dtrace.c revision 235404
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/9/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 235404 2012-05-13 17:01:32Z avg $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * DTrace - Dynamic Tracing for Solaris
33 *
34 * This is the implementation of the Solaris Dynamic Tracing framework
35 * (DTrace).  The user-visible interface to DTrace is described at length in
36 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37 * library, the in-kernel DTrace framework, and the DTrace providers are
38 * described in the block comments in the <sys/dtrace.h> header file.  The
39 * internal architecture of DTrace is described in the block comments in the
40 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41 * implementation very much assume mastery of all of these sources; if one has
42 * an unanswered question about the implementation, one should consult them
43 * first.
44 *
45 * The functions here are ordered roughly as follows:
46 *
47 *   - Probe context functions
48 *   - Probe hashing functions
49 *   - Non-probe context utility functions
50 *   - Matching functions
51 *   - Provider-to-Framework API functions
52 *   - Probe management functions
53 *   - DIF object functions
54 *   - Format functions
55 *   - Predicate functions
56 *   - ECB functions
57 *   - Buffer functions
58 *   - Enabling functions
59 *   - DOF functions
60 *   - Anonymous enabling functions
61 *   - Consumer state functions
62 *   - Helper functions
63 *   - Hook functions
64 *   - Driver cookbook functions
65 *
66 * Each group of functions begins with a block comment labelled the "DTrace
67 * [Group] Functions", allowing one to find each block by searching forward
68 * on capital-f functions.
69 */
70#include <sys/errno.h>
71#if !defined(sun)
72#include <sys/time.h>
73#endif
74#include <sys/stat.h>
75#include <sys/modctl.h>
76#include <sys/conf.h>
77#include <sys/systm.h>
78#if defined(sun)
79#include <sys/ddi.h>
80#include <sys/sunddi.h>
81#endif
82#include <sys/cpuvar.h>
83#include <sys/kmem.h>
84#if defined(sun)
85#include <sys/strsubr.h>
86#endif
87#include <sys/sysmacros.h>
88#include <sys/dtrace_impl.h>
89#include <sys/atomic.h>
90#include <sys/cmn_err.h>
91#if defined(sun)
92#include <sys/mutex_impl.h>
93#include <sys/rwlock_impl.h>
94#endif
95#include <sys/ctf_api.h>
96#if defined(sun)
97#include <sys/panic.h>
98#include <sys/priv_impl.h>
99#endif
100#include <sys/policy.h>
101#if defined(sun)
102#include <sys/cred_impl.h>
103#include <sys/procfs_isa.h>
104#endif
105#include <sys/taskq.h>
106#if defined(sun)
107#include <sys/mkdev.h>
108#include <sys/kdi.h>
109#endif
110#include <sys/zone.h>
111#include <sys/socket.h>
112#include <netinet/in.h>
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/limits.h>
119#include <sys/kdb.h>
120#include <sys/kernel.h>
121#include <sys/malloc.h>
122#include <sys/sysctl.h>
123#include <sys/lock.h>
124#include <sys/mutex.h>
125#include <sys/rwlock.h>
126#include <sys/sx.h>
127#include <sys/dtrace_bsd.h>
128#include <netinet/in.h>
129#include "dtrace_cddl.h"
130#include "dtrace_debug.c"
131#endif
132
133/*
134 * DTrace Tunable Variables
135 *
136 * The following variables may be tuned by adding a line to /etc/system that
137 * includes both the name of the DTrace module ("dtrace") and the name of the
138 * variable.  For example:
139 *
140 *   set dtrace:dtrace_destructive_disallow = 1
141 *
142 * In general, the only variables that one should be tuning this way are those
143 * that affect system-wide DTrace behavior, and for which the default behavior
144 * is undesirable.  Most of these variables are tunable on a per-consumer
145 * basis using DTrace options, and need not be tuned on a system-wide basis.
146 * When tuning these variables, avoid pathological values; while some attempt
147 * is made to verify the integrity of these variables, they are not considered
148 * part of the supported interface to DTrace, and they are therefore not
149 * checked comprehensively.  Further, these variables should not be tuned
150 * dynamically via "mdb -kw" or other means; they should only be tuned via
151 * /etc/system.
152 */
153int		dtrace_destructive_disallow = 0;
154dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155size_t		dtrace_difo_maxsize = (256 * 1024);
156dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
157size_t		dtrace_global_maxsize = (16 * 1024);
158size_t		dtrace_actions_max = (16 * 1024);
159size_t		dtrace_retain_max = 1024;
160dtrace_optval_t	dtrace_helper_actions_max = 32;
161dtrace_optval_t	dtrace_helper_providers_max = 32;
162dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
163size_t		dtrace_strsize_default = 256;
164dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
165dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
166dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
167dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
168dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
170dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
171dtrace_optval_t	dtrace_nspec_default = 1;
172dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
173dtrace_optval_t dtrace_stackframes_default = 20;
174dtrace_optval_t dtrace_ustackframes_default = 20;
175dtrace_optval_t dtrace_jstackframes_default = 50;
176dtrace_optval_t dtrace_jstackstrsize_default = 512;
177int		dtrace_msgdsize_max = 128;
178hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
179hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
180int		dtrace_devdepth_max = 32;
181int		dtrace_err_verbose;
182hrtime_t	dtrace_deadman_interval = NANOSEC;
183hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185
186/*
187 * DTrace External Variables
188 *
189 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
190 * available to DTrace consumers via the backtick (`) syntax.  One of these,
191 * dtrace_zero, is made deliberately so:  it is provided as a source of
192 * well-known, zero-filled memory.  While this variable is not documented,
193 * it is used by some translators as an implementation detail.
194 */
195const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
196
197/*
198 * DTrace Internal Variables
199 */
200#if defined(sun)
201static dev_info_t	*dtrace_devi;		/* device info */
202#endif
203#if defined(sun)
204static vmem_t		*dtrace_arena;		/* probe ID arena */
205static vmem_t		*dtrace_minor;		/* minor number arena */
206static taskq_t		*dtrace_taskq;		/* task queue */
207#else
208static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
209#endif
210static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
211static int		dtrace_nprobes;		/* number of probes */
212static dtrace_provider_t *dtrace_provider;	/* provider list */
213static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
214static int		dtrace_opens;		/* number of opens */
215static int		dtrace_helpers;		/* number of helpers */
216#if defined(sun)
217static void		*dtrace_softstate;	/* softstate pointer */
218#endif
219static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
220static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
221static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
222static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
223static int		dtrace_toxranges;	/* number of toxic ranges */
224static int		dtrace_toxranges_max;	/* size of toxic range array */
225static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
226static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
227static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
228static kthread_t	*dtrace_panicked;	/* panicking thread */
229static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
230static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
231static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
232static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
233static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
234#if !defined(sun)
235static struct mtx	dtrace_unr_mtx;
236MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
237int		dtrace_in_probe;	/* non-zero if executing a probe */
238#if defined(__i386__) || defined(__amd64__)
239uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
240#endif
241#endif
242
243/*
244 * DTrace Locking
245 * DTrace is protected by three (relatively coarse-grained) locks:
246 *
247 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
248 *     including enabling state, probes, ECBs, consumer state, helper state,
249 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
250 *     probe context is lock-free -- synchronization is handled via the
251 *     dtrace_sync() cross call mechanism.
252 *
253 * (2) dtrace_provider_lock is required when manipulating provider state, or
254 *     when provider state must be held constant.
255 *
256 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
257 *     when meta provider state must be held constant.
258 *
259 * The lock ordering between these three locks is dtrace_meta_lock before
260 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
261 * several places where dtrace_provider_lock is held by the framework as it
262 * calls into the providers -- which then call back into the framework,
263 * grabbing dtrace_lock.)
264 *
265 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
266 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
267 * role as a coarse-grained lock; it is acquired before both of these locks.
268 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
269 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
270 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
271 * acquired _between_ dtrace_provider_lock and dtrace_lock.
272 */
273static kmutex_t		dtrace_lock;		/* probe state lock */
274static kmutex_t		dtrace_provider_lock;	/* provider state lock */
275static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
276
277#if !defined(sun)
278/* XXX FreeBSD hacks. */
279static kmutex_t		mod_lock;
280
281#define cr_suid		cr_svuid
282#define cr_sgid		cr_svgid
283#define	ipaddr_t	in_addr_t
284#define mod_modname	pathname
285#define vuprintf	vprintf
286#define ttoproc(_a)	((_a)->td_proc)
287#define crgetzoneid(_a)	0
288#define	NCPU		MAXCPU
289#define SNOCD		0
290#define CPU_ON_INTR(_a)	0
291
292#define PRIV_EFFECTIVE		(1 << 0)
293#define PRIV_DTRACE_KERNEL	(1 << 1)
294#define PRIV_DTRACE_PROC	(1 << 2)
295#define PRIV_DTRACE_USER	(1 << 3)
296#define PRIV_PROC_OWNER		(1 << 4)
297#define PRIV_PROC_ZONE		(1 << 5)
298#define PRIV_ALL		~0
299
300SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
301#endif
302
303#if defined(sun)
304#define curcpu	CPU->cpu_id
305#endif
306
307
308/*
309 * DTrace Provider Variables
310 *
311 * These are the variables relating to DTrace as a provider (that is, the
312 * provider of the BEGIN, END, and ERROR probes).
313 */
314static dtrace_pattr_t	dtrace_provider_attr = {
315{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320};
321
322static void
323dtrace_nullop(void)
324{}
325
326static dtrace_pops_t	dtrace_provider_ops = {
327	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
328	(void (*)(void *, modctl_t *))dtrace_nullop,
329	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333	NULL,
334	NULL,
335	NULL,
336	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
337};
338
339static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
340static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
341dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
342
343/*
344 * DTrace Helper Tracing Variables
345 */
346uint32_t dtrace_helptrace_next = 0;
347uint32_t dtrace_helptrace_nlocals;
348char	*dtrace_helptrace_buffer;
349int	dtrace_helptrace_bufsize = 512 * 1024;
350
351#ifdef DEBUG
352int	dtrace_helptrace_enabled = 1;
353#else
354int	dtrace_helptrace_enabled = 0;
355#endif
356
357/*
358 * DTrace Error Hashing
359 *
360 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
361 * table.  This is very useful for checking coverage of tests that are
362 * expected to induce DIF or DOF processing errors, and may be useful for
363 * debugging problems in the DIF code generator or in DOF generation .  The
364 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
365 */
366#ifdef DEBUG
367static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
368static const char *dtrace_errlast;
369static kthread_t *dtrace_errthread;
370static kmutex_t dtrace_errlock;
371#endif
372
373/*
374 * DTrace Macros and Constants
375 *
376 * These are various macros that are useful in various spots in the
377 * implementation, along with a few random constants that have no meaning
378 * outside of the implementation.  There is no real structure to this cpp
379 * mishmash -- but is there ever?
380 */
381#define	DTRACE_HASHSTR(hash, probe)	\
382	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
383
384#define	DTRACE_HASHNEXT(hash, probe)	\
385	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
386
387#define	DTRACE_HASHPREV(hash, probe)	\
388	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
389
390#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
391	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
392	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
393
394#define	DTRACE_AGGHASHSIZE_SLEW		17
395
396#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
397
398/*
399 * The key for a thread-local variable consists of the lower 61 bits of the
400 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
401 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
402 * equal to a variable identifier.  This is necessary (but not sufficient) to
403 * assure that global associative arrays never collide with thread-local
404 * variables.  To guarantee that they cannot collide, we must also define the
405 * order for keying dynamic variables.  That order is:
406 *
407 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
408 *
409 * Because the variable-key and the tls-key are in orthogonal spaces, there is
410 * no way for a global variable key signature to match a thread-local key
411 * signature.
412 */
413#if defined(sun)
414#define	DTRACE_TLS_THRKEY(where) { \
415	uint_t intr = 0; \
416	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
417	for (; actv; actv >>= 1) \
418		intr++; \
419	ASSERT(intr < (1 << 3)); \
420	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
421	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
422}
423#else
424#define	DTRACE_TLS_THRKEY(where) { \
425	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
426	uint_t intr = 0; \
427	uint_t actv = _c->cpu_intr_actv; \
428	for (; actv; actv >>= 1) \
429		intr++; \
430	ASSERT(intr < (1 << 3)); \
431	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
432	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
433}
434#endif
435
436#define	DT_BSWAP_8(x)	((x) & 0xff)
437#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
438#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
439#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
440
441#define	DT_MASK_LO 0x00000000FFFFFFFFULL
442
443#define	DTRACE_STORE(type, tomax, offset, what) \
444	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
445
446#ifndef __i386
447#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
448	if (addr & (size - 1)) {					\
449		*flags |= CPU_DTRACE_BADALIGN;				\
450		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
451		return (0);						\
452	}
453#else
454#define	DTRACE_ALIGNCHECK(addr, size, flags)
455#endif
456
457/*
458 * Test whether a range of memory starting at testaddr of size testsz falls
459 * within the range of memory described by addr, sz.  We take care to avoid
460 * problems with overflow and underflow of the unsigned quantities, and
461 * disallow all negative sizes.  Ranges of size 0 are allowed.
462 */
463#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
464	((testaddr) - (baseaddr) < (basesz) && \
465	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
466	(testaddr) + (testsz) >= (testaddr))
467
468/*
469 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
470 * alloc_sz on the righthand side of the comparison in order to avoid overflow
471 * or underflow in the comparison with it.  This is simpler than the INRANGE
472 * check above, because we know that the dtms_scratch_ptr is valid in the
473 * range.  Allocations of size zero are allowed.
474 */
475#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
476	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
477	(mstate)->dtms_scratch_ptr >= (alloc_sz))
478
479#define	DTRACE_LOADFUNC(bits)						\
480/*CSTYLED*/								\
481uint##bits##_t								\
482dtrace_load##bits(uintptr_t addr)					\
483{									\
484	size_t size = bits / NBBY;					\
485	/*CSTYLED*/							\
486	uint##bits##_t rval;						\
487	int i;								\
488	volatile uint16_t *flags = (volatile uint16_t *)		\
489	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
490									\
491	DTRACE_ALIGNCHECK(addr, size, flags);				\
492									\
493	for (i = 0; i < dtrace_toxranges; i++) {			\
494		if (addr >= dtrace_toxrange[i].dtt_limit)		\
495			continue;					\
496									\
497		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
498			continue;					\
499									\
500		/*							\
501		 * This address falls within a toxic region; return 0.	\
502		 */							\
503		*flags |= CPU_DTRACE_BADADDR;				\
504		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
505		return (0);						\
506	}								\
507									\
508	*flags |= CPU_DTRACE_NOFAULT;					\
509	/*CSTYLED*/							\
510	rval = *((volatile uint##bits##_t *)addr);			\
511	*flags &= ~CPU_DTRACE_NOFAULT;					\
512									\
513	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
514}
515
516#ifdef _LP64
517#define	dtrace_loadptr	dtrace_load64
518#else
519#define	dtrace_loadptr	dtrace_load32
520#endif
521
522#define	DTRACE_DYNHASH_FREE	0
523#define	DTRACE_DYNHASH_SINK	1
524#define	DTRACE_DYNHASH_VALID	2
525
526#define	DTRACE_MATCH_NEXT	0
527#define	DTRACE_MATCH_DONE	1
528#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
529#define	DTRACE_STATE_ALIGN	64
530
531#define	DTRACE_FLAGS2FLT(flags)						\
532	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
533	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
534	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
535	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
536	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
537	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
538	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
539	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
540	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
541	DTRACEFLT_UNKNOWN)
542
543#define	DTRACEACT_ISSTRING(act)						\
544	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
545	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
546
547/* Function prototype definitions: */
548static size_t dtrace_strlen(const char *, size_t);
549static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
550static void dtrace_enabling_provide(dtrace_provider_t *);
551static int dtrace_enabling_match(dtrace_enabling_t *, int *);
552static void dtrace_enabling_matchall(void);
553static dtrace_state_t *dtrace_anon_grab(void);
554static uint64_t dtrace_helper(int, dtrace_mstate_t *,
555    dtrace_state_t *, uint64_t, uint64_t);
556static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
557static void dtrace_buffer_drop(dtrace_buffer_t *);
558static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
559    dtrace_state_t *, dtrace_mstate_t *);
560static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
561    dtrace_optval_t);
562static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
563static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
564uint16_t dtrace_load16(uintptr_t);
565uint32_t dtrace_load32(uintptr_t);
566uint64_t dtrace_load64(uintptr_t);
567uint8_t dtrace_load8(uintptr_t);
568void dtrace_dynvar_clean(dtrace_dstate_t *);
569dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
570    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
571uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
572
573/*
574 * DTrace Probe Context Functions
575 *
576 * These functions are called from probe context.  Because probe context is
577 * any context in which C may be called, arbitrarily locks may be held,
578 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
579 * As a result, functions called from probe context may only call other DTrace
580 * support functions -- they may not interact at all with the system at large.
581 * (Note that the ASSERT macro is made probe-context safe by redefining it in
582 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
583 * loads are to be performed from probe context, they _must_ be in terms of
584 * the safe dtrace_load*() variants.
585 *
586 * Some functions in this block are not actually called from probe context;
587 * for these functions, there will be a comment above the function reading
588 * "Note:  not called from probe context."
589 */
590void
591dtrace_panic(const char *format, ...)
592{
593	va_list alist;
594
595	va_start(alist, format);
596	dtrace_vpanic(format, alist);
597	va_end(alist);
598}
599
600int
601dtrace_assfail(const char *a, const char *f, int l)
602{
603	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
604
605	/*
606	 * We just need something here that even the most clever compiler
607	 * cannot optimize away.
608	 */
609	return (a[(uintptr_t)f]);
610}
611
612/*
613 * Atomically increment a specified error counter from probe context.
614 */
615static void
616dtrace_error(uint32_t *counter)
617{
618	/*
619	 * Most counters stored to in probe context are per-CPU counters.
620	 * However, there are some error conditions that are sufficiently
621	 * arcane that they don't merit per-CPU storage.  If these counters
622	 * are incremented concurrently on different CPUs, scalability will be
623	 * adversely affected -- but we don't expect them to be white-hot in a
624	 * correctly constructed enabling...
625	 */
626	uint32_t oval, nval;
627
628	do {
629		oval = *counter;
630
631		if ((nval = oval + 1) == 0) {
632			/*
633			 * If the counter would wrap, set it to 1 -- assuring
634			 * that the counter is never zero when we have seen
635			 * errors.  (The counter must be 32-bits because we
636			 * aren't guaranteed a 64-bit compare&swap operation.)
637			 * To save this code both the infamy of being fingered
638			 * by a priggish news story and the indignity of being
639			 * the target of a neo-puritan witch trial, we're
640			 * carefully avoiding any colorful description of the
641			 * likelihood of this condition -- but suffice it to
642			 * say that it is only slightly more likely than the
643			 * overflow of predicate cache IDs, as discussed in
644			 * dtrace_predicate_create().
645			 */
646			nval = 1;
647		}
648	} while (dtrace_cas32(counter, oval, nval) != oval);
649}
650
651/*
652 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
653 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
654 */
655DTRACE_LOADFUNC(8)
656DTRACE_LOADFUNC(16)
657DTRACE_LOADFUNC(32)
658DTRACE_LOADFUNC(64)
659
660static int
661dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
662{
663	if (dest < mstate->dtms_scratch_base)
664		return (0);
665
666	if (dest + size < dest)
667		return (0);
668
669	if (dest + size > mstate->dtms_scratch_ptr)
670		return (0);
671
672	return (1);
673}
674
675static int
676dtrace_canstore_statvar(uint64_t addr, size_t sz,
677    dtrace_statvar_t **svars, int nsvars)
678{
679	int i;
680
681	for (i = 0; i < nsvars; i++) {
682		dtrace_statvar_t *svar = svars[i];
683
684		if (svar == NULL || svar->dtsv_size == 0)
685			continue;
686
687		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
688			return (1);
689	}
690
691	return (0);
692}
693
694/*
695 * Check to see if the address is within a memory region to which a store may
696 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
697 * region.  The caller of dtrace_canstore() is responsible for performing any
698 * alignment checks that are needed before stores are actually executed.
699 */
700static int
701dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
702    dtrace_vstate_t *vstate)
703{
704	/*
705	 * First, check to see if the address is in scratch space...
706	 */
707	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
708	    mstate->dtms_scratch_size))
709		return (1);
710
711	/*
712	 * Now check to see if it's a dynamic variable.  This check will pick
713	 * up both thread-local variables and any global dynamically-allocated
714	 * variables.
715	 */
716	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
717	    vstate->dtvs_dynvars.dtds_size)) {
718		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
719		uintptr_t base = (uintptr_t)dstate->dtds_base +
720		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
721		uintptr_t chunkoffs;
722
723		/*
724		 * Before we assume that we can store here, we need to make
725		 * sure that it isn't in our metadata -- storing to our
726		 * dynamic variable metadata would corrupt our state.  For
727		 * the range to not include any dynamic variable metadata,
728		 * it must:
729		 *
730		 *	(1) Start above the hash table that is at the base of
731		 *	the dynamic variable space
732		 *
733		 *	(2) Have a starting chunk offset that is beyond the
734		 *	dtrace_dynvar_t that is at the base of every chunk
735		 *
736		 *	(3) Not span a chunk boundary
737		 *
738		 */
739		if (addr < base)
740			return (0);
741
742		chunkoffs = (addr - base) % dstate->dtds_chunksize;
743
744		if (chunkoffs < sizeof (dtrace_dynvar_t))
745			return (0);
746
747		if (chunkoffs + sz > dstate->dtds_chunksize)
748			return (0);
749
750		return (1);
751	}
752
753	/*
754	 * Finally, check the static local and global variables.  These checks
755	 * take the longest, so we perform them last.
756	 */
757	if (dtrace_canstore_statvar(addr, sz,
758	    vstate->dtvs_locals, vstate->dtvs_nlocals))
759		return (1);
760
761	if (dtrace_canstore_statvar(addr, sz,
762	    vstate->dtvs_globals, vstate->dtvs_nglobals))
763		return (1);
764
765	return (0);
766}
767
768
769/*
770 * Convenience routine to check to see if the address is within a memory
771 * region in which a load may be issued given the user's privilege level;
772 * if not, it sets the appropriate error flags and loads 'addr' into the
773 * illegal value slot.
774 *
775 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
776 * appropriate memory access protection.
777 */
778static int
779dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780    dtrace_vstate_t *vstate)
781{
782	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
783
784	/*
785	 * If we hold the privilege to read from kernel memory, then
786	 * everything is readable.
787	 */
788	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
789		return (1);
790
791	/*
792	 * You can obviously read that which you can store.
793	 */
794	if (dtrace_canstore(addr, sz, mstate, vstate))
795		return (1);
796
797	/*
798	 * We're allowed to read from our own string table.
799	 */
800	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
801	    mstate->dtms_difo->dtdo_strlen))
802		return (1);
803
804	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805	*illval = addr;
806	return (0);
807}
808
809/*
810 * Convenience routine to check to see if a given string is within a memory
811 * region in which a load may be issued given the user's privilege level;
812 * this exists so that we don't need to issue unnecessary dtrace_strlen()
813 * calls in the event that the user has all privileges.
814 */
815static int
816dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817    dtrace_vstate_t *vstate)
818{
819	size_t strsz;
820
821	/*
822	 * If we hold the privilege to read from kernel memory, then
823	 * everything is readable.
824	 */
825	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826		return (1);
827
828	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829	if (dtrace_canload(addr, strsz, mstate, vstate))
830		return (1);
831
832	return (0);
833}
834
835/*
836 * Convenience routine to check to see if a given variable is within a memory
837 * region in which a load may be issued given the user's privilege level.
838 */
839static int
840dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841    dtrace_vstate_t *vstate)
842{
843	size_t sz;
844	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845
846	/*
847	 * If we hold the privilege to read from kernel memory, then
848	 * everything is readable.
849	 */
850	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851		return (1);
852
853	if (type->dtdt_kind == DIF_TYPE_STRING)
854		sz = dtrace_strlen(src,
855		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856	else
857		sz = type->dtdt_size;
858
859	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860}
861
862/*
863 * Compare two strings using safe loads.
864 */
865static int
866dtrace_strncmp(char *s1, char *s2, size_t limit)
867{
868	uint8_t c1, c2;
869	volatile uint16_t *flags;
870
871	if (s1 == s2 || limit == 0)
872		return (0);
873
874	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
875
876	do {
877		if (s1 == NULL) {
878			c1 = '\0';
879		} else {
880			c1 = dtrace_load8((uintptr_t)s1++);
881		}
882
883		if (s2 == NULL) {
884			c2 = '\0';
885		} else {
886			c2 = dtrace_load8((uintptr_t)s2++);
887		}
888
889		if (c1 != c2)
890			return (c1 - c2);
891	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
892
893	return (0);
894}
895
896/*
897 * Compute strlen(s) for a string using safe memory accesses.  The additional
898 * len parameter is used to specify a maximum length to ensure completion.
899 */
900static size_t
901dtrace_strlen(const char *s, size_t lim)
902{
903	uint_t len;
904
905	for (len = 0; len != lim; len++) {
906		if (dtrace_load8((uintptr_t)s++) == '\0')
907			break;
908	}
909
910	return (len);
911}
912
913/*
914 * Check if an address falls within a toxic region.
915 */
916static int
917dtrace_istoxic(uintptr_t kaddr, size_t size)
918{
919	uintptr_t taddr, tsize;
920	int i;
921
922	for (i = 0; i < dtrace_toxranges; i++) {
923		taddr = dtrace_toxrange[i].dtt_base;
924		tsize = dtrace_toxrange[i].dtt_limit - taddr;
925
926		if (kaddr - taddr < tsize) {
927			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
928			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
929			return (1);
930		}
931
932		if (taddr - kaddr < size) {
933			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
935			return (1);
936		}
937	}
938
939	return (0);
940}
941
942/*
943 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
944 * memory specified by the DIF program.  The dst is assumed to be safe memory
945 * that we can store to directly because it is managed by DTrace.  As with
946 * standard bcopy, overlapping copies are handled properly.
947 */
948static void
949dtrace_bcopy(const void *src, void *dst, size_t len)
950{
951	if (len != 0) {
952		uint8_t *s1 = dst;
953		const uint8_t *s2 = src;
954
955		if (s1 <= s2) {
956			do {
957				*s1++ = dtrace_load8((uintptr_t)s2++);
958			} while (--len != 0);
959		} else {
960			s2 += len;
961			s1 += len;
962
963			do {
964				*--s1 = dtrace_load8((uintptr_t)--s2);
965			} while (--len != 0);
966		}
967	}
968}
969
970/*
971 * Copy src to dst using safe memory accesses, up to either the specified
972 * length, or the point that a nul byte is encountered.  The src is assumed to
973 * be unsafe memory specified by the DIF program.  The dst is assumed to be
974 * safe memory that we can store to directly because it is managed by DTrace.
975 * Unlike dtrace_bcopy(), overlapping regions are not handled.
976 */
977static void
978dtrace_strcpy(const void *src, void *dst, size_t len)
979{
980	if (len != 0) {
981		uint8_t *s1 = dst, c;
982		const uint8_t *s2 = src;
983
984		do {
985			*s1++ = c = dtrace_load8((uintptr_t)s2++);
986		} while (--len != 0 && c != '\0');
987	}
988}
989
990/*
991 * Copy src to dst, deriving the size and type from the specified (BYREF)
992 * variable type.  The src is assumed to be unsafe memory specified by the DIF
993 * program.  The dst is assumed to be DTrace variable memory that is of the
994 * specified type; we assume that we can store to directly.
995 */
996static void
997dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
998{
999	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1000
1001	if (type->dtdt_kind == DIF_TYPE_STRING) {
1002		dtrace_strcpy(src, dst, type->dtdt_size);
1003	} else {
1004		dtrace_bcopy(src, dst, type->dtdt_size);
1005	}
1006}
1007
1008/*
1009 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1010 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1011 * safe memory that we can access directly because it is managed by DTrace.
1012 */
1013static int
1014dtrace_bcmp(const void *s1, const void *s2, size_t len)
1015{
1016	volatile uint16_t *flags;
1017
1018	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1019
1020	if (s1 == s2)
1021		return (0);
1022
1023	if (s1 == NULL || s2 == NULL)
1024		return (1);
1025
1026	if (s1 != s2 && len != 0) {
1027		const uint8_t *ps1 = s1;
1028		const uint8_t *ps2 = s2;
1029
1030		do {
1031			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1032				return (1);
1033		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1034	}
1035	return (0);
1036}
1037
1038/*
1039 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1040 * is for safe DTrace-managed memory only.
1041 */
1042static void
1043dtrace_bzero(void *dst, size_t len)
1044{
1045	uchar_t *cp;
1046
1047	for (cp = dst; len != 0; len--)
1048		*cp++ = 0;
1049}
1050
1051static void
1052dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1053{
1054	uint64_t result[2];
1055
1056	result[0] = addend1[0] + addend2[0];
1057	result[1] = addend1[1] + addend2[1] +
1058	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1059
1060	sum[0] = result[0];
1061	sum[1] = result[1];
1062}
1063
1064/*
1065 * Shift the 128-bit value in a by b. If b is positive, shift left.
1066 * If b is negative, shift right.
1067 */
1068static void
1069dtrace_shift_128(uint64_t *a, int b)
1070{
1071	uint64_t mask;
1072
1073	if (b == 0)
1074		return;
1075
1076	if (b < 0) {
1077		b = -b;
1078		if (b >= 64) {
1079			a[0] = a[1] >> (b - 64);
1080			a[1] = 0;
1081		} else {
1082			a[0] >>= b;
1083			mask = 1LL << (64 - b);
1084			mask -= 1;
1085			a[0] |= ((a[1] & mask) << (64 - b));
1086			a[1] >>= b;
1087		}
1088	} else {
1089		if (b >= 64) {
1090			a[1] = a[0] << (b - 64);
1091			a[0] = 0;
1092		} else {
1093			a[1] <<= b;
1094			mask = a[0] >> (64 - b);
1095			a[1] |= mask;
1096			a[0] <<= b;
1097		}
1098	}
1099}
1100
1101/*
1102 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1103 * use native multiplication on those, and then re-combine into the
1104 * resulting 128-bit value.
1105 *
1106 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1107 *     hi1 * hi2 << 64 +
1108 *     hi1 * lo2 << 32 +
1109 *     hi2 * lo1 << 32 +
1110 *     lo1 * lo2
1111 */
1112static void
1113dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1114{
1115	uint64_t hi1, hi2, lo1, lo2;
1116	uint64_t tmp[2];
1117
1118	hi1 = factor1 >> 32;
1119	hi2 = factor2 >> 32;
1120
1121	lo1 = factor1 & DT_MASK_LO;
1122	lo2 = factor2 & DT_MASK_LO;
1123
1124	product[0] = lo1 * lo2;
1125	product[1] = hi1 * hi2;
1126
1127	tmp[0] = hi1 * lo2;
1128	tmp[1] = 0;
1129	dtrace_shift_128(tmp, 32);
1130	dtrace_add_128(product, tmp, product);
1131
1132	tmp[0] = hi2 * lo1;
1133	tmp[1] = 0;
1134	dtrace_shift_128(tmp, 32);
1135	dtrace_add_128(product, tmp, product);
1136}
1137
1138/*
1139 * This privilege check should be used by actions and subroutines to
1140 * verify that the user credentials of the process that enabled the
1141 * invoking ECB match the target credentials
1142 */
1143static int
1144dtrace_priv_proc_common_user(dtrace_state_t *state)
1145{
1146	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1147
1148	/*
1149	 * We should always have a non-NULL state cred here, since if cred
1150	 * is null (anonymous tracing), we fast-path bypass this routine.
1151	 */
1152	ASSERT(s_cr != NULL);
1153
1154	if ((cr = CRED()) != NULL &&
1155	    s_cr->cr_uid == cr->cr_uid &&
1156	    s_cr->cr_uid == cr->cr_ruid &&
1157	    s_cr->cr_uid == cr->cr_suid &&
1158	    s_cr->cr_gid == cr->cr_gid &&
1159	    s_cr->cr_gid == cr->cr_rgid &&
1160	    s_cr->cr_gid == cr->cr_sgid)
1161		return (1);
1162
1163	return (0);
1164}
1165
1166/*
1167 * This privilege check should be used by actions and subroutines to
1168 * verify that the zone of the process that enabled the invoking ECB
1169 * matches the target credentials
1170 */
1171static int
1172dtrace_priv_proc_common_zone(dtrace_state_t *state)
1173{
1174#if defined(sun)
1175	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1176
1177	/*
1178	 * We should always have a non-NULL state cred here, since if cred
1179	 * is null (anonymous tracing), we fast-path bypass this routine.
1180	 */
1181	ASSERT(s_cr != NULL);
1182
1183	if ((cr = CRED()) != NULL &&
1184	    s_cr->cr_zone == cr->cr_zone)
1185		return (1);
1186
1187	return (0);
1188#else
1189	return (1);
1190#endif
1191}
1192
1193/*
1194 * This privilege check should be used by actions and subroutines to
1195 * verify that the process has not setuid or changed credentials.
1196 */
1197static int
1198dtrace_priv_proc_common_nocd(void)
1199{
1200	proc_t *proc;
1201
1202	if ((proc = ttoproc(curthread)) != NULL &&
1203	    !(proc->p_flag & SNOCD))
1204		return (1);
1205
1206	return (0);
1207}
1208
1209static int
1210dtrace_priv_proc_destructive(dtrace_state_t *state)
1211{
1212	int action = state->dts_cred.dcr_action;
1213
1214	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1215	    dtrace_priv_proc_common_zone(state) == 0)
1216		goto bad;
1217
1218	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1219	    dtrace_priv_proc_common_user(state) == 0)
1220		goto bad;
1221
1222	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1223	    dtrace_priv_proc_common_nocd() == 0)
1224		goto bad;
1225
1226	return (1);
1227
1228bad:
1229	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1230
1231	return (0);
1232}
1233
1234static int
1235dtrace_priv_proc_control(dtrace_state_t *state)
1236{
1237	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1238		return (1);
1239
1240	if (dtrace_priv_proc_common_zone(state) &&
1241	    dtrace_priv_proc_common_user(state) &&
1242	    dtrace_priv_proc_common_nocd())
1243		return (1);
1244
1245	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1246
1247	return (0);
1248}
1249
1250static int
1251dtrace_priv_proc(dtrace_state_t *state)
1252{
1253	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1254		return (1);
1255
1256	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257
1258	return (0);
1259}
1260
1261static int
1262dtrace_priv_kernel(dtrace_state_t *state)
1263{
1264	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265		return (1);
1266
1267	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268
1269	return (0);
1270}
1271
1272static int
1273dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274{
1275	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276		return (1);
1277
1278	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279
1280	return (0);
1281}
1282
1283/*
1284 * Note:  not called from probe context.  This function is called
1285 * asynchronously (and at a regular interval) from outside of probe context to
1286 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1287 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1288 */
1289void
1290dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1291{
1292	dtrace_dynvar_t *dirty;
1293	dtrace_dstate_percpu_t *dcpu;
1294	int i, work = 0;
1295
1296	for (i = 0; i < NCPU; i++) {
1297		dcpu = &dstate->dtds_percpu[i];
1298
1299		ASSERT(dcpu->dtdsc_rinsing == NULL);
1300
1301		/*
1302		 * If the dirty list is NULL, there is no dirty work to do.
1303		 */
1304		if (dcpu->dtdsc_dirty == NULL)
1305			continue;
1306
1307		/*
1308		 * If the clean list is non-NULL, then we're not going to do
1309		 * any work for this CPU -- it means that there has not been
1310		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1311		 * since the last time we cleaned house.
1312		 */
1313		if (dcpu->dtdsc_clean != NULL)
1314			continue;
1315
1316		work = 1;
1317
1318		/*
1319		 * Atomically move the dirty list aside.
1320		 */
1321		do {
1322			dirty = dcpu->dtdsc_dirty;
1323
1324			/*
1325			 * Before we zap the dirty list, set the rinsing list.
1326			 * (This allows for a potential assertion in
1327			 * dtrace_dynvar():  if a free dynamic variable appears
1328			 * on a hash chain, either the dirty list or the
1329			 * rinsing list for some CPU must be non-NULL.)
1330			 */
1331			dcpu->dtdsc_rinsing = dirty;
1332			dtrace_membar_producer();
1333		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1334		    dirty, NULL) != dirty);
1335	}
1336
1337	if (!work) {
1338		/*
1339		 * We have no work to do; we can simply return.
1340		 */
1341		return;
1342	}
1343
1344	dtrace_sync();
1345
1346	for (i = 0; i < NCPU; i++) {
1347		dcpu = &dstate->dtds_percpu[i];
1348
1349		if (dcpu->dtdsc_rinsing == NULL)
1350			continue;
1351
1352		/*
1353		 * We are now guaranteed that no hash chain contains a pointer
1354		 * into this dirty list; we can make it clean.
1355		 */
1356		ASSERT(dcpu->dtdsc_clean == NULL);
1357		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1358		dcpu->dtdsc_rinsing = NULL;
1359	}
1360
1361	/*
1362	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1363	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1364	 * This prevents a race whereby a CPU incorrectly decides that
1365	 * the state should be something other than DTRACE_DSTATE_CLEAN
1366	 * after dtrace_dynvar_clean() has completed.
1367	 */
1368	dtrace_sync();
1369
1370	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1371}
1372
1373/*
1374 * Depending on the value of the op parameter, this function looks-up,
1375 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1376 * allocation is requested, this function will return a pointer to a
1377 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1378 * variable can be allocated.  If NULL is returned, the appropriate counter
1379 * will be incremented.
1380 */
1381dtrace_dynvar_t *
1382dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1383    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1384    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1385{
1386	uint64_t hashval = DTRACE_DYNHASH_VALID;
1387	dtrace_dynhash_t *hash = dstate->dtds_hash;
1388	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1389	processorid_t me = curcpu, cpu = me;
1390	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1391	size_t bucket, ksize;
1392	size_t chunksize = dstate->dtds_chunksize;
1393	uintptr_t kdata, lock, nstate;
1394	uint_t i;
1395
1396	ASSERT(nkeys != 0);
1397
1398	/*
1399	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1400	 * algorithm.  For the by-value portions, we perform the algorithm in
1401	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1402	 * bit, and seems to have only a minute effect on distribution.  For
1403	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1404	 * over each referenced byte.  It's painful to do this, but it's much
1405	 * better than pathological hash distribution.  The efficacy of the
1406	 * hashing algorithm (and a comparison with other algorithms) may be
1407	 * found by running the ::dtrace_dynstat MDB dcmd.
1408	 */
1409	for (i = 0; i < nkeys; i++) {
1410		if (key[i].dttk_size == 0) {
1411			uint64_t val = key[i].dttk_value;
1412
1413			hashval += (val >> 48) & 0xffff;
1414			hashval += (hashval << 10);
1415			hashval ^= (hashval >> 6);
1416
1417			hashval += (val >> 32) & 0xffff;
1418			hashval += (hashval << 10);
1419			hashval ^= (hashval >> 6);
1420
1421			hashval += (val >> 16) & 0xffff;
1422			hashval += (hashval << 10);
1423			hashval ^= (hashval >> 6);
1424
1425			hashval += val & 0xffff;
1426			hashval += (hashval << 10);
1427			hashval ^= (hashval >> 6);
1428		} else {
1429			/*
1430			 * This is incredibly painful, but it beats the hell
1431			 * out of the alternative.
1432			 */
1433			uint64_t j, size = key[i].dttk_size;
1434			uintptr_t base = (uintptr_t)key[i].dttk_value;
1435
1436			if (!dtrace_canload(base, size, mstate, vstate))
1437				break;
1438
1439			for (j = 0; j < size; j++) {
1440				hashval += dtrace_load8(base + j);
1441				hashval += (hashval << 10);
1442				hashval ^= (hashval >> 6);
1443			}
1444		}
1445	}
1446
1447	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1448		return (NULL);
1449
1450	hashval += (hashval << 3);
1451	hashval ^= (hashval >> 11);
1452	hashval += (hashval << 15);
1453
1454	/*
1455	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1456	 * comes out to be one of our two sentinel hash values.  If this
1457	 * actually happens, we set the hashval to be a value known to be a
1458	 * non-sentinel value.
1459	 */
1460	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1461		hashval = DTRACE_DYNHASH_VALID;
1462
1463	/*
1464	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1465	 * important here, tricks can be pulled to reduce it.  (However, it's
1466	 * critical that hash collisions be kept to an absolute minimum;
1467	 * they're much more painful than a divide.)  It's better to have a
1468	 * solution that generates few collisions and still keeps things
1469	 * relatively simple.
1470	 */
1471	bucket = hashval % dstate->dtds_hashsize;
1472
1473	if (op == DTRACE_DYNVAR_DEALLOC) {
1474		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1475
1476		for (;;) {
1477			while ((lock = *lockp) & 1)
1478				continue;
1479
1480			if (dtrace_casptr((volatile void *)lockp,
1481			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1482				break;
1483		}
1484
1485		dtrace_membar_producer();
1486	}
1487
1488top:
1489	prev = NULL;
1490	lock = hash[bucket].dtdh_lock;
1491
1492	dtrace_membar_consumer();
1493
1494	start = hash[bucket].dtdh_chain;
1495	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1496	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1497	    op != DTRACE_DYNVAR_DEALLOC));
1498
1499	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1500		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1501		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1502
1503		if (dvar->dtdv_hashval != hashval) {
1504			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1505				/*
1506				 * We've reached the sink, and therefore the
1507				 * end of the hash chain; we can kick out of
1508				 * the loop knowing that we have seen a valid
1509				 * snapshot of state.
1510				 */
1511				ASSERT(dvar->dtdv_next == NULL);
1512				ASSERT(dvar == &dtrace_dynhash_sink);
1513				break;
1514			}
1515
1516			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1517				/*
1518				 * We've gone off the rails:  somewhere along
1519				 * the line, one of the members of this hash
1520				 * chain was deleted.  Note that we could also
1521				 * detect this by simply letting this loop run
1522				 * to completion, as we would eventually hit
1523				 * the end of the dirty list.  However, we
1524				 * want to avoid running the length of the
1525				 * dirty list unnecessarily (it might be quite
1526				 * long), so we catch this as early as
1527				 * possible by detecting the hash marker.  In
1528				 * this case, we simply set dvar to NULL and
1529				 * break; the conditional after the loop will
1530				 * send us back to top.
1531				 */
1532				dvar = NULL;
1533				break;
1534			}
1535
1536			goto next;
1537		}
1538
1539		if (dtuple->dtt_nkeys != nkeys)
1540			goto next;
1541
1542		for (i = 0; i < nkeys; i++, dkey++) {
1543			if (dkey->dttk_size != key[i].dttk_size)
1544				goto next; /* size or type mismatch */
1545
1546			if (dkey->dttk_size != 0) {
1547				if (dtrace_bcmp(
1548				    (void *)(uintptr_t)key[i].dttk_value,
1549				    (void *)(uintptr_t)dkey->dttk_value,
1550				    dkey->dttk_size))
1551					goto next;
1552			} else {
1553				if (dkey->dttk_value != key[i].dttk_value)
1554					goto next;
1555			}
1556		}
1557
1558		if (op != DTRACE_DYNVAR_DEALLOC)
1559			return (dvar);
1560
1561		ASSERT(dvar->dtdv_next == NULL ||
1562		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1563
1564		if (prev != NULL) {
1565			ASSERT(hash[bucket].dtdh_chain != dvar);
1566			ASSERT(start != dvar);
1567			ASSERT(prev->dtdv_next == dvar);
1568			prev->dtdv_next = dvar->dtdv_next;
1569		} else {
1570			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1571			    start, dvar->dtdv_next) != start) {
1572				/*
1573				 * We have failed to atomically swing the
1574				 * hash table head pointer, presumably because
1575				 * of a conflicting allocation on another CPU.
1576				 * We need to reread the hash chain and try
1577				 * again.
1578				 */
1579				goto top;
1580			}
1581		}
1582
1583		dtrace_membar_producer();
1584
1585		/*
1586		 * Now set the hash value to indicate that it's free.
1587		 */
1588		ASSERT(hash[bucket].dtdh_chain != dvar);
1589		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1590
1591		dtrace_membar_producer();
1592
1593		/*
1594		 * Set the next pointer to point at the dirty list, and
1595		 * atomically swing the dirty pointer to the newly freed dvar.
1596		 */
1597		do {
1598			next = dcpu->dtdsc_dirty;
1599			dvar->dtdv_next = next;
1600		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1601
1602		/*
1603		 * Finally, unlock this hash bucket.
1604		 */
1605		ASSERT(hash[bucket].dtdh_lock == lock);
1606		ASSERT(lock & 1);
1607		hash[bucket].dtdh_lock++;
1608
1609		return (NULL);
1610next:
1611		prev = dvar;
1612		continue;
1613	}
1614
1615	if (dvar == NULL) {
1616		/*
1617		 * If dvar is NULL, it is because we went off the rails:
1618		 * one of the elements that we traversed in the hash chain
1619		 * was deleted while we were traversing it.  In this case,
1620		 * we assert that we aren't doing a dealloc (deallocs lock
1621		 * the hash bucket to prevent themselves from racing with
1622		 * one another), and retry the hash chain traversal.
1623		 */
1624		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1625		goto top;
1626	}
1627
1628	if (op != DTRACE_DYNVAR_ALLOC) {
1629		/*
1630		 * If we are not to allocate a new variable, we want to
1631		 * return NULL now.  Before we return, check that the value
1632		 * of the lock word hasn't changed.  If it has, we may have
1633		 * seen an inconsistent snapshot.
1634		 */
1635		if (op == DTRACE_DYNVAR_NOALLOC) {
1636			if (hash[bucket].dtdh_lock != lock)
1637				goto top;
1638		} else {
1639			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1640			ASSERT(hash[bucket].dtdh_lock == lock);
1641			ASSERT(lock & 1);
1642			hash[bucket].dtdh_lock++;
1643		}
1644
1645		return (NULL);
1646	}
1647
1648	/*
1649	 * We need to allocate a new dynamic variable.  The size we need is the
1650	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1651	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1652	 * the size of any referred-to data (dsize).  We then round the final
1653	 * size up to the chunksize for allocation.
1654	 */
1655	for (ksize = 0, i = 0; i < nkeys; i++)
1656		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1657
1658	/*
1659	 * This should be pretty much impossible, but could happen if, say,
1660	 * strange DIF specified the tuple.  Ideally, this should be an
1661	 * assertion and not an error condition -- but that requires that the
1662	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1663	 * bullet-proof.  (That is, it must not be able to be fooled by
1664	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1665	 * solving this would presumably not amount to solving the Halting
1666	 * Problem -- but it still seems awfully hard.
1667	 */
1668	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1669	    ksize + dsize > chunksize) {
1670		dcpu->dtdsc_drops++;
1671		return (NULL);
1672	}
1673
1674	nstate = DTRACE_DSTATE_EMPTY;
1675
1676	do {
1677retry:
1678		free = dcpu->dtdsc_free;
1679
1680		if (free == NULL) {
1681			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1682			void *rval;
1683
1684			if (clean == NULL) {
1685				/*
1686				 * We're out of dynamic variable space on
1687				 * this CPU.  Unless we have tried all CPUs,
1688				 * we'll try to allocate from a different
1689				 * CPU.
1690				 */
1691				switch (dstate->dtds_state) {
1692				case DTRACE_DSTATE_CLEAN: {
1693					void *sp = &dstate->dtds_state;
1694
1695					if (++cpu >= NCPU)
1696						cpu = 0;
1697
1698					if (dcpu->dtdsc_dirty != NULL &&
1699					    nstate == DTRACE_DSTATE_EMPTY)
1700						nstate = DTRACE_DSTATE_DIRTY;
1701
1702					if (dcpu->dtdsc_rinsing != NULL)
1703						nstate = DTRACE_DSTATE_RINSING;
1704
1705					dcpu = &dstate->dtds_percpu[cpu];
1706
1707					if (cpu != me)
1708						goto retry;
1709
1710					(void) dtrace_cas32(sp,
1711					    DTRACE_DSTATE_CLEAN, nstate);
1712
1713					/*
1714					 * To increment the correct bean
1715					 * counter, take another lap.
1716					 */
1717					goto retry;
1718				}
1719
1720				case DTRACE_DSTATE_DIRTY:
1721					dcpu->dtdsc_dirty_drops++;
1722					break;
1723
1724				case DTRACE_DSTATE_RINSING:
1725					dcpu->dtdsc_rinsing_drops++;
1726					break;
1727
1728				case DTRACE_DSTATE_EMPTY:
1729					dcpu->dtdsc_drops++;
1730					break;
1731				}
1732
1733				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1734				return (NULL);
1735			}
1736
1737			/*
1738			 * The clean list appears to be non-empty.  We want to
1739			 * move the clean list to the free list; we start by
1740			 * moving the clean pointer aside.
1741			 */
1742			if (dtrace_casptr(&dcpu->dtdsc_clean,
1743			    clean, NULL) != clean) {
1744				/*
1745				 * We are in one of two situations:
1746				 *
1747				 *  (a)	The clean list was switched to the
1748				 *	free list by another CPU.
1749				 *
1750				 *  (b)	The clean list was added to by the
1751				 *	cleansing cyclic.
1752				 *
1753				 * In either of these situations, we can
1754				 * just reattempt the free list allocation.
1755				 */
1756				goto retry;
1757			}
1758
1759			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1760
1761			/*
1762			 * Now we'll move the clean list to the free list.
1763			 * It's impossible for this to fail:  the only way
1764			 * the free list can be updated is through this
1765			 * code path, and only one CPU can own the clean list.
1766			 * Thus, it would only be possible for this to fail if
1767			 * this code were racing with dtrace_dynvar_clean().
1768			 * (That is, if dtrace_dynvar_clean() updated the clean
1769			 * list, and we ended up racing to update the free
1770			 * list.)  This race is prevented by the dtrace_sync()
1771			 * in dtrace_dynvar_clean() -- which flushes the
1772			 * owners of the clean lists out before resetting
1773			 * the clean lists.
1774			 */
1775			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1776			ASSERT(rval == NULL);
1777			goto retry;
1778		}
1779
1780		dvar = free;
1781		new_free = dvar->dtdv_next;
1782	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1783
1784	/*
1785	 * We have now allocated a new chunk.  We copy the tuple keys into the
1786	 * tuple array and copy any referenced key data into the data space
1787	 * following the tuple array.  As we do this, we relocate dttk_value
1788	 * in the final tuple to point to the key data address in the chunk.
1789	 */
1790	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1791	dvar->dtdv_data = (void *)(kdata + ksize);
1792	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1793
1794	for (i = 0; i < nkeys; i++) {
1795		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1796		size_t kesize = key[i].dttk_size;
1797
1798		if (kesize != 0) {
1799			dtrace_bcopy(
1800			    (const void *)(uintptr_t)key[i].dttk_value,
1801			    (void *)kdata, kesize);
1802			dkey->dttk_value = kdata;
1803			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1804		} else {
1805			dkey->dttk_value = key[i].dttk_value;
1806		}
1807
1808		dkey->dttk_size = kesize;
1809	}
1810
1811	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1812	dvar->dtdv_hashval = hashval;
1813	dvar->dtdv_next = start;
1814
1815	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1816		return (dvar);
1817
1818	/*
1819	 * The cas has failed.  Either another CPU is adding an element to
1820	 * this hash chain, or another CPU is deleting an element from this
1821	 * hash chain.  The simplest way to deal with both of these cases
1822	 * (though not necessarily the most efficient) is to free our
1823	 * allocated block and tail-call ourselves.  Note that the free is
1824	 * to the dirty list and _not_ to the free list.  This is to prevent
1825	 * races with allocators, above.
1826	 */
1827	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1828
1829	dtrace_membar_producer();
1830
1831	do {
1832		free = dcpu->dtdsc_dirty;
1833		dvar->dtdv_next = free;
1834	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1835
1836	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1837}
1838
1839/*ARGSUSED*/
1840static void
1841dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1842{
1843	if ((int64_t)nval < (int64_t)*oval)
1844		*oval = nval;
1845}
1846
1847/*ARGSUSED*/
1848static void
1849dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1850{
1851	if ((int64_t)nval > (int64_t)*oval)
1852		*oval = nval;
1853}
1854
1855static void
1856dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1857{
1858	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1859	int64_t val = (int64_t)nval;
1860
1861	if (val < 0) {
1862		for (i = 0; i < zero; i++) {
1863			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1864				quanta[i] += incr;
1865				return;
1866			}
1867		}
1868	} else {
1869		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1870			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1871				quanta[i - 1] += incr;
1872				return;
1873			}
1874		}
1875
1876		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1877		return;
1878	}
1879
1880	ASSERT(0);
1881}
1882
1883static void
1884dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1885{
1886	uint64_t arg = *lquanta++;
1887	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1888	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1889	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1890	int32_t val = (int32_t)nval, level;
1891
1892	ASSERT(step != 0);
1893	ASSERT(levels != 0);
1894
1895	if (val < base) {
1896		/*
1897		 * This is an underflow.
1898		 */
1899		lquanta[0] += incr;
1900		return;
1901	}
1902
1903	level = (val - base) / step;
1904
1905	if (level < levels) {
1906		lquanta[level + 1] += incr;
1907		return;
1908	}
1909
1910	/*
1911	 * This is an overflow.
1912	 */
1913	lquanta[levels + 1] += incr;
1914}
1915
1916/*ARGSUSED*/
1917static void
1918dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1919{
1920	data[0]++;
1921	data[1] += nval;
1922}
1923
1924/*ARGSUSED*/
1925static void
1926dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1927{
1928	int64_t snval = (int64_t)nval;
1929	uint64_t tmp[2];
1930
1931	data[0]++;
1932	data[1] += nval;
1933
1934	/*
1935	 * What we want to say here is:
1936	 *
1937	 * data[2] += nval * nval;
1938	 *
1939	 * But given that nval is 64-bit, we could easily overflow, so
1940	 * we do this as 128-bit arithmetic.
1941	 */
1942	if (snval < 0)
1943		snval = -snval;
1944
1945	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1946	dtrace_add_128(data + 2, tmp, data + 2);
1947}
1948
1949/*ARGSUSED*/
1950static void
1951dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1952{
1953	*oval = *oval + 1;
1954}
1955
1956/*ARGSUSED*/
1957static void
1958dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1959{
1960	*oval += nval;
1961}
1962
1963/*
1964 * Aggregate given the tuple in the principal data buffer, and the aggregating
1965 * action denoted by the specified dtrace_aggregation_t.  The aggregation
1966 * buffer is specified as the buf parameter.  This routine does not return
1967 * failure; if there is no space in the aggregation buffer, the data will be
1968 * dropped, and a corresponding counter incremented.
1969 */
1970static void
1971dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1972    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1973{
1974	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1975	uint32_t i, ndx, size, fsize;
1976	uint32_t align = sizeof (uint64_t) - 1;
1977	dtrace_aggbuffer_t *agb;
1978	dtrace_aggkey_t *key;
1979	uint32_t hashval = 0, limit, isstr;
1980	caddr_t tomax, data, kdata;
1981	dtrace_actkind_t action;
1982	dtrace_action_t *act;
1983	uintptr_t offs;
1984
1985	if (buf == NULL)
1986		return;
1987
1988	if (!agg->dtag_hasarg) {
1989		/*
1990		 * Currently, only quantize() and lquantize() take additional
1991		 * arguments, and they have the same semantics:  an increment
1992		 * value that defaults to 1 when not present.  If additional
1993		 * aggregating actions take arguments, the setting of the
1994		 * default argument value will presumably have to become more
1995		 * sophisticated...
1996		 */
1997		arg = 1;
1998	}
1999
2000	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2001	size = rec->dtrd_offset - agg->dtag_base;
2002	fsize = size + rec->dtrd_size;
2003
2004	ASSERT(dbuf->dtb_tomax != NULL);
2005	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2006
2007	if ((tomax = buf->dtb_tomax) == NULL) {
2008		dtrace_buffer_drop(buf);
2009		return;
2010	}
2011
2012	/*
2013	 * The metastructure is always at the bottom of the buffer.
2014	 */
2015	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2016	    sizeof (dtrace_aggbuffer_t));
2017
2018	if (buf->dtb_offset == 0) {
2019		/*
2020		 * We just kludge up approximately 1/8th of the size to be
2021		 * buckets.  If this guess ends up being routinely
2022		 * off-the-mark, we may need to dynamically readjust this
2023		 * based on past performance.
2024		 */
2025		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2026
2027		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2028		    (uintptr_t)tomax || hashsize == 0) {
2029			/*
2030			 * We've been given a ludicrously small buffer;
2031			 * increment our drop count and leave.
2032			 */
2033			dtrace_buffer_drop(buf);
2034			return;
2035		}
2036
2037		/*
2038		 * And now, a pathetic attempt to try to get a an odd (or
2039		 * perchance, a prime) hash size for better hash distribution.
