MOV:
4951			regs[rd] = regs[r1];
4952			break;
4953		case DIF_OP_CMP:
4954			cc_r = regs[r1] - regs[r2];
4955			cc_n = cc_r < 0;
4956			cc_z = cc_r == 0;
4957			cc_v = 0;
4958			cc_c = regs[r1] < regs[r2];
4959			break;
4960		case DIF_OP_TST:
4961			cc_n = cc_v = cc_c = 0;
4962			cc_z = regs[r1] == 0;
4963			break;
4964		case DIF_OP_BA:
4965			pc = DIF_INSTR_LABEL(instr);
4966			break;
4967		case DIF_OP_BE:
4968			if (cc_z)
4969				pc = DIF_INSTR_LABEL(instr);
4970			break;
4971		case DIF_OP_BNE:
4972			if (cc_z == 0)
4973				pc = DIF_INSTR_LABEL(instr);
4974			break;
4975		case DIF_OP_BG:
4976			if ((cc_z | (cc_n ^ cc_v)) == 0)
4977				pc = DIF_INSTR_LABEL(instr);
4978			break;
4979		case DIF_OP_BGU:
4980			if ((cc_c | cc_z) == 0)
4981				pc = DIF_INSTR_LABEL(instr);
4982			break;
4983		case DIF_OP_BGE:
4984			if ((cc_n ^ cc_v) == 0)
4985				pc = DIF_INSTR_LABEL(instr);
4986			break;
4987		case DIF_OP_BGEU:
4988			if (cc_c == 0)
4989				pc = DIF_INSTR_LABEL(instr);
4990			break;
4991		case DIF_OP_BL:
4992			if (cc_n ^ cc_v)
4993				pc = DIF_INSTR_LABEL(instr);
4994			break;
4995		case DIF_OP_BLU:
4996			if (cc_c)
4997				pc = DIF_INSTR_LABEL(instr);
4998			break;
4999		case DIF_OP_BLE:
5000			if (cc_z | (cc_n ^ cc_v))
5001				pc = DIF_INSTR_LABEL(instr);
5002			break;
5003		case DIF_OP_BLEU:
5004			if (cc_c | cc_z)
5005				pc = DIF_INSTR_LABEL(instr);
5006			break;
5007		case DIF_OP_RLDSB:
5008			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5009				*flags |= CPU_DTRACE_KPRIV;
5010				*illval = regs[r1];
5011				break;
5012			}
5013			/*FALLTHROUGH*/
5014		case DIF_OP_LDSB:
5015			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5016			break;
5017		case DIF_OP_RLDSH:
5018			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5019				*flags |= CPU_DTRACE_KPRIV;
5020				*illval = regs[r1];
5021				break;
5022			}
5023			/*FALLTHROUGH*/
5024		case DIF_OP_LDSH:
5025			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5026			break;
5027		case DIF_OP_RLDSW:
5028			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5029				*flags |= CPU_DTRACE_KPRIV;
5030				*illval = regs[r1];
5031				break;
5032			}
5033			/*FALLTHROUGH*/
5034		case DIF_OP_LDSW:
5035			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5036			break;
5037		case DIF_OP_RLDUB:
5038			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5039				*flags |= CPU_DTRACE_KPRIV;
5040				*illval = regs[r1];
5041				break;
5042			}
5043			/*FALLTHROUGH*/
5044		case DIF_OP_LDUB:
5045			regs[rd] = dtrace_load8(regs[r1]);
5046			break;
5047		case DIF_OP_RLDUH:
5048			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5049				*flags |= CPU_DTRACE_KPRIV;
5050				*illval = regs[r1];
5051				break;
5052			}
5053			/*FALLTHROUGH*/
5054		case DIF_OP_LDUH:
5055			regs[rd] = dtrace_load16(regs[r1]);
5056			break;
5057		case DIF_OP_RLDUW:
5058			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5059				*flags |= CPU_DTRACE_KPRIV;
5060				*illval = regs[r1];
5061				break;
5062			}
5063			/*FALLTHROUGH*/
5064		case DIF_OP_LDUW:
5065			regs[rd] = dtrace_load32(regs[r1]);
5066			break;
5067		case DIF_OP_RLDX:
5068			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5069				*flags |= CPU_DTRACE_KPRIV;
5070				*illval = regs[r1];
5071				break;
5072			}
5073			/*FALLTHROUGH*/
5074		case DIF_OP_LDX:
5075			regs[rd] = dtrace_load64(regs[r1]);
5076			break;
5077		case DIF_OP_ULDSB:
5078			regs[rd] = (int8_t)
5079			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5080			break;
5081		case DIF_OP_ULDSH:
5082			regs[rd] = (int16_t)
5083			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5084			break;
5085		case DIF_OP_ULDSW:
5086			regs[rd] = (int32_t)
5087			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5088			break;
5089		case DIF_OP_ULDUB:
5090			regs[rd] =
5091			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5092			break;
5093		case DIF_OP_ULDUH:
5094			regs[rd] =
5095			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5096			break;
5097		case DIF_OP_ULDUW:
5098			regs[rd] =
5099			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5100			break;
5101		case DIF_OP_ULDX:
5102			regs[rd] =
5103			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5104			break;
5105		case DIF_OP_RET:
5106			rval = regs[rd];
5107			pc = textlen;
5108			break;
5109		case DIF_OP_NOP:
5110			break;
5111		case DIF_OP_SETX:
5112			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5113			break;
5114		case DIF_OP_SETS:
5115			regs[rd] = (uint64_t)(uintptr_t)
5116			    (strtab + DIF_INSTR_STRING(instr));
5117			break;
5118		case DIF_OP_SCMP: {
5119			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5120			uintptr_t s1 = regs[r1];
5121			uintptr_t s2 = regs[r2];
5122
5123			if (s1 != 0 &&
5124			    !dtrace_strcanload(s1, sz, mstate, vstate))
5125				break;
5126			if (s2 != 0 &&
5127			    !dtrace_strcanload(s2, sz, mstate, vstate))
5128				break;
5129
5130			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5131
5132			cc_n = cc_r < 0;
5133			cc_z = cc_r == 0;
5134			cc_v = cc_c = 0;
5135			break;
5136		}
5137		case DIF_OP_LDGA:
5138			regs[rd] = dtrace_dif_variable(mstate, state,
5139			    r1, regs[r2]);
5140			break;
5141		case DIF_OP_LDGS:
5142			id = DIF_INSTR_VAR(instr);
5143
5144			if (id >= DIF_VAR_OTHER_UBASE) {
5145				uintptr_t a;
5146
5147				id -= DIF_VAR_OTHER_UBASE;
5148				svar = vstate->dtvs_globals[id];
5149				ASSERT(svar != NULL);
5150				v = &svar->dtsv_var;
5151
5152				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5153					regs[rd] = svar->dtsv_data;
5154					break;
5155				}
5156
5157				a = (uintptr_t)svar->dtsv_data;
5158
5159				if (*(uint8_t *)a == UINT8_MAX) {
5160					/*
5161					 * If the 0th byte is set to UINT8_MAX
5162					 * then this is to be treated as a
5163					 * reference to a NULL variable.
5164					 */
5165					regs[rd] = 0;
5166				} else {
5167					regs[rd] = a + sizeof (uint64_t);
5168				}
5169
5170				break;
5171			}
5172
5173			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5174			break;
5175
5176		case DIF_OP_STGS:
5177			id = DIF_INSTR_VAR(instr);
5178
5179			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5180			id -= DIF_VAR_OTHER_UBASE;
5181
5182			svar = vstate->dtvs_globals[id];
5183			ASSERT(svar != NULL);
5184			v = &svar->dtsv_var;
5185
5186			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5187				uintptr_t a = (uintptr_t)svar->dtsv_data;
5188
5189				ASSERT(a != 0);
5190				ASSERT(svar->dtsv_size != 0);
5191
5192				if (regs[rd] == 0) {
5193					*(uint8_t *)a = UINT8_MAX;
5194					break;
5195				} else {
5196					*(uint8_t *)a = 0;
5197					a += sizeof (uint64_t);
5198				}
5199				if (!dtrace_vcanload(
5200				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5201				    mstate, vstate))
5202					break;
5203
5204				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5205				    (void *)a, &v->dtdv_type);
5206				break;
5207			}
5208
5209			svar->dtsv_data = regs[rd];
5210			break;
5211
5212		case DIF_OP_LDTA:
5213			/*
5214			 * There are no DTrace built-in thread-local arrays at
5215			 * present.  This opcode is saved for future work.
5216			 */
5217			*flags |= CPU_DTRACE_ILLOP;
5218			regs[rd] = 0;
5219			break;
5220
5221		case DIF_OP_LDLS:
5222			id = DIF_INSTR_VAR(instr);
5223
5224			if (id < DIF_VAR_OTHER_UBASE) {
5225				/*
5226				 * For now, this has no meaning.
5227				 */
5228				regs[rd] = 0;
5229				break;
5230			}
5231
5232			id -= DIF_VAR_OTHER_UBASE;
5233
5234			ASSERT(id < vstate->dtvs_nlocals);
5235			ASSERT(vstate->dtvs_locals != NULL);
5236
5237			svar = vstate->dtvs_locals[id];
5238			ASSERT(svar != NULL);
5239			v = &svar->dtsv_var;
5240
5241			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5242				uintptr_t a = (uintptr_t)svar->dtsv_data;
5243				size_t sz = v->dtdv_type.dtdt_size;
5244
5245				sz += sizeof (uint64_t);
5246				ASSERT(svar->dtsv_size == NCPU * sz);
5247				a += curcpu * sz;
5248
5249				if (*(uint8_t *)a == UINT8_MAX) {
5250					/*
5251					 * If the 0th byte is set to UINT8_MAX
5252					 * then this is to be treated as a
5253					 * reference to a NULL variable.
5254					 */
5255					regs[rd] = 0;
5256				} else {
5257					regs[rd] = a + sizeof (uint64_t);
5258				}
5259
5260				break;
5261			}
5262
5263			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5264			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5265			regs[rd] = tmp[curcpu];
5266			break;
5267
5268		case DIF_OP_STLS:
5269			id = DIF_INSTR_VAR(instr);
5270
5271			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5272			id -= DIF_VAR_OTHER_UBASE;
5273			ASSERT(id < vstate->dtvs_nlocals);
5274
5275			ASSERT(vstate->dtvs_locals != NULL);
5276			svar = vstate->dtvs_locals[id];
5277			ASSERT(svar != NULL);
5278			v = &svar->dtsv_var;
5279
5280			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5281				uintptr_t a = (uintptr_t)svar->dtsv_data;
5282				size_t sz = v->dtdv_type.dtdt_size;
5283
5284				sz += sizeof (uint64_t);
5285				ASSERT(svar->dtsv_size == NCPU * sz);
5286				a += curcpu * sz;
5287
5288				if (regs[rd] == 0) {
5289					*(uint8_t *)a = UINT8_MAX;
5290					break;
5291				} else {
5292					*(uint8_t *)a = 0;
5293					a += sizeof (uint64_t);
5294				}
5295
5296				if (!dtrace_vcanload(
5297				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5298				    mstate, vstate))
5299					break;
5300
5301				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5302				    (void *)a, &v->dtdv_type);
5303				break;
5304			}
5305
5306			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5307			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5308			tmp[curcpu] = regs[rd];
5309			break;
5310
5311		case DIF_OP_LDTS: {
5312			dtrace_dynvar_t *dvar;
5313			dtrace_key_t *key;
5314
5315			id = DIF_INSTR_VAR(instr);
5316			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5317			id -= DIF_VAR_OTHER_UBASE;
5318			v = &vstate->dtvs_tlocals[id];
5319
5320			key = &tupregs[DIF_DTR_NREGS];
5321			key[0].dttk_value = (uint64_t)id;
5322			key[0].dttk_size = 0;
5323			DTRACE_TLS_THRKEY(key[1].dttk_value);
5324			key[1].dttk_size = 0;
5325
5326			dvar = dtrace_dynvar(dstate, 2, key,
5327			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5328			    mstate, vstate);
5329
5330			if (dvar == NULL) {
5331				regs[rd] = 0;
5332				break;
5333			}
5334
5335			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5336				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5337			} else {
5338				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5339			}
5340
5341			break;
5342		}
5343
5344		case DIF_OP_STTS: {
5345			dtrace_dynvar_t *dvar;
5346			dtrace_key_t *key;
5347
5348			id = DIF_INSTR_VAR(instr);
5349			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5350			id -= DIF_VAR_OTHER_UBASE;
5351
5352			key = &tupregs[DIF_DTR_NREGS];
5353			key[0].dttk_value = (uint64_t)id;
5354			key[0].dttk_size = 0;
5355			DTRACE_TLS_THRKEY(key[1].dttk_value);
5356			key[1].dttk_size = 0;
5357			v = &vstate->dtvs_tlocals[id];
5358
5359			dvar = dtrace_dynvar(dstate, 2, key,
5360			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5361			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5362			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5363			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5364
5365			/*
5366			 * Given that we're storing to thread-local data,
5367			 * we need to flush our predicate cache.
5368			 */
5369			curthread->t_predcache = 0;
5370
5371			if (dvar == NULL)
5372				break;
5373
5374			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5375				if (!dtrace_vcanload(
5376				    (void *)(uintptr_t)regs[rd],
5377				    &v->dtdv_type, mstate, vstate))
5378					break;
5379
5380				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5381				    dvar->dtdv_data, &v->dtdv_type);
5382			} else {
5383				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5384			}
5385
5386			break;
5387		}
5388
5389		case DIF_OP_SRA:
5390			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5391			break;
5392
5393		case DIF_OP_CALL:
5394			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5395			    regs, tupregs, ttop, mstate, state);
5396			break;
5397
5398		case DIF_OP_PUSHTR:
5399			if (ttop == DIF_DTR_NREGS) {
5400				*flags |= CPU_DTRACE_TUPOFLOW;
5401				break;
5402			}
5403
5404			if (r1 == DIF_TYPE_STRING) {
5405				/*
5406				 * If this is a string type and the size is 0,
5407				 * we'll use the system-wide default string
5408				 * size.  Note that we are _not_ looking at
5409				 * the value of the DTRACEOPT_STRSIZE option;
5410				 * had this been set, we would expect to have
5411				 * a non-zero size value in the "pushtr".
5412				 */
5413				tupregs[ttop].dttk_size =
5414				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5415				    regs[r2] ? regs[r2] :
5416				    dtrace_strsize_default) + 1;
5417			} else {
5418				tupregs[ttop].dttk_size = regs[r2];
5419			}
5420
5421			tupregs[ttop++].dttk_value = regs[rd];
5422			break;
5423
5424		case DIF_OP_PUSHTV:
5425			if (ttop == DIF_DTR_NREGS) {
5426				*flags |= CPU_DTRACE_TUPOFLOW;
5427				break;
5428			}
5429
5430			tupregs[ttop].dttk_value = regs[rd];
5431			tupregs[ttop++].dttk_size = 0;
5432			break;
5433
5434		case DIF_OP_POPTS:
5435			if (ttop != 0)
5436				ttop--;
5437			break;
5438
5439		case DIF_OP_FLUSHTS:
5440			ttop = 0;
5441			break;
5442
5443		case DIF_OP_LDGAA:
5444		case DIF_OP_LDTAA: {
5445			dtrace_dynvar_t *dvar;
5446			dtrace_key_t *key = tupregs;
5447			uint_t nkeys = ttop;
5448
5449			id = DIF_INSTR_VAR(instr);
5450			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5451			id -= DIF_VAR_OTHER_UBASE;
5452
5453			key[nkeys].dttk_value = (uint64_t)id;
5454			key[nkeys++].dttk_size = 0;
5455
5456			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5457				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5458				key[nkeys++].dttk_size = 0;
5459				v = &vstate->dtvs_tlocals[id];
5460			} else {
5461				v = &vstate->dtvs_globals[id]->dtsv_var;
5462			}
5463
5464			dvar = dtrace_dynvar(dstate, nkeys, key,
5465			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5466			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5467			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5468
5469			if (dvar == NULL) {
5470				regs[rd] = 0;
5471				break;
5472			}
5473
5474			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5475				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5476			} else {
5477				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5478			}
5479
5480			break;
5481		}
5482
5483		case DIF_OP_STGAA:
5484		case DIF_OP_STTAA: {
5485			dtrace_dynvar_t *dvar;
5486			dtrace_key_t *key = tupregs;
5487			uint_t nkeys = ttop;
5488
5489			id = DIF_INSTR_VAR(instr);
5490			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5491			id -= DIF_VAR_OTHER_UBASE;
5492
5493			key[nkeys].dttk_value = (uint64_t)id;
5494			key[nkeys++].dttk_size = 0;
5495
5496			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5497				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5498				key[nkeys++].dttk_size = 0;
5499				v = &vstate->dtvs_tlocals[id];
5500			} else {
5501				v = &vstate->dtvs_globals[id]->dtsv_var;
5502			}
5503
5504			dvar = dtrace_dynvar(dstate, nkeys, key,
5505			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5506			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5507			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5508			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5509
5510			if (dvar == NULL)
5511				break;
5512
5513			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5514				if (!dtrace_vcanload(
5515				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5516				    mstate, vstate))
5517					break;
5518
5519				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5520				    dvar->dtdv_data, &v->dtdv_type);
5521			} else {
5522				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5523			}
5524
5525			break;
5526		}
5527
5528		case DIF_OP_ALLOCS: {
5529			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5530			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5531
5532			/*
5533			 * Rounding up the user allocation size could have
5534			 * overflowed large, bogus allocations (like -1ULL) to
5535			 * 0.
5536			 */
5537			if (size < regs[r1] ||
5538			    !DTRACE_INSCRATCH(mstate, size)) {
5539				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5540				regs[rd] = 0;
5541				break;
5542			}
5543
5544			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5545			mstate->dtms_scratch_ptr += size;
5546			regs[rd] = ptr;
5547			break;
5548		}
5549
5550		case DIF_OP_COPYS:
5551			if (!dtrace_canstore(regs[rd], regs[r2],
5552			    mstate, vstate)) {
5553				*flags |= CPU_DTRACE_BADADDR;
5554				*illval = regs[rd];
5555				break;
5556			}
5557
5558			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5559				break;
5560
5561			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5562			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5563			break;
5564
5565		case DIF_OP_STB:
5566			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5567				*flags |= CPU_DTRACE_BADADDR;
5568				*illval = regs[rd];
5569				break;
5570			}
5571			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5572			break;
5573
5574		case DIF_OP_STH:
5575			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5576				*flags |= CPU_DTRACE_BADADDR;
5577				*illval = regs[rd];
5578				break;
5579			}
5580			if (regs[rd] & 1) {
5581				*flags |= CPU_DTRACE_BADALIGN;
5582				*illval = regs[rd];
5583				break;
5584			}
5585			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5586			break;
5587
5588		case DIF_OP_STW:
5589			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5590				*flags |= CPU_DTRACE_BADADDR;
5591				*illval = regs[rd];
5592				break;
5593			}
5594			if (regs[rd] & 3) {
5595				*flags |= CPU_DTRACE_BADALIGN;
5596				*illval = regs[rd];
5597				break;
5598			}
5599			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5600			break;
5601
5602		case DIF_OP_STX:
5603			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5604				*flags |= CPU_DTRACE_BADADDR;
5605				*illval = regs[rd];
5606				break;
5607			}
5608			if (regs[rd] & 7) {
5609				*flags |= CPU_DTRACE_BADALIGN;
5610				*illval = regs[rd];
5611				break;
5612			}
5613			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5614			break;
5615		}
5616	}
5617
5618	if (!(*flags & CPU_DTRACE_FAULT))
5619		return (rval);
5620
5621	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5622	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5623
5624	return (0);
5625}
5626
5627static void
5628dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5629{
5630	dtrace_probe_t *probe = ecb->dte_probe;
5631	dtrace_provider_t *prov = probe->dtpr_provider;
5632	char c[DTRACE_FULLNAMELEN + 80], *str;
5633	char *msg = "dtrace: breakpoint action at probe ";
5634	char *ecbmsg = " (ecb ";
5635	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5636	uintptr_t val = (uintptr_t)ecb;
5637	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5638
5639	if (dtrace_destructive_disallow)
5640		return;
5641
5642	/*
5643	 * It's impossible to be taking action on the NULL probe.
5644	 */
5645	ASSERT(probe != NULL);
5646
5647	/*
5648	 * This is a poor man's (destitute man's?) sprintf():  we want to
5649	 * print the provider name, module name, function name and name of
5650	 * the probe, along with the hex address of the ECB with the breakpoint
5651	 * action -- all of which we must place in the character buffer by
5652	 * hand.
5653	 */
5654	while (*msg != '\0')
5655		c[i++] = *msg++;
5656
5657	for (str = prov->dtpv_name; *str != '\0'; str++)
5658		c[i++] = *str;
5659	c[i++] = ':';
5660
5661	for (str = probe->dtpr_mod; *str != '\0'; str++)
5662		c[i++] = *str;
5663	c[i++] = ':';
5664
5665	for (str = probe->dtpr_func; *str != '\0'; str++)
5666		c[i++] = *str;
5667	c[i++] = ':';
5668
5669	for (str = probe->dtpr_name; *str != '\0'; str++)
5670		c[i++] = *str;
5671
5672	while (*ecbmsg != '\0')
5673		c[i++] = *ecbmsg++;
5674
5675	while (shift >= 0) {
5676		mask = (uintptr_t)0xf << shift;
5677
5678		if (val >= ((uintptr_t)1 << shift))
5679			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5680		shift -= 4;
5681	}
5682
5683	c[i++] = ')';
5684	c[i] = '\0';
5685
5686#if defined(sun)
5687	debug_enter(c);
5688#else
5689	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5690#endif
5691}
5692
5693static void
5694dtrace_action_panic(dtrace_ecb_t *ecb)
5695{
5696	dtrace_probe_t *probe = ecb->dte_probe;
5697
5698	/*
5699	 * It's impossible to be taking action on the NULL probe.
5700	 */
5701	ASSERT(probe != NULL);
5702
5703	if (dtrace_destructive_disallow)
5704		return;
5705
5706	if (dtrace_panicked != NULL)
5707		return;
5708
5709	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5710		return;
5711
5712	/*
5713	 * We won the right to panic.  (We want to be sure that only one
5714	 * thread calls panic() from dtrace_probe(), and that panic() is
5715	 * called exactly once.)
5716	 */
5717	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5718	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5719	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5720}
5721
5722static void
5723dtrace_action_raise(uint64_t sig)
5724{
5725	if (dtrace_destructive_disallow)
5726		return;
5727
5728	if (sig >= NSIG) {
5729		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5730		return;
5731	}
5732
5733#if defined(sun)
5734	/*
5735	 * raise() has a queue depth of 1 -- we ignore all subsequent
5736	 * invocations of the raise() action.
5737	 */
5738	if (curthread->t_dtrace_sig == 0)
5739		curthread->t_dtrace_sig = (uint8_t)sig;
5740
5741	curthread->t_sig_check = 1;
5742	aston(curthread);
5743#else
5744	struct proc *p = curproc;
5745	PROC_LOCK(p);
5746	kern_psignal(p, sig);
5747	PROC_UNLOCK(p);
5748#endif
5749}
5750
5751static void
5752dtrace_action_stop(void)
5753{
5754	if (dtrace_destructive_disallow)
5755		return;
5756
5757#if defined(sun)
5758	if (!curthread->t_dtrace_stop) {
5759		curthread->t_dtrace_stop = 1;
5760		curthread->t_sig_check = 1;
5761		aston(curthread);
5762	}
5763#else
5764	struct proc *p = curproc;
5765	PROC_LOCK(p);
5766	kern_psignal(p, SIGSTOP);
5767	PROC_UNLOCK(p);
5768#endif
5769}
5770
5771static void
5772dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5773{
5774	hrtime_t now;
5775	volatile uint16_t *flags;
5776#if defined(sun)
5777	cpu_t *cpu = CPU;
5778#else
5779	cpu_t *cpu = &solaris_cpu[curcpu];
5780#endif
5781
5782	if (dtrace_destructive_disallow)
5783		return;
5784
5785	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5786
5787	now = dtrace_gethrtime();
5788
5789	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5790		/*
5791		 * We need to advance the mark to the current time.
5792		 */
5793		cpu->cpu_dtrace_chillmark = now;
5794		cpu->cpu_dtrace_chilled = 0;
5795	}
5796
5797	/*
5798	 * Now check to see if the requested chill time would take us over
5799	 * the maximum amount of time allowed in the chill interval.  (Or
5800	 * worse, if the calculation itself induces overflow.)
5801	 */
5802	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5803	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5804		*flags |= CPU_DTRACE_ILLOP;
5805		return;
5806	}
5807
5808	while (dtrace_gethrtime() - now < val)
5809		continue;
5810
5811	/*
5812	 * Normally, we assure that the value of the variable "timestamp" does
5813	 * not change within an ECB.  The presence of chill() represents an
5814	 * exception to this rule, however.
5815	 */
5816	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5817	cpu->cpu_dtrace_chilled += val;
5818}
5819
5820static void
5821dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5822    uint64_t *buf, uint64_t arg)
5823{
5824	int nframes = DTRACE_USTACK_NFRAMES(arg);
5825	int strsize = DTRACE_USTACK_STRSIZE(arg);
5826	uint64_t *pcs = &buf[1], *fps;
5827	char *str = (char *)&pcs[nframes];
5828	int size, offs = 0, i, j;
5829	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5830	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5831	char *sym;
5832
5833	/*
5834	 * Should be taking a faster path if string space has not been
5835	 * allocated.
5836	 */
5837	ASSERT(strsize != 0);
5838
5839	/*
5840	 * We will first allocate some temporary space for the frame pointers.
5841	 */
5842	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5843	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5844	    (nframes * sizeof (uint64_t));
5845
5846	if (!DTRACE_INSCRATCH(mstate, size)) {
5847		/*
5848		 * Not enough room for our frame pointers -- need to indicate
5849		 * that we ran out of scratch space.
5850		 */
5851		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5852		return;
5853	}
5854
5855	mstate->dtms_scratch_ptr += size;
5856	saved = mstate->dtms_scratch_ptr;
5857
5858	/*
5859	 * Now get a stack with both program counters and frame pointers.
5860	 */
5861	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5862	dtrace_getufpstack(buf, fps, nframes + 1);
5863	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5864
5865	/*
5866	 * If that faulted, we're cooked.
5867	 */
5868	if (*flags & CPU_DTRACE_FAULT)
5869		goto out;
5870
5871	/*
5872	 * Now we want to walk up the stack, calling the USTACK helper.  For
5873	 * each iteration, we restore the scratch pointer.
5874	 */
5875	for (i = 0; i < nframes; i++) {
5876		mstate->dtms_scratch_ptr = saved;
5877
5878		if (offs >= strsize)
5879			break;
5880
5881		sym = (char *)(uintptr_t)dtrace_helper(
5882		    DTRACE_HELPER_ACTION_USTACK,
5883		    mstate, state, pcs[i], fps[i]);
5884
5885		/*
5886		 * If we faulted while running the helper, we're going to
5887		 * clear the fault and null out the corresponding string.
5888		 */
5889		if (*flags & CPU_DTRACE_FAULT) {
5890			*flags &= ~CPU_DTRACE_FAULT;
5891			str[offs++] = '\0';
5892			continue;
5893		}
5894
5895		if (sym == NULL) {
5896			str[offs++] = '\0';
5897			continue;
5898		}
5899
5900		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5901
5902		/*
5903		 * Now copy in the string that the helper returned to us.
5904		 */
5905		for (j = 0; offs + j < strsize; j++) {
5906			if ((str[offs + j] = sym[j]) == '\0')
5907				break;
5908		}
5909
5910		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5911
5912		offs += j + 1;
5913	}
5914
5915	if (offs >= strsize) {
5916		/*
5917		 * If we didn't have room for all of the strings, we don't
5918		 * abort processing -- this needn't be a fatal error -- but we
5919		 * still want to increment a counter (dts_stkstroverflows) to
5920		 * allow this condition to be warned about.  (If this is from
5921		 * a jstack() action, it is easily tuned via jstackstrsize.)
5922		 */
5923		dtrace_error(&state->dts_stkstroverflows);
5924	}
5925
5926	while (offs < strsize)
5927		str[offs++] = '\0';
5928
5929out:
5930	mstate->dtms_scratch_ptr = old;
5931}
5932
5933/*
5934 * If you're looking for the epicenter of DTrace, you just found it.  This
5935 * is the function called by the provider to fire a probe -- from which all
5936 * subsequent probe-context DTrace activity emanates.
5937 */
5938void
5939dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5940    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5941{
5942	processorid_t cpuid;
5943	dtrace_icookie_t cookie;
5944	dtrace_probe_t *probe;
5945	dtrace_mstate_t mstate;
5946	dtrace_ecb_t *ecb;
5947	dtrace_action_t *act;
5948	intptr_t offs;
5949	size_t size;
5950	int vtime, onintr;
5951	volatile uint16_t *flags;
5952	hrtime_t now;
5953
5954	if (panicstr != NULL)
5955		return;
5956
5957#if defined(sun)
5958	/*
5959	 * Kick out immediately if this CPU is still being born (in which case
5960	 * curthread will be set to -1) or the current thread can't allow
5961	 * probes in its current context.
5962	 */
5963	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5964		return;
5965#endif
5966
5967	cookie = dtrace_interrupt_disable();
5968	probe = dtrace_probes[id - 1];
5969	cpuid = curcpu;
5970	onintr = CPU_ON_INTR(CPU);
5971
5972	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5973	    probe->dtpr_predcache == curthread->t_predcache) {
5974		/*
5975		 * We have hit in the predicate cache; we know that
5976		 * this predicate would evaluate to be false.
5977		 */
5978		dtrace_interrupt_enable(cookie);
5979		return;
5980	}
5981
5982#if defined(sun)
5983	if (panic_quiesce) {
5984#else
5985	if (panicstr != NULL) {
5986#endif
5987		/*
5988		 * We don't trace anything if we're panicking.
5989		 */
5990		dtrace_interrupt_enable(cookie);
5991		return;
5992	}
5993
5994	now = dtrace_gethrtime();
5995	vtime = dtrace_vtime_references != 0;
5996
5997	if (vtime && curthread->t_dtrace_start)
5998		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5999
6000	mstate.dtms_difo = NULL;
6001	mstate.dtms_probe = probe;
6002	mstate.dtms_strtok = 0;
6003	mstate.dtms_arg[0] = arg0;
6004	mstate.dtms_arg[1] = arg1;
6005	mstate.dtms_arg[2] = arg2;
6006	mstate.dtms_arg[3] = arg3;
6007	mstate.dtms_arg[4] = arg4;
6008
6009	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6010
6011	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6012		dtrace_predicate_t *pred = ecb->dte_predicate;
6013		dtrace_state_t *state = ecb->dte_state;
6014		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6015		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6016		dtrace_vstate_t *vstate = &state->dts_vstate;
6017		dtrace_provider_t *prov = probe->dtpr_provider;
6018		int committed = 0;
6019		caddr_t tomax;
6020
6021		/*
6022		 * A little subtlety with the following (seemingly innocuous)
6023		 * declaration of the automatic 'val':  by looking at the
6024		 * code, you might think that it could be declared in the
6025		 * action processing loop, below.  (That is, it's only used in
6026		 * the action processing loop.)  However, it must be declared
6027		 * out of that scope because in the case of DIF expression
6028		 * arguments to aggregating actions, one iteration of the
6029		 * action loop will use the last iteration's value.
6030		 */
6031		uint64_t val = 0;
6032
6033		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6034		*flags &= ~CPU_DTRACE_ERROR;
6035
6036		if (prov == dtrace_provider) {
6037			/*
6038			 * If dtrace itself is the provider of this probe,
6039			 * we're only going to continue processing the ECB if
6040			 * arg0 (the dtrace_state_t) is equal to the ECB's
6041			 * creating state.  (This prevents disjoint consumers
6042			 * from seeing one another's metaprobes.)
6043			 */
6044			if (arg0 != (uint64_t)(uintptr_t)state)
6045				continue;
6046		}
6047
6048		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6049			/*
6050			 * We're not currently active.  If our provider isn't
6051			 * the dtrace pseudo provider, we're not interested.
6052			 */
6053			if (prov != dtrace_provider)
6054				continue;
6055
6056			/*
6057			 * Now we must further check if we are in the BEGIN
6058			 * probe.  If we are, we will only continue processing
6059			 * if we're still in WARMUP -- if one BEGIN enabling
6060			 * has invoked the exit() action, we don't want to
6061			 * evaluate subsequent BEGIN enablings.
6062			 */
6063			if (probe->dtpr_id == dtrace_probeid_begin &&
6064			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6065				ASSERT(state->dts_activity ==
6066				    DTRACE_ACTIVITY_DRAINING);
6067				continue;
6068			}
6069		}
6070
6071		if (ecb->dte_cond) {
6072			/*
6073			 * If the dte_cond bits indicate that this
6074			 * consumer is only allowed to see user-mode firings
6075			 * of this probe, call the provider's dtps_usermode()
6076			 * entry point to check that the probe was fired
6077			 * while in a user context. Skip this ECB if that's
6078			 * not the case.
6079			 */
6080			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6081			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6082			    probe->dtpr_id, probe->dtpr_arg) == 0)
6083				continue;
6084
6085#if defined(sun)
6086			/*
6087			 * This is more subtle than it looks. We have to be
6088			 * absolutely certain that CRED() isn't going to
6089			 * change out from under us so it's only legit to
6090			 * examine that structure if we're in constrained
6091			 * situations. Currently, the only times we'll this
6092			 * check is if a non-super-user has enabled the
6093			 * profile or syscall providers -- providers that
6094			 * allow visibility of all processes. For the
6095			 * profile case, the check above will ensure that
6096			 * we're examining a user context.
6097			 */
6098			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6099				cred_t *cr;
6100				cred_t *s_cr =
6101				    ecb->dte_state->dts_cred.dcr_cred;
6102				proc_t *proc;
6103
6104				ASSERT(s_cr != NULL);
6105
6106				if ((cr = CRED()) == NULL ||
6107				    s_cr->cr_uid != cr->cr_uid ||
6108				    s_cr->cr_uid != cr->cr_ruid ||
6109				    s_cr->cr_uid != cr->cr_suid ||
6110				    s_cr->cr_gid != cr->cr_gid ||
6111				    s_cr->cr_gid != cr->cr_rgid ||
6112				    s_cr->cr_gid != cr->cr_sgid ||
6113				    (proc = ttoproc(curthread)) == NULL ||
6114				    (proc->p_flag & SNOCD))
6115					continue;
6116			}
6117
6118			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6119				cred_t *cr;
6120				cred_t *s_cr =
6121				    ecb->dte_state->dts_cred.dcr_cred;
6122
6123				ASSERT(s_cr != NULL);
6124
6125				if ((cr = CRED()) == NULL ||
6126				    s_cr->cr_zone->zone_id !=
6127				    cr->cr_zone->zone_id)
6128					continue;
6129			}
6130#endif
6131		}
6132
6133		if (now - state->dts_alive > dtrace_deadman_timeout) {
6134			/*
6135			 * We seem to be dead.  Unless we (a) have kernel
6136			 * destructive permissions (b) have expicitly enabled
6137			 * destructive actions and (c) destructive actions have
6138			 * not been disabled, we're going to transition into
6139			 * the KILLED state, from which no further processing
6140			 * on this state will be performed.
6141			 */
6142			if (!dtrace_priv_kernel_destructive(state) ||
6143			    !state->dts_cred.dcr_destructive ||
6144			    dtrace_destructive_disallow) {
6145				void *activity = &state->dts_activity;
6146				dtrace_activity_t current;
6147
6148				do {
6149					current = state->dts_activity;
6150				} while (dtrace_cas32(activity, current,
6151				    DTRACE_ACTIVITY_KILLED) != current);
6152
6153				continue;
6154			}
6155		}
6156
6157		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6158		    ecb->dte_alignment, state, &mstate)) < 0)
6159			continue;
6160
6161		tomax = buf->dtb_tomax;
6162		ASSERT(tomax != NULL);
6163
6164		if (ecb->dte_size != 0)
6165			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6166
6167		mstate.dtms_epid = ecb->dte_epid;
6168		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6169
6170		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6171			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6172		else
6173			mstate.dtms_access = 0;
6174
6175		if (pred != NULL) {
6176			dtrace_difo_t *dp = pred->dtp_difo;
6177			int rval;
6178
6179			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6180
6181			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6182				dtrace_cacheid_t cid = probe->dtpr_predcache;
6183
6184				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6185					/*
6186					 * Update the predicate cache...
6187					 */
6188					ASSERT(cid == pred->dtp_cacheid);
6189					curthread->t_predcache = cid;
6190				}
6191
6192				continue;
6193			}
6194		}
6195
6196		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6197		    act != NULL; act = act->dta_next) {
6198			size_t valoffs;
6199			dtrace_difo_t *dp;
6200			dtrace_recdesc_t *rec = &act->dta_rec;
6201
6202			size = rec->dtrd_size;
6203			valoffs = offs + rec->dtrd_offset;
6204
6205			if (DTRACEACT_ISAGG(act->dta_kind)) {
6206				uint64_t v = 0xbad;
6207				dtrace_aggregation_t *agg;
6208
6209				agg = (dtrace_aggregation_t *)act;
6210
6211				if ((dp = act->dta_difo) != NULL)
6212					v = dtrace_dif_emulate(dp,
6213					    &mstate, vstate, state);
6214
6215				if (*flags & CPU_DTRACE_ERROR)
6216					continue;
6217
6218				/*
6219				 * Note that we always pass the expression
6220				 * value from the previous iteration of the
6221				 * action loop.  This value will only be used
6222				 * if there is an expression argument to the
6223				 * aggregating action, denoted by the
6224				 * dtag_hasarg field.
6225				 */
6226				dtrace_aggregate(agg, buf,
6227				    offs, aggbuf, v, val);
6228				continue;
6229			}
6230
6231			switch (act->dta_kind) {
6232			case DTRACEACT_STOP:
6233				if (dtrace_priv_proc_destructive(state))
6234					dtrace_action_stop();
6235				continue;
6236
6237			case DTRACEACT_BREAKPOINT:
6238				if (dtrace_priv_kernel_destructive(state))
6239					dtrace_action_breakpoint(ecb);
6240				continue;
6241
6242			case DTRACEACT_PANIC:
6243				if (dtrace_priv_kernel_destructive(state))
6244					dtrace_action_panic(ecb);
6245				continue;
6246
6247			case DTRACEACT_STACK:
6248				if (!dtrace_priv_kernel(state))
6249					continue;
6250
6251				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6252				    size / sizeof (pc_t), probe->dtpr_aframes,
6253				    DTRACE_ANCHORED(probe) ? NULL :
6254				    (uint32_t *)arg0);
6255				continue;
6256
6257			case DTRACEACT_JSTACK:
6258			case DTRACEACT_USTACK:
6259				if (!dtrace_priv_proc(state))
6260					continue;
6261
6262				/*
6263				 * See comment in DIF_VAR_PID.
6264				 */
6265				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6266				    CPU_ON_INTR(CPU)) {
6267					int depth = DTRACE_USTACK_NFRAMES(
6268					    rec->dtrd_arg) + 1;
6269
6270					dtrace_bzero((void *)(tomax + valoffs),
6271					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6272					    + depth * sizeof (uint64_t));
6273
6274					continue;
6275				}
6276
6277				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6278				    curproc->p_dtrace_helpers != NULL) {
6279					/*
6280					 * This is the slow path -- we have
6281					 * allocated string space, and we're
6282					 * getting the stack of a process that
6283					 * has helpers.  Call into a separate
6284					 * routine to perform this processing.
6285					 */
6286					dtrace_action_ustack(&mstate, state,
6287					    (uint64_t *)(tomax + valoffs),
6288					    rec->dtrd_arg);
6289					continue;
6290				}
6291
6292				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6293				dtrace_getupcstack((uint64_t *)
6294				    (tomax + valoffs),
6295				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6296				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6297				continue;
6298
6299			default:
6300				break;
6301			}
6302
6303			dp = act->dta_difo;
6304			ASSERT(dp != NULL);
6305
6306			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6307
6308			if (*flags & CPU_DTRACE_ERROR)
6309				continue;
6310
6311			switch (act->dta_kind) {
6312			case DTRACEACT_SPECULATE:
6313				ASSERT(buf == &state->dts_buffer[cpuid]);
6314				buf = dtrace_speculation_buffer(state,
6315				    cpuid, val);
6316
6317				if (buf == NULL) {
6318					*flags |= CPU_DTRACE_DROP;
6319					continue;
6320				}
6321
6322				offs = dtrace_buffer_reserve(buf,
6323				    ecb->dte_needed, ecb->dte_alignment,
6324				    state, NULL);
6325
6326				if (offs < 0) {
6327					*flags |= CPU_DTRACE_DROP;
6328					continue;
6329				}
6330
6331				tomax = buf->dtb_tomax;
6332				ASSERT(tomax != NULL);
6333
6334				if (ecb->dte_size != 0)
6335					DTRACE_STORE(uint32_t, tomax, offs,
6336					    ecb->dte_epid);
6337				continue;
6338
6339			case DTRACEACT_PRINTM: {
6340				/* The DIF returns a 'memref'. */
6341				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6342
6343				/* Get the size from the memref. */
6344				size = memref[1];
6345
6346				/*
6347				 * Check if the size exceeds the allocated
6348				 * buffer size.
6349				 */
6350				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6351					/* Flag a drop! */
6352					*flags |= CPU_DTRACE_DROP;
6353					continue;
6354				}
6355
6356				/* Store the size in the buffer first. */
6357				DTRACE_STORE(uintptr_t, tomax,
6358				    valoffs, size);
6359
6360				/*
6361				 * Offset the buffer address to the start
6362				 * of the data.
6363				 */
6364				valoffs += sizeof(uintptr_t);
6365
6366				/*
6367				 * Reset to the memory address rather than
6368				 * the memref array, then let the BYREF
6369				 * code below do the work to store the
6370				 * memory data in the buffer.
6371				 */
6372				val = memref[0];
6373				break;
6374			}
6375
6376			case DTRACEACT_PRINTT: {
6377				/* The DIF returns a 'typeref'. */
6378				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6379				char c = '\0' + 1;
6380				size_t s;
6381
6382				/*
6383				 * Get the type string length and round it
6384				 * up so that the data that follows is
6385				 * aligned for easy access.
6386				 */
6387				size_t typs = strlen((char *) typeref[2]) + 1;
6388				typs = roundup(typs,  sizeof(uintptr_t));
6389
6390				/*
6391				 *Get the size from the typeref using the
6392				 * number of elements and the type size.
6393				 */
6394				size = typeref[1] * typeref[3];
6395
6396				/*
6397				 * Check if the size exceeds the allocated
6398				 * buffer size.
6399				 */
6400				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6401					/* Flag a drop! */
6402					*flags |= CPU_DTRACE_DROP;
6403
6404				}
6405
6406				/* Store the size in the buffer first. */
6407				DTRACE_STORE(uintptr_t, tomax,
6408				    valoffs, size);
6409				valoffs += sizeof(uintptr_t);
6410
6411				/* Store the type size in the buffer. */
6412				DTRACE_STORE(uintptr_t, tomax,
6413				    valoffs, typeref[3]);
6414				valoffs += sizeof(uintptr_t);
6415
6416				val = typeref[2];
6417
6418				for (s = 0; s < typs; s++) {
6419					if (c != '\0')
6420						c = dtrace_load8(val++);
6421
6422					DTRACE_STORE(uint8_t, tomax,
6423					    valoffs++, c);
6424				}
6425
6426				/*
6427				 * Reset to the memory address rather than
6428				 * the typeref array, then let the BYREF
6429				 * code below do the work to store the
6430				 * memory data in the buffer.
6431				 */
6432				val = typeref[0];
6433				break;
6434			}
6435
6436			case DTRACEACT_CHILL:
6437				if (dtrace_priv_kernel_destructive(state))
6438					dtrace_action_chill(&mstate, val);
6439				continue;
6440
6441			case DTRACEACT_RAISE:
6442				if (dtrace_priv_proc_destructive(state))
6443					dtrace_action_raise(val);
6444				continue;
6445
6446			case DTRACEACT_COMMIT:
6447				ASSERT(!committed);
6448
6449				/*
6450				 * We need to commit our buffer state.
6451				 */
6452				if (ecb->dte_size)
6453					buf->dtb_offset = offs + ecb->dte_size;
6454				buf = &state->dts_buffer[cpuid];
6455				dtrace_speculation_commit(state, cpuid, val);
6456				committed = 1;
6457				continue;
6458
6459			case DTRACEACT_DISCARD:
6460				dtrace_speculation_discard(state, cpuid, val);
6461				continue;
6462
6463			case DTRACEACT_DIFEXPR:
6464			case DTRACEACT_LIBACT:
6465			case DTRACEACT_PRINTF:
6466			case DTRACEACT_PRINTA:
6467			case DTRACEACT_SYSTEM:
6468			case DTRACEACT_FREOPEN:
6469				break;
6470
6471			case DTRACEACT_SYM:
6472			case DTRACEACT_MOD:
6473				if (!dtrace_priv_kernel(state))
6474					continue;
6475				break;
6476
6477			case DTRACEACT_USYM:
6478			case DTRACEACT_UMOD:
6479			case DTRACEACT_UADDR: {
6480#if defined(sun)
6481				struct pid *pid = curthread->t_procp->p_pidp;
6482#endif
6483
6484				if (!dtrace_priv_proc(state))
6485					continue;
6486
6487				DTRACE_STORE(uint64_t, tomax,
6488#if defined(sun)
6489				    valoffs, (uint64_t)pid->pid_id);
6490#else
6491				    valoffs, (uint64_t) curproc->p_pid);
6492#endif
6493				DTRACE_STORE(uint64_t, tomax,
6494				    valoffs + sizeof (uint64_t), val);
6495
6496				continue;
6497			}
6498
6499			case DTRACEACT_EXIT: {
6500				/*
6501				 * For the exit action, we are going to attempt
6502				 * to atomically set our activity to be
6503				 * draining.  If this fails (either because
6504				 * another CPU has beat us to the exit action,
6505				 * or because our current activity is something
6506				 * other than ACTIVE or WARMUP), we will
6507				 * continue.  This assures that the exit action
6508				 * can be successfully recorded at most once
6509				 * when we're in the ACTIVE state.  If we're
6510				 * encountering the exit() action while in
6511				 * COOLDOWN, however, we want to honor the new
6512				 * status code.  (We know that we're the only
6513				 * thread in COOLDOWN, so there is no race.)
6514				 */
6515				void *activity = &state->dts_activity;
6516				dtrace_activity_t current = state->dts_activity;
6517
6518				if (current == DTRACE_ACTIVITY_COOLDOWN)
6519					break;
6520
6521				if (current != DTRACE_ACTIVITY_WARMUP)
6522					current = DTRACE_ACTIVITY_ACTIVE;
6523
6524				if (dtrace_cas32(activity, current,
6525				    DTRACE_ACTIVITY_DRAINING) != current) {
6526					*flags |= CPU_DTRACE_DROP;
6527					continue;
6528				}
6529
6530				break;
6531			}
6532
6533			default:
6534				ASSERT(0);
6535			}
6536
6537			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6538				uintptr_t end = valoffs + size;
6539
6540				if (!dtrace_vcanload((void *)(uintptr_t)val,
6541				    &dp->dtdo_rtype, &mstate, vstate))
6542					continue;
6543
6544				/*
6545				 * If this is a string, we're going to only
6546				 * load until we find the zero byte -- after
6547				 * which we'll store zero bytes.
6548				 */
6549				if (dp->dtdo_rtype.dtdt_kind ==
6550				    DIF_TYPE_STRING) {
6551					char c = '\0' + 1;
6552					int intuple = act->dta_intuple;
6553					size_t s;
6554
6555					for (s = 0; s < size; s++) {
6556						if (c != '\0')
6557							c = dtrace_load8(val++);
6558
6559						DTRACE_STORE(uint8_t, tomax,
6560						    valoffs++, c);
6561
6562						if (c == '\0' && intuple)
6563							break;
6564					}
6565
6566					continue;
6567				}
6568
6569				while (valoffs < end) {
6570					DTRACE_STORE(uint8_t, tomax, valoffs++,
6571					    dtrace_load8(val++));
6572				}
6573
6574				continue;
6575			}
6576
6577			switch (size) {
6578			case 0:
6579				break;
6580
6581			case sizeof (uint8_t):
6582				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6583				break;
6584			case sizeof (uint16_t):
6585				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6586				break;
6587			case sizeof (uint32_t):
6588				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6589				break;
6590			case sizeof (uint64_t):
6591				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6592				break;
6593			default:
6594				/*
6595				 * Any other size should have been returned by
6596				 * reference, not by value.
6597				 */
6598				ASSERT(0);
6599				break;
6600			}
6601		}
6602
6603		if (*flags & CPU_DTRACE_DROP)
6604			continue;
6605
6606		if (*flags & CPU_DTRACE_FAULT) {
6607			int ndx;
6608			dtrace_action_t *err;
6609
6610			buf->dtb_errors++;
6611
6612			if (probe->dtpr_id == dtrace_probeid_error) {
6613				/*
6614				 * There's nothing we can do -- we had an
6615				 * error on the error probe.  We bump an
6616				 * error counter to at least indicate that
6617				 * this condition happened.
6618				 */
6619				dtrace_error(&state->dts_dblerrors);
6620				continue;
6621			}
6622
6623			if (vtime) {
6624				/*
6625				 * Before recursing on dtrace_probe(), we
6626				 * need to explicitly clear out our start
6627				 * time to prevent it from being accumulated
6628				 * into t_dtrace_vtime.
6629				 */
6630				curthread->t_dtrace_start = 0;
6631			}
6632
6633			/*
6634			 * Iterate over the actions to figure out which action
6635			 * we were processing when we experienced the error.
6636			 * Note that act points _past_ the faulting action; if
6637			 * act is ecb->dte_action, the fault was in the
6638			 * predicate, if it's ecb->dte_action->dta_next it's
6639			 * in action #1, and so on.
6640			 */
6641			for (err = ecb->dte_action, ndx = 0;
6642			    err != act; err = err->dta_next, ndx++)
6643				continue;
6644
6645			dtrace_probe_error(state, ecb->dte_epid, ndx,
6646			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6647			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6648			    cpu_core[cpuid].cpuc_dtrace_illval);
6649
6650			continue;
6651		}
6652
6653		if (!committed)
6654			buf->dtb_offset = offs + ecb->dte_size;
6655	}
6656
6657	if (vtime)
6658		curthread->t_dtrace_start = dtrace_gethrtime();
6659
6660	dtrace_interrupt_enable(cookie);
6661}
6662
6663/*
6664 * DTrace Probe Hashing Functions
6665 *
6666 * The functions in this section (and indeed, the functions in remaining
6667 * sections) are not _called_ from probe context.  (Any exceptions to this are
6668 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6669 * DTrace framework to look-up probes in, add probes to and remove probes from
6670 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6671 * probe tuple -- allowing for fast lookups, regardless of what was
6672 * specified.)
6673 */
6674static uint_t
6675dtrace_hash_str(const char *p)
6676{
6677	unsigned int g;
6678	uint_t hval = 0;
6679
6680	while (*p) {
6681		hval = (hval << 4) + *p++;
6682		if ((g = (hval & 0xf0000000)) != 0)
6683			hval ^= g >> 24;
6684		hval &= ~g;
6685	}
6686	return (hval);
6687}
6688
6689static dtrace_hash_t *
6690dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6691{
6692	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6693
6694	hash->dth_stroffs = stroffs;
6695	hash->dth_nextoffs = nextoffs;
6696	hash->dth_prevoffs = prevoffs;
6697
6698	hash->dth_size = 1;
6699	hash->dth_mask = hash->dth_size - 1;
6700
6701	hash->dth_tab = kmem_zalloc(hash->dth_size *
6702	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6703
6704	return (hash);
6705}
6706
6707static void
6708dtrace_hash_destroy(dtrace_hash_t *hash)
6709{
6710#ifdef DEBUG
6711	int i;
6712
6713	for (i = 0; i < hash->dth_size; i++)
6714		ASSERT(hash->dth_tab[i] == NULL);
6715#endif
6716
6717	kmem_free(hash->dth_tab,
6718	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6719	kmem_free(hash, sizeof (dtrace_hash_t));
6720}
6721
6722static void
6723dtrace_hash_resize(dtrace_hash_t *hash)
6724{
6725	int size = hash->dth_size, i, ndx;
6726	int new_size = hash->dth_size << 1;
6727	int new_mask = new_size - 1;
6728	dtrace_hashbucket_t **new_tab, *bucket, *next;
6729
6730	ASSERT((new_size & new_mask) == 0);
6731
6732	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6733
6734	for (i = 0; i < size; i++) {
6735		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6736			dtrace_probe_t *probe = bucket->dthb_chain;
6737
6738			ASSERT(probe != NULL);
6739			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6740
6741			next = bucket->dthb_next;
6742			bucket->dthb_next = new_tab[ndx];
6743			new_tab[ndx] = bucket;
6744		}
6745	}
6746
6747	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6748	hash->dth_tab = new_tab;
6749	hash->dth_size = new_size;
6750	hash->dth_mask = new_mask;
6751}
6752
6753static void
6754dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6755{
6756	int hashval = DTRACE_HASHSTR(hash, new);
6757	int ndx = hashval & hash->dth_mask;
6758	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6759	dtrace_probe_t **nextp, **prevp;
6760
6761	for (; bucket != NULL; bucket = bucket->dthb_next) {
6762		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6763			goto add;
6764	}
6765
6766	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6767		dtrace_hash_resize(hash);
6768		dtrace_hash_add(hash, new);
6769		return;
6770	}
6771
6772	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6773	bucket->dthb_next = hash->dth_tab[ndx];
6774	hash->dth_tab[ndx] = bucket;
6775	hash->dth_nbuckets++;
6776
6777add:
6778	nextp = DTRACE_HASHNEXT(hash, new);
6779	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6780	*nextp = bucket->dthb_chain;
6781
6782	if (bucket->dthb_chain != NULL) {
6783		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6784		ASSERT(*prevp == NULL);
6785		*prevp = new;
6786	}
6787
6788	bucket->dthb_chain = new;
6789	bucket->dthb_len++;
6790}
6791
6792static dtrace_probe_t *
6793dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6794{
6795	int hashval = DTRACE_HASHSTR(hash, template);
6796	int ndx = hashval & hash->dth_mask;
6797	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6798
6799	for (; bucket != NULL; bucket = bucket->dthb_next) {
6800		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6801			return (bucket->dthb_chain);
6802	}
6803
6804	return (NULL);
6805}
6806
6807static int
6808dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6809{
6810	int hashval = DTRACE_HASHSTR(hash, template);
6811	int ndx = hashval & hash->dth_mask;
6812	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6813
6814	for (; bucket != NULL; bucket = bucket->dthb_next) {
6815		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6816			return (bucket->dthb_len);
6817	}
6818
6819	return (0);
6820}
6821
6822static void
6823dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6824{
6825	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6826	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6827
6828	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6829	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6830
6831	/*
6832	 * Find the bucket that we're removing this probe from.
6833	 */
6834	for (; bucket != NULL; bucket = bucket->dthb_next) {
6835		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6836			break;
6837	}
6838
6839	ASSERT(bucket != NULL);
6840
6841	if (*prevp == NULL) {
6842		if (*nextp == NULL) {
6843			/*
6844			 * The removed probe was the only probe on this
6845			 * bucket; we need to remove the bucket.
6846			 */
6847			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6848
6849			ASSERT(bucket->dthb_chain == probe);
6850			ASSERT(b != NULL);
6851
6852			if (b == bucket) {
6853				hash->dth_tab[ndx] = bucket->dthb_next;
6854			} else {
6855				while (b->dthb_next != bucket)
6856					b = b->dthb_next;
6857				b->dthb_next = bucket->dthb_next;
6858			}
6859
6860			ASSERT(hash->dth_nbuckets > 0);
6861			hash->dth_nbuckets--;
6862			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6863			return;
6864		}
6865
6866		bucket->dthb_chain = *nextp;
6867	} else {
6868		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6869	}
6870
6871	if (*nextp != NULL)
6872		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6873}
6874
6875/*
6876 * DTrace Utility Functions
6877 *
6878 * These are random utility functions that are _not_ called from probe context.
6879 */
6880static int
6881dtrace_badattr(const dtrace_attribute_t *a)
6882{
6883	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6884	    a->dtat_data > DTRACE_STABILITY_MAX ||
6885	    a->dtat_class > DTRACE_CLASS_MAX);
6886}
6887
6888/*
6889 * Return a duplicate copy of a string.  If the specified string is NULL,
6890 * this function returns a zero-length string.
6891 */
6892static char *
6893dtrace_strdup(const char *str)
6894{
6895	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6896
6897	if (str != NULL)
6898		(void) strcpy(new, str);
6899
6900	return (new);
6901}
6902
6903#define	DTRACE_ISALPHA(c)	\
6904	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6905
6906static int
6907dtrace_badname(const char *s)
6908{
6909	char c;
6910
6911	if (s == NULL || (c = *s++) == '\0')
6912		return (0);
6913
6914	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6915		return (1);
6916
6917	while ((c = *s++) != '\0') {
6918		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6919		    c != '-' && c != '_' && c != '.' && c != '`')
6920			return (1);
6921	}
6922
6923	return (0);
6924}
6925
6926static void
6927dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6928{
6929	uint32_t priv;
6930
6931#if defined(sun)
6932	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6933		/*
6934		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6935		 */
6936		priv = DTRACE_PRIV_ALL;
6937	} else {
6938		*uidp = crgetuid(cr);
6939		*zoneidp = crgetzoneid(cr);
6940
6941		priv = 0;
6942		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6943			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6944		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6945			priv |= DTRACE_PRIV_USER;
6946		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6947			priv |= DTRACE_PRIV_PROC;
6948		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6949			priv |= DTRACE_PRIV_OWNER;
6950		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6951			priv |= DTRACE_PRIV_ZONEOWNER;
6952	}
6953#else
6954	priv = DTRACE_PRIV_ALL;
6955#endif
6956
6957	*privp = priv;
6958}
6959
6960#ifdef DTRACE_ERRDEBUG
6961static void
6962dtrace_errdebug(const char *str)
6963{
6964	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6965	int occupied = 0;
6966
6967	mutex_enter(&dtrace_errlock);
6968	dtrace_errlast = str;
6969	dtrace_errthread = curthread;
6970
6971	while (occupied++ < DTRACE_ERRHASHSZ) {
6972		if (dtrace_errhash[hval].dter_msg == str) {
6973			dtrace_errhash[hval].dter_count++;
6974			goto out;
6975		}
6976
6977		if (dtrace_errhash[hval].dter_msg != NULL) {
6978			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6979			continue;
6980		}
6981
6982		dtrace_errhash[hval].dter_msg = str;
6983		dtrace_errhash[hval].dter_count = 1;
6984		goto out;
6985	}
6986
6987	panic("dtrace: undersized error hash");
6988out:
6989	mutex_exit(&dtrace_errlock);
6990}
6991#endif
6992
6993/*
6994 * DTrace Matching Functions
6995 *
6996 * These functions are used to match groups of probes, given some elements of
6997 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6998 */
6999static int
7000dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7001    zoneid_t zoneid)
7002{
7003	if (priv != DTRACE_PRIV_ALL) {
7004		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7005		uint32_t match = priv & ppriv;
7006
7007		/*
7008		 * No PRIV_DTRACE_* privileges...
7009		 */
7010		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7011		    DTRACE_PRIV_KERNEL)) == 0)
7012			return (0);
7013
7014		/*
7015		 * No matching bits, but there were bits to match...
7016		 */
7017		if (match == 0 && ppriv != 0)
7018			return (0);
7019
7020		/*
7021		 * Need to have permissions to the process, but don't...
7022		 */
7023		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7024		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7025			return (0);
7026		}
7027
7028		/*
7029		 * Need to be in the same zone unless we possess the
7030		 * privilege to examine all zones.
7031		 */
7032		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7033		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7034			return (0);
7035		}
7036	}
7037
7038	return (1);
7039}
7040
7041/*
7042 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7043 * consists of input pattern strings and an ops-vector to evaluate them.
7044 * This function returns >0 for match, 0 for no match, and <0 for error.
7045 */
7046static int
7047dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7048    uint32_t priv, uid_t uid, zoneid_t zoneid)
7049{
7050	dtrace_provider_t *pvp = prp->dtpr_provider;
7051	int rv;
7052
7053	if (pvp->dtpv_defunct)
7054		return (0);
7055
7056	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7057		return (rv);
7058
7059	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7060		return (rv);
7061
7062	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7063		return (rv);
7064
7065	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7066		return (rv);
7067
7068	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7069		return (0);
7070
7071	return (rv);
7072}
7073
7074/*
7075 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7076 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7077 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7078 * In addition, all of the recursion cases except for '*' matching have been
7079 * unwound.  For '*', we still implement recursive evaluation, but a depth
7080 * counter is maintained and matching is aborted if we recurse too deep.
7081 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7082 */
7083static int
7084dtrace_match_glob(const char *s, const char *p, int depth)
7085{
7086	const char *olds;
7087	char s1, c;
7088	int gs;
7089
7090	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7091		return (-1);
7092
7093	if (s == NULL)
7094		s = ""; /* treat NULL as empty string */
7095
7096top:
7097	olds = s;
7098	s1 = *s++;
7099
7100	if (p == NULL)
7101		return (0);
7102
7103	if ((c = *p++) == '\0')
7104		return (s1 == '\0');
7105
7106	switch (c) {
7107	case '[': {
7108		int ok = 0, notflag = 0;
7109		char lc = '\0';
7110
7111		if (s1 == '\0')
7112			return (0);
7113
7114		if (*p == '!') {
7115			notflag = 1;
7116			p++;
7117		}
7118
7119		if ((c = *p++) == '\0')
7120			return (0);
7121
7122		do {
7123			if (c == '-' && lc != '\0' && *p != ']') {
7124				if ((c = *p++) == '\0')
7125					return (0);
7126				if (c == '\\' && (c = *p++) == '\0')
7127					return (0);
7128
7129				if (notflag) {
7130					if (s1 < lc || s1 > c)
7131						ok++;
7132					else
7133						return (0);
7134				} else if (lc <= s1 && s1 <= c)
7135					ok++;
7136
7137			} else if (c == '\\' && (c = *p++) == '\0')
7138				return (0);
7139
7140			lc = c; /* save left-hand 'c' for next iteration */
7141
7142			if (notflag) {
7143				if (s1 != c)
7144					ok++;
7145				else
7146					return (0);
7147			} else if (s1 == c)
7148				ok++;
7149
7150			if ((c = *p++) == '\0')
7151				return (0);
7152
7153		} while (c != ']');
7154
7155		if (ok)
7156			goto top;
7157
7158		return (0);
7159	}
7160
7161	case '\\':
7162		if ((c = *p++) == '\0')
7163			return (0);
7164		/*FALLTHRU*/
7165
7166	default:
7167		if (c != s1)
7168			return (0);
7169		/*FALLTHRU*/
7170
7171	case '?':
7172		if (s1 != '\0')
7173			goto top;
7174		return (0);
7175
7176	case '*':
7177		while (*p == '*')
7178			p++; /* consecutive *'s are identical to a single one */
7179
7180		if (*p == '\0')
7181			return (1);
7182
7183		for (s = olds; *s != '\0'; s++) {
7184			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7185				return (gs);
7186		}
7187
7188		return (0);
7189	}
7190}
7191
7192/*ARGSUSED*/
7193static int
7194dtrace_match_string(const char *s, const char *p, int depth)
7195{
7196	return (s != NULL && strcmp(s, p) == 0);
7197}
7198
7199/*ARGSUSED*/
7200static int
7201dtrace_match_nul(const char *s, const char *p, int depth)
7202{
7203	return (1); /* always match the empty pattern */
7204}
7205
7206/*ARGSUSED*/
7207static int
7208dtrace_match_nonzero(const char *s, const char *p, int depth)
7209{
7210	return (s != NULL && s[0] != '\0');
7211}
7212
7213static int
7214dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7215    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7216{
7217	dtrace_probe_t template, *probe;
7218	dtrace_hash_t *hash = NULL;
7219	int len, best = INT_MAX, nmatched = 0;
7220	dtrace_id_t i;
7221
7222	ASSERT(MUTEX_HELD(&dtrace_lock));
7223
7224	/*
7225	 * If the probe ID is specified in the key, just lookup by ID and
7226	 * invoke the match callback once if a matching probe is found.
7227	 */
7228	if (pkp->dtpk_id != DTRACE_IDNONE) {
7229		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7230		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7231			(void) (*matched)(probe, arg);
7232			nmatched++;
7233		}
7234		return (nmatched);
7235	}
7236
7237	template.dtpr_mod = (char *)pkp->dtpk_mod;
7238	template.dtpr_func = (char *)pkp->dtpk_func;
7239	template.dtpr_name = (char *)pkp->dtpk_name;
7240
7241	/*
7242	 * We want to find the most distinct of the module name, function
7243	 * name, and name.  So for each one that is not a glob pattern or
7244	 * empty string, we perform a lookup in the corresponding hash and
7245	 * use the hash table with the fewest collisions to do our search.
7246	 */
7247	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7248	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7249		best = len;
7250		hash = dtrace_bymod;
7251	}
7252
7253	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7254	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7255		best = len;
7256		hash = dtrace_byfunc;
7257	}
7258
7259	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7260	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7261		best = len;
7262		hash = dtrace_byname;
7263	}
7264
7265	/*
7266	 * If we did not select a hash table, iterate over every probe and
7267	 * invoke our callback for each one that matches our input probe key.
7268	 */
7269	if (hash == NULL) {
7270		for (i = 0; i < dtrace_nprobes; i++) {
7271			if ((probe = dtrace_probes[i]) == NULL ||
7272			    dtrace_match_probe(probe, pkp, priv, uid,
7273			    zoneid) <= 0)
7274				continue;
7275
7276			nmatched++;
7277
7278			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7279				break;
7280		}
7281
7282		return (nmatched);
7283	}
7284
7285	/*
7286	 * If we selected a hash table, iterate over each probe of the same key
7287	 * name and invoke the callback for every probe that matches the other
7288	 * attributes of our input probe key.
7289	 */
7290	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7291	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7292
7293		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7294			continue;
7295
7296		nmatched++;
7297
7298		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7299			break;
7300	}
7301
7302	return (nmatched);
7303}
7304
7305/*
7306 * Return the function pointer dtrace_probecmp() should use to compare the
7307 * specified pattern with a string.  For NULL or empty patterns, we select
7308 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7309 * For non-empty non-glob strings, we use dtrace_match_string().
7310 */
7311static dtrace_probekey_f *
7312dtrace_probekey_func(const char *p)
7313{
7314	char c;
7315
7316	if (p == NULL || *p == '\0')
7317		return (&dtrace_match_nul);
7318
7319	while ((c = *p++) != '\0') {
7320		if (c == '[' || c == '?' || c == '*' || c == '\\')
7321			return (&dtrace_match_glob);
7322	}
7323
7324	return (&dtrace_match_string);
7325}
7326
7327/*
7328 * Build a probe comparison key for use with dtrace_match_probe() from the
7329 * given probe description.  By convention, a null key only matches anchored
7330 * probes: if each field is the empty string, reset dtpk_fmatch to
7331 * dtrace_match_nonzero().
7332 */
7333static void
7334dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7335{
7336	pkp->dtpk_prov = pdp->dtpd_provider;
7337	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7338
7339	pkp->dtpk_mod = pdp->dtpd_mod;
7340	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7341
7342	pkp->dtpk_func = pdp->dtpd_func;
7343	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7344
7345	pkp->dtpk_name = pdp->dtpd_name;
7346	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7347
7348	pkp->dtpk_id = pdp->dtpd_id;
7349
7350	if (pkp->dtpk_id == DTRACE_IDNONE &&
7351	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7352	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7353	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7354	    pkp->dtpk_nmatch == &dtrace_match_nul)
7355		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7356}
7357
7358/*
7359 * DTrace Provider-to-Framework API Functions
7360 *
7361 * These functions implement much of the Provider-to-Framework API, as
7362 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7363 * the functions in the API for probe management (found below), and
7364 * dtrace_probe() itself (found above).
7365 */
7366
7367/*
7368 * Register the calling provider with the DTrace framework.  This should
7369 * generally be called by DTrace providers in their attach(9E) entry point.
7370 */
7371int
7372dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7373    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7374{
7375	dtrace_provider_t *provider;
7376
7377	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7378		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7379		    "arguments", name ? name : "<NULL>");
7380		return (EINVAL);
7381	}
7382
7383	if (name[0] == '\0' || dtrace_badname(name)) {
7384		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7385		    "provider name", name);
7386		return (EINVAL);
7387	}
7388
7389	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7390	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7391	    pops->dtps_destroy == NULL ||
7392	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7393		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7394		    "provider ops", name);
7395		return (EINVAL);
7396	}
7397
7398	if (dtrace_badattr(&pap->dtpa_provider) ||
7399	    dtrace_badattr(&pap->dtpa_mod) ||
7400	    dtrace_badattr(&pap->dtpa_func) ||
7401	    dtrace_badattr(&pap->dtpa_name) ||
7402	    dtrace_badattr(&pap->dtpa_args)) {
7403		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7404		    "provider attributes", name);
7405		return (EINVAL);
7406	}
7407
7408	if (priv & ~DTRACE_PRIV_ALL) {
7409		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7410		    "privilege attributes", name);
7411		return (EINVAL);
7412	}
7413
7414	if ((priv & DTRACE_PRIV_KERNEL) &&
7415	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7416	    pops->dtps_usermode == NULL) {
7417		cmn_err(CE_WARN, "failed to register provider '%s': need "
7418		    "dtps_usermode() op for given privilege attributes", name);
7419		return (EINVAL);
7420	}
7421
7422	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7423	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7424	(void) strcpy(provider->dtpv_name, name);
7425
7426	provider->dtpv_attr = *pap;
7427	provider->dtpv_priv.dtpp_flags = priv;
7428	if (cr != NULL) {
7429		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7430		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7431	}
7432	provider->dtpv_pops = *pops;
7433
7434	if (pops->dtps_provide == NULL) {
7435		ASSERT(pops->dtps_provide_module != NULL);
7436		provider->dtpv_pops.dtps_provide =
7437		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7438	}
7439
7440	if (pops->dtps_provide_module == NULL) {
7441		ASSERT(pops->dtps_provide != NULL);
7442		provider->dtpv_pops.dtps_provide_module =
7443		    (void (*)(void *, modctl_t *))dtrace_nullop;
7444	}
7445
7446	if (pops->dtps_suspend == NULL) {
7447		ASSERT(pops->dtps_resume == NULL);
7448		provider->dtpv_pops.dtps_suspend =
7449		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7450		provider->dtpv_pops.dtps_resume =
7451		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7452	}
7453
7454	provider->dtpv_arg = arg;
7455	*idp = (dtrace_provider_id_t)provider;
7456
7457	if (pops == &dtrace_provider_ops) {
7458		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7459		ASSERT(MUTEX_HELD(&dtrace_lock));
7460		ASSERT(dtrace_anon.dta_enabling == NULL);
7461
7462		/*
7463		 * We make sure that the DTrace provider is at the head of
7464		 * the provider chain.
7465		 */
7466		provider->dtpv_next = dtrace_provider;
7467		dtrace_provider = provider;
7468		return (0);
7469	}
7470
7471	mutex_enter(&dtrace_provider_lock);
7472	mutex_enter(&dtrace_lock);
7473
7474	/*
7475	 * If there is at least one provider registered, we'll add this
7476	 * provider after the first provider.
7477	 */
7478	if (dtrace_provider != NULL) {
7479		provider->dtpv_next = dtrace_provider->dtpv_next;
7480		dtrace_provider->dtpv_next = provider;
7481	} else {
7482		dtrace_provider = provider;
7483	}
7484
7485	if (dtrace_retained != NULL) {
7486		dtrace_enabling_provide(provider);
7487
7488		/*
7489		 * Now we need to call dtrace_enabling_matchall() -- which
7490		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7491		 * to drop all of our locks before calling into it...
7492		 */
7493		mutex_exit(&dtrace_lock);
7494		mutex_exit(&dtrace_provider_lock);
7495		dtrace_enabling_matchall();
7496
7497		return (0);
7498	}
7499
7500	mutex_exit(&dtrace_lock);
7501	mutex_exit(&dtrace_provider_lock);
7502
7503	return (0);
7504}
7505
7506/*
7507 * Unregister the specified provider from the DTrace framework.  This should
7508 * generally be called by DTrace providers in their detach(9E) entry point.
7509 */
7510int
7511dtrace_unregister(dtrace_provider_id_t id)
7512{
7513	dtrace_provider_t *old = (dtrace_provider_t *)id;
7514	dtrace_provider_t *prev = NULL;
7515	int i, self = 0;
7516	dtrace_probe_t *probe, *first = NULL;
7517
7518	if (old->dtpv_pops.dtps_enable ==
7519	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7520		/*
7521		 * If DTrace itself is the provider, we're called with locks
7522		 * already held.
7523		 */
7524		ASSERT(old == dtrace_provider);
7525#if defined(sun)
7526		ASSERT(dtrace_devi != NULL);
7527#endif
7528		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7529		ASSERT(MUTEX_HELD(&dtrace_lock));
7530		self = 1;
7531
7532		if (dtrace_provider->dtpv_next != NULL) {
7533			/*
7534			 * There's another provider here; return failure.
7535			 */
7536			return (EBUSY);
7537		}
7538	} else {
7539		mutex_enter(&dtrace_provider_lock);
7540		mutex_enter(&mod_lock);
7541		mutex_enter(&dtrace_lock);
7542	}
7543
7544	/*
7545	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7546	 * probes, we refuse to let providers slither away, unless this
7547	 * provider has already been explicitly invalidated.
7548	 */
7549	if (!old->dtpv_defunct &&
7550	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7551	    dtrace_anon.dta_state->dts_necbs > 0))) {
7552		if (!self) {
7553			mutex_exit(&dtrace_lock);
7554			mutex_exit(&mod_lock);
7555			mutex_exit(&dtrace_provider_lock);
7556		}
7557		return (EBUSY);
7558	}
7559
7560	/*
7561	 * Attempt to destroy the probes associated with this provider.
7562	 */
7563	for (i = 0; i < dtrace_nprobes; i++) {
7564		if ((probe = dtrace_probes[i]) == NULL)
7565			continue;
7566
7567		if (probe->dtpr_provider != old)
7568			continue;
7569
7570		if (probe->dtpr_ecb == NULL)
7571			continue;
7572
7573		/*
7574		 * We have at least one ECB; we can't remove this provider.
7575		 */
7576		if (!self) {
7577			mutex_exit(&dtrace_lock);
7578			mutex_exit(&mod_lock);
7579			mutex_exit(&dtrace_provider_lock);
7580		}
7581		return (EBUSY);
7582	}
7583
7584	/*
7585	 * All of the probes for this provider are disabled; we can safely
7586	 * remove all of them from their hash chains and from the probe array.
7587	 */
7588	for (i = 0; i < dtrace_nprobes; i++) {
7589		if ((probe = dtrace_probes[i]) == NULL)
7590			continue;
7591
7592		if (probe->dtpr_provider != old)
7593			continue;
7594
7595		dtrace_probes[i] = NULL;
7596
7597		dtrace_hash_remove(dtrace_bymod, probe);
7598		dtrace_hash_remove(dtrace_byfunc, probe);
7599		dtrace_hash_remove(dtrace_byname, probe);
7600
7601		if (first == NULL) {
7602			first = probe;
7603			probe->dtpr_nextmod = NULL;
7604		} else {
7605			probe->dtpr_nextmod = first;
7606			first = probe;
7607		}
7608	}
7609
7610	/*
7611	 * The provider's probes have been removed from the hash chains and
7612	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7613	 * everyone has cleared out from any probe array processing.
7614	 */
7615	dtrace_sync();
7616
7617	for (probe = first; probe != NULL; probe = first) {
7618		first = probe->dtpr_nextmod;
7619
7620		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7621		    probe->dtpr_arg);
7622		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7623		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7624		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7625#if defined(sun)
7626		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7627#else
7628		free_unr(dtrace_arena, probe->dtpr_id);
7629#endif
7630		kmem_free(probe, sizeof (dtrace_probe_t));
7631	}
7632
7633	if ((prev = dtrace_provider) == old) {
7634#if defined(sun)
7635		ASSERT(self || dtrace_devi == NULL);
7636		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7637#endif
7638		dtrace_provider = old->dtpv_next;
7639	} else {
7640		while (prev != NULL && prev->dtpv_next != old)
7641			prev = prev->dtpv_next;
7642
7643		if (prev == NULL) {
7644			panic("attempt to unregister non-existent "
7645			    "dtrace provider %p\n", (void *)id);
7646		}
7647
7648		prev->dtpv_next = old->dtpv_next;
7649	}
7650
7651	if (!self) {
7652		mutex_exit(&dtrace_lock);
7653		mutex_exit(&mod_lock);
7654		mutex_exit(&dtrace_provider_lock);
7655	}
7656
7657	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7658	kmem_free(old, sizeof (dtrace_provider_t));
7659
7660	return (0);
7661}
7662
7663/*
7664 * Invalidate the specified provider.  All subsequent probe lookups for the
7665 * specified provider will fail, but its probes will not be removed.
7666 */
7667void
7668dtrace_invalidate(dtrace_provider_id_t id)
7669{
7670	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7671
7672	ASSERT(pvp->dtpv_pops.dtps_enable !=
7673	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7674
7675	mutex_enter(&dtrace_provider_lock);
7676	mutex_enter(&dtrace_lock);
7677
7678	pvp->dtpv_defunct = 1;
7679
7680	mutex_exit(&dtrace_lock);
7681	mutex_exit(&dtrace_provider_lock);
7682}
7683
7684/*
7685 * Indicate whether or not DTrace has attached.
7686 */
7687int
7688dtrace_attached(void)
7689{
7690	/*
7691	 * dtrace_provider will be non-NULL iff the DTrace driver has
7692	 * attached.  (It's non-NULL because DTrace is always itself a
7693	 * provider.)
7694	 */
7695	return (dtrace_provider != NULL);
7696}
7697
7698/*
7699 * Remove all the unenabled probes for the given provider.  This function is
7700 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7701 * -- just as many of its associated probes as it can.
7702 */
7703int
7704dtrace_condense(dtrace_provider_id_t id)
7705{
7706	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7707	int i;
7708	dtrace_probe_t *probe;
7709
7710	/*
7711	 * Make sure this isn't the dtrace provider itself.
7712	 */
7713	ASSERT(prov->dtpv_pops.dtps_enable !=
7714	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7715
7716	mutex_enter(&dtrace_provider_lock);
7717	mutex_enter(&dtrace_lock);
7718
7719	/*
7720	 * Attempt to destroy the probes associated with this provider.
7721	 */
7722	for (i = 0; i < dtrace_nprobes; i++) {
7723		if ((probe = dtrace_probes[i]) == NULL)
7724			continue;
7725
7726		if (probe->dtpr_provider != prov)
7727			continue;
7728
7729		if (probe->dtpr_ecb != NULL)
7730			continue;
7731
7732		dtrace_probes[i] = NULL;
7733
7734		dtrace_hash_remove(dtrace_bymod, probe);
7735		dtrace_hash_remove(dtrace_byfunc, probe);
7736		dtrace_hash_remove(dtrace_byname, probe);
7737
7738		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7739		    probe->dtpr_arg);
7740		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7741		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7742		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7743		kmem_free(probe, sizeof (dtrace_probe_t));
7744#if defined(sun)
7745		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7746#else
7747		free_unr(dtrace_arena, i + 1);
7748#endif
7749	}
7750
7751	mutex_exit(&dtrace_lock);
7752	mutex_exit(&dtrace_provider_lock);
7753
7754	return (0);
7755}
7756
7757/*
7758 * DTrace Probe Management Functions
7759 *
7760 * The functions in this section perform the DTrace probe management,
7761 * including functions to create probes, look-up probes, and call into the
7762 * providers to request that probes be provided.  Some of these functions are
7763 * in the Provider-to-Framework API; these functions can be identified by the
7764 * fact that they are not declared "static".
7765 */
7766
7767/*
7768 * Create a probe with the specified module name, function name, and name.
7769 */
7770dtrace_id_t
7771dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7772    const char *func, const char *name, int aframes, void *arg)
7773{
7774	dtrace_probe_t *probe, **probes;
7775	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7776	dtrace_id_t id;
7777
7778	if (provider == dtrace_provider) {
7779		ASSERT(MUTEX_HELD(&dtrace_lock));
7780	} else {
7781		mutex_enter(&dtrace_lock);
7782	}
7783
7784#if defined(sun)
7785	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7786	    VM_BESTFIT | VM_SLEEP);
7787#else
7788	id = alloc_unr(dtrace_arena);
7789#endif
7790	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7791
7792	probe->dtpr_id = id;
7793	probe->dtpr_gen = dtrace_probegen++;
7794	probe->dtpr_mod = dtrace_strdup(mod);
7795	probe->dtpr_func = dtrace_strdup(func);
7796	probe->dtpr_name = dtrace_strdup(name);
7797	probe->dtpr_arg = arg;
7798	probe->dtpr_aframes = aframes;
7799	probe->dtpr_provider = provider;
7800
7801	dtrace_hash_add(dtrace_bymod, probe);
7802	dtrace_hash_add(dtrace_byfunc, probe);
7803	dtrace_hash_add(dtrace_byname, probe);
7804
7805	if (id - 1 >= dtrace_nprobes) {
7806		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7807		size_t nsize = osize << 1;
7808
7809		if (nsize == 0) {
7810			ASSERT(osize == 0);
7811			ASSERT(dtrace_probes == NULL);
7812			nsize = sizeof (dtrace_probe_t *);
7813		}
7814
7815		probes = kmem_zalloc(nsize, KM_SLEEP);
7816
7817		if (dtrace_probes == NULL) {
7818			ASSERT(osize == 0);
7819			dtrace_probes = probes;
7820			dtrace_nprobes = 1;
7821		} else {
7822			dtrace_probe_t **oprobes = dtrace_probes;
7823
7824			bcopy(oprobes, probes, osize);
7825			dtrace_membar_producer();
7826			dtrace_probes = probes;
7827
7828			dtrace_sync();
7829
7830			/*
7831			 * All CPUs are now seeing the new probes array; we can
7832			 * safely free the old array.
7833			 */
7834			kmem_free(oprobes, osize);
7835			dtrace_nprobes <<= 1;
7836		}
7837
7838		ASSERT(id - 1 < dtrace_nprobes);
7839	}
7840
7841	ASSERT(dtrace_probes[id - 1] == NULL);
7842	dtrace_probes[id - 1] = probe;
7843
7844	if (provider != dtrace_provider)
7845		mutex_exit(&dtrace_lock);
7846
7847	return (id);
7848}
7849
7850static dtrace_probe_t *
7851dtrace_probe_lookup_id(dtrace_id_t id)
7852{
7853	ASSERT(MUTEX_HELD(&dtrace_lock));
7854
7855	if (id == 0 || id > dtrace_nprobes)
7856		return (NULL);
7857
7858	return (dtrace_probes[id - 1]);
7859}
7860
7861static int
7862dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7863{
7864	*((dtrace_id_t *)arg) = probe->dtpr_id;
7865
7866	return (DTRACE_MATCH_DONE);
7867}
7868
7869/*
7870 * Look up a probe based on provider and one or more of module name, function
7871 * name and probe name.