2040		 */
2041		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2042			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2043
2044		agb->dtagb_hashsize = hashsize;
2045		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2046		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2047		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2048
2049		for (i = 0; i < agb->dtagb_hashsize; i++)
2050			agb->dtagb_hash[i] = NULL;
2051	}
2052
2053	ASSERT(agg->dtag_first != NULL);
2054	ASSERT(agg->dtag_first->dta_intuple);
2055
2056	/*
2057	 * Calculate the hash value based on the key.  Note that we _don't_
2058	 * include the aggid in the hashing (but we will store it as part of
2059	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2060	 * algorithm: a simple, quick algorithm that has no known funnels, and
2061	 * gets good distribution in practice.  The efficacy of the hashing
2062	 * algorithm (and a comparison with other algorithms) may be found by
2063	 * running the ::dtrace_aggstat MDB dcmd.
2064	 */
2065	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2066		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2067		limit = i + act->dta_rec.dtrd_size;
2068		ASSERT(limit <= size);
2069		isstr = DTRACEACT_ISSTRING(act);
2070
2071		for (; i < limit; i++) {
2072			hashval += data[i];
2073			hashval += (hashval << 10);
2074			hashval ^= (hashval >> 6);
2075
2076			if (isstr && data[i] == '\0')
2077				break;
2078		}
2079	}
2080
2081	hashval += (hashval << 3);
2082	hashval ^= (hashval >> 11);
2083	hashval += (hashval << 15);
2084
2085	/*
2086	 * Yes, the divide here is expensive -- but it's generally the least
2087	 * of the performance issues given the amount of data that we iterate
2088	 * over to compute hash values, compare data, etc.
2089	 */
2090	ndx = hashval % agb->dtagb_hashsize;
2091
2092	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2093		ASSERT((caddr_t)key >= tomax);
2094		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2095
2096		if (hashval != key->dtak_hashval || key->dtak_size != size)
2097			continue;
2098
2099		kdata = key->dtak_data;
2100		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2101
2102		for (act = agg->dtag_first; act->dta_intuple;
2103		    act = act->dta_next) {
2104			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2105			limit = i + act->dta_rec.dtrd_size;
2106			ASSERT(limit <= size);
2107			isstr = DTRACEACT_ISSTRING(act);
2108
2109			for (; i < limit; i++) {
2110				if (kdata[i] != data[i])
2111					goto next;
2112
2113				if (isstr && data[i] == '\0')
2114					break;
2115			}
2116		}
2117
2118		if (action != key->dtak_action) {
2119			/*
2120			 * We are aggregating on the same value in the same
2121			 * aggregation with two different aggregating actions.
2122			 * (This should have been picked up in the compiler,
2123			 * so we may be dealing with errant or devious DIF.)
2124			 * This is an error condition; we indicate as much,
2125			 * and return.
2126			 */
2127			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2128			return;
2129		}
2130
2131		/*
2132		 * This is a hit:  we need to apply the aggregator to
2133		 * the value at this key.
2134		 */
2135		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2136		return;
2137next:
2138		continue;
2139	}
2140
2141	/*
2142	 * We didn't find it.  We need to allocate some zero-filled space,
2143	 * link it into the hash table appropriately, and apply the aggregator
2144	 * to the (zero-filled) value.
2145	 */
2146	offs = buf->dtb_offset;
2147	while (offs & (align - 1))
2148		offs += sizeof (uint32_t);
2149
2150	/*
2151	 * If we don't have enough room to both allocate a new key _and_
2152	 * its associated data, increment the drop count and return.
2153	 */
2154	if ((uintptr_t)tomax + offs + fsize >
2155	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2156		dtrace_buffer_drop(buf);
2157		return;
2158	}
2159
2160	/*CONSTCOND*/
2161	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2162	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2163	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2164
2165	key->dtak_data = kdata = tomax + offs;
2166	buf->dtb_offset = offs + fsize;
2167
2168	/*
2169	 * Now copy the data across.
2170	 */
2171	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2172
2173	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2174		kdata[i] = data[i];
2175
2176	/*
2177	 * Because strings are not zeroed out by default, we need to iterate
2178	 * looking for actions that store strings, and we need to explicitly
2179	 * pad these strings out with zeroes.
2180	 */
2181	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2182		int nul;
2183
2184		if (!DTRACEACT_ISSTRING(act))
2185			continue;
2186
2187		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2188		limit = i + act->dta_rec.dtrd_size;
2189		ASSERT(limit <= size);
2190
2191		for (nul = 0; i < limit; i++) {
2192			if (nul) {
2193				kdata[i] = '\0';
2194				continue;
2195			}
2196
2197			if (data[i] != '\0')
2198				continue;
2199
2200			nul = 1;
2201		}
2202	}
2203
2204	for (i = size; i < fsize; i++)
2205		kdata[i] = 0;
2206
2207	key->dtak_hashval = hashval;
2208	key->dtak_size = size;
2209	key->dtak_action = action;
2210	key->dtak_next = agb->dtagb_hash[ndx];
2211	agb->dtagb_hash[ndx] = key;
2212
2213	/*
2214	 * Finally, apply the aggregator.
2215	 */
2216	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2217	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2218}
2219
2220/*
2221 * Given consumer state, this routine finds a speculation in the INACTIVE
2222 * state and transitions it into the ACTIVE state.  If there is no speculation
2223 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2224 * incremented -- it is up to the caller to take appropriate action.
2225 */
2226static int
2227dtrace_speculation(dtrace_state_t *state)
2228{
2229	int i = 0;
2230	dtrace_speculation_state_t current;
2231	uint32_t *stat = &state->dts_speculations_unavail, count;
2232
2233	while (i < state->dts_nspeculations) {
2234		dtrace_speculation_t *spec = &state->dts_speculations[i];
2235
2236		current = spec->dtsp_state;
2237
2238		if (current != DTRACESPEC_INACTIVE) {
2239			if (current == DTRACESPEC_COMMITTINGMANY ||
2240			    current == DTRACESPEC_COMMITTING ||
2241			    current == DTRACESPEC_DISCARDING)
2242				stat = &state->dts_speculations_busy;
2243			i++;
2244			continue;
2245		}
2246
2247		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2248		    current, DTRACESPEC_ACTIVE) == current)
2249			return (i + 1);
2250	}
2251
2252	/*
2253	 * We couldn't find a speculation.  If we found as much as a single
2254	 * busy speculation buffer, we'll attribute this failure as "busy"
2255	 * instead of "unavail".
2256	 */
2257	do {
2258		count = *stat;
2259	} while (dtrace_cas32(stat, count, count + 1) != count);
2260
2261	return (0);
2262}
2263
2264/*
2265 * This routine commits an active speculation.  If the specified speculation
2266 * is not in a valid state to perform a commit(), this routine will silently do
2267 * nothing.  The state of the specified speculation is transitioned according
2268 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2269 */
2270static void
2271dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2272    dtrace_specid_t which)
2273{
2274	dtrace_speculation_t *spec;
2275	dtrace_buffer_t *src, *dest;
2276	uintptr_t daddr, saddr, dlimit;
2277	dtrace_speculation_state_t current, new = 0;
2278	intptr_t offs;
2279
2280	if (which == 0)
2281		return;
2282
2283	if (which > state->dts_nspeculations) {
2284		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2285		return;
2286	}
2287
2288	spec = &state->dts_speculations[which - 1];
2289	src = &spec->dtsp_buffer[cpu];
2290	dest = &state->dts_buffer[cpu];
2291
2292	do {
2293		current = spec->dtsp_state;
2294
2295		if (current == DTRACESPEC_COMMITTINGMANY)
2296			break;
2297
2298		switch (current) {
2299		case DTRACESPEC_INACTIVE:
2300		case DTRACESPEC_DISCARDING:
2301			return;
2302
2303		case DTRACESPEC_COMMITTING:
2304			/*
2305			 * This is only possible if we are (a) commit()'ing
2306			 * without having done a prior speculate() on this CPU
2307			 * and (b) racing with another commit() on a different
2308			 * CPU.  There's nothing to do -- we just assert that
2309			 * our offset is 0.
2310			 */
2311			ASSERT(src->dtb_offset == 0);
2312			return;
2313
2314		case DTRACESPEC_ACTIVE:
2315			new = DTRACESPEC_COMMITTING;
2316			break;
2317
2318		case DTRACESPEC_ACTIVEONE:
2319			/*
2320			 * This speculation is active on one CPU.  If our
2321			 * buffer offset is non-zero, we know that the one CPU
2322			 * must be us.  Otherwise, we are committing on a
2323			 * different CPU from the speculate(), and we must
2324			 * rely on being asynchronously cleaned.
2325			 */
2326			if (src->dtb_offset != 0) {
2327				new = DTRACESPEC_COMMITTING;
2328				break;
2329			}
2330			/*FALLTHROUGH*/
2331
2332		case DTRACESPEC_ACTIVEMANY:
2333			new = DTRACESPEC_COMMITTINGMANY;
2334			break;
2335
2336		default:
2337			ASSERT(0);
2338		}
2339	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2340	    current, new) != current);
2341
2342	/*
2343	 * We have set the state to indicate that we are committing this
2344	 * speculation.  Now reserve the necessary space in the destination
2345	 * buffer.
2346	 */
2347	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2348	    sizeof (uint64_t), state, NULL)) < 0) {
2349		dtrace_buffer_drop(dest);
2350		goto out;
2351	}
2352
2353	/*
2354	 * We have the space; copy the buffer across.  (Note that this is a
2355	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2356	 * a serious performance issue, a high-performance DTrace-specific
2357	 * bcopy() should obviously be invented.)
2358	 */
2359	daddr = (uintptr_t)dest->dtb_tomax + offs;
2360	dlimit = daddr + src->dtb_offset;
2361	saddr = (uintptr_t)src->dtb_tomax;
2362
2363	/*
2364	 * First, the aligned portion.
2365	 */
2366	while (dlimit - daddr >= sizeof (uint64_t)) {
2367		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2368
2369		daddr += sizeof (uint64_t);
2370		saddr += sizeof (uint64_t);
2371	}
2372
2373	/*
2374	 * Now any left-over bit...
2375	 */
2376	while (dlimit - daddr)
2377		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2378
2379	/*
2380	 * Finally, commit the reserved space in the destination buffer.
2381	 */
2382	dest->dtb_offset = offs + src->dtb_offset;
2383
2384out:
2385	/*
2386	 * If we're lucky enough to be the only active CPU on this speculation
2387	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2388	 */
2389	if (current == DTRACESPEC_ACTIVE ||
2390	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2391		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2392		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2393
2394		ASSERT(rval == DTRACESPEC_COMMITTING);
2395	}
2396
2397	src->dtb_offset = 0;
2398	src->dtb_xamot_drops += src->dtb_drops;
2399	src->dtb_drops = 0;
2400}
2401
2402/*
2403 * This routine discards an active speculation.  If the specified speculation
2404 * is not in a valid state to perform a discard(), this routine will silently
2405 * do nothing.  The state of the specified speculation is transitioned
2406 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2407 */
2408static void
2409dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2410    dtrace_specid_t which)
2411{
2412	dtrace_speculation_t *spec;
2413	dtrace_speculation_state_t current, new = 0;
2414	dtrace_buffer_t *buf;
2415
2416	if (which == 0)
2417		return;
2418
2419	if (which > state->dts_nspeculations) {
2420		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2421		return;
2422	}
2423
2424	spec = &state->dts_speculations[which - 1];
2425	buf = &spec->dtsp_buffer[cpu];
2426
2427	do {
2428		current = spec->dtsp_state;
2429
2430		switch (current) {
2431		case DTRACESPEC_INACTIVE:
2432		case DTRACESPEC_COMMITTINGMANY:
2433		case DTRACESPEC_COMMITTING:
2434		case DTRACESPEC_DISCARDING:
2435			return;
2436
2437		case DTRACESPEC_ACTIVE:
2438		case DTRACESPEC_ACTIVEMANY:
2439			new = DTRACESPEC_DISCARDING;
2440			break;
2441
2442		case DTRACESPEC_ACTIVEONE:
2443			if (buf->dtb_offset != 0) {
2444				new = DTRACESPEC_INACTIVE;
2445			} else {
2446				new = DTRACESPEC_DISCARDING;
2447			}
2448			break;
2449
2450		default:
2451			ASSERT(0);
2452		}
2453	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2454	    current, new) != current);
2455
2456	buf->dtb_offset = 0;
2457	buf->dtb_drops = 0;
2458}
2459
2460/*
2461 * Note:  not called from probe context.  This function is called
2462 * asynchronously from cross call context to clean any speculations that are
2463 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2464 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2465 * speculation.
2466 */
2467static void
2468dtrace_speculation_clean_here(dtrace_state_t *state)
2469{
2470	dtrace_icookie_t cookie;
2471	processorid_t cpu = curcpu;
2472	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2473	dtrace_specid_t i;
2474
2475	cookie = dtrace_interrupt_disable();
2476
2477	if (dest->dtb_tomax == NULL) {
2478		dtrace_interrupt_enable(cookie);
2479		return;
2480	}
2481
2482	for (i = 0; i < state->dts_nspeculations; i++) {
2483		dtrace_speculation_t *spec = &state->dts_speculations[i];
2484		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2485
2486		if (src->dtb_tomax == NULL)
2487			continue;
2488
2489		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2490			src->dtb_offset = 0;
2491			continue;
2492		}
2493
2494		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2495			continue;
2496
2497		if (src->dtb_offset == 0)
2498			continue;
2499
2500		dtrace_speculation_commit(state, cpu, i + 1);
2501	}
2502
2503	dtrace_interrupt_enable(cookie);
2504}
2505
2506/*
2507 * Note:  not called from probe context.  This function is called
2508 * asynchronously (and at a regular interval) to clean any speculations that
2509 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2510 * is work to be done, it cross calls all CPUs to perform that work;
2511 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2512 * INACTIVE state until they have been cleaned by all CPUs.
2513 */
2514static void
2515dtrace_speculation_clean(dtrace_state_t *state)
2516{
2517	int work = 0, rv;
2518	dtrace_specid_t i;
2519
2520	for (i = 0; i < state->dts_nspeculations; i++) {
2521		dtrace_speculation_t *spec = &state->dts_speculations[i];
2522
2523		ASSERT(!spec->dtsp_cleaning);
2524
2525		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2526		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2527			continue;
2528
2529		work++;
2530		spec->dtsp_cleaning = 1;
2531	}
2532
2533	if (!work)
2534		return;
2535
2536	dtrace_xcall(DTRACE_CPUALL,
2537	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2538
2539	/*
2540	 * We now know that all CPUs have committed or discarded their
2541	 * speculation buffers, as appropriate.  We can now set the state
2542	 * to inactive.
2543	 */
2544	for (i = 0; i < state->dts_nspeculations; i++) {
2545		dtrace_speculation_t *spec = &state->dts_speculations[i];
2546		dtrace_speculation_state_t current, new;
2547
2548		if (!spec->dtsp_cleaning)
2549			continue;
2550
2551		current = spec->dtsp_state;
2552		ASSERT(current == DTRACESPEC_DISCARDING ||
2553		    current == DTRACESPEC_COMMITTINGMANY);
2554
2555		new = DTRACESPEC_INACTIVE;
2556
2557		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2558		ASSERT(rv == current);
2559		spec->dtsp_cleaning = 0;
2560	}
2561}
2562
2563/*
2564 * Called as part of a speculate() to get the speculative buffer associated
2565 * with a given speculation.  Returns NULL if the specified speculation is not
2566 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2567 * the active CPU is not the specified CPU -- the speculation will be
2568 * atomically transitioned into the ACTIVEMANY state.
2569 */
2570static dtrace_buffer_t *
2571dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2572    dtrace_specid_t which)
2573{
2574	dtrace_speculation_t *spec;
2575	dtrace_speculation_state_t current, new = 0;
2576	dtrace_buffer_t *buf;
2577
2578	if (which == 0)
2579		return (NULL);
2580
2581	if (which > state->dts_nspeculations) {
2582		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2583		return (NULL);
2584	}
2585
2586	spec = &state->dts_speculations[which - 1];
2587	buf = &spec->dtsp_buffer[cpuid];
2588
2589	do {
2590		current = spec->dtsp_state;
2591
2592		switch (current) {
2593		case DTRACESPEC_INACTIVE:
2594		case DTRACESPEC_COMMITTINGMANY:
2595		case DTRACESPEC_DISCARDING:
2596			return (NULL);
2597
2598		case DTRACESPEC_COMMITTING:
2599			ASSERT(buf->dtb_offset == 0);
2600			return (NULL);
2601
2602		case DTRACESPEC_ACTIVEONE:
2603			/*
2604			 * This speculation is currently active on one CPU.
2605			 * Check the offset in the buffer; if it's non-zero,
2606			 * that CPU must be us (and we leave the state alone).
2607			 * If it's zero, assume that we're starting on a new
2608			 * CPU -- and change the state to indicate that the
2609			 * speculation is active on more than one CPU.
2610			 */
2611			if (buf->dtb_offset != 0)
2612				return (buf);
2613
2614			new = DTRACESPEC_ACTIVEMANY;
2615			break;
2616
2617		case DTRACESPEC_ACTIVEMANY:
2618			return (buf);
2619
2620		case DTRACESPEC_ACTIVE:
2621			new = DTRACESPEC_ACTIVEONE;
2622			break;
2623
2624		default:
2625			ASSERT(0);
2626		}
2627	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2628	    current, new) != current);
2629
2630	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2631	return (buf);
2632}
2633
2634/*
2635 * Return a string.  In the event that the user lacks the privilege to access
2636 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2637 * don't fail access checking.
2638 *
2639 * dtrace_dif_variable() uses this routine as a helper for various
2640 * builtin values such as 'execname' and 'probefunc.'
2641 */
2642uintptr_t
2643dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2644    dtrace_mstate_t *mstate)
2645{
2646	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2647	uintptr_t ret;
2648	size_t strsz;
2649
2650	/*
2651	 * The easy case: this probe is allowed to read all of memory, so
2652	 * we can just return this as a vanilla pointer.
2653	 */
2654	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2655		return (addr);
2656
2657	/*
2658	 * This is the tougher case: we copy the string in question from
2659	 * kernel memory into scratch memory and return it that way: this
2660	 * ensures that we won't trip up when access checking tests the
2661	 * BYREF return value.
2662	 */
2663	strsz = dtrace_strlen((char *)addr, size) + 1;
2664
2665	if (mstate->dtms_scratch_ptr + strsz >
2666	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2667		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2668		return (0);
2669	}
2670
2671	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2672	    strsz);
2673	ret = mstate->dtms_scratch_ptr;
2674	mstate->dtms_scratch_ptr += strsz;
2675	return (ret);
2676}
2677
2678/*
2679 * Return a string from a memoy address which is known to have one or
2680 * more concatenated, individually zero terminated, sub-strings.
2681 * In the event that the user lacks the privilege to access
2682 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2683 * don't fail access checking.
2684 *
2685 * dtrace_dif_variable() uses this routine as a helper for various
2686 * builtin values such as 'execargs'.
2687 */
2688static uintptr_t
2689dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2690    dtrace_mstate_t *mstate)
2691{
2692	char *p;
2693	size_t i;
2694	uintptr_t ret;
2695
2696	if (mstate->dtms_scratch_ptr + strsz >
2697	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2698		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2699		return (0);
2700	}
2701
2702	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2703	    strsz);
2704
2705	/* Replace sub-string termination characters with a space. */
2706	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2707	    p++, i++)
2708		if (*p == '\0')
2709			*p = ' ';
2710
2711	ret = mstate->dtms_scratch_ptr;
2712	mstate->dtms_scratch_ptr += strsz;
2713	return (ret);
2714}
2715
2716/*
2717 * This function implements the DIF emulator's variable lookups.  The emulator
2718 * passes a reserved variable identifier and optional built-in array index.
2719 */
2720static uint64_t
2721dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2722    uint64_t ndx)
2723{
2724	/*
2725	 * If we're accessing one of the uncached arguments, we'll turn this
2726	 * into a reference in the args array.
2727	 */
2728	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2729		ndx = v - DIF_VAR_ARG0;
2730		v = DIF_VAR_ARGS;
2731	}
2732
2733	switch (v) {
2734	case DIF_VAR_ARGS:
2735		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2736		if (ndx >= sizeof (mstate->dtms_arg) /
2737		    sizeof (mstate->dtms_arg[0])) {
2738			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2739			dtrace_provider_t *pv;
2740			uint64_t val;
2741
2742			pv = mstate->dtms_probe->dtpr_provider;
2743			if (pv->dtpv_pops.dtps_getargval != NULL)
2744				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2745				    mstate->dtms_probe->dtpr_id,
2746				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2747			else
2748				val = dtrace_getarg(ndx, aframes);
2749
2750			/*
2751			 * This is regrettably required to keep the compiler
2752			 * from tail-optimizing the call to dtrace_getarg().
2753			 * The condition always evaluates to true, but the
2754			 * compiler has no way of figuring that out a priori.
2755			 * (None of this would be necessary if the compiler
2756			 * could be relied upon to _always_ tail-optimize
2757			 * the call to dtrace_getarg() -- but it can't.)
2758			 */
2759			if (mstate->dtms_probe != NULL)
2760				return (val);
2761
2762			ASSERT(0);
2763		}
2764
2765		return (mstate->dtms_arg[ndx]);
2766
2767#if defined(sun)
2768	case DIF_VAR_UREGS: {
2769		klwp_t *lwp;
2770
2771		if (!dtrace_priv_proc(state))
2772			return (0);
2773
2774		if ((lwp = curthread->t_lwp) == NULL) {
2775			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2776			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2777			return (0);
2778		}
2779
2780		return (dtrace_getreg(lwp->lwp_regs, ndx));
2781		return (0);
2782	}
2783#else
2784	case DIF_VAR_UREGS: {
2785		struct trapframe *tframe;
2786
2787		if (!dtrace_priv_proc(state))
2788			return (0);
2789
2790		if ((tframe = curthread->td_frame) == NULL) {
2791			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2792			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2793			return (0);
2794		}
2795
2796		return (dtrace_getreg(tframe, ndx));
2797	}
2798#endif
2799
2800	case DIF_VAR_CURTHREAD:
2801		if (!dtrace_priv_kernel(state))
2802			return (0);
2803		return ((uint64_t)(uintptr_t)curthread);
2804
2805	case DIF_VAR_TIMESTAMP:
2806		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2807			mstate->dtms_timestamp = dtrace_gethrtime();
2808			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2809		}
2810		return (mstate->dtms_timestamp);
2811
2812	case DIF_VAR_VTIMESTAMP:
2813		ASSERT(dtrace_vtime_references != 0);
2814		return (curthread->t_dtrace_vtime);
2815
2816	case DIF_VAR_WALLTIMESTAMP:
2817		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2818			mstate->dtms_walltimestamp = dtrace_gethrestime();
2819			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2820		}
2821		return (mstate->dtms_walltimestamp);
2822
2823#if defined(sun)
2824	case DIF_VAR_IPL:
2825		if (!dtrace_priv_kernel(state))
2826			return (0);
2827		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2828			mstate->dtms_ipl = dtrace_getipl();
2829			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2830		}
2831		return (mstate->dtms_ipl);
2832#endif
2833
2834	case DIF_VAR_EPID:
2835		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2836		return (mstate->dtms_epid);
2837
2838	case DIF_VAR_ID:
2839		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2840		return (mstate->dtms_probe->dtpr_id);
2841
2842	case DIF_VAR_STACKDEPTH:
2843		if (!dtrace_priv_kernel(state))
2844			return (0);
2845		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2846			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2847
2848			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2849			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2850		}
2851		return (mstate->dtms_stackdepth);
2852
2853	case DIF_VAR_USTACKDEPTH:
2854		if (!dtrace_priv_proc(state))
2855			return (0);
2856		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2857			/*
2858			 * See comment in DIF_VAR_PID.
2859			 */
2860			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2861			    CPU_ON_INTR(CPU)) {
2862				mstate->dtms_ustackdepth = 0;
2863			} else {
2864				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2865				mstate->dtms_ustackdepth =
2866				    dtrace_getustackdepth();
2867				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2868			}
2869			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2870		}
2871		return (mstate->dtms_ustackdepth);
2872
2873	case DIF_VAR_CALLER:
2874		if (!dtrace_priv_kernel(state))
2875			return (0);
2876		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2877			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2878
2879			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2880				/*
2881				 * If this is an unanchored probe, we are
2882				 * required to go through the slow path:
2883				 * dtrace_caller() only guarantees correct
2884				 * results for anchored probes.
2885				 */
2886				pc_t caller[2] = {0, 0};
2887
2888				dtrace_getpcstack(caller, 2, aframes,
2889				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2890				mstate->dtms_caller = caller[1];
2891			} else if ((mstate->dtms_caller =
2892			    dtrace_caller(aframes)) == -1) {
2893				/*
2894				 * We have failed to do this the quick way;
2895				 * we must resort to the slower approach of
2896				 * calling dtrace_getpcstack().
2897				 */
2898				pc_t caller = 0;
2899
2900				dtrace_getpcstack(&caller, 1, aframes, NULL);
2901				mstate->dtms_caller = caller;
2902			}
2903
2904			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2905		}
2906		return (mstate->dtms_caller);
2907
2908	case DIF_VAR_UCALLER:
2909		if (!dtrace_priv_proc(state))
2910			return (0);
2911
2912		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2913			uint64_t ustack[3];
2914
2915			/*
2916			 * dtrace_getupcstack() fills in the first uint64_t
2917			 * with the current PID.  The second uint64_t will
2918			 * be the program counter at user-level.  The third
2919			 * uint64_t will contain the caller, which is what
2920			 * we're after.
2921			 */
2922			ustack[2] = 0;
2923			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2924			dtrace_getupcstack(ustack, 3);
2925			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2926			mstate->dtms_ucaller = ustack[2];
2927			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2928		}
2929
2930		return (mstate->dtms_ucaller);
2931
2932	case DIF_VAR_PROBEPROV:
2933		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2934		return (dtrace_dif_varstr(
2935		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2936		    state, mstate));
2937
2938	case DIF_VAR_PROBEMOD:
2939		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2940		return (dtrace_dif_varstr(
2941		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2942		    state, mstate));
2943
2944	case DIF_VAR_PROBEFUNC:
2945		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2946		return (dtrace_dif_varstr(
2947		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2948		    state, mstate));
2949
2950	case DIF_VAR_PROBENAME:
2951		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2952		return (dtrace_dif_varstr(
2953		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2954		    state, mstate));
2955
2956	case DIF_VAR_PID:
2957		if (!dtrace_priv_proc(state))
2958			return (0);
2959
2960#if defined(sun)
2961		/*
2962		 * Note that we are assuming that an unanchored probe is
2963		 * always due to a high-level interrupt.  (And we're assuming
2964		 * that there is only a single high level interrupt.)
2965		 */
2966		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2967			return (pid0.pid_id);
2968
2969		/*
2970		 * It is always safe to dereference one's own t_procp pointer:
2971		 * it always points to a valid, allocated proc structure.
2972		 * Further, it is always safe to dereference the p_pidp member
2973		 * of one's own proc structure.  (These are truisms becuase
2974		 * threads and processes don't clean up their own state --
2975		 * they leave that task to whomever reaps them.)
2976		 */
2977		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2978#else
2979		return ((uint64_t)curproc->p_pid);
2980#endif
2981
2982	case DIF_VAR_PPID:
2983		if (!dtrace_priv_proc(state))
2984			return (0);
2985
2986#if defined(sun)
2987		/*
2988		 * See comment in DIF_VAR_PID.
2989		 */
2990		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2991			return (pid0.pid_id);
2992
2993		/*
2994		 * It is always safe to dereference one's own t_procp pointer:
2995		 * it always points to a valid, allocated proc structure.
2996		 * (This is true because threads don't clean up their own
2997		 * state -- they leave that task to whomever reaps them.)
2998		 */
2999		return ((uint64_t)curthread->t_procp->p_ppid);
3000#else
3001		return ((uint64_t)curproc->p_pptr->p_pid);
3002#endif
3003
3004	case DIF_VAR_TID:
3005#if defined(sun)
3006		/*
3007		 * See comment in DIF_VAR_PID.
3008		 */
3009		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3010			return (0);
3011#endif
3012
3013		return ((uint64_t)curthread->t_tid);
3014
3015	case DIF_VAR_EXECARGS: {
3016		struct pargs *p_args = curthread->td_proc->p_args;
3017
3018		if (p_args == NULL)
3019			return(0);
3020
3021		return (dtrace_dif_varstrz(
3022		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3023	}
3024
3025	case DIF_VAR_EXECNAME:
3026#if defined(sun)
3027		if (!dtrace_priv_proc(state))
3028			return (0);
3029
3030		/*
3031		 * See comment in DIF_VAR_PID.
3032		 */
3033		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3034			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3035
3036		/*
3037		 * It is always safe to dereference one's own t_procp pointer:
3038		 * it always points to a valid, allocated proc structure.
3039		 * (This is true because threads don't clean up their own
3040		 * state -- they leave that task to whomever reaps them.)
3041		 */
3042		return (dtrace_dif_varstr(
3043		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3044		    state, mstate));
3045#else
3046		return (dtrace_dif_varstr(
3047		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3048#endif
3049
3050	case DIF_VAR_ZONENAME:
3051#if defined(sun)
3052		if (!dtrace_priv_proc(state))
3053			return (0);
3054
3055		/*
3056		 * See comment in DIF_VAR_PID.
3057		 */
3058		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3059			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3060
3061		/*
3062		 * It is always safe to dereference one's own t_procp pointer:
3063		 * it always points to a valid, allocated proc structure.
3064		 * (This is true because threads don't clean up their own
3065		 * state -- they leave that task to whomever reaps them.)
3066		 */
3067		return (dtrace_dif_varstr(
3068		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3069		    state, mstate));
3070#else
3071		return (0);
3072#endif
3073
3074	case DIF_VAR_UID:
3075		if (!dtrace_priv_proc(state))
3076			return (0);
3077
3078#if defined(sun)
3079		/*
3080		 * See comment in DIF_VAR_PID.
3081		 */
3082		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3083			return ((uint64_t)p0.p_cred->cr_uid);
3084#endif
3085
3086		/*
3087		 * It is always safe to dereference one's own t_procp pointer:
3088		 * it always points to a valid, allocated proc structure.
3089		 * (This is true because threads don't clean up their own
3090		 * state -- they leave that task to whomever reaps them.)
3091		 *
3092		 * Additionally, it is safe to dereference one's own process
3093		 * credential, since this is never NULL after process birth.
3094		 */
3095		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3096
3097	case DIF_VAR_GID:
3098		if (!dtrace_priv_proc(state))
3099			return (0);
3100
3101#if defined(sun)
3102		/*
3103		 * See comment in DIF_VAR_PID.
3104		 */
3105		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3106			return ((uint64_t)p0.p_cred->cr_gid);
3107#endif
3108
3109		/*
3110		 * It is always safe to dereference one's own t_procp pointer:
3111		 * it always points to a valid, allocated proc structure.
3112		 * (This is true because threads don't clean up their own
3113		 * state -- they leave that task to whomever reaps them.)
3114		 *
3115		 * Additionally, it is safe to dereference one's own process
3116		 * credential, since this is never NULL after process birth.
3117		 */
3118		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3119
3120	case DIF_VAR_ERRNO: {
3121#if defined(sun)
3122		klwp_t *lwp;
3123		if (!dtrace_priv_proc(state))
3124			return (0);
3125
3126		/*
3127		 * See comment in DIF_VAR_PID.
3128		 */
3129		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3130			return (0);
3131
3132		/*
3133		 * It is always safe to dereference one's own t_lwp pointer in
3134		 * the event that this pointer is non-NULL.  (This is true
3135		 * because threads and lwps don't clean up their own state --
3136		 * they leave that task to whomever reaps them.)
3137		 */
3138		if ((lwp = curthread->t_lwp) == NULL)
3139			return (0);
3140
3141		return ((uint64_t)lwp->lwp_errno);
3142#else
3143		return (curthread->td_errno);
3144#endif
3145	}
3146	default:
3147		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3148		return (0);
3149	}
3150}
3151
3152/*
3153 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3154 * Notice that we don't bother validating the proper number of arguments or
3155 * their types in the tuple stack.  This isn't needed because all argument
3156 * interpretation is safe because of our load safety -- the worst that can
3157 * happen is that a bogus program can obtain bogus results.
3158 */
3159static void
3160dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3161    dtrace_key_t *tupregs, int nargs,
3162    dtrace_mstate_t *mstate, dtrace_state_t *state)
3163{
3164	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3165	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3166	dtrace_vstate_t *vstate = &state->dts_vstate;
3167
3168#if defined(sun)
3169	union {
3170		mutex_impl_t mi;
3171		uint64_t mx;
3172	} m;
3173
3174	union {
3175		krwlock_t ri;
3176		uintptr_t rw;
3177	} r;
3178#else
3179	struct thread *lowner;
3180	union {
3181		struct lock_object *li;
3182		uintptr_t lx;
3183	} l;
3184#endif
3185
3186	switch (subr) {
3187	case DIF_SUBR_RAND:
3188		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3189		break;
3190
3191#if defined(sun)
3192	case DIF_SUBR_MUTEX_OWNED:
3193		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3194		    mstate, vstate)) {
3195			regs[rd] = 0;
3196			break;
3197		}
3198
3199		m.mx = dtrace_load64(tupregs[0].dttk_value);
3200		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3201			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3202		else
3203			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3204		break;
3205
3206	case DIF_SUBR_MUTEX_OWNER:
3207		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3208		    mstate, vstate)) {
3209			regs[rd] = 0;
3210			break;
3211		}
3212
3213		m.mx = dtrace_load64(tupregs[0].dttk_value);
3214		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3215		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3216			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3217		else
3218			regs[rd] = 0;
3219		break;
3220
3221	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3222		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3223		    mstate, vstate)) {
3224			regs[rd] = 0;
3225			break;
3226		}
3227
3228		m.mx = dtrace_load64(tupregs[0].dttk_value);
3229		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3230		break;
3231
3232	case DIF_SUBR_MUTEX_TYPE_SPIN:
3233		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3234		    mstate, vstate)) {
3235			regs[rd] = 0;
3236			break;
3237		}
3238
3239		m.mx = dtrace_load64(tupregs[0].dttk_value);
3240		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3241		break;
3242
3243	case DIF_SUBR_RW_READ_HELD: {
3244		uintptr_t tmp;
3245
3246		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3247		    mstate, vstate)) {
3248			regs[rd] = 0;
3249			break;
3250		}
3251
3252		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3253		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3254		break;
3255	}
3256
3257	case DIF_SUBR_RW_WRITE_HELD:
3258		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3259		    mstate, vstate)) {
3260			regs[rd] = 0;
3261			break;
3262		}
3263
3264		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3265		regs[rd] = _RW_WRITE_HELD(&r.ri);
3266		break;
3267
3268	case DIF_SUBR_RW_ISWRITER:
3269		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3270		    mstate, vstate)) {
3271			regs[rd] = 0;
3272			break;
3273		}
3274
3275		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3276		regs[rd] = _RW_ISWRITER(&r.ri);
3277		break;
3278
3279#else
3280	case DIF_SUBR_MUTEX_OWNED:
3281		if (!dtrace_canload(tupregs[0].dttk_value,
3282			sizeof (struct lock_object), mstate, vstate)) {
3283			regs[rd] = 0;
3284			break;
3285		}
3286		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3287		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3288		break;
3289
3290	case DIF_SUBR_MUTEX_OWNER:
3291		if (!dtrace_canload(tupregs[0].dttk_value,
3292			sizeof (struct lock_object), mstate, vstate)) {
3293			regs[rd] = 0;
3294			break;
3295		}
3296		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3297		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3298		regs[rd] = (uintptr_t)lowner;
3299		break;
3300
3301	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3302		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3303		    mstate, vstate)) {
3304			regs[rd] = 0;
3305			break;
3306		}
3307		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3308		/* XXX - should be only LC_SLEEPABLE? */
3309		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3310		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3311		break;
3312
3313	case DIF_SUBR_MUTEX_TYPE_SPIN:
3314		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3315		    mstate, vstate)) {
3316			regs[rd] = 0;
3317			break;
3318		}
3319		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3320		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3321		break;
3322
3323	case DIF_SUBR_RW_READ_HELD:
3324	case DIF_SUBR_SX_SHARED_HELD:
3325		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3326		    mstate, vstate)) {
3327			regs[rd] = 0;
3328			break;
3329		}
3330		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3331		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3332		    lowner == NULL;
3333		break;
3334
3335	case DIF_SUBR_RW_WRITE_HELD:
3336	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3337		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3338		    mstate, vstate)) {
3339			regs[rd] = 0;
3340			break;
3341		}
3342		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3343		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3344		regs[rd] = (lowner == curthread);
3345		break;
3346
3347	case DIF_SUBR_RW_ISWRITER:
3348	case DIF_SUBR_SX_ISEXCLUSIVE:
3349		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3350		    mstate, vstate)) {
3351			regs[rd] = 0;
3352			break;
3353		}
3354		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3355		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3356		    lowner != NULL;
3357		break;
3358#endif /* ! defined(sun) */
3359
3360	case DIF_SUBR_BCOPY: {
3361		/*
3362		 * We need to be sure that the destination is in the scratch
3363		 * region -- no other region is allowed.
3364		 */
3365		uintptr_t src = tupregs[0].dttk_value;
3366		uintptr_t dest = tupregs[1].dttk_value;
3367		size_t size = tupregs[2].dttk_value;
3368
3369		if (!dtrace_inscratch(dest, size, mstate)) {
3370			*flags |= CPU_DTRACE_BADADDR;
3371			*illval = regs[rd];
3372			break;
3373		}
3374
3375		if (!dtrace_canload(src, size, mstate, vstate)) {
3376			regs[rd] = 0;
3377			break;
3378		}
3379
3380		dtrace_bcopy((void *)src, (void *)dest, size);
3381		break;
3382	}
3383
3384	case DIF_SUBR_ALLOCA:
3385	case DIF_SUBR_COPYIN: {
3386		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3387		uint64_t size =
3388		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3389		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3390
3391		/*
3392		 * This action doesn't require any credential checks since
3393		 * probes will not activate in user contexts to which the
3394		 * enabling user does not have permissions.
3395		 */
3396
3397		/*
3398		 * Rounding up the user allocation size could have overflowed
3399		 * a large, bogus allocation (like -1ULL) to 0.
3400		 */
3401		if (scratch_size < size ||
3402		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3403			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3404			regs[rd] = 0;
3405			break;
3406		}
3407
3408		if (subr == DIF_SUBR_COPYIN) {
3409			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3410			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3411			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3412		}
3413
3414		mstate->dtms_scratch_ptr += scratch_size;
3415		regs[rd] = dest;
3416		break;
3417	}
3418
3419	case DIF_SUBR_COPYINTO: {
3420		uint64_t size = tupregs[1].dttk_value;
3421		uintptr_t dest = tupregs[2].dttk_value;
3422
3423		/*
3424		 * This action doesn't require any credential checks since
3425		 * probes will not activate in user contexts to which the
3426		 * enabling user does not have permissions.
3427		 */
3428		if (!dtrace_inscratch(dest, size, mstate)) {
3429			*flags |= CPU_DTRACE_BADADDR;
3430			*illval = regs[rd];
3431			break;
3432		}
3433
3434		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3435		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3436		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3437		break;
3438	}
3439
3440	case DIF_SUBR_COPYINSTR: {
3441		uintptr_t dest = mstate->dtms_scratch_ptr;
3442		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3443
3444		if (nargs > 1 && tupregs[1].dttk_value < size)
3445			size = tupregs[1].dttk_value + 1;
3446
3447		/*
3448		 * This action doesn't require any credential checks since
3449		 * probes will not activate in user contexts to which the
3450		 * enabling user does not have permissions.
3451		 */
3452		if (!DTRACE_INSCRATCH(mstate, size)) {
3453			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3454			regs[rd] = 0;
3455			break;
3456		}
3457
3458		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3459		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3460		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3461
3462		((char *)dest)[size - 1] = '\0';
3463		mstate->dtms_scratch_ptr += size;
3464		regs[rd] = dest;
3465		break;
3466	}
3467
3468#if defined(sun)
3469	case DIF_SUBR_MSGSIZE:
3470	case DIF_SUBR_MSGDSIZE: {
3471		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3472		uintptr_t wptr, rptr;
3473		size_t count = 0;
3474		int cont = 0;
3475
3476		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3477
3478			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3479			    vstate)) {
3480				regs[rd] = 0;
3481				break;
3482			}
3483
3484			wptr = dtrace_loadptr(baddr +
3485			    offsetof(mblk_t, b_wptr));
3486
3487			rptr = dtrace_loadptr(baddr +
3488			    offsetof(mblk_t, b_rptr));
3489
3490			if (wptr < rptr) {
3491				*flags |= CPU_DTRACE_BADADDR;
3492				*illval = tupregs[0].dttk_value;
3493				break;
3494			}
3495
3496			daddr = dtrace_loadptr(baddr +
3497			    offsetof(mblk_t, b_datap));
3498
3499			baddr = dtrace_loadptr(baddr +
3500			    offsetof(mblk_t, b_cont));
3501
3502			/*
3503			 * We want to prevent against denial-of-service here,
3504			 * so we're only going to search the list for
3505			 * dtrace_msgdsize_max mblks.
3506			 */
3507			if (cont++ > dtrace_msgdsize_max) {
3508				*flags |= CPU_DTRACE_ILLOP;
3509				break;
3510			}
3511
3512			if (subr == DIF_SUBR_MSGDSIZE) {
3513				if (dtrace_load8(daddr +
3514				    offsetof(dblk_t, db_type)) != M_DATA)
3515					continue;
3516			}
3517
3518			count += wptr - rptr;
3519		}
3520
3521		if (!(*flags & CPU_DTRACE_FAULT))
3522			regs[rd] = count;
3523
3524		break;
3525	}
3526#endif
3527
3528	case DIF_SUBR_PROGENYOF: {
3529		pid_t pid = tupregs[0].dttk_value;
3530		proc_t *p;
3531		int rval = 0;
3532
3533		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3534
3535		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3536#if defined(sun)
3537			if (p->p_pidp->pid_id == pid) {
3538#else
3539			if (p->p_pid == pid) {
3540#endif
3541				rval = 1;
3542				break;
3543			}
3544		}
3545
3546		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3547
3548		regs[rd] = rval;
3549		break;
3550	}
3551
3552	case DIF_SUBR_SPECULATION:
3553		regs[rd] = dtrace_speculation(state);
3554		break;
3555
3556	case DIF_SUBR_COPYOUT: {
3557		uintptr_t kaddr = tupregs[0].dttk_value;
3558		uintptr_t uaddr = tupregs[1].dttk_value;
3559		uint64_t size = tupregs[2].dttk_value;
3560
3561		if (!dtrace_destructive_disallow &&
3562		    dtrace_priv_proc_control(state) &&
3563		    !dtrace_istoxic(kaddr, size)) {
3564			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3565			dtrace_copyout(kaddr, uaddr, size, flags);
3566			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3567		}
3568		break;
3569	}
3570
3571	case DIF_SUBR_COPYOUTSTR: {
3572		uintptr_t kaddr = tupregs[0].dttk_value;
3573		uintptr_t uaddr = tupregs[1].dttk_value;
3574		uint64_t size = tupregs[2].dttk_value;
3575
3576		if (!dtrace_destructive_disallow &&
3577		    dtrace_priv_proc_control(state) &&
3578		    !dtrace_istoxic(kaddr, size)) {
3579			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3580			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3581			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3582		}
3583		break;
3584	}
3585
3586	case DIF_SUBR_STRLEN: {
3587		size_t sz;
3588		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3589		sz = dtrace_strlen((char *)addr,
3590		    state->dts_options[DTRACEOPT_STRSIZE]);
3591
3592		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3593			regs[rd] = 0;
3594			break;
3595		}
3596
3597		regs[rd] = sz;
3598
3599		break;
3600	}
3601
3602	case DIF_SUBR_STRCHR:
3603	case DIF_SUBR_STRRCHR: {
3604		/*
3605		 * We're going to iterate over the string looking for the
3606		 * specified character.  We will iterate until we have reached
3607		 * the string length or we have found the character.  If this
3608		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3609		 * of the specified character instead of the first.
3610		 */
3611		uintptr_t saddr = tupregs[0].dttk_value;
3612		uintptr_t addr = tupregs[0].dttk_value;
3613		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3614		char c, target = (char)tupregs[1].dttk_value;
3615
3616		for (regs[rd] = 0; addr < limit; addr++) {
3617			if ((c = dtrace_load8(addr)) == target) {
3618				regs[rd] = addr;
3619
3620				if (subr == DIF_SUBR_STRCHR)
3621					break;
3622			}
3623
3624			if (c == '\0')
3625				break;
3626		}
3627
3628		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3629			regs[rd] = 0;
3630			break;
3631		}
3632
3633		break;
3634	}
3635
3636	case DIF_SUBR_STRSTR:
3637	case DIF_SUBR_INDEX:
3638	case DIF_SUBR_RINDEX: {
3639		/*
3640		 * We're going to iterate over the string looking for the
3641		 * specified string.  We will iterate until we have reached
3642		 * the string length or we have found the string.  (Yes, this
3643		 * is done in the most naive way possible -- but considering
3644		 * that the string we're searching for is likely to be
3645		 * relatively short, the complexity of Rabin-Karp or similar
3646		 * hardly seems merited.)
3647		 */
3648		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3649		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3650		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3651		size_t len = dtrace_strlen(addr, size);
3652		size_t sublen = dtrace_strlen(substr, size);
3653		char *limit = addr + len, *orig = addr;
3654		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3655		int inc = 1;
3656
3657		regs[rd] = notfound;
3658
3659		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3660			regs[rd] = 0;
3661			break;
3662		}
3663
3664		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3665		    vstate)) {
3666			regs[rd] = 0;
3667			break;
3668		}
3669
3670		/*
3671		 * strstr() and index()/rindex() have similar semantics if
3672		 * both strings are the empty string: strstr() returns a
3673		 * pointer to the (empty) string, and index() and rindex()
3674		 * both return index 0 (regardless of any position argument).
3675		 */
3676		if (sublen == 0 && len == 0) {
3677			if (subr == DIF_SUBR_STRSTR)
3678				regs[rd] = (uintptr_t)addr;
3679			else
3680				regs[rd] = 0;
3681			break;
3682		}
3683
3684		if (subr != DIF_SUBR_STRSTR) {
3685			if (subr == DIF_SUBR_RINDEX) {
3686				limit = orig - 1;
3687				addr += len;
3688				inc = -1;
3689			}
3690
3691			/*
3692			 * Both index() and rindex() take an optional position
3693			 * argument that denotes the starting position.
3694			 */
3695			if (nargs == 3) {
3696				int64_t pos = (int64_t)tupregs[2].dttk_value;
3697
3698				/*
3699				 * If the position argument to index() is
3700				 * negative, Perl implicitly clamps it at
3701				 * zero.  This semantic is a little surprising
3702				 * given the special meaning of negative
3703				 * positions to similar Perl functions like
3704				 * substr(), but it appears to reflect a
3705				 * notion that index() can start from a
3706				 * negative index and increment its way up to
3707				 * the string.  Given this notion, Perl's
3708				 * rindex() is at least self-consistent in
3709				 * that it implicitly clamps positions greater
3710				 * than the string length to be the string
3711				 * length.  Where Perl completely loses
3712				 * coherence, however, is when the specified
3713				 * substring is the empty string ("").  In
3714				 * this case, even if the position is
3715				 * negative, rindex() returns 0 -- and even if
3716				 * the position is greater than the length,
3717				 * index() returns the string length.  These
3718				 * semantics violate the notion that index()
3719				 * should never return a value less than the
3720				 * specified position and that rindex() should
3721				 * never return a value greater than the
3722				 * specified position.  (One assumes that
3723				 * these semantics are artifacts of Perl's
3724				 * implementation and not the results of
3725				 * deliberate design -- it beggars belief that
3726				 * even Larry Wall could desire such oddness.)
3727				 * While in the abstract one would wish for
3728				 * consistent position semantics across
3729				 * substr(), index() and rindex() -- or at the
3730				 * very least self-consistent position
3731				 * semantics for index() and rindex() -- we
3732				 * instead opt to keep with the extant Perl
3733				 * semantics, in all their broken glory.  (Do
3734				 * we have more desire to maintain Perl's
3735				 * semantics than Perl does?  Probably.)
3736				 */
3737				if (subr == DIF_SUBR_RINDEX) {
3738					if (pos < 0) {
3739						if (sublen == 0)
3740							regs[rd] = 0;
3741						break;
3742					}
3743
3744					if (pos > len)
3745						pos = len;
3746				} else {
3747					if (pos < 0)
3748						pos = 0;
3749
3750					if (pos >= len) {
3751						if (sublen == 0)
3752							regs[rd] = len;
3753						break;
3754					}
3755				}
3756
3757				addr = orig + pos;
3758			}
3759		}
3760
3761		for (regs[rd] = notfound; addr != limit; addr += inc) {
3762			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3763				if (subr != DIF_SUBR_STRSTR) {
3764					/*
3765					 * As D index() and rindex() are
3766					 * modeled on Perl (and not on awk),
3767					 * we return a zero-based (and not a
3768					 * one-based) index.  (For you Perl
3769					 * weenies: no, we're not going to add
3770					 * $[ -- and shouldn't you be at a con
3771					 * or something?)
3772					 */
3773					regs[rd] = (uintptr_t)(addr - orig);
3774					break;
3775				}
3776
3777				ASSERT(subr == DIF_SUBR_STRSTR);
3778				regs[rd] = (uintptr_t)addr;
3779				break;
3780			}
3781		}
3782
3783		break;
3784	}
3785
3786	case DIF_SUBR_STRTOK: {
3787		uintptr_t addr = tupregs[0].dttk_value;
3788		uintptr_t tokaddr = tupregs[1].dttk_value;
3789		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3790		uintptr_t limit, toklimit = tokaddr + size;
3791		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3792		char *dest = (char *)mstate->dtms_scratch_ptr;
3793		int i;
3794
3795		/*
3796		 * Check both the token buffer and (later) the input buffer,
3797		 * since both could be non-scratch addresses.
3798		 */
3799		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3800			regs[rd] = 0;
3801			break;
3802		}
3803
3804		if (!DTRACE_INSCRATCH(mstate, size)) {
3805			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3806			regs[rd] = 0;
3807			break;
3808		}
3809
3810		if (addr == 0) {
3811			/*
3812			 * If the address specified is NULL, we use our saved
3813			 * strtok pointer from the mstate.  Note that this
3814			 * means that the saved strtok pointer is _only_
3815			 * valid within multiple enablings of the same probe --
3816			 * it behaves like an implicit clause-local variable.
3817			 */
3818			addr = mstate->dtms_strtok;
3819		} else {
3820			/*
3821			 * If the user-specified address is non-NULL we must
3822			 * access check it.  This is the only time we have
3823			 * a chance to do so, since this address may reside
3824			 * in the string table of this clause-- future calls
3825			 * (when we fetch addr from mstate->dtms_strtok)
3826			 * would fail this access check.
3827			 */
3828			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3829				regs[rd] = 0;
3830				break;
3831			}
3832		}
3833
3834		/*
3835		 * First, zero the token map, and then process the token
3836		 * string -- setting a bit in the map for every character
3837		 * found in the token string.
3838		 */
3839		for (i = 0; i < sizeof (tokmap); i++)
3840			tokmap[i] = 0;
3841
3842		for (; tokaddr < toklimit; tokaddr++) {
3843			if ((c = dtrace_load8(tokaddr)) == '\0')
3844				break;
3845
3846			ASSERT((c >> 3) < sizeof (tokmap));
3847			tokmap[c >> 3] |= (1 << (c & 0x7));
3848		}
3849
3850		for (limit = addr + size; addr < limit; addr++) {
3851			/*
3852			 * We're looking for a character that is _not_ contained
3853			 * in the token string.
3854			 */
3855			if ((c = dtrace_load8(addr)) == '\0')
3856				break;
3857
3858			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3859				break;
3860		}
3861
3862		if (c == '\0') {
3863			/*
3864			 * We reached the end of the string without finding
3865			 * any character that was not in the token string.
3866			 * We return NULL in this case, and we set the saved
3867			 * address to NULL as well.
3868			 */
3869			regs[rd] = 0;
3870			mstate->dtms_strtok = 0;
3871			break;
3872		}
3873
3874		/*
3875		 * From here on, we're copying into the destination string.
3876		 */
3877		for (i = 0; addr < limit && i < size - 1; addr++) {
3878			if ((c = dtrace_load8(addr)) == '\0')
3879				break;
3880
3881			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3882				break;
3883
3884			ASSERT(i < size);
3885			dest[i++] = c;
3886		}
3887
3888		ASSERT(i < size);
3889		dest[i] = '\0';
3890		regs[rd] = (uintptr_t)dest;
3891		mstate->dtms_scratch_ptr += size;
3892		mstate->dtms_strtok = addr;
3893		break;
3894	}
3895
3896	case DIF_SUBR_SUBSTR: {
3897		uintptr_t s = tupregs[0].dttk_value;
3898		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3899		char *d = (char *)mstate->dtms_scratch_ptr;
3900		int64_t index = (int64_t)tupregs[1].dttk_value;
3901		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3902		size_t len = dtrace_strlen((char *)s, size);
3903		int64_t i = 0;
3904
3905		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3906			regs[rd] = 0;
3907			break;
3908		}
3909
3910		if (!DTRACE_INSCRATCH(mstate, size)) {
3911			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3912			regs[rd] = 0;
3913			break;
3914		}
3915
3916		if (nargs <= 2)
3917			remaining = (int64_t)size;
3918
3919		if (index < 0) {
3920			index += len;
3921
3922			if (index < 0 && index + remaining > 0) {
3923				remaining += index;
3924				index = 0;
3925			}
3926		}
3927
3928		if (index >= len || index < 0) {
3929			remaining = 0;
3930		} else if (remaining < 0) {
3931			remaining += len - index;
3932		} else if (index + remaining > size) {
3933			remaining = size - index;
3934		}
3935
3936		for (i = 0; i < remaining; i++) {
3937			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3938				break;
3939		}
3940
3941		d[i] = '\0';
3942
3943		mstate->dtms_scratch_ptr += size;
3944		regs[rd] = (uintptr_t)d;
3945		break;
3946	}
3947
3948#if defined(sun)
3949	case DIF_SUBR_GETMAJOR:
3950#ifdef _LP64
3951		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3952#else
3953		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3954#endif
3955		break;
3956
3957	case DIF_SUBR_GETMINOR:
3958#ifdef _LP64
3959		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3960#else
3961		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3962#endif
3963		break;
3964
3965	case DIF_SUBR_DDI_PATHNAME: {
3966		/*
3967		 * This one is a galactic mess.  We are going to roughly
3968		 * emulate ddi_pathname(), but it's made more complicated
3969		 * by the fact that we (a) want to include the minor name and
3970		 * (b) must proceed iteratively instead of recursively.
3971		 */
3972		uintptr_t dest = mstate->dtms_scratch_ptr;
3973		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3974		char *start = (char *)dest, *end = start + size - 1;
3975		uintptr_t daddr = tupregs[0].dttk_value;
3976		int64_t minor = (int64_t)tupregs[1].dttk_value;
3977		char *s;
3978		int i, len, depth = 0;
3979
3980		/*
3981		 * Due to all the pointer jumping we do and context we must
3982		 * rely upon, we just mandate that the user must have kernel
3983		 * read privileges to use this routine.
3984		 */
3985		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3986			*flags |= CPU_DTRACE_KPRIV;
3987			*illval = daddr;
3988			regs[rd] = 0;
3989		}
3990
3991		if (!DTRACE_INSCRATCH(mstate, size)) {
3992			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3993			regs[rd] = 0;
3994			break;
3995		}
3996
3997		*end = '\0';
3998
3999		/*
4000		 * We want to have a name for the minor.  In order to do this,
4001		 * we need to walk the minor list from the devinfo.  We want
4002		 * to be sure that we don't infinitely walk a circular list,
4003		 * so we check for circularity by sending a scout pointer
4004		 * ahead two elements for every element that we iterate over;
4005		 * if the list is circular, these will ultimately point to the
4006		 * same element.  You may recognize this little trick as the
4007		 * answer to a stupid interview question -- one that always
4008		 * seems to be asked by those who had to have it laboriously
4009		 * explained to them, and who can't even concisely describe
4010		 * the conditions under which one would be forced to resort to
4011		 * this technique.  Needless to say, those conditions are
4012		 * found here -- and probably only here.  Is this the only use
4013		 * of this infamous trick in shipping, production code?  If it
4014		 * isn't, it probably should be...