7872 */
7873dtrace_id_t
7874dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7875    char *func, char *name)
7876{
7877	dtrace_probekey_t pkey;
7878	dtrace_id_t id;
7879	int match;
7880
7881	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7882	pkey.dtpk_pmatch = &dtrace_match_string;
7883	pkey.dtpk_mod = mod;
7884	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7885	pkey.dtpk_func = func;
7886	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7887	pkey.dtpk_name = name;
7888	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7889	pkey.dtpk_id = DTRACE_IDNONE;
7890
7891	mutex_enter(&dtrace_lock);
7892	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7893	    dtrace_probe_lookup_match, &id);
7894	mutex_exit(&dtrace_lock);
7895
7896	ASSERT(match == 1 || match == 0);
7897	return (match ? id : 0);
7898}
7899
7900/*
7901 * Returns the probe argument associated with the specified probe.
7902 */
7903void *
7904dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7905{
7906	dtrace_probe_t *probe;
7907	void *rval = NULL;
7908
7909	mutex_enter(&dtrace_lock);
7910
7911	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7912	    probe->dtpr_provider == (dtrace_provider_t *)id)
7913		rval = probe->dtpr_arg;
7914
7915	mutex_exit(&dtrace_lock);
7916
7917	return (rval);
7918}
7919
7920/*
7921 * Copy a probe into a probe description.
7922 */
7923static void
7924dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7925{
7926	bzero(pdp, sizeof (dtrace_probedesc_t));
7927	pdp->dtpd_id = prp->dtpr_id;
7928
7929	(void) strncpy(pdp->dtpd_provider,
7930	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7931
7932	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7933	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7934	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7935}
7936
7937#if !defined(sun)
7938static int
7939dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7940{
7941	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7942
7943	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7944
7945	return(0);
7946}
7947#endif
7948
7949
7950/*
7951 * Called to indicate that a probe -- or probes -- should be provided by a
7952 * specfied provider.  If the specified description is NULL, the provider will
7953 * be told to provide all of its probes.  (This is done whenever a new
7954 * consumer comes along, or whenever a retained enabling is to be matched.) If
7955 * the specified description is non-NULL, the provider is given the
7956 * opportunity to dynamically provide the specified probe, allowing providers
7957 * to support the creation of probes on-the-fly.  (So-called _autocreated_
7958 * probes.)  If the provider is NULL, the operations will be applied to all
7959 * providers; if the provider is non-NULL the operations will only be applied
7960 * to the specified provider.  The dtrace_provider_lock must be held, and the
7961 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7962 * will need to grab the dtrace_lock when it reenters the framework through
7963 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7964 */
7965static void
7966dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7967{
7968#if defined(sun)
7969	modctl_t *ctl;
7970#endif
7971	int all = 0;
7972
7973	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7974
7975	if (prv == NULL) {
7976		all = 1;
7977		prv = dtrace_provider;
7978	}
7979
7980	do {
7981		/*
7982		 * First, call the blanket provide operation.
7983		 */
7984		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7985
7986		/*
7987		 * Now call the per-module provide operation.  We will grab
7988		 * mod_lock to prevent the list from being modified.  Note
7989		 * that this also prevents the mod_busy bits from changing.
7990		 * (mod_busy can only be changed with mod_lock held.)
7991		 */
7992		mutex_enter(&mod_lock);
7993
7994#if defined(sun)
7995		ctl = &modules;
7996		do {
7997			if (ctl->mod_busy || ctl->mod_mp == NULL)
7998				continue;
7999
8000			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8001
8002		} while ((ctl = ctl->mod_next) != &modules);
8003#else
8004		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
8005#endif
8006
8007		mutex_exit(&mod_lock);
8008	} while (all && (prv = prv->dtpv_next) != NULL);
8009}
8010
8011#if defined(sun)
8012/*
8013 * Iterate over each probe, and call the Framework-to-Provider API function
8014 * denoted by offs.
8015 */
8016static void
8017dtrace_probe_foreach(uintptr_t offs)
8018{
8019	dtrace_provider_t *prov;
8020	void (*func)(void *, dtrace_id_t, void *);
8021	dtrace_probe_t *probe;
8022	dtrace_icookie_t cookie;
8023	int i;
8024
8025	/*
8026	 * We disable interrupts to walk through the probe array.  This is
8027	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8028	 * won't see stale data.
8029	 */
8030	cookie = dtrace_interrupt_disable();
8031
8032	for (i = 0; i < dtrace_nprobes; i++) {
8033		if ((probe = dtrace_probes[i]) == NULL)
8034			continue;
8035
8036		if (probe->dtpr_ecb == NULL) {
8037			/*
8038			 * This probe isn't enabled -- don't call the function.
8039			 */
8040			continue;
8041		}
8042
8043		prov = probe->dtpr_provider;
8044		func = *((void(**)(void *, dtrace_id_t, void *))
8045		    ((uintptr_t)&prov->dtpv_pops + offs));
8046
8047		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8048	}
8049
8050	dtrace_interrupt_enable(cookie);
8051}
8052#endif
8053
8054static int
8055dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8056{
8057	dtrace_probekey_t pkey;
8058	uint32_t priv;
8059	uid_t uid;
8060	zoneid_t zoneid;
8061
8062	ASSERT(MUTEX_HELD(&dtrace_lock));
8063	dtrace_ecb_create_cache = NULL;
8064
8065	if (desc == NULL) {
8066		/*
8067		 * If we're passed a NULL description, we're being asked to
8068		 * create an ECB with a NULL probe.
8069		 */
8070		(void) dtrace_ecb_create_enable(NULL, enab);
8071		return (0);
8072	}
8073
8074	dtrace_probekey(desc, &pkey);
8075	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8076	    &priv, &uid, &zoneid);
8077
8078	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8079	    enab));
8080}
8081
8082/*
8083 * DTrace Helper Provider Functions
8084 */
8085static void
8086dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8087{
8088	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8089	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8090	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8091}
8092
8093static void
8094dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8095    const dof_provider_t *dofprov, char *strtab)
8096{
8097	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8098	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8099	    dofprov->dofpv_provattr);
8100	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8101	    dofprov->dofpv_modattr);
8102	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8103	    dofprov->dofpv_funcattr);
8104	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8105	    dofprov->dofpv_nameattr);
8106	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8107	    dofprov->dofpv_argsattr);
8108}
8109
8110static void
8111dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8112{
8113	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8114	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8115	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8116	dof_provider_t *provider;
8117	dof_probe_t *probe;
8118	uint32_t *off, *enoff;
8119	uint8_t *arg;
8120	char *strtab;
8121	uint_t i, nprobes;
8122	dtrace_helper_provdesc_t dhpv;
8123	dtrace_helper_probedesc_t dhpb;
8124	dtrace_meta_t *meta = dtrace_meta_pid;
8125	dtrace_mops_t *mops = &meta->dtm_mops;
8126	void *parg;
8127
8128	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8129	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8130	    provider->dofpv_strtab * dof->dofh_secsize);
8131	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8132	    provider->dofpv_probes * dof->dofh_secsize);
8133	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8134	    provider->dofpv_prargs * dof->dofh_secsize);
8135	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8136	    provider->dofpv_proffs * dof->dofh_secsize);
8137
8138	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8139	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8140	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8141	enoff = NULL;
8142
8143	/*
8144	 * See dtrace_helper_provider_validate().
8145	 */
8146	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8147	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8148		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8149		    provider->dofpv_prenoffs * dof->dofh_secsize);
8150		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8151	}
8152
8153	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8154
8155	/*
8156	 * Create the provider.
8157	 */
8158	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8159
8160	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8161		return;
8162
8163	meta->dtm_count++;
8164
8165	/*
8166	 * Create the probes.
8167	 */
8168	for (i = 0; i < nprobes; i++) {
8169		probe = (dof_probe_t *)(uintptr_t)(daddr +
8170		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8171
8172		dhpb.dthpb_mod = dhp->dofhp_mod;
8173		dhpb.dthpb_func = strtab + probe->dofpr_func;
8174		dhpb.dthpb_name = strtab + probe->dofpr_name;
8175		dhpb.dthpb_base = probe->dofpr_addr;
8176		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8177		dhpb.dthpb_noffs = probe->dofpr_noffs;
8178		if (enoff != NULL) {
8179			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8180			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8181		} else {
8182			dhpb.dthpb_enoffs = NULL;
8183			dhpb.dthpb_nenoffs = 0;
8184		}
8185		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8186		dhpb.dthpb_nargc = probe->dofpr_nargc;
8187		dhpb.dthpb_xargc = probe->dofpr_xargc;
8188		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8189		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8190
8191		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8192	}
8193}
8194
8195static void
8196dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8197{
8198	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8199	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8200	int i;
8201
8202	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8203
8204	for (i = 0; i < dof->dofh_secnum; i++) {
8205		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8206		    dof->dofh_secoff + i * dof->dofh_secsize);
8207
8208		if (sec->dofs_type != DOF_SECT_PROVIDER)
8209			continue;
8210
8211		dtrace_helper_provide_one(dhp, sec, pid);
8212	}
8213
8214	/*
8215	 * We may have just created probes, so we must now rematch against
8216	 * any retained enablings.  Note that this call will acquire both
8217	 * cpu_lock and dtrace_lock; the fact that we are holding
8218	 * dtrace_meta_lock now is what defines the ordering with respect to
8219	 * these three locks.
8220	 */
8221	dtrace_enabling_matchall();
8222}
8223
8224static void
8225dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8226{
8227	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8228	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8229	dof_sec_t *str_sec;
8230	dof_provider_t *provider;
8231	char *strtab;
8232	dtrace_helper_provdesc_t dhpv;
8233	dtrace_meta_t *meta = dtrace_meta_pid;
8234	dtrace_mops_t *mops = &meta->dtm_mops;
8235
8236	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8237	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8238	    provider->dofpv_strtab * dof->dofh_secsize);
8239
8240	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8241
8242	/*
8243	 * Create the provider.
8244	 */
8245	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8246
8247	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8248
8249	meta->dtm_count--;
8250}
8251
8252static void
8253dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8254{
8255	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8256	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8257	int i;
8258
8259	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8260
8261	for (i = 0; i < dof->dofh_secnum; i++) {
8262		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8263		    dof->dofh_secoff + i * dof->dofh_secsize);
8264
8265		if (sec->dofs_type != DOF_SECT_PROVIDER)
8266			continue;
8267
8268		dtrace_helper_provider_remove_one(dhp, sec, pid);
8269	}
8270}
8271
8272/*
8273 * DTrace Meta Provider-to-Framework API Functions
8274 *
8275 * These functions implement the Meta Provider-to-Framework API, as described
8276 * in <sys/dtrace.h>.
8277 */
8278int
8279dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8280    dtrace_meta_provider_id_t *idp)
8281{
8282	dtrace_meta_t *meta;
8283	dtrace_helpers_t *help, *next;
8284	int i;
8285
8286	*idp = DTRACE_METAPROVNONE;
8287
8288	/*
8289	 * We strictly don't need the name, but we hold onto it for
8290	 * debuggability. All hail error queues!
8291	 */
8292	if (name == NULL) {
8293		cmn_err(CE_WARN, "failed to register meta-provider: "
8294		    "invalid name");
8295		return (EINVAL);
8296	}
8297
8298	if (mops == NULL ||
8299	    mops->dtms_create_probe == NULL ||
8300	    mops->dtms_provide_pid == NULL ||
8301	    mops->dtms_remove_pid == NULL) {
8302		cmn_err(CE_WARN, "failed to register meta-register %s: "
8303		    "invalid ops", name);
8304		return (EINVAL);
8305	}
8306
8307	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8308	meta->dtm_mops = *mops;
8309	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8310	(void) strcpy(meta->dtm_name, name);
8311	meta->dtm_arg = arg;
8312
8313	mutex_enter(&dtrace_meta_lock);
8314	mutex_enter(&dtrace_lock);
8315
8316	if (dtrace_meta_pid != NULL) {
8317		mutex_exit(&dtrace_lock);
8318		mutex_exit(&dtrace_meta_lock);
8319		cmn_err(CE_WARN, "failed to register meta-register %s: "
8320		    "user-land meta-provider exists", name);
8321		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8322		kmem_free(meta, sizeof (dtrace_meta_t));
8323		return (EINVAL);
8324	}
8325
8326	dtrace_meta_pid = meta;
8327	*idp = (dtrace_meta_provider_id_t)meta;
8328
8329	/*
8330	 * If there are providers and probes ready to go, pass them
8331	 * off to the new meta provider now.
8332	 */
8333
8334	help = dtrace_deferred_pid;
8335	dtrace_deferred_pid = NULL;
8336
8337	mutex_exit(&dtrace_lock);
8338
8339	while (help != NULL) {
8340		for (i = 0; i < help->dthps_nprovs; i++) {
8341			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8342			    help->dthps_pid);
8343		}
8344
8345		next = help->dthps_next;
8346		help->dthps_next = NULL;
8347		help->dthps_prev = NULL;
8348		help->dthps_deferred = 0;
8349		help = next;
8350	}
8351
8352	mutex_exit(&dtrace_meta_lock);
8353
8354	return (0);
8355}
8356
8357int
8358dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8359{
8360	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8361
8362	mutex_enter(&dtrace_meta_lock);
8363	mutex_enter(&dtrace_lock);
8364
8365	if (old == dtrace_meta_pid) {
8366		pp = &dtrace_meta_pid;
8367	} else {
8368		panic("attempt to unregister non-existent "
8369		    "dtrace meta-provider %p\n", (void *)old);
8370	}
8371
8372	if (old->dtm_count != 0) {
8373		mutex_exit(&dtrace_lock);
8374		mutex_exit(&dtrace_meta_lock);
8375		return (EBUSY);
8376	}
8377
8378	*pp = NULL;
8379
8380	mutex_exit(&dtrace_lock);
8381	mutex_exit(&dtrace_meta_lock);
8382
8383	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8384	kmem_free(old, sizeof (dtrace_meta_t));
8385
8386	return (0);
8387}
8388
8389
8390/*
8391 * DTrace DIF Object Functions
8392 */
8393static int
8394dtrace_difo_err(uint_t pc, const char *format, ...)
8395{
8396	if (dtrace_err_verbose) {
8397		va_list alist;
8398
8399		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8400		va_start(alist, format);
8401		(void) vuprintf(format, alist);
8402		va_end(alist);
8403	}
8404
8405#ifdef DTRACE_ERRDEBUG
8406	dtrace_errdebug(format);
8407#endif
8408	return (1);
8409}
8410
8411/*
8412 * Validate a DTrace DIF object by checking the IR instructions.  The following
8413 * rules are currently enforced by dtrace_difo_validate():
8414 *
8415 * 1. Each instruction must have a valid opcode
8416 * 2. Each register, string, variable, or subroutine reference must be valid
8417 * 3. No instruction can modify register %r0 (must be zero)
8418 * 4. All instruction reserved bits must be set to zero
8419 * 5. The last instruction must be a "ret" instruction
8420 * 6. All branch targets must reference a valid instruction _after_ the branch
8421 */
8422static int
8423dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8424    cred_t *cr)
8425{
8426	int err = 0, i;
8427	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8428	int kcheckload;
8429	uint_t pc;
8430
8431	kcheckload = cr == NULL ||
8432	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8433
8434	dp->dtdo_destructive = 0;
8435
8436	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8437		dif_instr_t instr = dp->dtdo_buf[pc];
8438
8439		uint_t r1 = DIF_INSTR_R1(instr);
8440		uint_t r2 = DIF_INSTR_R2(instr);
8441		uint_t rd = DIF_INSTR_RD(instr);
8442		uint_t rs = DIF_INSTR_RS(instr);
8443		uint_t label = DIF_INSTR_LABEL(instr);
8444		uint_t v = DIF_INSTR_VAR(instr);
8445		uint_t subr = DIF_INSTR_SUBR(instr);
8446		uint_t type = DIF_INSTR_TYPE(instr);
8447		uint_t op = DIF_INSTR_OP(instr);
8448
8449		switch (op) {
8450		case DIF_OP_OR:
8451		case DIF_OP_XOR:
8452		case DIF_OP_AND:
8453		case DIF_OP_SLL:
8454		case DIF_OP_SRL:
8455		case DIF_OP_SRA:
8456		case DIF_OP_SUB:
8457		case DIF_OP_ADD:
8458		case DIF_OP_MUL:
8459		case DIF_OP_SDIV:
8460		case DIF_OP_UDIV:
8461		case DIF_OP_SREM:
8462		case DIF_OP_UREM:
8463		case DIF_OP_COPYS:
8464			if (r1 >= nregs)
8465				err += efunc(pc, "invalid register %u\n", r1);
8466			if (r2 >= nregs)
8467				err += efunc(pc, "invalid register %u\n", r2);
8468			if (rd >= nregs)
8469				err += efunc(pc, "invalid register %u\n", rd);
8470			if (rd == 0)
8471				err += efunc(pc, "cannot write to %r0\n");
8472			break;
8473		case DIF_OP_NOT:
8474		case DIF_OP_MOV:
8475		case DIF_OP_ALLOCS:
8476			if (r1 >= nregs)
8477				err += efunc(pc, "invalid register %u\n", r1);
8478			if (r2 != 0)
8479				err += efunc(pc, "non-zero reserved bits\n");
8480			if (rd >= nregs)
8481				err += efunc(pc, "invalid register %u\n", rd);
8482			if (rd == 0)
8483				err += efunc(pc, "cannot write to %r0\n");
8484			break;
8485		case DIF_OP_LDSB:
8486		case DIF_OP_LDSH:
8487		case DIF_OP_LDSW:
8488		case DIF_OP_LDUB:
8489		case DIF_OP_LDUH:
8490		case DIF_OP_LDUW:
8491		case DIF_OP_LDX:
8492			if (r1 >= nregs)
8493				err += efunc(pc, "invalid register %u\n", r1);
8494			if (r2 != 0)
8495				err += efunc(pc, "non-zero reserved bits\n");
8496			if (rd >= nregs)
8497				err += efunc(pc, "invalid register %u\n", rd);
8498			if (rd == 0)
8499				err += efunc(pc, "cannot write to %r0\n");
8500			if (kcheckload)
8501				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8502				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8503			break;
8504		case DIF_OP_RLDSB:
8505		case DIF_OP_RLDSH:
8506		case DIF_OP_RLDSW:
8507		case DIF_OP_RLDUB:
8508		case DIF_OP_RLDUH:
8509		case DIF_OP_RLDUW:
8510		case DIF_OP_RLDX:
8511			if (r1 >= nregs)
8512				err += efunc(pc, "invalid register %u\n", r1);
8513			if (r2 != 0)
8514				err += efunc(pc, "non-zero reserved bits\n");
8515			if (rd >= nregs)
8516				err += efunc(pc, "invalid register %u\n", rd);
8517			if (rd == 0)
8518				err += efunc(pc, "cannot write to %r0\n");
8519			break;
8520		case DIF_OP_ULDSB:
8521		case DIF_OP_ULDSH:
8522		case DIF_OP_ULDSW:
8523		case DIF_OP_ULDUB:
8524		case DIF_OP_ULDUH:
8525		case DIF_OP_ULDUW:
8526		case DIF_OP_ULDX:
8527			if (r1 >= nregs)
8528				err += efunc(pc, "invalid register %u\n", r1);
8529			if (r2 != 0)
8530				err += efunc(pc, "non-zero reserved bits\n");
8531			if (rd >= nregs)
8532				err += efunc(pc, "invalid register %u\n", rd);
8533			if (rd == 0)
8534				err += efunc(pc, "cannot write to %r0\n");
8535			break;
8536		case DIF_OP_STB:
8537		case DIF_OP_STH:
8538		case DIF_OP_STW:
8539		case DIF_OP_STX:
8540			if (r1 >= nregs)
8541				err += efunc(pc, "invalid register %u\n", r1);
8542			if (r2 != 0)
8543				err += efunc(pc, "non-zero reserved bits\n");
8544			if (rd >= nregs)
8545				err += efunc(pc, "invalid register %u\n", rd);
8546			if (rd == 0)
8547				err += efunc(pc, "cannot write to 0 address\n");
8548			break;
8549		case DIF_OP_CMP:
8550		case DIF_OP_SCMP:
8551			if (r1 >= nregs)
8552				err += efunc(pc, "invalid register %u\n", r1);
8553			if (r2 >= nregs)
8554				err += efunc(pc, "invalid register %u\n", r2);
8555			if (rd != 0)
8556				err += efunc(pc, "non-zero reserved bits\n");
8557			break;
8558		case DIF_OP_TST:
8559			if (r1 >= nregs)
8560				err += efunc(pc, "invalid register %u\n", r1);
8561			if (r2 != 0 || rd != 0)
8562				err += efunc(pc, "non-zero reserved bits\n");
8563			break;
8564		case DIF_OP_BA:
8565		case DIF_OP_BE:
8566		case DIF_OP_BNE:
8567		case DIF_OP_BG:
8568		case DIF_OP_BGU:
8569		case DIF_OP_BGE:
8570		case DIF_OP_BGEU:
8571		case DIF_OP_BL:
8572		case DIF_OP_BLU:
8573		case DIF_OP_BLE:
8574		case DIF_OP_BLEU:
8575			if (label >= dp->dtdo_len) {
8576				err += efunc(pc, "invalid branch target %u\n",
8577				    label);
8578			}
8579			if (label <= pc) {
8580				err += efunc(pc, "backward branch to %u\n",
8581				    label);
8582			}
8583			break;
8584		case DIF_OP_RET:
8585			if (r1 != 0 || r2 != 0)
8586				err += efunc(pc, "non-zero reserved bits\n");
8587			if (rd >= nregs)
8588				err += efunc(pc, "invalid register %u\n", rd);
8589			break;
8590		case DIF_OP_NOP:
8591		case DIF_OP_POPTS:
8592		case DIF_OP_FLUSHTS:
8593			if (r1 != 0 || r2 != 0 || rd != 0)
8594				err += efunc(pc, "non-zero reserved bits\n");
8595			break;
8596		case DIF_OP_SETX:
8597			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8598				err += efunc(pc, "invalid integer ref %u\n",
8599				    DIF_INSTR_INTEGER(instr));
8600			}
8601			if (rd >= nregs)
8602				err += efunc(pc, "invalid register %u\n", rd);
8603			if (rd == 0)
8604				err += efunc(pc, "cannot write to %r0\n");
8605			break;
8606		case DIF_OP_SETS:
8607			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8608				err += efunc(pc, "invalid string ref %u\n",
8609				    DIF_INSTR_STRING(instr));
8610			}
8611			if (rd >= nregs)
8612				err += efunc(pc, "invalid register %u\n", rd);
8613			if (rd == 0)
8614				err += efunc(pc, "cannot write to %r0\n");
8615			break;
8616		case DIF_OP_LDGA:
8617		case DIF_OP_LDTA:
8618			if (r1 > DIF_VAR_ARRAY_MAX)
8619				err += efunc(pc, "invalid array %u\n", r1);
8620			if (r2 >= nregs)
8621				err += efunc(pc, "invalid register %u\n", r2);
8622			if (rd >= nregs)
8623				err += efunc(pc, "invalid register %u\n", rd);
8624			if (rd == 0)
8625				err += efunc(pc, "cannot write to %r0\n");
8626			break;
8627		case DIF_OP_LDGS:
8628		case DIF_OP_LDTS:
8629		case DIF_OP_LDLS:
8630		case DIF_OP_LDGAA:
8631		case DIF_OP_LDTAA:
8632			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8633				err += efunc(pc, "invalid variable %u\n", v);
8634			if (rd >= nregs)
8635				err += efunc(pc, "invalid register %u\n", rd);
8636			if (rd == 0)
8637				err += efunc(pc, "cannot write to %r0\n");
8638			break;
8639		case DIF_OP_STGS:
8640		case DIF_OP_STTS:
8641		case DIF_OP_STLS:
8642		case DIF_OP_STGAA:
8643		case DIF_OP_STTAA:
8644			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8645				err += efunc(pc, "invalid variable %u\n", v);
8646			if (rs >= nregs)
8647				err += efunc(pc, "invalid register %u\n", rd);
8648			break;
8649		case DIF_OP_CALL:
8650			if (subr > DIF_SUBR_MAX)
8651				err += efunc(pc, "invalid subr %u\n", subr);
8652			if (rd >= nregs)
8653				err += efunc(pc, "invalid register %u\n", rd);
8654			if (rd == 0)
8655				err += efunc(pc, "cannot write to %r0\n");
8656
8657			if (subr == DIF_SUBR_COPYOUT ||
8658			    subr == DIF_SUBR_COPYOUTSTR) {
8659				dp->dtdo_destructive = 1;
8660			}
8661			break;
8662		case DIF_OP_PUSHTR:
8663			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8664				err += efunc(pc, "invalid ref type %u\n", type);
8665			if (r2 >= nregs)
8666				err += efunc(pc, "invalid register %u\n", r2);
8667			if (rs >= nregs)
8668				err += efunc(pc, "invalid register %u\n", rs);
8669			break;
8670		case DIF_OP_PUSHTV:
8671			if (type != DIF_TYPE_CTF)
8672				err += efunc(pc, "invalid val type %u\n", type);
8673			if (r2 >= nregs)
8674				err += efunc(pc, "invalid register %u\n", r2);
8675			if (rs >= nregs)
8676				err += efunc(pc, "invalid register %u\n", rs);
8677			break;
8678		default:
8679			err += efunc(pc, "invalid opcode %u\n",
8680			    DIF_INSTR_OP(instr));
8681		}
8682	}
8683
8684	if (dp->dtdo_len != 0 &&
8685	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8686		err += efunc(dp->dtdo_len - 1,
8687		    "expected 'ret' as last DIF instruction\n");
8688	}
8689
8690	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8691		/*
8692		 * If we're not returning by reference, the size must be either
8693		 * 0 or the size of one of the base types.
8694		 */
8695		switch (dp->dtdo_rtype.dtdt_size) {
8696		case 0:
8697		case sizeof (uint8_t):
8698		case sizeof (uint16_t):
8699		case sizeof (uint32_t):
8700		case sizeof (uint64_t):
8701			break;
8702
8703		default:
8704			err += efunc(dp->dtdo_len - 1, "bad return size");
8705		}
8706	}
8707
8708	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8709		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8710		dtrace_diftype_t *vt, *et;
8711		uint_t id, ndx;
8712
8713		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8714		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8715		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8716			err += efunc(i, "unrecognized variable scope %d\n",
8717			    v->dtdv_scope);
8718			break;
8719		}
8720
8721		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8722		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8723			err += efunc(i, "unrecognized variable type %d\n",
8724			    v->dtdv_kind);
8725			break;
8726		}
8727
8728		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8729			err += efunc(i, "%d exceeds variable id limit\n", id);
8730			break;
8731		}
8732
8733		if (id < DIF_VAR_OTHER_UBASE)
8734			continue;
8735
8736		/*
8737		 * For user-defined variables, we need to check that this
8738		 * definition is identical to any previous definition that we
8739		 * encountered.
8740		 */
8741		ndx = id - DIF_VAR_OTHER_UBASE;
8742
8743		switch (v->dtdv_scope) {
8744		case DIFV_SCOPE_GLOBAL:
8745			if (ndx < vstate->dtvs_nglobals) {
8746				dtrace_statvar_t *svar;
8747
8748				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8749					existing = &svar->dtsv_var;
8750			}
8751
8752			break;
8753
8754		case DIFV_SCOPE_THREAD:
8755			if (ndx < vstate->dtvs_ntlocals)
8756				existing = &vstate->dtvs_tlocals[ndx];
8757			break;
8758
8759		case DIFV_SCOPE_LOCAL:
8760			if (ndx < vstate->dtvs_nlocals) {
8761				dtrace_statvar_t *svar;
8762
8763				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8764					existing = &svar->dtsv_var;
8765			}
8766
8767			break;
8768		}
8769
8770		vt = &v->dtdv_type;
8771
8772		if (vt->dtdt_flags & DIF_TF_BYREF) {
8773			if (vt->dtdt_size == 0) {
8774				err += efunc(i, "zero-sized variable\n");
8775				break;
8776			}
8777
8778			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8779			    vt->dtdt_size > dtrace_global_maxsize) {
8780				err += efunc(i, "oversized by-ref global\n");
8781				break;
8782			}
8783		}
8784
8785		if (existing == NULL || existing->dtdv_id == 0)
8786			continue;
8787
8788		ASSERT(existing->dtdv_id == v->dtdv_id);
8789		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8790
8791		if (existing->dtdv_kind != v->dtdv_kind)
8792			err += efunc(i, "%d changed variable kind\n", id);
8793
8794		et = &existing->dtdv_type;
8795
8796		if (vt->dtdt_flags != et->dtdt_flags) {
8797			err += efunc(i, "%d changed variable type flags\n", id);
8798			break;
8799		}
8800
8801		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8802			err += efunc(i, "%d changed variable type size\n", id);
8803			break;
8804		}
8805	}
8806
8807	return (err);
8808}
8809
8810/*
8811 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8812 * are much more constrained than normal DIFOs.  Specifically, they may
8813 * not:
8814 *
8815 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8816 *    miscellaneous string routines
8817 * 2. Access DTrace variables other than the args[] array, and the
8818 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8819 * 3. Have thread-local variables.
8820 * 4. Have dynamic variables.
8821 */
8822static int
8823dtrace_difo_validate_helper(dtrace_difo_t *dp)
8824{
8825	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8826	int err = 0;
8827	uint_t pc;
8828
8829	for (pc = 0; pc < dp->dtdo_len; pc++) {
8830		dif_instr_t instr = dp->dtdo_buf[pc];
8831
8832		uint_t v = DIF_INSTR_VAR(instr);
8833		uint_t subr = DIF_INSTR_SUBR(instr);
8834		uint_t op = DIF_INSTR_OP(instr);
8835
8836		switch (op) {
8837		case DIF_OP_OR:
8838		case DIF_OP_XOR:
8839		case DIF_OP_AND:
8840		case DIF_OP_SLL:
8841		case DIF_OP_SRL:
8842		case DIF_OP_SRA:
8843		case DIF_OP_SUB:
8844		case DIF_OP_ADD:
8845		case DIF_OP_MUL:
8846		case DIF_OP_SDIV:
8847		case DIF_OP_UDIV:
8848		case DIF_OP_SREM:
8849		case DIF_OP_UREM:
8850		case DIF_OP_COPYS:
8851		case DIF_OP_NOT:
8852		case DIF_OP_MOV:
8853		case DIF_OP_RLDSB:
8854		case DIF_OP_RLDSH:
8855		case DIF_OP_RLDSW:
8856		case DIF_OP_RLDUB:
8857		case DIF_OP_RLDUH:
8858		case DIF_OP_RLDUW:
8859		case DIF_OP_RLDX:
8860		case DIF_OP_ULDSB:
8861		case DIF_OP_ULDSH:
8862		case DIF_OP_ULDSW:
8863		case DIF_OP_ULDUB:
8864		case DIF_OP_ULDUH:
8865		case DIF_OP_ULDUW:
8866		case DIF_OP_ULDX:
8867		case DIF_OP_STB:
8868		case DIF_OP_STH:
8869		case DIF_OP_STW:
8870		case DIF_OP_STX:
8871		case DIF_OP_ALLOCS:
8872		case DIF_OP_CMP:
8873		case DIF_OP_SCMP:
8874		case DIF_OP_TST:
8875		case DIF_OP_BA:
8876		case DIF_OP_BE:
8877		case DIF_OP_BNE:
8878		case DIF_OP_BG:
8879		case DIF_OP_BGU:
8880		case DIF_OP_BGE:
8881		case DIF_OP_BGEU:
8882		case DIF_OP_BL:
8883		case DIF_OP_BLU:
8884		case DIF_OP_BLE:
8885		case DIF_OP_BLEU:
8886		case DIF_OP_RET:
8887		case DIF_OP_NOP:
8888		case DIF_OP_POPTS:
8889		case DIF_OP_FLUSHTS:
8890		case DIF_OP_SETX:
8891		case DIF_OP_SETS:
8892		case DIF_OP_LDGA:
8893		case DIF_OP_LDLS:
8894		case DIF_OP_STGS:
8895		case DIF_OP_STLS:
8896		case DIF_OP_PUSHTR:
8897		case DIF_OP_PUSHTV:
8898			break;
8899
8900		case DIF_OP_LDGS:
8901			if (v >= DIF_VAR_OTHER_UBASE)
8902				break;
8903
8904			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8905				break;
8906
8907			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8908			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8909			    v == DIF_VAR_EXECARGS ||
8910			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8911			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8912				break;
8913
8914			err += efunc(pc, "illegal variable %u\n", v);
8915			break;
8916
8917		case DIF_OP_LDTA:
8918		case DIF_OP_LDTS:
8919		case DIF_OP_LDGAA:
8920		case DIF_OP_LDTAA:
8921			err += efunc(pc, "illegal dynamic variable load\n");
8922			break;
8923
8924		case DIF_OP_STTS:
8925		case DIF_OP_STGAA:
8926		case DIF_OP_STTAA:
8927			err += efunc(pc, "illegal dynamic variable store\n");
8928			break;
8929
8930		case DIF_OP_CALL:
8931			if (subr == DIF_SUBR_ALLOCA ||
8932			    subr == DIF_SUBR_BCOPY ||
8933			    subr == DIF_SUBR_COPYIN ||
8934			    subr == DIF_SUBR_COPYINTO ||
8935			    subr == DIF_SUBR_COPYINSTR ||
8936			    subr == DIF_SUBR_INDEX ||
8937			    subr == DIF_SUBR_INET_NTOA ||
8938			    subr == DIF_SUBR_INET_NTOA6 ||
8939			    subr == DIF_SUBR_INET_NTOP ||
8940			    subr == DIF_SUBR_LLTOSTR ||
8941			    subr == DIF_SUBR_RINDEX ||
8942			    subr == DIF_SUBR_STRCHR ||
8943			    subr == DIF_SUBR_STRJOIN ||
8944			    subr == DIF_SUBR_STRRCHR ||
8945			    subr == DIF_SUBR_STRSTR ||
8946			    subr == DIF_SUBR_HTONS ||
8947			    subr == DIF_SUBR_HTONL ||
8948			    subr == DIF_SUBR_HTONLL ||
8949			    subr == DIF_SUBR_NTOHS ||
8950			    subr == DIF_SUBR_NTOHL ||
8951			    subr == DIF_SUBR_NTOHLL ||
8952			    subr == DIF_SUBR_MEMREF ||
8953			    subr == DIF_SUBR_TYPEREF)
8954				break;
8955
8956			err += efunc(pc, "invalid subr %u\n", subr);
8957			break;
8958
8959		default:
8960			err += efunc(pc, "invalid opcode %u\n",
8961			    DIF_INSTR_OP(instr));
8962		}
8963	}
8964
8965	return (err);
8966}
8967
8968/*
8969 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8970 * basis; 0 if not.
8971 */
8972static int
8973dtrace_difo_cacheable(dtrace_difo_t *dp)
8974{
8975	int i;
8976
8977	if (dp == NULL)
8978		return (0);
8979
8980	for (i = 0; i < dp->dtdo_varlen; i++) {
8981		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8982
8983		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8984			continue;
8985
8986		switch (v->dtdv_id) {
8987		case DIF_VAR_CURTHREAD:
8988		case DIF_VAR_PID:
8989		case DIF_VAR_TID:
8990		case DIF_VAR_EXECARGS:
8991		case DIF_VAR_EXECNAME:
8992		case DIF_VAR_ZONENAME:
8993			break;
8994
8995		default:
8996			return (0);
8997		}
8998	}
8999
9000	/*
9001	 * This DIF object may be cacheable.  Now we need to look for any
9002	 * array loading instructions, any memory loading instructions, or
9003	 * any stores to thread-local variables.
9004	 */
9005	for (i = 0; i < dp->dtdo_len; i++) {
9006		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9007
9008		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9009		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9010		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9011		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9012			return (0);
9013	}
9014
9015	return (1);
9016}
9017
9018static void
9019dtrace_difo_hold(dtrace_difo_t *dp)
9020{
9021	int i;
9022
9023	ASSERT(MUTEX_HELD(&dtrace_lock));
9024
9025	dp->dtdo_refcnt++;
9026	ASSERT(dp->dtdo_refcnt != 0);
9027
9028	/*
9029	 * We need to check this DIF object for references to the variable
9030	 * DIF_VAR_VTIMESTAMP.
9031	 */
9032	for (i = 0; i < dp->dtdo_varlen; i++) {
9033		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9034
9035		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9036			continue;
9037
9038		if (dtrace_vtime_references++ == 0)
9039			dtrace_vtime_enable();
9040	}
9041}
9042
9043/*
9044 * This routine calculates the dynamic variable chunksize for a given DIF
9045 * object.  The calculation is not fool-proof, and can probably be tricked by
9046 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9047 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9048 * if a dynamic variable size exceeds the chunksize.
9049 */
9050static void
9051dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9052{
9053	uint64_t sval = 0;
9054	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9055	const dif_instr_t *text = dp->dtdo_buf;
9056	uint_t pc, srd = 0;
9057	uint_t ttop = 0;
9058	size_t size, ksize;
9059	uint_t id, i;
9060
9061	for (pc = 0; pc < dp->dtdo_len; pc++) {
9062		dif_instr_t instr = text[pc];
9063		uint_t op = DIF_INSTR_OP(instr);
9064		uint_t rd = DIF_INSTR_RD(instr);
9065		uint_t r1 = DIF_INSTR_R1(instr);
9066		uint_t nkeys = 0;
9067		uchar_t scope = 0;
9068
9069		dtrace_key_t *key = tupregs;
9070
9071		switch (op) {
9072		case DIF_OP_SETX:
9073			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9074			srd = rd;
9075			continue;
9076
9077		case DIF_OP_STTS:
9078			key = &tupregs[DIF_DTR_NREGS];
9079			key[0].dttk_size = 0;
9080			key[1].dttk_size = 0;
9081			nkeys = 2;
9082			scope = DIFV_SCOPE_THREAD;
9083			break;
9084
9085		case DIF_OP_STGAA:
9086		case DIF_OP_STTAA:
9087			nkeys = ttop;
9088
9089			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9090				key[nkeys++].dttk_size = 0;
9091
9092			key[nkeys++].dttk_size = 0;
9093
9094			if (op == DIF_OP_STTAA) {
9095				scope = DIFV_SCOPE_THREAD;
9096			} else {
9097				scope = DIFV_SCOPE_GLOBAL;
9098			}
9099
9100			break;
9101
9102		case DIF_OP_PUSHTR:
9103			if (ttop == DIF_DTR_NREGS)
9104				return;
9105
9106			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9107				/*
9108				 * If the register for the size of the "pushtr"
9109				 * is %r0 (or the value is 0) and the type is
9110				 * a string, we'll use the system-wide default
9111				 * string size.
9112				 */
9113				tupregs[ttop++].dttk_size =
9114				    dtrace_strsize_default;
9115			} else {
9116				if (srd == 0)
9117					return;
9118
9119				tupregs[ttop++].dttk_size = sval;
9120			}
9121
9122			break;
9123
9124		case DIF_OP_PUSHTV:
9125			if (ttop == DIF_DTR_NREGS)
9126				return;
9127
9128			tupregs[ttop++].dttk_size = 0;
9129			break;
9130
9131		case DIF_OP_FLUSHTS:
9132			ttop = 0;
9133			break;
9134
9135		case DIF_OP_POPTS:
9136			if (ttop != 0)
9137				ttop--;
9138			break;
9139		}
9140
9141		sval = 0;
9142		srd = 0;
9143
9144		if (nkeys == 0)
9145			continue;
9146
9147		/*
9148		 * We have a dynamic variable allocation; calculate its size.
9149		 */
9150		for (ksize = 0, i = 0; i < nkeys; i++)
9151			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9152
9153		size = sizeof (dtrace_dynvar_t);
9154		size += sizeof (dtrace_key_t) * (nkeys - 1);
9155		size += ksize;
9156
9157		/*
9158		 * Now we need to determine the size of the stored data.
9159		 */
9160		id = DIF_INSTR_VAR(instr);
9161
9162		for (i = 0; i < dp->dtdo_varlen; i++) {
9163			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9164
9165			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9166				size += v->dtdv_type.dtdt_size;
9167				break;
9168			}
9169		}
9170
9171		if (i == dp->dtdo_varlen)
9172			return;
9173
9174		/*
9175		 * We have the size.  If this is larger than the chunk size
9176		 * for our dynamic variable state, reset the chunk size.
9177		 */
9178		size = P2ROUNDUP(size, sizeof (uint64_t));
9179
9180		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9181			vstate->dtvs_dynvars.dtds_chunksize = size;
9182	}
9183}
9184
9185static void
9186dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9187{
9188	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9189	uint_t id;
9190
9191	ASSERT(MUTEX_HELD(&dtrace_lock));
9192	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9193
9194	for (i = 0; i < dp->dtdo_varlen; i++) {
9195		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9196		dtrace_statvar_t *svar, ***svarp = NULL;
9197		size_t dsize = 0;
9198		uint8_t scope = v->dtdv_scope;
9199		int *np = NULL;
9200
9201		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9202			continue;
9203
9204		id -= DIF_VAR_OTHER_UBASE;
9205
9206		switch (scope) {
9207		case DIFV_SCOPE_THREAD:
9208			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9209				dtrace_difv_t *tlocals;
9210
9211				if ((ntlocals = (otlocals << 1)) == 0)
9212					ntlocals = 1;
9213
9214				osz = otlocals * sizeof (dtrace_difv_t);
9215				nsz = ntlocals * sizeof (dtrace_difv_t);
9216
9217				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9218
9219				if (osz != 0) {
9220					bcopy(vstate->dtvs_tlocals,
9221					    tlocals, osz);
9222					kmem_free(vstate->dtvs_tlocals, osz);
9223				}
9224
9225				vstate->dtvs_tlocals = tlocals;
9226				vstate->dtvs_ntlocals = ntlocals;
9227			}
9228
9229			vstate->dtvs_tlocals[id] = *v;
9230			continue;
9231
9232		case DIFV_SCOPE_LOCAL:
9233			np = &vstate->dtvs_nlocals;
9234			svarp = &vstate->dtvs_locals;
9235
9236			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9237				dsize = NCPU * (v->dtdv_type.dtdt_size +
9238				    sizeof (uint64_t));
9239			else
9240				dsize = NCPU * sizeof (uint64_t);
9241
9242			break;
9243
9244		case DIFV_SCOPE_GLOBAL:
9245			np = &vstate->dtvs_nglobals;
9246			svarp = &vstate->dtvs_globals;
9247
9248			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9249				dsize = v->dtdv_type.dtdt_size +
9250				    sizeof (uint64_t);
9251
9252			break;
9253
9254		default:
9255			ASSERT(0);
9256		}
9257
9258		while (id >= (oldsvars = *np)) {
9259			dtrace_statvar_t **statics;
9260			int newsvars, oldsize, newsize;
9261
9262			if ((newsvars = (oldsvars << 1)) == 0)
9263				newsvars = 1;
9264
9265			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9266			newsize = newsvars * sizeof (dtrace_statvar_t *);
9267
9268			statics = kmem_zalloc(newsize, KM_SLEEP);
9269
9270			if (oldsize != 0) {
9271				bcopy(*svarp, statics, oldsize);
9272				kmem_free(*svarp, oldsize);
9273			}
9274
9275			*svarp = statics;
9276			*np = newsvars;
9277		}
9278
9279		if ((svar = (*svarp)[id]) == NULL) {
9280			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9281			svar->dtsv_var = *v;
9282
9283			if ((svar->dtsv_size = dsize) != 0) {
9284				svar->dtsv_data = (uint64_t)(uintptr_t)
9285				    kmem_zalloc(dsize, KM_SLEEP);
9286			}
9287
9288			(*svarp)[id] = svar;
9289		}
9290
9291		svar->dtsv_refcnt++;
9292	}
9293
9294	dtrace_difo_chunksize(dp, vstate);
9295	dtrace_difo_hold(dp);
9296}
9297
9298static dtrace_difo_t *
9299dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9300{
9301	dtrace_difo_t *new;
9302	size_t sz;
9303
9304	ASSERT(dp->dtdo_buf != NULL);
9305	ASSERT(dp->dtdo_refcnt != 0);
9306
9307	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9308
9309	ASSERT(dp->dtdo_buf != NULL);
9310	sz = dp->dtdo_len * sizeof (dif_instr_t);
9311	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9312	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9313	new->dtdo_len = dp->dtdo_len;
9314
9315	if (dp->dtdo_strtab != NULL) {
9316		ASSERT(dp->dtdo_strlen != 0);
9317		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9318		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9319		new->dtdo_strlen = dp->dtdo_strlen;
9320	}
9321
9322	if (dp->dtdo_inttab != NULL) {
9323		ASSERT(dp->dtdo_intlen != 0);
9324		sz = dp->dtdo_intlen * sizeof (uint64_t);
9325		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9326		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9327		new->dtdo_intlen = dp->dtdo_intlen;
9328	}
9329
9330	if (dp->dtdo_vartab != NULL) {
9331		ASSERT(dp->dtdo_varlen != 0);
9332		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9333		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9334		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9335		new->dtdo_varlen = dp->dtdo_varlen;
9336	}
9337
9338	dtrace_difo_init(new, vstate);
9339	return (new);
9340}
9341
9342static void
9343dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9344{
9345	int i;
9346
9347	ASSERT(dp->dtdo_refcnt == 0);
9348
9349	for (i = 0; i < dp->dtdo_varlen; i++) {
9350		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9351		dtrace_statvar_t *svar, **svarp = NULL;
9352		uint_t id;
9353		uint8_t scope = v->dtdv_scope;
9354		int *np = NULL;
9355
9356		switch (scope) {
9357		case DIFV_SCOPE_THREAD:
9358			continue;
9359
9360		case DIFV_SCOPE_LOCAL:
9361			np = &vstate->dtvs_nlocals;
9362			svarp = vstate->dtvs_locals;
9363			break;
9364
9365		case DIFV_SCOPE_GLOBAL:
9366			np = &vstate->dtvs_nglobals;
9367			svarp = vstate->dtvs_globals;
9368			break;
9369
9370		default:
9371			ASSERT(0);
9372		}
9373
9374		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9375			continue;
9376
9377		id -= DIF_VAR_OTHER_UBASE;
9378		ASSERT(id < *np);
9379
9380		svar = svarp[id];
9381		ASSERT(svar != NULL);
9382		ASSERT(svar->dtsv_refcnt > 0);
9383
9384		if (--svar->dtsv_refcnt > 0)
9385			continue;
9386
9387		if (svar->dtsv_size != 0) {
9388			ASSERT(svar->dtsv_data != 0);
9389			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9390			    svar->dtsv_size);
9391		}
9392
9393		kmem_free(svar, sizeof (dtrace_statvar_t));
9394		svarp[id] = NULL;
9395	}
9396
9397	if (dp->dtdo_buf != NULL)
9398		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9399	if (dp->dtdo_inttab != NULL)
9400		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9401	if (dp->dtdo_strtab != NULL)
9402		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9403	if (dp->dtdo_vartab != NULL)
9404		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9405
9406	kmem_free(dp, sizeof (dtrace_difo_t));
9407}
9408
9409static void
9410dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9411{
9412	int i;
9413
9414	ASSERT(MUTEX_HELD(&dtrace_lock));
9415	ASSERT(dp->dtdo_refcnt != 0);
9416
9417	for (i = 0; i < dp->dtdo_varlen; i++) {
9418		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9419
9420		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9421			continue;
9422
9423		ASSERT(dtrace_vtime_references > 0);
9424		if (--dtrace_vtime_references == 0)
9425			dtrace_vtime_disable();
9426	}
9427
9428	if (--dp->dtdo_refcnt == 0)
9429		dtrace_difo_destroy(dp, vstate);
9430}
9431
9432/*
9433 * DTrace Format Functions
9434 */
9435static uint16_t
9436dtrace_format_add(dtrace_state_t *state, char *str)
9437{
9438	char *fmt, **new;
9439	uint16_t ndx, len = strlen(str) + 1;
9440
9441	fmt = kmem_zalloc(len, KM_SLEEP);
9442	bcopy(str, fmt, len);
9443
9444	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9445		if (state->dts_formats[ndx] == NULL) {
9446			state->dts_formats[ndx] = fmt;
9447			return (ndx + 1);
9448		}
9449	}
9450
9451	if (state->dts_nformats == USHRT_MAX) {
9452		/*
9453		 * This is only likely if a denial-of-service attack is being
9454		 * attempted.  As such, it's okay to fail silently here.
9455		 */
9456		kmem_free(fmt, len);
9457		return (0);
9458	}
9459
9460	/*
9461	 * For simplicity, we always resize the formats array to be exactly the
9462	 * number of formats.
9463	 */
9464	ndx = state->dts_nformats++;
9465	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9466
9467	if (state->dts_formats != NULL) {
9468		ASSERT(ndx != 0);
9469		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9470		kmem_free(state->dts_formats, ndx * sizeof (char *));
9471	}
9472
9473	state->dts_formats = new;
9474	state->dts_formats[ndx] = fmt;
9475
9476	return (ndx + 1);
9477}
9478
9479static void
9480dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9481{
9482	char *fmt;
9483
9484	ASSERT(state->dts_formats != NULL);
9485	ASSERT(format <= state->dts_nformats);
9486	ASSERT(state->dts_formats[format - 1] != NULL);
9487
9488	fmt = state->dts_formats[format - 1];
9489	kmem_free(fmt, strlen(fmt) + 1);
9490	state->dts_formats[format - 1] = NULL;
9491}
9492
9493static void
9494dtrace_format_destroy(dtrace_state_t *state)
9495{
9496	int i;
9497
9498	if (state->dts_nformats == 0) {
9499		ASSERT(state->dts_formats == NULL);
9500		return;
9501	}
9502
9503	ASSERT(state->dts_formats != NULL);
9504
9505	for (i = 0; i < state->dts_nformats; i++) {
9506		char *fmt = state->dts_formats[i];
9507
9508		if (fmt == NULL)
9509			continue;
9510
9511		kmem_free(fmt, strlen(fmt) + 1);
9512	}
9513
9514	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9515	state->dts_nformats = 0;
9516	state->dts_formats = NULL;
9517}
9518
9519/*
9520 * DTrace Predicate Functions
9521 */
9522static dtrace_predicate_t *
9523dtrace_predicate_create(dtrace_difo_t *dp)
9524{
9525	dtrace_predicate_t *pred;
9526
9527	ASSERT(MUTEX_HELD(&dtrace_lock));
9528	ASSERT(dp->dtdo_refcnt != 0);
9529
9530	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9531	pred->dtp_difo = dp;
9532	pred->dtp_refcnt = 1;
9533
9534	if (!dtrace_difo_cacheable(dp))
9535		return (pred);
9536
9537	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9538		/*
9539		 * This is only theoretically possible -- we have had 2^32
9540		 * cacheable predicates on this machine.  We cannot allow any
9541		 * more predicates to become cacheable:  as unlikely as it is,
9542		 * there may be a thread caching a (now stale) predicate cache
9543		 * ID. (N.B.: the temptation is being successfully resisted to
9544		 * have this cmn_err() "Holy shit -- we executed this code!")
9545		 */
9546		return (pred);
9547	}
9548
9549	pred->dtp_cacheid = dtrace_predcache_id++;
9550
9551	return (pred);
9552}
9553
9554static void
9555dtrace_predicate_hold(dtrace_predicate_t *pred)
9556{
9557	ASSERT(MUTEX_HELD(&dtrace_lock));
9558	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9559	ASSERT(pred->dtp_refcnt > 0);
9560
9561	pred->dtp_refcnt++;
9562}
9563
9564static void
9565dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9566{
9567	dtrace_difo_t *dp = pred->dtp_difo;
9568
9569	ASSERT(MUTEX_HELD(&dtrace_lock));
9570	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9571	ASSERT(pred->dtp_refcnt > 0);
9572
9573	if (--pred->dtp_refcnt == 0) {
9574		dtrace_difo_release(pred->dtp_difo, vstate);
9575		kmem_free(pred, sizeof (dtrace_predicate_t));
9576	}
9577}
9578
9579/*
9580 * DTrace Action Description Functions
9581 */
9582static dtrace_actdesc_t *
9583dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9584    uint64_t uarg, uint64_t arg)
9585{
9586	dtrace_actdesc_t *act;
9587
9588#if defined(sun)
9589	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9590	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9591#endif
9592
9593	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9594	act->dtad_kind = kind;
9595	act->dtad_ntuple = ntuple;
9596	act->dtad_uarg = uarg;
9597	act->dtad_arg = arg;
9598	act->dtad_refcnt = 1;
9599
9600	return (act);
9601}
9602
9603static void
9604dtrace_actdesc_hold(dtrace_actdesc_t *act)
9605{
9606	ASSERT(act->dtad_refcnt >= 1);
9607	act->dtad_refcnt++;
9608}
9609
9610static void
9611dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9612{
9613	dtrace_actkind_t kind = act->dtad_kind;
9614	dtrace_difo_t *dp;
9615
9616	ASSERT(act->dtad_refcnt >= 1);
9617
9618	if (--act->dtad_refcnt != 0)
9619		return;
9620
9621	if ((dp = act->dtad_difo) != NULL)
9622		dtrace_difo_release(dp, vstate);
9623
9624	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9625		char *str = (char *)(uintptr_t)act->dtad_arg;
9626
9627#if defined(sun)
9628		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9629		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9630#endif
9631
9632		if (str != NULL)
9633			kmem_free(str, strlen(str) + 1);
9634	}
9635
9636	kmem_free(act, sizeof (dtrace_actdesc_t));
9637}
9638
9639/*
9640 * DTrace ECB Functions
9641 */
9642static dtrace_ecb_t *
9643dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9644{
9645	dtrace_ecb_t *ecb;
9646	dtrace_epid_t epid;
9647
9648	ASSERT(MUTEX_HELD(&dtrace_lock));
9649
9650	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9651	ecb->dte_predicate = NULL;
9652	ecb->dte_probe = probe;
9653
9654	/*
9655	 * The default size is the size of the default action: recording
9656	 * the epid.
9657	 */
9658	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9659	ecb->dte_alignment = sizeof (dtrace_epid_t);
9660
9661	epid = state->dts_epid++;
9662
9663	if (epid - 1 >= state->dts_necbs) {
9664		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9665		int necbs = state->dts_necbs << 1;
9666
9667		ASSERT(epid == state->dts_necbs + 1);
9668
9669		if (necbs == 0) {
9670			ASSERT(oecbs == NULL);
9671			necbs = 1;
9672		}
9673
9674		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9675
9676		if (oecbs != NULL)
9677			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9678
9679		dtrace_membar_producer();
9680		state->dts_ecbs = ecbs;
9681
9682		if (oecbs != NULL) {
9683			/*
9684			 * If this state is active, we must dtrace_sync()
9685			 * before we can free the old dts_ecbs array:  we're
9686			 * coming in hot, and there may be active ring
9687			 * buffer processing (which indexes into the dts_ecbs
9688			 * array) on another CPU.
9689			 */
9690			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9691				dtrace_sync();
9692
9693			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9694		}
9695
9696		dtrace_membar_producer();
9697		state->dts_necbs = necbs;
9698	}
9699
9700	ecb->dte_state = state;
9701
9702	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9703	dtrace_membar_producer();
9704	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9705
9706	return (ecb);
9707}
9708
9709static void
9710dtrace_ecb_enable(dtrace_ecb_t *ecb)
9711{
9712	dtrace_probe_t *probe = ecb->dte_probe;
9713
9714	ASSERT(MUTEX_HELD(&cpu_lock));
9715	ASSERT(MUTEX_HELD(&dtrace_lock));
9716	ASSERT(ecb->dte_next == NULL);
9717
9718	if (probe == NULL) {
9719		/*
9720		 * This is the NULL probe -- there's nothing to do.
9721		 */
9722		return;
9723	}
9724
9725	if (probe->dtpr_ecb == NULL) {
9726		dtrace_provider_t *prov = probe->dtpr_provider;
9727
9728		/*
9729		 * We're the first ECB on this probe.
9730		 */
9731		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9732
9733		if (ecb->dte_predicate != NULL)
9734			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9735
9736		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9737		    probe->dtpr_id, probe->dtpr_arg);
9738	} else {
9739		/*
9740		 * This probe is already active.  Swing the last pointer to
9741		 * point to the new ECB, and issue a dtrace_sync() to assure
9742		 * that all CPUs have seen the change.
9743		 */
9744		ASSERT(probe->dtpr_ecb_last != NULL);
9745		probe->dtpr_ecb_last->dte_next = ecb;
9746		probe->dtpr_ecb_last = ecb;
9747		probe->dtpr_predcache = 0;
9748
9749		dtrace_sync();
9750	}
9751}
9752
9753static void
9754dtrace_ecb_resize(dtrace_ecb_t *ecb)
9755{
9756	uint32_t maxalign = sizeof (dtrace_epid_t);
9757	uint32_t align = sizeof (uint8_t), offs, diff;
9758	dtrace_action_t *act;
9759	int wastuple = 0;
9760	uint32_t aggbase = UINT32_MAX;
9761	dtrace_state_t *state = ecb->dte_state;
9762
9763	/*
9764	 * If we record anything, we always record the epid.  (And we always
9765	 * record it first.)
9766	 */
9767	offs = sizeof (dtrace_epid_t);
9768	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9769
9770	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9771		dtrace_recdesc_t *rec = &act->dta_rec;
9772
9773		if ((align = rec->dtrd_alignment) > maxalign)
9774			maxalign = align;
9775
9776		if (!wastuple && act->dta_intuple) {
9777			/*
9778			 * This is the first record in a tuple.  Align the
9779			 * offset to be at offset 4 in an 8-byte aligned
9780			 * block.
9781			 */
9782			diff = offs + sizeof (dtrace_aggid_t);
9783
9784			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9785				offs += sizeof (uint64_t) - diff;
9786
9787			aggbase = offs - sizeof (dtrace_aggid_t);
9788			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9789		}
9790
9791		/*LINTED*/
9792		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9793			/*
9794			 * The current offset is not properly aligned; align it.
9795			 */
9796			offs += align - diff;
9797		}
9798
9799		rec->dtrd_offset = offs;
9800
9801		if (offs + rec->dtrd_size > ecb->dte_needed) {
9802			ecb->dte_needed = offs + rec->dtrd_size;
9803
9804			if (ecb->dte_needed > state->dts_needed)
9805				state->dts_needed = ecb->dte_needed;
9806		}
9807
9808		if (DTRACEACT_ISAGG(act->dta_kind)) {
9809			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9810			dtrace_action_t *first = agg->dtag_first, *prev;
9811
9812			ASSERT(rec->dtrd_size != 0 && first != NULL);
9813			ASSERT(wastuple);
9814			ASSERT(aggbase != UINT32_MAX);
9815
9816			agg->dtag_base = aggbase;
9817
9818			while ((prev = first->dta_prev) != NULL &&
9819			    DTRACEACT_ISAGG(prev->dta_kind)) {
9820				agg = (dtrace_aggregation_t *)prev;
9821				first = agg->dtag_first;
9822			}
9823
9824			if (prev != NULL) {
9825				offs = prev->dta_rec.dtrd_offset +
9826				    prev->dta_rec.dtrd_size;
9827			} else {
9828				offs = sizeof (dtrace_epid_t);
9829			}
9830			wastuple = 0;
9831		} else {
9832			if (!act->dta_intuple)
9833				ecb->dte_size = offs + rec->dtrd_size;
9834
9835			offs += rec->dtrd_size;
9836		}
9837
9838		wastuple = act->dta_intuple;
9839	}
9840
9841	if ((act = ecb->dte_action) != NULL &&
9842	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9843	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9844		/*
9845		 * If the size is still sizeof (dtrace_epid_t), then all
9846		 * actions store no data; set the size to 0.
9847		 */
9848		ecb->dte_alignment = maxalign;
9849		ecb->dte_size = 0;
9850
9851		/*
9852		 * If the needed space is still sizeof (dtrace_epid_t), then
9853		 * all actions need no additional space; set the needed
9854		 * size to 0.
9855		 */
9856		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9857			ecb->dte_needed = 0;
9858
9859		return;
9860	}
9861
9862	/*
9863	 * Set our alignment, and make sure that the dte_size and dte_needed
9864	 * are aligned to the size of an EPID.
9865	 */
9866	ecb->dte_alignment = maxalign;
9867	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9868	    ~(sizeof (dtrace_epid_t) - 1);
9869	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9870	    ~(sizeof (dtrace_epid_t) - 1);
9871	ASSERT(ecb->dte_size <= ecb->dte_needed);
9872}
9873
9874static dtrace_action_t *
9875dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9876{
9877	dtrace_aggregation_t *agg;
9878	size_t size = sizeof (uint64_t);
9879	int ntuple = desc->dtad_ntuple;
9880	dtrace_action_t *act;
9881	dtrace_recdesc_t *frec;
9882	dtrace_aggid_t aggid;
9883	dtrace_state_t *state = ecb->dte_state;
9884
9885	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9886	agg->dtag_ecb = ecb;
9887
9888	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9889
9890	switch (desc->dtad_kind) {
9891	case DTRACEAGG_MIN:
9892		agg->dtag_initial = INT64_MAX;
9893		agg->dtag_aggregate = dtrace_aggregate_min;
9894		break;
9895
9896	case DTRACEAGG_MAX:
9897		agg->dtag_initial = INT64_MIN;
9898		agg->dtag_aggregate = dtrace_aggregate_max;
9899		break;
9900
9901	case DTRACEAGG_COUNT:
9902		agg->dtag_aggregate = dtrace_aggregate_count;
9903		break;
9904
9905	case DTRACEAGG_QUANTIZE:
9906		agg->dtag_aggregate = dtrace_aggregate_quantize;
9907		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9908		    sizeof (uint64_t);
9909		break;
9910
9911	case DTRACEAGG_LQUANTIZE: {
9912		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9913		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9914
9915		agg->dtag_initial = desc->dtad_arg;
9916		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9917
9918		if (step == 0 || levels == 0)
9919			goto err;
9920
9921		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9922		break;
9923	}
9924
9925	case DTRACEAGG_LLQUANTIZE: {
9926		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9927		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9928		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9929		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9930		int64_t v;
9931
9932		agg->dtag_initial = desc->dtad_arg;
9933		agg->dtag_aggregate = dtrace_aggregate_llquantize;
9934
9935		if (factor < 2 || low >= high || nsteps < factor)
9936			goto err;
9937
9938		/*
9939		 * Now check that the number of steps evenly divides a power
9940		 * of the factor.  (This assures both integer bucket size and
9941		 * linearity within each magnitude.)
9942		 */
9943		for (v = factor; v < nsteps; v *= factor)
9944			continue;
9945
9946		if ((v % nsteps) || (nsteps % factor))
9947			goto err;
9948
9949		size = (dtrace_aggregate_llquantize_bucket(factor,
9950		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9951		break;
9952	}
9953
9954	case DTRACEAGG_AVG:
9955		agg->dtag_aggregate = dtrace_aggregate_avg;
9956		size = sizeof (uint64_t) * 2;
9957		break;
9958
9959	case DTRACEAGG_STDDEV:
9960		agg->dtag_aggregate = dtrace_aggregate_stddev;
9961		size = sizeof (uint64_t) * 4;
9962		break;
9963
9964	case DTRACEAGG_SUM:
9965		agg->dtag_aggregate = dtrace_aggregate_sum;
9966		break;
9967
9968	default:
9969		goto err;
9970	}
9971
9972	agg->dtag_action.dta_rec.dtrd_size = size;
9973
9974	if (ntuple == 0)
9975		goto err;
9976
9977	/*
9978	 * We must make sure that we have enough actions for the n-tuple.
9979	 */
9980	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9981		if (DTRACEACT_ISAGG(act->dta_kind))
9982			break;
9983
9984		if (--ntuple == 0) {
9985			/*
9986			 * This is the action with which our n-tuple begins.
9987			 */
9988			agg->dtag_first = act;
9989			goto success;
9990		}
9991	}
9992
9993	/*
9994	 * This n-tuple is short by ntuple elements.  Return failure.
9995	 */
9996	ASSERT(ntuple != 0);
9997err:
9998	kmem_free(agg, sizeof (dtrace_aggregation_t));
9999	return (NULL);
10000
10001success:
10002	/*
10003	 * If the last action in the tuple has a size of zero, it's actually
10004	 * an expression argument for the aggregating action.
10005	 */
10006	ASSERT(ecb->dte_action_last != NULL);
10007	act = ecb->dte_action_last;
10008
10009	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10010		ASSERT(act->dta_difo != NULL);
10011
10012		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10013			agg->dtag_hasarg = 1;
10014	}
10015
10016	/*
10017	 * We need to allocate an id for this aggregation.
10018	 */
10019#if defined(sun)
10020	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10021	    VM_BESTFIT | VM_SLEEP);
10022#else
10023	aggid = alloc_unr(state->dts_aggid_arena);
10024#endif
10025
10026	if (aggid - 1 >= state->dts_naggregations) {
10027		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10028		dtrace_aggregation_t **aggs;
10029		int naggs = state->dts_naggregations << 1;
10030		int onaggs = state->dts_naggregations;
10031
10032		ASSERT(aggid == state->dts_naggregations + 1);
10033
10034		if (naggs == 0) {
10035			ASSERT(oaggs == NULL);
10036			naggs = 1;
10037		}
10038
10039		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10040
10041		if (oaggs != NULL) {
10042			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10043			kmem_free(oaggs, onaggs * sizeof (*aggs));
10044		}
10045
10046		state->dts_aggregations = aggs;
10047		state->dts_naggregations = naggs;
10048	}
10049
10050	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10051	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10052
10053	frec = &agg->dtag_first->dta_rec;
10054	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10055		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10056
10057	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10058		ASSERT(!act->dta_intuple);
10059		act->dta_intuple = 1;
10060	}
10061
10062	return (&agg->dtag_action);
10063}
10064
10065static void
10066dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10067{
10068	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10069	dtrace_state_t *state = ecb->dte_state;
10070	dtrace_aggid_t aggid = agg->dtag_id;
10071
10072	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10073#if defined(sun)
10074	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10075#else
10076	free_unr(state->dts_aggid_arena, aggid);
10077#endif
10078
10079	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10080	state->dts_aggregations[aggid - 1] = NULL;
10081
10082	kmem_free(agg, sizeof (dtrace_aggregation_t));
10083}
10084
10085static int
10086dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10087{
10088	dtrace_action_t *action, *last;
10089	dtrace_difo_t *dp = desc->dtad_difo;
10090	uint32_t size = 0, align = sizeof (uint8_t), mask;
10091	uint16_t format = 0;
10092	dtrace_recdesc_t *rec;
10093	dtrace_state_t *state = ecb->dte_state;
10094	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10095	uint64_t arg = desc->dtad_arg;
10096
10097	ASSERT(MUTEX_HELD(&dtrace_lock));
10098	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10099
10100	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10101		/*
10102		 * If this is an aggregating action, there must be neither
10103		 * a speculate nor a commit on the action chain.
10104		 */
10105		dtrace_action_t *act;
10106
10107		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10108			if (act->dta_kind == DTRACEACT_COMMIT)
10109				return (EINVAL);
10110
10111			if (act->dta_kind == DTRACEACT_SPECULATE)
10112				return (EINVAL);
10113		}
10114
10115		action = dtrace_ecb_aggregation_create(ecb, desc);
10116
10117		if (action == NULL)
10118			return (EINVAL);
10119	} else {
10120		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10121		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10122		    dp != NULL && dp->dtdo_destructive)) {
10123			state->dts_destructive = 1;
10124		}
10125
10126		switch (desc->dtad_kind) {
10127		case DTRACEACT_PRINTF:
10128		case DTRACEACT_PRINTA:
10129		case DTRACEACT_SYSTEM:
10130		case DTRACEACT_FREOPEN:
10131			/*
10132			 * We know that our arg is a string -- turn it into a
10133			 * format.
10134			 */
10135			if (arg == 0) {
10136				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10137				format = 0;
10138			} else {
10139				ASSERT(arg != 0);
10140#if defined(sun)
10141				ASSERT(arg > KERNELBASE);
10142#endif
10143				format = dtrace_format_add(state,
10144				    (char *)(uintptr_t)arg);
10145			}
10146
10147			/*FALLTHROUGH*/
10148		case DTRACEACT_LIBACT:
10149		case DTRACEACT_DIFEXPR:
10150			if (dp == NULL)
10151				return (EINVAL);
10152
10153			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10154				break;
10155
10156			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10157				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10158					return (EINVAL);
10159
10160				size = opt[DTRACEOPT_STRSIZE];
10161			}
10162
10163			break;
10164
10165		case DTRACEACT_STACK:
10166			if ((nframes = arg) == 0) {
10167				nframes = opt[DTRACEOPT_STACKFRAMES];
10168				ASSERT(nframes > 0);
10169				arg = nframes;
10170			}
10171
10172			size = nframes * sizeof (pc_t);
10173			break;
10174
10175		case DTRACEACT_JSTACK:
10176			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10177				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10178
10179			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10180				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10181
10182			arg = DTRACE_USTACK_ARG(nframes, strsize);
10183
10184			/*FALLTHROUGH*/
10185		case DTRACEACT_USTACK:
10186			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10187			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10188				strsize = DTRACE_USTACK_STRSIZE(arg);
10189				nframes = opt[DTRACEOPT_USTACKFRAMES];
10190				ASSERT(nframes > 0);
10191				arg = DTRACE_USTACK_ARG(nframes, strsize);
10192			}
10193
10194			/*
10195			 * Save a slot for the pid.
10196			 */
10197			size = (nframes + 1) * sizeof (uint64_t);
10198			size += DTRACE_USTACK_STRSIZE(arg);
10199			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10200
10201			break;
10202
10203		case DTRACEACT_SYM:
10204		case DTRACEACT_MOD:
10205			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10206			    sizeof (uint64_t)) ||
10207			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10208				return (EINVAL);
10209			break;
10210
10211		case DTRACEACT_USYM:
10212		case DTRACEACT_UMOD:
10213		case DTRACEACT_UADDR:
10214			if (dp == NULL ||
10215			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10216			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10217				return (EINVAL);
10218
10219			/*
10220			 * We have a slot for the pid, plus a slot for the
10221			 * argument.  To keep things simple (aligned with
10222			 * bitness-neutral sizing), we store each as a 64-bit
10223			 * quantity.
10224			 */
10225			size = 2 * sizeof (uint64_t);
10226			break;
10227
10228		case DTRACEACT_STOP:
10229		case DTRACEACT_BREAKPOINT:
10230		case DTRACEACT_PANIC:
10231			break;
10232
10233		case DTRACEACT_CHILL:
10234		case DTRACEACT_DISCARD:
10235		case DTRACEACT_RAISE:
10236			if (dp == NULL)
10237				return (EINVAL);
10238			break;
10239
10240		case DTRACEACT_EXIT:
10241			if (dp == NULL ||
10242			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10243			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10244				return (EINVAL);
10245			break;
10246
10247		case DTRACEACT_SPECULATE:
10248			if (ecb->dte_size > sizeof (dtrace_epid_t))
10249				return (EINVAL);
10250
10251			if (dp == NULL)
10252				return (EINVAL);
10253
10254			state->dts_speculates = 1;
10255			break;
10256
10257		case DTRACEACT_PRINTM:
10258		    	size = dp->dtdo_rtype.dtdt_size;
10259			break;
10260
10261		case DTRACEACT_PRINTT:
10262		    	size = dp->dtdo_rtype.dtdt_size;
10263			break;
10264
10265		case DTRACEACT_COMMIT: {
10266			dtrace_action_t *act = ecb->dte_action;
10267
10268			for (; act != NULL; act = act->dta_next) {
10269				if (act->dta_kind == DTRACEACT_COMMIT)
10270					return (EINVAL);
10271			}
10272
10273			if (dp == NULL)
10274				return (EINVAL);
10275			break;
10276		}
10277
10278		default:
10279			return (EINVAL);
10280		}
10281
10282		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10283			/*
10284			 * If this is a data-storing action or a speculate,
10285			 * we must be sure that there isn't a commit on the
10286			 * action chain.
10287			 */
10288			dtrace_action_t *act = ecb->dte_action;
10289
10290			for (; act != NULL; act = act->dta_next) {
10291				if (act->dta_kind == DTRACEACT_COMMIT)
10292					return (EINVAL);
10293			}
10294		}
10295
10296		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10297		action->dta_rec.dtrd_size = size;
10298	}
10299
10300	action->dta_refcnt = 1;
10301	rec = &action->dta_rec;
10302	size = rec->dtrd_size;
10303
10304	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10305		if (!(size & mask)) {
10306			align = mask + 1;
10307			break;
10308		}
10309	}
10310
10311	action->dta_kind = desc->dtad_kind;
10312
10313	if ((action->dta_difo = dp) != NULL)
10314		dtrace_difo_hold(dp);
10315
10316	rec->dtrd_action = action->dta_kind;
10317	rec->dtrd_arg = arg;
10318	rec->dtrd_uarg = desc->dtad_uarg;
10319	rec->dtrd_alignment = (uint16_t)align;
10320	rec->dtrd_format = format;
10321
10322	if ((last = ecb->dte_action_last) != NULL) {
10323		ASSERT(ecb->dte_action != NULL);
10324		action->dta_prev = last;
10325		last->dta_next = action;
10326	} else {
10327		ASSERT(ecb->dte_action == NULL);
10328		ecb->dte_action = action;
10329	}
10330
10331	ecb->dte_action_last = action;
10332
10333	return (0);
10334}
10335
10336static void
10337dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10338{
10339	dtrace_action_t *act = ecb->dte_action, *next;
10340	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10341	dtrace_difo_t *dp;
10342	uint16_t format;
10343
10344	if (act != NULL && act->dta_refcnt > 1) {
10345		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10346		act->dta_refcnt--;
10347	} else {
10348		for (; act != NULL; act = next) {
10349			next = act->dta_next;
10350			ASSERT(next != NULL || act == ecb->dte_action_last);
10351			ASSERT(act->dta_refcnt == 1);
10352
10353			if ((format = act->dta_rec.dtrd_format) != 0)
10354				dtrace_format_remove(ecb->dte_state, format);
10355
10356			if ((dp = act->dta_difo) != NULL)
10357				dtrace_difo_release(dp, vstate);
10358
10359			if (DTRACEACT_ISAGG(act->dta_kind)) {
10360				dtrace_ecb_aggregation_destroy(ecb, act);
10361			} else {
10362				kmem_free(act, sizeof (dtrace_action_t));
10363			}
10364		}
10365	}
10366
10367	ecb->dte_action = NULL;
10368	ecb->dte_action_last = NULL;
10369	ecb->dte_size = sizeof (dtrace_epid_t);
10370}
10371
10372static void
10373dtrace_ecb_disable(dtrace_ecb_t *ecb)
10374{
10375	/*
10376	 * We disable the ECB by removing it from its probe.
10377	 */
10378	dtrace_ecb_t *pecb, *prev = NULL;
10379	dtrace_probe_t *probe = ecb->dte_probe;
10380
10381	ASSERT(MUTEX_HELD(&dtrace_lock));
10382
10383	if (probe == NULL) {
10384		/*
10385		 * This is the NULL probe; there is nothing to disable.
10386		 */
10387		return;
10388	}
10389
10390	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10391		if (pecb == ecb)
10392			break;
10393		prev = pecb;
10394	}
10395
10396	ASSERT(pecb != NULL);
10397
10398	if (prev == NULL) {
10399		probe->dtpr_ecb = ecb->dte_next;
10400	} else {
10401		prev->dte_next = ecb->dte_next;
10402	}
10403
10404	if (ecb == probe->dtpr_ecb_last) {
10405		ASSERT(ecb->dte_next == NULL);
10406		probe->dtpr_ecb_last = prev;
10407	}
10408
10409	/*
10410	 * The ECB has been disconnected from the probe; now sync to assure
10411	 * that all CPUs have seen the change before returning.
10412	 */
10413	dtrace_sync();
10414
10415	if (probe->dtpr_ecb == NULL) {
10416		/*
10417		 * That was the last ECB on the probe; clear the predicate
10418		 * cache ID for the probe, disable it and sync one more time
10419		 * to assure that we'll never hit it again.
10420		 */
10421		dtrace_provider_t *prov = probe->dtpr_provider;
10422
10423		ASSERT(ecb->dte_next == NULL);
10424		ASSERT(probe->dtpr_ecb_last == NULL);
10425		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10426		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10427		    probe->dtpr_id, probe->dtpr_arg);
10428		dtrace_sync();
10429	} else {
10430		/*
10431		 * There is at least one ECB remaining on the probe.  If there
10432		 * is _exactly_ one, set the probe's predicate cache ID to be
10433		 * the predicate cache ID of the remaining ECB.
10434		 */
10435		ASSERT(probe->dtpr_ecb_last != NULL);
10436		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10437
10438		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10439			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10440
10441			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10442
10443			if (p != NULL)
10444				probe->dtpr_predcache = p->dtp_cacheid;
10445		}
10446
10447		ecb->dte_next = NULL;
10448	}
10449}
10450
10451static void
10452dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10453{
10454	dtrace_state_t *state = ecb->dte_state;
10455	dtrace_vstate_t *vstate = &state->dts_vstate;
10456	dtrace_predicate_t *pred;
10457	dtrace_epid_t epid = ecb->dte_epid;
10458
10459	ASSERT(MUTEX_HELD(&dtrace_lock));
10460	ASSERT(ecb->dte_next == NULL);
10461	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10462
10463	if ((pred = ecb->dte_predicate) != NULL)
10464		dtrace_predicate_release(pred, vstate);
10465
10466	dtrace_ecb_action_remove(ecb);
10467
10468	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10469	state->dts_ecbs[epid - 1] = NULL;
10470
10471	kmem_free(ecb, sizeof (dtrace_ecb_t));
10472}
10473
10474static dtrace_ecb_t *
10475dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10476    dtrace_enabling_t *enab)
10477{
10478	dtrace_ecb_t *ecb;
10479	dtrace_predicate_t *pred;
10480	dtrace_actdesc_t *act;
10481	dtrace_provider_t *prov;
10482	dtrace_ecbdesc_t *desc = enab->dten_current;
10483
10484	ASSERT(MUTEX_HELD(&dtrace_lock));
10485	ASSERT(state != NULL);
10486
10487	ecb = dtrace_ecb_add(state, probe);
10488	ecb->dte_uarg = desc->dted_uarg;
10489
10490	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10491		dtrace_predicate_hold(pred);
10492		ecb->dte_predicate = pred;
10493	}
10494
10495	if (probe != NULL) {
10496		/*
10497		 * If the provider shows more leg than the consumer is old
10498		 * enough to see, we need to enable the appropriate implicit
10499		 * predicate bits to prevent the ecb from activating at
10500		 * revealing times.
10501		 *
10502		 * Providers specifying DTRACE_PRIV_USER at register time
10503		 * are stating that they need the /proc-style privilege
10504		 * model to be enforced, and this is what DTRACE_COND_OWNER
10505		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10506		 */
10507		prov = probe->dtpr_provider;
10508		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10509		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10510			ecb->dte_cond |= DTRACE_COND_OWNER;
10511
10512		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10513		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10514			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10515
10516		/*
10517		 * If the provider shows us kernel innards and the user
10518		 * is lacking sufficient privilege, enable the
10519		 * DTRACE_COND_USERMODE implicit predicate.
10520		 */
10521		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10522		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10523			ecb->dte_cond |= DTRACE_COND_USERMODE;
10524	}
10525
10526	if (dtrace_ecb_create_cache != NULL) {
10527		/*
10528		 * If we have a cached ecb, we'll use its action list instead
10529		 * of creating our own (saving both time and space).
10530		 */
10531		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10532		dtrace_action_t *act = cached->dte_action;
10533
10534		if (act != NULL) {
10535			ASSERT(act->dta_refcnt > 0);
10536			act->dta_refcnt++;
10537			ecb->dte_action = act;
10538			ecb->dte_action_last = cached->dte_action_last;
10539			ecb->dte_needed = cached->dte_needed;
10540			ecb->dte_size = cached->dte_size;
10541			ecb->dte_alignment = cached->dte_alignment;
10542		}
10543
10544		return (ecb);
10545	}
10546
10547	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10548		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10549			dtrace_ecb_destroy(ecb);
10550			return (NULL);
10551		}
10552	}
10553
10554	dtrace_ecb_resize(ecb);
10555
10556	return (dtrace_ecb_create_cache = ecb);
10557}
10558
10559static int
10560dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10561{
10562	dtrace_ecb_t *ecb;
10563	dtrace_enabling_t *enab = arg;
10564	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10565
10566	ASSERT(state != NULL);
10567
10568	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10569		/*
10570		 * This probe was created in a generation for which this
10571		 * enabling has previously created ECBs; we don't want to
10572		 * enable it again, so just kick out.
10573		 */
10574		return (DTRACE_MATCH_NEXT);
10575	}
10576
10577	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10578		return (DTRACE_MATCH_DONE);
10579
10580	dtrace_ecb_enable(ecb);
10581	return (DTRACE_MATCH_NEXT);
10582}
10583
10584static dtrace_ecb_t *
10585dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10586{
10587	dtrace_ecb_t *ecb;
10588
10589	ASSERT(MUTEX_HELD(&dtrace_lock));
10590
10591	if (id == 0 || id > state->dts_necbs)
10592		return (NULL);
10593
10594	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10595	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10596
10597	return (state->dts_ecbs[id - 1]);
10598}
10599
10600static dtrace_aggregation_t *
10601dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10602{
10603	dtrace_aggregation_t *agg;
10604
10605	ASSERT(MUTEX_HELD(&dtrace_lock));
10606
10607	if (id == 0 || id > state->dts_naggregations)
10608		return (NULL);
10609
10610	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10611	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10612	    agg->dtag_id == id);
10613
10614	return (state->dts_aggregations[id - 1]);
10615}
10616
10617/*
10618 * DTrace Buffer Functions
10619 *
10620 * The following functions manipulate DTrace buffers.  Most of these functions
10621 * are called in the context of establishing or processing consumer state;
10622 * exceptions are explicitly noted.
10623 */
10624
10625/*
10626 * Note:  called from cross call context.  This function switches the two
10627 * buffers on a given CPU.  The atomicity of this operation is assured by
10628 * disabling interrupts while the actual switch takes place; the disabling of
10629 * interrupts serializes the execution with any execution of dtrace_probe() on
10630 * the same CPU.
10631 */
10632static void
10633dtrace_buffer_switch(dtrace_buffer_t *buf)
10634{
10635	caddr_t tomax = buf->dtb_tomax;
10636	caddr_t xamot = buf->dtb_xamot;
10637	dtrace_icookie_t cookie;
10638
10639	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10640	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10641
10642	cookie = dtrace_interrupt_disable();
10643	buf->dtb_tomax = xamot;
10644	buf->dtb_xamot = tomax;
10645	buf->dtb_xamot_drops = buf->dtb_drops;
10646	buf->dtb_xamot_offset = buf->dtb_offset;
10647	buf->dtb_xamot_errors = buf->dtb_errors;
10648	buf->dtb_xamot_flags = buf->dtb_flags;
10649	buf->dtb_offset = 0;
10650	buf->dtb_drops = 0;
10651	buf->dtb_errors = 0;
10652	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10653	dtrace_interrupt_enable(cookie);
10654}
10655
10656/*
10657 * Note:  called from cross call context.  This function activates a buffer
10658 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10659 * is guaranteed by the disabling of interrupts.
10660 */
10661static void
10662dtrace_buffer_activate(dtrace_state_t *state)
10663{
10664	dtrace_buffer_t *buf;
10665	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10666
10667	buf = &state->dts_buffer[curcpu];
10668
10669	if (buf->dtb_tomax != NULL) {
10670		/*
10671		 * We might like to assert that the buffer is marked inactive,
10672		 * but this isn't necessarily true:  the buffer for the CPU
10673		 * that processes the BEGIN probe has its buffer activated
10674		 * manually.  In this case, we take the (harmless) action
10675		 * re-clearing the bit INACTIVE bit.