4015		 */
4016		if (minor != -1) {
4017			uintptr_t maddr = dtrace_loadptr(daddr +
4018			    offsetof(struct dev_info, devi_minor));
4019
4020			uintptr_t next = offsetof(struct ddi_minor_data, next);
4021			uintptr_t name = offsetof(struct ddi_minor_data,
4022			    d_minor) + offsetof(struct ddi_minor, name);
4023			uintptr_t dev = offsetof(struct ddi_minor_data,
4024			    d_minor) + offsetof(struct ddi_minor, dev);
4025			uintptr_t scout;
4026
4027			if (maddr != NULL)
4028				scout = dtrace_loadptr(maddr + next);
4029
4030			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4031				uint64_t m;
4032#ifdef _LP64
4033				m = dtrace_load64(maddr + dev) & MAXMIN64;
4034#else
4035				m = dtrace_load32(maddr + dev) & MAXMIN;
4036#endif
4037				if (m != minor) {
4038					maddr = dtrace_loadptr(maddr + next);
4039
4040					if (scout == NULL)
4041						continue;
4042
4043					scout = dtrace_loadptr(scout + next);
4044
4045					if (scout == NULL)
4046						continue;
4047
4048					scout = dtrace_loadptr(scout + next);
4049
4050					if (scout == NULL)
4051						continue;
4052
4053					if (scout == maddr) {
4054						*flags |= CPU_DTRACE_ILLOP;
4055						break;
4056					}
4057
4058					continue;
4059				}
4060
4061				/*
4062				 * We have the minor data.  Now we need to
4063				 * copy the minor's name into the end of the
4064				 * pathname.
4065				 */
4066				s = (char *)dtrace_loadptr(maddr + name);
4067				len = dtrace_strlen(s, size);
4068
4069				if (*flags & CPU_DTRACE_FAULT)
4070					break;
4071
4072				if (len != 0) {
4073					if ((end -= (len + 1)) < start)
4074						break;
4075
4076					*end = ':';
4077				}
4078
4079				for (i = 1; i <= len; i++)
4080					end[i] = dtrace_load8((uintptr_t)s++);
4081				break;
4082			}
4083		}
4084
4085		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4086			ddi_node_state_t devi_state;
4087
4088			devi_state = dtrace_load32(daddr +
4089			    offsetof(struct dev_info, devi_node_state));
4090
4091			if (*flags & CPU_DTRACE_FAULT)
4092				break;
4093
4094			if (devi_state >= DS_INITIALIZED) {
4095				s = (char *)dtrace_loadptr(daddr +
4096				    offsetof(struct dev_info, devi_addr));
4097				len = dtrace_strlen(s, size);
4098
4099				if (*flags & CPU_DTRACE_FAULT)
4100					break;
4101
4102				if (len != 0) {
4103					if ((end -= (len + 1)) < start)
4104						break;
4105
4106					*end = '@';
4107				}
4108
4109				for (i = 1; i <= len; i++)
4110					end[i] = dtrace_load8((uintptr_t)s++);
4111			}
4112
4113			/*
4114			 * Now for the node name...
4115			 */
4116			s = (char *)dtrace_loadptr(daddr +
4117			    offsetof(struct dev_info, devi_node_name));
4118
4119			daddr = dtrace_loadptr(daddr +
4120			    offsetof(struct dev_info, devi_parent));
4121
4122			/*
4123			 * If our parent is NULL (that is, if we're the root
4124			 * node), we're going to use the special path
4125			 * "devices".
4126			 */
4127			if (daddr == 0)
4128				s = "devices";
4129
4130			len = dtrace_strlen(s, size);
4131			if (*flags & CPU_DTRACE_FAULT)
4132				break;
4133
4134			if ((end -= (len + 1)) < start)
4135				break;
4136
4137			for (i = 1; i <= len; i++)
4138				end[i] = dtrace_load8((uintptr_t)s++);
4139			*end = '/';
4140
4141			if (depth++ > dtrace_devdepth_max) {
4142				*flags |= CPU_DTRACE_ILLOP;
4143				break;
4144			}
4145		}
4146
4147		if (end < start)
4148			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4149
4150		if (daddr == 0) {
4151			regs[rd] = (uintptr_t)end;
4152			mstate->dtms_scratch_ptr += size;
4153		}
4154
4155		break;
4156	}
4157#endif
4158
4159	case DIF_SUBR_STRJOIN: {
4160		char *d = (char *)mstate->dtms_scratch_ptr;
4161		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4162		uintptr_t s1 = tupregs[0].dttk_value;
4163		uintptr_t s2 = tupregs[1].dttk_value;
4164		int i = 0;
4165
4166		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4167		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4168			regs[rd] = 0;
4169			break;
4170		}
4171
4172		if (!DTRACE_INSCRATCH(mstate, size)) {
4173			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4174			regs[rd] = 0;
4175			break;
4176		}
4177
4178		for (;;) {
4179			if (i >= size) {
4180				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4181				regs[rd] = 0;
4182				break;
4183			}
4184
4185			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4186				i--;
4187				break;
4188			}
4189		}
4190
4191		for (;;) {
4192			if (i >= size) {
4193				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4194				regs[rd] = 0;
4195				break;
4196			}
4197
4198			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4199				break;
4200		}
4201
4202		if (i < size) {
4203			mstate->dtms_scratch_ptr += i;
4204			regs[rd] = (uintptr_t)d;
4205		}
4206
4207		break;
4208	}
4209
4210	case DIF_SUBR_LLTOSTR: {
4211		int64_t i = (int64_t)tupregs[0].dttk_value;
4212		int64_t val = i < 0 ? i * -1 : i;
4213		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4214		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4215
4216		if (!DTRACE_INSCRATCH(mstate, size)) {
4217			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4218			regs[rd] = 0;
4219			break;
4220		}
4221
4222		for (*end-- = '\0'; val; val /= 10)
4223			*end-- = '0' + (val % 10);
4224
4225		if (i == 0)
4226			*end-- = '0';
4227
4228		if (i < 0)
4229			*end-- = '-';
4230
4231		regs[rd] = (uintptr_t)end + 1;
4232		mstate->dtms_scratch_ptr += size;
4233		break;
4234	}
4235
4236	case DIF_SUBR_HTONS:
4237	case DIF_SUBR_NTOHS:
4238#if BYTE_ORDER == BIG_ENDIAN
4239		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4240#else
4241		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4242#endif
4243		break;
4244
4245
4246	case DIF_SUBR_HTONL:
4247	case DIF_SUBR_NTOHL:
4248#if BYTE_ORDER == BIG_ENDIAN
4249		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4250#else
4251		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4252#endif
4253		break;
4254
4255
4256	case DIF_SUBR_HTONLL:
4257	case DIF_SUBR_NTOHLL:
4258#if BYTE_ORDER == BIG_ENDIAN
4259		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4260#else
4261		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4262#endif
4263		break;
4264
4265
4266	case DIF_SUBR_DIRNAME:
4267	case DIF_SUBR_BASENAME: {
4268		char *dest = (char *)mstate->dtms_scratch_ptr;
4269		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4270		uintptr_t src = tupregs[0].dttk_value;
4271		int i, j, len = dtrace_strlen((char *)src, size);
4272		int lastbase = -1, firstbase = -1, lastdir = -1;
4273		int start, end;
4274
4275		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4276			regs[rd] = 0;
4277			break;
4278		}
4279
4280		if (!DTRACE_INSCRATCH(mstate, size)) {
4281			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4282			regs[rd] = 0;
4283			break;
4284		}
4285
4286		/*
4287		 * The basename and dirname for a zero-length string is
4288		 * defined to be "."
4289		 */
4290		if (len == 0) {
4291			len = 1;
4292			src = (uintptr_t)".";
4293		}
4294
4295		/*
4296		 * Start from the back of the string, moving back toward the
4297		 * front until we see a character that isn't a slash.  That
4298		 * character is the last character in the basename.
4299		 */
4300		for (i = len - 1; i >= 0; i--) {
4301			if (dtrace_load8(src + i) != '/')
4302				break;
4303		}
4304
4305		if (i >= 0)
4306			lastbase = i;
4307
4308		/*
4309		 * Starting from the last character in the basename, move
4310		 * towards the front until we find a slash.  The character
4311		 * that we processed immediately before that is the first
4312		 * character in the basename.
4313		 */
4314		for (; i >= 0; i--) {
4315			if (dtrace_load8(src + i) == '/')
4316				break;
4317		}
4318
4319		if (i >= 0)
4320			firstbase = i + 1;
4321
4322		/*
4323		 * Now keep going until we find a non-slash character.  That
4324		 * character is the last character in the dirname.
4325		 */
4326		for (; i >= 0; i--) {
4327			if (dtrace_load8(src + i) != '/')
4328				break;
4329		}
4330
4331		if (i >= 0)
4332			lastdir = i;
4333
4334		ASSERT(!(lastbase == -1 && firstbase != -1));
4335		ASSERT(!(firstbase == -1 && lastdir != -1));
4336
4337		if (lastbase == -1) {
4338			/*
4339			 * We didn't find a non-slash character.  We know that
4340			 * the length is non-zero, so the whole string must be
4341			 * slashes.  In either the dirname or the basename
4342			 * case, we return '/'.
4343			 */
4344			ASSERT(firstbase == -1);
4345			firstbase = lastbase = lastdir = 0;
4346		}
4347
4348		if (firstbase == -1) {
4349			/*
4350			 * The entire string consists only of a basename
4351			 * component.  If we're looking for dirname, we need
4352			 * to change our string to be just "."; if we're
4353			 * looking for a basename, we'll just set the first
4354			 * character of the basename to be 0.
4355			 */
4356			if (subr == DIF_SUBR_DIRNAME) {
4357				ASSERT(lastdir == -1);
4358				src = (uintptr_t)".";
4359				lastdir = 0;
4360			} else {
4361				firstbase = 0;
4362			}
4363		}
4364
4365		if (subr == DIF_SUBR_DIRNAME) {
4366			if (lastdir == -1) {
4367				/*
4368				 * We know that we have a slash in the name --
4369				 * or lastdir would be set to 0, above.  And
4370				 * because lastdir is -1, we know that this
4371				 * slash must be the first character.  (That
4372				 * is, the full string must be of the form
4373				 * "/basename".)  In this case, the last
4374				 * character of the directory name is 0.
4375				 */
4376				lastdir = 0;
4377			}
4378
4379			start = 0;
4380			end = lastdir;
4381		} else {
4382			ASSERT(subr == DIF_SUBR_BASENAME);
4383			ASSERT(firstbase != -1 && lastbase != -1);
4384			start = firstbase;
4385			end = lastbase;
4386		}
4387
4388		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4389			dest[j] = dtrace_load8(src + i);
4390
4391		dest[j] = '\0';
4392		regs[rd] = (uintptr_t)dest;
4393		mstate->dtms_scratch_ptr += size;
4394		break;
4395	}
4396
4397	case DIF_SUBR_CLEANPATH: {
4398		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4399		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4400		uintptr_t src = tupregs[0].dttk_value;
4401		int i = 0, j = 0;
4402
4403		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4404			regs[rd] = 0;
4405			break;
4406		}
4407
4408		if (!DTRACE_INSCRATCH(mstate, size)) {
4409			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4410			regs[rd] = 0;
4411			break;
4412		}
4413
4414		/*
4415		 * Move forward, loading each character.
4416		 */
4417		do {
4418			c = dtrace_load8(src + i++);
4419next:
4420			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4421				break;
4422
4423			if (c != '/') {
4424				dest[j++] = c;
4425				continue;
4426			}
4427
4428			c = dtrace_load8(src + i++);
4429
4430			if (c == '/') {
4431				/*
4432				 * We have two slashes -- we can just advance
4433				 * to the next character.
4434				 */
4435				goto next;
4436			}
4437
4438			if (c != '.') {
4439				/*
4440				 * This is not "." and it's not ".." -- we can
4441				 * just store the "/" and this character and
4442				 * drive on.
4443				 */
4444				dest[j++] = '/';
4445				dest[j++] = c;
4446				continue;
4447			}
4448
4449			c = dtrace_load8(src + i++);
4450
4451			if (c == '/') {
4452				/*
4453				 * This is a "/./" component.  We're not going
4454				 * to store anything in the destination buffer;
4455				 * we're just going to go to the next component.
4456				 */
4457				goto next;
4458			}
4459
4460			if (c != '.') {
4461				/*
4462				 * This is not ".." -- we can just store the
4463				 * "/." and this character and continue
4464				 * processing.
4465				 */
4466				dest[j++] = '/';
4467				dest[j++] = '.';
4468				dest[j++] = c;
4469				continue;
4470			}
4471
4472			c = dtrace_load8(src + i++);
4473
4474			if (c != '/' && c != '\0') {
4475				/*
4476				 * This is not ".." -- it's "..[mumble]".
4477				 * We'll store the "/.." and this character
4478				 * and continue processing.
4479				 */
4480				dest[j++] = '/';
4481				dest[j++] = '.';
4482				dest[j++] = '.';
4483				dest[j++] = c;
4484				continue;
4485			}
4486
4487			/*
4488			 * This is "/../" or "/..\0".  We need to back up
4489			 * our destination pointer until we find a "/".
4490			 */
4491			i--;
4492			while (j != 0 && dest[--j] != '/')
4493				continue;
4494
4495			if (c == '\0')
4496				dest[++j] = '/';
4497		} while (c != '\0');
4498
4499		dest[j] = '\0';
4500		regs[rd] = (uintptr_t)dest;
4501		mstate->dtms_scratch_ptr += size;
4502		break;
4503	}
4504
4505	case DIF_SUBR_INET_NTOA:
4506	case DIF_SUBR_INET_NTOA6:
4507	case DIF_SUBR_INET_NTOP: {
4508		size_t size;
4509		int af, argi, i;
4510		char *base, *end;
4511
4512		if (subr == DIF_SUBR_INET_NTOP) {
4513			af = (int)tupregs[0].dttk_value;
4514			argi = 1;
4515		} else {
4516			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4517			argi = 0;
4518		}
4519
4520		if (af == AF_INET) {
4521			ipaddr_t ip4;
4522			uint8_t *ptr8, val;
4523
4524			/*
4525			 * Safely load the IPv4 address.
4526			 */
4527			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4528
4529			/*
4530			 * Check an IPv4 string will fit in scratch.
4531			 */
4532			size = INET_ADDRSTRLEN;
4533			if (!DTRACE_INSCRATCH(mstate, size)) {
4534				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4535				regs[rd] = 0;
4536				break;
4537			}
4538			base = (char *)mstate->dtms_scratch_ptr;
4539			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4540
4541			/*
4542			 * Stringify as a dotted decimal quad.
4543			 */
4544			*end-- = '\0';
4545			ptr8 = (uint8_t *)&ip4;
4546			for (i = 3; i >= 0; i--) {
4547				val = ptr8[i];
4548
4549				if (val == 0) {
4550					*end-- = '0';
4551				} else {
4552					for (; val; val /= 10) {
4553						*end-- = '0' + (val % 10);
4554					}
4555				}
4556
4557				if (i > 0)
4558					*end-- = '.';
4559			}
4560			ASSERT(end + 1 >= base);
4561
4562		} else if (af == AF_INET6) {
4563			struct in6_addr ip6;
4564			int firstzero, tryzero, numzero, v6end;
4565			uint16_t val;
4566			const char digits[] = "0123456789abcdef";
4567
4568			/*
4569			 * Stringify using RFC 1884 convention 2 - 16 bit
4570			 * hexadecimal values with a zero-run compression.
4571			 * Lower case hexadecimal digits are used.
4572			 * 	eg, fe80::214:4fff:fe0b:76c8.
4573			 * The IPv4 embedded form is returned for inet_ntop,
4574			 * just the IPv4 string is returned for inet_ntoa6.
4575			 */
4576
4577			/*
4578			 * Safely load the IPv6 address.
4579			 */
4580			dtrace_bcopy(
4581			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4582			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4583
4584			/*
4585			 * Check an IPv6 string will fit in scratch.
4586			 */
4587			size = INET6_ADDRSTRLEN;
4588			if (!DTRACE_INSCRATCH(mstate, size)) {
4589				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4590				regs[rd] = 0;
4591				break;
4592			}
4593			base = (char *)mstate->dtms_scratch_ptr;
4594			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4595			*end-- = '\0';
4596
4597			/*
4598			 * Find the longest run of 16 bit zero values
4599			 * for the single allowed zero compression - "::".
4600			 */
4601			firstzero = -1;
4602			tryzero = -1;
4603			numzero = 1;
4604			for (i = 0; i < sizeof (struct in6_addr); i++) {
4605#if defined(sun)
4606				if (ip6._S6_un._S6_u8[i] == 0 &&
4607#else
4608				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4609#endif
4610				    tryzero == -1 && i % 2 == 0) {
4611					tryzero = i;
4612					continue;
4613				}
4614
4615				if (tryzero != -1 &&
4616#if defined(sun)
4617				    (ip6._S6_un._S6_u8[i] != 0 ||
4618#else
4619				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4620#endif
4621				    i == sizeof (struct in6_addr) - 1)) {
4622
4623					if (i - tryzero <= numzero) {
4624						tryzero = -1;
4625						continue;
4626					}
4627
4628					firstzero = tryzero;
4629					numzero = i - i % 2 - tryzero;
4630					tryzero = -1;
4631
4632#if defined(sun)
4633					if (ip6._S6_un._S6_u8[i] == 0 &&
4634#else
4635					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4636#endif
4637					    i == sizeof (struct in6_addr) - 1)
4638						numzero += 2;
4639				}
4640			}
4641			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4642
4643			/*
4644			 * Check for an IPv4 embedded address.
4645			 */
4646			v6end = sizeof (struct in6_addr) - 2;
4647			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4648			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4649				for (i = sizeof (struct in6_addr) - 1;
4650				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4651					ASSERT(end >= base);
4652
4653#if defined(sun)
4654					val = ip6._S6_un._S6_u8[i];
4655#else
4656					val = ip6.__u6_addr.__u6_addr8[i];
4657#endif
4658
4659					if (val == 0) {
4660						*end-- = '0';
4661					} else {
4662						for (; val; val /= 10) {
4663							*end-- = '0' + val % 10;
4664						}
4665					}
4666
4667					if (i > DTRACE_V4MAPPED_OFFSET)
4668						*end-- = '.';
4669				}
4670
4671				if (subr == DIF_SUBR_INET_NTOA6)
4672					goto inetout;
4673
4674				/*
4675				 * Set v6end to skip the IPv4 address that
4676				 * we have already stringified.
4677				 */
4678				v6end = 10;
4679			}
4680
4681			/*
4682			 * Build the IPv6 string by working through the
4683			 * address in reverse.
4684			 */
4685			for (i = v6end; i >= 0; i -= 2) {
4686				ASSERT(end >= base);
4687
4688				if (i == firstzero + numzero - 2) {
4689					*end-- = ':';
4690					*end-- = ':';
4691					i -= numzero - 2;
4692					continue;
4693				}
4694
4695				if (i < 14 && i != firstzero - 2)
4696					*end-- = ':';
4697
4698#if defined(sun)
4699				val = (ip6._S6_un._S6_u8[i] << 8) +
4700				    ip6._S6_un._S6_u8[i + 1];
4701#else
4702				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4703				    ip6.__u6_addr.__u6_addr8[i + 1];
4704#endif
4705
4706				if (val == 0) {
4707					*end-- = '0';
4708				} else {
4709					for (; val; val /= 16) {
4710						*end-- = digits[val % 16];
4711					}
4712				}
4713			}
4714			ASSERT(end + 1 >= base);
4715
4716		} else {
4717			/*
4718			 * The user didn't use AH_INET or AH_INET6.
4719			 */
4720			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4721			regs[rd] = 0;
4722			break;
4723		}
4724
4725inetout:	regs[rd] = (uintptr_t)end + 1;
4726		mstate->dtms_scratch_ptr += size;
4727		break;
4728	}
4729
4730	case DIF_SUBR_MEMREF: {
4731		uintptr_t size = 2 * sizeof(uintptr_t);
4732		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4733		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4734
4735		/* address and length */
4736		memref[0] = tupregs[0].dttk_value;
4737		memref[1] = tupregs[1].dttk_value;
4738
4739		regs[rd] = (uintptr_t) memref;
4740		mstate->dtms_scratch_ptr += scratch_size;
4741		break;
4742	}
4743
4744	case DIF_SUBR_TYPEREF: {
4745		uintptr_t size = 4 * sizeof(uintptr_t);
4746		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4747		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4748
4749		/* address, num_elements, type_str, type_len */
4750		typeref[0] = tupregs[0].dttk_value;
4751		typeref[1] = tupregs[1].dttk_value;
4752		typeref[2] = tupregs[2].dttk_value;
4753		typeref[3] = tupregs[3].dttk_value;
4754
4755		regs[rd] = (uintptr_t) typeref;
4756		mstate->dtms_scratch_ptr += scratch_size;
4757		break;
4758	}
4759	}
4760}
4761
4762/*
4763 * Emulate the execution of DTrace IR instructions specified by the given
4764 * DIF object.  This function is deliberately void of assertions as all of
4765 * the necessary checks are handled by a call to dtrace_difo_validate().
4766 */
4767static uint64_t
4768dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4769    dtrace_vstate_t *vstate, dtrace_state_t *state)
4770{
4771	const dif_instr_t *text = difo->dtdo_buf;
4772	const uint_t textlen = difo->dtdo_len;
4773	const char *strtab = difo->dtdo_strtab;
4774	const uint64_t *inttab = difo->dtdo_inttab;
4775
4776	uint64_t rval = 0;
4777	dtrace_statvar_t *svar;
4778	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4779	dtrace_difv_t *v;
4780	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4781	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4782
4783	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4784	uint64_t regs[DIF_DIR_NREGS];
4785	uint64_t *tmp;
4786
4787	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4788	int64_t cc_r;
4789	uint_t pc = 0, id, opc = 0;
4790	uint8_t ttop = 0;
4791	dif_instr_t instr;
4792	uint_t r1, r2, rd;
4793
4794	/*
4795	 * We stash the current DIF object into the machine state: we need it
4796	 * for subsequent access checking.
4797	 */
4798	mstate->dtms_difo = difo;
4799
4800	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4801
4802	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4803		opc = pc;
4804
4805		instr = text[pc++];
4806		r1 = DIF_INSTR_R1(instr);
4807		r2 = DIF_INSTR_R2(instr);
4808		rd = DIF_INSTR_RD(instr);
4809
4810		switch (DIF_INSTR_OP(instr)) {
4811		case DIF_OP_OR:
4812			regs[rd] = regs[r1] | regs[r2];
4813			break;
4814		case DIF_OP_XOR:
4815			regs[rd] = regs[r1] ^ regs[r2];
4816			break;
4817		case DIF_OP_AND:
4818			regs[rd] = regs[r1] & regs[r2];
4819			break;
4820		case DIF_OP_SLL:
4821			regs[rd] = regs[r1] << regs[r2];
4822			break;
4823		case DIF_OP_SRL:
4824			regs[rd] = regs[r1] >> regs[r2];
4825			break;
4826		case DIF_OP_SUB:
4827			regs[rd] = regs[r1] - regs[r2];
4828			break;
4829		case DIF_OP_ADD:
4830			regs[rd] = regs[r1] + regs[r2];
4831			break;
4832		case DIF_OP_MUL:
4833			regs[rd] = regs[r1] * regs[r2];
4834			break;
4835		case DIF_OP_SDIV:
4836			if (regs[r2] == 0) {
4837				regs[rd] = 0;
4838				*flags |= CPU_DTRACE_DIVZERO;
4839			} else {
4840				regs[rd] = (int64_t)regs[r1] /
4841				    (int64_t)regs[r2];
4842			}
4843			break;
4844
4845		case DIF_OP_UDIV:
4846			if (regs[r2] == 0) {
4847				regs[rd] = 0;
4848				*flags |= CPU_DTRACE_DIVZERO;
4849			} else {
4850				regs[rd] = regs[r1] / regs[r2];
4851			}
4852			break;
4853
4854		case DIF_OP_SREM:
4855			if (regs[r2] == 0) {
4856				regs[rd] = 0;
4857				*flags |= CPU_DTRACE_DIVZERO;
4858			} else {
4859				regs[rd] = (int64_t)regs[r1] %
4860				    (int64_t)regs[r2];
4861			}
4862			break;
4863
4864		case DIF_OP_UREM:
4865			if (regs[r2] == 0) {
4866				regs[rd] = 0;
4867				*flags |= CPU_DTRACE_DIVZERO;
4868			} else {
4869				regs[rd] = regs[r1] % regs[r2];
4870			}
4871			break;
4872
4873		case DIF_OP_NOT:
4874			regs[rd] = ~regs[r1];
4875			break;
4876		case DIF_OP_MOV:
4877			regs[rd] = regs[r1];
4878			break;
4879		case DIF_OP_CMP:
4880			cc_r = regs[r1] - regs[r2];
4881			cc_n = cc_r < 0;
4882			cc_z = cc_r == 0;
4883			cc_v = 0;
4884			cc_c = regs[r1] < regs[r2];
4885			break;
4886		case DIF_OP_TST:
4887			cc_n = cc_v = cc_c = 0;
4888			cc_z = regs[r1] == 0;
4889			break;
4890		case DIF_OP_BA:
4891			pc = DIF_INSTR_LABEL(instr);
4892			break;
4893		case DIF_OP_BE:
4894			if (cc_z)
4895				pc = DIF_INSTR_LABEL(instr);
4896			break;
4897		case DIF_OP_BNE:
4898			if (cc_z == 0)
4899				pc = DIF_INSTR_LABEL(instr);
4900			break;
4901		case DIF_OP_BG:
4902			if ((cc_z | (cc_n ^ cc_v)) == 0)
4903				pc = DIF_INSTR_LABEL(instr);
4904			break;
4905		case DIF_OP_BGU:
4906			if ((cc_c | cc_z) == 0)
4907				pc = DIF_INSTR_LABEL(instr);
4908			break;
4909		case DIF_OP_BGE:
4910			if ((cc_n ^ cc_v) == 0)
4911				pc = DIF_INSTR_LABEL(instr);
4912			break;
4913		case DIF_OP_BGEU:
4914			if (cc_c == 0)
4915				pc = DIF_INSTR_LABEL(instr);
4916			break;
4917		case DIF_OP_BL:
4918			if (cc_n ^ cc_v)
4919				pc = DIF_INSTR_LABEL(instr);
4920			break;
4921		case DIF_OP_BLU:
4922			if (cc_c)
4923				pc = DIF_INSTR_LABEL(instr);
4924			break;
4925		case DIF_OP_BLE:
4926			if (cc_z | (cc_n ^ cc_v))
4927				pc = DIF_INSTR_LABEL(instr);
4928			break;
4929		case DIF_OP_BLEU:
4930			if (cc_c | cc_z)
4931				pc = DIF_INSTR_LABEL(instr);
4932			break;
4933		case DIF_OP_RLDSB:
4934			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4935				*flags |= CPU_DTRACE_KPRIV;
4936				*illval = regs[r1];
4937				break;
4938			}
4939			/*FALLTHROUGH*/
4940		case DIF_OP_LDSB:
4941			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4942			break;
4943		case DIF_OP_RLDSH:
4944			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4945				*flags |= CPU_DTRACE_KPRIV;
4946				*illval = regs[r1];
4947				break;
4948			}
4949			/*FALLTHROUGH*/
4950		case DIF_OP_LDSH:
4951			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4952			break;
4953		case DIF_OP_RLDSW:
4954			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4955				*flags |= CPU_DTRACE_KPRIV;
4956				*illval = regs[r1];
4957				break;
4958			}
4959			/*FALLTHROUGH*/
4960		case DIF_OP_LDSW:
4961			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4962			break;
4963		case DIF_OP_RLDUB:
4964			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4965				*flags |= CPU_DTRACE_KPRIV;
4966				*illval = regs[r1];
4967				break;
4968			}
4969			/*FALLTHROUGH*/
4970		case DIF_OP_LDUB:
4971			regs[rd] = dtrace_load8(regs[r1]);
4972			break;
4973		case DIF_OP_RLDUH:
4974			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4975				*flags |= CPU_DTRACE_KPRIV;
4976				*illval = regs[r1];
4977				break;
4978			}
4979			/*FALLTHROUGH*/
4980		case DIF_OP_LDUH:
4981			regs[rd] = dtrace_load16(regs[r1]);
4982			break;
4983		case DIF_OP_RLDUW:
4984			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4985				*flags |= CPU_DTRACE_KPRIV;
4986				*illval = regs[r1];
4987				break;
4988			}
4989			/*FALLTHROUGH*/
4990		case DIF_OP_LDUW:
4991			regs[rd] = dtrace_load32(regs[r1]);
4992			break;
4993		case DIF_OP_RLDX:
4994			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4995				*flags |= CPU_DTRACE_KPRIV;
4996				*illval = regs[r1];
4997				break;
4998			}
4999			/*FALLTHROUGH*/
5000		case DIF_OP_LDX:
5001			regs[rd] = dtrace_load64(regs[r1]);
5002			break;
5003		case DIF_OP_ULDSB:
5004			regs[rd] = (int8_t)
5005			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5006			break;
5007		case DIF_OP_ULDSH:
5008			regs[rd] = (int16_t)
5009			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5010			break;
5011		case DIF_OP_ULDSW:
5012			regs[rd] = (int32_t)
5013			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5014			break;
5015		case DIF_OP_ULDUB:
5016			regs[rd] =
5017			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5018			break;
5019		case DIF_OP_ULDUH:
5020			regs[rd] =
5021			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5022			break;
5023		case DIF_OP_ULDUW:
5024			regs[rd] =
5025			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5026			break;
5027		case DIF_OP_ULDX:
5028			regs[rd] =
5029			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5030			break;
5031		case DIF_OP_RET:
5032			rval = regs[rd];
5033			pc = textlen;
5034			break;
5035		case DIF_OP_NOP:
5036			break;
5037		case DIF_OP_SETX:
5038			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5039			break;
5040		case DIF_OP_SETS:
5041			regs[rd] = (uint64_t)(uintptr_t)
5042			    (strtab + DIF_INSTR_STRING(instr));
5043			break;
5044		case DIF_OP_SCMP: {
5045			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5046			uintptr_t s1 = regs[r1];
5047			uintptr_t s2 = regs[r2];
5048
5049			if (s1 != 0 &&
5050			    !dtrace_strcanload(s1, sz, mstate, vstate))
5051				break;
5052			if (s2 != 0 &&
5053			    !dtrace_strcanload(s2, sz, mstate, vstate))
5054				break;
5055
5056			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5057
5058			cc_n = cc_r < 0;
5059			cc_z = cc_r == 0;
5060			cc_v = cc_c = 0;
5061			break;
5062		}
5063		case DIF_OP_LDGA:
5064			regs[rd] = dtrace_dif_variable(mstate, state,
5065			    r1, regs[r2]);
5066			break;
5067		case DIF_OP_LDGS:
5068			id = DIF_INSTR_VAR(instr);
5069
5070			if (id >= DIF_VAR_OTHER_UBASE) {
5071				uintptr_t a;
5072
5073				id -= DIF_VAR_OTHER_UBASE;
5074				svar = vstate->dtvs_globals[id];
5075				ASSERT(svar != NULL);
5076				v = &svar->dtsv_var;
5077
5078				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5079					regs[rd] = svar->dtsv_data;
5080					break;
5081				}
5082
5083				a = (uintptr_t)svar->dtsv_data;
5084
5085				if (*(uint8_t *)a == UINT8_MAX) {
5086					/*
5087					 * If the 0th byte is set to UINT8_MAX
5088					 * then this is to be treated as a
5089					 * reference to a NULL variable.
5090					 */
5091					regs[rd] = 0;
5092				} else {
5093					regs[rd] = a + sizeof (uint64_t);
5094				}
5095
5096				break;
5097			}
5098
5099			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5100			break;
5101
5102		case DIF_OP_STGS:
5103			id = DIF_INSTR_VAR(instr);
5104
5105			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5106			id -= DIF_VAR_OTHER_UBASE;
5107
5108			svar = vstate->dtvs_globals[id];
5109			ASSERT(svar != NULL);
5110			v = &svar->dtsv_var;
5111
5112			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5113				uintptr_t a = (uintptr_t)svar->dtsv_data;
5114
5115				ASSERT(a != 0);
5116				ASSERT(svar->dtsv_size != 0);
5117
5118				if (regs[rd] == 0) {
5119					*(uint8_t *)a = UINT8_MAX;
5120					break;
5121				} else {
5122					*(uint8_t *)a = 0;
5123					a += sizeof (uint64_t);
5124				}
5125				if (!dtrace_vcanload(
5126				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5127				    mstate, vstate))
5128					break;
5129
5130				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5131				    (void *)a, &v->dtdv_type);
5132				break;
5133			}
5134
5135			svar->dtsv_data = regs[rd];
5136			break;
5137
5138		case DIF_OP_LDTA:
5139			/*
5140			 * There are no DTrace built-in thread-local arrays at
5141			 * present.  This opcode is saved for future work.
5142			 */
5143			*flags |= CPU_DTRACE_ILLOP;
5144			regs[rd] = 0;
5145			break;
5146
5147		case DIF_OP_LDLS:
5148			id = DIF_INSTR_VAR(instr);
5149
5150			if (id < DIF_VAR_OTHER_UBASE) {
5151				/*
5152				 * For now, this has no meaning.
5153				 */
5154				regs[rd] = 0;
5155				break;
5156			}
5157
5158			id -= DIF_VAR_OTHER_UBASE;
5159
5160			ASSERT(id < vstate->dtvs_nlocals);
5161			ASSERT(vstate->dtvs_locals != NULL);
5162
5163			svar = vstate->dtvs_locals[id];
5164			ASSERT(svar != NULL);
5165			v = &svar->dtsv_var;
5166
5167			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5168				uintptr_t a = (uintptr_t)svar->dtsv_data;
5169				size_t sz = v->dtdv_type.dtdt_size;
5170
5171				sz += sizeof (uint64_t);
5172				ASSERT(svar->dtsv_size == NCPU * sz);
5173				a += curcpu * sz;
5174
5175				if (*(uint8_t *)a == UINT8_MAX) {
5176					/*
5177					 * If the 0th byte is set to UINT8_MAX
5178					 * then this is to be treated as a
5179					 * reference to a NULL variable.
5180					 */
5181					regs[rd] = 0;
5182				} else {
5183					regs[rd] = a + sizeof (uint64_t);
5184				}
5185
5186				break;
5187			}
5188
5189			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5190			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5191			regs[rd] = tmp[curcpu];
5192			break;
5193
5194		case DIF_OP_STLS:
5195			id = DIF_INSTR_VAR(instr);
5196
5197			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5198			id -= DIF_VAR_OTHER_UBASE;
5199			ASSERT(id < vstate->dtvs_nlocals);
5200
5201			ASSERT(vstate->dtvs_locals != NULL);
5202			svar = vstate->dtvs_locals[id];
5203			ASSERT(svar != NULL);
5204			v = &svar->dtsv_var;
5205
5206			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5207				uintptr_t a = (uintptr_t)svar->dtsv_data;
5208				size_t sz = v->dtdv_type.dtdt_size;
5209
5210				sz += sizeof (uint64_t);
5211				ASSERT(svar->dtsv_size == NCPU * sz);
5212				a += curcpu * sz;
5213
5214				if (regs[rd] == 0) {
5215					*(uint8_t *)a = UINT8_MAX;
5216					break;
5217				} else {
5218					*(uint8_t *)a = 0;
5219					a += sizeof (uint64_t);
5220				}
5221
5222				if (!dtrace_vcanload(
5223				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5224				    mstate, vstate))
5225					break;
5226
5227				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5228				    (void *)a, &v->dtdv_type);
5229				break;
5230			}
5231
5232			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5233			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5234			tmp[curcpu] = regs[rd];
5235			break;
5236
5237		case DIF_OP_LDTS: {
5238			dtrace_dynvar_t *dvar;
5239			dtrace_key_t *key;
5240
5241			id = DIF_INSTR_VAR(instr);
5242			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5243			id -= DIF_VAR_OTHER_UBASE;
5244			v = &vstate->dtvs_tlocals[id];
5245
5246			key = &tupregs[DIF_DTR_NREGS];
5247			key[0].dttk_value = (uint64_t)id;
5248			key[0].dttk_size = 0;
5249			DTRACE_TLS_THRKEY(key[1].dttk_value);
5250			key[1].dttk_size = 0;
5251
5252			dvar = dtrace_dynvar(dstate, 2, key,
5253			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5254			    mstate, vstate);
5255
5256			if (dvar == NULL) {
5257				regs[rd] = 0;
5258				break;
5259			}
5260
5261			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5262				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5263			} else {
5264				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5265			}
5266
5267			break;
5268		}
5269
5270		case DIF_OP_STTS: {
5271			dtrace_dynvar_t *dvar;
5272			dtrace_key_t *key;
5273
5274			id = DIF_INSTR_VAR(instr);
5275			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5276			id -= DIF_VAR_OTHER_UBASE;
5277
5278			key = &tupregs[DIF_DTR_NREGS];
5279			key[0].dttk_value = (uint64_t)id;
5280			key[0].dttk_size = 0;
5281			DTRACE_TLS_THRKEY(key[1].dttk_value);
5282			key[1].dttk_size = 0;
5283			v = &vstate->dtvs_tlocals[id];
5284
5285			dvar = dtrace_dynvar(dstate, 2, key,
5286			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5287			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5288			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5289			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5290
5291			/*
5292			 * Given that we're storing to thread-local data,
5293			 * we need to flush our predicate cache.
5294			 */
5295			curthread->t_predcache = 0;
5296
5297			if (dvar == NULL)
5298				break;
5299
5300			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5301				if (!dtrace_vcanload(
5302				    (void *)(uintptr_t)regs[rd],
5303				    &v->dtdv_type, mstate, vstate))
5304					break;
5305
5306				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5307				    dvar->dtdv_data, &v->dtdv_type);
5308			} else {
5309				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5310			}
5311
5312			break;
5313		}
5314
5315		case DIF_OP_SRA:
5316			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5317			break;
5318
5319		case DIF_OP_CALL:
5320			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5321			    regs, tupregs, ttop, mstate, state);
5322			break;
5323
5324		case DIF_OP_PUSHTR:
5325			if (ttop == DIF_DTR_NREGS) {
5326				*flags |= CPU_DTRACE_TUPOFLOW;
5327				break;
5328			}
5329
5330			if (r1 == DIF_TYPE_STRING) {
5331				/*
5332				 * If this is a string type and the size is 0,
5333				 * we'll use the system-wide default string
5334				 * size.  Note that we are _not_ looking at
5335				 * the value of the DTRACEOPT_STRSIZE option;
5336				 * had this been set, we would expect to have
5337				 * a non-zero size value in the "pushtr".
5338				 */
5339				tupregs[ttop].dttk_size =
5340				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5341				    regs[r2] ? regs[r2] :
5342				    dtrace_strsize_default) + 1;
5343			} else {
5344				tupregs[ttop].dttk_size = regs[r2];
5345			}
5346
5347			tupregs[ttop++].dttk_value = regs[rd];
5348			break;
5349
5350		case DIF_OP_PUSHTV:
5351			if (ttop == DIF_DTR_NREGS) {
5352				*flags |= CPU_DTRACE_TUPOFLOW;
5353				break;
5354			}
5355
5356			tupregs[ttop].dttk_value = regs[rd];
5357			tupregs[ttop++].dttk_size = 0;
5358			break;
5359
5360		case DIF_OP_POPTS:
5361			if (ttop != 0)
5362				ttop--;
5363			break;
5364
5365		case DIF_OP_FLUSHTS:
5366			ttop = 0;
5367			break;
5368
5369		case DIF_OP_LDGAA:
5370		case DIF_OP_LDTAA: {
5371			dtrace_dynvar_t *dvar;
5372			dtrace_key_t *key = tupregs;
5373			uint_t nkeys = ttop;
5374
5375			id = DIF_INSTR_VAR(instr);
5376			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5377			id -= DIF_VAR_OTHER_UBASE;
5378
5379			key[nkeys].dttk_value = (uint64_t)id;
5380			key[nkeys++].dttk_size = 0;
5381
5382			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5383				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5384				key[nkeys++].dttk_size = 0;
5385				v = &vstate->dtvs_tlocals[id];
5386			} else {
5387				v = &vstate->dtvs_globals[id]->dtsv_var;
5388			}
5389
5390			dvar = dtrace_dynvar(dstate, nkeys, key,
5391			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5392			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5393			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5394
5395			if (dvar == NULL) {
5396				regs[rd] = 0;
5397				break;
5398			}
5399
5400			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5401				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5402			} else {
5403				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5404			}
5405
5406			break;
5407		}
5408
5409		case DIF_OP_STGAA:
5410		case DIF_OP_STTAA: {
5411			dtrace_dynvar_t *dvar;
5412			dtrace_key_t *key = tupregs;
5413			uint_t nkeys = ttop;
5414
5415			id = DIF_INSTR_VAR(instr);
5416			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5417			id -= DIF_VAR_OTHER_UBASE;
5418
5419			key[nkeys].dttk_value = (uint64_t)id;
5420			key[nkeys++].dttk_size = 0;
5421
5422			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5423				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5424				key[nkeys++].dttk_size = 0;
5425				v = &vstate->dtvs_tlocals[id];
5426			} else {
5427				v = &vstate->dtvs_globals[id]->dtsv_var;
5428			}
5429
5430			dvar = dtrace_dynvar(dstate, nkeys, key,
5431			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5432			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5433			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5434			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5435
5436			if (dvar == NULL)
5437				break;
5438
5439			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5440				if (!dtrace_vcanload(
5441				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5442				    mstate, vstate))
5443					break;
5444
5445				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5446				    dvar->dtdv_data, &v->dtdv_type);
5447			} else {
5448				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5449			}
5450
5451			break;
5452		}
5453
5454		case DIF_OP_ALLOCS: {
5455			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5456			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5457
5458			/*
5459			 * Rounding up the user allocation size could have
5460			 * overflowed large, bogus allocations (like -1ULL) to
5461			 * 0.
5462			 */
5463			if (size < regs[r1] ||
5464			    !DTRACE_INSCRATCH(mstate, size)) {
5465				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5466				regs[rd] = 0;
5467				break;
5468			}
5469
5470			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5471			mstate->dtms_scratch_ptr += size;
5472			regs[rd] = ptr;
5473			break;
5474		}
5475
5476		case DIF_OP_COPYS:
5477			if (!dtrace_canstore(regs[rd], regs[r2],
5478			    mstate, vstate)) {
5479				*flags |= CPU_DTRACE_BADADDR;
5480				*illval = regs[rd];
5481				break;
5482			}
5483
5484			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5485				break;
5486
5487			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5488			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5489			break;
5490
5491		case DIF_OP_STB:
5492			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5493				*flags |= CPU_DTRACE_BADADDR;
5494				*illval = regs[rd];
5495				break;
5496			}
5497			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5498			break;
5499
5500		case DIF_OP_STH:
5501			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5502				*flags |= CPU_DTRACE_BADADDR;
5503				*illval = regs[rd];
5504				break;
5505			}
5506			if (regs[rd] & 1) {
5507				*flags |= CPU_DTRACE_BADALIGN;
5508				*illval = regs[rd];
5509				break;
5510			}
5511			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5512			break;
5513
5514		case DIF_OP_STW:
5515			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5516				*flags |= CPU_DTRACE_BADADDR;
5517				*illval = regs[rd];
5518				break;
5519			}
5520			if (regs[rd] & 3) {
5521				*flags |= CPU_DTRACE_BADALIGN;
5522				*illval = regs[rd];
5523				break;
5524			}
5525			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5526			break;
5527
5528		case DIF_OP_STX:
5529			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5530				*flags |= CPU_DTRACE_BADADDR;
5531				*illval = regs[rd];
5532				break;
5533			}
5534			if (regs[rd] & 7) {
5535				*flags |= CPU_DTRACE_BADALIGN;
5536				*illval = regs[rd];
5537				break;
5538			}
5539			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5540			break;
5541		}
5542	}
5543
5544	if (!(*flags & CPU_DTRACE_FAULT))
5545		return (rval);
5546
5547	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5548	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5549
5550	return (0);
5551}
5552
5553static void
5554dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5555{
5556	dtrace_probe_t *probe = ecb->dte_probe;
5557	dtrace_provider_t *prov = probe->dtpr_provider;
5558	char c[DTRACE_FULLNAMELEN + 80], *str;
5559	char *msg = "dtrace: breakpoint action at probe ";
5560	char *ecbmsg = " (ecb ";
5561	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5562	uintptr_t val = (uintptr_t)ecb;
5563	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5564
5565	if (dtrace_destructive_disallow)
5566		return;
5567
5568	/*
5569	 * It's impossible to be taking action on the NULL probe.
5570	 */
5571	ASSERT(probe != NULL);
5572
5573	/*
5574	 * This is a poor man's (destitute man's?) sprintf():  we want to
5575	 * print the provider name, module name, function name and name of
5576	 * the probe, along with the hex address of the ECB with the breakpoint
5577	 * action -- all of which we must place in the character buffer by
5578	 * hand.
5579	 */
5580	while (*msg != '\0')
5581		c[i++] = *msg++;
5582
5583	for (str = prov->dtpv_name; *str != '\0'; str++)
5584		c[i++] = *str;
5585	c[i++] = ':';
5586
5587	for (str = probe->dtpr_mod; *str != '\0'; str++)
5588		c[i++] = *str;
5589	c[i++] = ':';
5590
5591	for (str = probe->dtpr_func; *str != '\0'; str++)
5592		c[i++] = *str;
5593	c[i++] = ':';
5594
5595	for (str = probe->dtpr_name; *str != '\0'; str++)
5596		c[i++] = *str;
5597
5598	while (*ecbmsg != '\0')
5599		c[i++] = *ecbmsg++;
5600
5601	while (shift >= 0) {
5602		mask = (uintptr_t)0xf << shift;
5603
5604		if (val >= ((uintptr_t)1 << shift))
5605			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5606		shift -= 4;
5607	}
5608
5609	c[i++] = ')';
5610	c[i] = '\0';
5611
5612#if defined(sun)
5613	debug_enter(c);
5614#else
5615	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5616#endif
5617}
5618
5619static void
5620dtrace_action_panic(dtrace_ecb_t *ecb)
5621{
5622	dtrace_probe_t *probe = ecb->dte_probe;
5623
5624	/*
5625	 * It's impossible to be taking action on the NULL probe.
5626	 */
5627	ASSERT(probe != NULL);
5628
5629	if (dtrace_destructive_disallow)
5630		return;
5631
5632	if (dtrace_panicked != NULL)
5633		return;
5634
5635	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5636		return;
5637
5638	/*
5639	 * We won the right to panic.  (We want to be sure that only one
5640	 * thread calls panic() from dtrace_probe(), and that panic() is
5641	 * called exactly once.)
5642	 */
5643	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5644	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5645	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5646}
5647
5648static void
5649dtrace_action_raise(uint64_t sig)
5650{
5651	if (dtrace_destructive_disallow)
5652		return;
5653
5654	if (sig >= NSIG) {
5655		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5656		return;
5657	}
5658
5659#if defined(sun)
5660	/*
5661	 * raise() has a queue depth of 1 -- we ignore all subsequent
5662	 * invocations of the raise() action.
5663	 */
5664	if (curthread->t_dtrace_sig == 0)
5665		curthread->t_dtrace_sig = (uint8_t)sig;
5666
5667	curthread->t_sig_check = 1;
5668	aston(curthread);
5669#else
5670	struct proc *p = curproc;
5671	PROC_LOCK(p);
5672	kern_psignal(p, sig);
5673	PROC_UNLOCK(p);
5674#endif
5675}
5676
5677static void
5678dtrace_action_stop(void)
5679{
5680	if (dtrace_destructive_disallow)
5681		return;
5682
5683#if defined(sun)
5684	if (!curthread->t_dtrace_stop) {
5685		curthread->t_dtrace_stop = 1;
5686		curthread->t_sig_check = 1;
5687		aston(curthread);
5688	}
5689#else
5690	struct proc *p = curproc;
5691	PROC_LOCK(p);
5692	kern_psignal(p, SIGSTOP);
5693	PROC_UNLOCK(p);
5694#endif
5695}
5696
5697static void
5698dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5699{
5700	hrtime_t now;
5701	volatile uint16_t *flags;
5702#if defined(sun)
5703	cpu_t *cpu = CPU;
5704#else
5705	cpu_t *cpu = &solaris_cpu[curcpu];
5706#endif
5707
5708	if (dtrace_destructive_disallow)
5709		return;
5710
5711	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5712
5713	now = dtrace_gethrtime();
5714
5715	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5716		/*
5717		 * We need to advance the mark to the current time.
5718		 */
5719		cpu->cpu_dtrace_chillmark = now;
5720		cpu->cpu_dtrace_chilled = 0;
5721	}
5722
5723	/*
5724	 * Now check to see if the requested chill time would take us over
5725	 * the maximum amount of time allowed in the chill interval.  (Or
5726	 * worse, if the calculation itself induces overflow.)
5727	 */
5728	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5729	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5730		*flags |= CPU_DTRACE_ILLOP;
5731		return;
5732	}
5733
5734	while (dtrace_gethrtime() - now < val)
5735		continue;
5736
5737	/*
5738	 * Normally, we assure that the value of the variable "timestamp" does
5739	 * not change within an ECB.  The presence of chill() represents an
5740	 * exception to this rule, however.
5741	 */
5742	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5743	cpu->cpu_dtrace_chilled += val;
5744}
5745
5746static void
5747dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5748    uint64_t *buf, uint64_t arg)
5749{
5750	int nframes = DTRACE_USTACK_NFRAMES(arg);
5751	int strsize = DTRACE_USTACK_STRSIZE(arg);
5752	uint64_t *pcs = &buf[1], *fps;
5753	char *str = (char *)&pcs[nframes];
5754	int size, offs = 0, i, j;
5755	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5756	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5757	char *sym;
5758
5759	/*
5760	 * Should be taking a faster path if string space has not been
5761	 * allocated.
5762	 */
5763	ASSERT(strsize != 0);
5764
5765	/*
5766	 * We will first allocate some temporary space for the frame pointers.
5767	 */
5768	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5769	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5770	    (nframes * sizeof (uint64_t));
5771
5772	if (!DTRACE_INSCRATCH(mstate, size)) {
5773		/*
5774		 * Not enough room for our frame pointers -- need to indicate
5775		 * that we ran out of scratch space.
5776		 */
5777		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5778		return;
5779	}
5780
5781	mstate->dtms_scratch_ptr += size;
5782	saved = mstate->dtms_scratch_ptr;
5783
5784	/*
5785	 * Now get a stack with both program counters and frame pointers.
5786	 */
5787	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5788	dtrace_getufpstack(buf, fps, nframes + 1);
5789	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5790
5791	/*
5792	 * If that faulted, we're cooked.
5793	 */
5794	if (*flags & CPU_DTRACE_FAULT)
5795		goto out;
5796
5797	/*
5798	 * Now we want to walk up the stack, calling the USTACK helper.  For
5799	 * each iteration, we restore the scratch pointer.
5800	 */
5801	for (i = 0; i < nframes; i++) {
5802		mstate->dtms_scratch_ptr = saved;
5803
5804		if (offs >= strsize)
5805			break;
5806
5807		sym = (char *)(uintptr_t)dtrace_helper(
5808		    DTRACE_HELPER_ACTION_USTACK,
5809		    mstate, state, pcs[i], fps[i]);
5810
5811		/*
5812		 * If we faulted while running the helper, we're going to
5813		 * clear the fault and null out the corresponding string.
5814		 */
5815		if (*flags & CPU_DTRACE_FAULT) {
5816			*flags &= ~CPU_DTRACE_FAULT;
5817			str[offs++] = '\0';
5818			continue;
5819		}
5820
5821		if (sym == NULL) {
5822			str[offs++] = '\0';
5823			continue;
5824		}
5825
5826		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5827
5828		/*
5829		 * Now copy in the string that the helper returned to us.
5830		 */
5831		for (j = 0; offs + j < strsize; j++) {
5832			if ((str[offs + j] = sym[j]) == '\0')
5833				break;
5834		}
5835
5836		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5837
5838		offs += j + 1;
5839	}
5840
5841	if (offs >= strsize) {
5842		/*
5843		 * If we didn't have room for all of the strings, we don't
5844		 * abort processing -- this needn't be a fatal error -- but we
5845		 * still want to increment a counter (dts_stkstroverflows) to
5846		 * allow this condition to be warned about.  (If this is from
5847		 * a jstack() action, it is easily tuned via jstackstrsize.)
5848		 */
5849		dtrace_error(&state->dts_stkstroverflows);
5850	}
5851
5852	while (offs < strsize)
5853		str[offs++] = '\0';
5854
5855out:
5856	mstate->dtms_scratch_ptr = old;
5857}
5858
5859/*
5860 * If you're looking for the epicenter of DTrace, you just found it.  This
5861 * is the function called by the provider to fire a probe -- from which all
5862 * subsequent probe-context DTrace activity emanates.
5863 */
5864void
5865dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5866    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5867{
5868	processorid_t cpuid;
5869	dtrace_icookie_t cookie;
5870	dtrace_probe_t *probe;
5871	dtrace_mstate_t mstate;
5872	dtrace_ecb_t *ecb;
5873	dtrace_action_t *act;
5874	intptr_t offs;
5875	size_t size;
5876	int vtime, onintr;
5877	volatile uint16_t *flags;
5878	hrtime_t now;
5879
5880	if (panicstr != NULL)
5881		return;
5882
5883#if defined(sun)
5884	/*
5885	 * Kick out immediately if this CPU is still being born (in which case
5886	 * curthread will be set to -1) or the current thread can't allow
5887	 * probes in its current context.
5888	 */
5889	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5890		return;
5891#endif
5892
5893	cookie = dtrace_interrupt_disable();
5894	probe = dtrace_probes[id - 1];
5895	cpuid = curcpu;
5896	onintr = CPU_ON_INTR(CPU);
5897
5898	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5899	    probe->dtpr_predcache == curthread->t_predcache) {
5900		/*
5901		 * We have hit in the predicate cache; we know that
5902		 * this predicate would evaluate to be false.
5903		 */
5904		dtrace_interrupt_enable(cookie);
5905		return;
5906	}
5907
5908#if defined(sun)
5909	if (panic_quiesce) {
5910#else
5911	if (panicstr != NULL) {
5912#endif
5913		/*
5914		 * We don't trace anything if we're panicking.
5915		 */
5916		dtrace_interrupt_enable(cookie);
5917		return;
5918	}
5919
5920	now = dtrace_gethrtime();
5921	vtime = dtrace_vtime_references != 0;
5922
5923	if (vtime && curthread->t_dtrace_start)
5924		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5925
5926	mstate.dtms_difo = NULL;
5927	mstate.dtms_probe = probe;
5928	mstate.dtms_strtok = 0;
5929	mstate.dtms_arg[0] = arg0;
5930	mstate.dtms_arg[1] = arg1;
5931	mstate.dtms_arg[2] = arg2;
5932	mstate.dtms_arg[3] = arg3;
5933	mstate.dtms_arg[4] = arg4;
5934
5935	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5936
5937	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5938		dtrace_predicate_t *pred = ecb->dte_predicate;
5939		dtrace_state_t *state = ecb->dte_state;
5940		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5941		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5942		dtrace_vstate_t *vstate = &state->dts_vstate;
5943		dtrace_provider_t *prov = probe->dtpr_provider;
5944		int committed = 0;
5945		caddr_t tomax;
5946
5947		/*
5948		 * A little subtlety with the following (seemingly innocuous)
5949		 * declaration of the automatic 'val':  by looking at the
5950		 * code, you might think that it could be declared in the
5951		 * action processing loop, below.  (That is, it's only used in
5952		 * the action processing loop.)  However, it must be declared
5953		 * out of that scope because in the case of DIF expression
5954		 * arguments to aggregating actions, one iteration of the
5955		 * action loop will use the last iteration's value.
5956		 */
5957		uint64_t val = 0;
5958
5959		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5960		*flags &= ~CPU_DTRACE_ERROR;
5961
5962		if (prov == dtrace_provider) {
5963			/*
5964			 * If dtrace itself is the provider of this probe,
5965			 * we're only going to continue processing the ECB if
5966			 * arg0 (the dtrace_state_t) is equal to the ECB's
5967			 * creating state.  (This prevents disjoint consumers
5968			 * from seeing one another's metaprobes.)
5969			 */
5970			if (arg0 != (uint64_t)(uintptr_t)state)
5971				continue;
5972		}
5973
5974		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5975			/*
5976			 * We're not currently active.  If our provider isn't
5977			 * the dtrace pseudo provider, we're not interested.
5978			 */
5979			if (prov != dtrace_provider)
5980				continue;
5981
5982			/*
5983			 * Now we must further check if we are in the BEGIN
5984			 * probe.  If we are, we will only continue processing
5985			 * if we're still in WARMUP -- if one BEGIN enabling
5986			 * has invoked the exit() action, we don't want to
5987			 * evaluate subsequent BEGIN enablings.