10676		 */
10677		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10678	}
10679
10680	dtrace_interrupt_enable(cookie);
10681}
10682
10683static int
10684dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10685    processorid_t cpu)
10686{
10687#if defined(sun)
10688	cpu_t *cp;
10689#endif
10690	dtrace_buffer_t *buf;
10691
10692#if defined(sun)
10693	ASSERT(MUTEX_HELD(&cpu_lock));
10694	ASSERT(MUTEX_HELD(&dtrace_lock));
10695
10696	if (size > dtrace_nonroot_maxsize &&
10697	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10698		return (EFBIG);
10699
10700	cp = cpu_list;
10701
10702	do {
10703		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10704			continue;
10705
10706		buf = &bufs[cp->cpu_id];
10707
10708		/*
10709		 * If there is already a buffer allocated for this CPU, it
10710		 * is only possible that this is a DR event.  In this case,
10711		 */
10712		if (buf->dtb_tomax != NULL) {
10713			ASSERT(buf->dtb_size == size);
10714			continue;
10715		}
10716
10717		ASSERT(buf->dtb_xamot == NULL);
10718
10719		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10720			goto err;
10721
10722		buf->dtb_size = size;
10723		buf->dtb_flags = flags;
10724		buf->dtb_offset = 0;
10725		buf->dtb_drops = 0;
10726
10727		if (flags & DTRACEBUF_NOSWITCH)
10728			continue;
10729
10730		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10731			goto err;
10732	} while ((cp = cp->cpu_next) != cpu_list);
10733
10734	return (0);
10735
10736err:
10737	cp = cpu_list;
10738
10739	do {
10740		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10741			continue;
10742
10743		buf = &bufs[cp->cpu_id];
10744
10745		if (buf->dtb_xamot != NULL) {
10746			ASSERT(buf->dtb_tomax != NULL);
10747			ASSERT(buf->dtb_size == size);
10748			kmem_free(buf->dtb_xamot, size);
10749		}
10750
10751		if (buf->dtb_tomax != NULL) {
10752			ASSERT(buf->dtb_size == size);
10753			kmem_free(buf->dtb_tomax, size);
10754		}
10755
10756		buf->dtb_tomax = NULL;
10757		buf->dtb_xamot = NULL;
10758		buf->dtb_size = 0;
10759	} while ((cp = cp->cpu_next) != cpu_list);
10760
10761	return (ENOMEM);
10762#else
10763	int i;
10764
10765#if defined(__amd64__)
10766	/*
10767	 * FreeBSD isn't good at limiting the amount of memory we
10768	 * ask to malloc, so let's place a limit here before trying
10769	 * to do something that might well end in tears at bedtime.
10770	 */
10771	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10772		return(ENOMEM);
10773#endif
10774
10775	ASSERT(MUTEX_HELD(&dtrace_lock));
10776	CPU_FOREACH(i) {
10777		if (cpu != DTRACE_CPUALL && cpu != i)
10778			continue;
10779
10780		buf = &bufs[i];
10781
10782		/*
10783		 * If there is already a buffer allocated for this CPU, it
10784		 * is only possible that this is a DR event.  In this case,
10785		 * the buffer size must match our specified size.
10786		 */
10787		if (buf->dtb_tomax != NULL) {
10788			ASSERT(buf->dtb_size == size);
10789			continue;
10790		}
10791
10792		ASSERT(buf->dtb_xamot == NULL);
10793
10794		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10795			goto err;
10796
10797		buf->dtb_size = size;
10798		buf->dtb_flags = flags;
10799		buf->dtb_offset = 0;
10800		buf->dtb_drops = 0;
10801
10802		if (flags & DTRACEBUF_NOSWITCH)
10803			continue;
10804
10805		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10806			goto err;
10807	}
10808
10809	return (0);
10810
10811err:
10812	/*
10813	 * Error allocating memory, so free the buffers that were
10814	 * allocated before the failed allocation.
10815	 */
10816	CPU_FOREACH(i) {
10817		if (cpu != DTRACE_CPUALL && cpu != i)
10818			continue;
10819
10820		buf = &bufs[i];
10821
10822		if (buf->dtb_xamot != NULL) {
10823			ASSERT(buf->dtb_tomax != NULL);
10824			ASSERT(buf->dtb_size == size);
10825			kmem_free(buf->dtb_xamot, size);
10826		}
10827
10828		if (buf->dtb_tomax != NULL) {
10829			ASSERT(buf->dtb_size == size);
10830			kmem_free(buf->dtb_tomax, size);
10831		}
10832
10833		buf->dtb_tomax = NULL;
10834		buf->dtb_xamot = NULL;
10835		buf->dtb_size = 0;
10836
10837	}
10838
10839	return (ENOMEM);
10840#endif
10841}
10842
10843/*
10844 * Note:  called from probe context.  This function just increments the drop
10845 * count on a buffer.  It has been made a function to allow for the
10846 * possibility of understanding the source of mysterious drop counts.  (A
10847 * problem for which one may be particularly disappointed that DTrace cannot
10848 * be used to understand DTrace.)
10849 */
10850static void
10851dtrace_buffer_drop(dtrace_buffer_t *buf)
10852{
10853	buf->dtb_drops++;
10854}
10855
10856/*
10857 * Note:  called from probe context.  This function is called to reserve space
10858 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10859 * mstate.  Returns the new offset in the buffer, or a negative value if an
10860 * error has occurred.
10861 */
10862static intptr_t
10863dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10864    dtrace_state_t *state, dtrace_mstate_t *mstate)
10865{
10866	intptr_t offs = buf->dtb_offset, soffs;
10867	intptr_t woffs;
10868	caddr_t tomax;
10869	size_t total;
10870
10871	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10872		return (-1);
10873
10874	if ((tomax = buf->dtb_tomax) == NULL) {
10875		dtrace_buffer_drop(buf);
10876		return (-1);
10877	}
10878
10879	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10880		while (offs & (align - 1)) {
10881			/*
10882			 * Assert that our alignment is off by a number which
10883			 * is itself sizeof (uint32_t) aligned.
10884			 */
10885			ASSERT(!((align - (offs & (align - 1))) &
10886			    (sizeof (uint32_t) - 1)));
10887			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10888			offs += sizeof (uint32_t);
10889		}
10890
10891		if ((soffs = offs + needed) > buf->dtb_size) {
10892			dtrace_buffer_drop(buf);
10893			return (-1);
10894		}
10895
10896		if (mstate == NULL)
10897			return (offs);
10898
10899		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10900		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10901		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10902
10903		return (offs);
10904	}
10905
10906	if (buf->dtb_flags & DTRACEBUF_FILL) {
10907		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10908		    (buf->dtb_flags & DTRACEBUF_FULL))
10909			return (-1);
10910		goto out;
10911	}
10912
10913	total = needed + (offs & (align - 1));
10914
10915	/*
10916	 * For a ring buffer, life is quite a bit more complicated.  Before
10917	 * we can store any padding, we need to adjust our wrapping offset.
10918	 * (If we've never before wrapped or we're not about to, no adjustment
10919	 * is required.)
10920	 */
10921	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10922	    offs + total > buf->dtb_size) {
10923		woffs = buf->dtb_xamot_offset;
10924
10925		if (offs + total > buf->dtb_size) {
10926			/*
10927			 * We can't fit in the end of the buffer.  First, a
10928			 * sanity check that we can fit in the buffer at all.
10929			 */
10930			if (total > buf->dtb_size) {
10931				dtrace_buffer_drop(buf);
10932				return (-1);
10933			}
10934
10935			/*
10936			 * We're going to be storing at the top of the buffer,
10937			 * so now we need to deal with the wrapped offset.  We
10938			 * only reset our wrapped offset to 0 if it is
10939			 * currently greater than the current offset.  If it
10940			 * is less than the current offset, it is because a
10941			 * previous allocation induced a wrap -- but the
10942			 * allocation didn't subsequently take the space due
10943			 * to an error or false predicate evaluation.  In this
10944			 * case, we'll just leave the wrapped offset alone: if
10945			 * the wrapped offset hasn't been advanced far enough
10946			 * for this allocation, it will be adjusted in the
10947			 * lower loop.
10948			 */
10949			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10950				if (woffs >= offs)
10951					woffs = 0;
10952			} else {
10953				woffs = 0;
10954			}
10955
10956			/*
10957			 * Now we know that we're going to be storing to the
10958			 * top of the buffer and that there is room for us
10959			 * there.  We need to clear the buffer from the current
10960			 * offset to the end (there may be old gunk there).
10961			 */
10962			while (offs < buf->dtb_size)
10963				tomax[offs++] = 0;
10964
10965			/*
10966			 * We need to set our offset to zero.  And because we
10967			 * are wrapping, we need to set the bit indicating as
10968			 * much.  We can also adjust our needed space back
10969			 * down to the space required by the ECB -- we know
10970			 * that the top of the buffer is aligned.
10971			 */
10972			offs = 0;
10973			total = needed;
10974			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10975		} else {
10976			/*
10977			 * There is room for us in the buffer, so we simply
10978			 * need to check the wrapped offset.
10979			 */
10980			if (woffs < offs) {
10981				/*
10982				 * The wrapped offset is less than the offset.
10983				 * This can happen if we allocated buffer space
10984				 * that induced a wrap, but then we didn't
10985				 * subsequently take the space due to an error
10986				 * or false predicate evaluation.  This is
10987				 * okay; we know that _this_ allocation isn't
10988				 * going to induce a wrap.  We still can't
10989				 * reset the wrapped offset to be zero,
10990				 * however: the space may have been trashed in
10991				 * the previous failed probe attempt.  But at
10992				 * least the wrapped offset doesn't need to
10993				 * be adjusted at all...
10994				 */
10995				goto out;
10996			}
10997		}
10998
10999		while (offs + total > woffs) {
11000			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11001			size_t size;
11002
11003			if (epid == DTRACE_EPIDNONE) {
11004				size = sizeof (uint32_t);
11005			} else {
11006				ASSERT(epid <= state->dts_necbs);
11007				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11008
11009				size = state->dts_ecbs[epid - 1]->dte_size;
11010			}
11011
11012			ASSERT(woffs + size <= buf->dtb_size);
11013			ASSERT(size != 0);
11014
11015			if (woffs + size == buf->dtb_size) {
11016				/*
11017				 * We've reached the end of the buffer; we want
11018				 * to set the wrapped offset to 0 and break
11019				 * out.  However, if the offs is 0, then we're
11020				 * in a strange edge-condition:  the amount of
11021				 * space that we want to reserve plus the size
11022				 * of the record that we're overwriting is
11023				 * greater than the size of the buffer.  This
11024				 * is problematic because if we reserve the
11025				 * space but subsequently don't consume it (due
11026				 * to a failed predicate or error) the wrapped
11027				 * offset will be 0 -- yet the EPID at offset 0
11028				 * will not be committed.  This situation is
11029				 * relatively easy to deal with:  if we're in
11030				 * this case, the buffer is indistinguishable
11031				 * from one that hasn't wrapped; we need only
11032				 * finish the job by clearing the wrapped bit,
11033				 * explicitly setting the offset to be 0, and
11034				 * zero'ing out the old data in the buffer.
11035				 */
11036				if (offs == 0) {
11037					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11038					buf->dtb_offset = 0;
11039					woffs = total;
11040
11041					while (woffs < buf->dtb_size)
11042						tomax[woffs++] = 0;
11043				}
11044
11045				woffs = 0;
11046				break;
11047			}
11048
11049			woffs += size;
11050		}
11051
11052		/*
11053		 * We have a wrapped offset.  It may be that the wrapped offset
11054		 * has become zero -- that's okay.
11055		 */
11056		buf->dtb_xamot_offset = woffs;
11057	}
11058
11059out:
11060	/*
11061	 * Now we can plow the buffer with any necessary padding.
11062	 */
11063	while (offs & (align - 1)) {
11064		/*
11065		 * Assert that our alignment is off by a number which
11066		 * is itself sizeof (uint32_t) aligned.
11067		 */
11068		ASSERT(!((align - (offs & (align - 1))) &
11069		    (sizeof (uint32_t) - 1)));
11070		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11071		offs += sizeof (uint32_t);
11072	}
11073
11074	if (buf->dtb_flags & DTRACEBUF_FILL) {
11075		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11076			buf->dtb_flags |= DTRACEBUF_FULL;
11077			return (-1);
11078		}
11079	}
11080
11081	if (mstate == NULL)
11082		return (offs);
11083
11084	/*
11085	 * For ring buffers and fill buffers, the scratch space is always
11086	 * the inactive buffer.
11087	 */
11088	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11089	mstate->dtms_scratch_size = buf->dtb_size;
11090	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11091
11092	return (offs);
11093}
11094
11095static void
11096dtrace_buffer_polish(dtrace_buffer_t *buf)
11097{
11098	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11099	ASSERT(MUTEX_HELD(&dtrace_lock));
11100
11101	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11102		return;
11103
11104	/*
11105	 * We need to polish the ring buffer.  There are three cases:
11106	 *
11107	 * - The first (and presumably most common) is that there is no gap
11108	 *   between the buffer offset and the wrapped offset.  In this case,
11109	 *   there is nothing in the buffer that isn't valid data; we can
11110	 *   mark the buffer as polished and return.
11111	 *
11112	 * - The second (less common than the first but still more common
11113	 *   than the third) is that there is a gap between the buffer offset
11114	 *   and the wrapped offset, and the wrapped offset is larger than the
11115	 *   buffer offset.  This can happen because of an alignment issue, or
11116	 *   can happen because of a call to dtrace_buffer_reserve() that
11117	 *   didn't subsequently consume the buffer space.  In this case,
11118	 *   we need to zero the data from the buffer offset to the wrapped
11119	 *   offset.
11120	 *
11121	 * - The third (and least common) is that there is a gap between the
11122	 *   buffer offset and the wrapped offset, but the wrapped offset is
11123	 *   _less_ than the buffer offset.  This can only happen because a
11124	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11125	 *   was not subsequently consumed.  In this case, we need to zero the
11126	 *   space from the offset to the end of the buffer _and_ from the
11127	 *   top of the buffer to the wrapped offset.
11128	 */
11129	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11130		bzero(buf->dtb_tomax + buf->dtb_offset,
11131		    buf->dtb_xamot_offset - buf->dtb_offset);
11132	}
11133
11134	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11135		bzero(buf->dtb_tomax + buf->dtb_offset,
11136		    buf->dtb_size - buf->dtb_offset);
11137		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11138	}
11139}
11140
11141static void
11142dtrace_buffer_free(dtrace_buffer_t *bufs)
11143{
11144	int i;
11145
11146	for (i = 0; i < NCPU; i++) {
11147		dtrace_buffer_t *buf = &bufs[i];
11148
11149		if (buf->dtb_tomax == NULL) {
11150			ASSERT(buf->dtb_xamot == NULL);
11151			ASSERT(buf->dtb_size == 0);
11152			continue;
11153		}
11154
11155		if (buf->dtb_xamot != NULL) {
11156			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11157			kmem_free(buf->dtb_xamot, buf->dtb_size);
11158		}
11159
11160		kmem_free(buf->dtb_tomax, buf->dtb_size);
11161		buf->dtb_size = 0;
11162		buf->dtb_tomax = NULL;
11163		buf->dtb_xamot = NULL;
11164	}
11165}
11166
11167/*
11168 * DTrace Enabling Functions
11169 */
11170static dtrace_enabling_t *
11171dtrace_enabling_create(dtrace_vstate_t *vstate)
11172{
11173	dtrace_enabling_t *enab;
11174
11175	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11176	enab->dten_vstate = vstate;
11177
11178	return (enab);
11179}
11180
11181static void
11182dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11183{
11184	dtrace_ecbdesc_t **ndesc;
11185	size_t osize, nsize;
11186
11187	/*
11188	 * We can't add to enablings after we've enabled them, or after we've
11189	 * retained them.
11190	 */
11191	ASSERT(enab->dten_probegen == 0);
11192	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11193
11194	if (enab->dten_ndesc < enab->dten_maxdesc) {
11195		enab->dten_desc[enab->dten_ndesc++] = ecb;
11196		return;
11197	}
11198
11199	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11200
11201	if (enab->dten_maxdesc == 0) {
11202		enab->dten_maxdesc = 1;
11203	} else {
11204		enab->dten_maxdesc <<= 1;
11205	}
11206
11207	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11208
11209	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11210	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11211	bcopy(enab->dten_desc, ndesc, osize);
11212	if (enab->dten_desc != NULL)
11213		kmem_free(enab->dten_desc, osize);
11214
11215	enab->dten_desc = ndesc;
11216	enab->dten_desc[enab->dten_ndesc++] = ecb;
11217}
11218
11219static void
11220dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11221    dtrace_probedesc_t *pd)
11222{
11223	dtrace_ecbdesc_t *new;
11224	dtrace_predicate_t *pred;
11225	dtrace_actdesc_t *act;
11226
11227	/*
11228	 * We're going to create a new ECB description that matches the
11229	 * specified ECB in every way, but has the specified probe description.
11230	 */
11231	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11232
11233	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11234		dtrace_predicate_hold(pred);
11235
11236	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11237		dtrace_actdesc_hold(act);
11238
11239	new->dted_action = ecb->dted_action;
11240	new->dted_pred = ecb->dted_pred;
11241	new->dted_probe = *pd;
11242	new->dted_uarg = ecb->dted_uarg;
11243
11244	dtrace_enabling_add(enab, new);
11245}
11246
11247static void
11248dtrace_enabling_dump(dtrace_enabling_t *enab)
11249{
11250	int i;
11251
11252	for (i = 0; i < enab->dten_ndesc; i++) {
11253		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11254
11255		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11256		    desc->dtpd_provider, desc->dtpd_mod,
11257		    desc->dtpd_func, desc->dtpd_name);
11258	}
11259}
11260
11261static void
11262dtrace_enabling_destroy(dtrace_enabling_t *enab)
11263{
11264	int i;
11265	dtrace_ecbdesc_t *ep;
11266	dtrace_vstate_t *vstate = enab->dten_vstate;
11267
11268	ASSERT(MUTEX_HELD(&dtrace_lock));
11269
11270	for (i = 0; i < enab->dten_ndesc; i++) {
11271		dtrace_actdesc_t *act, *next;
11272		dtrace_predicate_t *pred;
11273
11274		ep = enab->dten_desc[i];
11275
11276		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11277			dtrace_predicate_release(pred, vstate);
11278
11279		for (act = ep->dted_action; act != NULL; act = next) {
11280			next = act->dtad_next;
11281			dtrace_actdesc_release(act, vstate);
11282		}
11283
11284		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11285	}
11286
11287	if (enab->dten_desc != NULL)
11288		kmem_free(enab->dten_desc,
11289		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11290
11291	/*
11292	 * If this was a retained enabling, decrement the dts_nretained count
11293	 * and take it off of the dtrace_retained list.
11294	 */
11295	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11296	    dtrace_retained == enab) {
11297		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11298		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11299		enab->dten_vstate->dtvs_state->dts_nretained--;
11300	}
11301
11302	if (enab->dten_prev == NULL) {
11303		if (dtrace_retained == enab) {
11304			dtrace_retained = enab->dten_next;
11305
11306			if (dtrace_retained != NULL)
11307				dtrace_retained->dten_prev = NULL;
11308		}
11309	} else {
11310		ASSERT(enab != dtrace_retained);
11311		ASSERT(dtrace_retained != NULL);
11312		enab->dten_prev->dten_next = enab->dten_next;
11313	}
11314
11315	if (enab->dten_next != NULL) {
11316		ASSERT(dtrace_retained != NULL);
11317		enab->dten_next->dten_prev = enab->dten_prev;
11318	}
11319
11320	kmem_free(enab, sizeof (dtrace_enabling_t));
11321}
11322
11323static int
11324dtrace_enabling_retain(dtrace_enabling_t *enab)
11325{
11326	dtrace_state_t *state;
11327
11328	ASSERT(MUTEX_HELD(&dtrace_lock));
11329	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11330	ASSERT(enab->dten_vstate != NULL);
11331
11332	state = enab->dten_vstate->dtvs_state;
11333	ASSERT(state != NULL);
11334
11335	/*
11336	 * We only allow each state to retain dtrace_retain_max enablings.
11337	 */
11338	if (state->dts_nretained >= dtrace_retain_max)
11339		return (ENOSPC);
11340
11341	state->dts_nretained++;
11342
11343	if (dtrace_retained == NULL) {
11344		dtrace_retained = enab;
11345		return (0);
11346	}
11347
11348	enab->dten_next = dtrace_retained;
11349	dtrace_retained->dten_prev = enab;
11350	dtrace_retained = enab;
11351
11352	return (0);
11353}
11354
11355static int
11356dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11357    dtrace_probedesc_t *create)
11358{
11359	dtrace_enabling_t *new, *enab;
11360	int found = 0, err = ENOENT;
11361
11362	ASSERT(MUTEX_HELD(&dtrace_lock));
11363	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11364	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11365	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11366	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11367
11368	new = dtrace_enabling_create(&state->dts_vstate);
11369
11370	/*
11371	 * Iterate over all retained enablings, looking for enablings that
11372	 * match the specified state.
11373	 */
11374	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11375		int i;
11376
11377		/*
11378		 * dtvs_state can only be NULL for helper enablings -- and
11379		 * helper enablings can't be retained.
11380		 */
11381		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11382
11383		if (enab->dten_vstate->dtvs_state != state)
11384			continue;
11385
11386		/*
11387		 * Now iterate over each probe description; we're looking for
11388		 * an exact match to the specified probe description.
11389		 */
11390		for (i = 0; i < enab->dten_ndesc; i++) {
11391			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11392			dtrace_probedesc_t *pd = &ep->dted_probe;
11393
11394			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11395				continue;
11396
11397			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11398				continue;
11399
11400			if (strcmp(pd->dtpd_func, match->dtpd_func))
11401				continue;
11402
11403			if (strcmp(pd->dtpd_name, match->dtpd_name))
11404				continue;
11405
11406			/*
11407			 * We have a winning probe!  Add it to our growing
11408			 * enabling.
11409			 */
11410			found = 1;
11411			dtrace_enabling_addlike(new, ep, create);
11412		}
11413	}
11414
11415	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11416		dtrace_enabling_destroy(new);
11417		return (err);
11418	}
11419
11420	return (0);
11421}
11422
11423static void
11424dtrace_enabling_retract(dtrace_state_t *state)
11425{
11426	dtrace_enabling_t *enab, *next;
11427
11428	ASSERT(MUTEX_HELD(&dtrace_lock));
11429
11430	/*
11431	 * Iterate over all retained enablings, destroy the enablings retained
11432	 * for the specified state.
11433	 */
11434	for (enab = dtrace_retained; enab != NULL; enab = next) {
11435		next = enab->dten_next;
11436
11437		/*
11438		 * dtvs_state can only be NULL for helper enablings -- and
11439		 * helper enablings can't be retained.
11440		 */
11441		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11442
11443		if (enab->dten_vstate->dtvs_state == state) {
11444			ASSERT(state->dts_nretained > 0);
11445			dtrace_enabling_destroy(enab);
11446		}
11447	}
11448
11449	ASSERT(state->dts_nretained == 0);
11450}
11451
11452static int
11453dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11454{
11455	int i = 0;
11456	int matched = 0;
11457
11458	ASSERT(MUTEX_HELD(&cpu_lock));
11459	ASSERT(MUTEX_HELD(&dtrace_lock));
11460
11461	for (i = 0; i < enab->dten_ndesc; i++) {
11462		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11463
11464		enab->dten_current = ep;
11465		enab->dten_error = 0;
11466
11467		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11468
11469		if (enab->dten_error != 0) {
11470			/*
11471			 * If we get an error half-way through enabling the
11472			 * probes, we kick out -- perhaps with some number of
11473			 * them enabled.  Leaving enabled probes enabled may
11474			 * be slightly confusing for user-level, but we expect
11475			 * that no one will attempt to actually drive on in
11476			 * the face of such errors.  If this is an anonymous
11477			 * enabling (indicated with a NULL nmatched pointer),
11478			 * we cmn_err() a message.  We aren't expecting to
11479			 * get such an error -- such as it can exist at all,
11480			 * it would be a result of corrupted DOF in the driver
11481			 * properties.
11482			 */
11483			if (nmatched == NULL) {
11484				cmn_err(CE_WARN, "dtrace_enabling_match() "
11485				    "error on %p: %d", (void *)ep,
11486				    enab->dten_error);
11487			}
11488
11489			return (enab->dten_error);
11490		}
11491	}
11492
11493	enab->dten_probegen = dtrace_probegen;
11494	if (nmatched != NULL)
11495		*nmatched = matched;
11496
11497	return (0);
11498}
11499
11500static void
11501dtrace_enabling_matchall(void)
11502{
11503	dtrace_enabling_t *enab;
11504
11505	mutex_enter(&cpu_lock);
11506	mutex_enter(&dtrace_lock);
11507
11508	/*
11509	 * Iterate over all retained enablings to see if any probes match
11510	 * against them.  We only perform this operation on enablings for which
11511	 * we have sufficient permissions by virtue of being in the global zone
11512	 * or in the same zone as the DTrace client.  Because we can be called
11513	 * after dtrace_detach() has been called, we cannot assert that there
11514	 * are retained enablings.  We can safely load from dtrace_retained,
11515	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11516	 * block pending our completion.
11517	 */
11518	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11519#if defined(sun)
11520		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11521
11522		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11523#endif
11524			(void) dtrace_enabling_match(enab, NULL);
11525	}
11526
11527	mutex_exit(&dtrace_lock);
11528	mutex_exit(&cpu_lock);
11529}
11530
11531/*
11532 * If an enabling is to be enabled without having matched probes (that is, if
11533 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11534 * enabling must be _primed_ by creating an ECB for every ECB description.
11535 * This must be done to assure that we know the number of speculations, the
11536 * number of aggregations, the minimum buffer size needed, etc. before we
11537 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11538 * enabling any probes, we create ECBs for every ECB decription, but with a
11539 * NULL probe -- which is exactly what this function does.
11540 */
11541static void
11542dtrace_enabling_prime(dtrace_state_t *state)
11543{
11544	dtrace_enabling_t *enab;
11545	int i;
11546
11547	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11548		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11549
11550		if (enab->dten_vstate->dtvs_state != state)
11551			continue;
11552
11553		/*
11554		 * We don't want to prime an enabling more than once, lest
11555		 * we allow a malicious user to induce resource exhaustion.
11556		 * (The ECBs that result from priming an enabling aren't
11557		 * leaked -- but they also aren't deallocated until the
11558		 * consumer state is destroyed.)
11559		 */
11560		if (enab->dten_primed)
11561			continue;
11562
11563		for (i = 0; i < enab->dten_ndesc; i++) {
11564			enab->dten_current = enab->dten_desc[i];
11565			(void) dtrace_probe_enable(NULL, enab);
11566		}
11567
11568		enab->dten_primed = 1;
11569	}
11570}
11571
11572/*
11573 * Called to indicate that probes should be provided due to retained
11574 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11575 * must take an initial lap through the enabling calling the dtps_provide()
11576 * entry point explicitly to allow for autocreated probes.
11577 */
11578static void
11579dtrace_enabling_provide(dtrace_provider_t *prv)
11580{
11581	int i, all = 0;
11582	dtrace_probedesc_t desc;
11583
11584	ASSERT(MUTEX_HELD(&dtrace_lock));
11585	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11586
11587	if (prv == NULL) {
11588		all = 1;
11589		prv = dtrace_provider;
11590	}
11591
11592	do {
11593		dtrace_enabling_t *enab = dtrace_retained;
11594		void *parg = prv->dtpv_arg;
11595
11596		for (; enab != NULL; enab = enab->dten_next) {
11597			for (i = 0; i < enab->dten_ndesc; i++) {
11598				desc = enab->dten_desc[i]->dted_probe;
11599				mutex_exit(&dtrace_lock);
11600				prv->dtpv_pops.dtps_provide(parg, &desc);
11601				mutex_enter(&dtrace_lock);
11602			}
11603		}
11604	} while (all && (prv = prv->dtpv_next) != NULL);
11605
11606	mutex_exit(&dtrace_lock);
11607	dtrace_probe_provide(NULL, all ? NULL : prv);
11608	mutex_enter(&dtrace_lock);
11609}
11610
11611/*
11612 * DTrace DOF Functions
11613 */
11614/*ARGSUSED*/
11615static void
11616dtrace_dof_error(dof_hdr_t *dof, const char *str)
11617{
11618	if (dtrace_err_verbose)
11619		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11620
11621#ifdef DTRACE_ERRDEBUG
11622	dtrace_errdebug(str);
11623#endif
11624}
11625
11626/*
11627 * Create DOF out of a currently enabled state.  Right now, we only create
11628 * DOF containing the run-time options -- but this could be expanded to create
11629 * complete DOF representing the enabled state.
11630 */
11631static dof_hdr_t *
11632dtrace_dof_create(dtrace_state_t *state)
11633{
11634	dof_hdr_t *dof;
11635	dof_sec_t *sec;
11636	dof_optdesc_t *opt;
11637	int i, len = sizeof (dof_hdr_t) +
11638	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11639	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11640
11641	ASSERT(MUTEX_HELD(&dtrace_lock));
11642
11643	dof = kmem_zalloc(len, KM_SLEEP);
11644	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11645	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11646	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11647	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11648
11649	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11650	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11651	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11652	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11653	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11654	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11655
11656	dof->dofh_flags = 0;
11657	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11658	dof->dofh_secsize = sizeof (dof_sec_t);
11659	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11660	dof->dofh_secoff = sizeof (dof_hdr_t);
11661	dof->dofh_loadsz = len;
11662	dof->dofh_filesz = len;
11663	dof->dofh_pad = 0;
11664
11665	/*
11666	 * Fill in the option section header...
11667	 */
11668	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11669	sec->dofs_type = DOF_SECT_OPTDESC;
11670	sec->dofs_align = sizeof (uint64_t);
11671	sec->dofs_flags = DOF_SECF_LOAD;
11672	sec->dofs_entsize = sizeof (dof_optdesc_t);
11673
11674	opt = (dof_optdesc_t *)((uintptr_t)sec +
11675	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11676
11677	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11678	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11679
11680	for (i = 0; i < DTRACEOPT_MAX; i++) {
11681		opt[i].dofo_option = i;
11682		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11683		opt[i].dofo_value = state->dts_options[i];
11684	}
11685
11686	return (dof);
11687}
11688
11689static dof_hdr_t *
11690dtrace_dof_copyin(uintptr_t uarg, int *errp)
11691{
11692	dof_hdr_t hdr, *dof;
11693
11694	ASSERT(!MUTEX_HELD(&dtrace_lock));
11695
11696	/*
11697	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11698	 */
11699	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11700		dtrace_dof_error(NULL, "failed to copyin DOF header");
11701		*errp = EFAULT;
11702		return (NULL);
11703	}
11704
11705	/*
11706	 * Now we'll allocate the entire DOF and copy it in -- provided
11707	 * that the length isn't outrageous.
11708	 */
11709	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11710		dtrace_dof_error(&hdr, "load size exceeds maximum");
11711		*errp = E2BIG;
11712		return (NULL);
11713	}
11714
11715	if (hdr.dofh_loadsz < sizeof (hdr)) {
11716		dtrace_dof_error(&hdr, "invalid load size");
11717		*errp = EINVAL;
11718		return (NULL);
11719	}
11720
11721	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11722
11723	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11724		kmem_free(dof, hdr.dofh_loadsz);
11725		*errp = EFAULT;
11726		return (NULL);
11727	}
11728
11729	return (dof);
11730}
11731
11732#if !defined(sun)
11733static __inline uchar_t
11734dtrace_dof_char(char c) {
11735	switch (c) {
11736	case '0':
11737	case '1':
11738	case '2':
11739	case '3':
11740	case '4':
11741	case '5':
11742	case '6':
11743	case '7':
11744	case '8':
11745	case '9':
11746		return (c - '0');
11747	case 'A':
11748	case 'B':
11749	case 'C':
11750	case 'D':
11751	case 'E':
11752	case 'F':
11753		return (c - 'A' + 10);
11754	case 'a':
11755	case 'b':
11756	case 'c':
11757	case 'd':
11758	case 'e':
11759	case 'f':
11760		return (c - 'a' + 10);
11761	}
11762	/* Should not reach here. */
11763	return (0);
11764}
11765#endif
11766
11767static dof_hdr_t *
11768dtrace_dof_property(const char *name)
11769{
11770	uchar_t *buf;
11771	uint64_t loadsz;
11772	unsigned int len, i;
11773	dof_hdr_t *dof;
11774
11775#if defined(sun)
11776	/*
11777	 * Unfortunately, array of values in .conf files are always (and
11778	 * only) interpreted to be integer arrays.  We must read our DOF
11779	 * as an integer array, and then squeeze it into a byte array.
11780	 */
11781	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11782	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11783		return (NULL);
11784
11785	for (i = 0; i < len; i++)
11786		buf[i] = (uchar_t)(((int *)buf)[i]);
11787
11788	if (len < sizeof (dof_hdr_t)) {
11789		ddi_prop_free(buf);
11790		dtrace_dof_error(NULL, "truncated header");
11791		return (NULL);
11792	}
11793
11794	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11795		ddi_prop_free(buf);
11796		dtrace_dof_error(NULL, "truncated DOF");
11797		return (NULL);
11798	}
11799
11800	if (loadsz >= dtrace_dof_maxsize) {
11801		ddi_prop_free(buf);
11802		dtrace_dof_error(NULL, "oversized DOF");
11803		return (NULL);
11804	}
11805
11806	dof = kmem_alloc(loadsz, KM_SLEEP);
11807	bcopy(buf, dof, loadsz);
11808	ddi_prop_free(buf);
11809#else
11810	char *p;
11811	char *p_env;
11812
11813	if ((p_env = getenv(name)) == NULL)
11814		return (NULL);
11815
11816	len = strlen(p_env) / 2;
11817
11818	buf = kmem_alloc(len, KM_SLEEP);
11819
11820	dof = (dof_hdr_t *) buf;
11821
11822	p = p_env;
11823
11824	for (i = 0; i < len; i++) {
11825		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11826		     dtrace_dof_char(p[1]);
11827		p += 2;
11828	}
11829
11830	freeenv(p_env);
11831
11832	if (len < sizeof (dof_hdr_t)) {
11833		kmem_free(buf, 0);
11834		dtrace_dof_error(NULL, "truncated header");
11835		return (NULL);
11836	}
11837
11838	if (len < (loadsz = dof->dofh_loadsz)) {
11839		kmem_free(buf, 0);
11840		dtrace_dof_error(NULL, "truncated DOF");
11841		return (NULL);
11842	}
11843
11844	if (loadsz >= dtrace_dof_maxsize) {
11845		kmem_free(buf, 0);
11846		dtrace_dof_error(NULL, "oversized DOF");
11847		return (NULL);
11848	}
11849#endif
11850
11851	return (dof);
11852}
11853
11854static void
11855dtrace_dof_destroy(dof_hdr_t *dof)
11856{
11857	kmem_free(dof, dof->dofh_loadsz);
11858}
11859
11860/*
11861 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11862 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11863 * a type other than DOF_SECT_NONE is specified, the header is checked against
11864 * this type and NULL is returned if the types do not match.
11865 */
11866static dof_sec_t *
11867dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11868{
11869	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11870	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11871
11872	if (i >= dof->dofh_secnum) {
11873		dtrace_dof_error(dof, "referenced section index is invalid");
11874		return (NULL);
11875	}
11876
11877	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11878		dtrace_dof_error(dof, "referenced section is not loadable");
11879		return (NULL);
11880	}
11881
11882	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11883		dtrace_dof_error(dof, "referenced section is the wrong type");
11884		return (NULL);
11885	}
11886
11887	return (sec);
11888}
11889
11890static dtrace_probedesc_t *
11891dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11892{
11893	dof_probedesc_t *probe;
11894	dof_sec_t *strtab;
11895	uintptr_t daddr = (uintptr_t)dof;
11896	uintptr_t str;
11897	size_t size;
11898
11899	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11900		dtrace_dof_error(dof, "invalid probe section");
11901		return (NULL);
11902	}
11903
11904	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11905		dtrace_dof_error(dof, "bad alignment in probe description");
11906		return (NULL);
11907	}
11908
11909	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11910		dtrace_dof_error(dof, "truncated probe description");
11911		return (NULL);
11912	}
11913
11914	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11915	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11916
11917	if (strtab == NULL)
11918		return (NULL);
11919
11920	str = daddr + strtab->dofs_offset;
11921	size = strtab->dofs_size;
11922
11923	if (probe->dofp_provider >= strtab->dofs_size) {
11924		dtrace_dof_error(dof, "corrupt probe provider");
11925		return (NULL);
11926	}
11927
11928	(void) strncpy(desc->dtpd_provider,
11929	    (char *)(str + probe->dofp_provider),
11930	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11931
11932	if (probe->dofp_mod >= strtab->dofs_size) {
11933		dtrace_dof_error(dof, "corrupt probe module");
11934		return (NULL);
11935	}
11936
11937	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11938	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11939
11940	if (probe->dofp_func >= strtab->dofs_size) {
11941		dtrace_dof_error(dof, "corrupt probe function");
11942		return (NULL);
11943	}
11944
11945	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11946	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11947
11948	if (probe->dofp_name >= strtab->dofs_size) {
11949		dtrace_dof_error(dof, "corrupt probe name");
11950		return (NULL);
11951	}
11952
11953	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11954	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11955
11956	return (desc);
11957}
11958
11959static dtrace_difo_t *
11960dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11961    cred_t *cr)
11962{
11963	dtrace_difo_t *dp;
11964	size_t ttl = 0;
11965	dof_difohdr_t *dofd;
11966	uintptr_t daddr = (uintptr_t)dof;
11967	size_t max = dtrace_difo_maxsize;
11968	int i, l, n;
11969
11970	static const struct {
11971		int section;
11972		int bufoffs;
11973		int lenoffs;
11974		int entsize;
11975		int align;
11976		const char *msg;
11977	} difo[] = {
11978		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11979		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11980		sizeof (dif_instr_t), "multiple DIF sections" },
11981
11982		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11983		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11984		sizeof (uint64_t), "multiple integer tables" },
11985
11986		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11987		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11988		sizeof (char), "multiple string tables" },
11989
11990		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11991		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11992		sizeof (uint_t), "multiple variable tables" },
11993
11994		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11995	};
11996
11997	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11998		dtrace_dof_error(dof, "invalid DIFO header section");
11999		return (NULL);
12000	}
12001
12002	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12003		dtrace_dof_error(dof, "bad alignment in DIFO header");
12004		return (NULL);
12005	}
12006
12007	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12008	    sec->dofs_size % sizeof (dof_secidx_t)) {
12009		dtrace_dof_error(dof, "bad size in DIFO header");
12010		return (NULL);
12011	}
12012
12013	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12014	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12015
12016	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12017	dp->dtdo_rtype = dofd->dofd_rtype;
12018
12019	for (l = 0; l < n; l++) {
12020		dof_sec_t *subsec;
12021		void **bufp;
12022		uint32_t *lenp;
12023
12024		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12025		    dofd->dofd_links[l])) == NULL)
12026			goto err; /* invalid section link */
12027
12028		if (ttl + subsec->dofs_size > max) {
12029			dtrace_dof_error(dof, "exceeds maximum size");
12030			goto err;
12031		}
12032
12033		ttl += subsec->dofs_size;
12034
12035		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12036			if (subsec->dofs_type != difo[i].section)
12037				continue;
12038
12039			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12040				dtrace_dof_error(dof, "section not loaded");
12041				goto err;
12042			}
12043
12044			if (subsec->dofs_align != difo[i].align) {
12045				dtrace_dof_error(dof, "bad alignment");
12046				goto err;
12047			}
12048
12049			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12050			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12051
12052			if (*bufp != NULL) {
12053				dtrace_dof_error(dof, difo[i].msg);
12054				goto err;
12055			}
12056
12057			if (difo[i].entsize != subsec->dofs_entsize) {
12058				dtrace_dof_error(dof, "entry size mismatch");
12059				goto err;
12060			}
12061
12062			if (subsec->dofs_entsize != 0 &&
12063			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12064				dtrace_dof_error(dof, "corrupt entry size");
12065				goto err;
12066			}
12067
12068			*lenp = subsec->dofs_size;
12069			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12070			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12071			    *bufp, subsec->dofs_size);
12072
12073			if (subsec->dofs_entsize != 0)
12074				*lenp /= subsec->dofs_entsize;
12075
12076			break;
12077		}
12078
12079		/*
12080		 * If we encounter a loadable DIFO sub-section that is not
12081		 * known to us, assume this is a broken program and fail.
12082		 */
12083		if (difo[i].section == DOF_SECT_NONE &&
12084		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12085			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12086			goto err;
12087		}
12088	}
12089
12090	if (dp->dtdo_buf == NULL) {
12091		/*
12092		 * We can't have a DIF object without DIF text.
12093		 */
12094		dtrace_dof_error(dof, "missing DIF text");
12095		goto err;
12096	}
12097
12098	/*
12099	 * Before we validate the DIF object, run through the variable table
12100	 * looking for the strings -- if any of their size are under, we'll set
12101	 * their size to be the system-wide default string size.  Note that
12102	 * this should _not_ happen if the "strsize" option has been set --
12103	 * in this case, the compiler should have set the size to reflect the
12104	 * setting of the option.