5988			 */
5989			if (probe->dtpr_id == dtrace_probeid_begin &&
5990			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5991				ASSERT(state->dts_activity ==
5992				    DTRACE_ACTIVITY_DRAINING);
5993				continue;
5994			}
5995		}
5996
5997		if (ecb->dte_cond) {
5998			/*
5999			 * If the dte_cond bits indicate that this
6000			 * consumer is only allowed to see user-mode firings
6001			 * of this probe, call the provider's dtps_usermode()
6002			 * entry point to check that the probe was fired
6003			 * while in a user context. Skip this ECB if that's
6004			 * not the case.
6005			 */
6006			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6007			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6008			    probe->dtpr_id, probe->dtpr_arg) == 0)
6009				continue;
6010
6011#if defined(sun)
6012			/*
6013			 * This is more subtle than it looks. We have to be
6014			 * absolutely certain that CRED() isn't going to
6015			 * change out from under us so it's only legit to
6016			 * examine that structure if we're in constrained
6017			 * situations. Currently, the only times we'll this
6018			 * check is if a non-super-user has enabled the
6019			 * profile or syscall providers -- providers that
6020			 * allow visibility of all processes. For the
6021			 * profile case, the check above will ensure that
6022			 * we're examining a user context.
6023			 */
6024			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6025				cred_t *cr;
6026				cred_t *s_cr =
6027				    ecb->dte_state->dts_cred.dcr_cred;
6028				proc_t *proc;
6029
6030				ASSERT(s_cr != NULL);
6031
6032				if ((cr = CRED()) == NULL ||
6033				    s_cr->cr_uid != cr->cr_uid ||
6034				    s_cr->cr_uid != cr->cr_ruid ||
6035				    s_cr->cr_uid != cr->cr_suid ||
6036				    s_cr->cr_gid != cr->cr_gid ||
6037				    s_cr->cr_gid != cr->cr_rgid ||
6038				    s_cr->cr_gid != cr->cr_sgid ||
6039				    (proc = ttoproc(curthread)) == NULL ||
6040				    (proc->p_flag & SNOCD))
6041					continue;
6042			}
6043
6044			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6045				cred_t *cr;
6046				cred_t *s_cr =
6047				    ecb->dte_state->dts_cred.dcr_cred;
6048
6049				ASSERT(s_cr != NULL);
6050
6051				if ((cr = CRED()) == NULL ||
6052				    s_cr->cr_zone->zone_id !=
6053				    cr->cr_zone->zone_id)
6054					continue;
6055			}
6056#endif
6057		}
6058
6059		if (now - state->dts_alive > dtrace_deadman_timeout) {
6060			/*
6061			 * We seem to be dead.  Unless we (a) have kernel
6062			 * destructive permissions (b) have expicitly enabled
6063			 * destructive actions and (c) destructive actions have
6064			 * not been disabled, we're going to transition into
6065			 * the KILLED state, from which no further processing
6066			 * on this state will be performed.
6067			 */
6068			if (!dtrace_priv_kernel_destructive(state) ||
6069			    !state->dts_cred.dcr_destructive ||
6070			    dtrace_destructive_disallow) {
6071				void *activity = &state->dts_activity;
6072				dtrace_activity_t current;
6073
6074				do {
6075					current = state->dts_activity;
6076				} while (dtrace_cas32(activity, current,
6077				    DTRACE_ACTIVITY_KILLED) != current);
6078
6079				continue;
6080			}
6081		}
6082
6083		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6084		    ecb->dte_alignment, state, &mstate)) < 0)
6085			continue;
6086
6087		tomax = buf->dtb_tomax;
6088		ASSERT(tomax != NULL);
6089
6090		if (ecb->dte_size != 0)
6091			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6092
6093		mstate.dtms_epid = ecb->dte_epid;
6094		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6095
6096		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6097			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6098		else
6099			mstate.dtms_access = 0;
6100
6101		if (pred != NULL) {
6102			dtrace_difo_t *dp = pred->dtp_difo;
6103			int rval;
6104
6105			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6106
6107			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6108				dtrace_cacheid_t cid = probe->dtpr_predcache;
6109
6110				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6111					/*
6112					 * Update the predicate cache...
6113					 */
6114					ASSERT(cid == pred->dtp_cacheid);
6115					curthread->t_predcache = cid;
6116				}
6117
6118				continue;
6119			}
6120		}
6121
6122		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6123		    act != NULL; act = act->dta_next) {
6124			size_t valoffs;
6125			dtrace_difo_t *dp;
6126			dtrace_recdesc_t *rec = &act->dta_rec;
6127
6128			size = rec->dtrd_size;
6129			valoffs = offs + rec->dtrd_offset;
6130
6131			if (DTRACEACT_ISAGG(act->dta_kind)) {
6132				uint64_t v = 0xbad;
6133				dtrace_aggregation_t *agg;
6134
6135				agg = (dtrace_aggregation_t *)act;
6136
6137				if ((dp = act->dta_difo) != NULL)
6138					v = dtrace_dif_emulate(dp,
6139					    &mstate, vstate, state);
6140
6141				if (*flags & CPU_DTRACE_ERROR)
6142					continue;
6143
6144				/*
6145				 * Note that we always pass the expression
6146				 * value from the previous iteration of the
6147				 * action loop.  This value will only be used
6148				 * if there is an expression argument to the
6149				 * aggregating action, denoted by the
6150				 * dtag_hasarg field.
6151				 */
6152				dtrace_aggregate(agg, buf,
6153				    offs, aggbuf, v, val);
6154				continue;
6155			}
6156
6157			switch (act->dta_kind) {
6158			case DTRACEACT_STOP:
6159				if (dtrace_priv_proc_destructive(state))
6160					dtrace_action_stop();
6161				continue;
6162
6163			case DTRACEACT_BREAKPOINT:
6164				if (dtrace_priv_kernel_destructive(state))
6165					dtrace_action_breakpoint(ecb);
6166				continue;
6167
6168			case DTRACEACT_PANIC:
6169				if (dtrace_priv_kernel_destructive(state))
6170					dtrace_action_panic(ecb);
6171				continue;
6172
6173			case DTRACEACT_STACK:
6174				if (!dtrace_priv_kernel(state))
6175					continue;
6176
6177				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6178				    size / sizeof (pc_t), probe->dtpr_aframes,
6179				    DTRACE_ANCHORED(probe) ? NULL :
6180				    (uint32_t *)arg0);
6181				continue;
6182
6183			case DTRACEACT_JSTACK:
6184			case DTRACEACT_USTACK:
6185				if (!dtrace_priv_proc(state))
6186					continue;
6187
6188				/*
6189				 * See comment in DIF_VAR_PID.
6190				 */
6191				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6192				    CPU_ON_INTR(CPU)) {
6193					int depth = DTRACE_USTACK_NFRAMES(
6194					    rec->dtrd_arg) + 1;
6195
6196					dtrace_bzero((void *)(tomax + valoffs),
6197					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6198					    + depth * sizeof (uint64_t));
6199
6200					continue;
6201				}
6202
6203				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6204				    curproc->p_dtrace_helpers != NULL) {
6205					/*
6206					 * This is the slow path -- we have
6207					 * allocated string space, and we're
6208					 * getting the stack of a process that
6209					 * has helpers.  Call into a separate
6210					 * routine to perform this processing.
6211					 */
6212					dtrace_action_ustack(&mstate, state,
6213					    (uint64_t *)(tomax + valoffs),
6214					    rec->dtrd_arg);
6215					continue;
6216				}
6217
6218				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6219				dtrace_getupcstack((uint64_t *)
6220				    (tomax + valoffs),
6221				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6222				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6223				continue;
6224
6225			default:
6226				break;
6227			}
6228
6229			dp = act->dta_difo;
6230			ASSERT(dp != NULL);
6231
6232			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6233
6234			if (*flags & CPU_DTRACE_ERROR)
6235				continue;
6236
6237			switch (act->dta_kind) {
6238			case DTRACEACT_SPECULATE:
6239				ASSERT(buf == &state->dts_buffer[cpuid]);
6240				buf = dtrace_speculation_buffer(state,
6241				    cpuid, val);
6242
6243				if (buf == NULL) {
6244					*flags |= CPU_DTRACE_DROP;
6245					continue;
6246				}
6247
6248				offs = dtrace_buffer_reserve(buf,
6249				    ecb->dte_needed, ecb->dte_alignment,
6250				    state, NULL);
6251
6252				if (offs < 0) {
6253					*flags |= CPU_DTRACE_DROP;
6254					continue;
6255				}
6256
6257				tomax = buf->dtb_tomax;
6258				ASSERT(tomax != NULL);
6259
6260				if (ecb->dte_size != 0)
6261					DTRACE_STORE(uint32_t, tomax, offs,
6262					    ecb->dte_epid);
6263				continue;
6264
6265			case DTRACEACT_PRINTM: {
6266				/* The DIF returns a 'memref'. */
6267				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6268
6269				/* Get the size from the memref. */
6270				size = memref[1];
6271
6272				/*
6273				 * Check if the size exceeds the allocated
6274				 * buffer size.
6275				 */
6276				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6277					/* Flag a drop! */
6278					*flags |= CPU_DTRACE_DROP;
6279					continue;
6280				}
6281
6282				/* Store the size in the buffer first. */
6283				DTRACE_STORE(uintptr_t, tomax,
6284				    valoffs, size);
6285
6286				/*
6287				 * Offset the buffer address to the start
6288				 * of the data.
6289				 */
6290				valoffs += sizeof(uintptr_t);
6291
6292				/*
6293				 * Reset to the memory address rather than
6294				 * the memref array, then let the BYREF
6295				 * code below do the work to store the
6296				 * memory data in the buffer.
6297				 */
6298				val = memref[0];
6299				break;
6300			}
6301
6302			case DTRACEACT_PRINTT: {
6303				/* The DIF returns a 'typeref'. */
6304				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6305				char c = '\0' + 1;
6306				size_t s;
6307
6308				/*
6309				 * Get the type string length and round it
6310				 * up so that the data that follows is
6311				 * aligned for easy access.
6312				 */
6313				size_t typs = strlen((char *) typeref[2]) + 1;
6314				typs = roundup(typs,  sizeof(uintptr_t));
6315
6316				/*
6317				 *Get the size from the typeref using the
6318				 * number of elements and the type size.
6319				 */
6320				size = typeref[1] * typeref[3];
6321
6322				/*
6323				 * Check if the size exceeds the allocated
6324				 * buffer size.
6325				 */
6326				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6327					/* Flag a drop! */
6328					*flags |= CPU_DTRACE_DROP;
6329
6330				}
6331
6332				/* Store the size in the buffer first. */
6333				DTRACE_STORE(uintptr_t, tomax,
6334				    valoffs, size);
6335				valoffs += sizeof(uintptr_t);
6336
6337				/* Store the type size in the buffer. */
6338				DTRACE_STORE(uintptr_t, tomax,
6339				    valoffs, typeref[3]);
6340				valoffs += sizeof(uintptr_t);
6341
6342				val = typeref[2];
6343
6344				for (s = 0; s < typs; s++) {
6345					if (c != '\0')
6346						c = dtrace_load8(val++);
6347
6348					DTRACE_STORE(uint8_t, tomax,
6349					    valoffs++, c);
6350				}
6351
6352				/*
6353				 * Reset to the memory address rather than
6354				 * the typeref array, then let the BYREF
6355				 * code below do the work to store the
6356				 * memory data in the buffer.
6357				 */
6358				val = typeref[0];
6359				break;
6360			}
6361
6362			case DTRACEACT_CHILL:
6363				if (dtrace_priv_kernel_destructive(state))
6364					dtrace_action_chill(&mstate, val);
6365				continue;
6366
6367			case DTRACEACT_RAISE:
6368				if (dtrace_priv_proc_destructive(state))
6369					dtrace_action_raise(val);
6370				continue;
6371
6372			case DTRACEACT_COMMIT:
6373				ASSERT(!committed);
6374
6375				/*
6376				 * We need to commit our buffer state.
6377				 */
6378				if (ecb->dte_size)
6379					buf->dtb_offset = offs + ecb->dte_size;
6380				buf = &state->dts_buffer[cpuid];
6381				dtrace_speculation_commit(state, cpuid, val);
6382				committed = 1;
6383				continue;
6384
6385			case DTRACEACT_DISCARD:
6386				dtrace_speculation_discard(state, cpuid, val);
6387				continue;
6388
6389			case DTRACEACT_DIFEXPR:
6390			case DTRACEACT_LIBACT:
6391			case DTRACEACT_PRINTF:
6392			case DTRACEACT_PRINTA:
6393			case DTRACEACT_SYSTEM:
6394			case DTRACEACT_FREOPEN:
6395				break;
6396
6397			case DTRACEACT_SYM:
6398			case DTRACEACT_MOD:
6399				if (!dtrace_priv_kernel(state))
6400					continue;
6401				break;
6402
6403			case DTRACEACT_USYM:
6404			case DTRACEACT_UMOD:
6405			case DTRACEACT_UADDR: {
6406#if defined(sun)
6407				struct pid *pid = curthread->t_procp->p_pidp;
6408#endif
6409
6410				if (!dtrace_priv_proc(state))
6411					continue;
6412
6413				DTRACE_STORE(uint64_t, tomax,
6414#if defined(sun)
6415				    valoffs, (uint64_t)pid->pid_id);
6416#else
6417				    valoffs, (uint64_t) curproc->p_pid);
6418#endif
6419				DTRACE_STORE(uint64_t, tomax,
6420				    valoffs + sizeof (uint64_t), val);
6421
6422				continue;
6423			}
6424
6425			case DTRACEACT_EXIT: {
6426				/*
6427				 * For the exit action, we are going to attempt
6428				 * to atomically set our activity to be
6429				 * draining.  If this fails (either because
6430				 * another CPU has beat us to the exit action,
6431				 * or because our current activity is something
6432				 * other than ACTIVE or WARMUP), we will
6433				 * continue.  This assures that the exit action
6434				 * can be successfully recorded at most once
6435				 * when we're in the ACTIVE state.  If we're
6436				 * encountering the exit() action while in
6437				 * COOLDOWN, however, we want to honor the new
6438				 * status code.  (We know that we're the only
6439				 * thread in COOLDOWN, so there is no race.)
6440				 */
6441				void *activity = &state->dts_activity;
6442				dtrace_activity_t current = state->dts_activity;
6443
6444				if (current == DTRACE_ACTIVITY_COOLDOWN)
6445					break;
6446
6447				if (current != DTRACE_ACTIVITY_WARMUP)
6448					current = DTRACE_ACTIVITY_ACTIVE;
6449
6450				if (dtrace_cas32(activity, current,
6451				    DTRACE_ACTIVITY_DRAINING) != current) {
6452					*flags |= CPU_DTRACE_DROP;
6453					continue;
6454				}
6455
6456				break;
6457			}
6458
6459			default:
6460				ASSERT(0);
6461			}
6462
6463			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6464				uintptr_t end = valoffs + size;
6465
6466				if (!dtrace_vcanload((void *)(uintptr_t)val,
6467				    &dp->dtdo_rtype, &mstate, vstate))
6468					continue;
6469
6470				/*
6471				 * If this is a string, we're going to only
6472				 * load until we find the zero byte -- after
6473				 * which we'll store zero bytes.
6474				 */
6475				if (dp->dtdo_rtype.dtdt_kind ==
6476				    DIF_TYPE_STRING) {
6477					char c = '\0' + 1;
6478					int intuple = act->dta_intuple;
6479					size_t s;
6480
6481					for (s = 0; s < size; s++) {
6482						if (c != '\0')
6483							c = dtrace_load8(val++);
6484
6485						DTRACE_STORE(uint8_t, tomax,
6486						    valoffs++, c);
6487
6488						if (c == '\0' && intuple)
6489							break;
6490					}
6491
6492					continue;
6493				}
6494
6495				while (valoffs < end) {
6496					DTRACE_STORE(uint8_t, tomax, valoffs++,
6497					    dtrace_load8(val++));
6498				}
6499
6500				continue;
6501			}
6502
6503			switch (size) {
6504			case 0:
6505				break;
6506
6507			case sizeof (uint8_t):
6508				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6509				break;
6510			case sizeof (uint16_t):
6511				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6512				break;
6513			case sizeof (uint32_t):
6514				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6515				break;
6516			case sizeof (uint64_t):
6517				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6518				break;
6519			default:
6520				/*
6521				 * Any other size should have been returned by
6522				 * reference, not by value.
6523				 */
6524				ASSERT(0);
6525				break;
6526			}
6527		}
6528
6529		if (*flags & CPU_DTRACE_DROP)
6530			continue;
6531
6532		if (*flags & CPU_DTRACE_FAULT) {
6533			int ndx;
6534			dtrace_action_t *err;
6535
6536			buf->dtb_errors++;
6537
6538			if (probe->dtpr_id == dtrace_probeid_error) {
6539				/*
6540				 * There's nothing we can do -- we had an
6541				 * error on the error probe.  We bump an
6542				 * error counter to at least indicate that
6543				 * this condition happened.
6544				 */
6545				dtrace_error(&state->dts_dblerrors);
6546				continue;
6547			}
6548
6549			if (vtime) {
6550				/*
6551				 * Before recursing on dtrace_probe(), we
6552				 * need to explicitly clear out our start
6553				 * time to prevent it from being accumulated
6554				 * into t_dtrace_vtime.
6555				 */
6556				curthread->t_dtrace_start = 0;
6557			}
6558
6559			/*
6560			 * Iterate over the actions to figure out which action
6561			 * we were processing when we experienced the error.
6562			 * Note that act points _past_ the faulting action; if
6563			 * act is ecb->dte_action, the fault was in the
6564			 * predicate, if it's ecb->dte_action->dta_next it's
6565			 * in action #1, and so on.
6566			 */
6567			for (err = ecb->dte_action, ndx = 0;
6568			    err != act; err = err->dta_next, ndx++)
6569				continue;
6570
6571			dtrace_probe_error(state, ecb->dte_epid, ndx,
6572			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6573			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6574			    cpu_core[cpuid].cpuc_dtrace_illval);
6575
6576			continue;
6577		}
6578
6579		if (!committed)
6580			buf->dtb_offset = offs + ecb->dte_size;
6581	}
6582
6583	if (vtime)
6584		curthread->t_dtrace_start = dtrace_gethrtime();
6585
6586	dtrace_interrupt_enable(cookie);
6587}
6588
6589/*
6590 * DTrace Probe Hashing Functions
6591 *
6592 * The functions in this section (and indeed, the functions in remaining
6593 * sections) are not _called_ from probe context.  (Any exceptions to this are
6594 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6595 * DTrace framework to look-up probes in, add probes to and remove probes from
6596 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6597 * probe tuple -- allowing for fast lookups, regardless of what was
6598 * specified.)
6599 */
6600static uint_t
6601dtrace_hash_str(const char *p)
6602{
6603	unsigned int g;
6604	uint_t hval = 0;
6605
6606	while (*p) {
6607		hval = (hval << 4) + *p++;
6608		if ((g = (hval & 0xf0000000)) != 0)
6609			hval ^= g >> 24;
6610		hval &= ~g;
6611	}
6612	return (hval);
6613}
6614
6615static dtrace_hash_t *
6616dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6617{
6618	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6619
6620	hash->dth_stroffs = stroffs;
6621	hash->dth_nextoffs = nextoffs;
6622	hash->dth_prevoffs = prevoffs;
6623
6624	hash->dth_size = 1;
6625	hash->dth_mask = hash->dth_size - 1;
6626
6627	hash->dth_tab = kmem_zalloc(hash->dth_size *
6628	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6629
6630	return (hash);
6631}
6632
6633static void
6634dtrace_hash_destroy(dtrace_hash_t *hash)
6635{
6636#ifdef DEBUG
6637	int i;
6638
6639	for (i = 0; i < hash->dth_size; i++)
6640		ASSERT(hash->dth_tab[i] == NULL);
6641#endif
6642
6643	kmem_free(hash->dth_tab,
6644	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6645	kmem_free(hash, sizeof (dtrace_hash_t));
6646}
6647
6648static void
6649dtrace_hash_resize(dtrace_hash_t *hash)
6650{
6651	int size = hash->dth_size, i, ndx;
6652	int new_size = hash->dth_size << 1;
6653	int new_mask = new_size - 1;
6654	dtrace_hashbucket_t **new_tab, *bucket, *next;
6655
6656	ASSERT((new_size & new_mask) == 0);
6657
6658	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6659
6660	for (i = 0; i < size; i++) {
6661		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6662			dtrace_probe_t *probe = bucket->dthb_chain;
6663
6664			ASSERT(probe != NULL);
6665			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6666
6667			next = bucket->dthb_next;
6668			bucket->dthb_next = new_tab[ndx];
6669			new_tab[ndx] = bucket;
6670		}
6671	}
6672
6673	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6674	hash->dth_tab = new_tab;
6675	hash->dth_size = new_size;
6676	hash->dth_mask = new_mask;
6677}
6678
6679static void
6680dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6681{
6682	int hashval = DTRACE_HASHSTR(hash, new);
6683	int ndx = hashval & hash->dth_mask;
6684	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6685	dtrace_probe_t **nextp, **prevp;
6686
6687	for (; bucket != NULL; bucket = bucket->dthb_next) {
6688		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6689			goto add;
6690	}
6691
6692	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6693		dtrace_hash_resize(hash);
6694		dtrace_hash_add(hash, new);
6695		return;
6696	}
6697
6698	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6699	bucket->dthb_next = hash->dth_tab[ndx];
6700	hash->dth_tab[ndx] = bucket;
6701	hash->dth_nbuckets++;
6702
6703add:
6704	nextp = DTRACE_HASHNEXT(hash, new);
6705	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6706	*nextp = bucket->dthb_chain;
6707
6708	if (bucket->dthb_chain != NULL) {
6709		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6710		ASSERT(*prevp == NULL);
6711		*prevp = new;
6712	}
6713
6714	bucket->dthb_chain = new;
6715	bucket->dthb_len++;
6716}
6717
6718static dtrace_probe_t *
6719dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6720{
6721	int hashval = DTRACE_HASHSTR(hash, template);
6722	int ndx = hashval & hash->dth_mask;
6723	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6724
6725	for (; bucket != NULL; bucket = bucket->dthb_next) {
6726		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6727			return (bucket->dthb_chain);
6728	}
6729
6730	return (NULL);
6731}
6732
6733static int
6734dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6735{
6736	int hashval = DTRACE_HASHSTR(hash, template);
6737	int ndx = hashval & hash->dth_mask;
6738	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6739
6740	for (; bucket != NULL; bucket = bucket->dthb_next) {
6741		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6742			return (bucket->dthb_len);
6743	}
6744
6745	return (0);
6746}
6747
6748static void
6749dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6750{
6751	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6752	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6753
6754	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6755	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6756
6757	/*
6758	 * Find the bucket that we're removing this probe from.
6759	 */
6760	for (; bucket != NULL; bucket = bucket->dthb_next) {
6761		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6762			break;
6763	}
6764
6765	ASSERT(bucket != NULL);
6766
6767	if (*prevp == NULL) {
6768		if (*nextp == NULL) {
6769			/*
6770			 * The removed probe was the only probe on this
6771			 * bucket; we need to remove the bucket.
6772			 */
6773			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6774
6775			ASSERT(bucket->dthb_chain == probe);
6776			ASSERT(b != NULL);
6777
6778			if (b == bucket) {
6779				hash->dth_tab[ndx] = bucket->dthb_next;
6780			} else {
6781				while (b->dthb_next != bucket)
6782					b = b->dthb_next;
6783				b->dthb_next = bucket->dthb_next;
6784			}
6785
6786			ASSERT(hash->dth_nbuckets > 0);
6787			hash->dth_nbuckets--;
6788			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6789			return;
6790		}
6791
6792		bucket->dthb_chain = *nextp;
6793	} else {
6794		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6795	}
6796
6797	if (*nextp != NULL)
6798		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6799}
6800
6801/*
6802 * DTrace Utility Functions
6803 *
6804 * These are random utility functions that are _not_ called from probe context.
6805 */
6806static int
6807dtrace_badattr(const dtrace_attribute_t *a)
6808{
6809	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6810	    a->dtat_data > DTRACE_STABILITY_MAX ||
6811	    a->dtat_class > DTRACE_CLASS_MAX);
6812}
6813
6814/*
6815 * Return a duplicate copy of a string.  If the specified string is NULL,
6816 * this function returns a zero-length string.
6817 */
6818static char *
6819dtrace_strdup(const char *str)
6820{
6821	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6822
6823	if (str != NULL)
6824		(void) strcpy(new, str);
6825
6826	return (new);
6827}
6828
6829#define	DTRACE_ISALPHA(c)	\
6830	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6831
6832static int
6833dtrace_badname(const char *s)
6834{
6835	char c;
6836
6837	if (s == NULL || (c = *s++) == '\0')
6838		return (0);
6839
6840	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6841		return (1);
6842
6843	while ((c = *s++) != '\0') {
6844		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6845		    c != '-' && c != '_' && c != '.' && c != '`')
6846			return (1);
6847	}
6848
6849	return (0);
6850}
6851
6852static void
6853dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6854{
6855	uint32_t priv;
6856
6857#if defined(sun)
6858	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6859		/*
6860		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6861		 */
6862		priv = DTRACE_PRIV_ALL;
6863	} else {
6864		*uidp = crgetuid(cr);
6865		*zoneidp = crgetzoneid(cr);
6866
6867		priv = 0;
6868		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6869			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6870		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6871			priv |= DTRACE_PRIV_USER;
6872		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6873			priv |= DTRACE_PRIV_PROC;
6874		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6875			priv |= DTRACE_PRIV_OWNER;
6876		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6877			priv |= DTRACE_PRIV_ZONEOWNER;
6878	}
6879#else
6880	priv = DTRACE_PRIV_ALL;
6881#endif
6882
6883	*privp = priv;
6884}
6885
6886#ifdef DTRACE_ERRDEBUG
6887static void
6888dtrace_errdebug(const char *str)
6889{
6890	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6891	int occupied = 0;
6892
6893	mutex_enter(&dtrace_errlock);
6894	dtrace_errlast = str;
6895	dtrace_errthread = curthread;
6896
6897	while (occupied++ < DTRACE_ERRHASHSZ) {
6898		if (dtrace_errhash[hval].dter_msg == str) {
6899			dtrace_errhash[hval].dter_count++;
6900			goto out;
6901		}
6902
6903		if (dtrace_errhash[hval].dter_msg != NULL) {
6904			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6905			continue;
6906		}
6907
6908		dtrace_errhash[hval].dter_msg = str;
6909		dtrace_errhash[hval].dter_count = 1;
6910		goto out;
6911	}
6912
6913	panic("dtrace: undersized error hash");
6914out:
6915	mutex_exit(&dtrace_errlock);
6916}
6917#endif
6918
6919/*
6920 * DTrace Matching Functions
6921 *
6922 * These functions are used to match groups of probes, given some elements of
6923 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6924 */
6925static int
6926dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6927    zoneid_t zoneid)
6928{
6929	if (priv != DTRACE_PRIV_ALL) {
6930		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6931		uint32_t match = priv & ppriv;
6932
6933		/*
6934		 * No PRIV_DTRACE_* privileges...
6935		 */
6936		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6937		    DTRACE_PRIV_KERNEL)) == 0)
6938			return (0);
6939
6940		/*
6941		 * No matching bits, but there were bits to match...
6942		 */
6943		if (match == 0 && ppriv != 0)
6944			return (0);
6945
6946		/*
6947		 * Need to have permissions to the process, but don't...
6948		 */
6949		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6950		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6951			return (0);
6952		}
6953
6954		/*
6955		 * Need to be in the same zone unless we possess the
6956		 * privilege to examine all zones.
6957		 */
6958		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6959		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6960			return (0);
6961		}
6962	}
6963
6964	return (1);
6965}
6966
6967/*
6968 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6969 * consists of input pattern strings and an ops-vector to evaluate them.
6970 * This function returns >0 for match, 0 for no match, and <0 for error.
6971 */
6972static int
6973dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6974    uint32_t priv, uid_t uid, zoneid_t zoneid)
6975{
6976	dtrace_provider_t *pvp = prp->dtpr_provider;
6977	int rv;
6978
6979	if (pvp->dtpv_defunct)
6980		return (0);
6981
6982	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6983		return (rv);
6984
6985	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6986		return (rv);
6987
6988	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6989		return (rv);
6990
6991	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6992		return (rv);
6993
6994	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6995		return (0);
6996
6997	return (rv);
6998}
6999
7000/*
7001 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7002 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7003 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7004 * In addition, all of the recursion cases except for '*' matching have been
7005 * unwound.  For '*', we still implement recursive evaluation, but a depth
7006 * counter is maintained and matching is aborted if we recurse too deep.
7007 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7008 */
7009static int
7010dtrace_match_glob(const char *s, const char *p, int depth)
7011{
7012	const char *olds;
7013	char s1, c;
7014	int gs;
7015
7016	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7017		return (-1);
7018
7019	if (s == NULL)
7020		s = ""; /* treat NULL as empty string */
7021
7022top:
7023	olds = s;
7024	s1 = *s++;
7025
7026	if (p == NULL)
7027		return (0);
7028
7029	if ((c = *p++) == '\0')
7030		return (s1 == '\0');
7031
7032	switch (c) {
7033	case '[': {
7034		int ok = 0, notflag = 0;
7035		char lc = '\0';
7036
7037		if (s1 == '\0')
7038			return (0);
7039
7040		if (*p == '!') {
7041			notflag = 1;
7042			p++;
7043		}
7044
7045		if ((c = *p++) == '\0')
7046			return (0);
7047
7048		do {
7049			if (c == '-' && lc != '\0' && *p != ']') {
7050				if ((c = *p++) == '\0')
7051					return (0);
7052				if (c == '\\' && (c = *p++) == '\0')
7053					return (0);
7054
7055				if (notflag) {
7056					if (s1 < lc || s1 > c)
7057						ok++;
7058					else
7059						return (0);
7060				} else if (lc <= s1 && s1 <= c)
7061					ok++;
7062
7063			} else if (c == '\\' && (c = *p++) == '\0')
7064				return (0);
7065
7066			lc = c; /* save left-hand 'c' for next iteration */
7067
7068			if (notflag) {
7069				if (s1 != c)
7070					ok++;
7071				else
7072					return (0);
7073			} else if (s1 == c)
7074				ok++;
7075
7076			if ((c = *p++) == '\0')
7077				return (0);
7078
7079		} while (c != ']');
7080
7081		if (ok)
7082			goto top;
7083
7084		return (0);
7085	}
7086
7087	case '\\':
7088		if ((c = *p++) == '\0')
7089			return (0);
7090		/*FALLTHRU*/
7091
7092	default:
7093		if (c != s1)
7094			return (0);
7095		/*FALLTHRU*/
7096
7097	case '?':
7098		if (s1 != '\0')
7099			goto top;
7100		return (0);
7101
7102	case '*':
7103		while (*p == '*')
7104			p++; /* consecutive *'s are identical to a single one */
7105
7106		if (*p == '\0')
7107			return (1);
7108
7109		for (s = olds; *s != '\0'; s++) {
7110			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7111				return (gs);
7112		}
7113
7114		return (0);
7115	}
7116}
7117
7118/*ARGSUSED*/
7119static int
7120dtrace_match_string(const char *s, const char *p, int depth)
7121{
7122	return (s != NULL && strcmp(s, p) == 0);
7123}
7124
7125/*ARGSUSED*/
7126static int
7127dtrace_match_nul(const char *s, const char *p, int depth)
7128{
7129	return (1); /* always match the empty pattern */
7130}
7131
7132/*ARGSUSED*/
7133static int
7134dtrace_match_nonzero(const char *s, const char *p, int depth)
7135{
7136	return (s != NULL && s[0] != '\0');
7137}
7138
7139static int
7140dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7141    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7142{
7143	dtrace_probe_t template, *probe;
7144	dtrace_hash_t *hash = NULL;
7145	int len, best = INT_MAX, nmatched = 0;
7146	dtrace_id_t i;
7147
7148	ASSERT(MUTEX_HELD(&dtrace_lock));
7149
7150	/*
7151	 * If the probe ID is specified in the key, just lookup by ID and
7152	 * invoke the match callback once if a matching probe is found.
7153	 */
7154	if (pkp->dtpk_id != DTRACE_IDNONE) {
7155		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7156		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7157			(void) (*matched)(probe, arg);
7158			nmatched++;
7159		}
7160		return (nmatched);
7161	}
7162
7163	template.dtpr_mod = (char *)pkp->dtpk_mod;
7164	template.dtpr_func = (char *)pkp->dtpk_func;
7165	template.dtpr_name = (char *)pkp->dtpk_name;
7166
7167	/*
7168	 * We want to find the most distinct of the module name, function
7169	 * name, and name.  So for each one that is not a glob pattern or
7170	 * empty string, we perform a lookup in the corresponding hash and
7171	 * use the hash table with the fewest collisions to do our search.
7172	 */
7173	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7174	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7175		best = len;
7176		hash = dtrace_bymod;
7177	}
7178
7179	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7180	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7181		best = len;
7182		hash = dtrace_byfunc;
7183	}
7184
7185	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7186	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7187		best = len;
7188		hash = dtrace_byname;
7189	}
7190
7191	/*
7192	 * If we did not select a hash table, iterate over every probe and
7193	 * invoke our callback for each one that matches our input probe key.
7194	 */
7195	if (hash == NULL) {
7196		for (i = 0; i < dtrace_nprobes; i++) {
7197			if ((probe = dtrace_probes[i]) == NULL ||
7198			    dtrace_match_probe(probe, pkp, priv, uid,
7199			    zoneid) <= 0)
7200				continue;
7201
7202			nmatched++;
7203
7204			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7205				break;
7206		}
7207
7208		return (nmatched);
7209	}
7210
7211	/*
7212	 * If we selected a hash table, iterate over each probe of the same key
7213	 * name and invoke the callback for every probe that matches the other
7214	 * attributes of our input probe key.
7215	 */
7216	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7217	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7218
7219		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7220			continue;
7221
7222		nmatched++;
7223
7224		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7225			break;
7226	}
7227
7228	return (nmatched);
7229}
7230
7231/*
7232 * Return the function pointer dtrace_probecmp() should use to compare the
7233 * specified pattern with a string.  For NULL or empty patterns, we select
7234 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7235 * For non-empty non-glob strings, we use dtrace_match_string().
7236 */
7237static dtrace_probekey_f *
7238dtrace_probekey_func(const char *p)
7239{
7240	char c;
7241
7242	if (p == NULL || *p == '\0')
7243		return (&dtrace_match_nul);
7244
7245	while ((c = *p++) != '\0') {
7246		if (c == '[' || c == '?' || c == '*' || c == '\\')
7247			return (&dtrace_match_glob);
7248	}
7249
7250	return (&dtrace_match_string);
7251}
7252
7253/*
7254 * Build a probe comparison key for use with dtrace_match_probe() from the
7255 * given probe description.  By convention, a null key only matches anchored
7256 * probes: if each field is the empty string, reset dtpk_fmatch to
7257 * dtrace_match_nonzero().
7258 */
7259static void
7260dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7261{
7262	pkp->dtpk_prov = pdp->dtpd_provider;
7263	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7264
7265	pkp->dtpk_mod = pdp->dtpd_mod;
7266	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7267
7268	pkp->dtpk_func = pdp->dtpd_func;
7269	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7270
7271	pkp->dtpk_name = pdp->dtpd_name;
7272	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7273
7274	pkp->dtpk_id = pdp->dtpd_id;
7275
7276	if (pkp->dtpk_id == DTRACE_IDNONE &&
7277	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7278	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7279	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7280	    pkp->dtpk_nmatch == &dtrace_match_nul)
7281		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7282}
7283
7284/*
7285 * DTrace Provider-to-Framework API Functions
7286 *
7287 * These functions implement much of the Provider-to-Framework API, as
7288 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7289 * the functions in the API for probe management (found below), and
7290 * dtrace_probe() itself (found above).
7291 */
7292
7293/*
7294 * Register the calling provider with the DTrace framework.  This should
7295 * generally be called by DTrace providers in their attach(9E) entry point.
7296 */
7297int
7298dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7299    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7300{
7301	dtrace_provider_t *provider;
7302
7303	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7304		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7305		    "arguments", name ? name : "<NULL>");
7306		return (EINVAL);
7307	}
7308
7309	if (name[0] == '\0' || dtrace_badname(name)) {
7310		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7311		    "provider name", name);
7312		return (EINVAL);
7313	}
7314
7315	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7316	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7317	    pops->dtps_destroy == NULL ||
7318	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7319		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7320		    "provider ops", name);
7321		return (EINVAL);
7322	}
7323
7324	if (dtrace_badattr(&pap->dtpa_provider) ||
7325	    dtrace_badattr(&pap->dtpa_mod) ||
7326	    dtrace_badattr(&pap->dtpa_func) ||
7327	    dtrace_badattr(&pap->dtpa_name) ||
7328	    dtrace_badattr(&pap->dtpa_args)) {
7329		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7330		    "provider attributes", name);
7331		return (EINVAL);
7332	}
7333
7334	if (priv & ~DTRACE_PRIV_ALL) {
7335		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7336		    "privilege attributes", name);
7337		return (EINVAL);
7338	}
7339
7340	if ((priv & DTRACE_PRIV_KERNEL) &&
7341	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7342	    pops->dtps_usermode == NULL) {
7343		cmn_err(CE_WARN, "failed to register provider '%s': need "
7344		    "dtps_usermode() op for given privilege attributes", name);
7345		return (EINVAL);
7346	}
7347
7348	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7349	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7350	(void) strcpy(provider->dtpv_name, name);
7351
7352	provider->dtpv_attr = *pap;
7353	provider->dtpv_priv.dtpp_flags = priv;
7354	if (cr != NULL) {
7355		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7356		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7357	}
7358	provider->dtpv_pops = *pops;
7359
7360	if (pops->dtps_provide == NULL) {
7361		ASSERT(pops->dtps_provide_module != NULL);
7362		provider->dtpv_pops.dtps_provide =
7363		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7364	}
7365
7366	if (pops->dtps_provide_module == NULL) {
7367		ASSERT(pops->dtps_provide != NULL);
7368		provider->dtpv_pops.dtps_provide_module =
7369		    (void (*)(void *, modctl_t *))dtrace_nullop;
7370	}
7371
7372	if (pops->dtps_suspend == NULL) {
7373		ASSERT(pops->dtps_resume == NULL);
7374		provider->dtpv_pops.dtps_suspend =
7375		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7376		provider->dtpv_pops.dtps_resume =
7377		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7378	}
7379
7380	provider->dtpv_arg = arg;
7381	*idp = (dtrace_provider_id_t)provider;
7382
7383	if (pops == &dtrace_provider_ops) {
7384		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7385		ASSERT(MUTEX_HELD(&dtrace_lock));
7386		ASSERT(dtrace_anon.dta_enabling == NULL);
7387
7388		/*
7389		 * We make sure that the DTrace provider is at the head of
7390		 * the provider chain.
7391		 */
7392		provider->dtpv_next = dtrace_provider;
7393		dtrace_provider = provider;
7394		return (0);
7395	}
7396
7397	mutex_enter(&dtrace_provider_lock);
7398	mutex_enter(&dtrace_lock);
7399
7400	/*
7401	 * If there is at least one provider registered, we'll add this
7402	 * provider after the first provider.
7403	 */
7404	if (dtrace_provider != NULL) {
7405		provider->dtpv_next = dtrace_provider->dtpv_next;
7406		dtrace_provider->dtpv_next = provider;
7407	} else {
7408		dtrace_provider = provider;
7409	}
7410
7411	if (dtrace_retained != NULL) {
7412		dtrace_enabling_provide(provider);
7413
7414		/*
7415		 * Now we need to call dtrace_enabling_matchall() -- which
7416		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7417		 * to drop all of our locks before calling into it...
7418		 */
7419		mutex_exit(&dtrace_lock);
7420		mutex_exit(&dtrace_provider_lock);
7421		dtrace_enabling_matchall();
7422
7423		return (0);
7424	}
7425
7426	mutex_exit(&dtrace_lock);
7427	mutex_exit(&dtrace_provider_lock);
7428
7429	return (0);
7430}
7431
7432/*
7433 * Unregister the specified provider from the DTrace framework.  This should
7434 * generally be called by DTrace providers in their detach(9E) entry point.
7435 */
7436int
7437dtrace_unregister(dtrace_provider_id_t id)
7438{
7439	dtrace_provider_t *old = (dtrace_provider_t *)id;
7440	dtrace_provider_t *prev = NULL;
7441	int i, self = 0;
7442	dtrace_probe_t *probe, *first = NULL;
7443
7444	if (old->dtpv_pops.dtps_enable ==
7445	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7446		/*
7447		 * If DTrace itself is the provider, we're called with locks
7448		 * already held.
7449		 */
7450		ASSERT(old == dtrace_provider);
7451#if defined(sun)
7452		ASSERT(dtrace_devi != NULL);
7453#endif
7454		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7455		ASSERT(MUTEX_HELD(&dtrace_lock));
7456		self = 1;
7457
7458		if (dtrace_provider->dtpv_next != NULL) {
7459			/*
7460			 * There's another provider here; return failure.
7461			 */
7462			return (EBUSY);
7463		}
7464	} else {
7465		mutex_enter(&dtrace_provider_lock);
7466		mutex_enter(&mod_lock);
7467		mutex_enter(&dtrace_lock);
7468	}
7469
7470	/*
7471	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7472	 * probes, we refuse to let providers slither away, unless this
7473	 * provider has already been explicitly invalidated.
7474	 */
7475	if (!old->dtpv_defunct &&
7476	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7477	    dtrace_anon.dta_state->dts_necbs > 0))) {
7478		if (!self) {
7479			mutex_exit(&dtrace_lock);
7480			mutex_exit(&mod_lock);
7481			mutex_exit(&dtrace_provider_lock);
7482		}
7483		return (EBUSY);
7484	}
7485
7486	/*
7487	 * Attempt to destroy the probes associated with this provider.
7488	 */
7489	for (i = 0; i < dtrace_nprobes; i++) {
7490		if ((probe = dtrace_probes[i]) == NULL)
7491			continue;
7492
7493		if (probe->dtpr_provider != old)
7494			continue;
7495
7496		if (probe->dtpr_ecb == NULL)
7497			continue;
7498
7499		/*
7500		 * We have at least one ECB; we can't remove this provider.
7501		 */
7502		if (!self) {
7503			mutex_exit(&dtrace_lock);
7504			mutex_exit(&mod_lock);
7505			mutex_exit(&dtrace_provider_lock);
7506		}
7507		return (EBUSY);
7508	}
7509
7510	/*
7511	 * All of the probes for this provider are disabled; we can safely
7512	 * remove all of them from their hash chains and from the probe array.
7513	 */
7514	for (i = 0; i < dtrace_nprobes; i++) {
7515		if ((probe = dtrace_probes[i]) == NULL)
7516			continue;
7517
7518		if (probe->dtpr_provider != old)
7519			continue;
7520
7521		dtrace_probes[i] = NULL;
7522
7523		dtrace_hash_remove(dtrace_bymod, probe);
7524		dtrace_hash_remove(dtrace_byfunc, probe);
7525		dtrace_hash_remove(dtrace_byname, probe);
7526
7527		if (first == NULL) {
7528			first = probe;
7529			probe->dtpr_nextmod = NULL;
7530		} else {
7531			probe->dtpr_nextmod = first;
7532			first = probe;
7533		}
7534	}
7535
7536	/*
7537	 * The provider's probes have been removed from the hash chains and
7538	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7539	 * everyone has cleared out from any probe array processing.
7540	 */
7541	dtrace_sync();
7542
7543	for (probe = first; probe != NULL; probe = first) {
7544		first = probe->dtpr_nextmod;
7545
7546		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7547		    probe->dtpr_arg);
7548		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7549		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7550		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7551#if defined(sun)
7552		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7553#else
7554		free_unr(dtrace_arena, probe->dtpr_id);
7555#endif
7556		kmem_free(probe, sizeof (dtrace_probe_t));
7557	}
7558
7559	if ((prev = dtrace_provider) == old) {
7560#if defined(sun)
7561		ASSERT(self || dtrace_devi == NULL);
7562		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7563#endif
7564		dtrace_provider = old->dtpv_next;
7565	} else {
7566		while (prev != NULL && prev->dtpv_next != old)
7567			prev = prev->dtpv_next;
7568
7569		if (prev == NULL) {
7570			panic("attempt to unregister non-existent "
7571			    "dtrace provider %p\n", (void *)id);
7572		}
7573
7574		prev->dtpv_next = old->dtpv_next;
7575	}
7576
7577	if (!self) {
7578		mutex_exit(&dtrace_lock);
7579		mutex_exit(&mod_lock);
7580		mutex_exit(&dtrace_provider_lock);
7581	}
7582
7583	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7584	kmem_free(old, sizeof (dtrace_provider_t));
7585
7586	return (0);
7587}
7588
7589/*
7590 * Invalidate the specified provider.  All subsequent probe lookups for the
7591 * specified provider will fail, but its probes will not be removed.
7592 */
7593void
7594dtrace_invalidate(dtrace_provider_id_t id)
7595{
7596	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7597
7598	ASSERT(pvp->dtpv_pops.dtps_enable !=
7599	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7600
7601	mutex_enter(&dtrace_provider_lock);
7602	mutex_enter(&dtrace_lock);
7603
7604	pvp->dtpv_defunct = 1;
7605
7606	mutex_exit(&dtrace_lock);
7607	mutex_exit(&dtrace_provider_lock);
7608}
7609
7610/*
7611 * Indicate whether or not DTrace has attached.
7612 */
7613int
7614dtrace_attached(void)
7615{
7616	/*
7617	 * dtrace_provider will be non-NULL iff the DTrace driver has
7618	 * attached.  (It's non-NULL because DTrace is always itself a
7619	 * provider.)
7620	 */
7621	return (dtrace_provider != NULL);
7622}
7623
7624/*
7625 * Remove all the unenabled probes for the given provider.  This function is
7626 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7627 * -- just as many of its associated probes as it can.
7628 */
7629int
7630dtrace_condense(dtrace_provider_id_t id)
7631{
7632	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7633	int i;
7634	dtrace_probe_t *probe;
7635
7636	/*
7637	 * Make sure this isn't the dtrace provider itself.
7638	 */
7639	ASSERT(prov->dtpv_pops.dtps_enable !=
7640	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7641
7642	mutex_enter(&dtrace_provider_lock);
7643	mutex_enter(&dtrace_lock);
7644
7645	/*
7646	 * Attempt to destroy the probes associated with this provider.
7647	 */
7648	for (i = 0; i < dtrace_nprobes; i++) {
7649		if ((probe = dtrace_probes[i]) == NULL)
7650			continue;
7651
7652		if (probe->dtpr_provider != prov)
7653			continue;
7654
7655		if (probe->dtpr_ecb != NULL)
7656			continue;
7657
7658		dtrace_probes[i] = NULL;
7659
7660		dtrace_hash_remove(dtrace_bymod, probe);
7661		dtrace_hash_remove(dtrace_byfunc, probe);
7662		dtrace_hash_remove(dtrace_byname, probe);
7663
7664		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7665		    probe->dtpr_arg);
7666		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7667		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7668		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7669		kmem_free(probe, sizeof (dtrace_probe_t));
7670#if defined(sun)
7671		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7672#else
7673		free_unr(dtrace_arena, i + 1);
7674#endif
7675	}
7676
7677	mutex_exit(&dtrace_lock);
7678	mutex_exit(&dtrace_provider_lock);
7679
7680	return (0);
7681}
7682
7683/*
7684 * DTrace Probe Management Functions
7685 *
7686 * The functions in this section perform the DTrace probe management,
7687 * including functions to create probes, look-up probes, and call into the
7688 * providers to request that probes be provided.  Some of these functions are
7689 * in the Provider-to-Framework API; these functions can be identified by the
7690 * fact that they are not declared "static".
7691 */
7692
7693/*
7694 * Create a probe with the specified module name, function name, and name.
7695 */
7696dtrace_id_t
7697dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7698    const char *func, const char *name, int aframes, void *arg)
7699{
7700	dtrace_probe_t *probe, **probes;
7701	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7702	dtrace_id_t id;
7703
7704	if (provider == dtrace_provider) {
7705		ASSERT(MUTEX_HELD(&dtrace_lock));
7706	} else {
7707		mutex_enter(&dtrace_lock);
7708	}
7709
7710#if defined(sun)
7711	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7712	    VM_BESTFIT | VM_SLEEP);
7713#else
7714	id = alloc_unr(dtrace_arena);
7715#endif
7716	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7717
7718	probe->dtpr_id = id;
7719	probe->dtpr_gen = dtrace_probegen++;
7720	probe->dtpr_mod = dtrace_strdup(mod);
7721	probe->dtpr_func = dtrace_strdup(func);
7722	probe->dtpr_name = dtrace_strdup(name);
7723	probe->dtpr_arg = arg;
7724	probe->dtpr_aframes = aframes;
7725	probe->dtpr_provider = provider;
7726
7727	dtrace_hash_add(dtrace_bymod, probe);
7728	dtrace_hash_add(dtrace_byfunc, probe);
7729	dtrace_hash_add(dtrace_byname, probe);
7730
7731	if (id - 1 >= dtrace_nprobes) {
7732		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7733		size_t nsize = osize << 1;
7734
7735		if (nsize == 0) {
7736			ASSERT(osize == 0);
7737			ASSERT(dtrace_probes == NULL);
7738			nsize = sizeof (dtrace_probe_t *);
7739		}
7740
7741		probes = kmem_zalloc(nsize, KM_SLEEP);
7742
7743		if (dtrace_probes == NULL) {
7744			ASSERT(osize == 0);
7745			dtrace_probes = probes;
7746			dtrace_nprobes = 1;
7747		} else {
7748			dtrace_probe_t **oprobes = dtrace_probes;
7749
7750			bcopy(oprobes, probes, osize);
7751			dtrace_membar_producer();
7752			dtrace_probes = probes;
7753
7754			dtrace_sync();
7755
7756			/*
7757			 * All CPUs are now seeing the new probes array; we can
7758			 * safely free the old array.
7759			 */
7760			kmem_free(oprobes, osize);
7761			dtrace_nprobes <<= 1;
7762		}
7763
7764		ASSERT(id - 1 < dtrace_nprobes);
7765	}
7766
7767	ASSERT(dtrace_probes[id - 1] == NULL);
7768	dtrace_probes[id - 1] = probe;
7769
7770	if (provider != dtrace_provider)
7771		mutex_exit(&dtrace_lock);
7772
7773	return (id);
7774}
7775
7776static dtrace_probe_t *
7777dtrace_probe_lookup_id(dtrace_id_t id)
7778{
7779	ASSERT(MUTEX_HELD(&dtrace_lock));
7780
7781	if (id == 0 || id > dtrace_nprobes)
7782		return (NULL);
7783
7784	return (dtrace_probes[id - 1]);
7785}
7786
7787static int
7788dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7789{
7790	*((dtrace_id_t *)arg) = probe->dtpr_id;
7791
7792	return (DTRACE_MATCH_DONE);
7793}
7794
7795/*
7796 * Look up a probe based on provider and one or more of module name, function
7797 * name and probe name.
7798 */
7799dtrace_id_t
7800dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7801    char *func, char *name)
7802{
7803	dtrace_probekey_t pkey;
7804	dtrace_id_t id;
7805	int match;
7806
7807	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7808	pkey.dtpk_pmatch = &dtrace_match_string;
7809	pkey.dtpk_mod = mod;
7810	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7811	pkey.dtpk_func = func;
7812	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7813	pkey.dtpk_name = name;
7814	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7815	pkey.dtpk_id = DTRACE_IDNONE;
7816
7817	mutex_enter(&dtrace_lock);
7818	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7819	    dtrace_probe_lookup_match, &id);
7820	mutex_exit(&dtrace_lock);
7821
7822	ASSERT(match == 1 || match == 0);
7823	return (match ? id : 0);
7824}
7825
7826/*
7827 * Returns the probe argument associated with the specified probe.
7828 */
7829void *
7830dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7831{
7832	dtrace_probe_t *probe;
7833	void *rval = NULL;
7834
7835	mutex_enter(&dtrace_lock);
7836
7837	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7838	    probe->dtpr_provider == (dtrace_provider_t *)id)
7839		rval = probe->dtpr_arg;
7840
7841	mutex_exit(&dtrace_lock);
7842
7843	return (rval);
7844}
7845
7846/*
7847 * Copy a probe into a probe description.
7848 */
7849static void
7850dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7851{
7852	bzero(pdp, sizeof (dtrace_probedesc_t));
7853	pdp->dtpd_id = prp->dtpr_id;
7854
7855	(void) strncpy(pdp->dtpd_provider,
7856	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7857
7858	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7859	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7860	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7861}
7862
7863#if !defined(sun)
7864static int
7865dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7866{
7867	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7868
7869	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7870
7871	return(0);
7872}
7873#endif
7874
7875
7876/*
7877 * Called to indicate that a probe -- or probes -- should be provided by a
7878 * specfied provider.  If the specified description is NULL, the provider will
7879 * be told to provide all of its probes.  (This is done whenever a new
7880 * consumer comes along, or whenever a retained enabling is to be matched.) If
7881 * the specified description is non-NULL, the provider is given the
7882 * opportunity to dynamically provide the specified probe, allowing providers
7883 * to support the creation of probes on-the-fly.  (So-called _autocreated_
7884 * probes.)  If the provider is NULL, the operations will be applied to all
7885 * providers; if the provider is non-NULL the operations will only be applied
7886 * to the specified provider.  The dtrace_provider_lock must be held, and the
7887 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7888 * will need to grab the dtrace_lock when it reenters the framework through
7889 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7890 */
7891static void
7892dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7893{
7894#if defined(sun)
7895	modctl_t *ctl;
7896#endif
7897	int all = 0;
7898
7899	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7900
7901	if (prv == NULL) {
7902		all = 1;
7903		prv = dtrace_provider;
7904	}
7905
7906	do {
7907		/*
7908		 * First, call the blanket provide operation.
7909		 */
7910		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7911
7912		/*
7913		 * Now call the per-module provide operation.  We will grab
7914		 * mod_lock to prevent the list from being modified.  Note
7915		 * that this also prevents the mod_busy bits from changing.
7916		 * (mod_busy can only be changed with mod_lock held.)
7917		 */
7918		mutex_enter(&mod_lock);
7919
7920#if defined(sun)
7921		ctl = &modules;
7922		do {
7923			if (ctl->mod_busy || ctl->mod_mp == NULL)
7924				continue;
7925
7926			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7927
7928		} while ((ctl = ctl->mod_next) != &modules);
7929#else
7930		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
7931#endif
7932
7933		mutex_exit(&mod_lock);
7934	} while (all && (prv = prv->dtpv_next) != NULL);
7935}
7936
7937#if defined(sun)
7938/*
7939 * Iterate over each probe, and call the Framework-to-Provider API function
7940 * denoted by offs.
7941 */
7942static void
7943dtrace_probe_foreach(uintptr_t offs)
7944{
7945	dtrace_provider_t *prov;
7946	void (*func)(void *, dtrace_id_t, void *);
7947	dtrace_probe_t *probe;
7948	dtrace_icookie_t cookie;
7949	int i;
7950
7951	/*
7952	 * We disable interrupts to walk through the probe array.  This is
7953	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7954	 * won't see stale data.
7955	 */
7956	cookie = dtrace_interrupt_disable();
7957
7958	for (i = 0; i < dtrace_nprobes; i++) {
7959		if ((probe = dtrace_probes[i]) == NULL)
7960			continue;
7961
7962		if (probe->dtpr_ecb == NULL) {
7963			/*
7964			 * This probe isn't enabled -- don't call the function.
7965			 */
7966			continue;
7967		}
7968
7969		prov = probe->dtpr_provider;
7970		func = *((void(**)(void *, dtrace_id_t, void *))
7971		    ((uintptr_t)&prov->dtpv_pops + offs));
7972
7973		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7974	}
7975
7976	dtrace_interrupt_enable(cookie);
7977}
7978#endif
7979
7980static int
7981dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7982{
7983	dtrace_probekey_t pkey;
7984	uint32_t priv;
7985	uid_t uid;
7986	zoneid_t zoneid;
7987
7988	ASSERT(MUTEX_HELD(&dtrace_lock));
7989	dtrace_ecb_create_cache = NULL;
7990
7991	if (desc == NULL) {
7992		/*
7993		 * If we're passed a NULL description, we're being asked to
7994		 * create an ECB with a NULL probe.