12105	 */
12106	for (i = 0; i < dp->dtdo_varlen; i++) {
12107		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12108		dtrace_diftype_t *t = &v->dtdv_type;
12109
12110		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12111			continue;
12112
12113		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12114			t->dtdt_size = dtrace_strsize_default;
12115	}
12116
12117	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12118		goto err;
12119
12120	dtrace_difo_init(dp, vstate);
12121	return (dp);
12122
12123err:
12124	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12125	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12126	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12127	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12128
12129	kmem_free(dp, sizeof (dtrace_difo_t));
12130	return (NULL);
12131}
12132
12133static dtrace_predicate_t *
12134dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12135    cred_t *cr)
12136{
12137	dtrace_difo_t *dp;
12138
12139	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12140		return (NULL);
12141
12142	return (dtrace_predicate_create(dp));
12143}
12144
12145static dtrace_actdesc_t *
12146dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12147    cred_t *cr)
12148{
12149	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12150	dof_actdesc_t *desc;
12151	dof_sec_t *difosec;
12152	size_t offs;
12153	uintptr_t daddr = (uintptr_t)dof;
12154	uint64_t arg;
12155	dtrace_actkind_t kind;
12156
12157	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12158		dtrace_dof_error(dof, "invalid action section");
12159		return (NULL);
12160	}
12161
12162	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12163		dtrace_dof_error(dof, "truncated action description");
12164		return (NULL);
12165	}
12166
12167	if (sec->dofs_align != sizeof (uint64_t)) {
12168		dtrace_dof_error(dof, "bad alignment in action description");
12169		return (NULL);
12170	}
12171
12172	if (sec->dofs_size < sec->dofs_entsize) {
12173		dtrace_dof_error(dof, "section entry size exceeds total size");
12174		return (NULL);
12175	}
12176
12177	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12178		dtrace_dof_error(dof, "bad entry size in action description");
12179		return (NULL);
12180	}
12181
12182	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12183		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12184		return (NULL);
12185	}
12186
12187	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12188		desc = (dof_actdesc_t *)(daddr +
12189		    (uintptr_t)sec->dofs_offset + offs);
12190		kind = (dtrace_actkind_t)desc->dofa_kind;
12191
12192		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12193		    (kind != DTRACEACT_PRINTA ||
12194		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12195			dof_sec_t *strtab;
12196			char *str, *fmt;
12197			uint64_t i;
12198
12199			/*
12200			 * printf()-like actions must have a format string.
12201			 */
12202			if ((strtab = dtrace_dof_sect(dof,
12203			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12204				goto err;
12205
12206			str = (char *)((uintptr_t)dof +
12207			    (uintptr_t)strtab->dofs_offset);
12208
12209			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12210				if (str[i] == '\0')
12211					break;
12212			}
12213
12214			if (i >= strtab->dofs_size) {
12215				dtrace_dof_error(dof, "bogus format string");
12216				goto err;
12217			}
12218
12219			if (i == desc->dofa_arg) {
12220				dtrace_dof_error(dof, "empty format string");
12221				goto err;
12222			}
12223
12224			i -= desc->dofa_arg;
12225			fmt = kmem_alloc(i + 1, KM_SLEEP);
12226			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12227			arg = (uint64_t)(uintptr_t)fmt;
12228		} else {
12229			if (kind == DTRACEACT_PRINTA) {
12230				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12231				arg = 0;
12232			} else {
12233				arg = desc->dofa_arg;
12234			}
12235		}
12236
12237		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12238		    desc->dofa_uarg, arg);
12239
12240		if (last != NULL) {
12241			last->dtad_next = act;
12242		} else {
12243			first = act;
12244		}
12245
12246		last = act;
12247
12248		if (desc->dofa_difo == DOF_SECIDX_NONE)
12249			continue;
12250
12251		if ((difosec = dtrace_dof_sect(dof,
12252		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12253			goto err;
12254
12255		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12256
12257		if (act->dtad_difo == NULL)
12258			goto err;
12259	}
12260
12261	ASSERT(first != NULL);
12262	return (first);
12263
12264err:
12265	for (act = first; act != NULL; act = next) {
12266		next = act->dtad_next;
12267		dtrace_actdesc_release(act, vstate);
12268	}
12269
12270	return (NULL);
12271}
12272
12273static dtrace_ecbdesc_t *
12274dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12275    cred_t *cr)
12276{
12277	dtrace_ecbdesc_t *ep;
12278	dof_ecbdesc_t *ecb;
12279	dtrace_probedesc_t *desc;
12280	dtrace_predicate_t *pred = NULL;
12281
12282	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12283		dtrace_dof_error(dof, "truncated ECB description");
12284		return (NULL);
12285	}
12286
12287	if (sec->dofs_align != sizeof (uint64_t)) {
12288		dtrace_dof_error(dof, "bad alignment in ECB description");
12289		return (NULL);
12290	}
12291
12292	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12293	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12294
12295	if (sec == NULL)
12296		return (NULL);
12297
12298	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12299	ep->dted_uarg = ecb->dofe_uarg;
12300	desc = &ep->dted_probe;
12301
12302	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12303		goto err;
12304
12305	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12306		if ((sec = dtrace_dof_sect(dof,
12307		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12308			goto err;
12309
12310		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12311			goto err;
12312
12313		ep->dted_pred.dtpdd_predicate = pred;
12314	}
12315
12316	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12317		if ((sec = dtrace_dof_sect(dof,
12318		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12319			goto err;
12320
12321		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12322
12323		if (ep->dted_action == NULL)
12324			goto err;
12325	}
12326
12327	return (ep);
12328
12329err:
12330	if (pred != NULL)
12331		dtrace_predicate_release(pred, vstate);
12332	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12333	return (NULL);
12334}
12335
12336/*
12337 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12338 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12339 * site of any user SETX relocations to account for load object base address.
12340 * In the future, if we need other relocations, this function can be extended.
12341 */
12342static int
12343dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12344{
12345	uintptr_t daddr = (uintptr_t)dof;
12346	dof_relohdr_t *dofr =
12347	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12348	dof_sec_t *ss, *rs, *ts;
12349	dof_relodesc_t *r;
12350	uint_t i, n;
12351
12352	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12353	    sec->dofs_align != sizeof (dof_secidx_t)) {
12354		dtrace_dof_error(dof, "invalid relocation header");
12355		return (-1);
12356	}
12357
12358	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12359	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12360	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12361
12362	if (ss == NULL || rs == NULL || ts == NULL)
12363		return (-1); /* dtrace_dof_error() has been called already */
12364
12365	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12366	    rs->dofs_align != sizeof (uint64_t)) {
12367		dtrace_dof_error(dof, "invalid relocation section");
12368		return (-1);
12369	}
12370
12371	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12372	n = rs->dofs_size / rs->dofs_entsize;
12373
12374	for (i = 0; i < n; i++) {
12375		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12376
12377		switch (r->dofr_type) {
12378		case DOF_RELO_NONE:
12379			break;
12380		case DOF_RELO_SETX:
12381			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12382			    sizeof (uint64_t) > ts->dofs_size) {
12383				dtrace_dof_error(dof, "bad relocation offset");
12384				return (-1);
12385			}
12386
12387			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12388				dtrace_dof_error(dof, "misaligned setx relo");
12389				return (-1);
12390			}
12391
12392			*(uint64_t *)taddr += ubase;
12393			break;
12394		default:
12395			dtrace_dof_error(dof, "invalid relocation type");
12396			return (-1);
12397		}
12398
12399		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12400	}
12401
12402	return (0);
12403}
12404
12405/*
12406 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12407 * header:  it should be at the front of a memory region that is at least
12408 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12409 * size.  It need not be validated in any other way.
12410 */
12411static int
12412dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12413    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12414{
12415	uint64_t len = dof->dofh_loadsz, seclen;
12416	uintptr_t daddr = (uintptr_t)dof;
12417	dtrace_ecbdesc_t *ep;
12418	dtrace_enabling_t *enab;
12419	uint_t i;
12420
12421	ASSERT(MUTEX_HELD(&dtrace_lock));
12422	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12423
12424	/*
12425	 * Check the DOF header identification bytes.  In addition to checking
12426	 * valid settings, we also verify that unused bits/bytes are zeroed so
12427	 * we can use them later without fear of regressing existing binaries.
12428	 */
12429	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12430	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12431		dtrace_dof_error(dof, "DOF magic string mismatch");
12432		return (-1);
12433	}
12434
12435	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12436	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12437		dtrace_dof_error(dof, "DOF has invalid data model");
12438		return (-1);
12439	}
12440
12441	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12442		dtrace_dof_error(dof, "DOF encoding mismatch");
12443		return (-1);
12444	}
12445
12446	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12447	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12448		dtrace_dof_error(dof, "DOF version mismatch");
12449		return (-1);
12450	}
12451
12452	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12453		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12454		return (-1);
12455	}
12456
12457	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12458		dtrace_dof_error(dof, "DOF uses too many integer registers");
12459		return (-1);
12460	}
12461
12462	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12463		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12464		return (-1);
12465	}
12466
12467	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12468		if (dof->dofh_ident[i] != 0) {
12469			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12470			return (-1);
12471		}
12472	}
12473
12474	if (dof->dofh_flags & ~DOF_FL_VALID) {
12475		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12476		return (-1);
12477	}
12478
12479	if (dof->dofh_secsize == 0) {
12480		dtrace_dof_error(dof, "zero section header size");
12481		return (-1);
12482	}
12483
12484	/*
12485	 * Check that the section headers don't exceed the amount of DOF
12486	 * data.  Note that we cast the section size and number of sections
12487	 * to uint64_t's to prevent possible overflow in the multiplication.
12488	 */
12489	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12490
12491	if (dof->dofh_secoff > len || seclen > len ||
12492	    dof->dofh_secoff + seclen > len) {
12493		dtrace_dof_error(dof, "truncated section headers");
12494		return (-1);
12495	}
12496
12497	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12498		dtrace_dof_error(dof, "misaligned section headers");
12499		return (-1);
12500	}
12501
12502	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12503		dtrace_dof_error(dof, "misaligned section size");
12504		return (-1);
12505	}
12506
12507	/*
12508	 * Take an initial pass through the section headers to be sure that
12509	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12510	 * set, do not permit sections relating to providers, probes, or args.
12511	 */
12512	for (i = 0; i < dof->dofh_secnum; i++) {
12513		dof_sec_t *sec = (dof_sec_t *)(daddr +
12514		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12515
12516		if (noprobes) {
12517			switch (sec->dofs_type) {
12518			case DOF_SECT_PROVIDER:
12519			case DOF_SECT_PROBES:
12520			case DOF_SECT_PRARGS:
12521			case DOF_SECT_PROFFS:
12522				dtrace_dof_error(dof, "illegal sections "
12523				    "for enabling");
12524				return (-1);
12525			}
12526		}
12527
12528		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12529			continue; /* just ignore non-loadable sections */
12530
12531		if (sec->dofs_align & (sec->dofs_align - 1)) {
12532			dtrace_dof_error(dof, "bad section alignment");
12533			return (-1);
12534		}
12535
12536		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12537			dtrace_dof_error(dof, "misaligned section");
12538			return (-1);
12539		}
12540
12541		if (sec->dofs_offset > len || sec->dofs_size > len ||
12542		    sec->dofs_offset + sec->dofs_size > len) {
12543			dtrace_dof_error(dof, "corrupt section header");
12544			return (-1);
12545		}
12546
12547		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12548		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12549			dtrace_dof_error(dof, "non-terminating string table");
12550			return (-1);
12551		}
12552	}
12553
12554	/*
12555	 * Take a second pass through the sections and locate and perform any
12556	 * relocations that are present.  We do this after the first pass to
12557	 * be sure that all sections have had their headers validated.
12558	 */
12559	for (i = 0; i < dof->dofh_secnum; i++) {
12560		dof_sec_t *sec = (dof_sec_t *)(daddr +
12561		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12562
12563		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12564			continue; /* skip sections that are not loadable */
12565
12566		switch (sec->dofs_type) {
12567		case DOF_SECT_URELHDR:
12568			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12569				return (-1);
12570			break;
12571		}
12572	}
12573
12574	if ((enab = *enabp) == NULL)
12575		enab = *enabp = dtrace_enabling_create(vstate);
12576
12577	for (i = 0; i < dof->dofh_secnum; i++) {
12578		dof_sec_t *sec = (dof_sec_t *)(daddr +
12579		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12580
12581		if (sec->dofs_type != DOF_SECT_ECBDESC)
12582			continue;
12583
12584		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12585			dtrace_enabling_destroy(enab);
12586			*enabp = NULL;
12587			return (-1);
12588		}
12589
12590		dtrace_enabling_add(enab, ep);
12591	}
12592
12593	return (0);
12594}
12595
12596/*
12597 * Process DOF for any options.  This routine assumes that the DOF has been
12598 * at least processed by dtrace_dof_slurp().
12599 */
12600static int
12601dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12602{
12603	int i, rval;
12604	uint32_t entsize;
12605	size_t offs;
12606	dof_optdesc_t *desc;
12607
12608	for (i = 0; i < dof->dofh_secnum; i++) {
12609		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12610		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12611
12612		if (sec->dofs_type != DOF_SECT_OPTDESC)
12613			continue;
12614
12615		if (sec->dofs_align != sizeof (uint64_t)) {
12616			dtrace_dof_error(dof, "bad alignment in "
12617			    "option description");
12618			return (EINVAL);
12619		}
12620
12621		if ((entsize = sec->dofs_entsize) == 0) {
12622			dtrace_dof_error(dof, "zeroed option entry size");
12623			return (EINVAL);
12624		}
12625
12626		if (entsize < sizeof (dof_optdesc_t)) {
12627			dtrace_dof_error(dof, "bad option entry size");
12628			return (EINVAL);
12629		}
12630
12631		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12632			desc = (dof_optdesc_t *)((uintptr_t)dof +
12633			    (uintptr_t)sec->dofs_offset + offs);
12634
12635			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12636				dtrace_dof_error(dof, "non-zero option string");
12637				return (EINVAL);
12638			}
12639
12640			if (desc->dofo_value == DTRACEOPT_UNSET) {
12641				dtrace_dof_error(dof, "unset option");
12642				return (EINVAL);
12643			}
12644
12645			if ((rval = dtrace_state_option(state,
12646			    desc->dofo_option, desc->dofo_value)) != 0) {
12647				dtrace_dof_error(dof, "rejected option");
12648				return (rval);
12649			}
12650		}
12651	}
12652
12653	return (0);
12654}
12655
12656/*
12657 * DTrace Consumer State Functions
12658 */
12659static int
12660dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12661{
12662	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12663	void *base;
12664	uintptr_t limit;
12665	dtrace_dynvar_t *dvar, *next, *start;
12666	int i;
12667
12668	ASSERT(MUTEX_HELD(&dtrace_lock));
12669	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12670
12671	bzero(dstate, sizeof (dtrace_dstate_t));
12672
12673	if ((dstate->dtds_chunksize = chunksize) == 0)
12674		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12675
12676	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12677		size = min;
12678
12679	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12680		return (ENOMEM);
12681
12682	dstate->dtds_size = size;
12683	dstate->dtds_base = base;
12684	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12685	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12686
12687	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12688
12689	if (hashsize != 1 && (hashsize & 1))
12690		hashsize--;
12691
12692	dstate->dtds_hashsize = hashsize;
12693	dstate->dtds_hash = dstate->dtds_base;
12694
12695	/*
12696	 * Set all of our hash buckets to point to the single sink, and (if
12697	 * it hasn't already been set), set the sink's hash value to be the
12698	 * sink sentinel value.  The sink is needed for dynamic variable
12699	 * lookups to know that they have iterated over an entire, valid hash
12700	 * chain.
12701	 */
12702	for (i = 0; i < hashsize; i++)
12703		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12704
12705	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12706		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12707
12708	/*
12709	 * Determine number of active CPUs.  Divide free list evenly among
12710	 * active CPUs.
12711	 */
12712	start = (dtrace_dynvar_t *)
12713	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12714	limit = (uintptr_t)base + size;
12715
12716	maxper = (limit - (uintptr_t)start) / NCPU;
12717	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12718
12719#if !defined(sun)
12720	CPU_FOREACH(i) {
12721#else
12722	for (i = 0; i < NCPU; i++) {
12723#endif
12724		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12725
12726		/*
12727		 * If we don't even have enough chunks to make it once through
12728		 * NCPUs, we're just going to allocate everything to the first
12729		 * CPU.  And if we're on the last CPU, we're going to allocate
12730		 * whatever is left over.  In either case, we set the limit to
12731		 * be the limit of the dynamic variable space.
12732		 */
12733		if (maxper == 0 || i == NCPU - 1) {
12734			limit = (uintptr_t)base + size;
12735			start = NULL;
12736		} else {
12737			limit = (uintptr_t)start + maxper;
12738			start = (dtrace_dynvar_t *)limit;
12739		}
12740
12741		ASSERT(limit <= (uintptr_t)base + size);
12742
12743		for (;;) {
12744			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12745			    dstate->dtds_chunksize);
12746
12747			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12748				break;
12749
12750			dvar->dtdv_next = next;
12751			dvar = next;
12752		}
12753
12754		if (maxper == 0)
12755			break;
12756	}
12757
12758	return (0);
12759}
12760
12761static void
12762dtrace_dstate_fini(dtrace_dstate_t *dstate)
12763{
12764	ASSERT(MUTEX_HELD(&cpu_lock));
12765
12766	if (dstate->dtds_base == NULL)
12767		return;
12768
12769	kmem_free(dstate->dtds_base, dstate->dtds_size);
12770	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12771}
12772
12773static void
12774dtrace_vstate_fini(dtrace_vstate_t *vstate)
12775{
12776	/*
12777	 * Logical XOR, where are you?
12778	 */
12779	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12780
12781	if (vstate->dtvs_nglobals > 0) {
12782		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12783		    sizeof (dtrace_statvar_t *));
12784	}
12785
12786	if (vstate->dtvs_ntlocals > 0) {
12787		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12788		    sizeof (dtrace_difv_t));
12789	}
12790
12791	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12792
12793	if (vstate->dtvs_nlocals > 0) {
12794		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12795		    sizeof (dtrace_statvar_t *));
12796	}
12797}
12798
12799#if defined(sun)
12800static void
12801dtrace_state_clean(dtrace_state_t *state)
12802{
12803	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12804		return;
12805
12806	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12807	dtrace_speculation_clean(state);
12808}
12809
12810static void
12811dtrace_state_deadman(dtrace_state_t *state)
12812{
12813	hrtime_t now;
12814
12815	dtrace_sync();
12816
12817	now = dtrace_gethrtime();
12818
12819	if (state != dtrace_anon.dta_state &&
12820	    now - state->dts_laststatus >= dtrace_deadman_user)
12821		return;
12822
12823	/*
12824	 * We must be sure that dts_alive never appears to be less than the
12825	 * value upon entry to dtrace_state_deadman(), and because we lack a
12826	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12827	 * store INT64_MAX to it, followed by a memory barrier, followed by
12828	 * the new value.  This assures that dts_alive never appears to be
12829	 * less than its true value, regardless of the order in which the
12830	 * stores to the underlying storage are issued.
12831	 */
12832	state->dts_alive = INT64_MAX;
12833	dtrace_membar_producer();
12834	state->dts_alive = now;
12835}
12836#else
12837static void
12838dtrace_state_clean(void *arg)
12839{
12840	dtrace_state_t *state = arg;
12841	dtrace_optval_t *opt = state->dts_options;
12842
12843	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12844		return;
12845
12846	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12847	dtrace_speculation_clean(state);
12848
12849	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12850	    dtrace_state_clean, state);
12851}
12852
12853static void
12854dtrace_state_deadman(void *arg)
12855{
12856	dtrace_state_t *state = arg;
12857	hrtime_t now;
12858
12859	dtrace_sync();
12860
12861	dtrace_debug_output();
12862
12863	now = dtrace_gethrtime();
12864
12865	if (state != dtrace_anon.dta_state &&
12866	    now - state->dts_laststatus >= dtrace_deadman_user)
12867		return;
12868
12869	/*
12870	 * We must be sure that dts_alive never appears to be less than the
12871	 * value upon entry to dtrace_state_deadman(), and because we lack a
12872	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12873	 * store INT64_MAX to it, followed by a memory barrier, followed by
12874	 * the new value.  This assures that dts_alive never appears to be
12875	 * less than its true value, regardless of the order in which the
12876	 * stores to the underlying storage are issued.
12877	 */
12878	state->dts_alive = INT64_MAX;
12879	dtrace_membar_producer();
12880	state->dts_alive = now;
12881
12882	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12883	    dtrace_state_deadman, state);
12884}
12885#endif
12886
12887static dtrace_state_t *
12888#if defined(sun)
12889dtrace_state_create(dev_t *devp, cred_t *cr)
12890#else
12891dtrace_state_create(struct cdev *dev)
12892#endif
12893{
12894#if defined(sun)
12895	minor_t minor;
12896	major_t major;
12897#else
12898	cred_t *cr = NULL;
12899	int m = 0;
12900#endif
12901	char c[30];
12902	dtrace_state_t *state;
12903	dtrace_optval_t *opt;
12904	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12905
12906	ASSERT(MUTEX_HELD(&dtrace_lock));
12907	ASSERT(MUTEX_HELD(&cpu_lock));
12908
12909#if defined(sun)
12910	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12911	    VM_BESTFIT | VM_SLEEP);
12912
12913	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12914		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12915		return (NULL);
12916	}
12917
12918	state = ddi_get_soft_state(dtrace_softstate, minor);
12919#else
12920	if (dev != NULL) {
12921		cr = dev->si_cred;
12922		m = dev2unit(dev);
12923		}
12924
12925	/* Allocate memory for the state. */
12926	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12927#endif
12928
12929	state->dts_epid = DTRACE_EPIDNONE + 1;
12930
12931	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12932#if defined(sun)
12933	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12934	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12935
12936	if (devp != NULL) {
12937		major = getemajor(*devp);
12938	} else {
12939		major = ddi_driver_major(dtrace_devi);
12940	}
12941
12942	state->dts_dev = makedevice(major, minor);
12943
12944	if (devp != NULL)
12945		*devp = state->dts_dev;
12946#else
12947	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12948	state->dts_dev = dev;
12949#endif
12950
12951	/*
12952	 * We allocate NCPU buffers.  On the one hand, this can be quite
12953	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12954	 * other hand, it saves an additional memory reference in the probe
12955	 * path.
12956	 */
12957	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12958	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12959
12960#if defined(sun)
12961	state->dts_cleaner = CYCLIC_NONE;
12962	state->dts_deadman = CYCLIC_NONE;
12963#else
12964	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
12965	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
12966#endif
12967	state->dts_vstate.dtvs_state = state;
12968
12969	for (i = 0; i < DTRACEOPT_MAX; i++)
12970		state->dts_options[i] = DTRACEOPT_UNSET;
12971
12972	/*
12973	 * Set the default options.
12974	 */
12975	opt = state->dts_options;
12976	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12977	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12978	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12979	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12980	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12981	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12982	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12983	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12984	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12985	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12986	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12987	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12988	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12989	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12990
12991	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12992
12993	/*
12994	 * Depending on the user credentials, we set flag bits which alter probe
12995	 * visibility or the amount of destructiveness allowed.  In the case of
12996	 * actual anonymous tracing, or the possession of all privileges, all of
12997	 * the normal checks are bypassed.
12998	 */
12999	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13000		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13001		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13002	} else {
13003		/*
13004		 * Set up the credentials for this instantiation.  We take a
13005		 * hold on the credential to prevent it from disappearing on
13006		 * us; this in turn prevents the zone_t referenced by this
13007		 * credential from disappearing.  This means that we can
13008		 * examine the credential and the zone from probe context.
13009		 */
13010		crhold(cr);
13011		state->dts_cred.dcr_cred = cr;
13012
13013		/*
13014		 * CRA_PROC means "we have *some* privilege for dtrace" and
13015		 * unlocks the use of variables like pid, zonename, etc.
13016		 */
13017		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13018		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13019			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13020		}
13021
13022		/*
13023		 * dtrace_user allows use of syscall and profile providers.
13024		 * If the user also has proc_owner and/or proc_zone, we
13025		 * extend the scope to include additional visibility and
13026		 * destructive power.
13027		 */
13028		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13029			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13030				state->dts_cred.dcr_visible |=
13031				    DTRACE_CRV_ALLPROC;
13032
13033				state->dts_cred.dcr_action |=
13034				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13035			}
13036
13037			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13038				state->dts_cred.dcr_visible |=
13039				    DTRACE_CRV_ALLZONE;
13040
13041				state->dts_cred.dcr_action |=
13042				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13043			}
13044
13045			/*
13046			 * If we have all privs in whatever zone this is,
13047			 * we can do destructive things to processes which
13048			 * have altered credentials.
13049			 */
13050#if defined(sun)
13051			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13052			    cr->cr_zone->zone_privset)) {
13053				state->dts_cred.dcr_action |=
13054				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13055			}
13056#endif
13057		}
13058
13059		/*
13060		 * Holding the dtrace_kernel privilege also implies that
13061		 * the user has the dtrace_user privilege from a visibility
13062		 * perspective.  But without further privileges, some
13063		 * destructive actions are not available.
13064		 */
13065		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13066			/*
13067			 * Make all probes in all zones visible.  However,
13068			 * this doesn't mean that all actions become available
13069			 * to all zones.
13070			 */
13071			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13072			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13073
13074			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13075			    DTRACE_CRA_PROC;
13076			/*
13077			 * Holding proc_owner means that destructive actions
13078			 * for *this* zone are allowed.
13079			 */
13080			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13081				state->dts_cred.dcr_action |=
13082				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13083
13084			/*
13085			 * Holding proc_zone means that destructive actions
13086			 * for this user/group ID in all zones is allowed.
13087			 */
13088			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13089				state->dts_cred.dcr_action |=
13090				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13091
13092#if defined(sun)
13093			/*
13094			 * If we have all privs in whatever zone this is,
13095			 * we can do destructive things to processes which
13096			 * have altered credentials.
13097			 */
13098			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13099			    cr->cr_zone->zone_privset)) {
13100				state->dts_cred.dcr_action |=
13101				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13102			}
13103#endif
13104		}
13105
13106		/*
13107		 * Holding the dtrace_proc privilege gives control over fasttrap
13108		 * and pid providers.  We need to grant wider destructive
13109		 * privileges in the event that the user has proc_owner and/or
13110		 * proc_zone.
13111		 */
13112		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13113			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13114				state->dts_cred.dcr_action |=
13115				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13116
13117			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13118				state->dts_cred.dcr_action |=
13119				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13120		}
13121	}
13122
13123	return (state);
13124}
13125
13126static int
13127dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13128{
13129	dtrace_optval_t *opt = state->dts_options, size;
13130	processorid_t cpu = 0;;
13131	int flags = 0, rval;
13132
13133	ASSERT(MUTEX_HELD(&dtrace_lock));
13134	ASSERT(MUTEX_HELD(&cpu_lock));
13135	ASSERT(which < DTRACEOPT_MAX);
13136	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13137	    (state == dtrace_anon.dta_state &&
13138	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13139
13140	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13141		return (0);
13142
13143	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13144		cpu = opt[DTRACEOPT_CPU];
13145
13146	if (which == DTRACEOPT_SPECSIZE)
13147		flags |= DTRACEBUF_NOSWITCH;
13148
13149	if (which == DTRACEOPT_BUFSIZE) {
13150		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13151			flags |= DTRACEBUF_RING;
13152
13153		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13154			flags |= DTRACEBUF_FILL;
13155
13156		if (state != dtrace_anon.dta_state ||
13157		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13158			flags |= DTRACEBUF_INACTIVE;
13159	}
13160
13161	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13162		/*
13163		 * The size must be 8-byte aligned.  If the size is not 8-byte
13164		 * aligned, drop it down by the difference.
13165		 */
13166		if (size & (sizeof (uint64_t) - 1))
13167			size -= size & (sizeof (uint64_t) - 1);
13168
13169		if (size < state->dts_reserve) {
13170			/*
13171			 * Buffers always must be large enough to accommodate
13172			 * their prereserved space.  We return E2BIG instead
13173			 * of ENOMEM in this case to allow for user-level
13174			 * software to differentiate the cases.
13175			 */
13176			return (E2BIG);
13177		}
13178
13179		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13180
13181		if (rval != ENOMEM) {
13182			opt[which] = size;
13183			return (rval);
13184		}
13185
13186		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13187			return (rval);
13188	}
13189
13190	return (ENOMEM);
13191}
13192
13193static int
13194dtrace_state_buffers(dtrace_state_t *state)
13195{
13196	dtrace_speculation_t *spec = state->dts_speculations;
13197	int rval, i;
13198
13199	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13200	    DTRACEOPT_BUFSIZE)) != 0)
13201		return (rval);
13202
13203	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13204	    DTRACEOPT_AGGSIZE)) != 0)
13205		return (rval);
13206
13207	for (i = 0; i < state->dts_nspeculations; i++) {
13208		if ((rval = dtrace_state_buffer(state,
13209		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13210			return (rval);
13211	}
13212
13213	return (0);
13214}
13215
13216static void
13217dtrace_state_prereserve(dtrace_state_t *state)
13218{
13219	dtrace_ecb_t *ecb;
13220	dtrace_probe_t *probe;
13221
13222	state->dts_reserve = 0;
13223
13224	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13225		return;
13226
13227	/*
13228	 * If our buffer policy is a "fill" buffer policy, we need to set the
13229	 * prereserved space to be the space required by the END probes.
13230	 */
13231	probe = dtrace_probes[dtrace_probeid_end - 1];
13232	ASSERT(probe != NULL);
13233
13234	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13235		if (ecb->dte_state != state)
13236			continue;
13237
13238		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13239	}
13240}
13241
13242static int
13243dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13244{
13245	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13246	dtrace_speculation_t *spec;
13247	dtrace_buffer_t *buf;
13248#if defined(sun)
13249	cyc_handler_t hdlr;
13250	cyc_time_t when;
13251#endif
13252	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13253	dtrace_icookie_t cookie;
13254
13255	mutex_enter(&cpu_lock);
13256	mutex_enter(&dtrace_lock);
13257
13258	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13259		rval = EBUSY;
13260		goto out;
13261	}
13262
13263	/*
13264	 * Before we can perform any checks, we must prime all of the
13265	 * retained enablings that correspond to this state.
13266	 */
13267	dtrace_enabling_prime(state);
13268
13269	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13270		rval = EACCES;
13271		goto out;
13272	}
13273
13274	dtrace_state_prereserve(state);
13275
13276	/*
13277	 * Now we want to do is try to allocate our speculations.
13278	 * We do not automatically resize the number of speculations; if
13279	 * this fails, we will fail the operation.
13280	 */
13281	nspec = opt[DTRACEOPT_NSPEC];
13282	ASSERT(nspec != DTRACEOPT_UNSET);
13283
13284	if (nspec > INT_MAX) {
13285		rval = ENOMEM;
13286		goto out;
13287	}
13288
13289	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13290
13291	if (spec == NULL) {
13292		rval = ENOMEM;
13293		goto out;
13294	}
13295
13296	state->dts_speculations = spec;
13297	state->dts_nspeculations = (int)nspec;
13298
13299	for (i = 0; i < nspec; i++) {
13300		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13301			rval = ENOMEM;
13302			goto err;
13303		}
13304
13305		spec[i].dtsp_buffer = buf;
13306	}
13307
13308	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13309		if (dtrace_anon.dta_state == NULL) {
13310			rval = ENOENT;
13311			goto out;
13312		}
13313
13314		if (state->dts_necbs != 0) {
13315			rval = EALREADY;
13316			goto out;
13317		}
13318
13319		state->dts_anon = dtrace_anon_grab();
13320		ASSERT(state->dts_anon != NULL);
13321		state = state->dts_anon;
13322
13323		/*
13324		 * We want "grabanon" to be set in the grabbed state, so we'll
13325		 * copy that option value from the grabbing state into the
13326		 * grabbed state.
13327		 */
13328		state->dts_options[DTRACEOPT_GRABANON] =
13329		    opt[DTRACEOPT_GRABANON];
13330
13331		*cpu = dtrace_anon.dta_beganon;
13332
13333		/*
13334		 * If the anonymous state is active (as it almost certainly
13335		 * is if the anonymous enabling ultimately matched anything),
13336		 * we don't allow any further option processing -- but we
13337		 * don't return failure.
13338		 */
13339		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13340			goto out;
13341	}
13342
13343	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13344	    opt[DTRACEOPT_AGGSIZE] != 0) {
13345		if (state->dts_aggregations == NULL) {
13346			/*
13347			 * We're not going to create an aggregation buffer
13348			 * because we don't have any ECBs that contain
13349			 * aggregations -- set this option to 0.
13350			 */
13351			opt[DTRACEOPT_AGGSIZE] = 0;
13352		} else {
13353			/*
13354			 * If we have an aggregation buffer, we must also have
13355			 * a buffer to use as scratch.
13356			 */
13357			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13358			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13359				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13360			}
13361		}
13362	}
13363
13364	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13365	    opt[DTRACEOPT_SPECSIZE] != 0) {
13366		if (!state->dts_speculates) {
13367			/*
13368			 * We're not going to create speculation buffers
13369			 * because we don't have any ECBs that actually
13370			 * speculate -- set the speculation size to 0.
13371			 */
13372			opt[DTRACEOPT_SPECSIZE] = 0;
13373		}
13374	}
13375
13376	/*
13377	 * The bare minimum size for any buffer that we're actually going to
13378	 * do anything to is sizeof (uint64_t).
13379	 */
13380	sz = sizeof (uint64_t);
13381
13382	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13383	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13384	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13385		/*
13386		 * A buffer size has been explicitly set to 0 (or to a size
13387		 * that will be adjusted to 0) and we need the space -- we
13388		 * need to return failure.  We return ENOSPC to differentiate
13389		 * it from failing to allocate a buffer due to failure to meet
13390		 * the reserve (for which we return E2BIG).
13391		 */
13392		rval = ENOSPC;
13393		goto out;
13394	}
13395
13396	if ((rval = dtrace_state_buffers(state)) != 0)
13397		goto err;
13398
13399	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13400		sz = dtrace_dstate_defsize;
13401
13402	do {
13403		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13404
13405		if (rval == 0)
13406			break;
13407
13408		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13409			goto err;
13410	} while (sz >>= 1);
13411
13412	opt[DTRACEOPT_DYNVARSIZE] = sz;
13413
13414	if (rval != 0)
13415		goto err;
13416
13417	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13418		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13419
13420	if (opt[DTRACEOPT_CLEANRATE] == 0)
13421		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13422
13423	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13424		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13425
13426	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13427		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13428
13429	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13430#if defined(sun)
13431	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13432	hdlr.cyh_arg = state;
13433	hdlr.cyh_level = CY_LOW_LEVEL;
13434
13435	when.cyt_when = 0;
13436	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13437
13438	state->dts_cleaner = cyclic_add(&hdlr, &when);
13439
13440	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13441	hdlr.cyh_arg = state;
13442	hdlr.cyh_level = CY_LOW_LEVEL;
13443
13444	when.cyt_when = 0;
13445	when.cyt_interval = dtrace_deadman_interval;
13446
13447	state->dts_deadman = cyclic_add(&hdlr, &when);
13448#else
13449	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13450	    dtrace_state_clean, state);
13451	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13452	    dtrace_state_deadman, state);
13453#endif
13454
13455	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13456
13457	/*
13458	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13459	 * interrupts here both to record the CPU on which we fired the BEGIN
13460	 * probe (the data from this CPU will be processed first at user
13461	 * level) and to manually activate the buffer for this CPU.
13462	 */
13463	cookie = dtrace_interrupt_disable();
13464	*cpu = curcpu;
13465	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13466	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13467
13468	dtrace_probe(dtrace_probeid_begin,
13469	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13470	dtrace_interrupt_enable(cookie);
13471	/*
13472	 * We may have had an exit action from a BEGIN probe; only change our
13473	 * state to ACTIVE if we're still in WARMUP.
13474	 */
13475	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13476	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13477
13478	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13479		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13480
13481	/*
13482	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13483	 * want each CPU to transition its principal buffer out of the
13484	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13485	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13486	 * atomically transition from processing none of a state's ECBs to
13487	 * processing all of them.
13488	 */
13489	dtrace_xcall(DTRACE_CPUALL,
13490	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13491	goto out;
13492
13493err:
13494	dtrace_buffer_free(state->dts_buffer);
13495	dtrace_buffer_free(state->dts_aggbuffer);
13496
13497	if ((nspec = state->dts_nspeculations) == 0) {
13498		ASSERT(state->dts_speculations == NULL);
13499		goto out;
13500	}
13501
13502	spec = state->dts_speculations;
13503	ASSERT(spec != NULL);
13504
13505	for (i = 0; i < state->dts_nspeculations; i++) {
13506		if ((buf = spec[i].dtsp_buffer) == NULL)
13507			break;
13508
13509		dtrace_buffer_free(buf);
13510		kmem_free(buf, bufsize);
13511	}
13512
13513	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13514	state->dts_nspeculations = 0;
13515	state->dts_speculations = NULL;
13516
13517out:
13518	mutex_exit(&dtrace_lock);
13519	mutex_exit(&cpu_lock);
13520
13521	return (rval);
13522}
13523
13524static int
13525dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13526{
13527	dtrace_icookie_t cookie;
13528
13529	ASSERT(MUTEX_HELD(&dtrace_lock));
13530
13531	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13532	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13533		return (EINVAL);
13534
13535	/*
13536	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13537	 * to be sure that every CPU has seen it.  See below for the details
13538	 * on why this is done.
13539	 */
13540	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13541	dtrace_sync();
13542
13543	/*
13544	 * By this point, it is impossible for any CPU to be still processing
13545	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13546	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13547	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13548	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13549	 * iff we're in the END probe.
13550	 */
13551	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13552	dtrace_sync();
13553	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13554
13555	/*
13556	 * Finally, we can release the reserve and call the END probe.  We
13557	 * disable interrupts across calling the END probe to allow us to
13558	 * return the CPU on which we actually called the END probe.  This
13559	 * allows user-land to be sure that this CPU's principal buffer is
13560	 * processed last.
13561	 */
13562	state->dts_reserve = 0;
13563
13564	cookie = dtrace_interrupt_disable();
13565	*cpu = curcpu;
13566	dtrace_probe(dtrace_probeid_end,
13567	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13568	dtrace_interrupt_enable(cookie);
13569
13570	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13571	dtrace_sync();
13572
13573	return (0);
13574}
13575
13576static int
13577dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13578    dtrace_optval_t val)
13579{
13580	ASSERT(MUTEX_HELD(&dtrace_lock));
13581
13582	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13583		return (EBUSY);
13584
13585	if (option >= DTRACEOPT_MAX)
13586		return (EINVAL);
13587
13588	if (option != DTRACEOPT_CPU && val < 0)
13589		return (EINVAL);
13590
13591	switch (option) {
13592	case DTRACEOPT_DESTRUCTIVE:
13593		if (dtrace_destructive_disallow)
13594			return (EACCES);
13595
13596		state->dts_cred.dcr_destructive = 1;
13597		break;
13598
13599	case DTRACEOPT_BUFSIZE:
13600	case DTRACEOPT_DYNVARSIZE:
13601	case DTRACEOPT_AGGSIZE:
13602	case DTRACEOPT_SPECSIZE:
13603	case DTRACEOPT_STRSIZE:
13604		if (val < 0)
13605			return (EINVAL);
13606
13607		if (val >= LONG_MAX) {
13608			/*
13609			 * If this is an otherwise negative value, set it to
13610			 * the highest multiple of 128m less than LONG_MAX.
13611			 * Technically, we're adjusting the size without
13612			 * regard to the buffer resizing policy, but in fact,
13613			 * this has no effect -- if we set the buffer size to
13614			 * ~LONG_MAX and the buffer policy is ultimately set to
13615			 * be "manual", the buffer allocation is guaranteed to
13616			 * fail, if only because the allocation requires two
13617			 * buffers.  (We set the the size to the highest
13618			 * multiple of 128m because it ensures that the size
13619			 * will remain a multiple of a megabyte when
13620			 * repeatedly halved -- all the way down to 15m.)
13621			 */
13622			val = LONG_MAX - (1 << 27) + 1;
13623		}
13624	}
13625
13626	state->dts_options[option] = val;
13627
13628	return (0);
13629}
13630
13631static void
13632dtrace_state_destroy(dtrace_state_t *state)
13633{
13634	dtrace_ecb_t *ecb;
13635	dtrace_vstate_t *vstate = &state->dts_vstate;
13636#if defined(sun)
13637	minor_t minor = getminor(state->dts_dev);
13638#endif
13639	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13640	dtrace_speculation_t *spec = state->dts_speculations;
13641	int nspec = state->dts_nspeculations;
13642	uint32_t match;
13643
13644	ASSERT(MUTEX_HELD(&dtrace_lock));
13645	ASSERT(MUTEX_HELD(&cpu_lock));
13646
13647	/*
13648	 * First, retract any retained enablings for this state.
13649	 */
13650	dtrace_enabling_retract(state);
13651	ASSERT(state->dts_nretained == 0);
13652
13653	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13654	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13655		/*
13656		 * We have managed to come into dtrace_state_destroy() on a
13657		 * hot enabling -- almost certainly because of a disorderly
13658		 * shutdown of a consumer.  (That is, a consumer that is
13659		 * exiting without having called dtrace_stop().) In this case,
13660		 * we're going to set our activity to be KILLED, and then
13661		 * issue a sync to be sure that everyone is out of probe
13662		 * context before we start blowing away ECBs.
13663		 */
13664		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13665		dtrace_sync();
13666	}
13667
13668	/*
13669	 * Release the credential hold we took in dtrace_state_create().
13670	 */
13671	if (state->dts_cred.dcr_cred != NULL)
13672		crfree(state->dts_cred.dcr_cred);
13673
13674	/*
13675	 * Now we can safely disable and destroy any enabled probes.  Because
13676	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13677	 * (especially if they're all enabled), we take two passes through the
13678	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13679	 * in the second we disable whatever is left over.
13680	 */
13681	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13682		for (i = 0; i < state->dts_necbs; i++) {
13683			if ((ecb = state->dts_ecbs[i]) == NULL)
13684				continue;
13685
13686			if (match && ecb->dte_probe != NULL) {
13687				dtrace_probe_t *probe = ecb->dte_probe;
13688				dtrace_provider_t *prov = probe->dtpr_provider;
13689
13690				if (!(prov->dtpv_priv.dtpp_flags & match))
13691					continue;
13692			}
13693
13694			dtrace_ecb_disable(ecb);
13695			dtrace_ecb_destroy(ecb);
13696		}
13697
13698		if (!match)
13699			break;
13700	}
13701
13702	/*
13703	 * Before we free the buffers, perform one more sync to assure that
13704	 * every CPU is out of probe context.