7995		 */
7996		(void) dtrace_ecb_create_enable(NULL, enab);
7997		return (0);
7998	}
7999
8000	dtrace_probekey(desc, &pkey);
8001	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8002	    &priv, &uid, &zoneid);
8003
8004	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8005	    enab));
8006}
8007
8008/*
8009 * DTrace Helper Provider Functions
8010 */
8011static void
8012dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8013{
8014	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8015	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8016	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8017}
8018
8019static void
8020dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8021    const dof_provider_t *dofprov, char *strtab)
8022{
8023	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8024	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8025	    dofprov->dofpv_provattr);
8026	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8027	    dofprov->dofpv_modattr);
8028	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8029	    dofprov->dofpv_funcattr);
8030	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8031	    dofprov->dofpv_nameattr);
8032	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8033	    dofprov->dofpv_argsattr);
8034}
8035
8036static void
8037dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8038{
8039	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8040	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8041	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8042	dof_provider_t *provider;
8043	dof_probe_t *probe;
8044	uint32_t *off, *enoff;
8045	uint8_t *arg;
8046	char *strtab;
8047	uint_t i, nprobes;
8048	dtrace_helper_provdesc_t dhpv;
8049	dtrace_helper_probedesc_t dhpb;
8050	dtrace_meta_t *meta = dtrace_meta_pid;
8051	dtrace_mops_t *mops = &meta->dtm_mops;
8052	void *parg;
8053
8054	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8055	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8056	    provider->dofpv_strtab * dof->dofh_secsize);
8057	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8058	    provider->dofpv_probes * dof->dofh_secsize);
8059	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8060	    provider->dofpv_prargs * dof->dofh_secsize);
8061	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8062	    provider->dofpv_proffs * dof->dofh_secsize);
8063
8064	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8065	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8066	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8067	enoff = NULL;
8068
8069	/*
8070	 * See dtrace_helper_provider_validate().
8071	 */
8072	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8073	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8074		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8075		    provider->dofpv_prenoffs * dof->dofh_secsize);
8076		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8077	}
8078
8079	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8080
8081	/*
8082	 * Create the provider.
8083	 */
8084	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8085
8086	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8087		return;
8088
8089	meta->dtm_count++;
8090
8091	/*
8092	 * Create the probes.
8093	 */
8094	for (i = 0; i < nprobes; i++) {
8095		probe = (dof_probe_t *)(uintptr_t)(daddr +
8096		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8097
8098		dhpb.dthpb_mod = dhp->dofhp_mod;
8099		dhpb.dthpb_func = strtab + probe->dofpr_func;
8100		dhpb.dthpb_name = strtab + probe->dofpr_name;
8101		dhpb.dthpb_base = probe->dofpr_addr;
8102		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8103		dhpb.dthpb_noffs = probe->dofpr_noffs;
8104		if (enoff != NULL) {
8105			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8106			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8107		} else {
8108			dhpb.dthpb_enoffs = NULL;
8109			dhpb.dthpb_nenoffs = 0;
8110		}
8111		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8112		dhpb.dthpb_nargc = probe->dofpr_nargc;
8113		dhpb.dthpb_xargc = probe->dofpr_xargc;
8114		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8115		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8116
8117		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8118	}
8119}
8120
8121static void
8122dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8123{
8124	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8125	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8126	int i;
8127
8128	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8129
8130	for (i = 0; i < dof->dofh_secnum; i++) {
8131		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8132		    dof->dofh_secoff + i * dof->dofh_secsize);
8133
8134		if (sec->dofs_type != DOF_SECT_PROVIDER)
8135			continue;
8136
8137		dtrace_helper_provide_one(dhp, sec, pid);
8138	}
8139
8140	/*
8141	 * We may have just created probes, so we must now rematch against
8142	 * any retained enablings.  Note that this call will acquire both
8143	 * cpu_lock and dtrace_lock; the fact that we are holding
8144	 * dtrace_meta_lock now is what defines the ordering with respect to
8145	 * these three locks.
8146	 */
8147	dtrace_enabling_matchall();
8148}
8149
8150static void
8151dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8152{
8153	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8154	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8155	dof_sec_t *str_sec;
8156	dof_provider_t *provider;
8157	char *strtab;
8158	dtrace_helper_provdesc_t dhpv;
8159	dtrace_meta_t *meta = dtrace_meta_pid;
8160	dtrace_mops_t *mops = &meta->dtm_mops;
8161
8162	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8163	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8164	    provider->dofpv_strtab * dof->dofh_secsize);
8165
8166	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8167
8168	/*
8169	 * Create the provider.
8170	 */
8171	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8172
8173	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8174
8175	meta->dtm_count--;
8176}
8177
8178static void
8179dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8180{
8181	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8182	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8183	int i;
8184
8185	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8186
8187	for (i = 0; i < dof->dofh_secnum; i++) {
8188		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8189		    dof->dofh_secoff + i * dof->dofh_secsize);
8190
8191		if (sec->dofs_type != DOF_SECT_PROVIDER)
8192			continue;
8193
8194		dtrace_helper_provider_remove_one(dhp, sec, pid);
8195	}
8196}
8197
8198/*
8199 * DTrace Meta Provider-to-Framework API Functions
8200 *
8201 * These functions implement the Meta Provider-to-Framework API, as described
8202 * in <sys/dtrace.h>.
8203 */
8204int
8205dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8206    dtrace_meta_provider_id_t *idp)
8207{
8208	dtrace_meta_t *meta;
8209	dtrace_helpers_t *help, *next;
8210	int i;
8211
8212	*idp = DTRACE_METAPROVNONE;
8213
8214	/*
8215	 * We strictly don't need the name, but we hold onto it for
8216	 * debuggability. All hail error queues!
8217	 */
8218	if (name == NULL) {
8219		cmn_err(CE_WARN, "failed to register meta-provider: "
8220		    "invalid name");
8221		return (EINVAL);
8222	}
8223
8224	if (mops == NULL ||
8225	    mops->dtms_create_probe == NULL ||
8226	    mops->dtms_provide_pid == NULL ||
8227	    mops->dtms_remove_pid == NULL) {
8228		cmn_err(CE_WARN, "failed to register meta-register %s: "
8229		    "invalid ops", name);
8230		return (EINVAL);
8231	}
8232
8233	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8234	meta->dtm_mops = *mops;
8235	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8236	(void) strcpy(meta->dtm_name, name);
8237	meta->dtm_arg = arg;
8238
8239	mutex_enter(&dtrace_meta_lock);
8240	mutex_enter(&dtrace_lock);
8241
8242	if (dtrace_meta_pid != NULL) {
8243		mutex_exit(&dtrace_lock);
8244		mutex_exit(&dtrace_meta_lock);
8245		cmn_err(CE_WARN, "failed to register meta-register %s: "
8246		    "user-land meta-provider exists", name);
8247		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8248		kmem_free(meta, sizeof (dtrace_meta_t));
8249		return (EINVAL);
8250	}
8251
8252	dtrace_meta_pid = meta;
8253	*idp = (dtrace_meta_provider_id_t)meta;
8254
8255	/*
8256	 * If there are providers and probes ready to go, pass them
8257	 * off to the new meta provider now.
8258	 */
8259
8260	help = dtrace_deferred_pid;
8261	dtrace_deferred_pid = NULL;
8262
8263	mutex_exit(&dtrace_lock);
8264
8265	while (help != NULL) {
8266		for (i = 0; i < help->dthps_nprovs; i++) {
8267			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8268			    help->dthps_pid);
8269		}
8270
8271		next = help->dthps_next;
8272		help->dthps_next = NULL;
8273		help->dthps_prev = NULL;
8274		help->dthps_deferred = 0;
8275		help = next;
8276	}
8277
8278	mutex_exit(&dtrace_meta_lock);
8279
8280	return (0);
8281}
8282
8283int
8284dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8285{
8286	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8287
8288	mutex_enter(&dtrace_meta_lock);
8289	mutex_enter(&dtrace_lock);
8290
8291	if (old == dtrace_meta_pid) {
8292		pp = &dtrace_meta_pid;
8293	} else {
8294		panic("attempt to unregister non-existent "
8295		    "dtrace meta-provider %p\n", (void *)old);
8296	}
8297
8298	if (old->dtm_count != 0) {
8299		mutex_exit(&dtrace_lock);
8300		mutex_exit(&dtrace_meta_lock);
8301		return (EBUSY);
8302	}
8303
8304	*pp = NULL;
8305
8306	mutex_exit(&dtrace_lock);
8307	mutex_exit(&dtrace_meta_lock);
8308
8309	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8310	kmem_free(old, sizeof (dtrace_meta_t));
8311
8312	return (0);
8313}
8314
8315
8316/*
8317 * DTrace DIF Object Functions
8318 */
8319static int
8320dtrace_difo_err(uint_t pc, const char *format, ...)
8321{
8322	if (dtrace_err_verbose) {
8323		va_list alist;
8324
8325		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8326		va_start(alist, format);
8327		(void) vuprintf(format, alist);
8328		va_end(alist);
8329	}
8330
8331#ifdef DTRACE_ERRDEBUG
8332	dtrace_errdebug(format);
8333#endif
8334	return (1);
8335}
8336
8337/*
8338 * Validate a DTrace DIF object by checking the IR instructions.  The following
8339 * rules are currently enforced by dtrace_difo_validate():
8340 *
8341 * 1. Each instruction must have a valid opcode
8342 * 2. Each register, string, variable, or subroutine reference must be valid
8343 * 3. No instruction can modify register %r0 (must be zero)
8344 * 4. All instruction reserved bits must be set to zero
8345 * 5. The last instruction must be a "ret" instruction
8346 * 6. All branch targets must reference a valid instruction _after_ the branch
8347 */
8348static int
8349dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8350    cred_t *cr)
8351{
8352	int err = 0, i;
8353	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8354	int kcheckload;
8355	uint_t pc;
8356
8357	kcheckload = cr == NULL ||
8358	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8359
8360	dp->dtdo_destructive = 0;
8361
8362	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8363		dif_instr_t instr = dp->dtdo_buf[pc];
8364
8365		uint_t r1 = DIF_INSTR_R1(instr);
8366		uint_t r2 = DIF_INSTR_R2(instr);
8367		uint_t rd = DIF_INSTR_RD(instr);
8368		uint_t rs = DIF_INSTR_RS(instr);
8369		uint_t label = DIF_INSTR_LABEL(instr);
8370		uint_t v = DIF_INSTR_VAR(instr);
8371		uint_t subr = DIF_INSTR_SUBR(instr);
8372		uint_t type = DIF_INSTR_TYPE(instr);
8373		uint_t op = DIF_INSTR_OP(instr);
8374
8375		switch (op) {
8376		case DIF_OP_OR:
8377		case DIF_OP_XOR:
8378		case DIF_OP_AND:
8379		case DIF_OP_SLL:
8380		case DIF_OP_SRL:
8381		case DIF_OP_SRA:
8382		case DIF_OP_SUB:
8383		case DIF_OP_ADD:
8384		case DIF_OP_MUL:
8385		case DIF_OP_SDIV:
8386		case DIF_OP_UDIV:
8387		case DIF_OP_SREM:
8388		case DIF_OP_UREM:
8389		case DIF_OP_COPYS:
8390			if (r1 >= nregs)
8391				err += efunc(pc, "invalid register %u\n", r1);
8392			if (r2 >= nregs)
8393				err += efunc(pc, "invalid register %u\n", r2);
8394			if (rd >= nregs)
8395				err += efunc(pc, "invalid register %u\n", rd);
8396			if (rd == 0)
8397				err += efunc(pc, "cannot write to %r0\n");
8398			break;
8399		case DIF_OP_NOT:
8400		case DIF_OP_MOV:
8401		case DIF_OP_ALLOCS:
8402			if (r1 >= nregs)
8403				err += efunc(pc, "invalid register %u\n", r1);
8404			if (r2 != 0)
8405				err += efunc(pc, "non-zero reserved bits\n");
8406			if (rd >= nregs)
8407				err += efunc(pc, "invalid register %u\n", rd);
8408			if (rd == 0)
8409				err += efunc(pc, "cannot write to %r0\n");
8410			break;
8411		case DIF_OP_LDSB:
8412		case DIF_OP_LDSH:
8413		case DIF_OP_LDSW:
8414		case DIF_OP_LDUB:
8415		case DIF_OP_LDUH:
8416		case DIF_OP_LDUW:
8417		case DIF_OP_LDX:
8418			if (r1 >= nregs)
8419				err += efunc(pc, "invalid register %u\n", r1);
8420			if (r2 != 0)
8421				err += efunc(pc, "non-zero reserved bits\n");
8422			if (rd >= nregs)
8423				err += efunc(pc, "invalid register %u\n", rd);
8424			if (rd == 0)
8425				err += efunc(pc, "cannot write to %r0\n");
8426			if (kcheckload)
8427				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8428				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8429			break;
8430		case DIF_OP_RLDSB:
8431		case DIF_OP_RLDSH:
8432		case DIF_OP_RLDSW:
8433		case DIF_OP_RLDUB:
8434		case DIF_OP_RLDUH:
8435		case DIF_OP_RLDUW:
8436		case DIF_OP_RLDX:
8437			if (r1 >= nregs)
8438				err += efunc(pc, "invalid register %u\n", r1);
8439			if (r2 != 0)
8440				err += efunc(pc, "non-zero reserved bits\n");
8441			if (rd >= nregs)
8442				err += efunc(pc, "invalid register %u\n", rd);
8443			if (rd == 0)
8444				err += efunc(pc, "cannot write to %r0\n");
8445			break;
8446		case DIF_OP_ULDSB:
8447		case DIF_OP_ULDSH:
8448		case DIF_OP_ULDSW:
8449		case DIF_OP_ULDUB:
8450		case DIF_OP_ULDUH:
8451		case DIF_OP_ULDUW:
8452		case DIF_OP_ULDX:
8453			if (r1 >= nregs)
8454				err += efunc(pc, "invalid register %u\n", r1);
8455			if (r2 != 0)
8456				err += efunc(pc, "non-zero reserved bits\n");
8457			if (rd >= nregs)
8458				err += efunc(pc, "invalid register %u\n", rd);
8459			if (rd == 0)
8460				err += efunc(pc, "cannot write to %r0\n");
8461			break;
8462		case DIF_OP_STB:
8463		case DIF_OP_STH:
8464		case DIF_OP_STW:
8465		case DIF_OP_STX:
8466			if (r1 >= nregs)
8467				err += efunc(pc, "invalid register %u\n", r1);
8468			if (r2 != 0)
8469				err += efunc(pc, "non-zero reserved bits\n");
8470			if (rd >= nregs)
8471				err += efunc(pc, "invalid register %u\n", rd);
8472			if (rd == 0)
8473				err += efunc(pc, "cannot write to 0 address\n");
8474			break;
8475		case DIF_OP_CMP:
8476		case DIF_OP_SCMP:
8477			if (r1 >= nregs)
8478				err += efunc(pc, "invalid register %u\n", r1);
8479			if (r2 >= nregs)
8480				err += efunc(pc, "invalid register %u\n", r2);
8481			if (rd != 0)
8482				err += efunc(pc, "non-zero reserved bits\n");
8483			break;
8484		case DIF_OP_TST:
8485			if (r1 >= nregs)
8486				err += efunc(pc, "invalid register %u\n", r1);
8487			if (r2 != 0 || rd != 0)
8488				err += efunc(pc, "non-zero reserved bits\n");
8489			break;
8490		case DIF_OP_BA:
8491		case DIF_OP_BE:
8492		case DIF_OP_BNE:
8493		case DIF_OP_BG:
8494		case DIF_OP_BGU:
8495		case DIF_OP_BGE:
8496		case DIF_OP_BGEU:
8497		case DIF_OP_BL:
8498		case DIF_OP_BLU:
8499		case DIF_OP_BLE:
8500		case DIF_OP_BLEU:
8501			if (label >= dp->dtdo_len) {
8502				err += efunc(pc, "invalid branch target %u\n",
8503				    label);
8504			}
8505			if (label <= pc) {
8506				err += efunc(pc, "backward branch to %u\n",
8507				    label);
8508			}
8509			break;
8510		case DIF_OP_RET:
8511			if (r1 != 0 || r2 != 0)
8512				err += efunc(pc, "non-zero reserved bits\n");
8513			if (rd >= nregs)
8514				err += efunc(pc, "invalid register %u\n", rd);
8515			break;
8516		case DIF_OP_NOP:
8517		case DIF_OP_POPTS:
8518		case DIF_OP_FLUSHTS:
8519			if (r1 != 0 || r2 != 0 || rd != 0)
8520				err += efunc(pc, "non-zero reserved bits\n");
8521			break;
8522		case DIF_OP_SETX:
8523			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8524				err += efunc(pc, "invalid integer ref %u\n",
8525				    DIF_INSTR_INTEGER(instr));
8526			}
8527			if (rd >= nregs)
8528				err += efunc(pc, "invalid register %u\n", rd);
8529			if (rd == 0)
8530				err += efunc(pc, "cannot write to %r0\n");
8531			break;
8532		case DIF_OP_SETS:
8533			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8534				err += efunc(pc, "invalid string ref %u\n",
8535				    DIF_INSTR_STRING(instr));
8536			}
8537			if (rd >= nregs)
8538				err += efunc(pc, "invalid register %u\n", rd);
8539			if (rd == 0)
8540				err += efunc(pc, "cannot write to %r0\n");
8541			break;
8542		case DIF_OP_LDGA:
8543		case DIF_OP_LDTA:
8544			if (r1 > DIF_VAR_ARRAY_MAX)
8545				err += efunc(pc, "invalid array %u\n", r1);
8546			if (r2 >= nregs)
8547				err += efunc(pc, "invalid register %u\n", r2);
8548			if (rd >= nregs)
8549				err += efunc(pc, "invalid register %u\n", rd);
8550			if (rd == 0)
8551				err += efunc(pc, "cannot write to %r0\n");
8552			break;
8553		case DIF_OP_LDGS:
8554		case DIF_OP_LDTS:
8555		case DIF_OP_LDLS:
8556		case DIF_OP_LDGAA:
8557		case DIF_OP_LDTAA:
8558			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8559				err += efunc(pc, "invalid variable %u\n", v);
8560			if (rd >= nregs)
8561				err += efunc(pc, "invalid register %u\n", rd);
8562			if (rd == 0)
8563				err += efunc(pc, "cannot write to %r0\n");
8564			break;
8565		case DIF_OP_STGS:
8566		case DIF_OP_STTS:
8567		case DIF_OP_STLS:
8568		case DIF_OP_STGAA:
8569		case DIF_OP_STTAA:
8570			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8571				err += efunc(pc, "invalid variable %u\n", v);
8572			if (rs >= nregs)
8573				err += efunc(pc, "invalid register %u\n", rd);
8574			break;
8575		case DIF_OP_CALL:
8576			if (subr > DIF_SUBR_MAX)
8577				err += efunc(pc, "invalid subr %u\n", subr);
8578			if (rd >= nregs)
8579				err += efunc(pc, "invalid register %u\n", rd);
8580			if (rd == 0)
8581				err += efunc(pc, "cannot write to %r0\n");
8582
8583			if (subr == DIF_SUBR_COPYOUT ||
8584			    subr == DIF_SUBR_COPYOUTSTR) {
8585				dp->dtdo_destructive = 1;
8586			}
8587			break;
8588		case DIF_OP_PUSHTR:
8589			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8590				err += efunc(pc, "invalid ref type %u\n", type);
8591			if (r2 >= nregs)
8592				err += efunc(pc, "invalid register %u\n", r2);
8593			if (rs >= nregs)
8594				err += efunc(pc, "invalid register %u\n", rs);
8595			break;
8596		case DIF_OP_PUSHTV:
8597			if (type != DIF_TYPE_CTF)
8598				err += efunc(pc, "invalid val type %u\n", type);
8599			if (r2 >= nregs)
8600				err += efunc(pc, "invalid register %u\n", r2);
8601			if (rs >= nregs)
8602				err += efunc(pc, "invalid register %u\n", rs);
8603			break;
8604		default:
8605			err += efunc(pc, "invalid opcode %u\n",
8606			    DIF_INSTR_OP(instr));
8607		}
8608	}
8609
8610	if (dp->dtdo_len != 0 &&
8611	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8612		err += efunc(dp->dtdo_len - 1,
8613		    "expected 'ret' as last DIF instruction\n");
8614	}
8615
8616	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8617		/*
8618		 * If we're not returning by reference, the size must be either
8619		 * 0 or the size of one of the base types.
8620		 */
8621		switch (dp->dtdo_rtype.dtdt_size) {
8622		case 0:
8623		case sizeof (uint8_t):
8624		case sizeof (uint16_t):
8625		case sizeof (uint32_t):
8626		case sizeof (uint64_t):
8627			break;
8628
8629		default:
8630			err += efunc(dp->dtdo_len - 1, "bad return size");
8631		}
8632	}
8633
8634	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8635		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8636		dtrace_diftype_t *vt, *et;
8637		uint_t id, ndx;
8638
8639		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8640		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8641		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8642			err += efunc(i, "unrecognized variable scope %d\n",
8643			    v->dtdv_scope);
8644			break;
8645		}
8646
8647		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8648		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8649			err += efunc(i, "unrecognized variable type %d\n",
8650			    v->dtdv_kind);
8651			break;
8652		}
8653
8654		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8655			err += efunc(i, "%d exceeds variable id limit\n", id);
8656			break;
8657		}
8658
8659		if (id < DIF_VAR_OTHER_UBASE)
8660			continue;
8661
8662		/*
8663		 * For user-defined variables, we need to check that this
8664		 * definition is identical to any previous definition that we
8665		 * encountered.
8666		 */
8667		ndx = id - DIF_VAR_OTHER_UBASE;
8668
8669		switch (v->dtdv_scope) {
8670		case DIFV_SCOPE_GLOBAL:
8671			if (ndx < vstate->dtvs_nglobals) {
8672				dtrace_statvar_t *svar;
8673
8674				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8675					existing = &svar->dtsv_var;
8676			}
8677
8678			break;
8679
8680		case DIFV_SCOPE_THREAD:
8681			if (ndx < vstate->dtvs_ntlocals)
8682				existing = &vstate->dtvs_tlocals[ndx];
8683			break;
8684
8685		case DIFV_SCOPE_LOCAL:
8686			if (ndx < vstate->dtvs_nlocals) {
8687				dtrace_statvar_t *svar;
8688
8689				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8690					existing = &svar->dtsv_var;
8691			}
8692
8693			break;
8694		}
8695
8696		vt = &v->dtdv_type;
8697
8698		if (vt->dtdt_flags & DIF_TF_BYREF) {
8699			if (vt->dtdt_size == 0) {
8700				err += efunc(i, "zero-sized variable\n");
8701				break;
8702			}
8703
8704			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8705			    vt->dtdt_size > dtrace_global_maxsize) {
8706				err += efunc(i, "oversized by-ref global\n");
8707				break;
8708			}
8709		}
8710
8711		if (existing == NULL || existing->dtdv_id == 0)
8712			continue;
8713
8714		ASSERT(existing->dtdv_id == v->dtdv_id);
8715		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8716
8717		if (existing->dtdv_kind != v->dtdv_kind)
8718			err += efunc(i, "%d changed variable kind\n", id);
8719
8720		et = &existing->dtdv_type;
8721
8722		if (vt->dtdt_flags != et->dtdt_flags) {
8723			err += efunc(i, "%d changed variable type flags\n", id);
8724			break;
8725		}
8726
8727		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8728			err += efunc(i, "%d changed variable type size\n", id);
8729			break;
8730		}
8731	}
8732
8733	return (err);
8734}
8735
8736/*
8737 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8738 * are much more constrained than normal DIFOs.  Specifically, they may
8739 * not:
8740 *
8741 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8742 *    miscellaneous string routines
8743 * 2. Access DTrace variables other than the args[] array, and the
8744 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8745 * 3. Have thread-local variables.
8746 * 4. Have dynamic variables.
8747 */
8748static int
8749dtrace_difo_validate_helper(dtrace_difo_t *dp)
8750{
8751	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8752	int err = 0;
8753	uint_t pc;
8754
8755	for (pc = 0; pc < dp->dtdo_len; pc++) {
8756		dif_instr_t instr = dp->dtdo_buf[pc];
8757
8758		uint_t v = DIF_INSTR_VAR(instr);
8759		uint_t subr = DIF_INSTR_SUBR(instr);
8760		uint_t op = DIF_INSTR_OP(instr);
8761
8762		switch (op) {
8763		case DIF_OP_OR:
8764		case DIF_OP_XOR:
8765		case DIF_OP_AND:
8766		case DIF_OP_SLL:
8767		case DIF_OP_SRL:
8768		case DIF_OP_SRA:
8769		case DIF_OP_SUB:
8770		case DIF_OP_ADD:
8771		case DIF_OP_MUL:
8772		case DIF_OP_SDIV:
8773		case DIF_OP_UDIV:
8774		case DIF_OP_SREM:
8775		case DIF_OP_UREM:
8776		case DIF_OP_COPYS:
8777		case DIF_OP_NOT:
8778		case DIF_OP_MOV:
8779		case DIF_OP_RLDSB:
8780		case DIF_OP_RLDSH:
8781		case DIF_OP_RLDSW:
8782		case DIF_OP_RLDUB:
8783		case DIF_OP_RLDUH:
8784		case DIF_OP_RLDUW:
8785		case DIF_OP_RLDX:
8786		case DIF_OP_ULDSB:
8787		case DIF_OP_ULDSH:
8788		case DIF_OP_ULDSW:
8789		case DIF_OP_ULDUB:
8790		case DIF_OP_ULDUH:
8791		case DIF_OP_ULDUW:
8792		case DIF_OP_ULDX:
8793		case DIF_OP_STB:
8794		case DIF_OP_STH:
8795		case DIF_OP_STW:
8796		case DIF_OP_STX:
8797		case DIF_OP_ALLOCS:
8798		case DIF_OP_CMP:
8799		case DIF_OP_SCMP:
8800		case DIF_OP_TST:
8801		case DIF_OP_BA:
8802		case DIF_OP_BE:
8803		case DIF_OP_BNE:
8804		case DIF_OP_BG:
8805		case DIF_OP_BGU:
8806		case DIF_OP_BGE:
8807		case DIF_OP_BGEU:
8808		case DIF_OP_BL:
8809		case DIF_OP_BLU:
8810		case DIF_OP_BLE:
8811		case DIF_OP_BLEU:
8812		case DIF_OP_RET:
8813		case DIF_OP_NOP:
8814		case DIF_OP_POPTS:
8815		case DIF_OP_FLUSHTS:
8816		case DIF_OP_SETX:
8817		case DIF_OP_SETS:
8818		case DIF_OP_LDGA:
8819		case DIF_OP_LDLS:
8820		case DIF_OP_STGS:
8821		case DIF_OP_STLS:
8822		case DIF_OP_PUSHTR:
8823		case DIF_OP_PUSHTV:
8824			break;
8825
8826		case DIF_OP_LDGS:
8827			if (v >= DIF_VAR_OTHER_UBASE)
8828				break;
8829
8830			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8831				break;
8832
8833			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8834			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8835			    v == DIF_VAR_EXECARGS ||
8836			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8837			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8838				break;
8839
8840			err += efunc(pc, "illegal variable %u\n", v);
8841			break;
8842
8843		case DIF_OP_LDTA:
8844		case DIF_OP_LDTS:
8845		case DIF_OP_LDGAA:
8846		case DIF_OP_LDTAA:
8847			err += efunc(pc, "illegal dynamic variable load\n");
8848			break;
8849
8850		case DIF_OP_STTS:
8851		case DIF_OP_STGAA:
8852		case DIF_OP_STTAA:
8853			err += efunc(pc, "illegal dynamic variable store\n");
8854			break;
8855
8856		case DIF_OP_CALL:
8857			if (subr == DIF_SUBR_ALLOCA ||
8858			    subr == DIF_SUBR_BCOPY ||
8859			    subr == DIF_SUBR_COPYIN ||
8860			    subr == DIF_SUBR_COPYINTO ||
8861			    subr == DIF_SUBR_COPYINSTR ||
8862			    subr == DIF_SUBR_INDEX ||
8863			    subr == DIF_SUBR_INET_NTOA ||
8864			    subr == DIF_SUBR_INET_NTOA6 ||
8865			    subr == DIF_SUBR_INET_NTOP ||
8866			    subr == DIF_SUBR_LLTOSTR ||
8867			    subr == DIF_SUBR_RINDEX ||
8868			    subr == DIF_SUBR_STRCHR ||
8869			    subr == DIF_SUBR_STRJOIN ||
8870			    subr == DIF_SUBR_STRRCHR ||
8871			    subr == DIF_SUBR_STRSTR ||
8872			    subr == DIF_SUBR_HTONS ||
8873			    subr == DIF_SUBR_HTONL ||
8874			    subr == DIF_SUBR_HTONLL ||
8875			    subr == DIF_SUBR_NTOHS ||
8876			    subr == DIF_SUBR_NTOHL ||
8877			    subr == DIF_SUBR_NTOHLL ||
8878			    subr == DIF_SUBR_MEMREF ||
8879			    subr == DIF_SUBR_TYPEREF)
8880				break;
8881
8882			err += efunc(pc, "invalid subr %u\n", subr);
8883			break;
8884
8885		default:
8886			err += efunc(pc, "invalid opcode %u\n",
8887			    DIF_INSTR_OP(instr));
8888		}
8889	}
8890
8891	return (err);
8892}
8893
8894/*
8895 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8896 * basis; 0 if not.
8897 */
8898static int
8899dtrace_difo_cacheable(dtrace_difo_t *dp)
8900{
8901	int i;
8902
8903	if (dp == NULL)
8904		return (0);
8905
8906	for (i = 0; i < dp->dtdo_varlen; i++) {
8907		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8908
8909		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8910			continue;
8911
8912		switch (v->dtdv_id) {
8913		case DIF_VAR_CURTHREAD:
8914		case DIF_VAR_PID:
8915		case DIF_VAR_TID:
8916		case DIF_VAR_EXECARGS:
8917		case DIF_VAR_EXECNAME:
8918		case DIF_VAR_ZONENAME:
8919			break;
8920
8921		default:
8922			return (0);
8923		}
8924	}
8925
8926	/*
8927	 * This DIF object may be cacheable.  Now we need to look for any
8928	 * array loading instructions, any memory loading instructions, or
8929	 * any stores to thread-local variables.
8930	 */
8931	for (i = 0; i < dp->dtdo_len; i++) {
8932		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8933
8934		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8935		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8936		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8937		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8938			return (0);
8939	}
8940
8941	return (1);
8942}
8943
8944static void
8945dtrace_difo_hold(dtrace_difo_t *dp)
8946{
8947	int i;
8948
8949	ASSERT(MUTEX_HELD(&dtrace_lock));
8950
8951	dp->dtdo_refcnt++;
8952	ASSERT(dp->dtdo_refcnt != 0);
8953
8954	/*
8955	 * We need to check this DIF object for references to the variable
8956	 * DIF_VAR_VTIMESTAMP.
8957	 */
8958	for (i = 0; i < dp->dtdo_varlen; i++) {
8959		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8960
8961		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8962			continue;
8963
8964		if (dtrace_vtime_references++ == 0)
8965			dtrace_vtime_enable();
8966	}
8967}
8968
8969/*
8970 * This routine calculates the dynamic variable chunksize for a given DIF
8971 * object.  The calculation is not fool-proof, and can probably be tricked by
8972 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8973 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8974 * if a dynamic variable size exceeds the chunksize.
8975 */
8976static void
8977dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8978{
8979	uint64_t sval = 0;
8980	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8981	const dif_instr_t *text = dp->dtdo_buf;
8982	uint_t pc, srd = 0;
8983	uint_t ttop = 0;
8984	size_t size, ksize;
8985	uint_t id, i;
8986
8987	for (pc = 0; pc < dp->dtdo_len; pc++) {
8988		dif_instr_t instr = text[pc];
8989		uint_t op = DIF_INSTR_OP(instr);
8990		uint_t rd = DIF_INSTR_RD(instr);
8991		uint_t r1 = DIF_INSTR_R1(instr);
8992		uint_t nkeys = 0;
8993		uchar_t scope = 0;
8994
8995		dtrace_key_t *key = tupregs;
8996
8997		switch (op) {
8998		case DIF_OP_SETX:
8999			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9000			srd = rd;
9001			continue;
9002
9003		case DIF_OP_STTS:
9004			key = &tupregs[DIF_DTR_NREGS];
9005			key[0].dttk_size = 0;
9006			key[1].dttk_size = 0;
9007			nkeys = 2;
9008			scope = DIFV_SCOPE_THREAD;
9009			break;
9010
9011		case DIF_OP_STGAA:
9012		case DIF_OP_STTAA:
9013			nkeys = ttop;
9014
9015			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9016				key[nkeys++].dttk_size = 0;
9017
9018			key[nkeys++].dttk_size = 0;
9019
9020			if (op == DIF_OP_STTAA) {
9021				scope = DIFV_SCOPE_THREAD;
9022			} else {
9023				scope = DIFV_SCOPE_GLOBAL;
9024			}
9025
9026			break;
9027
9028		case DIF_OP_PUSHTR:
9029			if (ttop == DIF_DTR_NREGS)
9030				return;
9031
9032			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9033				/*
9034				 * If the register for the size of the "pushtr"
9035				 * is %r0 (or the value is 0) and the type is
9036				 * a string, we'll use the system-wide default
9037				 * string size.
9038				 */
9039				tupregs[ttop++].dttk_size =
9040				    dtrace_strsize_default;
9041			} else {
9042				if (srd == 0)
9043					return;
9044
9045				tupregs[ttop++].dttk_size = sval;
9046			}
9047
9048			break;
9049
9050		case DIF_OP_PUSHTV:
9051			if (ttop == DIF_DTR_NREGS)
9052				return;
9053
9054			tupregs[ttop++].dttk_size = 0;
9055			break;
9056
9057		case DIF_OP_FLUSHTS:
9058			ttop = 0;
9059			break;
9060
9061		case DIF_OP_POPTS:
9062			if (ttop != 0)
9063				ttop--;
9064			break;
9065		}
9066
9067		sval = 0;
9068		srd = 0;
9069
9070		if (nkeys == 0)
9071			continue;
9072
9073		/*
9074		 * We have a dynamic variable allocation; calculate its size.
9075		 */
9076		for (ksize = 0, i = 0; i < nkeys; i++)
9077			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9078
9079		size = sizeof (dtrace_dynvar_t);
9080		size += sizeof (dtrace_key_t) * (nkeys - 1);
9081		size += ksize;
9082
9083		/*
9084		 * Now we need to determine the size of the stored data.
9085		 */
9086		id = DIF_INSTR_VAR(instr);
9087
9088		for (i = 0; i < dp->dtdo_varlen; i++) {
9089			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9090
9091			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9092				size += v->dtdv_type.dtdt_size;
9093				break;
9094			}
9095		}
9096
9097		if (i == dp->dtdo_varlen)
9098			return;
9099
9100		/*
9101		 * We have the size.  If this is larger than the chunk size
9102		 * for our dynamic variable state, reset the chunk size.
9103		 */
9104		size = P2ROUNDUP(size, sizeof (uint64_t));
9105
9106		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9107			vstate->dtvs_dynvars.dtds_chunksize = size;
9108	}
9109}
9110
9111static void
9112dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9113{
9114	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9115	uint_t id;
9116
9117	ASSERT(MUTEX_HELD(&dtrace_lock));
9118	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9119
9120	for (i = 0; i < dp->dtdo_varlen; i++) {
9121		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9122		dtrace_statvar_t *svar, ***svarp = NULL;
9123		size_t dsize = 0;
9124		uint8_t scope = v->dtdv_scope;
9125		int *np = NULL;
9126
9127		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9128			continue;
9129
9130		id -= DIF_VAR_OTHER_UBASE;
9131
9132		switch (scope) {
9133		case DIFV_SCOPE_THREAD:
9134			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9135				dtrace_difv_t *tlocals;
9136
9137				if ((ntlocals = (otlocals << 1)) == 0)
9138					ntlocals = 1;
9139
9140				osz = otlocals * sizeof (dtrace_difv_t);
9141				nsz = ntlocals * sizeof (dtrace_difv_t);
9142
9143				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9144
9145				if (osz != 0) {
9146					bcopy(vstate->dtvs_tlocals,
9147					    tlocals, osz);
9148					kmem_free(vstate->dtvs_tlocals, osz);
9149				}
9150
9151				vstate->dtvs_tlocals = tlocals;
9152				vstate->dtvs_ntlocals = ntlocals;
9153			}
9154
9155			vstate->dtvs_tlocals[id] = *v;
9156			continue;
9157
9158		case DIFV_SCOPE_LOCAL:
9159			np = &vstate->dtvs_nlocals;
9160			svarp = &vstate->dtvs_locals;
9161
9162			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9163				dsize = NCPU * (v->dtdv_type.dtdt_size +
9164				    sizeof (uint64_t));
9165			else
9166				dsize = NCPU * sizeof (uint64_t);
9167
9168			break;
9169
9170		case DIFV_SCOPE_GLOBAL:
9171			np = &vstate->dtvs_nglobals;
9172			svarp = &vstate->dtvs_globals;
9173
9174			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9175				dsize = v->dtdv_type.dtdt_size +
9176				    sizeof (uint64_t);
9177
9178			break;
9179
9180		default:
9181			ASSERT(0);
9182		}
9183
9184		while (id >= (oldsvars = *np)) {
9185			dtrace_statvar_t **statics;
9186			int newsvars, oldsize, newsize;
9187
9188			if ((newsvars = (oldsvars << 1)) == 0)
9189				newsvars = 1;
9190
9191			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9192			newsize = newsvars * sizeof (dtrace_statvar_t *);
9193
9194			statics = kmem_zalloc(newsize, KM_SLEEP);
9195
9196			if (oldsize != 0) {
9197				bcopy(*svarp, statics, oldsize);
9198				kmem_free(*svarp, oldsize);
9199			}
9200
9201			*svarp = statics;
9202			*np = newsvars;
9203		}
9204
9205		if ((svar = (*svarp)[id]) == NULL) {
9206			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9207			svar->dtsv_var = *v;
9208
9209			if ((svar->dtsv_size = dsize) != 0) {
9210				svar->dtsv_data = (uint64_t)(uintptr_t)
9211				    kmem_zalloc(dsize, KM_SLEEP);
9212			}
9213
9214			(*svarp)[id] = svar;
9215		}
9216
9217		svar->dtsv_refcnt++;
9218	}
9219
9220	dtrace_difo_chunksize(dp, vstate);
9221	dtrace_difo_hold(dp);
9222}
9223
9224static dtrace_difo_t *
9225dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9226{
9227	dtrace_difo_t *new;
9228	size_t sz;
9229
9230	ASSERT(dp->dtdo_buf != NULL);
9231	ASSERT(dp->dtdo_refcnt != 0);
9232
9233	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9234
9235	ASSERT(dp->dtdo_buf != NULL);
9236	sz = dp->dtdo_len * sizeof (dif_instr_t);
9237	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9238	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9239	new->dtdo_len = dp->dtdo_len;
9240
9241	if (dp->dtdo_strtab != NULL) {
9242		ASSERT(dp->dtdo_strlen != 0);
9243		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9244		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9245		new->dtdo_strlen = dp->dtdo_strlen;
9246	}
9247
9248	if (dp->dtdo_inttab != NULL) {
9249		ASSERT(dp->dtdo_intlen != 0);
9250		sz = dp->dtdo_intlen * sizeof (uint64_t);
9251		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9252		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9253		new->dtdo_intlen = dp->dtdo_intlen;
9254	}
9255
9256	if (dp->dtdo_vartab != NULL) {
9257		ASSERT(dp->dtdo_varlen != 0);
9258		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9259		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9260		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9261		new->dtdo_varlen = dp->dtdo_varlen;
9262	}
9263
9264	dtrace_difo_init(new, vstate);
9265	return (new);
9266}
9267
9268static void
9269dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9270{
9271	int i;
9272
9273	ASSERT(dp->dtdo_refcnt == 0);
9274
9275	for (i = 0; i < dp->dtdo_varlen; i++) {
9276		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9277		dtrace_statvar_t *svar, **svarp = NULL;
9278		uint_t id;
9279		uint8_t scope = v->dtdv_scope;
9280		int *np = NULL;
9281
9282		switch (scope) {
9283		case DIFV_SCOPE_THREAD:
9284			continue;
9285
9286		case DIFV_SCOPE_LOCAL:
9287			np = &vstate->dtvs_nlocals;
9288			svarp = vstate->dtvs_locals;
9289			break;
9290
9291		case DIFV_SCOPE_GLOBAL:
9292			np = &vstate->dtvs_nglobals;
9293			svarp = vstate->dtvs_globals;
9294			break;
9295
9296		default:
9297			ASSERT(0);
9298		}
9299
9300		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9301			continue;
9302
9303		id -= DIF_VAR_OTHER_UBASE;
9304		ASSERT(id < *np);
9305
9306		svar = svarp[id];
9307		ASSERT(svar != NULL);
9308		ASSERT(svar->dtsv_refcnt > 0);
9309
9310		if (--svar->dtsv_refcnt > 0)
9311			continue;
9312
9313		if (svar->dtsv_size != 0) {
9314			ASSERT(svar->dtsv_data != 0);
9315			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9316			    svar->dtsv_size);
9317		}
9318
9319		kmem_free(svar, sizeof (dtrace_statvar_t));
9320		svarp[id] = NULL;
9321	}
9322
9323	if (dp->dtdo_buf != NULL)
9324		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9325	if (dp->dtdo_inttab != NULL)
9326		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9327	if (dp->dtdo_strtab != NULL)
9328		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9329	if (dp->dtdo_vartab != NULL)
9330		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9331
9332	kmem_free(dp, sizeof (dtrace_difo_t));
9333}
9334
9335static void
9336dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9337{
9338	int i;
9339
9340	ASSERT(MUTEX_HELD(&dtrace_lock));
9341	ASSERT(dp->dtdo_refcnt != 0);
9342
9343	for (i = 0; i < dp->dtdo_varlen; i++) {
9344		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9345
9346		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9347			continue;
9348
9349		ASSERT(dtrace_vtime_references > 0);
9350		if (--dtrace_vtime_references == 0)
9351			dtrace_vtime_disable();
9352	}
9353
9354	if (--dp->dtdo_refcnt == 0)
9355		dtrace_difo_destroy(dp, vstate);
9356}
9357
9358/*
9359 * DTrace Format Functions
9360 */
9361static uint16_t
9362dtrace_format_add(dtrace_state_t *state, char *str)
9363{
9364	char *fmt, **new;
9365	uint16_t ndx, len = strlen(str) + 1;
9366
9367	fmt = kmem_zalloc(len, KM_SLEEP);
9368	bcopy(str, fmt, len);
9369
9370	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9371		if (state->dts_formats[ndx] == NULL) {
9372			state->dts_formats[ndx] = fmt;
9373			return (ndx + 1);
9374		}
9375	}
9376
9377	if (state->dts_nformats == USHRT_MAX) {
9378		/*
9379		 * This is only likely if a denial-of-service attack is being
9380		 * attempted.  As such, it's okay to fail silently here.
9381		 */
9382		kmem_free(fmt, len);
9383		return (0);
9384	}
9385
9386	/*
9387	 * For simplicity, we always resize the formats array to be exactly the
9388	 * number of formats.
9389	 */
9390	ndx = state->dts_nformats++;
9391	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9392
9393	if (state->dts_formats != NULL) {
9394		ASSERT(ndx != 0);
9395		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9396		kmem_free(state->dts_formats, ndx * sizeof (char *));
9397	}
9398
9399	state->dts_formats = new;
9400	state->dts_formats[ndx] = fmt;
9401
9402	return (ndx + 1);
9403}
9404
9405static void
9406dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9407{
9408	char *fmt;
9409
9410	ASSERT(state->dts_formats != NULL);
9411	ASSERT(format <= state->dts_nformats);
9412	ASSERT(state->dts_formats[format - 1] != NULL);
9413
9414	fmt = state->dts_formats[format - 1];
9415	kmem_free(fmt, strlen(fmt) + 1);
9416	state->dts_formats[format - 1] = NULL;
9417}
9418
9419static void
9420dtrace_format_destroy(dtrace_state_t *state)
9421{
9422	int i;
9423
9424	if (state->dts_nformats == 0) {
9425		ASSERT(state->dts_formats == NULL);
9426		return;
9427	}
9428
9429	ASSERT(state->dts_formats != NULL);
9430
9431	for (i = 0; i < state->dts_nformats; i++) {
9432		char *fmt = state->dts_formats[i];
9433
9434		if (fmt == NULL)
9435			continue;
9436
9437		kmem_free(fmt, strlen(fmt) + 1);
9438	}
9439
9440	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9441	state->dts_nformats = 0;
9442	state->dts_formats = NULL;
9443}
9444
9445/*
9446 * DTrace Predicate Functions
9447 */
9448static dtrace_predicate_t *
9449dtrace_predicate_create(dtrace_difo_t *dp)
9450{
9451	dtrace_predicate_t *pred;
9452
9453	ASSERT(MUTEX_HELD(&dtrace_lock));
9454	ASSERT(dp->dtdo_refcnt != 0);
9455
9456	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9457	pred->dtp_difo = dp;
9458	pred->dtp_refcnt = 1;
9459
9460	if (!dtrace_difo_cacheable(dp))
9461		return (pred);
9462
9463	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9464		/*
9465		 * This is only theoretically possible -- we have had 2^32
9466		 * cacheable predicates on this machine.  We cannot allow any
9467		 * more predicates to become cacheable:  as unlikely as it is,
9468		 * there may be a thread caching a (now stale) predicate cache
9469		 * ID. (N.B.: the temptation is being successfully resisted to
9470		 * have this cmn_err() "Holy shit -- we executed this code!")
9471		 */
9472		return (pred);
9473	}
9474
9475	pred->dtp_cacheid = dtrace_predcache_id++;
9476
9477	return (pred);
9478}
9479
9480static void
9481dtrace_predicate_hold(dtrace_predicate_t *pred)
9482{
9483	ASSERT(MUTEX_HELD(&dtrace_lock));
9484	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9485	ASSERT(pred->dtp_refcnt > 0);
9486
9487	pred->dtp_refcnt++;
9488}
9489
9490static void
9491dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9492{
9493	dtrace_difo_t *dp = pred->dtp_difo;
9494
9495	ASSERT(MUTEX_HELD(&dtrace_lock));
9496	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9497	ASSERT(pred->dtp_refcnt > 0);
9498
9499	if (--pred->dtp_refcnt == 0) {
9500		dtrace_difo_release(pred->dtp_difo, vstate);
9501		kmem_free(pred, sizeof (dtrace_predicate_t));
9502	}
9503}
9504
9505/*
9506 * DTrace Action Description Functions
9507 */
9508static dtrace_actdesc_t *
9509dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9510    uint64_t uarg, uint64_t arg)
9511{
9512	dtrace_actdesc_t *act;
9513
9514#if defined(sun)
9515	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9516	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9517#endif
9518
9519	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9520	act->dtad_kind = kind;
9521	act->dtad_ntuple = ntuple;
9522	act->dtad_uarg = uarg;
9523	act->dtad_arg = arg;
9524	act->dtad_refcnt = 1;
9525
9526	return (act);
9527}
9528
9529static void
9530dtrace_actdesc_hold(dtrace_actdesc_t *act)
9531{
9532	ASSERT(act->dtad_refcnt >= 1);
9533	act->dtad_refcnt++;
9534}
9535
9536static void
9537dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9538{
9539	dtrace_actkind_t kind = act->dtad_kind;
9540	dtrace_difo_t *dp;
9541
9542	ASSERT(act->dtad_refcnt >= 1);
9543
9544	if (--act->dtad_refcnt != 0)
9545		return;
9546
9547	if ((dp = act->dtad_difo) != NULL)
9548		dtrace_difo_release(dp, vstate);
9549
9550	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9551		char *str = (char *)(uintptr_t)act->dtad_arg;
9552
9553#if defined(sun)
9554		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9555		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9556#endif
9557
9558		if (str != NULL)
9559			kmem_free(str, strlen(str) + 1);
9560	}
9561
9562	kmem_free(act, sizeof (dtrace_actdesc_t));
9563}
9564
9565/*
9566 * DTrace ECB Functions
9567 */
9568static dtrace_ecb_t *
9569dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9570{
9571	dtrace_ecb_t *ecb;
9572	dtrace_epid_t epid;
9573
9574	ASSERT(MUTEX_HELD(&dtrace_lock));
9575
9576	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9577	ecb->dte_predicate = NULL;
9578	ecb->dte_probe = probe;
9579
9580	/*
9581	 * The default size is the size of the default action: recording
9582	 * the epid.
9583	 */
9584	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9585	ecb->dte_alignment = sizeof (dtrace_epid_t);
9586
9587	epid = state->dts_epid++;
9588
9589	if (epid - 1 >= state->dts_necbs) {
9590		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9591		int necbs = state->dts_necbs << 1;
9592
9593		ASSERT(epid == state->dts_necbs + 1);
9594
9595		if (necbs == 0) {
9596			ASSERT(oecbs == NULL);
9597			necbs = 1;
9598		}
9599
9600		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9601
9602		if (oecbs != NULL)
9603			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9604
9605		dtrace_membar_producer();
9606		state->dts_ecbs = ecbs;
9607
9608		if (oecbs != NULL) {
9609			/*
9610			 * If this state is active, we must dtrace_sync()
9611			 * before we can free the old dts_ecbs array:  we're
9612			 * coming in hot, and there may be active ring
9613			 * buffer processing (which indexes into the dts_ecbs
9614			 * array) on another CPU.
9615			 */
9616			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9617				dtrace_sync();
9618
9619			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9620		}
9621
9622		dtrace_membar_producer();
9623		state->dts_necbs = necbs;
9624	}
9625
9626	ecb->dte_state = state;
9627
9628	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9629	dtrace_membar_producer();
9630	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9631
9632	return (ecb);
9633}
9634
9635static void
9636dtrace_ecb_enable(dtrace_ecb_t *ecb)
9637{
9638	dtrace_probe_t *probe = ecb->dte_probe;
9639
9640	ASSERT(MUTEX_HELD(&cpu_lock));
9641	ASSERT(MUTEX_HELD(&dtrace_lock));
9642	ASSERT(ecb->dte_next == NULL);
9643
9644	if (probe == NULL) {
9645		/*
9646		 * This is the NULL probe -- there's nothing to do.
9647		 */
9648		return;
9649	}
9650
9651	if (probe->dtpr_ecb == NULL) {
9652		dtrace_provider_t *prov = probe->dtpr_provider;
9653
9654		/*
9655		 * We're the first ECB on this probe.
9656		 */
9657		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9658
9659		if (ecb->dte_predicate != NULL)
9660			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9661
9662		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9663		    probe->dtpr_id, probe->dtpr_arg);
9664	} else {
9665		/*
9666		 * This probe is already active.  Swing the last pointer to
9667		 * point to the new ECB, and issue a dtrace_sync() to assure
9668		 * that all CPUs have seen the change.
9669		 */
9670		ASSERT(probe->dtpr_ecb_last != NULL);
9671		probe->dtpr_ecb_last->dte_next = ecb;
9672		probe->dtpr_ecb_last = ecb;
9673		probe->dtpr_predcache = 0;
9674
9675		dtrace_sync();
9676	}
9677}
9678
9679static void
9680dtrace_ecb_resize(dtrace_ecb_t *ecb)
9681{
9682	uint32_t maxalign = sizeof (dtrace_epid_t);
9683	uint32_t align = sizeof (uint8_t), offs, diff;
9684	dtrace_action_t *act;
9685	int wastuple = 0;
9686	uint32_t aggbase = UINT32_MAX;
9687	dtrace_state_t *state = ecb->dte_state;
9688
9689	/*
9690	 * If we record anything, we always record the epid.  (And we always
9691	 * record it first.)
9692	 */
9693	offs = sizeof (dtrace_epid_t);
9694	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9695
9696	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9697		dtrace_recdesc_t *rec = &act->dta_rec;
9698
9699		if ((align = rec->dtrd_alignment) > maxalign)
9700			maxalign = align;
9701
9702		if (!wastuple && act->dta_intuple) {
9703			/*
9704			 * This is the first record in a tuple.  Align the
9705			 * offset to be at offset 4 in an 8-byte aligned
9706			 * block.
9707			 */
9708			diff = offs + sizeof (dtrace_aggid_t);
9709
9710			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9711				offs += sizeof (uint64_t) - diff;
9712
9713			aggbase = offs - sizeof (dtrace_aggid_t);
9714			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9715		}
9716
9717		/*LINTED*/
9718		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9719			/*
9720			 * The current offset is not properly aligned; align it.
9721			 */
9722			offs += align - diff;
9723		}
9724
9725		rec->dtrd_offset = offs;
9726
9727		if (offs + rec->dtrd_size > ecb->dte_needed) {
9728			ecb->dte_needed = offs + rec->dtrd_size;
9729
9730			if (ecb->dte_needed > state->dts_needed)
9731				state->dts_needed = ecb->dte_needed;
9732		}
9733
9734		if (DTRACEACT_ISAGG(act->dta_kind)) {
9735			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9736			dtrace_action_t *first = agg->dtag_first, *prev;
9737
9738			ASSERT(rec->dtrd_size != 0 && first != NULL);
9739			ASSERT(wastuple);
9740			ASSERT(aggbase != UINT32_MAX);
9741
9742			agg->dtag_base = aggbase;
9743
9744			while ((prev = first->dta_prev) != NULL &&
9745			    DTRACEACT_ISAGG(prev->dta_kind)) {
9746				agg = (dtrace_aggregation_t *)prev;
9747				first = agg->dtag_first;
9748			}
9749
9750			if (prev != NULL) {
9751				offs = prev->dta_rec.dtrd_offset +
9752				    prev->dta_rec.dtrd_size;
9753			} else {
9754				offs = sizeof (dtrace_epid_t);
9755			}
9756			wastuple = 0;
9757		} else {
9758			if (!act->dta_intuple)
9759				ecb->dte_size = offs + rec->dtrd_size;
9760
9761			offs += rec->dtrd_size;
9762		}
9763
9764		wastuple = act->dta_intuple;
9765	}
9766
9767	if ((act = ecb->dte_action) != NULL &&
9768	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9769	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9770		/*
9771		 * If the size is still sizeof (dtrace_epid_t), then all
9772		 * actions store no data; set the size to 0.
9773		 */
9774		ecb->dte_alignment = maxalign;
9775		ecb->dte_size = 0;
9776
9777		/*
9778		 * If the needed space is still sizeof (dtrace_epid_t), then
9779		 * all actions need no additional space; set the needed
9780		 * size to 0.
9781		 */
9782		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9783			ecb->dte_needed = 0;
9784
9785		return;
9786	}
9787
9788	/*
9789	 * Set our alignment, and make sure that the dte_size and dte_needed
9790	 * are aligned to the size of an EPID.
9791	 */
9792	ecb->dte_alignment = maxalign;
9793	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9794	    ~(sizeof (dtrace_epid_t) - 1);
9795	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9796	    ~(sizeof (dtrace_epid_t) - 1);
9797	ASSERT(ecb->dte_size <= ecb->dte_needed);
9798}
9799
9800static dtrace_action_t *
9801dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9802{
9803	dtrace_aggregation_t *agg;
9804	size_t size = sizeof (uint64_t);
9805	int ntuple = desc->dtad_ntuple;
9806	dtrace_action_t *act;
9807	dtrace_recdesc_t *frec;
9808	dtrace_aggid_t aggid;
9809	dtrace_state_t *state = ecb->dte_state;
9810
9811	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9812	agg->dtag_ecb = ecb;
9813
9814	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9815
9816	switch (desc->dtad_kind) {
9817	case DTRACEAGG_MIN:
9818		agg->dtag_initial = INT64_MAX;
9819		agg->dtag_aggregate = dtrace_aggregate_min;
9820		break;
9821
9822	case DTRACEAGG_MAX:
9823		agg->dtag_initial = INT64_MIN;
9824		agg->dtag_aggregate = dtrace_aggregate_max;
9825		break;
9826
9827	case DTRACEAGG_COUNT:
9828		agg->dtag_aggregate = dtrace_aggregate_count;
9829		break;
9830
9831	case DTRACEAGG_QUANTIZE:
9832		agg->dtag_aggregate = dtrace_aggregate_quantize;
9833		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9834		    sizeof (uint64_t);
9835		break;
9836
9837	case DTRACEAGG_LQUANTIZE: {
9838		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9839		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9840
9841		agg->dtag_initial = desc->dtad_arg;
9842		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9843
9844		if (step == 0 || levels == 0)
9845			goto err;
9846
9847		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9848		break;
9849	}
9850
9851	case DTRACEAGG_AVG:
9852		agg->dtag_aggregate = dtrace_aggregate_avg;
9853		size = sizeof (uint64_t) * 2;
9854		break;
9855
9856	case DTRACEAGG_STDDEV:
9857		agg->dtag_aggregate = dtrace_aggregate_stddev;
9858		size = sizeof (uint64_t) * 4;
9859		break;
9860
9861	case DTRACEAGG_SUM:
9862		agg->dtag_aggregate = dtrace_aggregate_sum;
9863		break;
9864
9865	default:
9866		goto err;
9867	}
9868
9869	agg->dtag_action.dta_rec.dtrd_size = size;
9870
9871	if (ntuple == 0)
9872		goto err;
9873
9874	/*
9875	 * We must make sure that we have enough actions for the n-tuple.