13705	 */
13706	dtrace_sync();
13707
13708	dtrace_buffer_free(state->dts_buffer);
13709	dtrace_buffer_free(state->dts_aggbuffer);
13710
13711	for (i = 0; i < nspec; i++)
13712		dtrace_buffer_free(spec[i].dtsp_buffer);
13713
13714#if defined(sun)
13715	if (state->dts_cleaner != CYCLIC_NONE)
13716		cyclic_remove(state->dts_cleaner);
13717
13718	if (state->dts_deadman != CYCLIC_NONE)
13719		cyclic_remove(state->dts_deadman);
13720#else
13721	callout_stop(&state->dts_cleaner);
13722	callout_drain(&state->dts_cleaner);
13723	callout_stop(&state->dts_deadman);
13724	callout_drain(&state->dts_deadman);
13725#endif
13726
13727	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13728	dtrace_vstate_fini(vstate);
13729	if (state->dts_ecbs != NULL)
13730		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13731
13732	if (state->dts_aggregations != NULL) {
13733#ifdef DEBUG
13734		for (i = 0; i < state->dts_naggregations; i++)
13735			ASSERT(state->dts_aggregations[i] == NULL);
13736#endif
13737		ASSERT(state->dts_naggregations > 0);
13738		kmem_free(state->dts_aggregations,
13739		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13740	}
13741
13742	kmem_free(state->dts_buffer, bufsize);
13743	kmem_free(state->dts_aggbuffer, bufsize);
13744
13745	for (i = 0; i < nspec; i++)
13746		kmem_free(spec[i].dtsp_buffer, bufsize);
13747
13748	if (spec != NULL)
13749		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13750
13751	dtrace_format_destroy(state);
13752
13753	if (state->dts_aggid_arena != NULL) {
13754#if defined(sun)
13755		vmem_destroy(state->dts_aggid_arena);
13756#else
13757		delete_unrhdr(state->dts_aggid_arena);
13758#endif
13759		state->dts_aggid_arena = NULL;
13760	}
13761#if defined(sun)
13762	ddi_soft_state_free(dtrace_softstate, minor);
13763	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13764#endif
13765}
13766
13767/*
13768 * DTrace Anonymous Enabling Functions
13769 */
13770static dtrace_state_t *
13771dtrace_anon_grab(void)
13772{
13773	dtrace_state_t *state;
13774
13775	ASSERT(MUTEX_HELD(&dtrace_lock));
13776
13777	if ((state = dtrace_anon.dta_state) == NULL) {
13778		ASSERT(dtrace_anon.dta_enabling == NULL);
13779		return (NULL);
13780	}
13781
13782	ASSERT(dtrace_anon.dta_enabling != NULL);
13783	ASSERT(dtrace_retained != NULL);
13784
13785	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13786	dtrace_anon.dta_enabling = NULL;
13787	dtrace_anon.dta_state = NULL;
13788
13789	return (state);
13790}
13791
13792static void
13793dtrace_anon_property(void)
13794{
13795	int i, rv;
13796	dtrace_state_t *state;
13797	dof_hdr_t *dof;
13798	char c[32];		/* enough for "dof-data-" + digits */
13799
13800	ASSERT(MUTEX_HELD(&dtrace_lock));
13801	ASSERT(MUTEX_HELD(&cpu_lock));
13802
13803	for (i = 0; ; i++) {
13804		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13805
13806		dtrace_err_verbose = 1;
13807
13808		if ((dof = dtrace_dof_property(c)) == NULL) {
13809			dtrace_err_verbose = 0;
13810			break;
13811		}
13812
13813#if defined(sun)
13814		/*
13815		 * We want to create anonymous state, so we need to transition
13816		 * the kernel debugger to indicate that DTrace is active.  If
13817		 * this fails (e.g. because the debugger has modified text in
13818		 * some way), we won't continue with the processing.
13819		 */
13820		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13821			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13822			    "enabling ignored.");
13823			dtrace_dof_destroy(dof);
13824			break;
13825		}
13826#endif
13827
13828		/*
13829		 * If we haven't allocated an anonymous state, we'll do so now.
13830		 */
13831		if ((state = dtrace_anon.dta_state) == NULL) {
13832#if defined(sun)
13833			state = dtrace_state_create(NULL, NULL);
13834#else
13835			state = dtrace_state_create(NULL);
13836#endif
13837			dtrace_anon.dta_state = state;
13838
13839			if (state == NULL) {
13840				/*
13841				 * This basically shouldn't happen:  the only
13842				 * failure mode from dtrace_state_create() is a
13843				 * failure of ddi_soft_state_zalloc() that
13844				 * itself should never happen.  Still, the
13845				 * interface allows for a failure mode, and
13846				 * we want to fail as gracefully as possible:
13847				 * we'll emit an error message and cease
13848				 * processing anonymous state in this case.
13849				 */
13850				cmn_err(CE_WARN, "failed to create "
13851				    "anonymous state");
13852				dtrace_dof_destroy(dof);
13853				break;
13854			}
13855		}
13856
13857		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13858		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13859
13860		if (rv == 0)
13861			rv = dtrace_dof_options(dof, state);
13862
13863		dtrace_err_verbose = 0;
13864		dtrace_dof_destroy(dof);
13865
13866		if (rv != 0) {
13867			/*
13868			 * This is malformed DOF; chuck any anonymous state
13869			 * that we created.
13870			 */
13871			ASSERT(dtrace_anon.dta_enabling == NULL);
13872			dtrace_state_destroy(state);
13873			dtrace_anon.dta_state = NULL;
13874			break;
13875		}
13876
13877		ASSERT(dtrace_anon.dta_enabling != NULL);
13878	}
13879
13880	if (dtrace_anon.dta_enabling != NULL) {
13881		int rval;
13882
13883		/*
13884		 * dtrace_enabling_retain() can only fail because we are
13885		 * trying to retain more enablings than are allowed -- but
13886		 * we only have one anonymous enabling, and we are guaranteed
13887		 * to be allowed at least one retained enabling; we assert
13888		 * that dtrace_enabling_retain() returns success.
13889		 */
13890		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13891		ASSERT(rval == 0);
13892
13893		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13894	}
13895}
13896
13897/*
13898 * DTrace Helper Functions
13899 */
13900static void
13901dtrace_helper_trace(dtrace_helper_action_t *helper,
13902    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13903{
13904	uint32_t size, next, nnext, i;
13905	dtrace_helptrace_t *ent;
13906	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13907
13908	if (!dtrace_helptrace_enabled)
13909		return;
13910
13911	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13912
13913	/*
13914	 * What would a tracing framework be without its own tracing
13915	 * framework?  (Well, a hell of a lot simpler, for starters...)
13916	 */
13917	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13918	    sizeof (uint64_t) - sizeof (uint64_t);
13919
13920	/*
13921	 * Iterate until we can allocate a slot in the trace buffer.
13922	 */
13923	do {
13924		next = dtrace_helptrace_next;
13925
13926		if (next + size < dtrace_helptrace_bufsize) {
13927			nnext = next + size;
13928		} else {
13929			nnext = size;
13930		}
13931	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13932
13933	/*
13934	 * We have our slot; fill it in.
13935	 */
13936	if (nnext == size)
13937		next = 0;
13938
13939	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13940	ent->dtht_helper = helper;
13941	ent->dtht_where = where;
13942	ent->dtht_nlocals = vstate->dtvs_nlocals;
13943
13944	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13945	    mstate->dtms_fltoffs : -1;
13946	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13947	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13948
13949	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13950		dtrace_statvar_t *svar;
13951
13952		if ((svar = vstate->dtvs_locals[i]) == NULL)
13953			continue;
13954
13955		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13956		ent->dtht_locals[i] =
13957		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13958	}
13959}
13960
13961static uint64_t
13962dtrace_helper(int which, dtrace_mstate_t *mstate,
13963    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13964{
13965	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13966	uint64_t sarg0 = mstate->dtms_arg[0];
13967	uint64_t sarg1 = mstate->dtms_arg[1];
13968	uint64_t rval = 0;
13969	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13970	dtrace_helper_action_t *helper;
13971	dtrace_vstate_t *vstate;
13972	dtrace_difo_t *pred;
13973	int i, trace = dtrace_helptrace_enabled;
13974
13975	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13976
13977	if (helpers == NULL)
13978		return (0);
13979
13980	if ((helper = helpers->dthps_actions[which]) == NULL)
13981		return (0);
13982
13983	vstate = &helpers->dthps_vstate;
13984	mstate->dtms_arg[0] = arg0;
13985	mstate->dtms_arg[1] = arg1;
13986
13987	/*
13988	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13989	 * we'll call the corresponding actions.  Note that the below calls
13990	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13991	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13992	 * the stored DIF offset with its own (which is the desired behavior).
13993	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13994	 * from machine state; this is okay, too.
13995	 */
13996	for (; helper != NULL; helper = helper->dtha_next) {
13997		if ((pred = helper->dtha_predicate) != NULL) {
13998			if (trace)
13999				dtrace_helper_trace(helper, mstate, vstate, 0);
14000
14001			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14002				goto next;
14003
14004			if (*flags & CPU_DTRACE_FAULT)
14005				goto err;
14006		}
14007
14008		for (i = 0; i < helper->dtha_nactions; i++) {
14009			if (trace)
14010				dtrace_helper_trace(helper,
14011				    mstate, vstate, i + 1);
14012
14013			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14014			    mstate, vstate, state);
14015
14016			if (*flags & CPU_DTRACE_FAULT)
14017				goto err;
14018		}
14019
14020next:
14021		if (trace)
14022			dtrace_helper_trace(helper, mstate, vstate,
14023			    DTRACE_HELPTRACE_NEXT);
14024	}
14025
14026	if (trace)
14027		dtrace_helper_trace(helper, mstate, vstate,
14028		    DTRACE_HELPTRACE_DONE);
14029
14030	/*
14031	 * Restore the arg0 that we saved upon entry.
14032	 */
14033	mstate->dtms_arg[0] = sarg0;
14034	mstate->dtms_arg[1] = sarg1;
14035
14036	return (rval);
14037
14038err:
14039	if (trace)
14040		dtrace_helper_trace(helper, mstate, vstate,
14041		    DTRACE_HELPTRACE_ERR);
14042
14043	/*
14044	 * Restore the arg0 that we saved upon entry.
14045	 */
14046	mstate->dtms_arg[0] = sarg0;
14047	mstate->dtms_arg[1] = sarg1;
14048
14049	return (0);
14050}
14051
14052static void
14053dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14054    dtrace_vstate_t *vstate)
14055{
14056	int i;
14057
14058	if (helper->dtha_predicate != NULL)
14059		dtrace_difo_release(helper->dtha_predicate, vstate);
14060
14061	for (i = 0; i < helper->dtha_nactions; i++) {
14062		ASSERT(helper->dtha_actions[i] != NULL);
14063		dtrace_difo_release(helper->dtha_actions[i], vstate);
14064	}
14065
14066	kmem_free(helper->dtha_actions,
14067	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14068	kmem_free(helper, sizeof (dtrace_helper_action_t));
14069}
14070
14071static int
14072dtrace_helper_destroygen(int gen)
14073{
14074	proc_t *p = curproc;
14075	dtrace_helpers_t *help = p->p_dtrace_helpers;
14076	dtrace_vstate_t *vstate;
14077	int i;
14078
14079	ASSERT(MUTEX_HELD(&dtrace_lock));
14080
14081	if (help == NULL || gen > help->dthps_generation)
14082		return (EINVAL);
14083
14084	vstate = &help->dthps_vstate;
14085
14086	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14087		dtrace_helper_action_t *last = NULL, *h, *next;
14088
14089		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14090			next = h->dtha_next;
14091
14092			if (h->dtha_generation == gen) {
14093				if (last != NULL) {
14094					last->dtha_next = next;
14095				} else {
14096					help->dthps_actions[i] = next;
14097				}
14098
14099				dtrace_helper_action_destroy(h, vstate);
14100			} else {
14101				last = h;
14102			}
14103		}
14104	}
14105
14106	/*
14107	 * Interate until we've cleared out all helper providers with the
14108	 * given generation number.
14109	 */
14110	for (;;) {
14111		dtrace_helper_provider_t *prov;
14112
14113		/*
14114		 * Look for a helper provider with the right generation. We
14115		 * have to start back at the beginning of the list each time
14116		 * because we drop dtrace_lock. It's unlikely that we'll make
14117		 * more than two passes.
14118		 */
14119		for (i = 0; i < help->dthps_nprovs; i++) {
14120			prov = help->dthps_provs[i];
14121
14122			if (prov->dthp_generation == gen)
14123				break;
14124		}
14125
14126		/*
14127		 * If there were no matches, we're done.
14128		 */
14129		if (i == help->dthps_nprovs)
14130			break;
14131
14132		/*
14133		 * Move the last helper provider into this slot.
14134		 */
14135		help->dthps_nprovs--;
14136		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14137		help->dthps_provs[help->dthps_nprovs] = NULL;
14138
14139		mutex_exit(&dtrace_lock);
14140
14141		/*
14142		 * If we have a meta provider, remove this helper provider.
14143		 */
14144		mutex_enter(&dtrace_meta_lock);
14145		if (dtrace_meta_pid != NULL) {
14146			ASSERT(dtrace_deferred_pid == NULL);
14147			dtrace_helper_provider_remove(&prov->dthp_prov,
14148			    p->p_pid);
14149		}
14150		mutex_exit(&dtrace_meta_lock);
14151
14152		dtrace_helper_provider_destroy(prov);
14153
14154		mutex_enter(&dtrace_lock);
14155	}
14156
14157	return (0);
14158}
14159
14160static int
14161dtrace_helper_validate(dtrace_helper_action_t *helper)
14162{
14163	int err = 0, i;
14164	dtrace_difo_t *dp;
14165
14166	if ((dp = helper->dtha_predicate) != NULL)
14167		err += dtrace_difo_validate_helper(dp);
14168
14169	for (i = 0; i < helper->dtha_nactions; i++)
14170		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14171
14172	return (err == 0);
14173}
14174
14175static int
14176dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14177{
14178	dtrace_helpers_t *help;
14179	dtrace_helper_action_t *helper, *last;
14180	dtrace_actdesc_t *act;
14181	dtrace_vstate_t *vstate;
14182	dtrace_predicate_t *pred;
14183	int count = 0, nactions = 0, i;
14184
14185	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14186		return (EINVAL);
14187
14188	help = curproc->p_dtrace_helpers;
14189	last = help->dthps_actions[which];
14190	vstate = &help->dthps_vstate;
14191
14192	for (count = 0; last != NULL; last = last->dtha_next) {
14193		count++;
14194		if (last->dtha_next == NULL)
14195			break;
14196	}
14197
14198	/*
14199	 * If we already have dtrace_helper_actions_max helper actions for this
14200	 * helper action type, we'll refuse to add a new one.
14201	 */
14202	if (count >= dtrace_helper_actions_max)
14203		return (ENOSPC);
14204
14205	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14206	helper->dtha_generation = help->dthps_generation;
14207
14208	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14209		ASSERT(pred->dtp_difo != NULL);
14210		dtrace_difo_hold(pred->dtp_difo);
14211		helper->dtha_predicate = pred->dtp_difo;
14212	}
14213
14214	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14215		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14216			goto err;
14217
14218		if (act->dtad_difo == NULL)
14219			goto err;
14220
14221		nactions++;
14222	}
14223
14224	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14225	    (helper->dtha_nactions = nactions), KM_SLEEP);
14226
14227	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14228		dtrace_difo_hold(act->dtad_difo);
14229		helper->dtha_actions[i++] = act->dtad_difo;
14230	}
14231
14232	if (!dtrace_helper_validate(helper))
14233		goto err;
14234
14235	if (last == NULL) {
14236		help->dthps_actions[which] = helper;
14237	} else {
14238		last->dtha_next = helper;
14239	}
14240
14241	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14242		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14243		dtrace_helptrace_next = 0;
14244	}
14245
14246	return (0);
14247err:
14248	dtrace_helper_action_destroy(helper, vstate);
14249	return (EINVAL);
14250}
14251
14252static void
14253dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14254    dof_helper_t *dofhp)
14255{
14256	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14257
14258	mutex_enter(&dtrace_meta_lock);
14259	mutex_enter(&dtrace_lock);
14260
14261	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14262		/*
14263		 * If the dtrace module is loaded but not attached, or if
14264		 * there aren't isn't a meta provider registered to deal with
14265		 * these provider descriptions, we need to postpone creating
14266		 * the actual providers until later.
14267		 */
14268
14269		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14270		    dtrace_deferred_pid != help) {
14271			help->dthps_deferred = 1;
14272			help->dthps_pid = p->p_pid;
14273			help->dthps_next = dtrace_deferred_pid;
14274			help->dthps_prev = NULL;
14275			if (dtrace_deferred_pid != NULL)
14276				dtrace_deferred_pid->dthps_prev = help;
14277			dtrace_deferred_pid = help;
14278		}
14279
14280		mutex_exit(&dtrace_lock);
14281
14282	} else if (dofhp != NULL) {
14283		/*
14284		 * If the dtrace module is loaded and we have a particular
14285		 * helper provider description, pass that off to the
14286		 * meta provider.
14287		 */
14288
14289		mutex_exit(&dtrace_lock);
14290
14291		dtrace_helper_provide(dofhp, p->p_pid);
14292
14293	} else {
14294		/*
14295		 * Otherwise, just pass all the helper provider descriptions
14296		 * off to the meta provider.
14297		 */
14298
14299		int i;
14300		mutex_exit(&dtrace_lock);
14301
14302		for (i = 0; i < help->dthps_nprovs; i++) {
14303			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14304			    p->p_pid);
14305		}
14306	}
14307
14308	mutex_exit(&dtrace_meta_lock);
14309}
14310
14311static int
14312dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14313{
14314	dtrace_helpers_t *help;
14315	dtrace_helper_provider_t *hprov, **tmp_provs;
14316	uint_t tmp_maxprovs, i;
14317
14318	ASSERT(MUTEX_HELD(&dtrace_lock));
14319
14320	help = curproc->p_dtrace_helpers;
14321	ASSERT(help != NULL);
14322
14323	/*
14324	 * If we already have dtrace_helper_providers_max helper providers,
14325	 * we're refuse to add a new one.
14326	 */
14327	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14328		return (ENOSPC);
14329
14330	/*
14331	 * Check to make sure this isn't a duplicate.
14332	 */
14333	for (i = 0; i < help->dthps_nprovs; i++) {
14334		if (dofhp->dofhp_addr ==
14335		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14336			return (EALREADY);
14337	}
14338
14339	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14340	hprov->dthp_prov = *dofhp;
14341	hprov->dthp_ref = 1;
14342	hprov->dthp_generation = gen;
14343
14344	/*
14345	 * Allocate a bigger table for helper providers if it's already full.
14346	 */
14347	if (help->dthps_maxprovs == help->dthps_nprovs) {
14348		tmp_maxprovs = help->dthps_maxprovs;
14349		tmp_provs = help->dthps_provs;
14350
14351		if (help->dthps_maxprovs == 0)
14352			help->dthps_maxprovs = 2;
14353		else
14354			help->dthps_maxprovs *= 2;
14355		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14356			help->dthps_maxprovs = dtrace_helper_providers_max;
14357
14358		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14359
14360		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14361		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14362
14363		if (tmp_provs != NULL) {
14364			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14365			    sizeof (dtrace_helper_provider_t *));
14366			kmem_free(tmp_provs, tmp_maxprovs *
14367			    sizeof (dtrace_helper_provider_t *));
14368		}
14369	}
14370
14371	help->dthps_provs[help->dthps_nprovs] = hprov;
14372	help->dthps_nprovs++;
14373
14374	return (0);
14375}
14376
14377static void
14378dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14379{
14380	mutex_enter(&dtrace_lock);
14381
14382	if (--hprov->dthp_ref == 0) {
14383		dof_hdr_t *dof;
14384		mutex_exit(&dtrace_lock);
14385		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14386		dtrace_dof_destroy(dof);
14387		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14388	} else {
14389		mutex_exit(&dtrace_lock);
14390	}
14391}
14392
14393static int
14394dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14395{
14396	uintptr_t daddr = (uintptr_t)dof;
14397	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14398	dof_provider_t *provider;
14399	dof_probe_t *probe;
14400	uint8_t *arg;
14401	char *strtab, *typestr;
14402	dof_stridx_t typeidx;
14403	size_t typesz;
14404	uint_t nprobes, j, k;
14405
14406	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14407
14408	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14409		dtrace_dof_error(dof, "misaligned section offset");
14410		return (-1);
14411	}
14412
14413	/*
14414	 * The section needs to be large enough to contain the DOF provider
14415	 * structure appropriate for the given version.
14416	 */
14417	if (sec->dofs_size <
14418	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14419	    offsetof(dof_provider_t, dofpv_prenoffs) :
14420	    sizeof (dof_provider_t))) {
14421		dtrace_dof_error(dof, "provider section too small");
14422		return (-1);
14423	}
14424
14425	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14426	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14427	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14428	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14429	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14430
14431	if (str_sec == NULL || prb_sec == NULL ||
14432	    arg_sec == NULL || off_sec == NULL)
14433		return (-1);
14434
14435	enoff_sec = NULL;
14436
14437	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14438	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14439	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14440	    provider->dofpv_prenoffs)) == NULL)
14441		return (-1);
14442
14443	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14444
14445	if (provider->dofpv_name >= str_sec->dofs_size ||
14446	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14447		dtrace_dof_error(dof, "invalid provider name");
14448		return (-1);
14449	}
14450
14451	if (prb_sec->dofs_entsize == 0 ||
14452	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14453		dtrace_dof_error(dof, "invalid entry size");
14454		return (-1);
14455	}
14456
14457	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14458		dtrace_dof_error(dof, "misaligned entry size");
14459		return (-1);
14460	}
14461
14462	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14463		dtrace_dof_error(dof, "invalid entry size");
14464		return (-1);
14465	}
14466
14467	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14468		dtrace_dof_error(dof, "misaligned section offset");
14469		return (-1);
14470	}
14471
14472	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14473		dtrace_dof_error(dof, "invalid entry size");
14474		return (-1);
14475	}
14476
14477	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14478
14479	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14480
14481	/*
14482	 * Take a pass through the probes to check for errors.
14483	 */
14484	for (j = 0; j < nprobes; j++) {
14485		probe = (dof_probe_t *)(uintptr_t)(daddr +
14486		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14487
14488		if (probe->dofpr_func >= str_sec->dofs_size) {
14489			dtrace_dof_error(dof, "invalid function name");
14490			return (-1);
14491		}
14492
14493		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14494			dtrace_dof_error(dof, "function name too long");
14495			return (-1);
14496		}
14497
14498		if (probe->dofpr_name >= str_sec->dofs_size ||
14499		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14500			dtrace_dof_error(dof, "invalid probe name");
14501			return (-1);
14502		}
14503
14504		/*
14505		 * The offset count must not wrap the index, and the offsets
14506		 * must also not overflow the section's data.
14507		 */
14508		if (probe->dofpr_offidx + probe->dofpr_noffs <
14509		    probe->dofpr_offidx ||
14510		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14511		    off_sec->dofs_entsize > off_sec->dofs_size) {
14512			dtrace_dof_error(dof, "invalid probe offset");
14513			return (-1);
14514		}
14515
14516		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14517			/*
14518			 * If there's no is-enabled offset section, make sure
14519			 * there aren't any is-enabled offsets. Otherwise
14520			 * perform the same checks as for probe offsets
14521			 * (immediately above).
14522			 */
14523			if (enoff_sec == NULL) {
14524				if (probe->dofpr_enoffidx != 0 ||
14525				    probe->dofpr_nenoffs != 0) {
14526					dtrace_dof_error(dof, "is-enabled "
14527					    "offsets with null section");
14528					return (-1);
14529				}
14530			} else if (probe->dofpr_enoffidx +
14531			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14532			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14533			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14534				dtrace_dof_error(dof, "invalid is-enabled "
14535				    "offset");
14536				return (-1);
14537			}
14538
14539			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14540				dtrace_dof_error(dof, "zero probe and "
14541				    "is-enabled offsets");
14542				return (-1);
14543			}
14544		} else if (probe->dofpr_noffs == 0) {
14545			dtrace_dof_error(dof, "zero probe offsets");
14546			return (-1);
14547		}
14548
14549		if (probe->dofpr_argidx + probe->dofpr_xargc <
14550		    probe->dofpr_argidx ||
14551		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14552		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14553			dtrace_dof_error(dof, "invalid args");
14554			return (-1);
14555		}
14556
14557		typeidx = probe->dofpr_nargv;
14558		typestr = strtab + probe->dofpr_nargv;
14559		for (k = 0; k < probe->dofpr_nargc; k++) {
14560			if (typeidx >= str_sec->dofs_size) {
14561				dtrace_dof_error(dof, "bad "
14562				    "native argument type");
14563				return (-1);
14564			}
14565
14566			typesz = strlen(typestr) + 1;
14567			if (typesz > DTRACE_ARGTYPELEN) {
14568				dtrace_dof_error(dof, "native "
14569				    "argument type too long");
14570				return (-1);
14571			}
14572			typeidx += typesz;
14573			typestr += typesz;
14574		}
14575
14576		typeidx = probe->dofpr_xargv;
14577		typestr = strtab + probe->dofpr_xargv;
14578		for (k = 0; k < probe->dofpr_xargc; k++) {
14579			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14580				dtrace_dof_error(dof, "bad "
14581				    "native argument index");
14582				return (-1);
14583			}
14584
14585			if (typeidx >= str_sec->dofs_size) {
14586				dtrace_dof_error(dof, "bad "
14587				    "translated argument type");
14588				return (-1);
14589			}
14590
14591			typesz = strlen(typestr) + 1;
14592			if (typesz > DTRACE_ARGTYPELEN) {
14593				dtrace_dof_error(dof, "translated argument "
14594				    "type too long");
14595				return (-1);
14596			}
14597
14598			typeidx += typesz;
14599			typestr += typesz;
14600		}
14601	}
14602
14603	return (0);
14604}
14605
14606static int
14607dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14608{
14609	dtrace_helpers_t *help;
14610	dtrace_vstate_t *vstate;
14611	dtrace_enabling_t *enab = NULL;
14612	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14613	uintptr_t daddr = (uintptr_t)dof;
14614
14615	ASSERT(MUTEX_HELD(&dtrace_lock));
14616
14617	if ((help = curproc->p_dtrace_helpers) == NULL)
14618		help = dtrace_helpers_create(curproc);
14619
14620	vstate = &help->dthps_vstate;
14621
14622	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14623	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14624		dtrace_dof_destroy(dof);
14625		return (rv);
14626	}
14627
14628	/*
14629	 * Look for helper providers and validate their descriptions.
14630	 */
14631	if (dhp != NULL) {
14632		for (i = 0; i < dof->dofh_secnum; i++) {
14633			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14634			    dof->dofh_secoff + i * dof->dofh_secsize);
14635
14636			if (sec->dofs_type != DOF_SECT_PROVIDER)
14637				continue;
14638
14639			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14640				dtrace_enabling_destroy(enab);
14641				dtrace_dof_destroy(dof);
14642				return (-1);
14643			}
14644
14645			nprovs++;
14646		}
14647	}
14648
14649	/*
14650	 * Now we need to walk through the ECB descriptions in the enabling.
14651	 */
14652	for (i = 0; i < enab->dten_ndesc; i++) {
14653		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14654		dtrace_probedesc_t *desc = &ep->dted_probe;
14655
14656		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14657			continue;
14658
14659		if (strcmp(desc->dtpd_mod, "helper") != 0)
14660			continue;
14661
14662		if (strcmp(desc->dtpd_func, "ustack") != 0)
14663			continue;
14664
14665		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14666		    ep)) != 0) {
14667			/*
14668			 * Adding this helper action failed -- we are now going
14669			 * to rip out the entire generation and return failure.
14670			 */
14671			(void) dtrace_helper_destroygen(help->dthps_generation);
14672			dtrace_enabling_destroy(enab);
14673			dtrace_dof_destroy(dof);
14674			return (-1);
14675		}
14676
14677		nhelpers++;
14678	}
14679
14680	if (nhelpers < enab->dten_ndesc)
14681		dtrace_dof_error(dof, "unmatched helpers");
14682
14683	gen = help->dthps_generation++;
14684	dtrace_enabling_destroy(enab);
14685
14686	if (dhp != NULL && nprovs > 0) {
14687		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14688		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14689			mutex_exit(&dtrace_lock);
14690			dtrace_helper_provider_register(curproc, help, dhp);
14691			mutex_enter(&dtrace_lock);
14692
14693			destroy = 0;
14694		}
14695	}
14696
14697	if (destroy)
14698		dtrace_dof_destroy(dof);
14699
14700	return (gen);
14701}
14702
14703static dtrace_helpers_t *
14704dtrace_helpers_create(proc_t *p)
14705{
14706	dtrace_helpers_t *help;
14707
14708	ASSERT(MUTEX_HELD(&dtrace_lock));
14709	ASSERT(p->p_dtrace_helpers == NULL);
14710
14711	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14712	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14713	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14714
14715	p->p_dtrace_helpers = help;
14716	dtrace_helpers++;
14717
14718	return (help);
14719}
14720
14721#if defined(sun)
14722static
14723#endif
14724void
14725dtrace_helpers_destroy(proc_t *p)
14726{
14727	dtrace_helpers_t *help;
14728	dtrace_vstate_t *vstate;
14729#if defined(sun)
14730	proc_t *p = curproc;
14731#endif
14732	int i;
14733
14734	mutex_enter(&dtrace_lock);
14735
14736	ASSERT(p->p_dtrace_helpers != NULL);
14737	ASSERT(dtrace_helpers > 0);
14738
14739	help = p->p_dtrace_helpers;
14740	vstate = &help->dthps_vstate;
14741
14742	/*
14743	 * We're now going to lose the help from this process.
14744	 */
14745	p->p_dtrace_helpers = NULL;
14746	dtrace_sync();
14747
14748	/*
14749	 * Destory the helper actions.
14750	 */
14751	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14752		dtrace_helper_action_t *h, *next;
14753
14754		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14755			next = h->dtha_next;
14756			dtrace_helper_action_destroy(h, vstate);
14757			h = next;
14758		}
14759	}
14760
14761	mutex_exit(&dtrace_lock);
14762
14763	/*
14764	 * Destroy the helper providers.
14765	 */
14766	if (help->dthps_maxprovs > 0) {
14767		mutex_enter(&dtrace_meta_lock);
14768		if (dtrace_meta_pid != NULL) {
14769			ASSERT(dtrace_deferred_pid == NULL);
14770
14771			for (i = 0; i < help->dthps_nprovs; i++) {
14772				dtrace_helper_provider_remove(
14773				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14774			}
14775		} else {
14776			mutex_enter(&dtrace_lock);
14777			ASSERT(help->dthps_deferred == 0 ||
14778			    help->dthps_next != NULL ||
14779			    help->dthps_prev != NULL ||
14780			    help == dtrace_deferred_pid);
14781
14782			/*
14783			 * Remove the helper from the deferred list.
14784			 */
14785			if (help->dthps_next != NULL)
14786				help->dthps_next->dthps_prev = help->dthps_prev;
14787			if (help->dthps_prev != NULL)
14788				help->dthps_prev->dthps_next = help->dthps_next;
14789			if (dtrace_deferred_pid == help) {
14790				dtrace_deferred_pid = help->dthps_next;
14791				ASSERT(help->dthps_prev == NULL);
14792			}
14793
14794			mutex_exit(&dtrace_lock);
14795		}
14796
14797		mutex_exit(&dtrace_meta_lock);
14798
14799		for (i = 0; i < help->dthps_nprovs; i++) {
14800			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14801		}
14802
14803		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14804		    sizeof (dtrace_helper_provider_t *));
14805	}
14806
14807	mutex_enter(&dtrace_lock);
14808
14809	dtrace_vstate_fini(&help->dthps_vstate);
14810	kmem_free(help->dthps_actions,
14811	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14812	kmem_free(help, sizeof (dtrace_helpers_t));
14813
14814	--dtrace_helpers;
14815	mutex_exit(&dtrace_lock);
14816}
14817
14818#if defined(sun)
14819static
14820#endif
14821void
14822dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14823{
14824	dtrace_helpers_t *help, *newhelp;
14825	dtrace_helper_action_t *helper, *new, *last;
14826	dtrace_difo_t *dp;
14827	dtrace_vstate_t *vstate;
14828	int i, j, sz, hasprovs = 0;
14829
14830	mutex_enter(&dtrace_lock);
14831	ASSERT(from->p_dtrace_helpers != NULL);
14832	ASSERT(dtrace_helpers > 0);
14833
14834	help = from->p_dtrace_helpers;
14835	newhelp = dtrace_helpers_create(to);
14836	ASSERT(to->p_dtrace_helpers != NULL);
14837
14838	newhelp->dthps_generation = help->dthps_generation;
14839	vstate = &newhelp->dthps_vstate;
14840
14841	/*
14842	 * Duplicate the helper actions.
14843	 */
14844	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14845		if ((helper = help->dthps_actions[i]) == NULL)
14846			continue;
14847
14848		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14849			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14850			    KM_SLEEP);
14851			new->dtha_generation = helper->dtha_generation;
14852
14853			if ((dp = helper->dtha_predicate) != NULL) {
14854				dp = dtrace_difo_duplicate(dp, vstate);
14855				new->dtha_predicate = dp;
14856			}
14857
14858			new->dtha_nactions = helper->dtha_nactions;
14859			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14860			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14861
14862			for (j = 0; j < new->dtha_nactions; j++) {
14863				dtrace_difo_t *dp = helper->dtha_actions[j];
14864
14865				ASSERT(dp != NULL);
14866				dp = dtrace_difo_duplicate(dp, vstate);
14867				new->dtha_actions[j] = dp;
14868			}
14869
14870			if (last != NULL) {
14871				last->dtha_next = new;
14872			} else {
14873				newhelp->dthps_actions[i] = new;
14874			}
14875
14876			last = new;
14877		}
14878	}
14879
14880	/*
14881	 * Duplicate the helper providers and register them with the
14882	 * DTrace framework.
14883	 */
14884	if (help->dthps_nprovs > 0) {
14885		newhelp->dthps_nprovs = help->dthps_nprovs;
14886		newhelp->dthps_maxprovs = help->dthps_nprovs;
14887		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14888		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14889		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14890			newhelp->dthps_provs[i] = help->dthps_provs[i];
14891			newhelp->dthps_provs[i]->dthp_ref++;
14892		}
14893
14894		hasprovs = 1;
14895	}
14896
14897	mutex_exit(&dtrace_lock);
14898
14899	if (hasprovs)
14900		dtrace_helper_provider_register(to, newhelp, NULL);
14901}
14902
14903#if defined(sun)
14904/*
14905 * DTrace Hook Functions
14906 */
14907static void
14908dtrace_module_loaded(modctl_t *ctl)
14909{
14910	dtrace_provider_t *prv;
14911
14912	mutex_enter(&dtrace_provider_lock);
14913	mutex_enter(&mod_lock);
14914
14915	ASSERT(ctl->mod_busy);
14916
14917	/*
14918	 * We're going to call each providers per-module provide operation
14919	 * specifying only this module.
14920	 */
14921	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14922		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14923
14924	mutex_exit(&mod_lock);
14925	mutex_exit(&dtrace_provider_lock);
14926
14927	/*
14928	 * If we have any retained enablings, we need to match against them.
14929	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14930	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14931	 * module.  (In particular, this happens when loading scheduling
14932	 * classes.)  So if we have any retained enablings, we need to dispatch
14933	 * our task queue to do the match for us.
14934	 */
14935	mutex_enter(&dtrace_lock);
14936
14937	if (dtrace_retained == NULL) {
14938		mutex_exit(&dtrace_lock);
14939		return;
14940	}
14941
14942	(void) taskq_dispatch(dtrace_taskq,
14943	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14944
14945	mutex_exit(&dtrace_lock);
14946
14947	/*
14948	 * And now, for a little heuristic sleaze:  in general, we want to
14949	 * match modules as soon as they load.  However, we cannot guarantee
14950	 * this, because it would lead us to the lock ordering violation
14951	 * outlined above.  The common case, of course, is that cpu_lock is
14952	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14953	 * long enough for the task queue to do its work.  If it's not, it's
14954	 * not a serious problem -- it just means that the module that we
14955	 * just loaded may not be immediately instrumentable.
14956	 */
14957	delay(1);
14958}
14959
14960static void
14961dtrace_module_unloaded(modctl_t *ctl)
14962{
14963	dtrace_probe_t template, *probe, *first, *next;
14964	dtrace_provider_t *prov;
14965
14966	template.dtpr_mod = ctl->mod_modname;
14967
14968	mutex_enter(&dtrace_provider_lock);
14969	mutex_enter(&mod_lock);
14970	mutex_enter(&dtrace_lock);
14971
14972	if (dtrace_bymod == NULL) {
14973		/*
14974		 * The DTrace module is loaded (obviously) but not attached;
14975		 * we don't have any work to do.
14976		 */
14977		mutex_exit(&dtrace_provider_lock);
14978		mutex_exit(&mod_lock);
14979		mutex_exit(&dtrace_lock);
14980		return;
14981	}
14982
14983	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14984	    probe != NULL; probe = probe->dtpr_nextmod) {
14985		if (probe->dtpr_ecb != NULL) {
14986			mutex_exit(&dtrace_provider_lock);
14987			mutex_exit(&mod_lock);
14988			mutex_exit(&dtrace_lock);
14989
14990			/*
14991			 * This shouldn't _actually_ be possible -- we're
14992			 * unloading a module that has an enabled probe in it.
14993			 * (It's normally up to the provider to make sure that
14994			 * this can't happen.)  However, because dtps_enable()
14995			 * doesn't have a failure mode, there can be an
14996			 * enable/unload race.  Upshot:  we don't want to
14997			 * assert, but we're not going to disable the
14998			 * probe, either.
14999			 */
15000			if (dtrace_err_verbose) {
15001				cmn_err(CE_WARN, "unloaded module '%s' had "
15002				    "enabled probes", ctl->mod_modname);
15003			}
15004
15005			return;
15006		}
15007	}
15008
15009	probe = first;
15010
15011	for (first = NULL; probe != NULL; probe = next) {
15012		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15013
15014		dtrace_probes[probe->dtpr_id - 1] = NULL;
15015
15016		next = probe->dtpr_nextmod;
15017		dtrace_hash_remove(dtrace_bymod, probe);
15018		dtrace_hash_remove(dtrace_byfunc, probe);
15019		dtrace_hash_remove(dtrace_byname, probe);
15020
15021		if (first == NULL) {
15022			first = probe;
15023			probe->dtpr_nextmod = NULL;
15024		} else {
15025			probe->dtpr_nextmod = first;
15026			first = probe;
15027		}
15028	}
15029
15030	/*
15031	 * We've removed all of the module's probes from the hash chains and
15032	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15033	 * everyone has cleared out from any probe array processing.
15034	 */
15035	dtrace_sync();
15036
15037	for (probe = first; probe != NULL; probe = first) {
15038		first = probe->dtpr_nextmod;
15039		prov = probe->dtpr_provider;
15040		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15041		    probe->dtpr_arg);
15042		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15043		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15044		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15045		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15046		kmem_free(probe, sizeof (dtrace_probe_t));
15047	}
15048
15049	mutex_exit(&dtrace_lock);
15050	mutex_exit(&mod_lock);
15051	mutex_exit(&dtrace_provider_lock);
15052}
15053
15054static void
15055dtrace_suspend(void)
15056{
15057	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15058}
15059
15060static void
15061dtrace_resume(void)
15062{
15063	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15064}
15065#endif
15066
15067static int
15068dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15069{
15070	ASSERT(MUTEX_HELD(&cpu_lock));
15071	mutex_enter(&dtrace_lock);
15072
15073	switch (what) {
15074	case CPU_CONFIG: {
15075		dtrace_state_t *state;
15076		dtrace_optval_t *opt, rs, c;
15077
15078		/*
15079		 * For now, we only allocate a new buffer for anonymous state.
15080		 */
15081		if ((state = dtrace_anon.dta_state) == NULL)
15082			break;
15083
15084		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15085			break;
15086
15087		opt = state->dts_options;
15088		c = opt[DTRACEOPT_CPU];
15089
15090		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15091			break;
15092
15093		/*
15094		 * Regardless of what the actual policy is, we're going to
15095		 * temporarily set our resize policy to be manual.  We're
15096		 * also going to temporarily set our CPU option to denote
15097		 * the newly configured CPU.
15098		 */
15099		rs = opt[DTRACEOPT_BUFRESIZE];
15100		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15101		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15102
15103		(void) dtrace_state_buffers(state);
15104
15105		opt[DTRACEOPT_BUFRESIZE] = rs;
15106		opt[DTRACEOPT_CPU] = c;
15107
15108		break;
15109	}
15110
15111	case CPU_UNCONFIG:
15112		/*
15113		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15114		 * buffer will be freed when the consumer exits.)