9876	 */
9877	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9878		if (DTRACEACT_ISAGG(act->dta_kind))
9879			break;
9880
9881		if (--ntuple == 0) {
9882			/*
9883			 * This is the action with which our n-tuple begins.
9884			 */
9885			agg->dtag_first = act;
9886			goto success;
9887		}
9888	}
9889
9890	/*
9891	 * This n-tuple is short by ntuple elements.  Return failure.
9892	 */
9893	ASSERT(ntuple != 0);
9894err:
9895	kmem_free(agg, sizeof (dtrace_aggregation_t));
9896	return (NULL);
9897
9898success:
9899	/*
9900	 * If the last action in the tuple has a size of zero, it's actually
9901	 * an expression argument for the aggregating action.
9902	 */
9903	ASSERT(ecb->dte_action_last != NULL);
9904	act = ecb->dte_action_last;
9905
9906	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9907		ASSERT(act->dta_difo != NULL);
9908
9909		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9910			agg->dtag_hasarg = 1;
9911	}
9912
9913	/*
9914	 * We need to allocate an id for this aggregation.
9915	 */
9916#if defined(sun)
9917	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9918	    VM_BESTFIT | VM_SLEEP);
9919#else
9920	aggid = alloc_unr(state->dts_aggid_arena);
9921#endif
9922
9923	if (aggid - 1 >= state->dts_naggregations) {
9924		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9925		dtrace_aggregation_t **aggs;
9926		int naggs = state->dts_naggregations << 1;
9927		int onaggs = state->dts_naggregations;
9928
9929		ASSERT(aggid == state->dts_naggregations + 1);
9930
9931		if (naggs == 0) {
9932			ASSERT(oaggs == NULL);
9933			naggs = 1;
9934		}
9935
9936		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9937
9938		if (oaggs != NULL) {
9939			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9940			kmem_free(oaggs, onaggs * sizeof (*aggs));
9941		}
9942
9943		state->dts_aggregations = aggs;
9944		state->dts_naggregations = naggs;
9945	}
9946
9947	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9948	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9949
9950	frec = &agg->dtag_first->dta_rec;
9951	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9952		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9953
9954	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9955		ASSERT(!act->dta_intuple);
9956		act->dta_intuple = 1;
9957	}
9958
9959	return (&agg->dtag_action);
9960}
9961
9962static void
9963dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9964{
9965	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9966	dtrace_state_t *state = ecb->dte_state;
9967	dtrace_aggid_t aggid = agg->dtag_id;
9968
9969	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9970#if defined(sun)
9971	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9972#else
9973	free_unr(state->dts_aggid_arena, aggid);
9974#endif
9975
9976	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9977	state->dts_aggregations[aggid - 1] = NULL;
9978
9979	kmem_free(agg, sizeof (dtrace_aggregation_t));
9980}
9981
9982static int
9983dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9984{
9985	dtrace_action_t *action, *last;
9986	dtrace_difo_t *dp = desc->dtad_difo;
9987	uint32_t size = 0, align = sizeof (uint8_t), mask;
9988	uint16_t format = 0;
9989	dtrace_recdesc_t *rec;
9990	dtrace_state_t *state = ecb->dte_state;
9991	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
9992	uint64_t arg = desc->dtad_arg;
9993
9994	ASSERT(MUTEX_HELD(&dtrace_lock));
9995	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9996
9997	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9998		/*
9999		 * If this is an aggregating action, there must be neither
10000		 * a speculate nor a commit on the action chain.
10001		 */
10002		dtrace_action_t *act;
10003
10004		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10005			if (act->dta_kind == DTRACEACT_COMMIT)
10006				return (EINVAL);
10007
10008			if (act->dta_kind == DTRACEACT_SPECULATE)
10009				return (EINVAL);
10010		}
10011
10012		action = dtrace_ecb_aggregation_create(ecb, desc);
10013
10014		if (action == NULL)
10015			return (EINVAL);
10016	} else {
10017		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10018		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10019		    dp != NULL && dp->dtdo_destructive)) {
10020			state->dts_destructive = 1;
10021		}
10022
10023		switch (desc->dtad_kind) {
10024		case DTRACEACT_PRINTF:
10025		case DTRACEACT_PRINTA:
10026		case DTRACEACT_SYSTEM:
10027		case DTRACEACT_FREOPEN:
10028			/*
10029			 * We know that our arg is a string -- turn it into a
10030			 * format.
10031			 */
10032			if (arg == 0) {
10033				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10034				format = 0;
10035			} else {
10036				ASSERT(arg != 0);
10037#if defined(sun)
10038				ASSERT(arg > KERNELBASE);
10039#endif
10040				format = dtrace_format_add(state,
10041				    (char *)(uintptr_t)arg);
10042			}
10043
10044			/*FALLTHROUGH*/
10045		case DTRACEACT_LIBACT:
10046		case DTRACEACT_DIFEXPR:
10047			if (dp == NULL)
10048				return (EINVAL);
10049
10050			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10051				break;
10052
10053			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10054				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10055					return (EINVAL);
10056
10057				size = opt[DTRACEOPT_STRSIZE];
10058			}
10059
10060			break;
10061
10062		case DTRACEACT_STACK:
10063			if ((nframes = arg) == 0) {
10064				nframes = opt[DTRACEOPT_STACKFRAMES];
10065				ASSERT(nframes > 0);
10066				arg = nframes;
10067			}
10068
10069			size = nframes * sizeof (pc_t);
10070			break;
10071
10072		case DTRACEACT_JSTACK:
10073			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10074				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10075
10076			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10077				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10078
10079			arg = DTRACE_USTACK_ARG(nframes, strsize);
10080
10081			/*FALLTHROUGH*/
10082		case DTRACEACT_USTACK:
10083			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10084			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10085				strsize = DTRACE_USTACK_STRSIZE(arg);
10086				nframes = opt[DTRACEOPT_USTACKFRAMES];
10087				ASSERT(nframes > 0);
10088				arg = DTRACE_USTACK_ARG(nframes, strsize);
10089			}
10090
10091			/*
10092			 * Save a slot for the pid.
10093			 */
10094			size = (nframes + 1) * sizeof (uint64_t);
10095			size += DTRACE_USTACK_STRSIZE(arg);
10096			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10097
10098			break;
10099
10100		case DTRACEACT_SYM:
10101		case DTRACEACT_MOD:
10102			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10103			    sizeof (uint64_t)) ||
10104			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10105				return (EINVAL);
10106			break;
10107
10108		case DTRACEACT_USYM:
10109		case DTRACEACT_UMOD:
10110		case DTRACEACT_UADDR:
10111			if (dp == NULL ||
10112			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10113			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10114				return (EINVAL);
10115
10116			/*
10117			 * We have a slot for the pid, plus a slot for the
10118			 * argument.  To keep things simple (aligned with
10119			 * bitness-neutral sizing), we store each as a 64-bit
10120			 * quantity.
10121			 */
10122			size = 2 * sizeof (uint64_t);
10123			break;
10124
10125		case DTRACEACT_STOP:
10126		case DTRACEACT_BREAKPOINT:
10127		case DTRACEACT_PANIC:
10128			break;
10129
10130		case DTRACEACT_CHILL:
10131		case DTRACEACT_DISCARD:
10132		case DTRACEACT_RAISE:
10133			if (dp == NULL)
10134				return (EINVAL);
10135			break;
10136
10137		case DTRACEACT_EXIT:
10138			if (dp == NULL ||
10139			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10140			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10141				return (EINVAL);
10142			break;
10143
10144		case DTRACEACT_SPECULATE:
10145			if (ecb->dte_size > sizeof (dtrace_epid_t))
10146				return (EINVAL);
10147
10148			if (dp == NULL)
10149				return (EINVAL);
10150
10151			state->dts_speculates = 1;
10152			break;
10153
10154		case DTRACEACT_PRINTM:
10155		    	size = dp->dtdo_rtype.dtdt_size;
10156			break;
10157
10158		case DTRACEACT_PRINTT:
10159		    	size = dp->dtdo_rtype.dtdt_size;
10160			break;
10161
10162		case DTRACEACT_COMMIT: {
10163			dtrace_action_t *act = ecb->dte_action;
10164
10165			for (; act != NULL; act = act->dta_next) {
10166				if (act->dta_kind == DTRACEACT_COMMIT)
10167					return (EINVAL);
10168			}
10169
10170			if (dp == NULL)
10171				return (EINVAL);
10172			break;
10173		}
10174
10175		default:
10176			return (EINVAL);
10177		}
10178
10179		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10180			/*
10181			 * If this is a data-storing action or a speculate,
10182			 * we must be sure that there isn't a commit on the
10183			 * action chain.
10184			 */
10185			dtrace_action_t *act = ecb->dte_action;
10186
10187			for (; act != NULL; act = act->dta_next) {
10188				if (act->dta_kind == DTRACEACT_COMMIT)
10189					return (EINVAL);
10190			}
10191		}
10192
10193		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10194		action->dta_rec.dtrd_size = size;
10195	}
10196
10197	action->dta_refcnt = 1;
10198	rec = &action->dta_rec;
10199	size = rec->dtrd_size;
10200
10201	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10202		if (!(size & mask)) {
10203			align = mask + 1;
10204			break;
10205		}
10206	}
10207
10208	action->dta_kind = desc->dtad_kind;
10209
10210	if ((action->dta_difo = dp) != NULL)
10211		dtrace_difo_hold(dp);
10212
10213	rec->dtrd_action = action->dta_kind;
10214	rec->dtrd_arg = arg;
10215	rec->dtrd_uarg = desc->dtad_uarg;
10216	rec->dtrd_alignment = (uint16_t)align;
10217	rec->dtrd_format = format;
10218
10219	if ((last = ecb->dte_action_last) != NULL) {
10220		ASSERT(ecb->dte_action != NULL);
10221		action->dta_prev = last;
10222		last->dta_next = action;
10223	} else {
10224		ASSERT(ecb->dte_action == NULL);
10225		ecb->dte_action = action;
10226	}
10227
10228	ecb->dte_action_last = action;
10229
10230	return (0);
10231}
10232
10233static void
10234dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10235{
10236	dtrace_action_t *act = ecb->dte_action, *next;
10237	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10238	dtrace_difo_t *dp;
10239	uint16_t format;
10240
10241	if (act != NULL && act->dta_refcnt > 1) {
10242		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10243		act->dta_refcnt--;
10244	} else {
10245		for (; act != NULL; act = next) {
10246			next = act->dta_next;
10247			ASSERT(next != NULL || act == ecb->dte_action_last);
10248			ASSERT(act->dta_refcnt == 1);
10249
10250			if ((format = act->dta_rec.dtrd_format) != 0)
10251				dtrace_format_remove(ecb->dte_state, format);
10252
10253			if ((dp = act->dta_difo) != NULL)
10254				dtrace_difo_release(dp, vstate);
10255
10256			if (DTRACEACT_ISAGG(act->dta_kind)) {
10257				dtrace_ecb_aggregation_destroy(ecb, act);
10258			} else {
10259				kmem_free(act, sizeof (dtrace_action_t));
10260			}
10261		}
10262	}
10263
10264	ecb->dte_action = NULL;
10265	ecb->dte_action_last = NULL;
10266	ecb->dte_size = sizeof (dtrace_epid_t);
10267}
10268
10269static void
10270dtrace_ecb_disable(dtrace_ecb_t *ecb)
10271{
10272	/*
10273	 * We disable the ECB by removing it from its probe.
10274	 */
10275	dtrace_ecb_t *pecb, *prev = NULL;
10276	dtrace_probe_t *probe = ecb->dte_probe;
10277
10278	ASSERT(MUTEX_HELD(&dtrace_lock));
10279
10280	if (probe == NULL) {
10281		/*
10282		 * This is the NULL probe; there is nothing to disable.
10283		 */
10284		return;
10285	}
10286
10287	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10288		if (pecb == ecb)
10289			break;
10290		prev = pecb;
10291	}
10292
10293	ASSERT(pecb != NULL);
10294
10295	if (prev == NULL) {
10296		probe->dtpr_ecb = ecb->dte_next;
10297	} else {
10298		prev->dte_next = ecb->dte_next;
10299	}
10300
10301	if (ecb == probe->dtpr_ecb_last) {
10302		ASSERT(ecb->dte_next == NULL);
10303		probe->dtpr_ecb_last = prev;
10304	}
10305
10306	/*
10307	 * The ECB has been disconnected from the probe; now sync to assure
10308	 * that all CPUs have seen the change before returning.
10309	 */
10310	dtrace_sync();
10311
10312	if (probe->dtpr_ecb == NULL) {
10313		/*
10314		 * That was the last ECB on the probe; clear the predicate
10315		 * cache ID for the probe, disable it and sync one more time
10316		 * to assure that we'll never hit it again.
10317		 */
10318		dtrace_provider_t *prov = probe->dtpr_provider;
10319
10320		ASSERT(ecb->dte_next == NULL);
10321		ASSERT(probe->dtpr_ecb_last == NULL);
10322		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10323		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10324		    probe->dtpr_id, probe->dtpr_arg);
10325		dtrace_sync();
10326	} else {
10327		/*
10328		 * There is at least one ECB remaining on the probe.  If there
10329		 * is _exactly_ one, set the probe's predicate cache ID to be
10330		 * the predicate cache ID of the remaining ECB.
10331		 */
10332		ASSERT(probe->dtpr_ecb_last != NULL);
10333		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10334
10335		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10336			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10337
10338			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10339
10340			if (p != NULL)
10341				probe->dtpr_predcache = p->dtp_cacheid;
10342		}
10343
10344		ecb->dte_next = NULL;
10345	}
10346}
10347
10348static void
10349dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10350{
10351	dtrace_state_t *state = ecb->dte_state;
10352	dtrace_vstate_t *vstate = &state->dts_vstate;
10353	dtrace_predicate_t *pred;
10354	dtrace_epid_t epid = ecb->dte_epid;
10355
10356	ASSERT(MUTEX_HELD(&dtrace_lock));
10357	ASSERT(ecb->dte_next == NULL);
10358	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10359
10360	if ((pred = ecb->dte_predicate) != NULL)
10361		dtrace_predicate_release(pred, vstate);
10362
10363	dtrace_ecb_action_remove(ecb);
10364
10365	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10366	state->dts_ecbs[epid - 1] = NULL;
10367
10368	kmem_free(ecb, sizeof (dtrace_ecb_t));
10369}
10370
10371static dtrace_ecb_t *
10372dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10373    dtrace_enabling_t *enab)
10374{
10375	dtrace_ecb_t *ecb;
10376	dtrace_predicate_t *pred;
10377	dtrace_actdesc_t *act;
10378	dtrace_provider_t *prov;
10379	dtrace_ecbdesc_t *desc = enab->dten_current;
10380
10381	ASSERT(MUTEX_HELD(&dtrace_lock));
10382	ASSERT(state != NULL);
10383
10384	ecb = dtrace_ecb_add(state, probe);
10385	ecb->dte_uarg = desc->dted_uarg;
10386
10387	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10388		dtrace_predicate_hold(pred);
10389		ecb->dte_predicate = pred;
10390	}
10391
10392	if (probe != NULL) {
10393		/*
10394		 * If the provider shows more leg than the consumer is old
10395		 * enough to see, we need to enable the appropriate implicit
10396		 * predicate bits to prevent the ecb from activating at
10397		 * revealing times.
10398		 *
10399		 * Providers specifying DTRACE_PRIV_USER at register time
10400		 * are stating that they need the /proc-style privilege
10401		 * model to be enforced, and this is what DTRACE_COND_OWNER
10402		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10403		 */
10404		prov = probe->dtpr_provider;
10405		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10406		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10407			ecb->dte_cond |= DTRACE_COND_OWNER;
10408
10409		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10410		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10411			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10412
10413		/*
10414		 * If the provider shows us kernel innards and the user
10415		 * is lacking sufficient privilege, enable the
10416		 * DTRACE_COND_USERMODE implicit predicate.
10417		 */
10418		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10419		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10420			ecb->dte_cond |= DTRACE_COND_USERMODE;
10421	}
10422
10423	if (dtrace_ecb_create_cache != NULL) {
10424		/*
10425		 * If we have a cached ecb, we'll use its action list instead
10426		 * of creating our own (saving both time and space).
10427		 */
10428		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10429		dtrace_action_t *act = cached->dte_action;
10430
10431		if (act != NULL) {
10432			ASSERT(act->dta_refcnt > 0);
10433			act->dta_refcnt++;
10434			ecb->dte_action = act;
10435			ecb->dte_action_last = cached->dte_action_last;
10436			ecb->dte_needed = cached->dte_needed;
10437			ecb->dte_size = cached->dte_size;
10438			ecb->dte_alignment = cached->dte_alignment;
10439		}
10440
10441		return (ecb);
10442	}
10443
10444	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10445		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10446			dtrace_ecb_destroy(ecb);
10447			return (NULL);
10448		}
10449	}
10450
10451	dtrace_ecb_resize(ecb);
10452
10453	return (dtrace_ecb_create_cache = ecb);
10454}
10455
10456static int
10457dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10458{
10459	dtrace_ecb_t *ecb;
10460	dtrace_enabling_t *enab = arg;
10461	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10462
10463	ASSERT(state != NULL);
10464
10465	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10466		/*
10467		 * This probe was created in a generation for which this
10468		 * enabling has previously created ECBs; we don't want to
10469		 * enable it again, so just kick out.
10470		 */
10471		return (DTRACE_MATCH_NEXT);
10472	}
10473
10474	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10475		return (DTRACE_MATCH_DONE);
10476
10477	dtrace_ecb_enable(ecb);
10478	return (DTRACE_MATCH_NEXT);
10479}
10480
10481static dtrace_ecb_t *
10482dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10483{
10484	dtrace_ecb_t *ecb;
10485
10486	ASSERT(MUTEX_HELD(&dtrace_lock));
10487
10488	if (id == 0 || id > state->dts_necbs)
10489		return (NULL);
10490
10491	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10492	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10493
10494	return (state->dts_ecbs[id - 1]);
10495}
10496
10497static dtrace_aggregation_t *
10498dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10499{
10500	dtrace_aggregation_t *agg;
10501
10502	ASSERT(MUTEX_HELD(&dtrace_lock));
10503
10504	if (id == 0 || id > state->dts_naggregations)
10505		return (NULL);
10506
10507	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10508	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10509	    agg->dtag_id == id);
10510
10511	return (state->dts_aggregations[id - 1]);
10512}
10513
10514/*
10515 * DTrace Buffer Functions
10516 *
10517 * The following functions manipulate DTrace buffers.  Most of these functions
10518 * are called in the context of establishing or processing consumer state;
10519 * exceptions are explicitly noted.
10520 */
10521
10522/*
10523 * Note:  called from cross call context.  This function switches the two
10524 * buffers on a given CPU.  The atomicity of this operation is assured by
10525 * disabling interrupts while the actual switch takes place; the disabling of
10526 * interrupts serializes the execution with any execution of dtrace_probe() on
10527 * the same CPU.
10528 */
10529static void
10530dtrace_buffer_switch(dtrace_buffer_t *buf)
10531{
10532	caddr_t tomax = buf->dtb_tomax;
10533	caddr_t xamot = buf->dtb_xamot;
10534	dtrace_icookie_t cookie;
10535
10536	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10537	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10538
10539	cookie = dtrace_interrupt_disable();
10540	buf->dtb_tomax = xamot;
10541	buf->dtb_xamot = tomax;
10542	buf->dtb_xamot_drops = buf->dtb_drops;
10543	buf->dtb_xamot_offset = buf->dtb_offset;
10544	buf->dtb_xamot_errors = buf->dtb_errors;
10545	buf->dtb_xamot_flags = buf->dtb_flags;
10546	buf->dtb_offset = 0;
10547	buf->dtb_drops = 0;
10548	buf->dtb_errors = 0;
10549	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10550	dtrace_interrupt_enable(cookie);
10551}
10552
10553/*
10554 * Note:  called from cross call context.  This function activates a buffer
10555 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10556 * is guaranteed by the disabling of interrupts.
10557 */
10558static void
10559dtrace_buffer_activate(dtrace_state_t *state)
10560{
10561	dtrace_buffer_t *buf;
10562	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10563
10564	buf = &state->dts_buffer[curcpu];
10565
10566	if (buf->dtb_tomax != NULL) {
10567		/*
10568		 * We might like to assert that the buffer is marked inactive,
10569		 * but this isn't necessarily true:  the buffer for the CPU
10570		 * that processes the BEGIN probe has its buffer activated
10571		 * manually.  In this case, we take the (harmless) action
10572		 * re-clearing the bit INACTIVE bit.
10573		 */
10574		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10575	}
10576
10577	dtrace_interrupt_enable(cookie);
10578}
10579
10580static int
10581dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10582    processorid_t cpu)
10583{
10584#if defined(sun)
10585	cpu_t *cp;
10586#endif
10587	dtrace_buffer_t *buf;
10588
10589#if defined(sun)
10590	ASSERT(MUTEX_HELD(&cpu_lock));
10591	ASSERT(MUTEX_HELD(&dtrace_lock));
10592
10593	if (size > dtrace_nonroot_maxsize &&
10594	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10595		return (EFBIG);
10596
10597	cp = cpu_list;
10598
10599	do {
10600		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10601			continue;
10602
10603		buf = &bufs[cp->cpu_id];
10604
10605		/*
10606		 * If there is already a buffer allocated for this CPU, it
10607		 * is only possible that this is a DR event.  In this case,
10608		 */
10609		if (buf->dtb_tomax != NULL) {
10610			ASSERT(buf->dtb_size == size);
10611			continue;
10612		}
10613
10614		ASSERT(buf->dtb_xamot == NULL);
10615
10616		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10617			goto err;
10618
10619		buf->dtb_size = size;
10620		buf->dtb_flags = flags;
10621		buf->dtb_offset = 0;
10622		buf->dtb_drops = 0;
10623
10624		if (flags & DTRACEBUF_NOSWITCH)
10625			continue;
10626
10627		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10628			goto err;
10629	} while ((cp = cp->cpu_next) != cpu_list);
10630
10631	return (0);
10632
10633err:
10634	cp = cpu_list;
10635
10636	do {
10637		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10638			continue;
10639
10640		buf = &bufs[cp->cpu_id];
10641
10642		if (buf->dtb_xamot != NULL) {
10643			ASSERT(buf->dtb_tomax != NULL);
10644			ASSERT(buf->dtb_size == size);
10645			kmem_free(buf->dtb_xamot, size);
10646		}
10647
10648		if (buf->dtb_tomax != NULL) {
10649			ASSERT(buf->dtb_size == size);
10650			kmem_free(buf->dtb_tomax, size);
10651		}
10652
10653		buf->dtb_tomax = NULL;
10654		buf->dtb_xamot = NULL;
10655		buf->dtb_size = 0;
10656	} while ((cp = cp->cpu_next) != cpu_list);
10657
10658	return (ENOMEM);
10659#else
10660	int i;
10661
10662#if defined(__amd64__)
10663	/*
10664	 * FreeBSD isn't good at limiting the amount of memory we
10665	 * ask to malloc, so let's place a limit here before trying
10666	 * to do something that might well end in tears at bedtime.
10667	 */
10668	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10669		return(ENOMEM);
10670#endif
10671
10672	ASSERT(MUTEX_HELD(&dtrace_lock));
10673	CPU_FOREACH(i) {
10674		if (cpu != DTRACE_CPUALL && cpu != i)
10675			continue;
10676
10677		buf = &bufs[i];
10678
10679		/*
10680		 * If there is already a buffer allocated for this CPU, it
10681		 * is only possible that this is a DR event.  In this case,
10682		 * the buffer size must match our specified size.
10683		 */
10684		if (buf->dtb_tomax != NULL) {
10685			ASSERT(buf->dtb_size == size);
10686			continue;
10687		}
10688
10689		ASSERT(buf->dtb_xamot == NULL);
10690
10691		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10692			goto err;
10693
10694		buf->dtb_size = size;
10695		buf->dtb_flags = flags;
10696		buf->dtb_offset = 0;
10697		buf->dtb_drops = 0;
10698
10699		if (flags & DTRACEBUF_NOSWITCH)
10700			continue;
10701
10702		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10703			goto err;
10704	}
10705
10706	return (0);
10707
10708err:
10709	/*
10710	 * Error allocating memory, so free the buffers that were
10711	 * allocated before the failed allocation.
10712	 */
10713	CPU_FOREACH(i) {
10714		if (cpu != DTRACE_CPUALL && cpu != i)
10715			continue;
10716
10717		buf = &bufs[i];
10718
10719		if (buf->dtb_xamot != NULL) {
10720			ASSERT(buf->dtb_tomax != NULL);
10721			ASSERT(buf->dtb_size == size);
10722			kmem_free(buf->dtb_xamot, size);
10723		}
10724
10725		if (buf->dtb_tomax != NULL) {
10726			ASSERT(buf->dtb_size == size);
10727			kmem_free(buf->dtb_tomax, size);
10728		}
10729
10730		buf->dtb_tomax = NULL;
10731		buf->dtb_xamot = NULL;
10732		buf->dtb_size = 0;
10733
10734	}
10735
10736	return (ENOMEM);
10737#endif
10738}
10739
10740/*
10741 * Note:  called from probe context.  This function just increments the drop
10742 * count on a buffer.  It has been made a function to allow for the
10743 * possibility of understanding the source of mysterious drop counts.  (A
10744 * problem for which one may be particularly disappointed that DTrace cannot
10745 * be used to understand DTrace.)
10746 */
10747static void
10748dtrace_buffer_drop(dtrace_buffer_t *buf)
10749{
10750	buf->dtb_drops++;
10751}
10752
10753/*
10754 * Note:  called from probe context.  This function is called to reserve space
10755 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10756 * mstate.  Returns the new offset in the buffer, or a negative value if an
10757 * error has occurred.
10758 */
10759static intptr_t
10760dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10761    dtrace_state_t *state, dtrace_mstate_t *mstate)
10762{
10763	intptr_t offs = buf->dtb_offset, soffs;
10764	intptr_t woffs;
10765	caddr_t tomax;
10766	size_t total;
10767
10768	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10769		return (-1);
10770
10771	if ((tomax = buf->dtb_tomax) == NULL) {
10772		dtrace_buffer_drop(buf);
10773		return (-1);
10774	}
10775
10776	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10777		while (offs & (align - 1)) {
10778			/*
10779			 * Assert that our alignment is off by a number which
10780			 * is itself sizeof (uint32_t) aligned.
10781			 */
10782			ASSERT(!((align - (offs & (align - 1))) &
10783			    (sizeof (uint32_t) - 1)));
10784			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10785			offs += sizeof (uint32_t);
10786		}
10787
10788		if ((soffs = offs + needed) > buf->dtb_size) {
10789			dtrace_buffer_drop(buf);
10790			return (-1);
10791		}
10792
10793		if (mstate == NULL)
10794			return (offs);
10795
10796		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10797		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10798		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10799
10800		return (offs);
10801	}
10802
10803	if (buf->dtb_flags & DTRACEBUF_FILL) {
10804		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10805		    (buf->dtb_flags & DTRACEBUF_FULL))
10806			return (-1);
10807		goto out;
10808	}
10809
10810	total = needed + (offs & (align - 1));
10811
10812	/*
10813	 * For a ring buffer, life is quite a bit more complicated.  Before
10814	 * we can store any padding, we need to adjust our wrapping offset.
10815	 * (If we've never before wrapped or we're not about to, no adjustment
10816	 * is required.)
10817	 */
10818	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10819	    offs + total > buf->dtb_size) {
10820		woffs = buf->dtb_xamot_offset;
10821
10822		if (offs + total > buf->dtb_size) {
10823			/*
10824			 * We can't fit in the end of the buffer.  First, a
10825			 * sanity check that we can fit in the buffer at all.
10826			 */
10827			if (total > buf->dtb_size) {
10828				dtrace_buffer_drop(buf);
10829				return (-1);
10830			}
10831
10832			/*
10833			 * We're going to be storing at the top of the buffer,
10834			 * so now we need to deal with the wrapped offset.  We
10835			 * only reset our wrapped offset to 0 if it is
10836			 * currently greater than the current offset.  If it
10837			 * is less than the current offset, it is because a
10838			 * previous allocation induced a wrap -- but the
10839			 * allocation didn't subsequently take the space due
10840			 * to an error or false predicate evaluation.  In this
10841			 * case, we'll just leave the wrapped offset alone: if
10842			 * the wrapped offset hasn't been advanced far enough
10843			 * for this allocation, it will be adjusted in the
10844			 * lower loop.
10845			 */
10846			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10847				if (woffs >= offs)
10848					woffs = 0;
10849			} else {
10850				woffs = 0;
10851			}
10852
10853			/*
10854			 * Now we know that we're going to be storing to the
10855			 * top of the buffer and that there is room for us
10856			 * there.  We need to clear the buffer from the current
10857			 * offset to the end (there may be old gunk there).
10858			 */
10859			while (offs < buf->dtb_size)
10860				tomax[offs++] = 0;
10861
10862			/*
10863			 * We need to set our offset to zero.  And because we
10864			 * are wrapping, we need to set the bit indicating as
10865			 * much.  We can also adjust our needed space back
10866			 * down to the space required by the ECB -- we know
10867			 * that the top of the buffer is aligned.
10868			 */
10869			offs = 0;
10870			total = needed;
10871			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10872		} else {
10873			/*
10874			 * There is room for us in the buffer, so we simply
10875			 * need to check the wrapped offset.
10876			 */
10877			if (woffs < offs) {
10878				/*
10879				 * The wrapped offset is less than the offset.
10880				 * This can happen if we allocated buffer space
10881				 * that induced a wrap, but then we didn't
10882				 * subsequently take the space due to an error
10883				 * or false predicate evaluation.  This is
10884				 * okay; we know that _this_ allocation isn't
10885				 * going to induce a wrap.  We still can't
10886				 * reset the wrapped offset to be zero,
10887				 * however: the space may have been trashed in
10888				 * the previous failed probe attempt.  But at
10889				 * least the wrapped offset doesn't need to
10890				 * be adjusted at all...
10891				 */
10892				goto out;
10893			}
10894		}
10895
10896		while (offs + total > woffs) {
10897			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10898			size_t size;
10899
10900			if (epid == DTRACE_EPIDNONE) {
10901				size = sizeof (uint32_t);
10902			} else {
10903				ASSERT(epid <= state->dts_necbs);
10904				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10905
10906				size = state->dts_ecbs[epid - 1]->dte_size;
10907			}
10908
10909			ASSERT(woffs + size <= buf->dtb_size);
10910			ASSERT(size != 0);
10911
10912			if (woffs + size == buf->dtb_size) {
10913				/*
10914				 * We've reached the end of the buffer; we want
10915				 * to set the wrapped offset to 0 and break
10916				 * out.  However, if the offs is 0, then we're
10917				 * in a strange edge-condition:  the amount of
10918				 * space that we want to reserve plus the size
10919				 * of the record that we're overwriting is
10920				 * greater than the size of the buffer.  This
10921				 * is problematic because if we reserve the
10922				 * space but subsequently don't consume it (due
10923				 * to a failed predicate or error) the wrapped
10924				 * offset will be 0 -- yet the EPID at offset 0
10925				 * will not be committed.  This situation is
10926				 * relatively easy to deal with:  if we're in
10927				 * this case, the buffer is indistinguishable
10928				 * from one that hasn't wrapped; we need only
10929				 * finish the job by clearing the wrapped bit,
10930				 * explicitly setting the offset to be 0, and
10931				 * zero'ing out the old data in the buffer.
10932				 */
10933				if (offs == 0) {
10934					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10935					buf->dtb_offset = 0;
10936					woffs = total;
10937
10938					while (woffs < buf->dtb_size)
10939						tomax[woffs++] = 0;
10940				}
10941
10942				woffs = 0;
10943				break;
10944			}
10945
10946			woffs += size;
10947		}
10948
10949		/*
10950		 * We have a wrapped offset.  It may be that the wrapped offset
10951		 * has become zero -- that's okay.
10952		 */
10953		buf->dtb_xamot_offset = woffs;
10954	}
10955
10956out:
10957	/*
10958	 * Now we can plow the buffer with any necessary padding.
10959	 */
10960	while (offs & (align - 1)) {
10961		/*
10962		 * Assert that our alignment is off by a number which
10963		 * is itself sizeof (uint32_t) aligned.
10964		 */
10965		ASSERT(!((align - (offs & (align - 1))) &
10966		    (sizeof (uint32_t) - 1)));
10967		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10968		offs += sizeof (uint32_t);
10969	}
10970
10971	if (buf->dtb_flags & DTRACEBUF_FILL) {
10972		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10973			buf->dtb_flags |= DTRACEBUF_FULL;
10974			return (-1);
10975		}
10976	}
10977
10978	if (mstate == NULL)
10979		return (offs);
10980
10981	/*
10982	 * For ring buffers and fill buffers, the scratch space is always
10983	 * the inactive buffer.
10984	 */
10985	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10986	mstate->dtms_scratch_size = buf->dtb_size;
10987	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10988
10989	return (offs);
10990}
10991
10992static void
10993dtrace_buffer_polish(dtrace_buffer_t *buf)
10994{
10995	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10996	ASSERT(MUTEX_HELD(&dtrace_lock));
10997
10998	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10999		return;
11000
11001	/*
11002	 * We need to polish the ring buffer.  There are three cases:
11003	 *
11004	 * - The first (and presumably most common) is that there is no gap
11005	 *   between the buffer offset and the wrapped offset.  In this case,
11006	 *   there is nothing in the buffer that isn't valid data; we can
11007	 *   mark the buffer as polished and return.
11008	 *
11009	 * - The second (less common than the first but still more common
11010	 *   than the third) is that there is a gap between the buffer offset
11011	 *   and the wrapped offset, and the wrapped offset is larger than the
11012	 *   buffer offset.  This can happen because of an alignment issue, or
11013	 *   can happen because of a call to dtrace_buffer_reserve() that
11014	 *   didn't subsequently consume the buffer space.  In this case,
11015	 *   we need to zero the data from the buffer offset to the wrapped
11016	 *   offset.
11017	 *
11018	 * - The third (and least common) is that there is a gap between the
11019	 *   buffer offset and the wrapped offset, but the wrapped offset is
11020	 *   _less_ than the buffer offset.  This can only happen because a
11021	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11022	 *   was not subsequently consumed.  In this case, we need to zero the
11023	 *   space from the offset to the end of the buffer _and_ from the
11024	 *   top of the buffer to the wrapped offset.
11025	 */
11026	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11027		bzero(buf->dtb_tomax + buf->dtb_offset,
11028		    buf->dtb_xamot_offset - buf->dtb_offset);
11029	}
11030
11031	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11032		bzero(buf->dtb_tomax + buf->dtb_offset,
11033		    buf->dtb_size - buf->dtb_offset);
11034		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11035	}
11036}
11037
11038static void
11039dtrace_buffer_free(dtrace_buffer_t *bufs)
11040{
11041	int i;
11042
11043	for (i = 0; i < NCPU; i++) {
11044		dtrace_buffer_t *buf = &bufs[i];
11045
11046		if (buf->dtb_tomax == NULL) {
11047			ASSERT(buf->dtb_xamot == NULL);
11048			ASSERT(buf->dtb_size == 0);
11049			continue;
11050		}
11051
11052		if (buf->dtb_xamot != NULL) {
11053			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11054			kmem_free(buf->dtb_xamot, buf->dtb_size);
11055		}
11056
11057		kmem_free(buf->dtb_tomax, buf->dtb_size);
11058		buf->dtb_size = 0;
11059		buf->dtb_tomax = NULL;
11060		buf->dtb_xamot = NULL;
11061	}
11062}
11063
11064/*
11065 * DTrace Enabling Functions
11066 */
11067static dtrace_enabling_t *
11068dtrace_enabling_create(dtrace_vstate_t *vstate)
11069{
11070	dtrace_enabling_t *enab;
11071
11072	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11073	enab->dten_vstate = vstate;
11074
11075	return (enab);
11076}
11077
11078static void
11079dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11080{
11081	dtrace_ecbdesc_t **ndesc;
11082	size_t osize, nsize;
11083
11084	/*
11085	 * We can't add to enablings after we've enabled them, or after we've
11086	 * retained them.
11087	 */
11088	ASSERT(enab->dten_probegen == 0);
11089	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11090
11091	if (enab->dten_ndesc < enab->dten_maxdesc) {
11092		enab->dten_desc[enab->dten_ndesc++] = ecb;
11093		return;
11094	}
11095
11096	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11097
11098	if (enab->dten_maxdesc == 0) {
11099		enab->dten_maxdesc = 1;
11100	} else {
11101		enab->dten_maxdesc <<= 1;
11102	}
11103
11104	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11105
11106	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11107	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11108	bcopy(enab->dten_desc, ndesc, osize);
11109	if (enab->dten_desc != NULL)
11110		kmem_free(enab->dten_desc, osize);
11111
11112	enab->dten_desc = ndesc;
11113	enab->dten_desc[enab->dten_ndesc++] = ecb;
11114}
11115
11116static void
11117dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11118    dtrace_probedesc_t *pd)
11119{
11120	dtrace_ecbdesc_t *new;
11121	dtrace_predicate_t *pred;
11122	dtrace_actdesc_t *act;
11123
11124	/*
11125	 * We're going to create a new ECB description that matches the
11126	 * specified ECB in every way, but has the specified probe description.
11127	 */
11128	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11129
11130	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11131		dtrace_predicate_hold(pred);
11132
11133	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11134		dtrace_actdesc_hold(act);
11135
11136	new->dted_action = ecb->dted_action;
11137	new->dted_pred = ecb->dted_pred;
11138	new->dted_probe = *pd;
11139	new->dted_uarg = ecb->dted_uarg;
11140
11141	dtrace_enabling_add(enab, new);
11142}
11143
11144static void
11145dtrace_enabling_dump(dtrace_enabling_t *enab)
11146{
11147	int i;
11148
11149	for (i = 0; i < enab->dten_ndesc; i++) {
11150		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11151
11152		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11153		    desc->dtpd_provider, desc->dtpd_mod,
11154		    desc->dtpd_func, desc->dtpd_name);
11155	}
11156}
11157
11158static void
11159dtrace_enabling_destroy(dtrace_enabling_t *enab)
11160{
11161	int i;
11162	dtrace_ecbdesc_t *ep;
11163	dtrace_vstate_t *vstate = enab->dten_vstate;
11164
11165	ASSERT(MUTEX_HELD(&dtrace_lock));
11166
11167	for (i = 0; i < enab->dten_ndesc; i++) {
11168		dtrace_actdesc_t *act, *next;
11169		dtrace_predicate_t *pred;
11170
11171		ep = enab->dten_desc[i];
11172
11173		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11174			dtrace_predicate_release(pred, vstate);
11175
11176		for (act = ep->dted_action; act != NULL; act = next) {
11177			next = act->dtad_next;
11178			dtrace_actdesc_release(act, vstate);
11179		}
11180
11181		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11182	}
11183
11184	if (enab->dten_desc != NULL)
11185		kmem_free(enab->dten_desc,
11186		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11187
11188	/*
11189	 * If this was a retained enabling, decrement the dts_nretained count
11190	 * and take it off of the dtrace_retained list.
11191	 */
11192	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11193	    dtrace_retained == enab) {
11194		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11195		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11196		enab->dten_vstate->dtvs_state->dts_nretained--;
11197	}
11198
11199	if (enab->dten_prev == NULL) {
11200		if (dtrace_retained == enab) {
11201			dtrace_retained = enab->dten_next;
11202
11203			if (dtrace_retained != NULL)
11204				dtrace_retained->dten_prev = NULL;
11205		}
11206	} else {
11207		ASSERT(enab != dtrace_retained);
11208		ASSERT(dtrace_retained != NULL);
11209		enab->dten_prev->dten_next = enab->dten_next;
11210	}
11211
11212	if (enab->dten_next != NULL) {
11213		ASSERT(dtrace_retained != NULL);
11214		enab->dten_next->dten_prev = enab->dten_prev;
11215	}
11216
11217	kmem_free(enab, sizeof (dtrace_enabling_t));
11218}
11219
11220static int
11221dtrace_enabling_retain(dtrace_enabling_t *enab)
11222{
11223	dtrace_state_t *state;
11224
11225	ASSERT(MUTEX_HELD(&dtrace_lock));
11226	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11227	ASSERT(enab->dten_vstate != NULL);
11228
11229	state = enab->dten_vstate->dtvs_state;
11230	ASSERT(state != NULL);
11231
11232	/*
11233	 * We only allow each state to retain dtrace_retain_max enablings.
11234	 */
11235	if (state->dts_nretained >= dtrace_retain_max)
11236		return (ENOSPC);
11237
11238	state->dts_nretained++;
11239
11240	if (dtrace_retained == NULL) {
11241		dtrace_retained = enab;
11242		return (0);
11243	}
11244
11245	enab->dten_next = dtrace_retained;
11246	dtrace_retained->dten_prev = enab;
11247	dtrace_retained = enab;
11248
11249	return (0);
11250}
11251
11252static int
11253dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11254    dtrace_probedesc_t *create)
11255{
11256	dtrace_enabling_t *new, *enab;
11257	int found = 0, err = ENOENT;
11258
11259	ASSERT(MUTEX_HELD(&dtrace_lock));
11260	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11261	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11262	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11263	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11264
11265	new = dtrace_enabling_create(&state->dts_vstate);
11266
11267	/*
11268	 * Iterate over all retained enablings, looking for enablings that
11269	 * match the specified state.
11270	 */
11271	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11272		int i;
11273
11274		/*
11275		 * dtvs_state can only be NULL for helper enablings -- and
11276		 * helper enablings can't be retained.
11277		 */
11278		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11279
11280		if (enab->dten_vstate->dtvs_state != state)
11281			continue;
11282
11283		/*
11284		 * Now iterate over each probe description; we're looking for
11285		 * an exact match to the specified probe description.
11286		 */
11287		for (i = 0; i < enab->dten_ndesc; i++) {
11288			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11289			dtrace_probedesc_t *pd = &ep->dted_probe;
11290
11291			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11292				continue;
11293
11294			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11295				continue;
11296
11297			if (strcmp(pd->dtpd_func, match->dtpd_func))
11298				continue;
11299
11300			if (strcmp(pd->dtpd_name, match->dtpd_name))
11301				continue;
11302
11303			/*
11304			 * We have a winning probe!  Add it to our growing
11305			 * enabling.
11306			 */
11307			found = 1;
11308			dtrace_enabling_addlike(new, ep, create);
11309		}
11310	}
11311
11312	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11313		dtrace_enabling_destroy(new);
11314		return (err);
11315	}
11316
11317	return (0);
11318}
11319
11320static void
11321dtrace_enabling_retract(dtrace_state_t *state)
11322{
11323	dtrace_enabling_t *enab, *next;
11324
11325	ASSERT(MUTEX_HELD(&dtrace_lock));
11326
11327	/*
11328	 * Iterate over all retained enablings, destroy the enablings retained
11329	 * for the specified state.
11330	 */
11331	for (enab = dtrace_retained; enab != NULL; enab = next) {
11332		next = enab->dten_next;
11333
11334		/*
11335		 * dtvs_state can only be NULL for helper enablings -- and
11336		 * helper enablings can't be retained.
11337		 */
11338		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11339
11340		if (enab->dten_vstate->dtvs_state == state) {
11341			ASSERT(state->dts_nretained > 0);
11342			dtrace_enabling_destroy(enab);
11343		}
11344	}
11345
11346	ASSERT(state->dts_nretained == 0);
11347}
11348
11349static int
11350dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11351{
11352	int i = 0;
11353	int matched = 0;
11354
11355	ASSERT(MUTEX_HELD(&cpu_lock));
11356	ASSERT(MUTEX_HELD(&dtrace_lock));
11357
11358	for (i = 0; i < enab->dten_ndesc; i++) {
11359		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11360
11361		enab->dten_current = ep;
11362		enab->dten_error = 0;
11363
11364		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11365
11366		if (enab->dten_error != 0) {
11367			/*
11368			 * If we get an error half-way through enabling the
11369			 * probes, we kick out -- perhaps with some number of
11370			 * them enabled.  Leaving enabled probes enabled may
11371			 * be slightly confusing for user-level, but we expect
11372			 * that no one will attempt to actually drive on in
11373			 * the face of such errors.  If this is an anonymous
11374			 * enabling (indicated with a NULL nmatched pointer),
11375			 * we cmn_err() a message.  We aren't expecting to
11376			 * get such an error -- such as it can exist at all,
11377			 * it would be a result of corrupted DOF in the driver
11378			 * properties.
11379			 */
11380			if (nmatched == NULL) {
11381				cmn_err(CE_WARN, "dtrace_enabling_match() "
11382				    "error on %p: %d", (void *)ep,
11383				    enab->dten_error);
11384			}
11385
11386			return (enab->dten_error);
11387		}
11388	}
11389
11390	enab->dten_probegen = dtrace_probegen;
11391	if (nmatched != NULL)
11392		*nmatched = matched;
11393
11394	return (0);
11395}
11396
11397static void
11398dtrace_enabling_matchall(void)
11399{
11400	dtrace_enabling_t *enab;
11401
11402	mutex_enter(&cpu_lock);
11403	mutex_enter(&dtrace_lock);
11404
11405	/*
11406	 * Iterate over all retained enablings to see if any probes match
11407	 * against them.  We only perform this operation on enablings for which
11408	 * we have sufficient permissions by virtue of being in the global zone
11409	 * or in the same zone as the DTrace client.  Because we can be called
11410	 * after dtrace_detach() has been called, we cannot assert that there
11411	 * are retained enablings.  We can safely load from dtrace_retained,
11412	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11413	 * block pending our completion.
11414	 */
11415	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11416#if defined(sun)
11417		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11418
11419		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11420#endif
11421			(void) dtrace_enabling_match(enab, NULL);
11422	}
11423
11424	mutex_exit(&dtrace_lock);
11425	mutex_exit(&cpu_lock);
11426}
11427
11428/*
11429 * If an enabling is to be enabled without having matched probes (that is, if
11430 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11431 * enabling must be _primed_ by creating an ECB for every ECB description.
11432 * This must be done to assure that we know the number of speculations, the
11433 * number of aggregations, the minimum buffer size needed, etc. before we
11434 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11435 * enabling any probes, we create ECBs for every ECB decription, but with a
11436 * NULL probe -- which is exactly what this function does.
11437 */
11438static void
11439dtrace_enabling_prime(dtrace_state_t *state)
11440{
11441	dtrace_enabling_t *enab;
11442	int i;
11443
11444	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11445		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11446
11447		if (enab->dten_vstate->dtvs_state != state)
11448			continue;
11449
11450		/*
11451		 * We don't want to prime an enabling more than once, lest
11452		 * we allow a malicious user to induce resource exhaustion.
11453		 * (The ECBs that result from priming an enabling aren't
11454		 * leaked -- but they also aren't deallocated until the
11455		 * consumer state is destroyed.)
11456		 */
11457		if (enab->dten_primed)
11458			continue;
11459
11460		for (i = 0; i < enab->dten_ndesc; i++) {
11461			enab->dten_current = enab->dten_desc[i];
11462			(void) dtrace_probe_enable(NULL, enab);
11463		}
11464
11465		enab->dten_primed = 1;
11466	}
11467}
11468
11469/*
11470 * Called to indicate that probes should be provided due to retained
11471 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11472 * must take an initial lap through the enabling calling the dtps_provide()
11473 * entry point explicitly to allow for autocreated probes.
11474 */
11475static void
11476dtrace_enabling_provide(dtrace_provider_t *prv)
11477{
11478	int i, all = 0;
11479	dtrace_probedesc_t desc;
11480
11481	ASSERT(MUTEX_HELD(&dtrace_lock));
11482	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11483
11484	if (prv == NULL) {
11485		all = 1;
11486		prv = dtrace_provider;
11487	}
11488
11489	do {
11490		dtrace_enabling_t *enab = dtrace_retained;
11491		void *parg = prv->dtpv_arg;
11492
11493		for (; enab != NULL; enab = enab->dten_next) {
11494			for (i = 0; i < enab->dten_ndesc; i++) {
11495				desc = enab->dten_desc[i]->dted_probe;
11496				mutex_exit(&dtrace_lock);
11497				prv->dtpv_pops.dtps_provide(parg, &desc);
11498				mutex_enter(&dtrace_lock);
11499			}
11500		}
11501	} while (all && (prv = prv->dtpv_next) != NULL);
11502
11503	mutex_exit(&dtrace_lock);
11504	dtrace_probe_provide(NULL, all ? NULL : prv);
11505	mutex_enter(&dtrace_lock);
11506}
11507
11508/*
11509 * DTrace DOF Functions
11510 */
11511/*ARGSUSED*/
11512static void
11513dtrace_dof_error(dof_hdr_t *dof, const char *str)
11514{
11515	if (dtrace_err_verbose)
11516		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11517
11518#ifdef DTRACE_ERRDEBUG
11519	dtrace_errdebug(str);
11520#endif
11521}
11522
11523/*
11524 * Create DOF out of a currently enabled state.  Right now, we only create
11525 * DOF containing the run-time options -- but this could be expanded to create
11526 * complete DOF representing the enabled state.
11527 */
11528static dof_hdr_t *
11529dtrace_dof_create(dtrace_state_t *state)
11530{
11531	dof_hdr_t *dof;
11532	dof_sec_t *sec;
11533	dof_optdesc_t *opt;
11534	int i, len = sizeof (dof_hdr_t) +
11535	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11536	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11537
11538	ASSERT(MUTEX_HELD(&dtrace_lock));
11539
11540	dof = kmem_zalloc(len, KM_SLEEP);
11541	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11542	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11543	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11544	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11545
11546	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11547	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11548	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11549	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11550	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11551	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11552
11553	dof->dofh_flags = 0;
11554	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11555	dof->dofh_secsize = sizeof (dof_sec_t);
11556	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11557	dof->dofh_secoff = sizeof (dof_hdr_t);
11558	dof->dofh_loadsz = len;
11559	dof->dofh_filesz = len;
11560	dof->dofh_pad = 0;
11561
11562	/*
11563	 * Fill in the option section header...
11564	 */
11565	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11566	sec->dofs_type = DOF_SECT_OPTDESC;
11567	sec->dofs_align = sizeof (uint64_t);
11568	sec->dofs_flags = DOF_SECF_LOAD;
11569	sec->dofs_entsize = sizeof (dof_optdesc_t);
11570
11571	opt = (dof_optdesc_t *)((uintptr_t)sec +
11572	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11573
11574	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11575	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11576
11577	for (i = 0; i < DTRACEOPT_MAX; i++) {
11578		opt[i].dofo_option = i;
11579		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11580		opt[i].dofo_value = state->dts_options[i];
11581	}
11582
11583	return (dof);
11584}
11585
11586static dof_hdr_t *
11587dtrace_dof_copyin(uintptr_t uarg, int *errp)
11588{
11589	dof_hdr_t hdr, *dof;
11590
11591	ASSERT(!MUTEX_HELD(&dtrace_lock));
11592
11593	/*
11594	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11595	 */
11596	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11597		dtrace_dof_error(NULL, "failed to copyin DOF header");
11598		*errp = EFAULT;
11599		return (NULL);
11600	}
11601
11602	/*
11603	 * Now we'll allocate the entire DOF and copy it in -- provided
11604	 * that the length isn't outrageous.
11605	 */
11606	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11607		dtrace_dof_error(&hdr, "load size exceeds maximum");
11608		*errp = E2BIG;
11609		return (NULL);
11610	}
11611
11612	if (hdr.dofh_loadsz < sizeof (hdr)) {
11613		dtrace_dof_error(&hdr, "invalid load size");
11614		*errp = EINVAL;
11615		return (NULL);
11616	}
11617
11618	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11619
11620	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11621		kmem_free(dof, hdr.dofh_loadsz);
11622		*errp = EFAULT;
11623		return (NULL);
11624	}
11625
11626	return (dof);
11627}
11628
11629#if !defined(sun)
11630static __inline uchar_t
11631dtrace_dof_char(char c) {
11632	switch (c) {
11633	case '0':
11634	case '1':
11635	case '2':
11636	case '3':
11637	case '4':
11638	case '5':
11639	case '6':
11640	case '7':
11641	case '8':
11642	case '9':
11643		return (c - '0');
11644	case 'A':
11645	case 'B':
11646	case 'C':
11647	case 'D':
11648	case 'E':
11649	case 'F':
11650		return (c - 'A' + 10);
11651	case 'a':
11652	case 'b':
11653	case 'c':
11654	case 'd':
11655	case 'e':
11656	case 'f':
11657		return (c - 'a' + 10);
11658	}
11659	/* Should not reach here. */
11660	return (0);
11661}
11662#endif
11663
11664static dof_hdr_t *
11665dtrace_dof_property(const char *name)
11666{
11667	uchar_t *buf;
11668	uint64_t loadsz;
11669	unsigned int len, i;
11670	dof_hdr_t *dof;
11671
11672#if defined(sun)
11673	/*
11674	 * Unfortunately, array of values in .conf files are always (and
11675	 * only) interpreted to be integer arrays.  We must read our DOF
11676	 * as an integer array, and then squeeze it into a byte array.
11677	 */
11678	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11679	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11680		return (NULL);
11681
11682	for (i = 0; i < len; i++)
11683		buf[i] = (uchar_t)(((int *)buf)[i]);
11684
11685	if (len < sizeof (dof_hdr_t)) {
11686		ddi_prop_free(buf);
11687		dtrace_dof_error(NULL, "truncated header");
11688		return (NULL);
11689	}
11690
11691	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11692		ddi_prop_free(buf);
11693		dtrace_dof_error(NULL, "truncated DOF");
11694		return (NULL);
11695	}
11696
11697	if (loadsz >= dtrace_dof_maxsize) {
11698		ddi_prop_free(buf);
11699		dtrace_dof_error(NULL, "oversized DOF");
11700		return (NULL);
11701	}
11702
11703	dof = kmem_alloc(loadsz, KM_SLEEP);
11704	bcopy(buf, dof, loadsz);
11705	ddi_prop_free(buf);
11706#else
11707	char *p;
11708	char *p_env;
11709
11710	if ((p_env = getenv(name)) == NULL)
11711		return (NULL);
11712
11713	len = strlen(p_env) / 2;
11714
11715	buf = kmem_alloc(len, KM_SLEEP);
11716
11717	dof = (dof_hdr_t *) buf;
11718
11719	p = p_env;
11720
11721	for (i = 0; i < len; i++) {
11722		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11723		     dtrace_dof_char(p[1]);
11724		p += 2;
11725	}
11726
11727	freeenv(p_env);
11728
11729	if (len < sizeof (dof_hdr_t)) {
11730		kmem_free(buf, 0);
11731		dtrace_dof_error(NULL, "truncated header");
11732		return (NULL);
11733	}
11734
11735	if (len < (loadsz = dof->dofh_loadsz)) {
11736		kmem_free(buf, 0);
11737		dtrace_dof_error(NULL, "truncated DOF");
11738		return (NULL);
11739	}
11740
11741	if (loadsz >= dtrace_dof_maxsize) {
11742		kmem_free(buf, 0);
11743		dtrace_dof_error(NULL, "oversized DOF");
11744		return (NULL);
11745	}
11746#endif
11747
11748	return (dof);
11749}
11750
11751static void
11752dtrace_dof_destroy(dof_hdr_t *dof)
11753{
11754	kmem_free(dof, dof->dofh_loadsz);
11755}
11756
11757/*
11758 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11759 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11760 * a type other than DOF_SECT_NONE is specified, the header is checked against
11761 * this type and NULL is returned if the types do not match.
11762 */
11763static dof_sec_t *
11764dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11765{
11766	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11767	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11768
11769	if (i >= dof->dofh_secnum) {
11770		dtrace_dof_error(dof, "referenced section index is invalid");
11771		return (NULL);
11772	}
11773
11774	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11775		dtrace_dof_error(dof, "referenced section is not loadable");
11776		return (NULL);
11777	}
11778
11779	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11780		dtrace_dof_error(dof, "referenced section is the wrong type");
11781		return (NULL);
11782	}
11783
11784	return (sec);
11785}
11786
11787static dtrace_probedesc_t *
11788dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11789{
11790	dof_probedesc_t *probe;
11791	dof_sec_t *strtab;
11792	uintptr_t daddr = (uintptr_t)dof;
11793	uintptr_t str;
11794	size_t size;
11795
11796	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11797		dtrace_dof_error(dof, "invalid probe section");
11798		return (NULL);
11799	}
11800
11801	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11802		dtrace_dof_error(dof, "bad alignment in probe description");
11803		return (NULL);
11804	}
11805
11806	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11807		dtrace_dof_error(dof, "truncated probe description");
11808		return (NULL);
11809	}
11810
11811	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11812	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11813
11814	if (strtab == NULL)
11815		return (NULL);
11816
11817	str = daddr + strtab->dofs_offset;
11818	size = strtab->dofs_size;
11819
11820	if (probe->dofp_provider >= strtab->dofs_size) {
11821		dtrace_dof_error(dof, "corrupt probe provider");
11822		return (NULL);
11823	}
11824
11825	(void) strncpy(desc->dtpd_provider,
11826	    (char *)(str + probe->dofp_provider),
11827	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11828
11829	if (probe->dofp_mod >= strtab->dofs_size) {
11830		dtrace_dof_error(dof, "corrupt probe module");
11831		return (NULL);
11832	}
11833
11834	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11835	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11836
11837	if (probe->dofp_func >= strtab->dofs_size) {
11838		dtrace_dof_error(dof, "corrupt probe function");
11839		return (NULL);
11840	}
11841
11842	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11843	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11844
11845	if (probe->dofp_name >= strtab->dofs_size) {
11846		dtrace_dof_error(dof, "corrupt probe name");
11847		return (NULL);
11848	}
11849
11850	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11851	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11852
11853	return (desc);
11854}
11855
11856static dtrace_difo_t *
11857dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11858    cred_t *cr)
11859{
11860	dtrace_difo_t *dp;
11861	size_t ttl = 0;
11862	dof_difohdr_t *dofd;
11863	uintptr_t daddr = (uintptr_t)dof;
11864	size_t max = dtrace_difo_maxsize;
11865	int i, l, n;
11866
11867	static const struct {
11868		int section;
11869		int bufoffs;
11870		int lenoffs;
11871		int entsize;
11872		int align;
11873		const char *msg;
11874	} difo[] = {
11875		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11876		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11877		sizeof (dif_instr_t), "multiple DIF sections" },
11878
11879		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11880		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11881		sizeof (uint64_t), "multiple integer tables" },
11882
11883		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11884		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11885		sizeof (char), "multiple string tables" },
11886
11887		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11888		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11889		sizeof (uint_t), "multiple variable tables" },
11890
11891		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11892	};
11893
11894	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11895		dtrace_dof_error(dof, "invalid DIFO header section");
11896		return (NULL);
11897	}
11898
11899	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11900		dtrace_dof_error(dof, "bad alignment in DIFO header");
11901		return (NULL);
11902	}
11903
11904	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11905	    sec->dofs_size % sizeof (dof_secidx_t)) {
11906		dtrace_dof_error(dof, "bad size in DIFO header");
11907		return (NULL);
11908	}
11909
11910	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11911	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11912
11913	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11914	dp->dtdo_rtype = dofd->dofd_rtype;
11915
11916	for (l = 0; l < n; l++) {
11917		dof_sec_t *subsec;
11918		void **bufp;
11919		uint32_t *lenp;
11920
11921		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11922		    dofd->dofd_links[l])) == NULL)
11923			goto err; /* invalid section link */
11924
11925		if (ttl + subsec->dofs_size > max) {
11926			dtrace_dof_error(dof, "exceeds maximum size");
11927			goto err;
11928		}
11929
11930		ttl += subsec->dofs_size;
11931
11932		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11933			if (subsec->dofs_type != difo[i].section)
11934				continue;
11935
11936			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11937				dtrace_dof_error(dof, "section not loaded");
11938				goto err;
11939			}
11940
11941			if (subsec->dofs_align != difo[i].align) {
11942				dtrace_dof_error(dof, "bad alignment");
11943				goto err;
11944			}
11945
11946			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11947			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11948
11949			if (*bufp != NULL) {
11950				dtrace_dof_error(dof, difo[i].msg);
11951				goto err;
11952			}
11953
11954			if (difo[i].entsize != subsec->dofs_entsize) {
11955				dtrace_dof_error(dof, "entry size mismatch");
11956				goto err;
11957			}
11958
11959			if (subsec->dofs_entsize != 0 &&
11960			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11961				dtrace_dof_error(dof, "corrupt entry size");
11962				goto err;
11963			}
11964
11965			*lenp = subsec->dofs_size;
11966			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11967			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11968			    *bufp, subsec->dofs_size);
11969
11970			if (subsec->dofs_entsize != 0)
11971				*lenp /= subsec->dofs_entsize;
11972
11973			break;
11974		}
11975
11976		/*
11977		 * If we encounter a loadable DIFO sub-section that is not
11978		 * known to us, assume this is a broken program and fail.
11979		 */
11980		if (difo[i].section == DOF_SECT_NONE &&
11981		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11982			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11983			goto err;
11984		}
11985	}
11986
11987	if (dp->dtdo_buf == NULL) {
11988		/*
11989		 * We can't have a DIF object without DIF text.
11990		 */
11991		dtrace_dof_error(dof, "missing DIF text");
11992		goto err;
11993	}
11994
11995	/*
11996	 * Before we validate the DIF object, run through the variable table
11997	 * looking for the strings -- if any of their size are under, we'll set
11998	 * their size to be the system-wide default string size.  Note that
11999	 * this should _not_ happen if the "strsize" option has been set --
12000	 * in this case, the compiler should have set the size to reflect the
12001	 * setting of the option.
12002	 */
12003	for (i = 0; i < dp->dtdo_varlen; i++) {
12004		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12005		dtrace_diftype_t *t = &v->dtdv_type;
12006
12007		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12008			continue;
12009
12010		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12011			t->dtdt_size = dtrace_strsize_default;
12012	}
12013
12014	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12015		goto err;
12016
12017	dtrace_difo_init(dp, vstate);
12018	return (dp);
12019
12020err:
12021	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12022	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12023	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12024	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12025
12026	kmem_free(dp, sizeof (dtrace_difo_t));
12027	return (NULL);
12028}
12029
12030static dtrace_predicate_t *
12031dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12032    cred_t *cr)
12033{
12034	dtrace_difo_t *dp;
12035
12036	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12037		return (NULL);
12038
12039	return (dtrace_predicate_create(dp));
12040}
12041
12042static dtrace_actdesc_t *
12043dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12044    cred_t *cr)
12045{
12046	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12047	dof_actdesc_t *desc;
12048	dof_sec_t *difosec;
12049	size_t offs;
12050	uintptr_t daddr = (uintptr_t)dof;
12051	uint64_t arg;
12052	dtrace_actkind_t kind;
12053
12054	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12055		dtrace_dof_error(dof, "invalid action section");
12056		return (NULL);
12057	}
12058
12059	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12060		dtrace_dof_error(dof, "truncated action description");
12061		return (NULL);
12062	}
12063
12064	if (sec->dofs_align != sizeof (uint64_t)) {
12065		dtrace_dof_error(dof, "bad alignment in action description");
12066		return (NULL);
12067	}
12068
12069	if (sec->dofs_size < sec->dofs_entsize) {
12070		dtrace_dof_error(dof, "section entry size exceeds total size");
12071		return (NULL);
12072	}
12073
12074	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12075		dtrace_dof_error(dof, "bad entry size in action description");
12076		return (NULL);
12077	}
12078
12079	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12080		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12081		return (NULL);
12082	}
12083
12084	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12085		desc = (dof_actdesc_t *)(daddr +
12086		    (uintptr_t)sec->dofs_offset + offs);
12087		kind = (dtrace_actkind_t)desc->dofa_kind;
12088
12089		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12090		    (kind != DTRACEACT_PRINTA ||
12091		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12092			dof_sec_t *strtab;
12093			char *str, *fmt;
12094			uint64_t i;
12095
12096			/*
12097			 * printf()-like actions must have a format string.
12098			 */
12099			if ((strtab = dtrace_dof_sect(dof,
12100			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12101				goto err;
12102
12103			str = (char *)((uintptr_t)dof +
12104			    (uintptr_t)strtab->dofs_offset);
12105
12106			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12107				if (str[i] == '\0')
12108					break;
12109			}
12110
12111			if (i >= strtab->dofs_size) {
12112				dtrace_dof_error(dof, "bogus format string");
12113				goto err;
12114			}
12115
12116			if (i == desc->dofa_arg) {
12117				dtrace_dof_error(dof, "empty format string");
12118				goto err;
12119			}
12120
12121			i -= desc->dofa_arg;
12122			fmt = kmem_alloc(i + 1, KM_SLEEP);
12123			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12124			arg = (uint64_t)(uintptr_t)fmt;
12125		} else {
12126			if (kind == DTRACEACT_PRINTA) {
12127				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12128				arg = 0;
12129			} else {
12130				arg = desc->dofa_arg;
12131			}
12132		}
12133
12134		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12135		    desc->dofa_uarg, arg);
12136
12137		if (last != NULL) {
12138			last->dtad_next = act;
12139		} else {
12140			first = act;
12141		}
12142
12143		last = act;
12144
12145		if (desc->dofa_difo == DOF_SECIDX_NONE)
12146			continue;
12147
12148		if ((difosec = dtrace_dof_sect(dof,
12149		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12150			goto err;
12151
12152		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12153
12154		if (act->dtad_difo == NULL)
12155			goto err;
12156	}
12157
12158	ASSERT(first != NULL);
12159	return (first);
12160
12161err:
12162	for (act = first; act != NULL; act = next) {
12163		next = act->dtad_next;
12164		dtrace_actdesc_release(act, vstate);
12165	}
12166
12167	return (NULL);
12168}
12169
12170static dtrace_ecbdesc_t *
12171dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12172    cred_t *cr)
12173{
12174	dtrace_ecbdesc_t *ep;
12175	dof_ecbdesc_t *ecb;
12176	dtrace_probedesc_t *desc;
12177	dtrace_predicate_t *pred = NULL;
12178
12179	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12180		dtrace_dof_error(dof, "truncated ECB description");
12181		return (NULL);
12182	}
12183
12184	if (sec->dofs_align != sizeof (uint64_t)) {
12185		dtrace_dof_error(dof, "bad alignment in ECB description");
12186		return (NULL);
12187	}
12188
12189	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12190	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12191
12192	if (sec == NULL)
12193		return (NULL);
12194
12195	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12196	ep->dted_uarg = ecb->dofe_uarg;
12197	desc = &ep->dted_probe;
12198
12199	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12200		goto err;
12201
12202	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12203		if ((sec = dtrace_dof_sect(dof,
12204		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12205			goto err;
12206
12207		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12208			goto err;
12209
12210		ep->dted_pred.dtpdd_predicate = pred;
12211	}
12212
12213	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12214		if ((sec = dtrace_dof_sect(dof,
12215		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12216			goto err;
12217
12218		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12219
12220		if (ep->dted_action == NULL)
12221			goto err;
12222	}
12223
12224	return (ep);
12225
12226err:
12227	if (pred != NULL)
12228		dtrace_predicate_release(pred, vstate);
12229	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12230	return (NULL);
12231}
12232
12233/*
12234 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12235 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12236 * site of any user SETX relocations to account for load object base address.
12237 * In the future, if we need other relocations, this function can be extended.
12238 */
12239static int
12240dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12241{
12242	uintptr_t daddr = (uintptr_t)dof;
12243	dof_relohdr_t *dofr =
12244	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12245	dof_sec_t *ss, *rs, *ts;
12246	dof_relodesc_t *r;
12247	uint_t i, n;
12248
12249	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12250	    sec->dofs_align != sizeof (dof_secidx_t)) {
12251		dtrace_dof_error(dof, "invalid relocation header");
12252		return (-1);
12253	}
12254
12255	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12256	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12257	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12258
12259	if (ss == NULL || rs == NULL || ts == NULL)
12260		return (-1); /* dtrace_dof_error() has been called already */
12261
12262	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12263	    rs->dofs_align != sizeof (uint64_t)) {
12264		dtrace_dof_error(dof, "invalid relocation section");
12265		return (-1);
12266	}
12267
12268	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12269	n = rs->dofs_size / rs->dofs_entsize;
12270
12271	for (i = 0; i < n; i++) {
12272		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12273
12274		switch (r->dofr_type) {
12275		case DOF_RELO_NONE:
12276			break;
12277		case DOF_RELO_SETX:
12278			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12279			    sizeof (uint64_t) > ts->dofs_size) {
12280				dtrace_dof_error(dof, "bad relocation offset");
12281				return (-1);
12282			}
12283
12284			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12285				dtrace_dof_error(dof, "misaligned setx relo");
12286				return (-1);
12287			}
12288
12289			*(uint64_t *)taddr += ubase;
12290			break;
12291		default:
12292			dtrace_dof_error(dof, "invalid relocation type");
12293			return (-1);
12294		}
12295
12296		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12297	}
12298
12299	return (0);
12300}
12301
12302/*
12303 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12304 * header:  it should be at the front of a memory region that is at least
12305 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12306 * size.  It need not be validated in any other way.
12307 */
12308static int
12309dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12310    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12311{
12312	uint64_t len = dof->dofh_loadsz, seclen;
12313	uintptr_t daddr = (uintptr_t)dof;
12314	dtrace_ecbdesc_t *ep;
12315	dtrace_enabling_t *enab;
12316	uint_t i;
12317
12318	ASSERT(MUTEX_HELD(&dtrace_lock));
12319	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12320
12321	/*
12322	 * Check the DOF header identification bytes.  In addition to checking
12323	 * valid settings, we also verify that unused bits/bytes are zeroed so
12324	 * we can use them later without fear of regressing existing binaries.
12325	 */
12326	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12327	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12328		dtrace_dof_error(dof, "DOF magic string mismatch");
12329		return (-1);
12330	}
12331
12332	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12333	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12334		dtrace_dof_error(dof, "DOF has invalid data model");
12335		return (-1);
12336	}
12337
12338	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12339		dtrace_dof_error(dof, "DOF encoding mismatch");
12340		return (-1);
12341	}
12342
12343	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12344	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12345		dtrace_dof_error(dof, "DOF version mismatch");
12346		return (-1);
12347	}
12348
12349	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12350		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12351		return (-1);
12352	}
12353
12354	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12355		dtrace_dof_error(dof, "DOF uses too many integer registers");
12356		return (-1);
12357	}
12358
12359	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12360		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12361		return (-1);
12362	}
12363
12364	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12365		if (dof->dofh_ident[i] != 0) {
12366			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12367			return (-1);
12368		}
12369	}
12370
12371	if (dof->dofh_flags & ~DOF_FL_VALID) {
12372		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12373		return (-1);
12374	}
12375
12376	if (dof->dofh_secsize == 0) {
12377		dtrace_dof_error(dof, "zero section header size");
12378		return (-1);
12379	}
12380
12381	/*
12382	 * Check that the section headers don't exceed the amount of DOF
12383	 * data.  Note that we cast the section size and number of sections
12384	 * to uint64_t's to prevent possible overflow in the multiplication.
12385	 */
12386	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12387
12388	if (dof->dofh_secoff > len || seclen > len ||
12389	    dof->dofh_secoff + seclen > len) {
12390		dtrace_dof_error(dof, "truncated section headers");
12391		return (-1);
12392	}
12393
12394	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12395		dtrace_dof_error(dof, "misaligned section headers");
12396		return (-1);
12397	}
12398
12399	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12400		dtrace_dof_error(dof, "misaligned section size");
12401		return (-1);
12402	}
12403
12404	/*
12405	 * Take an initial pass through the section headers to be sure that
12406	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12407	 * set, do not permit sections relating to providers, probes, or args.
12408	 */
12409	for (i = 0; i < dof->dofh_secnum; i++) {
12410		dof_sec_t *sec = (dof_sec_t *)(daddr +
12411		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12412
12413		if (noprobes) {
12414			switch (sec->dofs_type) {
12415			case DOF_SECT_PROVIDER:
12416			case DOF_SECT_PROBES:
12417			case DOF_SECT_PRARGS:
12418			case DOF_SECT_PROFFS:
12419				dtrace_dof_error(dof, "illegal sections "
12420				    "for enabling");
12421				return (-1);
12422			}
12423		}
12424
12425		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12426			continue; /* just ignore non-loadable sections */
12427
12428		if (sec->dofs_align & (sec->dofs_align - 1)) {
12429			dtrace_dof_error(dof, "bad section alignment");
12430			return (-1);
12431		}
12432
12433		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12434			dtrace_dof_error(dof, "misaligned section");
12435			return (-1);
12436		}
12437
12438		if (sec->dofs_offset > len || sec->dofs_size > len ||
12439		    sec->dofs_offset + sec->dofs_size > len) {
12440			dtrace_dof_error(dof, "corrupt section header");
12441			return (-1);
12442		}
12443
12444		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12445		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12446			dtrace_dof_error(dof, "non-terminating string table");
12447			return (-1);
12448		}
12449	}
12450
12451	/*
12452	 * Take a second pass through the sections and locate and perform any
12453	 * relocations that are present.  We do this after the first pass to
12454	 * be sure that all sections have had their headers validated.
12455	 */
12456	for (i = 0; i < dof->dofh_secnum; i++) {
12457		dof_sec_t *sec = (dof_sec_t *)(daddr +
12458		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12459
12460		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12461			continue; /* skip sections that are not loadable */
12462
12463		switch (sec->dofs_type) {
12464		case DOF_SECT_URELHDR:
12465			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12466				return (-1);
12467			break;
12468		}
12469	}
12470
12471	if ((enab = *enabp) == NULL)
12472		enab = *enabp = dtrace_enabling_create(vstate);
12473
12474	for (i = 0; i < dof->dofh_secnum; i++) {
12475		dof_sec_t *sec = (dof_sec_t *)(daddr +
12476		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12477
12478		if (sec->dofs_type != DOF_SECT_ECBDESC)
12479			continue;
12480
12481		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12482			dtrace_enabling_destroy(enab);
12483			*enabp = NULL;
12484			return (-1);
12485		}
12486
12487		dtrace_enabling_add(enab, ep);
12488	}
12489
12490	return (0);
12491}
12492
12493/*
12494 * Process DOF for any options.  This routine assumes that the DOF has been
12495 * at least processed by dtrace_dof_slurp().
12496 */
12497static int
12498dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12499{
12500	int i, rval;
12501	uint32_t entsize;
12502	size_t offs;
12503	dof_optdesc_t *desc;
12504
12505	for (i = 0; i < dof->dofh_secnum; i++) {
12506		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12507		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12508
12509		if (sec->dofs_type != DOF_SECT_OPTDESC)
12510			continue;
12511
12512		if (sec->dofs_align != sizeof (uint64_t)) {
12513			dtrace_dof_error(dof, "bad alignment in "
12514			    "option description");
12515			return (EINVAL);
12516		}
12517
12518		if ((entsize = sec->dofs_entsize) == 0) {
12519			dtrace_dof_error(dof, "zeroed option entry size");
12520			return (EINVAL);
12521		}
12522
12523		if (entsize < sizeof (dof_optdesc_t)) {
12524			dtrace_dof_error(dof, "bad option entry size");
12525			return (EINVAL);
12526		}
12527
12528		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12529			desc = (dof_optdesc_t *)((uintptr_t)dof +
12530			    (uintptr_t)sec->dofs_offset + offs);
12531
12532			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12533				dtrace_dof_error(dof, "non-zero option string");
12534				return (EINVAL);
12535			}
12536
12537			if (desc->dofo_value == DTRACEOPT_UNSET) {
12538				dtrace_dof_error(dof, "unset option");
12539				return (EINVAL);
12540			}
12541
12542			if ((rval = dtrace_state_option(state,
12543			    desc->dofo_option, desc->dofo_value)) != 0) {
12544				dtrace_dof_error(dof, "rejected option");
12545				return (rval);
12546			}
12547		}
12548	}
12549
12550	return (0);
12551}
12552
12553/*
12554 * DTrace Consumer State Functions
12555 */
12556static int
12557dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12558{
12559	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12560	void *base;
12561	uintptr_t limit;
12562	dtrace_dynvar_t *dvar, *next, *start;
12563	int i;
12564
12565	ASSERT(MUTEX_HELD(&dtrace_lock));
12566	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12567
12568	bzero(dstate, sizeof (dtrace_dstate_t));
12569
12570	if ((dstate->dtds_chunksize = chunksize) == 0)
12571		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12572
12573	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12574		size = min;
12575
12576	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12577		return (ENOMEM);
12578
12579	dstate->dtds_size = size;
12580	dstate->dtds_base = base;
12581	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12582	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12583
12584	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12585
12586	if (hashsize != 1 && (hashsize & 1))
12587		hashsize--;
12588
12589	dstate->dtds_hashsize = hashsize;
12590	dstate->dtds_hash = dstate->dtds_base;
12591
12592	/*
12593	 * Set all of our hash buckets to point to the single sink, and (if
12594	 * it hasn't already been set), set the sink's hash value to be the
12595	 * sink sentinel value.  The sink is needed for dynamic variable
12596	 * lookups to know that they have iterated over an entire, valid hash
12597	 * chain.
12598	 */
12599	for (i = 0; i < hashsize; i++)
12600		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12601
12602	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12603		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12604
12605	/*
12606	 * Determine number of active CPUs.  Divide free list evenly among
12607	 * active CPUs.
12608	 */
12609	start = (dtrace_dynvar_t *)
12610	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12611	limit = (uintptr_t)base + size;
12612
12613	maxper = (limit - (uintptr_t)start) / NCPU;
12614	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12615
12616#if !defined(sun)
12617	CPU_FOREACH(i) {
12618#else
12619	for (i = 0; i < NCPU; i++) {
12620#endif
12621		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12622
12623		/*
12624		 * If we don't even have enough chunks to make it once through
12625		 * NCPUs, we're just going to allocate everything to the first
12626		 * CPU.  And if we're on the last CPU, we're going to allocate
12627		 * whatever is left over.  In either case, we set the limit to
12628		 * be the limit of the dynamic variable space.
12629		 */
12630		if (maxper == 0 || i == NCPU - 1) {
12631			limit = (uintptr_t)base + size;
12632			start = NULL;
12633		} else {
12634			limit = (uintptr_t)start + maxper;
12635			start = (dtrace_dynvar_t *)limit;
12636		}
12637
12638		ASSERT(limit <= (uintptr_t)base + size);
12639
12640		for (;;) {
12641			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12642			    dstate->dtds_chunksize);
12643
12644			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12645				break;
12646
12647			dvar->dtdv_next = next;
12648			dvar = next;
12649		}
12650
12651		if (maxper == 0)
12652			break;
12653	}
12654
12655	return (0);
12656}
12657
12658static void
12659dtrace_dstate_fini(dtrace_dstate_t *dstate)
12660{
12661	ASSERT(MUTEX_HELD(&cpu_lock));
12662
12663	if (dstate->dtds_base == NULL)
12664		return;
12665
12666	kmem_free(dstate->dtds_base, dstate->dtds_size);
12667	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12668}
12669
12670static void
12671dtrace_vstate_fini(dtrace_vstate_t *vstate)
12672{
12673	/*
12674	 * Logical XOR, where are you?
12675	 */
12676	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12677
12678	if (vstate->dtvs_nglobals > 0) {
12679		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12680		    sizeof (dtrace_statvar_t *));
12681	}
12682
12683	if (vstate->dtvs_ntlocals > 0) {
12684		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12685		    sizeof (dtrace_difv_t));
12686	}
12687
12688	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12689
12690	if (vstate->dtvs_nlocals > 0) {
12691		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12692		    sizeof (dtrace_statvar_t *));
12693	}
12694}
12695
12696#if defined(sun)
12697static void
12698dtrace_state_clean(dtrace_state_t *state)
12699{
12700	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12701		return;
12702
12703	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12704	dtrace_speculation_clean(state);
12705}
12706
12707static void
12708dtrace_state_deadman(dtrace_state_t *state)
12709{
12710	hrtime_t now;
12711
12712	dtrace_sync();
12713
12714	now = dtrace_gethrtime();
12715
12716	if (state != dtrace_anon.dta_state &&
12717	    now - state->dts_laststatus >= dtrace_deadman_user)
12718		return;
12719
12720	/*
12721	 * We must be sure that dts_alive never appears to be less than the
12722	 * value upon entry to dtrace_state_deadman(), and because we lack a
12723	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12724	 * store INT64_MAX to it, followed by a memory barrier, followed by
12725	 * the new value.  This assures that dts_alive never appears to be
12726	 * less than its true value, regardless of the order in which the
12727	 * stores to the underlying storage are issued.
12728	 */
12729	state->dts_alive = INT64_MAX;
12730	dtrace_membar_producer();
12731	state->dts_alive = now;
12732}
12733#else
12734static void
12735dtrace_state_clean(void *arg)
12736{
12737	dtrace_state_t *state = arg;
12738	dtrace_optval_t *opt = state->dts_options;
12739
12740	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12741		return;
12742
12743	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12744	dtrace_speculation_clean(state);
12745
12746	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12747	    dtrace_state_clean, state);
12748}
12749
12750static void
12751dtrace_state_deadman(void *arg)
12752{
12753	dtrace_state_t *state = arg;
12754	hrtime_t now;
12755
12756	dtrace_sync();
12757
12758	dtrace_debug_output();
12759
12760	now = dtrace_gethrtime();
12761
12762	if (state != dtrace_anon.dta_state &&
12763	    now - state->dts_laststatus >= dtrace_deadman_user)
12764		return;
12765
12766	/*
12767	 * We must be sure that dts_alive never appears to be less than the
12768	 * value upon entry to dtrace_state_deadman(), and because we lack a
12769	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12770	 * store INT64_MAX to it, followed by a memory barrier, followed by
12771	 * the new value.  This assures that dts_alive never appears to be
12772	 * less than its true value, regardless of the order in which the
12773	 * stores to the underlying storage are issued.
12774	 */
12775	state->dts_alive = INT64_MAX;
12776	dtrace_membar_producer();
12777	state->dts_alive = now;
12778
12779	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12780	    dtrace_state_deadman, state);
12781}
12782#endif
12783
12784static dtrace_state_t *
12785#if defined(sun)
12786dtrace_state_create(dev_t *devp, cred_t *cr)
12787#else
12788dtrace_state_create(struct cdev *dev)
12789#endif
12790{
12791#if defined(sun)
12792	minor_t minor;
12793	major_t major;
12794#else
12795	cred_t *cr = NULL;
12796	int m = 0;
12797#endif
12798	char c[30];
12799	dtrace_state_t *state;
12800	dtrace_optval_t *opt;
12801	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12802
12803	ASSERT(MUTEX_HELD(&dtrace_lock));
12804	ASSERT(MUTEX_HELD(&cpu_lock));
12805
12806#if defined(sun)
12807	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12808	    VM_BESTFIT | VM_SLEEP);
12809
12810	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12811		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12812		return (NULL);
12813	}
12814
12815	state = ddi_get_soft_state(dtrace_softstate, minor);
12816#else
12817	if (dev != NULL) {
12818		cr = dev->si_cred;
12819		m = dev2unit(dev);
12820		}
12821
12822	/* Allocate memory for the state. */
12823	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12824#endif
12825
12826	state->dts_epid = DTRACE_EPIDNONE + 1;
12827
12828	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12829#if defined(sun)
12830	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12831	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12832
12833	if (devp != NULL) {
12834		major = getemajor(*devp);
12835	} else {
12836		major = ddi_driver_major(dtrace_devi);
12837	}
12838
12839	state->dts_dev = makedevice(major, minor);
12840
12841	if (devp != NULL)
12842		*devp = state->dts_dev;
12843#else
12844	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12845	state->dts_dev = dev;
12846#endif
12847
12848	/*
12849	 * We allocate NCPU buffers.  On the one hand, this can be quite
12850	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12851	 * other hand, it saves an additional memory reference in the probe
12852	 * path.
12853	 */
12854	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12855	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12856
12857#if defined(sun)
12858	state->dts_cleaner = CYCLIC_NONE;
12859	state->dts_deadman = CYCLIC_NONE;
12860#else
12861	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
12862	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
12863#endif
12864	state->dts_vstate.dtvs_state = state;
12865
12866	for (i = 0; i < DTRACEOPT_MAX; i++)
12867		state->dts_options[i] = DTRACEOPT_UNSET;
12868
12869	/*
12870	 * Set the default options.
12871	 */
12872	opt = state->dts_options;
12873	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12874	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12875	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12876	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12877	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12878	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12879	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12880	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12881	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12882	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12883	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12884	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12885	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12886	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12887
12888	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12889
12890	/*
12891	 * Depending on the user credentials, we set flag bits which alter probe
12892	 * visibility or the amount of destructiveness allowed.  In the case of
12893	 * actual anonymous tracing, or the possession of all privileges, all of
12894	 * the normal checks are bypassed.
12895	 */
12896	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12897		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12898		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12899	} else {
12900		/*
12901		 * Set up the credentials for this instantiation.  We take a
12902		 * hold on the credential to prevent it from disappearing on
12903		 * us; this in turn prevents the zone_t referenced by this
12904		 * credential from disappearing.  This means that we can
12905		 * examine the credential and the zone from probe context.
12906		 */
12907		crhold(cr);
12908		state->dts_cred.dcr_cred = cr;
12909
12910		/*
12911		 * CRA_PROC means "we have *some* privilege for dtrace" and
12912		 * unlocks the use of variables like pid, zonename, etc.
12913		 */
12914		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12915		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12916			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12917		}
12918
12919		/*
12920		 * dtrace_user allows use of syscall and profile providers.
12921		 * If the user also has proc_owner and/or proc_zone, we
12922		 * extend the scope to include additional visibility and
12923		 * destructive power.
12924		 */
12925		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12926			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12927				state->dts_cred.dcr_visible |=
12928				    DTRACE_CRV_ALLPROC;
12929
12930				state->dts_cred.dcr_action |=
12931				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12932			}
12933
12934			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12935				state->dts_cred.dcr_visible |=
12936				    DTRACE_CRV_ALLZONE;
12937
12938				state->dts_cred.dcr_action |=
12939				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12940			}
12941
12942			/*
12943			 * If we have all privs in whatever zone this is,
12944			 * we can do destructive things to processes which
12945			 * have altered credentials.
12946			 */
12947#if defined(sun)
12948			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12949			    cr->cr_zone->zone_privset)) {
12950				state->dts_cred.dcr_action |=
12951				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12952			}
12953#endif
12954		}
12955
12956		/*
12957		 * Holding the dtrace_kernel privilege also implies that
12958		 * the user has the dtrace_user privilege from a visibility
12959		 * perspective.  But without further privileges, some
12960		 * destructive actions are not available.
12961		 */
12962		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12963			/*
12964			 * Make all probes in all zones visible.  However,
12965			 * this doesn't mean that all actions become available
12966			 * to all zones.
12967			 */
12968			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12969			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12970
12971			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12972			    DTRACE_CRA_PROC;
12973			/*
12974			 * Holding proc_owner means that destructive actions
12975			 * for *this* zone are allowed.
12976			 */
12977			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12978				state->dts_cred.dcr_action |=
12979				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12980
12981			/*
12982			 * Holding proc_zone means that destructive actions
12983			 * for this user/group ID in all zones is allowed.
12984			 */
12985			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12986				state->dts_cred.dcr_action |=
12987				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12988
12989#if defined(sun)
12990			/*
12991			 * If we have all privs in whatever zone this is,
12992			 * we can do destructive things to processes which
12993			 * have altered credentials.
12994			 */
12995			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12996			    cr->cr_zone->zone_privset)) {
12997				state->dts_cred.dcr_action |=
12998				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12999			}
13000#endif
13001		}
13002
13003		/*
13004		 * Holding the dtrace_proc privilege gives control over fasttrap
13005		 * and pid providers.  We need to grant wider destructive
13006		 * privileges in the event that the user has proc_owner and/or
13007		 * proc_zone.
13008		 */
13009		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13010			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13011				state->dts_cred.dcr_action |=
13012				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13013
13014			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13015				state->dts_cred.dcr_action |=
13016				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13017		}
13018	}
13019
13020	return (state);
13021}
13022
13023static int
13024dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13025{
13026	dtrace_optval_t *opt = state->dts_options, size;
13027	processorid_t cpu = 0;;
13028	int flags = 0, rval;
13029
13030	ASSERT(MUTEX_HELD(&dtrace_lock));
13031	ASSERT(MUTEX_HELD(&cpu_lock));
13032	ASSERT(which < DTRACEOPT_MAX);
13033	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13034	    (state == dtrace_anon.dta_state &&
13035	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13036
13037	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13038		return (0);
13039
13040	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13041		cpu = opt[DTRACEOPT_CPU];
13042
13043	if (which == DTRACEOPT_SPECSIZE)
13044		flags |= DTRACEBUF_NOSWITCH;
13045
13046	if (which == DTRACEOPT_BUFSIZE) {
13047		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13048			flags |= DTRACEBUF_RING;
13049
13050		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13051			flags |= DTRACEBUF_FILL;
13052
13053		if (state != dtrace_anon.dta_state ||
13054		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13055			flags |= DTRACEBUF_INACTIVE;
13056	}
13057
13058	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13059		/*
13060		 * The size must be 8-byte aligned.  If the size is not 8-byte
13061		 * aligned, drop it down by the difference.
13062		 */
13063		if (size & (sizeof (uint64_t) - 1))
13064			size -= size & (sizeof (uint64_t) - 1);
13065
13066		if (size < state->dts_reserve) {
13067			/*
13068			 * Buffers always must be large enough to accommodate
13069			 * their prereserved space.  We return E2BIG instead
13070			 * of ENOMEM in this case to allow for user-level
13071			 * software to differentiate the cases.
13072			 */
13073			return (E2BIG);
13074		}
13075
13076		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13077
13078		if (rval != ENOMEM) {
13079			opt[which] = size;
13080			return (rval);
13081		}
13082
13083		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13084			return (rval);
13085	}
13086
13087	return (ENOMEM);
13088}
13089
13090static int
13091dtrace_state_buffers(dtrace_state_t *state)
13092{
13093	dtrace_speculation_t *spec = state->dts_speculations;
13094	int rval, i;
13095
13096	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13097	    DTRACEOPT_BUFSIZE)) != 0)
13098		return (rval);
13099
13100	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13101	    DTRACEOPT_AGGSIZE)) != 0)
13102		return (rval);
13103
13104	for (i = 0; i < state->dts_nspeculations; i++) {
13105		if ((rval = dtrace_state_buffer(state,
13106		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13107			return (rval);
13108	}
13109
13110	return (0);
13111}
13112
13113static void
13114dtrace_state_prereserve(dtrace_state_t *state)
13115{
13116	dtrace_ecb_t *ecb;
13117	dtrace_probe_t *probe;
13118
13119	state->dts_reserve = 0;
13120
13121	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13122		return;
13123
13124	/*
13125	 * If our buffer policy is a "fill" buffer policy, we need to set the
13126	 * prereserved space to be the space required by the END probes.
13127	 */
13128	probe = dtrace_probes[dtrace_probeid_end - 1];
13129	ASSERT(probe != NULL);
13130
13131	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13132		if (ecb->dte_state != state)
13133			continue;
13134
13135		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13136	}
13137}
13138
13139static int
13140dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13141{
13142	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13143	dtrace_speculation_t *spec;
13144	dtrace_buffer_t *buf;
13145#if defined(sun)
13146	cyc_handler_t hdlr;
13147	cyc_time_t when;
13148#endif
13149	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13150	dtrace_icookie_t cookie;
13151
13152	mutex_enter(&cpu_lock);
13153	mutex_enter(&dtrace_lock);
13154
13155	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13156		rval = EBUSY;
13157		goto out;
13158	}
13159
13160	/*
13161	 * Before we can perform any checks, we must prime all of the
13162	 * retained enablings that correspond to this state.
13163	 */
13164	dtrace_enabling_prime(state);
13165
13166	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13167		rval = EACCES;
13168		goto out;
13169	}
13170
13171	dtrace_state_prereserve(state);
13172
13173	/*
13174	 * Now we want to do is try to allocate our speculations.
13175	 * We do not automatically resize the number of speculations; if
13176	 * this fails, we will fail the operation.
13177	 */
13178	nspec = opt[DTRACEOPT_NSPEC];
13179	ASSERT(nspec != DTRACEOPT_UNSET);
13180
13181	if (nspec > INT_MAX) {
13182		rval = ENOMEM;
13183		goto out;
13184	}
13185
13186	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13187
13188	if (spec == NULL) {
13189		rval = ENOMEM;
13190		goto out;
13191	}
13192
13193	state->dts_speculations = spec;
13194	state->dts_nspeculations = (int)nspec;
13195
13196	for (i = 0; i < nspec; i++) {
13197		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13198			rval = ENOMEM;
13199			goto err;
13200		}
13201
13202		spec[i].dtsp_buffer = buf;
13203	}
13204
13205	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13206		if (dtrace_anon.dta_state == NULL) {
13207			rval = ENOENT;
13208			goto out;
13209		}
13210
13211		if (state->dts_necbs != 0) {
13212			rval = EALREADY;
13213			goto out;
13214		}
13215
13216		state->dts_anon = dtrace_anon_grab();
13217		ASSERT(state->dts_anon != NULL);
13218		state = state->dts_anon;
13219
13220		/*
13221		 * We want "grabanon" to be set in the grabbed state, so we'll
13222		 * copy that option value from the grabbing state into the
13223		 * grabbed state.
13224		 */
13225		state->dts_options[DTRACEOPT_GRABANON] =
13226		    opt[DTRACEOPT_GRABANON];
13227
13228		*cpu = dtrace_anon.dta_beganon;
13229
13230		/*
13231		 * If the anonymous state is active (as it almost certainly
13232		 * is if the anonymous enabling ultimately matched anything),
13233		 * we don't allow any further option processing -- but we
13234		 * don't return failure.
13235		 */
13236		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13237			goto out;
13238	}
13239
13240	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13241	    opt[DTRACEOPT_AGGSIZE] != 0) {
13242		if (state->dts_aggregations == NULL) {
13243			/*
13244			 * We're not going to create an aggregation buffer
13245			 * because we don't have any ECBs that contain
13246			 * aggregations -- set this option to 0.
13247			 */
13248			opt[DTRACEOPT_AGGSIZE] = 0;
13249		} else {
13250			/*
13251			 * If we have an aggregation buffer, we must also have
13252			 * a buffer to use as scratch.
13253			 */
13254			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13255			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13256				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13257			}
13258		}
13259	}
13260
13261	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13262	    opt[DTRACEOPT_SPECSIZE] != 0) {
13263		if (!state->dts_speculates) {
13264			/*
13265			 * We're not going to create speculation buffers
13266			 * because we don't have any ECBs that actually
13267			 * speculate -- set the speculation size to 0.
13268			 */
13269			opt[DTRACEOPT_SPECSIZE] = 0;
13270		}
13271	}
13272
13273	/*
13274	 * The bare minimum size for any buffer that we're actually going to
13275	 * do anything to is sizeof (uint64_t).
13276	 */
13277	sz = sizeof (uint64_t);
13278
13279	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13280	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13281	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13282		/*
13283		 * A buffer size has been explicitly set to 0 (or to a size
13284		 * that will be adjusted to 0) and we need the space -- we
13285		 * need to return failure.  We return ENOSPC to differentiate
13286		 * it from failing to allocate a buffer due to failure to meet
13287		 * the reserve (for which we return E2BIG).
13288		 */
13289		rval = ENOSPC;
13290		goto out;
13291	}
13292
13293	if ((rval = dtrace_state_buffers(state)) != 0)
13294		goto err;
13295
13296	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13297		sz = dtrace_dstate_defsize;
13298
13299	do {
13300		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13301
13302		if (rval == 0)
13303			break;
13304
13305		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13306			goto err;
13307	} while (sz >>= 1);
13308
13309	opt[DTRACEOPT_DYNVARSIZE] = sz;
13310
13311	if (rval != 0)
13312		goto err;
13313
13314	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13315		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13316
13317	if (opt[DTRACEOPT_CLEANRATE] == 0)
13318		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13319
13320	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13321		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13322
13323	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13324		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13325
13326	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13327#if defined(sun)
13328	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13329	hdlr.cyh_arg = state;
13330	hdlr.cyh_level = CY_LOW_LEVEL;
13331
13332	when.cyt_when = 0;
13333	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13334
13335	state->dts_cleaner = cyclic_add(&hdlr, &when);
13336
13337	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13338	hdlr.cyh_arg = state;
13339	hdlr.cyh_level = CY_LOW_LEVEL;
13340
13341	when.cyt_when = 0;
13342	when.cyt_interval = dtrace_deadman_interval;
13343
13344	state->dts_deadman = cyclic_add(&hdlr, &when);
13345#else
13346	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13347	    dtrace_state_clean, state);
13348	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13349	    dtrace_state_deadman, state);
13350#endif
13351
13352	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13353
13354	/*
13355	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13356	 * interrupts here both to record the CPU on which we fired the BEGIN
13357	 * probe (the data from this CPU will be processed first at user
13358	 * level) and to manually activate the buffer for this CPU.
13359	 */
13360	cookie = dtrace_interrupt_disable();
13361	*cpu = curcpu;
13362	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13363	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13364
13365	dtrace_probe(dtrace_probeid_begin,
13366	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13367	dtrace_interrupt_enable(cookie);
13368	/*
13369	 * We may have had an exit action from a BEGIN probe; only change our
13370	 * state to ACTIVE if we're still in WARMUP.
13371	 */
13372	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13373	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13374
13375	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13376		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13377
13378	/*
13379	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13380	 * want each CPU to transition its principal buffer out of the
13381	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13382	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13383	 * atomically transition from processing none of a state's ECBs to
13384	 * processing all of them.
13385	 */
13386	dtrace_xcall(DTRACE_CPUALL,
13387	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13388	goto out;
13389
13390err:
13391	dtrace_buffer_free(state->dts_buffer);
13392	dtrace_buffer_free(state->dts_aggbuffer);
13393
13394	if ((nspec = state->dts_nspeculations) == 0) {
13395		ASSERT(state->dts_speculations == NULL);
13396		goto out;
13397	}
13398
13399	spec = state->dts_speculations;
13400	ASSERT(spec != NULL);
13401
13402	for (i = 0; i < state->dts_nspeculations; i++) {
13403		if ((buf = spec[i].dtsp_buffer) == NULL)
13404			break;
13405
13406		dtrace_buffer_free(buf);
13407		kmem_free(buf, bufsize);
13408	}
13409
13410	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13411	state->dts_nspeculations = 0;
13412	state->dts_speculations = NULL;
13413
13414out:
13415	mutex_exit(&dtrace_lock);
13416	mutex_exit(&cpu_lock);
13417
13418	return (rval);
13419}
13420
13421static int
13422dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13423{
13424	dtrace_icookie_t cookie;
13425
13426	ASSERT(MUTEX_HELD(&dtrace_lock));
13427
13428	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13429	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13430		return (EINVAL);
13431
13432	/*
13433	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13434	 * to be sure that every CPU has seen it.  See below for the details
13435	 * on why this is done.
13436	 */
13437	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13438	dtrace_sync();
13439
13440	/*
13441	 * By this point, it is impossible for any CPU to be still processing
13442	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13443	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13444	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13445	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13446	 * iff we're in the END probe.
13447	 */
13448	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13449	dtrace_sync();
13450	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13451
13452	/*
13453	 * Finally, we can release the reserve and call the END probe.  We
13454	 * disable interrupts across calling the END probe to allow us to
13455	 * return the CPU on which we actually called the END probe.  This
13456	 * allows user-land to be sure that this CPU's principal buffer is
13457	 * processed last.
13458	 */
13459	state->dts_reserve = 0;
13460
13461	cookie = dtrace_interrupt_disable();
13462	*cpu = curcpu;
13463	dtrace_probe(dtrace_probeid_end,
13464	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13465	dtrace_interrupt_enable(cookie);
13466
13467	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13468	dtrace_sync();
13469
13470	return (0);
13471}
13472
13473static int
13474dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13475    dtrace_optval_t val)
13476{
13477	ASSERT(MUTEX_HELD(&dtrace_lock));
13478
13479	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13480		return (EBUSY);
13481
13482	if (option >= DTRACEOPT_MAX)
13483		return (EINVAL);
13484
13485	if (option != DTRACEOPT_CPU && val < 0)
13486		return (EINVAL);
13487
13488	switch (option) {
13489	case DTRACEOPT_DESTRUCTIVE:
13490		if (dtrace_destructive_disallow)
13491			return (EACCES);
13492
13493		state->dts_cred.dcr_destructive = 1;
13494		break;
13495
13496	case DTRACEOPT_BUFSIZE:
13497	case DTRACEOPT_DYNVARSIZE:
13498	case DTRACEOPT_AGGSIZE:
13499	case DTRACEOPT_SPECSIZE:
13500	case DTRACEOPT_STRSIZE:
13501		if (val < 0)
13502			return (EINVAL);
13503
13504		if (val >= LONG_MAX) {
13505			/*
13506			 * If this is an otherwise negative value, set it to
13507			 * the highest multiple of 128m less than LONG_MAX.
13508			 * Technically, we're adjusting the size without
13509			 * regard to the buffer resizing policy, but in fact,
13510			 * this has no effect -- if we set the buffer size to
13511			 * ~LONG_MAX and the buffer policy is ultimately set to
13512			 * be "manual", the buffer allocation is guaranteed to
13513			 * fail, if only because the allocation requires two
13514			 * buffers.  (We set the the size to the highest
13515			 * multiple of 128m because it ensures that the size
13516			 * will remain a multiple of a megabyte when
13517			 * repeatedly halved -- all the way down to 15m.)
13518			 */
13519			val = LONG_MAX - (1 << 27) + 1;
13520		}
13521	}
13522
13523	state->dts_options[option] = val;
13524
13525	return (0);
13526}
13527
13528static void
13529dtrace_state_destroy(dtrace_state_t *state)
13530{
13531	dtrace_ecb_t *ecb;
13532	dtrace_vstate_t *vstate = &state->dts_vstate;
13533#if defined(sun)
13534	minor_t minor = getminor(state->dts_dev);
13535#endif
13536	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13537	dtrace_speculation_t *spec = state->dts_speculations;
13538	int nspec = state->dts_nspeculations;
13539	uint32_t match;
13540
13541	ASSERT(MUTEX_HELD(&dtrace_lock));
13542	ASSERT(MUTEX_HELD(&cpu_lock));
13543
13544	/*
13545	 * First, retract any retained enablings for this state.
13546	 */
13547	dtrace_enabling_retract(state);
13548	ASSERT(state->dts_nretained == 0);
13549
13550	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13551	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13552		/*
13553		 * We have managed to come into dtrace_state_destroy() on a
13554		 * hot enabling -- almost certainly because of a disorderly
13555		 * shutdown of a consumer.  (That is, a consumer that is
13556		 * exiting without having called dtrace_stop().) In this case,
13557		 * we're going to set our activity to be KILLED, and then
13558		 * issue a sync to be sure that everyone is out of probe
13559		 * context before we start blowing away ECBs.
13560		 */
13561		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13562		dtrace_sync();
13563	}
13564
13565	/*
13566	 * Release the credential hold we took in dtrace_state_create().
13567	 */
13568	if (state->dts_cred.dcr_cred != NULL)
13569		crfree(state->dts_cred.dcr_cred);
13570
13571	/*
13572	 * Now we can safely disable and destroy any enabled probes.  Because
13573	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13574	 * (especially if they're all enabled), we take two passes through the
13575	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13576	 * in the second we disable whatever is left over.
13577	 */
13578	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13579		for (i = 0; i < state->dts_necbs; i++) {
13580			if ((ecb = state->dts_ecbs[i]) == NULL)
13581				continue;
13582
13583			if (match && ecb->dte_probe != NULL) {
13584				dtrace_probe_t *probe = ecb->dte_probe;
13585				dtrace_provider_t *prov = probe->dtpr_provider;
13586
13587				if (!(prov->dtpv_priv.dtpp_flags & match))
13588					continue;
13589			}
13590
13591			dtrace_ecb_disable(ecb);
13592			dtrace_ecb_destroy(ecb);
13593		}
13594
13595		if (!match)
13596			break;
13597	}
13598
13599	/*
13600	 * Before we free the buffers, perform one more sync to assure that
13601	 * every CPU is out of probe context.
13602	 */
13603	dtrace_sync();
13604
13605	dtrace_buffer_free(state->dts_buffer);
13606	dtrace_buffer_free(state->dts_aggbuffer);
13607
13608	for (i = 0; i < nspec; i++)
13609		dtrace_buffer_free(spec[i].dtsp_buffer);
13610
13611#if defined(sun)
13612	if (state->dts_cleaner != CYCLIC_NONE)
13613		cyclic_remove(state->dts_cleaner);
13614
13615	if (state->dts_deadman != CYCLIC_NONE)
13616		cyclic_remove(state->dts_deadman);
13617#else
13618	callout_stop(&state->dts_cleaner);
13619	callout_drain(&state->dts_cleaner);
13620	callout_stop(&state->dts_deadman);
13621	callout_drain(&state->dts_deadman);
13622#endif
13623
13624	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13625	dtrace_vstate_fini(vstate);
13626	if (state->dts_ecbs != NULL)
13627		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13628
13629	if (state->dts_aggregations != NULL) {
13630#ifdef DEBUG
13631		for (i = 0; i < state->dts_naggregations; i++)
13632			ASSERT(state->dts_aggregations[i] == NULL);
13633#endif
13634		ASSERT(state->dts_naggregations > 0);
13635		kmem_free(state->dts_aggregations,
13636		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13637	}
13638
13639	kmem_free(state->dts_buffer, bufsize);
13640	kmem_free(state->dts_aggbuffer, bufsize);
13641
13642	for (i = 0; i < nspec; i++)
13643		kmem_free(spec[i].dtsp_buffer, bufsize);
13644
13645	if (spec != NULL)
13646		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13647
13648	dtrace_format_destroy(state);
13649
13650	if (state->dts_aggid_arena != NULL) {
13651#if defined(sun)
13652		vmem_destroy(state->dts_aggid_arena);
13653#else
13654		delete_unrhdr(state->dts_aggid_arena);
13655#endif
13656		state->dts_aggid_arena = NULL;
13657	}
13658#if defined(sun)
13659	ddi_soft_state_free(dtrace_softstate, minor);
13660	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13661#endif
13662}
13663
13664/*
13665 * DTrace Anonymous Enabling Functions
13666 */
13667static dtrace_state_t *
13668dtrace_anon_grab(void)
13669{
13670	dtrace_state_t *state;
13671
13672	ASSERT(MUTEX_HELD(&dtrace_lock));
13673
13674	if ((state = dtrace_anon.dta_state) == NULL) {
13675		ASSERT(dtrace_anon.dta_enabling == NULL);
13676		return (NULL);
13677	}
13678
13679	ASSERT(dtrace_anon.dta_enabling != NULL);
13680	ASSERT(dtrace_retained != NULL);
13681
13682	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13683	dtrace_anon.dta_enabling = NULL;
13684	dtrace_anon.dta_state = NULL;
13685
13686	return (state);
13687}
13688
13689static void
13690dtrace_anon_property(void)
13691{
13692	int i, rv;
13693	dtrace_state_t *state;
13694	dof_hdr_t *dof;
13695	char c[32];		/* enough for "dof-data-" + digits */
13696
13697	ASSERT(MUTEX_HELD(&dtrace_lock));
13698	ASSERT(MUTEX_HELD(&cpu_lock));
13699
13700	for (i = 0; ; i++) {
13701		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13702
13703		dtrace_err_verbose = 1;
13704
13705		if ((dof = dtrace_dof_property(c)) == NULL) {
13706			dtrace_err_verbose = 0;
13707			break;
13708		}
13709
13710#if defined(sun)
13711		/*
13712		 * We want to create anonymous state, so we need to transition
13713		 * the kernel debugger to indicate that DTrace is active.  If
13714		 * this fails (e.g. because the debugger has modified text in
13715		 * some way), we won't continue with the processing.
13716		 */
13717		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13718			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13719			    "enabling ignored.");
13720			dtrace_dof_destroy(dof);
13721			break;
13722		}
13723#endif
13724
13725		/*
13726		 * If we haven't allocated an anonymous state, we'll do so now.
13727		 */
13728		if ((state = dtrace_anon.dta_state) == NULL) {
13729#if defined(sun)
13730			state = dtrace_state_create(NULL, NULL);
13731#else
13732			state = dtrace_state_create(NULL);
13733#endif
13734			dtrace_anon.dta_state = state;
13735
13736			if (state == NULL) {
13737				/*
13738				 * This basically shouldn't happen:  the only
13739				 * failure mode from dtrace_state_create() is a
13740				 * failure of ddi_soft_state_zalloc() that
13741				 * itself should never happen.  Still, the
13742				 * interface allows for a failure mode, and
13743				 * we want to fail as gracefully as possible:
13744				 * we'll emit an error message and cease
13745				 * processing anonymous state in this case.
13746				 */
13747				cmn_err(CE_WARN, "failed to create "
13748				    "anonymous state");
13749				dtrace_dof_destroy(dof);
13750				break;
13751			}
13752		}
13753
13754		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13755		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13756
13757		if (rv == 0)
13758			rv = dtrace_dof_options(dof, state);
13759
13760		dtrace_err_verbose = 0;
13761		dtrace_dof_destroy(dof);
13762
13763		if (rv != 0) {
13764			/*
13765			 * This is malformed DOF; chuck any anonymous state
13766			 * that we created.
13767			 */
13768			ASSERT(dtrace_anon.dta_enabling == NULL);
13769			dtrace_state_destroy(state);
13770			dtrace_anon.dta_state = NULL;
13771			break;
13772		}
13773
13774		ASSERT(dtrace_anon.dta_enabling != NULL);
13775	}
13776
13777	if (dtrace_anon.dta_enabling != NULL) {
13778		int rval;
13779
13780		/*
13781		 * dtrace_enabling_retain() can only fail because we are
13782		 * trying to retain more enablings than are allowed -- but
13783		 * we only have one anonymous enabling, and we are guaranteed
13784		 * to be allowed at least one retained enabling; we assert
13785		 * that dtrace_enabling_retain() returns success.
13786		 */
13787		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13788		ASSERT(rval == 0);
13789
13790		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13791	}
13792}
13793
13794/*
13795 * DTrace Helper Functions
13796 */
13797static void
13798dtrace_helper_trace(dtrace_helper_action_t *helper,
13799    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13800{
13801	uint32_t size, next, nnext, i;
13802	dtrace_helptrace_t *ent;
13803	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13804
13805	if (!dtrace_helptrace_enabled)
13806		return;
13807
13808	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13809
13810	/*
13811	 * What would a tracing framework be without its own tracing
13812	 * framework?  (Well, a hell of a lot simpler, for starters...)
13813	 */
13814	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13815	    sizeof (uint64_t) - sizeof (uint64_t);
13816
13817	/*
13818	 * Iterate until we can allocate a slot in the trace buffer.
13819	 */
13820	do {
13821		next = dtrace_helptrace_next;
13822
13823		if (next + size < dtrace_helptrace_bufsize) {
13824			nnext = next + size;
13825		} else {
13826			nnext = size;
13827		}
13828	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13829
13830	/*
13831	 * We have our slot; fill it in.
13832	 */
13833	if (nnext == size)
13834		next = 0;
13835
13836	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13837	ent->dtht_helper = helper;
13838	ent->dtht_where = where;
13839	ent->dtht_nlocals = vstate->dtvs_nlocals;
13840
13841	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13842	    mstate->dtms_fltoffs : -1;
13843	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13844	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13845
13846	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13847		dtrace_statvar_t *svar;
13848
13849		if ((svar = vstate->dtvs_locals[i]) == NULL)
13850			continue;
13851
13852		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13853		ent->dtht_locals[i] =
13854		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13855	}
13856}
13857
13858static uint64_t
13859dtrace_helper(int which, dtrace_mstate_t *mstate,
13860    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13861{
13862	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13863	uint64_t sarg0 = mstate->dtms_arg[0];
13864	uint64_t sarg1 = mstate->dtms_arg[1];
13865	uint64_t rval = 0;
13866	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13867	dtrace_helper_action_t *helper;
13868	dtrace_vstate_t *vstate;
13869	dtrace_difo_t *pred;
13870	int i, trace = dtrace_helptrace_enabled;
13871
13872	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13873
13874	if (helpers == NULL)
13875		return (0);
13876
13877	if ((helper = helpers->dthps_actions[which]) == NULL)
13878		return (0);
13879
13880	vstate = &helpers->dthps_vstate;
13881	mstate->dtms_arg[0] = arg0;
13882	mstate->dtms_arg[1] = arg1;
13883
13884	/*
13885	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13886	 * we'll call the corresponding actions.  Note that the below calls
13887	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13888	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13889	 * the stored DIF offset with its own (which is the desired behavior).
13890	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13891	 * from machine state; this is okay, too.