15115		 */
15116		break;
15117
15118	default:
15119		break;
15120	}
15121
15122	mutex_exit(&dtrace_lock);
15123	return (0);
15124}
15125
15126#if defined(sun)
15127static void
15128dtrace_cpu_setup_initial(processorid_t cpu)
15129{
15130	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15131}
15132#endif
15133
15134static void
15135dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15136{
15137	if (dtrace_toxranges >= dtrace_toxranges_max) {
15138		int osize, nsize;
15139		dtrace_toxrange_t *range;
15140
15141		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15142
15143		if (osize == 0) {
15144			ASSERT(dtrace_toxrange == NULL);
15145			ASSERT(dtrace_toxranges_max == 0);
15146			dtrace_toxranges_max = 1;
15147		} else {
15148			dtrace_toxranges_max <<= 1;
15149		}
15150
15151		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15152		range = kmem_zalloc(nsize, KM_SLEEP);
15153
15154		if (dtrace_toxrange != NULL) {
15155			ASSERT(osize != 0);
15156			bcopy(dtrace_toxrange, range, osize);
15157			kmem_free(dtrace_toxrange, osize);
15158		}
15159
15160		dtrace_toxrange = range;
15161	}
15162
15163	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15164	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15165
15166	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15167	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15168	dtrace_toxranges++;
15169}
15170
15171/*
15172 * DTrace Driver Cookbook Functions
15173 */
15174#if defined(sun)
15175/*ARGSUSED*/
15176static int
15177dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15178{
15179	dtrace_provider_id_t id;
15180	dtrace_state_t *state = NULL;
15181	dtrace_enabling_t *enab;
15182
15183	mutex_enter(&cpu_lock);
15184	mutex_enter(&dtrace_provider_lock);
15185	mutex_enter(&dtrace_lock);
15186
15187	if (ddi_soft_state_init(&dtrace_softstate,
15188	    sizeof (dtrace_state_t), 0) != 0) {
15189		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15190		mutex_exit(&cpu_lock);
15191		mutex_exit(&dtrace_provider_lock);
15192		mutex_exit(&dtrace_lock);
15193		return (DDI_FAILURE);
15194	}
15195
15196	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15197	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15198	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15199	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15200		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15201		ddi_remove_minor_node(devi, NULL);
15202		ddi_soft_state_fini(&dtrace_softstate);
15203		mutex_exit(&cpu_lock);
15204		mutex_exit(&dtrace_provider_lock);
15205		mutex_exit(&dtrace_lock);
15206		return (DDI_FAILURE);
15207	}
15208
15209	ddi_report_dev(devi);
15210	dtrace_devi = devi;
15211
15212	dtrace_modload = dtrace_module_loaded;
15213	dtrace_modunload = dtrace_module_unloaded;
15214	dtrace_cpu_init = dtrace_cpu_setup_initial;
15215	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15216	dtrace_helpers_fork = dtrace_helpers_duplicate;
15217	dtrace_cpustart_init = dtrace_suspend;
15218	dtrace_cpustart_fini = dtrace_resume;
15219	dtrace_debugger_init = dtrace_suspend;
15220	dtrace_debugger_fini = dtrace_resume;
15221
15222	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15223
15224	ASSERT(MUTEX_HELD(&cpu_lock));
15225
15226	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15227	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15228	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15229	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15230	    VM_SLEEP | VMC_IDENTIFIER);
15231	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15232	    1, INT_MAX, 0);
15233
15234	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15235	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15236	    NULL, NULL, NULL, NULL, NULL, 0);
15237
15238	ASSERT(MUTEX_HELD(&cpu_lock));
15239	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15240	    offsetof(dtrace_probe_t, dtpr_nextmod),
15241	    offsetof(dtrace_probe_t, dtpr_prevmod));
15242
15243	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15244	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15245	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15246
15247	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15248	    offsetof(dtrace_probe_t, dtpr_nextname),
15249	    offsetof(dtrace_probe_t, dtpr_prevname));
15250
15251	if (dtrace_retain_max < 1) {
15252		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15253		    "setting to 1", dtrace_retain_max);
15254		dtrace_retain_max = 1;
15255	}
15256
15257	/*
15258	 * Now discover our toxic ranges.
15259	 */
15260	dtrace_toxic_ranges(dtrace_toxrange_add);
15261
15262	/*
15263	 * Before we register ourselves as a provider to our own framework,
15264	 * we would like to assert that dtrace_provider is NULL -- but that's
15265	 * not true if we were loaded as a dependency of a DTrace provider.
15266	 * Once we've registered, we can assert that dtrace_provider is our
15267	 * pseudo provider.
15268	 */
15269	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15270	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15271
15272	ASSERT(dtrace_provider != NULL);
15273	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15274
15275	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15276	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15277	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15278	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15279	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15280	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15281
15282	dtrace_anon_property();
15283	mutex_exit(&cpu_lock);
15284
15285	/*
15286	 * If DTrace helper tracing is enabled, we need to allocate the
15287	 * trace buffer and initialize the values.
15288	 */
15289	if (dtrace_helptrace_enabled) {
15290		ASSERT(dtrace_helptrace_buffer == NULL);
15291		dtrace_helptrace_buffer =
15292		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15293		dtrace_helptrace_next = 0;
15294	}
15295
15296	/*
15297	 * If there are already providers, we must ask them to provide their
15298	 * probes, and then match any anonymous enabling against them.  Note
15299	 * that there should be no other retained enablings at this time:
15300	 * the only retained enablings at this time should be the anonymous
15301	 * enabling.
15302	 */
15303	if (dtrace_anon.dta_enabling != NULL) {
15304		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15305
15306		dtrace_enabling_provide(NULL);
15307		state = dtrace_anon.dta_state;
15308
15309		/*
15310		 * We couldn't hold cpu_lock across the above call to
15311		 * dtrace_enabling_provide(), but we must hold it to actually
15312		 * enable the probes.  We have to drop all of our locks, pick
15313		 * up cpu_lock, and regain our locks before matching the
15314		 * retained anonymous enabling.
15315		 */
15316		mutex_exit(&dtrace_lock);
15317		mutex_exit(&dtrace_provider_lock);
15318
15319		mutex_enter(&cpu_lock);
15320		mutex_enter(&dtrace_provider_lock);
15321		mutex_enter(&dtrace_lock);
15322
15323		if ((enab = dtrace_anon.dta_enabling) != NULL)
15324			(void) dtrace_enabling_match(enab, NULL);
15325
15326		mutex_exit(&cpu_lock);
15327	}
15328
15329	mutex_exit(&dtrace_lock);
15330	mutex_exit(&dtrace_provider_lock);
15331
15332	if (state != NULL) {
15333		/*
15334		 * If we created any anonymous state, set it going now.
15335		 */
15336		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15337	}
15338
15339	return (DDI_SUCCESS);
15340}
15341#endif
15342
15343#if !defined(sun)
15344#if __FreeBSD_version >= 800039
15345static void
15346dtrace_dtr(void *data __unused)
15347{
15348}
15349#endif
15350#endif
15351
15352/*ARGSUSED*/
15353static int
15354#if defined(sun)
15355dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15356#else
15357dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15358#endif
15359{
15360	dtrace_state_t *state;
15361	uint32_t priv;
15362	uid_t uid;
15363	zoneid_t zoneid;
15364
15365#if defined(sun)
15366	if (getminor(*devp) == DTRACEMNRN_HELPER)
15367		return (0);
15368
15369	/*
15370	 * If this wasn't an open with the "helper" minor, then it must be
15371	 * the "dtrace" minor.
15372	 */
15373	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15374#else
15375	cred_t *cred_p = NULL;
15376
15377#if __FreeBSD_version < 800039
15378	/*
15379	 * The first minor device is the one that is cloned so there is
15380	 * nothing more to do here.
15381	 */
15382	if (dev2unit(dev) == 0)
15383		return 0;
15384
15385	/*
15386	 * Devices are cloned, so if the DTrace state has already
15387	 * been allocated, that means this device belongs to a
15388	 * different client. Each client should open '/dev/dtrace'
15389	 * to get a cloned device.
15390	 */
15391	if (dev->si_drv1 != NULL)
15392		return (EBUSY);
15393#endif
15394
15395	cred_p = dev->si_cred;
15396#endif
15397
15398	/*
15399	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15400	 * caller lacks sufficient permission to do anything with DTrace.
15401	 */
15402	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15403	if (priv == DTRACE_PRIV_NONE) {
15404#if !defined(sun)
15405#if __FreeBSD_version < 800039
15406		/* Destroy the cloned device. */
15407                destroy_dev(dev);
15408#endif
15409#endif
15410
15411		return (EACCES);
15412	}
15413
15414	/*
15415	 * Ask all providers to provide all their probes.
15416	 */
15417	mutex_enter(&dtrace_provider_lock);
15418	dtrace_probe_provide(NULL, NULL);
15419	mutex_exit(&dtrace_provider_lock);
15420
15421	mutex_enter(&cpu_lock);
15422	mutex_enter(&dtrace_lock);
15423	dtrace_opens++;
15424	dtrace_membar_producer();
15425
15426#if defined(sun)
15427	/*
15428	 * If the kernel debugger is active (that is, if the kernel debugger
15429	 * modified text in some way), we won't allow the open.
15430	 */
15431	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15432		dtrace_opens--;
15433		mutex_exit(&cpu_lock);
15434		mutex_exit(&dtrace_lock);
15435		return (EBUSY);
15436	}
15437
15438	state = dtrace_state_create(devp, cred_p);
15439#else
15440	state = dtrace_state_create(dev);
15441#if __FreeBSD_version < 800039
15442	dev->si_drv1 = state;
15443#else
15444	devfs_set_cdevpriv(state, dtrace_dtr);
15445#endif
15446#endif
15447
15448	mutex_exit(&cpu_lock);
15449
15450	if (state == NULL) {
15451#if defined(sun)
15452		if (--dtrace_opens == 0)
15453			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15454#else
15455		--dtrace_opens;
15456#endif
15457		mutex_exit(&dtrace_lock);
15458#if !defined(sun)
15459#if __FreeBSD_version < 800039
15460		/* Destroy the cloned device. */
15461                destroy_dev(dev);
15462#endif
15463#endif
15464		return (EAGAIN);
15465	}
15466
15467	mutex_exit(&dtrace_lock);
15468
15469	return (0);
15470}
15471
15472/*ARGSUSED*/
15473static int
15474#if defined(sun)
15475dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15476#else
15477dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15478#endif
15479{
15480#if defined(sun)
15481	minor_t minor = getminor(dev);
15482	dtrace_state_t *state;
15483
15484	if (minor == DTRACEMNRN_HELPER)
15485		return (0);
15486
15487	state = ddi_get_soft_state(dtrace_softstate, minor);
15488#else
15489#if __FreeBSD_version < 800039
15490	dtrace_state_t *state = dev->si_drv1;
15491
15492	/* Check if this is not a cloned device. */
15493	if (dev2unit(dev) == 0)
15494		return (0);
15495#else
15496	dtrace_state_t *state;
15497	devfs_get_cdevpriv((void **) &state);
15498#endif
15499
15500#endif
15501
15502	mutex_enter(&cpu_lock);
15503	mutex_enter(&dtrace_lock);
15504
15505	if (state != NULL) {
15506		if (state->dts_anon) {
15507			/*
15508			 * There is anonymous state. Destroy that first.
15509			 */
15510			ASSERT(dtrace_anon.dta_state == NULL);
15511			dtrace_state_destroy(state->dts_anon);
15512		}
15513
15514		dtrace_state_destroy(state);
15515
15516#if !defined(sun)
15517		kmem_free(state, 0);
15518#if __FreeBSD_version < 800039
15519		dev->si_drv1 = NULL;
15520#endif
15521#endif
15522	}
15523
15524	ASSERT(dtrace_opens > 0);
15525#if defined(sun)
15526	if (--dtrace_opens == 0)
15527		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15528#else
15529	--dtrace_opens;
15530#endif
15531
15532	mutex_exit(&dtrace_lock);
15533	mutex_exit(&cpu_lock);
15534
15535#if __FreeBSD_version < 800039
15536	/* Schedule this cloned device to be destroyed. */
15537	destroy_dev_sched(dev);
15538#endif
15539
15540	return (0);
15541}
15542
15543#if defined(sun)
15544/*ARGSUSED*/
15545static int
15546dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15547{
15548	int rval;
15549	dof_helper_t help, *dhp = NULL;
15550
15551	switch (cmd) {
15552	case DTRACEHIOC_ADDDOF:
15553		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15554			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15555			return (EFAULT);
15556		}
15557
15558		dhp = &help;
15559		arg = (intptr_t)help.dofhp_dof;
15560		/*FALLTHROUGH*/
15561
15562	case DTRACEHIOC_ADD: {
15563		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15564
15565		if (dof == NULL)
15566			return (rval);
15567
15568		mutex_enter(&dtrace_lock);
15569
15570		/*
15571		 * dtrace_helper_slurp() takes responsibility for the dof --
15572		 * it may free it now or it may save it and free it later.
15573		 */
15574		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15575			*rv = rval;
15576			rval = 0;
15577		} else {
15578			rval = EINVAL;
15579		}
15580
15581		mutex_exit(&dtrace_lock);
15582		return (rval);
15583	}
15584
15585	case DTRACEHIOC_REMOVE: {
15586		mutex_enter(&dtrace_lock);
15587		rval = dtrace_helper_destroygen(arg);
15588		mutex_exit(&dtrace_lock);
15589
15590		return (rval);
15591	}
15592
15593	default:
15594		break;
15595	}
15596
15597	return (ENOTTY);
15598}
15599
15600/*ARGSUSED*/
15601static int
15602dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15603{
15604	minor_t minor = getminor(dev);
15605	dtrace_state_t *state;
15606	int rval;
15607
15608	if (minor == DTRACEMNRN_HELPER)
15609		return (dtrace_ioctl_helper(cmd, arg, rv));
15610
15611	state = ddi_get_soft_state(dtrace_softstate, minor);
15612
15613	if (state->dts_anon) {
15614		ASSERT(dtrace_anon.dta_state == NULL);
15615		state = state->dts_anon;
15616	}
15617
15618	switch (cmd) {
15619	case DTRACEIOC_PROVIDER: {
15620		dtrace_providerdesc_t pvd;
15621		dtrace_provider_t *pvp;
15622
15623		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15624			return (EFAULT);
15625
15626		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15627		mutex_enter(&dtrace_provider_lock);
15628
15629		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15630			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15631				break;
15632		}
15633
15634		mutex_exit(&dtrace_provider_lock);
15635
15636		if (pvp == NULL)
15637			return (ESRCH);
15638
15639		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15640		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15641
15642		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15643			return (EFAULT);
15644
15645		return (0);
15646	}
15647
15648	case DTRACEIOC_EPROBE: {
15649		dtrace_eprobedesc_t epdesc;
15650		dtrace_ecb_t *ecb;
15651		dtrace_action_t *act;
15652		void *buf;
15653		size_t size;
15654		uintptr_t dest;
15655		int nrecs;
15656
15657		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15658			return (EFAULT);
15659
15660		mutex_enter(&dtrace_lock);
15661
15662		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15663			mutex_exit(&dtrace_lock);
15664			return (EINVAL);
15665		}
15666
15667		if (ecb->dte_probe == NULL) {
15668			mutex_exit(&dtrace_lock);
15669			return (EINVAL);
15670		}
15671
15672		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15673		epdesc.dtepd_uarg = ecb->dte_uarg;
15674		epdesc.dtepd_size = ecb->dte_size;
15675
15676		nrecs = epdesc.dtepd_nrecs;
15677		epdesc.dtepd_nrecs = 0;
15678		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15679			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15680				continue;
15681
15682			epdesc.dtepd_nrecs++;
15683		}
15684
15685		/*
15686		 * Now that we have the size, we need to allocate a temporary
15687		 * buffer in which to store the complete description.  We need
15688		 * the temporary buffer to be able to drop dtrace_lock()
15689		 * across the copyout(), below.
15690		 */
15691		size = sizeof (dtrace_eprobedesc_t) +
15692		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15693
15694		buf = kmem_alloc(size, KM_SLEEP);
15695		dest = (uintptr_t)buf;
15696
15697		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15698		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15699
15700		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15701			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15702				continue;
15703
15704			if (nrecs-- == 0)
15705				break;
15706
15707			bcopy(&act->dta_rec, (void *)dest,
15708			    sizeof (dtrace_recdesc_t));
15709			dest += sizeof (dtrace_recdesc_t);
15710		}
15711
15712		mutex_exit(&dtrace_lock);
15713
15714		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15715			kmem_free(buf, size);
15716			return (EFAULT);
15717		}
15718
15719		kmem_free(buf, size);
15720		return (0);
15721	}
15722
15723	case DTRACEIOC_AGGDESC: {
15724		dtrace_aggdesc_t aggdesc;
15725		dtrace_action_t *act;
15726		dtrace_aggregation_t *agg;
15727		int nrecs;
15728		uint32_t offs;
15729		dtrace_recdesc_t *lrec;
15730		void *buf;
15731		size_t size;
15732		uintptr_t dest;
15733
15734		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15735			return (EFAULT);
15736
15737		mutex_enter(&dtrace_lock);
15738
15739		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15740			mutex_exit(&dtrace_lock);
15741			return (EINVAL);
15742		}
15743
15744		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15745
15746		nrecs = aggdesc.dtagd_nrecs;
15747		aggdesc.dtagd_nrecs = 0;
15748
15749		offs = agg->dtag_base;
15750		lrec = &agg->dtag_action.dta_rec;
15751		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15752
15753		for (act = agg->dtag_first; ; act = act->dta_next) {
15754			ASSERT(act->dta_intuple ||
15755			    DTRACEACT_ISAGG(act->dta_kind));
15756
15757			/*
15758			 * If this action has a record size of zero, it
15759			 * denotes an argument to the aggregating action.
15760			 * Because the presence of this record doesn't (or
15761			 * shouldn't) affect the way the data is interpreted,
15762			 * we don't copy it out to save user-level the
15763			 * confusion of dealing with a zero-length record.
15764			 */
15765			if (act->dta_rec.dtrd_size == 0) {
15766				ASSERT(agg->dtag_hasarg);
15767				continue;
15768			}
15769
15770			aggdesc.dtagd_nrecs++;
15771
15772			if (act == &agg->dtag_action)
15773				break;
15774		}
15775
15776		/*
15777		 * Now that we have the size, we need to allocate a temporary
15778		 * buffer in which to store the complete description.  We need
15779		 * the temporary buffer to be able to drop dtrace_lock()
15780		 * across the copyout(), below.
15781		 */
15782		size = sizeof (dtrace_aggdesc_t) +
15783		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15784
15785		buf = kmem_alloc(size, KM_SLEEP);
15786		dest = (uintptr_t)buf;
15787
15788		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15789		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15790
15791		for (act = agg->dtag_first; ; act = act->dta_next) {
15792			dtrace_recdesc_t rec = act->dta_rec;
15793
15794			/*
15795			 * See the comment in the above loop for why we pass
15796			 * over zero-length records.
15797			 */
15798			if (rec.dtrd_size == 0) {
15799				ASSERT(agg->dtag_hasarg);
15800				continue;
15801			}
15802
15803			if (nrecs-- == 0)
15804				break;
15805
15806			rec.dtrd_offset -= offs;
15807			bcopy(&rec, (void *)dest, sizeof (rec));
15808			dest += sizeof (dtrace_recdesc_t);
15809
15810			if (act == &agg->dtag_action)
15811				break;
15812		}
15813
15814		mutex_exit(&dtrace_lock);
15815
15816		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15817			kmem_free(buf, size);
15818			return (EFAULT);
15819		}
15820
15821		kmem_free(buf, size);
15822		return (0);
15823	}
15824
15825	case DTRACEIOC_ENABLE: {
15826		dof_hdr_t *dof;
15827		dtrace_enabling_t *enab = NULL;
15828		dtrace_vstate_t *vstate;
15829		int err = 0;
15830
15831		*rv = 0;
15832
15833		/*
15834		 * If a NULL argument has been passed, we take this as our
15835		 * cue to reevaluate our enablings.
15836		 */
15837		if (arg == NULL) {
15838			dtrace_enabling_matchall();
15839
15840			return (0);
15841		}
15842
15843		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15844			return (rval);
15845
15846		mutex_enter(&cpu_lock);
15847		mutex_enter(&dtrace_lock);
15848		vstate = &state->dts_vstate;
15849
15850		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15851			mutex_exit(&dtrace_lock);
15852			mutex_exit(&cpu_lock);
15853			dtrace_dof_destroy(dof);
15854			return (EBUSY);
15855		}
15856
15857		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15858			mutex_exit(&dtrace_lock);
15859			mutex_exit(&cpu_lock);
15860			dtrace_dof_destroy(dof);
15861			return (EINVAL);
15862		}
15863
15864		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15865			dtrace_enabling_destroy(enab);
15866			mutex_exit(&dtrace_lock);
15867			mutex_exit(&cpu_lock);
15868			dtrace_dof_destroy(dof);
15869			return (rval);
15870		}
15871
15872		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15873			err = dtrace_enabling_retain(enab);
15874		} else {
15875			dtrace_enabling_destroy(enab);
15876		}
15877
15878		mutex_exit(&cpu_lock);
15879		mutex_exit(&dtrace_lock);
15880		dtrace_dof_destroy(dof);
15881
15882		return (err);
15883	}
15884
15885	case DTRACEIOC_REPLICATE: {
15886		dtrace_repldesc_t desc;
15887		dtrace_probedesc_t *match = &desc.dtrpd_match;
15888		dtrace_probedesc_t *create = &desc.dtrpd_create;
15889		int err;
15890
15891		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15892			return (EFAULT);
15893
15894		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15895		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15896		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15897		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15898
15899		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15900		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15901		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15902		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15903
15904		mutex_enter(&dtrace_lock);
15905		err = dtrace_enabling_replicate(state, match, create);
15906		mutex_exit(&dtrace_lock);
15907
15908		return (err);
15909	}
15910
15911	case DTRACEIOC_PROBEMATCH:
15912	case DTRACEIOC_PROBES: {
15913		dtrace_probe_t *probe = NULL;
15914		dtrace_probedesc_t desc;
15915		dtrace_probekey_t pkey;
15916		dtrace_id_t i;
15917		int m = 0;
15918		uint32_t priv;
15919		uid_t uid;
15920		zoneid_t zoneid;
15921
15922		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15923			return (EFAULT);
15924
15925		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15926		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15927		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15928		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15929
15930		/*
15931		 * Before we attempt to match this probe, we want to give
15932		 * all providers the opportunity to provide it.
15933		 */
15934		if (desc.dtpd_id == DTRACE_IDNONE) {
15935			mutex_enter(&dtrace_provider_lock);
15936			dtrace_probe_provide(&desc, NULL);
15937			mutex_exit(&dtrace_provider_lock);
15938			desc.dtpd_id++;
15939		}
15940
15941		if (cmd == DTRACEIOC_PROBEMATCH)  {
15942			dtrace_probekey(&desc, &pkey);
15943			pkey.dtpk_id = DTRACE_IDNONE;
15944		}
15945
15946		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15947
15948		mutex_enter(&dtrace_lock);
15949
15950		if (cmd == DTRACEIOC_PROBEMATCH) {
15951			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15952				if ((probe = dtrace_probes[i - 1]) != NULL &&
15953				    (m = dtrace_match_probe(probe, &pkey,
15954				    priv, uid, zoneid)) != 0)
15955					break;
15956			}
15957
15958			if (m < 0) {
15959				mutex_exit(&dtrace_lock);
15960				return (EINVAL);
15961			}
15962
15963		} else {
15964			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15965				if ((probe = dtrace_probes[i - 1]) != NULL &&
15966				    dtrace_match_priv(probe, priv, uid, zoneid))
15967					break;
15968			}
15969		}
15970
15971		if (probe == NULL) {
15972			mutex_exit(&dtrace_lock);
15973			return (ESRCH);
15974		}
15975
15976		dtrace_probe_description(probe, &desc);
15977		mutex_exit(&dtrace_lock);
15978
15979		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15980			return (EFAULT);
15981
15982		return (0);
15983	}
15984
15985	case DTRACEIOC_PROBEARG: {
15986		dtrace_argdesc_t desc;
15987		dtrace_probe_t *probe;
15988		dtrace_provider_t *prov;
15989
15990		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15991			return (EFAULT);
15992
15993		if (desc.dtargd_id == DTRACE_IDNONE)
15994			return (EINVAL);
15995
15996		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15997			return (EINVAL);
15998
15999		mutex_enter(&dtrace_provider_lock);
16000		mutex_enter(&mod_lock);
16001		mutex_enter(&dtrace_lock);
16002
16003		if (desc.dtargd_id > dtrace_nprobes) {
16004			mutex_exit(&dtrace_lock);
16005			mutex_exit(&mod_lock);
16006			mutex_exit(&dtrace_provider_lock);
16007			return (EINVAL);
16008		}
16009
16010		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16011			mutex_exit(&dtrace_lock);
16012			mutex_exit(&mod_lock);
16013			mutex_exit(&dtrace_provider_lock);
16014			return (EINVAL);
16015		}
16016
16017		mutex_exit(&dtrace_lock);
16018
16019		prov = probe->dtpr_provider;
16020
16021		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16022			/*
16023			 * There isn't any typed information for this probe.
16024			 * Set the argument number to DTRACE_ARGNONE.
16025			 */
16026			desc.dtargd_ndx = DTRACE_ARGNONE;
16027		} else {
16028			desc.dtargd_native[0] = '\0';
16029			desc.dtargd_xlate[0] = '\0';
16030			desc.dtargd_mapping = desc.dtargd_ndx;
16031
16032			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16033			    probe->dtpr_id, probe->dtpr_arg, &desc);
16034		}
16035
16036		mutex_exit(&mod_lock);
16037		mutex_exit(&dtrace_provider_lock);
16038
16039		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16040			return (EFAULT);
16041
16042		return (0);
16043	}
16044
16045	case DTRACEIOC_GO: {
16046		processorid_t cpuid;
16047		rval = dtrace_state_go(state, &cpuid);
16048
16049		if (rval != 0)
16050			return (rval);
16051
16052		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16053			return (EFAULT);
16054
16055		return (0);
16056	}
16057
16058	case DTRACEIOC_STOP: {
16059		processorid_t cpuid;
16060
16061		mutex_enter(&dtrace_lock);
16062		rval = dtrace_state_stop(state, &cpuid);
16063		mutex_exit(&dtrace_lock);
16064
16065		if (rval != 0)
16066			return (rval);
16067
16068		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16069			return (EFAULT);
16070
16071		return (0);
16072	}
16073
16074	case DTRACEIOC_DOFGET: {
16075		dof_hdr_t hdr, *dof;
16076		uint64_t len;
16077
16078		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16079			return (EFAULT);
16080
16081		mutex_enter(&dtrace_lock);
16082		dof = dtrace_dof_create(state);
16083		mutex_exit(&dtrace_lock);
16084
16085		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16086		rval = copyout(dof, (void *)arg, len);
16087		dtrace_dof_destroy(dof);
16088
16089		return (rval == 0 ? 0 : EFAULT);
16090	}
16091
16092	case DTRACEIOC_AGGSNAP:
16093	case DTRACEIOC_BUFSNAP: {
16094		dtrace_bufdesc_t desc;
16095		caddr_t cached;
16096		dtrace_buffer_t *buf;
16097
16098		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16099			return (EFAULT);
16100
16101		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16102			return (EINVAL);
16103
16104		mutex_enter(&dtrace_lock);
16105
16106		if (cmd == DTRACEIOC_BUFSNAP) {
16107			buf = &state->dts_buffer[desc.dtbd_cpu];
16108		} else {
16109			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16110		}
16111
16112		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16113			size_t sz = buf->dtb_offset;
16114
16115			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16116				mutex_exit(&dtrace_lock);
16117				return (EBUSY);
16118			}
16119
16120			/*
16121			 * If this buffer has already been consumed, we're
16122			 * going to indicate that there's nothing left here
16123			 * to consume.
16124			 */
16125			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16126				mutex_exit(&dtrace_lock);
16127
16128				desc.dtbd_size = 0;
16129				desc.dtbd_drops = 0;
16130				desc.dtbd_errors = 0;
16131				desc.dtbd_oldest = 0;
16132				sz = sizeof (desc);
16133
16134				if (copyout(&desc, (void *)arg, sz) != 0)
16135					return (EFAULT);
16136
16137				return (0);
16138			}
16139
16140			/*
16141			 * If this is a ring buffer that has wrapped, we want
16142			 * to copy the whole thing out.
16143			 */
16144			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16145				dtrace_buffer_polish(buf);
16146				sz = buf->dtb_size;
16147			}
16148
16149			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16150				mutex_exit(&dtrace_lock);
16151				return (EFAULT);
16152			}
16153
16154			desc.dtbd_size = sz;
16155			desc.dtbd_drops = buf->dtb_drops;
16156			desc.dtbd_errors = buf->dtb_errors;
16157			desc.dtbd_oldest = buf->dtb_xamot_offset;
16158
16159			mutex_exit(&dtrace_lock);
16160
16161			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16162				return (EFAULT);
16163
16164			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16165
16166			return (0);
16167		}
16168
16169		if (buf->dtb_tomax == NULL) {
16170			ASSERT(buf->dtb_xamot == NULL);
16171			mutex_exit(&dtrace_lock);
16172			return (ENOENT);
16173		}
16174
16175		cached = buf->dtb_tomax;
16176		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16177
16178		dtrace_xcall(desc.dtbd_cpu,
16179		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16180
16181		state->dts_errors += buf->dtb_xamot_errors;
16182
16183		/*
16184		 * If the buffers did not actually switch, then the cross call
16185		 * did not take place -- presumably because the given CPU is
16186		 * not in the ready set.  If this is the case, we'll return
16187		 * ENOENT.
16188		 */
16189		if (buf->dtb_tomax == cached) {
16190			ASSERT(buf->dtb_xamot != cached);
16191			mutex_exit(&dtrace_lock);
16192			return (ENOENT);
16193		}
16194
16195		ASSERT(cached == buf->dtb_xamot);
16196
16197		/*
16198		 * We have our snapshot; now copy it out.
16199		 */
16200		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16201		    buf->dtb_xamot_offset) != 0) {
16202			mutex_exit(&dtrace_lock);
16203			return (EFAULT);
16204		}
16205
16206		desc.dtbd_size = buf->dtb_xamot_offset;
16207		desc.dtbd_drops = buf->dtb_xamot_drops;
16208		desc.dtbd_errors = buf->dtb_xamot_errors;
16209		desc.dtbd_oldest = 0;
16210
16211		mutex_exit(&dtrace_lock);
16212
16213		/*
16214		 * Finally, copy out the buffer description.
16215		 */
16216		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16217			return (EFAULT);
16218
16219		return (0);
16220	}
16221
16222	case DTRACEIOC_CONF: {
16223		dtrace_conf_t conf;
16224
16225		bzero(&conf, sizeof (conf));
16226		conf.dtc_difversion = DIF_VERSION;
16227		conf.dtc_difintregs = DIF_DIR_NREGS;
16228		conf.dtc_diftupregs = DIF_DTR_NREGS;
16229		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16230
16231		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16232			return (EFAULT);
16233
16234		return (0);
16235	}
16236
16237	case DTRACEIOC_STATUS: {
16238		dtrace_status_t stat;
16239		dtrace_dstate_t *dstate;
16240		int i, j;
16241		uint64_t nerrs;
16242
16243		/*
16244		 * See the comment in dtrace_state_deadman() for the reason
16245		 * for setting dts_laststatus to INT64_MAX before setting
16246		 * it to the correct value.
16247		 */
16248		state->dts_laststatus = INT64_MAX;
16249		dtrace_membar_producer();
16250		state->dts_laststatus = dtrace_gethrtime();
16251
16252		bzero(&stat, sizeof (stat));
16253
16254		mutex_enter(&dtrace_lock);
16255
16256		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16257			mutex_exit(&dtrace_lock);
16258			return (ENOENT);
16259		}
16260
16261		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16262			stat.dtst_exiting = 1;
16263
16264		nerrs = state->dts_errors;
16265		dstate = &state->dts_vstate.dtvs_dynvars;
16266
16267		for (i = 0; i < NCPU; i++) {
16268			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16269
16270			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16271			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16272			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16273
16274			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16275				stat.dtst_filled++;
16276
16277			nerrs += state->dts_buffer[i].dtb_errors;
16278
16279			for (j = 0; j < state->dts_nspeculations; j++) {
16280				dtrace_speculation_t *spec;
16281				dtrace_buffer_t *buf;
16282
16283				spec = &state->dts_speculations[j];
16284				buf = &spec->dtsp_buffer[i];
16285				stat.dtst_specdrops += buf->dtb_xamot_drops;
16286			}
16287		}
16288
16289		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16290		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16291		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16292		stat.dtst_dblerrors = state->dts_dblerrors;
16293		stat.dtst_killed =
16294		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16295		stat.dtst_errors = nerrs;
16296
16297		mutex_exit(&dtrace_lock);
16298
16299		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16300			return (EFAULT);
16301
16302		return (0);
16303	}
16304
16305	case DTRACEIOC_FORMAT: {
16306		dtrace_fmtdesc_t fmt;
16307		char *str;
16308		int len;
16309
16310		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16311			return (EFAULT);
16312
16313		mutex_enter(&dtrace_lock);
16314
16315		if (fmt.dtfd_format == 0 ||
16316		    fmt.dtfd_format > state->dts_nformats) {
16317			mutex_exit(&dtrace_lock);
16318			return (EINVAL);
16319		}
16320
16321		/*
16322		 * Format strings are allocated contiguously and they are
16323		 * never freed; if a format index is less than the number
16324		 * of formats, we can assert that the format map is non-NULL
16325		 * and that the format for the specified index is non-NULL.
16326		 */
16327		ASSERT(state->dts_formats != NULL);
16328		str = state->dts_formats[fmt.dtfd_format - 1];
16329		ASSERT(str != NULL);
16330
16331		len = strlen(str) + 1;
16332
16333		if (len > fmt.dtfd_length) {
16334			fmt.dtfd_length = len;
16335
16336			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16337				mutex_exit(&dtrace_lock);
16338				return (EINVAL);
16339			}
16340		} else {
16341			if (copyout(str, fmt.dtfd_string, len) != 0) {
16342				mutex_exit(&dtrace_lock);
16343				return (EINVAL);
16344			}
16345		}
16346
16347		mutex_exit(&dtrace_lock);
16348		return (0);
16349	}
16350
16351	default:
16352		break;
16353	}
16354
16355	return (ENOTTY);
16356}
16357
16358/*ARGSUSED*/
16359static int
16360dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16361{
16362	dtrace_state_t *state;
16363
16364	switch (cmd) {
16365	case DDI_DETACH:
16366		break;
16367
16368	case DDI_SUSPEND:
16369		return (DDI_SUCCESS);
16370
16371	default:
16372		return (DDI_FAILURE);
16373	}
16374
16375	mutex_enter(&cpu_lock);
16376	mutex_enter(&dtrace_provider_lock);
16377	mutex_enter(&dtrace_lock);
16378
16379	ASSERT(dtrace_opens == 0);
16380
16381	if (dtrace_helpers > 0) {
16382		mutex_exit(&dtrace_provider_lock);
16383		mutex_exit(&dtrace_lock);
16384		mutex_exit(&cpu_lock);
16385		return (DDI_FAILURE);
16386	}
16387
16388	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16389		mutex_exit(&dtrace_provider_lock);
16390		mutex_exit(&dtrace_lock);
16391		mutex_exit(&cpu_lock);
16392		return (DDI_FAILURE);
16393	}
16394
16395	dtrace_provider = NULL;
16396
16397	if ((state = dtrace_anon_grab()) != NULL) {
16398		/*
16399		 * If there were ECBs on this state, the provider should
16400		 * have not been allowed to detach; assert that there is
16401		 * none.
16402		 */
16403		ASSERT(state->dts_necbs == 0);
16404		dtrace_state_destroy(state);
16405
16406		/*
16407		 * If we're being detached with anonymous state, we need to
16408		 * indicate to the kernel debugger that DTrace is now inactive.
16409		 */
16410		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16411	}
16412
16413	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16414	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16415	dtrace_cpu_init = NULL;
16416	dtrace_helpers_cleanup = NULL;
16417	dtrace_helpers_fork = NULL;
16418	dtrace_cpustart_init = NULL;
16419	dtrace_cpustart_fini = NULL;
16420	dtrace_debugger_init = NULL;
16421	dtrace_debugger_fini = NULL;
16422	dtrace_modload = NULL;
16423	dtrace_modunload = NULL;
16424
16425	mutex_exit(&cpu_lock);
16426
16427	if (dtrace_helptrace_enabled) {
16428		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16429		dtrace_helptrace_buffer = NULL;
16430	}
16431
16432	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16433	dtrace_probes = NULL;
16434	dtrace_nprobes = 0;
16435
16436	dtrace_hash_destroy(dtrace_bymod);
16437	dtrace_hash_destroy(dtrace_byfunc);
16438	dtrace_hash_destroy(dtrace_byname);
16439	dtrace_bymod = NULL;
16440	dtrace_byfunc = NULL;
16441	dtrace_byname = NULL;
16442
16443	kmem_cache_destroy(dtrace_state_cache);
16444	vmem_destroy(dtrace_minor);
16445	vmem_destroy(dtrace_arena);
16446
16447	if (dtrace_toxrange != NULL) {
16448		kmem_free(dtrace_toxrange,
16449		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16450		dtrace_toxrange = NULL;
16451		dtrace_toxranges = 0;
16452		dtrace_toxranges_max = 0;
16453	}
16454
16455	ddi_remove_minor_node(dtrace_devi, NULL);
16456	dtrace_devi = NULL;
16457
16458	ddi_soft_state_fini(&dtrace_softstate);
16459
16460	ASSERT(dtrace_vtime_references == 0);
16461	ASSERT(dtrace_opens == 0);
16462	ASSERT(dtrace_retained == NULL);
16463
16464	mutex_exit(&dtrace_lock);
16465	mutex_exit(&dtrace_provider_lock);
16466
16467	/*
16468	 * We don't destroy the task queue until after we have dropped our
16469	 * locks (taskq_destroy() may block on running tasks).  To prevent
16470	 * attempting to do work after we have effectively detached but before
16471	 * the task queue has been destroyed, all tasks dispatched via the
16472	 * task queue must check that DTrace is still attached before
16473	 * performing any operation.
16474	 */
16475	taskq_destroy(dtrace_taskq);
16476	dtrace_taskq = NULL;
16477
16478	return (DDI_SUCCESS);
16479}
16480#endif
16481
16482#if defined(sun)
16483/*ARGSUSED*/
16484static int
16485dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16486{
16487	int error;
16488
16489	switch (infocmd) {
16490	case DDI_INFO_DEVT2DEVINFO:
16491		*result = (void *)dtrace_devi;
16492		error = DDI_SUCCESS;
16493		break;
16494	case DDI_INFO_DEVT2INSTANCE:
16495		*result = (void *)0;
16496		error = DDI_SUCCESS;
16497		break;
16498	default:
16499		error = DDI_FAILURE;
16500	}
16501	return (error);
16502}
16503#endif
16504
16505#if defined(sun)
16506static struct cb_ops dtrace_cb_ops = {
16507	dtrace_open,		/* open */
16508	dtrace_close,		/* close */
16509	nulldev,		/* strategy */
16510	nulldev,		/* print */
16511	nodev,			/* dump */
16512	nodev,			/* read */
16513	nodev,			/* write */
16514	dtrace_ioctl,		/* ioctl */
16515	nodev,			/* devmap */
16516	nodev,			/* mmap */
16517	nodev,			/* segmap */
16518	nochpoll,		/* poll */
16519	ddi_prop_op,		/* cb_prop_op */
16520	0,			/* streamtab  */
16521	D_NEW | D_MP		/* Driver compatibility flag */
16522};
16523
16524static struct dev_ops dtrace_ops = {
16525	DEVO_REV,		/* devo_rev */
16526	0,			/* refcnt */
16527	dtrace_info,		/* get_dev_info */
16528	nulldev,		/* identify */
16529	nulldev,		/* probe */
16530	dtrace_attach,		/* attach */
16531	dtrace_detach,		/* detach */
16532	nodev,			/* reset */
16533	&dtrace_cb_ops,		/* driver operations */
16534	NULL,			/* bus operations */
16535	nodev			/* dev power */
16536};
16537
16538static struct modldrv modldrv = {
16539	&mod_driverops,		/* module type (this is a pseudo driver) */
16540	"Dynamic Tracing",	/* name of module */
16541	&dtrace_ops,		/* driver ops */
16542};
16543
16544static struct modlinkage modlinkage = {
16545	MODREV_1,
16546	(void *)&modldrv,
16547	NULL
16548};
16549
16550int
16551_init(void)
16552{
16553	return (mod_install(&modlinkage));
16554}
16555
16556int
16557_info(struct modinfo *modinfop)
16558{
16559	return (mod_info(&modlinkage, modinfop));
16560}
16561
16562int
16563_fini(void)
16564{
16565	return (mod_remove(&modlinkage));
16566}
16567#else
16568
16569static d_ioctl_t	dtrace_ioctl;
16570static d_ioctl_t	dtrace_ioctl_helper;
16571static void		dtrace_load(void *);
16572static int		dtrace_unload(void);
16573#if __FreeBSD_version < 800039
16574static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16575static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16576static eventhandler_tag	eh_tag;			/* Event handler tag. */
16577#else
16578static struct cdev	*dtrace_dev;
16579static struct cdev	*helper_dev;
16580#endif
16581
16582void dtrace_invop_init(void);
16583void dtrace_invop_uninit(void);
16584
16585static struct cdevsw dtrace_cdevsw = {
16586	.d_version	= D_VERSION,
16587	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16588	.d_close	= dtrace_close,
16589	.d_ioctl	= dtrace_ioctl,
16590	.d_open		= dtrace_open,
16591	.d_name		= "dtrace",
16592};
16593
16594static struct cdevsw helper_cdevsw = {
16595	.d_version	= D_VERSION,
16596	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16597	.d_ioctl	= dtrace_ioctl_helper,
16598	.d_name		= "helper",
16599};
16600
16601#include <dtrace_anon.c>
16602#if __FreeBSD_version < 800039
16603#include <dtrace_clone.c>
16604#endif
16605#include <dtrace_ioctl.c>
16606#include <dtrace_load.c>
16607#include <dtrace_modevent.c>
16608#include <dtrace_sysctl.c>
16609#include <dtrace_unload.c>
16610#include <dtrace_vtime.c>
16611#include <dtrace_hacks.c>
16612#include <dtrace_isa.c>
16613
16614SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16615SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16616SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16617
16618DEV_MODULE(dtrace, dtrace_modevent, NULL);
16619MODULE_VERSION(dtrace, 1);
16620MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16621MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16622#endif
16623