13892	 */
13893	for (; helper != NULL; helper = helper->dtha_next) {
13894		if ((pred = helper->dtha_predicate) != NULL) {
13895			if (trace)
13896				dtrace_helper_trace(helper, mstate, vstate, 0);
13897
13898			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13899				goto next;
13900
13901			if (*flags & CPU_DTRACE_FAULT)
13902				goto err;
13903		}
13904
13905		for (i = 0; i < helper->dtha_nactions; i++) {
13906			if (trace)
13907				dtrace_helper_trace(helper,
13908				    mstate, vstate, i + 1);
13909
13910			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13911			    mstate, vstate, state);
13912
13913			if (*flags & CPU_DTRACE_FAULT)
13914				goto err;
13915		}
13916
13917next:
13918		if (trace)
13919			dtrace_helper_trace(helper, mstate, vstate,
13920			    DTRACE_HELPTRACE_NEXT);
13921	}
13922
13923	if (trace)
13924		dtrace_helper_trace(helper, mstate, vstate,
13925		    DTRACE_HELPTRACE_DONE);
13926
13927	/*
13928	 * Restore the arg0 that we saved upon entry.
13929	 */
13930	mstate->dtms_arg[0] = sarg0;
13931	mstate->dtms_arg[1] = sarg1;
13932
13933	return (rval);
13934
13935err:
13936	if (trace)
13937		dtrace_helper_trace(helper, mstate, vstate,
13938		    DTRACE_HELPTRACE_ERR);
13939
13940	/*
13941	 * Restore the arg0 that we saved upon entry.
13942	 */
13943	mstate->dtms_arg[0] = sarg0;
13944	mstate->dtms_arg[1] = sarg1;
13945
13946	return (0);
13947}
13948
13949static void
13950dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13951    dtrace_vstate_t *vstate)
13952{
13953	int i;
13954
13955	if (helper->dtha_predicate != NULL)
13956		dtrace_difo_release(helper->dtha_predicate, vstate);
13957
13958	for (i = 0; i < helper->dtha_nactions; i++) {
13959		ASSERT(helper->dtha_actions[i] != NULL);
13960		dtrace_difo_release(helper->dtha_actions[i], vstate);
13961	}
13962
13963	kmem_free(helper->dtha_actions,
13964	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13965	kmem_free(helper, sizeof (dtrace_helper_action_t));
13966}
13967
13968static int
13969dtrace_helper_destroygen(int gen)
13970{
13971	proc_t *p = curproc;
13972	dtrace_helpers_t *help = p->p_dtrace_helpers;
13973	dtrace_vstate_t *vstate;
13974	int i;
13975
13976	ASSERT(MUTEX_HELD(&dtrace_lock));
13977
13978	if (help == NULL || gen > help->dthps_generation)
13979		return (EINVAL);
13980
13981	vstate = &help->dthps_vstate;
13982
13983	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13984		dtrace_helper_action_t *last = NULL, *h, *next;
13985
13986		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13987			next = h->dtha_next;
13988
13989			if (h->dtha_generation == gen) {
13990				if (last != NULL) {
13991					last->dtha_next = next;
13992				} else {
13993					help->dthps_actions[i] = next;
13994				}
13995
13996				dtrace_helper_action_destroy(h, vstate);
13997			} else {
13998				last = h;
13999			}
14000		}
14001	}
14002
14003	/*
14004	 * Interate until we've cleared out all helper providers with the
14005	 * given generation number.
14006	 */
14007	for (;;) {
14008		dtrace_helper_provider_t *prov;
14009
14010		/*
14011		 * Look for a helper provider with the right generation. We
14012		 * have to start back at the beginning of the list each time
14013		 * because we drop dtrace_lock. It's unlikely that we'll make
14014		 * more than two passes.
14015		 */
14016		for (i = 0; i < help->dthps_nprovs; i++) {
14017			prov = help->dthps_provs[i];
14018
14019			if (prov->dthp_generation == gen)
14020				break;
14021		}
14022
14023		/*
14024		 * If there were no matches, we're done.
14025		 */
14026		if (i == help->dthps_nprovs)
14027			break;
14028
14029		/*
14030		 * Move the last helper provider into this slot.
14031		 */
14032		help->dthps_nprovs--;
14033		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14034		help->dthps_provs[help->dthps_nprovs] = NULL;
14035
14036		mutex_exit(&dtrace_lock);
14037
14038		/*
14039		 * If we have a meta provider, remove this helper provider.
14040		 */
14041		mutex_enter(&dtrace_meta_lock);
14042		if (dtrace_meta_pid != NULL) {
14043			ASSERT(dtrace_deferred_pid == NULL);
14044			dtrace_helper_provider_remove(&prov->dthp_prov,
14045			    p->p_pid);
14046		}
14047		mutex_exit(&dtrace_meta_lock);
14048
14049		dtrace_helper_provider_destroy(prov);
14050
14051		mutex_enter(&dtrace_lock);
14052	}
14053
14054	return (0);
14055}
14056
14057static int
14058dtrace_helper_validate(dtrace_helper_action_t *helper)
14059{
14060	int err = 0, i;
14061	dtrace_difo_t *dp;
14062
14063	if ((dp = helper->dtha_predicate) != NULL)
14064		err += dtrace_difo_validate_helper(dp);
14065
14066	for (i = 0; i < helper->dtha_nactions; i++)
14067		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14068
14069	return (err == 0);
14070}
14071
14072static int
14073dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14074{
14075	dtrace_helpers_t *help;
14076	dtrace_helper_action_t *helper, *last;
14077	dtrace_actdesc_t *act;
14078	dtrace_vstate_t *vstate;
14079	dtrace_predicate_t *pred;
14080	int count = 0, nactions = 0, i;
14081
14082	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14083		return (EINVAL);
14084
14085	help = curproc->p_dtrace_helpers;
14086	last = help->dthps_actions[which];
14087	vstate = &help->dthps_vstate;
14088
14089	for (count = 0; last != NULL; last = last->dtha_next) {
14090		count++;
14091		if (last->dtha_next == NULL)
14092			break;
14093	}
14094
14095	/*
14096	 * If we already have dtrace_helper_actions_max helper actions for this
14097	 * helper action type, we'll refuse to add a new one.
14098	 */
14099	if (count >= dtrace_helper_actions_max)
14100		return (ENOSPC);
14101
14102	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14103	helper->dtha_generation = help->dthps_generation;
14104
14105	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14106		ASSERT(pred->dtp_difo != NULL);
14107		dtrace_difo_hold(pred->dtp_difo);
14108		helper->dtha_predicate = pred->dtp_difo;
14109	}
14110
14111	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14112		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14113			goto err;
14114
14115		if (act->dtad_difo == NULL)
14116			goto err;
14117
14118		nactions++;
14119	}
14120
14121	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14122	    (helper->dtha_nactions = nactions), KM_SLEEP);
14123
14124	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14125		dtrace_difo_hold(act->dtad_difo);
14126		helper->dtha_actions[i++] = act->dtad_difo;
14127	}
14128
14129	if (!dtrace_helper_validate(helper))
14130		goto err;
14131
14132	if (last == NULL) {
14133		help->dthps_actions[which] = helper;
14134	} else {
14135		last->dtha_next = helper;
14136	}
14137
14138	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14139		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14140		dtrace_helptrace_next = 0;
14141	}
14142
14143	return (0);
14144err:
14145	dtrace_helper_action_destroy(helper, vstate);
14146	return (EINVAL);
14147}
14148
14149static void
14150dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14151    dof_helper_t *dofhp)
14152{
14153	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14154
14155	mutex_enter(&dtrace_meta_lock);
14156	mutex_enter(&dtrace_lock);
14157
14158	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14159		/*
14160		 * If the dtrace module is loaded but not attached, or if
14161		 * there aren't isn't a meta provider registered to deal with
14162		 * these provider descriptions, we need to postpone creating
14163		 * the actual providers until later.
14164		 */
14165
14166		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14167		    dtrace_deferred_pid != help) {
14168			help->dthps_deferred = 1;
14169			help->dthps_pid = p->p_pid;
14170			help->dthps_next = dtrace_deferred_pid;
14171			help->dthps_prev = NULL;
14172			if (dtrace_deferred_pid != NULL)
14173				dtrace_deferred_pid->dthps_prev = help;
14174			dtrace_deferred_pid = help;
14175		}
14176
14177		mutex_exit(&dtrace_lock);
14178
14179	} else if (dofhp != NULL) {
14180		/*
14181		 * If the dtrace module is loaded and we have a particular
14182		 * helper provider description, pass that off to the
14183		 * meta provider.
14184		 */
14185
14186		mutex_exit(&dtrace_lock);
14187
14188		dtrace_helper_provide(dofhp, p->p_pid);
14189
14190	} else {
14191		/*
14192		 * Otherwise, just pass all the helper provider descriptions
14193		 * off to the meta provider.
14194		 */
14195
14196		int i;
14197		mutex_exit(&dtrace_lock);
14198
14199		for (i = 0; i < help->dthps_nprovs; i++) {
14200			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14201			    p->p_pid);
14202		}
14203	}
14204
14205	mutex_exit(&dtrace_meta_lock);
14206}
14207
14208static int
14209dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14210{
14211	dtrace_helpers_t *help;
14212	dtrace_helper_provider_t *hprov, **tmp_provs;
14213	uint_t tmp_maxprovs, i;
14214
14215	ASSERT(MUTEX_HELD(&dtrace_lock));
14216
14217	help = curproc->p_dtrace_helpers;
14218	ASSERT(help != NULL);
14219
14220	/*
14221	 * If we already have dtrace_helper_providers_max helper providers,
14222	 * we're refuse to add a new one.
14223	 */
14224	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14225		return (ENOSPC);
14226
14227	/*
14228	 * Check to make sure this isn't a duplicate.
14229	 */
14230	for (i = 0; i < help->dthps_nprovs; i++) {
14231		if (dofhp->dofhp_addr ==
14232		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14233			return (EALREADY);
14234	}
14235
14236	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14237	hprov->dthp_prov = *dofhp;
14238	hprov->dthp_ref = 1;
14239	hprov->dthp_generation = gen;
14240
14241	/*
14242	 * Allocate a bigger table for helper providers if it's already full.
14243	 */
14244	if (help->dthps_maxprovs == help->dthps_nprovs) {
14245		tmp_maxprovs = help->dthps_maxprovs;
14246		tmp_provs = help->dthps_provs;
14247
14248		if (help->dthps_maxprovs == 0)
14249			help->dthps_maxprovs = 2;
14250		else
14251			help->dthps_maxprovs *= 2;
14252		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14253			help->dthps_maxprovs = dtrace_helper_providers_max;
14254
14255		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14256
14257		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14258		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14259
14260		if (tmp_provs != NULL) {
14261			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14262			    sizeof (dtrace_helper_provider_t *));
14263			kmem_free(tmp_provs, tmp_maxprovs *
14264			    sizeof (dtrace_helper_provider_t *));
14265		}
14266	}
14267
14268	help->dthps_provs[help->dthps_nprovs] = hprov;
14269	help->dthps_nprovs++;
14270
14271	return (0);
14272}
14273
14274static void
14275dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14276{
14277	mutex_enter(&dtrace_lock);
14278
14279	if (--hprov->dthp_ref == 0) {
14280		dof_hdr_t *dof;
14281		mutex_exit(&dtrace_lock);
14282		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14283		dtrace_dof_destroy(dof);
14284		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14285	} else {
14286		mutex_exit(&dtrace_lock);
14287	}
14288}
14289
14290static int
14291dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14292{
14293	uintptr_t daddr = (uintptr_t)dof;
14294	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14295	dof_provider_t *provider;
14296	dof_probe_t *probe;
14297	uint8_t *arg;
14298	char *strtab, *typestr;
14299	dof_stridx_t typeidx;
14300	size_t typesz;
14301	uint_t nprobes, j, k;
14302
14303	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14304
14305	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14306		dtrace_dof_error(dof, "misaligned section offset");
14307		return (-1);
14308	}
14309
14310	/*
14311	 * The section needs to be large enough to contain the DOF provider
14312	 * structure appropriate for the given version.
14313	 */
14314	if (sec->dofs_size <
14315	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14316	    offsetof(dof_provider_t, dofpv_prenoffs) :
14317	    sizeof (dof_provider_t))) {
14318		dtrace_dof_error(dof, "provider section too small");
14319		return (-1);
14320	}
14321
14322	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14323	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14324	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14325	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14326	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14327
14328	if (str_sec == NULL || prb_sec == NULL ||
14329	    arg_sec == NULL || off_sec == NULL)
14330		return (-1);
14331
14332	enoff_sec = NULL;
14333
14334	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14335	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14336	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14337	    provider->dofpv_prenoffs)) == NULL)
14338		return (-1);
14339
14340	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14341
14342	if (provider->dofpv_name >= str_sec->dofs_size ||
14343	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14344		dtrace_dof_error(dof, "invalid provider name");
14345		return (-1);
14346	}
14347
14348	if (prb_sec->dofs_entsize == 0 ||
14349	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14350		dtrace_dof_error(dof, "invalid entry size");
14351		return (-1);
14352	}
14353
14354	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14355		dtrace_dof_error(dof, "misaligned entry size");
14356		return (-1);
14357	}
14358
14359	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14360		dtrace_dof_error(dof, "invalid entry size");
14361		return (-1);
14362	}
14363
14364	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14365		dtrace_dof_error(dof, "misaligned section offset");
14366		return (-1);
14367	}
14368
14369	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14370		dtrace_dof_error(dof, "invalid entry size");
14371		return (-1);
14372	}
14373
14374	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14375
14376	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14377
14378	/*
14379	 * Take a pass through the probes to check for errors.
14380	 */
14381	for (j = 0; j < nprobes; j++) {
14382		probe = (dof_probe_t *)(uintptr_t)(daddr +
14383		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14384
14385		if (probe->dofpr_func >= str_sec->dofs_size) {
14386			dtrace_dof_error(dof, "invalid function name");
14387			return (-1);
14388		}
14389
14390		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14391			dtrace_dof_error(dof, "function name too long");
14392			return (-1);
14393		}
14394
14395		if (probe->dofpr_name >= str_sec->dofs_size ||
14396		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14397			dtrace_dof_error(dof, "invalid probe name");
14398			return (-1);
14399		}
14400
14401		/*
14402		 * The offset count must not wrap the index, and the offsets
14403		 * must also not overflow the section's data.
14404		 */
14405		if (probe->dofpr_offidx + probe->dofpr_noffs <
14406		    probe->dofpr_offidx ||
14407		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14408		    off_sec->dofs_entsize > off_sec->dofs_size) {
14409			dtrace_dof_error(dof, "invalid probe offset");
14410			return (-1);
14411		}
14412
14413		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14414			/*
14415			 * If there's no is-enabled offset section, make sure
14416			 * there aren't any is-enabled offsets. Otherwise
14417			 * perform the same checks as for probe offsets
14418			 * (immediately above).
14419			 */
14420			if (enoff_sec == NULL) {
14421				if (probe->dofpr_enoffidx != 0 ||
14422				    probe->dofpr_nenoffs != 0) {
14423					dtrace_dof_error(dof, "is-enabled "
14424					    "offsets with null section");
14425					return (-1);
14426				}
14427			} else if (probe->dofpr_enoffidx +
14428			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14429			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14430			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14431				dtrace_dof_error(dof, "invalid is-enabled "
14432				    "offset");
14433				return (-1);
14434			}
14435
14436			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14437				dtrace_dof_error(dof, "zero probe and "
14438				    "is-enabled offsets");
14439				return (-1);
14440			}
14441		} else if (probe->dofpr_noffs == 0) {
14442			dtrace_dof_error(dof, "zero probe offsets");
14443			return (-1);
14444		}
14445
14446		if (probe->dofpr_argidx + probe->dofpr_xargc <
14447		    probe->dofpr_argidx ||
14448		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14449		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14450			dtrace_dof_error(dof, "invalid args");
14451			return (-1);
14452		}
14453
14454		typeidx = probe->dofpr_nargv;
14455		typestr = strtab + probe->dofpr_nargv;
14456		for (k = 0; k < probe->dofpr_nargc; k++) {
14457			if (typeidx >= str_sec->dofs_size) {
14458				dtrace_dof_error(dof, "bad "
14459				    "native argument type");
14460				return (-1);
14461			}
14462
14463			typesz = strlen(typestr) + 1;
14464			if (typesz > DTRACE_ARGTYPELEN) {
14465				dtrace_dof_error(dof, "native "
14466				    "argument type too long");
14467				return (-1);
14468			}
14469			typeidx += typesz;
14470			typestr += typesz;
14471		}
14472
14473		typeidx = probe->dofpr_xargv;
14474		typestr = strtab + probe->dofpr_xargv;
14475		for (k = 0; k < probe->dofpr_xargc; k++) {
14476			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14477				dtrace_dof_error(dof, "bad "
14478				    "native argument index");
14479				return (-1);
14480			}
14481
14482			if (typeidx >= str_sec->dofs_size) {
14483				dtrace_dof_error(dof, "bad "
14484				    "translated argument type");
14485				return (-1);
14486			}
14487
14488			typesz = strlen(typestr) + 1;
14489			if (typesz > DTRACE_ARGTYPELEN) {
14490				dtrace_dof_error(dof, "translated argument "
14491				    "type too long");
14492				return (-1);
14493			}
14494
14495			typeidx += typesz;
14496			typestr += typesz;
14497		}
14498	}
14499
14500	return (0);
14501}
14502
14503static int
14504dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14505{
14506	dtrace_helpers_t *help;
14507	dtrace_vstate_t *vstate;
14508	dtrace_enabling_t *enab = NULL;
14509	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14510	uintptr_t daddr = (uintptr_t)dof;
14511
14512	ASSERT(MUTEX_HELD(&dtrace_lock));
14513
14514	if ((help = curproc->p_dtrace_helpers) == NULL)
14515		help = dtrace_helpers_create(curproc);
14516
14517	vstate = &help->dthps_vstate;
14518
14519	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14520	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14521		dtrace_dof_destroy(dof);
14522		return (rv);
14523	}
14524
14525	/*
14526	 * Look for helper providers and validate their descriptions.
14527	 */
14528	if (dhp != NULL) {
14529		for (i = 0; i < dof->dofh_secnum; i++) {
14530			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14531			    dof->dofh_secoff + i * dof->dofh_secsize);
14532
14533			if (sec->dofs_type != DOF_SECT_PROVIDER)
14534				continue;
14535
14536			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14537				dtrace_enabling_destroy(enab);
14538				dtrace_dof_destroy(dof);
14539				return (-1);
14540			}
14541
14542			nprovs++;
14543		}
14544	}
14545
14546	/*
14547	 * Now we need to walk through the ECB descriptions in the enabling.
14548	 */
14549	for (i = 0; i < enab->dten_ndesc; i++) {
14550		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14551		dtrace_probedesc_t *desc = &ep->dted_probe;
14552
14553		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14554			continue;
14555
14556		if (strcmp(desc->dtpd_mod, "helper") != 0)
14557			continue;
14558
14559		if (strcmp(desc->dtpd_func, "ustack") != 0)
14560			continue;
14561
14562		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14563		    ep)) != 0) {
14564			/*
14565			 * Adding this helper action failed -- we are now going
14566			 * to rip out the entire generation and return failure.
14567			 */
14568			(void) dtrace_helper_destroygen(help->dthps_generation);
14569			dtrace_enabling_destroy(enab);
14570			dtrace_dof_destroy(dof);
14571			return (-1);
14572		}
14573
14574		nhelpers++;
14575	}
14576
14577	if (nhelpers < enab->dten_ndesc)
14578		dtrace_dof_error(dof, "unmatched helpers");
14579
14580	gen = help->dthps_generation++;
14581	dtrace_enabling_destroy(enab);
14582
14583	if (dhp != NULL && nprovs > 0) {
14584		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14585		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14586			mutex_exit(&dtrace_lock);
14587			dtrace_helper_provider_register(curproc, help, dhp);
14588			mutex_enter(&dtrace_lock);
14589
14590			destroy = 0;
14591		}
14592	}
14593
14594	if (destroy)
14595		dtrace_dof_destroy(dof);
14596
14597	return (gen);
14598}
14599
14600static dtrace_helpers_t *
14601dtrace_helpers_create(proc_t *p)
14602{
14603	dtrace_helpers_t *help;
14604
14605	ASSERT(MUTEX_HELD(&dtrace_lock));
14606	ASSERT(p->p_dtrace_helpers == NULL);
14607
14608	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14609	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14610	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14611
14612	p->p_dtrace_helpers = help;
14613	dtrace_helpers++;
14614
14615	return (help);
14616}
14617
14618#if defined(sun)
14619static
14620#endif
14621void
14622dtrace_helpers_destroy(proc_t *p)
14623{
14624	dtrace_helpers_t *help;
14625	dtrace_vstate_t *vstate;
14626#if defined(sun)
14627	proc_t *p = curproc;
14628#endif
14629	int i;
14630
14631	mutex_enter(&dtrace_lock);
14632
14633	ASSERT(p->p_dtrace_helpers != NULL);
14634	ASSERT(dtrace_helpers > 0);
14635
14636	help = p->p_dtrace_helpers;
14637	vstate = &help->dthps_vstate;
14638
14639	/*
14640	 * We're now going to lose the help from this process.
14641	 */
14642	p->p_dtrace_helpers = NULL;
14643	dtrace_sync();
14644
14645	/*
14646	 * Destory the helper actions.
14647	 */
14648	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14649		dtrace_helper_action_t *h, *next;
14650
14651		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14652			next = h->dtha_next;
14653			dtrace_helper_action_destroy(h, vstate);
14654			h = next;
14655		}
14656	}
14657
14658	mutex_exit(&dtrace_lock);
14659
14660	/*
14661	 * Destroy the helper providers.
14662	 */
14663	if (help->dthps_maxprovs > 0) {
14664		mutex_enter(&dtrace_meta_lock);
14665		if (dtrace_meta_pid != NULL) {
14666			ASSERT(dtrace_deferred_pid == NULL);
14667
14668			for (i = 0; i < help->dthps_nprovs; i++) {
14669				dtrace_helper_provider_remove(
14670				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14671			}
14672		} else {
14673			mutex_enter(&dtrace_lock);
14674			ASSERT(help->dthps_deferred == 0 ||
14675			    help->dthps_next != NULL ||
14676			    help->dthps_prev != NULL ||
14677			    help == dtrace_deferred_pid);
14678
14679			/*
14680			 * Remove the helper from the deferred list.
14681			 */
14682			if (help->dthps_next != NULL)
14683				help->dthps_next->dthps_prev = help->dthps_prev;
14684			if (help->dthps_prev != NULL)
14685				help->dthps_prev->dthps_next = help->dthps_next;
14686			if (dtrace_deferred_pid == help) {
14687				dtrace_deferred_pid = help->dthps_next;
14688				ASSERT(help->dthps_prev == NULL);
14689			}
14690
14691			mutex_exit(&dtrace_lock);
14692		}
14693
14694		mutex_exit(&dtrace_meta_lock);
14695
14696		for (i = 0; i < help->dthps_nprovs; i++) {
14697			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14698		}
14699
14700		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14701		    sizeof (dtrace_helper_provider_t *));
14702	}
14703
14704	mutex_enter(&dtrace_lock);
14705
14706	dtrace_vstate_fini(&help->dthps_vstate);
14707	kmem_free(help->dthps_actions,
14708	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14709	kmem_free(help, sizeof (dtrace_helpers_t));
14710
14711	--dtrace_helpers;
14712	mutex_exit(&dtrace_lock);
14713}
14714
14715#if defined(sun)
14716static
14717#endif
14718void
14719dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14720{
14721	dtrace_helpers_t *help, *newhelp;
14722	dtrace_helper_action_t *helper, *new, *last;
14723	dtrace_difo_t *dp;
14724	dtrace_vstate_t *vstate;
14725	int i, j, sz, hasprovs = 0;
14726
14727	mutex_enter(&dtrace_lock);
14728	ASSERT(from->p_dtrace_helpers != NULL);
14729	ASSERT(dtrace_helpers > 0);
14730
14731	help = from->p_dtrace_helpers;
14732	newhelp = dtrace_helpers_create(to);
14733	ASSERT(to->p_dtrace_helpers != NULL);
14734
14735	newhelp->dthps_generation = help->dthps_generation;
14736	vstate = &newhelp->dthps_vstate;
14737
14738	/*
14739	 * Duplicate the helper actions.
14740	 */
14741	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14742		if ((helper = help->dthps_actions[i]) == NULL)
14743			continue;
14744
14745		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14746			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14747			    KM_SLEEP);
14748			new->dtha_generation = helper->dtha_generation;
14749
14750			if ((dp = helper->dtha_predicate) != NULL) {
14751				dp = dtrace_difo_duplicate(dp, vstate);
14752				new->dtha_predicate = dp;
14753			}
14754
14755			new->dtha_nactions = helper->dtha_nactions;
14756			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14757			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14758
14759			for (j = 0; j < new->dtha_nactions; j++) {
14760				dtrace_difo_t *dp = helper->dtha_actions[j];
14761
14762				ASSERT(dp != NULL);
14763				dp = dtrace_difo_duplicate(dp, vstate);
14764				new->dtha_actions[j] = dp;
14765			}
14766
14767			if (last != NULL) {
14768				last->dtha_next = new;
14769			} else {
14770				newhelp->dthps_actions[i] = new;
14771			}
14772
14773			last = new;
14774		}
14775	}
14776
14777	/*
14778	 * Duplicate the helper providers and register them with the
14779	 * DTrace framework.
14780	 */
14781	if (help->dthps_nprovs > 0) {
14782		newhelp->dthps_nprovs = help->dthps_nprovs;
14783		newhelp->dthps_maxprovs = help->dthps_nprovs;
14784		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14785		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14786		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14787			newhelp->dthps_provs[i] = help->dthps_provs[i];
14788			newhelp->dthps_provs[i]->dthp_ref++;
14789		}
14790
14791		hasprovs = 1;
14792	}
14793
14794	mutex_exit(&dtrace_lock);
14795
14796	if (hasprovs)
14797		dtrace_helper_provider_register(to, newhelp, NULL);
14798}
14799
14800#if defined(sun)
14801/*
14802 * DTrace Hook Functions
14803 */
14804static void
14805dtrace_module_loaded(modctl_t *ctl)
14806{
14807	dtrace_provider_t *prv;
14808
14809	mutex_enter(&dtrace_provider_lock);
14810	mutex_enter(&mod_lock);
14811
14812	ASSERT(ctl->mod_busy);
14813
14814	/*
14815	 * We're going to call each providers per-module provide operation
14816	 * specifying only this module.
14817	 */
14818	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14819		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14820
14821	mutex_exit(&mod_lock);
14822	mutex_exit(&dtrace_provider_lock);
14823
14824	/*
14825	 * If we have any retained enablings, we need to match against them.
14826	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14827	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14828	 * module.  (In particular, this happens when loading scheduling
14829	 * classes.)  So if we have any retained enablings, we need to dispatch
14830	 * our task queue to do the match for us.
14831	 */
14832	mutex_enter(&dtrace_lock);
14833
14834	if (dtrace_retained == NULL) {
14835		mutex_exit(&dtrace_lock);
14836		return;
14837	}
14838
14839	(void) taskq_dispatch(dtrace_taskq,
14840	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14841
14842	mutex_exit(&dtrace_lock);
14843
14844	/*
14845	 * And now, for a little heuristic sleaze:  in general, we want to
14846	 * match modules as soon as they load.  However, we cannot guarantee
14847	 * this, because it would lead us to the lock ordering violation
14848	 * outlined above.  The common case, of course, is that cpu_lock is
14849	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14850	 * long enough for the task queue to do its work.  If it's not, it's
14851	 * not a serious problem -- it just means that the module that we
14852	 * just loaded may not be immediately instrumentable.
14853	 */
14854	delay(1);
14855}
14856
14857static void
14858dtrace_module_unloaded(modctl_t *ctl)
14859{
14860	dtrace_probe_t template, *probe, *first, *next;
14861	dtrace_provider_t *prov;
14862
14863	template.dtpr_mod = ctl->mod_modname;
14864
14865	mutex_enter(&dtrace_provider_lock);
14866	mutex_enter(&mod_lock);
14867	mutex_enter(&dtrace_lock);
14868
14869	if (dtrace_bymod == NULL) {
14870		/*
14871		 * The DTrace module is loaded (obviously) but not attached;
14872		 * we don't have any work to do.
14873		 */
14874		mutex_exit(&dtrace_provider_lock);
14875		mutex_exit(&mod_lock);
14876		mutex_exit(&dtrace_lock);
14877		return;
14878	}
14879
14880	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14881	    probe != NULL; probe = probe->dtpr_nextmod) {
14882		if (probe->dtpr_ecb != NULL) {
14883			mutex_exit(&dtrace_provider_lock);
14884			mutex_exit(&mod_lock);
14885			mutex_exit(&dtrace_lock);
14886
14887			/*
14888			 * This shouldn't _actually_ be possible -- we're
14889			 * unloading a module that has an enabled probe in it.
14890			 * (It's normally up to the provider to make sure that
14891			 * this can't happen.)  However, because dtps_enable()
14892			 * doesn't have a failure mode, there can be an
14893			 * enable/unload race.  Upshot:  we don't want to
14894			 * assert, but we're not going to disable the
14895			 * probe, either.
14896			 */
14897			if (dtrace_err_verbose) {
14898				cmn_err(CE_WARN, "unloaded module '%s' had "
14899				    "enabled probes", ctl->mod_modname);
14900			}
14901
14902			return;
14903		}
14904	}
14905
14906	probe = first;
14907
14908	for (first = NULL; probe != NULL; probe = next) {
14909		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14910
14911		dtrace_probes[probe->dtpr_id - 1] = NULL;
14912
14913		next = probe->dtpr_nextmod;
14914		dtrace_hash_remove(dtrace_bymod, probe);
14915		dtrace_hash_remove(dtrace_byfunc, probe);
14916		dtrace_hash_remove(dtrace_byname, probe);
14917
14918		if (first == NULL) {
14919			first = probe;
14920			probe->dtpr_nextmod = NULL;
14921		} else {
14922			probe->dtpr_nextmod = first;
14923			first = probe;
14924		}
14925	}
14926
14927	/*
14928	 * We've removed all of the module's probes from the hash chains and
14929	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14930	 * everyone has cleared out from any probe array processing.
14931	 */
14932	dtrace_sync();
14933
14934	for (probe = first; probe != NULL; probe = first) {
14935		first = probe->dtpr_nextmod;
14936		prov = probe->dtpr_provider;
14937		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14938		    probe->dtpr_arg);
14939		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14940		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14941		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14942		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14943		kmem_free(probe, sizeof (dtrace_probe_t));
14944	}
14945
14946	mutex_exit(&dtrace_lock);
14947	mutex_exit(&mod_lock);
14948	mutex_exit(&dtrace_provider_lock);
14949}
14950
14951static void
14952dtrace_suspend(void)
14953{
14954	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14955}
14956
14957static void
14958dtrace_resume(void)
14959{
14960	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14961}
14962#endif
14963
14964static int
14965dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14966{
14967	ASSERT(MUTEX_HELD(&cpu_lock));
14968	mutex_enter(&dtrace_lock);
14969
14970	switch (what) {
14971	case CPU_CONFIG: {
14972		dtrace_state_t *state;
14973		dtrace_optval_t *opt, rs, c;
14974
14975		/*
14976		 * For now, we only allocate a new buffer for anonymous state.
14977		 */
14978		if ((state = dtrace_anon.dta_state) == NULL)
14979			break;
14980
14981		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14982			break;
14983
14984		opt = state->dts_options;
14985		c = opt[DTRACEOPT_CPU];
14986
14987		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14988			break;
14989
14990		/*
14991		 * Regardless of what the actual policy is, we're going to
14992		 * temporarily set our resize policy to be manual.  We're
14993		 * also going to temporarily set our CPU option to denote
14994		 * the newly configured CPU.
14995		 */
14996		rs = opt[DTRACEOPT_BUFRESIZE];
14997		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14998		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14999
15000		(void) dtrace_state_buffers(state);
15001
15002		opt[DTRACEOPT_BUFRESIZE] = rs;
15003		opt[DTRACEOPT_CPU] = c;
15004
15005		break;
15006	}
15007
15008	case CPU_UNCONFIG:
15009		/*
15010		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15011		 * buffer will be freed when the consumer exits.)
15012		 */
15013		break;
15014
15015	default:
15016		break;
15017	}
15018
15019	mutex_exit(&dtrace_lock);
15020	return (0);
15021}
15022
15023#if defined(sun)
15024static void
15025dtrace_cpu_setup_initial(processorid_t cpu)
15026{
15027	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15028}
15029#endif
15030
15031static void
15032dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15033{
15034	if (dtrace_toxranges >= dtrace_toxranges_max) {
15035		int osize, nsize;
15036		dtrace_toxrange_t *range;
15037
15038		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15039
15040		if (osize == 0) {
15041			ASSERT(dtrace_toxrange == NULL);
15042			ASSERT(dtrace_toxranges_max == 0);
15043			dtrace_toxranges_max = 1;
15044		} else {
15045			dtrace_toxranges_max <<= 1;
15046		}
15047
15048		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15049		range = kmem_zalloc(nsize, KM_SLEEP);
15050
15051		if (dtrace_toxrange != NULL) {
15052			ASSERT(osize != 0);
15053			bcopy(dtrace_toxrange, range, osize);
15054			kmem_free(dtrace_toxrange, osize);
15055		}
15056
15057		dtrace_toxrange = range;
15058	}
15059
15060	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15061	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15062
15063	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15064	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15065	dtrace_toxranges++;
15066}
15067
15068/*
15069 * DTrace Driver Cookbook Functions
15070 */
15071#if defined(sun)
15072/*ARGSUSED*/
15073static int
15074dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15075{
15076	dtrace_provider_id_t id;
15077	dtrace_state_t *state = NULL;
15078	dtrace_enabling_t *enab;
15079
15080	mutex_enter(&cpu_lock);
15081	mutex_enter(&dtrace_provider_lock);
15082	mutex_enter(&dtrace_lock);
15083
15084	if (ddi_soft_state_init(&dtrace_softstate,
15085	    sizeof (dtrace_state_t), 0) != 0) {
15086		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15087		mutex_exit(&cpu_lock);
15088		mutex_exit(&dtrace_provider_lock);
15089		mutex_exit(&dtrace_lock);
15090		return (DDI_FAILURE);
15091	}
15092
15093	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15094	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15095	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15096	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15097		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15098		ddi_remove_minor_node(devi, NULL);
15099		ddi_soft_state_fini(&dtrace_softstate);
15100		mutex_exit(&cpu_lock);
15101		mutex_exit(&dtrace_provider_lock);
15102		mutex_exit(&dtrace_lock);
15103		return (DDI_FAILURE);
15104	}
15105
15106	ddi_report_dev(devi);
15107	dtrace_devi = devi;
15108
15109	dtrace_modload = dtrace_module_loaded;
15110	dtrace_modunload = dtrace_module_unloaded;
15111	dtrace_cpu_init = dtrace_cpu_setup_initial;
15112	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15113	dtrace_helpers_fork = dtrace_helpers_duplicate;
15114	dtrace_cpustart_init = dtrace_suspend;
15115	dtrace_cpustart_fini = dtrace_resume;
15116	dtrace_debugger_init = dtrace_suspend;
15117	dtrace_debugger_fini = dtrace_resume;
15118
15119	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15120
15121	ASSERT(MUTEX_HELD(&cpu_lock));
15122
15123	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15124	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15125	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15126	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15127	    VM_SLEEP | VMC_IDENTIFIER);
15128	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15129	    1, INT_MAX, 0);
15130
15131	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15132	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15133	    NULL, NULL, NULL, NULL, NULL, 0);
15134
15135	ASSERT(MUTEX_HELD(&cpu_lock));
15136	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15137	    offsetof(dtrace_probe_t, dtpr_nextmod),
15138	    offsetof(dtrace_probe_t, dtpr_prevmod));
15139
15140	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15141	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15142	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15143
15144	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15145	    offsetof(dtrace_probe_t, dtpr_nextname),
15146	    offsetof(dtrace_probe_t, dtpr_prevname));
15147
15148	if (dtrace_retain_max < 1) {
15149		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15150		    "setting to 1", dtrace_retain_max);
15151		dtrace_retain_max = 1;
15152	}
15153
15154	/*
15155	 * Now discover our toxic ranges.
15156	 */
15157	dtrace_toxic_ranges(dtrace_toxrange_add);
15158
15159	/*
15160	 * Before we register ourselves as a provider to our own framework,
15161	 * we would like to assert that dtrace_provider is NULL -- but that's
15162	 * not true if we were loaded as a dependency of a DTrace provider.
15163	 * Once we've registered, we can assert that dtrace_provider is our
15164	 * pseudo provider.
15165	 */
15166	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15167	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15168
15169	ASSERT(dtrace_provider != NULL);
15170	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15171
15172	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15173	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15174	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15175	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15176	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15177	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15178
15179	dtrace_anon_property();
15180	mutex_exit(&cpu_lock);
15181
15182	/*
15183	 * If DTrace helper tracing is enabled, we need to allocate the
15184	 * trace buffer and initialize the values.
15185	 */
15186	if (dtrace_helptrace_enabled) {
15187		ASSERT(dtrace_helptrace_buffer == NULL);
15188		dtrace_helptrace_buffer =
15189		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15190		dtrace_helptrace_next = 0;
15191	}
15192
15193	/*
15194	 * If there are already providers, we must ask them to provide their
15195	 * probes, and then match any anonymous enabling against them.  Note
15196	 * that there should be no other retained enablings at this time:
15197	 * the only retained enablings at this time should be the anonymous
15198	 * enabling.
15199	 */
15200	if (dtrace_anon.dta_enabling != NULL) {
15201		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15202
15203		dtrace_enabling_provide(NULL);
15204		state = dtrace_anon.dta_state;
15205
15206		/*
15207		 * We couldn't hold cpu_lock across the above call to
15208		 * dtrace_enabling_provide(), but we must hold it to actually
15209		 * enable the probes.  We have to drop all of our locks, pick
15210		 * up cpu_lock, and regain our locks before matching the
15211		 * retained anonymous enabling.
15212		 */
15213		mutex_exit(&dtrace_lock);
15214		mutex_exit(&dtrace_provider_lock);
15215
15216		mutex_enter(&cpu_lock);
15217		mutex_enter(&dtrace_provider_lock);
15218		mutex_enter(&dtrace_lock);
15219
15220		if ((enab = dtrace_anon.dta_enabling) != NULL)
15221			(void) dtrace_enabling_match(enab, NULL);
15222
15223		mutex_exit(&cpu_lock);
15224	}
15225
15226	mutex_exit(&dtrace_lock);
15227	mutex_exit(&dtrace_provider_lock);
15228
15229	if (state != NULL) {
15230		/*
15231		 * If we created any anonymous state, set it going now.
15232		 */
15233		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15234	}
15235
15236	return (DDI_SUCCESS);
15237}
15238#endif
15239
15240#if !defined(sun)
15241#if __FreeBSD_version >= 800039
15242static void
15243dtrace_dtr(void *data __unused)
15244{
15245}
15246#endif
15247#endif
15248
15249/*ARGSUSED*/
15250static int
15251#if defined(sun)
15252dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15253#else
15254dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15255#endif
15256{
15257	dtrace_state_t *state;
15258	uint32_t priv;
15259	uid_t uid;
15260	zoneid_t zoneid;
15261
15262#if defined(sun)
15263	if (getminor(*devp) == DTRACEMNRN_HELPER)
15264		return (0);
15265
15266	/*
15267	 * If this wasn't an open with the "helper" minor, then it must be
15268	 * the "dtrace" minor.
15269	 */
15270	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15271#else
15272	cred_t *cred_p = NULL;
15273
15274#if __FreeBSD_version < 800039
15275	/*
15276	 * The first minor device is the one that is cloned so there is
15277	 * nothing more to do here.
15278	 */
15279	if (dev2unit(dev) == 0)
15280		return 0;
15281
15282	/*
15283	 * Devices are cloned, so if the DTrace state has already
15284	 * been allocated, that means this device belongs to a
15285	 * different client. Each client should open '/dev/dtrace'
15286	 * to get a cloned device.
15287	 */
15288	if (dev->si_drv1 != NULL)
15289		return (EBUSY);
15290#endif
15291
15292	cred_p = dev->si_cred;
15293#endif
15294
15295	/*
15296	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15297	 * caller lacks sufficient permission to do anything with DTrace.
15298	 */
15299	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15300	if (priv == DTRACE_PRIV_NONE) {
15301#if !defined(sun)
15302#if __FreeBSD_version < 800039
15303		/* Destroy the cloned device. */
15304                destroy_dev(dev);
15305#endif
15306#endif
15307
15308		return (EACCES);
15309	}
15310
15311	/*
15312	 * Ask all providers to provide all their probes.
15313	 */
15314	mutex_enter(&dtrace_provider_lock);
15315	dtrace_probe_provide(NULL, NULL);
15316	mutex_exit(&dtrace_provider_lock);
15317
15318	mutex_enter(&cpu_lock);
15319	mutex_enter(&dtrace_lock);
15320	dtrace_opens++;
15321	dtrace_membar_producer();
15322
15323#if defined(sun)
15324	/*
15325	 * If the kernel debugger is active (that is, if the kernel debugger
15326	 * modified text in some way), we won't allow the open.
15327	 */
15328	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15329		dtrace_opens--;
15330		mutex_exit(&cpu_lock);
15331		mutex_exit(&dtrace_lock);
15332		return (EBUSY);
15333	}
15334
15335	state = dtrace_state_create(devp, cred_p);
15336#else
15337	state = dtrace_state_create(dev);
15338#if __FreeBSD_version < 800039
15339	dev->si_drv1 = state;
15340#else
15341	devfs_set_cdevpriv(state, dtrace_dtr);
15342#endif
15343#endif
15344
15345	mutex_exit(&cpu_lock);
15346
15347	if (state == NULL) {
15348#if defined(sun)
15349		if (--dtrace_opens == 0)
15350			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15351#else
15352		--dtrace_opens;
15353#endif
15354		mutex_exit(&dtrace_lock);
15355#if !defined(sun)
15356#if __FreeBSD_version < 800039
15357		/* Destroy the cloned device. */
15358                destroy_dev(dev);
15359#endif
15360#endif
15361		return (EAGAIN);
15362	}
15363
15364	mutex_exit(&dtrace_lock);
15365
15366	return (0);
15367}
15368
15369/*ARGSUSED*/
15370static int
15371#if defined(sun)
15372dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15373#else
15374dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15375#endif
15376{
15377#if defined(sun)
15378	minor_t minor = getminor(dev);
15379	dtrace_state_t *state;
15380
15381	if (minor == DTRACEMNRN_HELPER)
15382		return (0);
15383
15384	state = ddi_get_soft_state(dtrace_softstate, minor);
15385#else
15386#if __FreeBSD_version < 800039
15387	dtrace_state_t *state = dev->si_drv1;
15388
15389	/* Check if this is not a cloned device. */
15390	if (dev2unit(dev) == 0)
15391		return (0);
15392#else
15393	dtrace_state_t *state;
15394	devfs_get_cdevpriv((void **) &state);
15395#endif
15396
15397#endif
15398
15399	mutex_enter(&cpu_lock);
15400	mutex_enter(&dtrace_lock);
15401
15402	if (state != NULL) {
15403		if (state->dts_anon) {
15404			/*
15405			 * There is anonymous state. Destroy that first.
15406			 */
15407			ASSERT(dtrace_anon.dta_state == NULL);
15408			dtrace_state_destroy(state->dts_anon);
15409		}
15410
15411		dtrace_state_destroy(state);
15412
15413#if !defined(sun)
15414		kmem_free(state, 0);
15415#if __FreeBSD_version < 800039
15416		dev->si_drv1 = NULL;
15417#else
15418		devfs_clear_cdevpriv();
15419#endif
15420#endif
15421	}
15422
15423	ASSERT(dtrace_opens > 0);
15424#if defined(sun)
15425	if (--dtrace_opens == 0)
15426		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15427#else
15428	--dtrace_opens;
15429#endif
15430
15431	mutex_exit(&dtrace_lock);
15432	mutex_exit(&cpu_lock);
15433
15434#if __FreeBSD_version < 800039
15435	/* Schedule this cloned device to be destroyed. */
15436	destroy_dev_sched(dev);
15437#endif
15438
15439	return (0);
15440}
15441
15442#if defined(sun)
15443/*ARGSUSED*/
15444static int
15445dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15446{
15447	int rval;
15448	dof_helper_t help, *dhp = NULL;
15449
15450	switch (cmd) {
15451	case DTRACEHIOC_ADDDOF:
15452		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15453			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15454			return (EFAULT);
15455		}
15456
15457		dhp = &help;
15458		arg = (intptr_t)help.dofhp_dof;
15459		/*FALLTHROUGH*/
15460
15461	case DTRACEHIOC_ADD: {
15462		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15463
15464		if (dof == NULL)
15465			return (rval);
15466
15467		mutex_enter(&dtrace_lock);
15468
15469		/*
15470		 * dtrace_helper_slurp() takes responsibility for the dof --
15471		 * it may free it now or it may save it and free it later.
15472		 */
15473		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15474			*rv = rval;
15475			rval = 0;
15476		} else {
15477			rval = EINVAL;
15478		}
15479
15480		mutex_exit(&dtrace_lock);
15481		return (rval);
15482	}
15483
15484	case DTRACEHIOC_REMOVE: {
15485		mutex_enter(&dtrace_lock);
15486		rval = dtrace_helper_destroygen(arg);
15487		mutex_exit(&dtrace_lock);
15488
15489		return (rval);
15490	}
15491
15492	default:
15493		break;
15494	}
15495
15496	return (ENOTTY);
15497}
15498
15499/*ARGSUSED*/
15500static int
15501dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15502{
15503	minor_t minor = getminor(dev);
15504	dtrace_state_t *state;
15505	int rval;
15506
15507	if (minor == DTRACEMNRN_HELPER)
15508		return (dtrace_ioctl_helper(cmd, arg, rv));
15509
15510	state = ddi_get_soft_state(dtrace_softstate, minor);
15511
15512	if (state->dts_anon) {
15513		ASSERT(dtrace_anon.dta_state == NULL);
15514		state = state->dts_anon;
15515	}
15516
15517	switch (cmd) {
15518	case DTRACEIOC_PROVIDER: {
15519		dtrace_providerdesc_t pvd;
15520		dtrace_provider_t *pvp;
15521
15522		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15523			return (EFAULT);
15524
15525		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15526		mutex_enter(&dtrace_provider_lock);
15527
15528		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15529			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15530				break;
15531		}
15532
15533		mutex_exit(&dtrace_provider_lock);
15534
15535		if (pvp == NULL)
15536			return (ESRCH);
15537
15538		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15539		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15540
15541		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15542			return (EFAULT);
15543
15544		return (0);
15545	}
15546
15547	case DTRACEIOC_EPROBE: {
15548		dtrace_eprobedesc_t epdesc;
15549		dtrace_ecb_t *ecb;
15550		dtrace_action_t *act;
15551		void *buf;
15552		size_t size;
15553		uintptr_t dest;
15554		int nrecs;
15555
15556		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15557			return (EFAULT);
15558
15559		mutex_enter(&dtrace_lock);
15560
15561		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15562			mutex_exit(&dtrace_lock);
15563			return (EINVAL);
15564		}
15565
15566		if (ecb->dte_probe == NULL) {
15567			mutex_exit(&dtrace_lock);
15568			return (EINVAL);
15569		}
15570
15571		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15572		epdesc.dtepd_uarg = ecb->dte_uarg;
15573		epdesc.dtepd_size = ecb->dte_size;
15574
15575		nrecs = epdesc.dtepd_nrecs;
15576		epdesc.dtepd_nrecs = 0;
15577		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15578			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15579				continue;
15580
15581			epdesc.dtepd_nrecs++;
15582		}
15583
15584		/*
15585		 * Now that we have the size, we need to allocate a temporary
15586		 * buffer in which to store the complete description.  We need
15587		 * the temporary buffer to be able to drop dtrace_lock()
15588		 * across the copyout(), below.
15589		 */
15590		size = sizeof (dtrace_eprobedesc_t) +
15591		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15592
15593		buf = kmem_alloc(size, KM_SLEEP);
15594		dest = (uintptr_t)buf;
15595
15596		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15597		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15598
15599		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15600			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15601				continue;
15602
15603			if (nrecs-- == 0)
15604				break;
15605
15606			bcopy(&act->dta_rec, (void *)dest,
15607			    sizeof (dtrace_recdesc_t));
15608			dest += sizeof (dtrace_recdesc_t);
15609		}
15610
15611		mutex_exit(&dtrace_lock);
15612
15613		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15614			kmem_free(buf, size);
15615			return (EFAULT);
15616		}
15617
15618		kmem_free(buf, size);
15619		return (0);
15620	}
15621
15622	case DTRACEIOC_AGGDESC: {
15623		dtrace_aggdesc_t aggdesc;
15624		dtrace_action_t *act;
15625		dtrace_aggregation_t *agg;
15626		int nrecs;
15627		uint32_t offs;
15628		dtrace_recdesc_t *lrec;
15629		void *buf;
15630		size_t size;
15631		uintptr_t dest;
15632
15633		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15634			return (EFAULT);
15635
15636		mutex_enter(&dtrace_lock);
15637
15638		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15639			mutex_exit(&dtrace_lock);
15640			return (EINVAL);
15641		}
15642
15643		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15644
15645		nrecs = aggdesc.dtagd_nrecs;
15646		aggdesc.dtagd_nrecs = 0;
15647
15648		offs = agg->dtag_base;
15649		lrec = &agg->dtag_action.dta_rec;
15650		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15651
15652		for (act = agg->dtag_first; ; act = act->dta_next) {
15653			ASSERT(act->dta_intuple ||
15654			    DTRACEACT_ISAGG(act->dta_kind));
15655
15656			/*
15657			 * If this action has a record size of zero, it
15658			 * denotes an argument to the aggregating action.
15659			 * Because the presence of this record doesn't (or
15660			 * shouldn't) affect the way the data is interpreted,
15661			 * we don't copy it out to save user-level the
15662			 * confusion of dealing with a zero-length record.
15663			 */
15664			if (act->dta_rec.dtrd_size == 0) {
15665				ASSERT(agg->dtag_hasarg);
15666				continue;
15667			}
15668
15669			aggdesc.dtagd_nrecs++;
15670
15671			if (act == &agg->dtag_action)
15672				break;
15673		}
15674
15675		/*
15676		 * Now that we have the size, we need to allocate a temporary
15677		 * buffer in which to store the complete description.  We need
15678		 * the temporary buffer to be able to drop dtrace_lock()
15679		 * across the copyout(), below.
15680		 */
15681		size = sizeof (dtrace_aggdesc_t) +
15682		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15683
15684		buf = kmem_alloc(size, KM_SLEEP);
15685		dest = (uintptr_t)buf;
15686
15687		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15688		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15689
15690		for (act = agg->dtag_first; ; act = act->dta_next) {
15691			dtrace_recdesc_t rec = act->dta_rec;
15692
15693			/*
15694			 * See the comment in the above loop for why we pass
15695			 * over zero-length records.
15696			 */
15697			if (rec.dtrd_size == 0) {
15698				ASSERT(agg->dtag_hasarg);
15699				continue;
15700			}
15701
15702			if (nrecs-- == 0)
15703				break;
15704
15705			rec.dtrd_offset -= offs;
15706			bcopy(&rec, (void *)dest, sizeof (rec));
15707			dest += sizeof (dtrace_recdesc_t);
15708
15709			if (act == &agg->dtag_action)
15710				break;
15711		}
15712
15713		mutex_exit(&dtrace_lock);
15714
15715		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15716			kmem_free(buf, size);
15717			return (EFAULT);
15718		}
15719
15720		kmem_free(buf, size);
15721		return (0);
15722	}
15723
15724	case DTRACEIOC_ENABLE: {
15725		dof_hdr_t *dof;
15726		dtrace_enabling_t *enab = NULL;
15727		dtrace_vstate_t *vstate;
15728		int err = 0;
15729
15730		*rv = 0;
15731
15732		/*
15733		 * If a NULL argument has been passed, we take this as our
15734		 * cue to reevaluate our enablings.
15735		 */
15736		if (arg == NULL) {
15737			dtrace_enabling_matchall();
15738
15739			return (0);
15740		}
15741
15742		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15743			return (rval);
15744
15745		mutex_enter(&cpu_lock);
15746		mutex_enter(&dtrace_lock);
15747		vstate = &state->dts_vstate;
15748
15749		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15750			mutex_exit(&dtrace_lock);
15751			mutex_exit(&cpu_lock);
15752			dtrace_dof_destroy(dof);
15753			return (EBUSY);
15754		}
15755
15756		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15757			mutex_exit(&dtrace_lock);
15758			mutex_exit(&cpu_lock);
15759			dtrace_dof_destroy(dof);
15760			return (EINVAL);
15761		}
15762
15763		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15764			dtrace_enabling_destroy(enab);
15765			mutex_exit(&dtrace_lock);
15766			mutex_exit(&cpu_lock);
15767			dtrace_dof_destroy(dof);
15768			return (rval);
15769		}
15770
15771		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15772			err = dtrace_enabling_retain(enab);
15773		} else {
15774			dtrace_enabling_destroy(enab);
15775		}
15776
15777		mutex_exit(&cpu_lock);
15778		mutex_exit(&dtrace_lock);
15779		dtrace_dof_destroy(dof);
15780
15781		return (err);
15782	}
15783
15784	case DTRACEIOC_REPLICATE: {
15785		dtrace_repldesc_t desc;
15786		dtrace_probedesc_t *match = &desc.dtrpd_match;
15787		dtrace_probedesc_t *create = &desc.dtrpd_create;
15788		int err;
15789
15790		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15791			return (EFAULT);
15792
15793		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15794		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15795		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15796		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15797
15798		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15799		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15800		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15801		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15802
15803		mutex_enter(&dtrace_lock);
15804		err = dtrace_enabling_replicate(state, match, create);
15805		mutex_exit(&dtrace_lock);
15806
15807		return (err);
15808	}
15809
15810	case DTRACEIOC_PROBEMATCH:
15811	case DTRACEIOC_PROBES: {
15812		dtrace_probe_t *probe = NULL;
15813		dtrace_probedesc_t desc;
15814		dtrace_probekey_t pkey;
15815		dtrace_id_t i;
15816		int m = 0;
15817		uint32_t priv;
15818		uid_t uid;
15819		zoneid_t zoneid;
15820
15821		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15822			return (EFAULT);
15823
15824		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15825		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15826		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15827		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15828
15829		/*
15830		 * Before we attempt to match this probe, we want to give
15831		 * all providers the opportunity to provide it.
15832		 */
15833		if (desc.dtpd_id == DTRACE_IDNONE) {
15834			mutex_enter(&dtrace_provider_lock);
15835			dtrace_probe_provide(&desc, NULL);
15836			mutex_exit(&dtrace_provider_lock);
15837			desc.dtpd_id++;
15838		}
15839
15840		if (cmd == DTRACEIOC_PROBEMATCH)  {
15841			dtrace_probekey(&desc, &pkey);
15842			pkey.dtpk_id = DTRACE_IDNONE;
15843		}
15844
15845		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15846
15847		mutex_enter(&dtrace_lock);
15848
15849		if (cmd == DTRACEIOC_PROBEMATCH) {
15850			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15851				if ((probe = dtrace_probes[i - 1]) != NULL &&
15852				    (m = dtrace_match_probe(probe, &pkey,
15853				    priv, uid, zoneid)) != 0)
15854					break;
15855			}
15856
15857			if (m < 0) {
15858				mutex_exit(&dtrace_lock);
15859				return (EINVAL);
15860			}
15861
15862		} else {
15863			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15864				if ((probe = dtrace_probes[i - 1]) != NULL &&
15865				    dtrace_match_priv(probe, priv, uid, zoneid))
15866					break;
15867			}
15868		}
15869
15870		if (probe == NULL) {
15871			mutex_exit(&dtrace_lock);
15872			return (ESRCH);
15873		}
15874
15875		dtrace_probe_description(probe, &desc);
15876		mutex_exit(&dtrace_lock);
15877
15878		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15879			return (EFAULT);
15880
15881		return (0);
15882	}
15883
15884	case DTRACEIOC_PROBEARG: {
15885		dtrace_argdesc_t desc;
15886		dtrace_probe_t *probe;
15887		dtrace_provider_t *prov;
15888
15889		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15890			return (EFAULT);
15891
15892		if (desc.dtargd_id == DTRACE_IDNONE)
15893			return (EINVAL);
15894
15895		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15896			return (EINVAL);
15897
15898		mutex_enter(&dtrace_provider_lock);
15899		mutex_enter(&mod_lock);
15900		mutex_enter(&dtrace_lock);
15901
15902		if (desc.dtargd_id > dtrace_nprobes) {
15903			mutex_exit(&dtrace_lock);
15904			mutex_exit(&mod_lock);
15905			mutex_exit(&dtrace_provider_lock);
15906			return (EINVAL);
15907		}
15908
15909		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15910			mutex_exit(&dtrace_lock);
15911			mutex_exit(&mod_lock);
15912			mutex_exit(&dtrace_provider_lock);
15913			return (EINVAL);
15914		}
15915
15916		mutex_exit(&dtrace_lock);
15917
15918		prov = probe->dtpr_provider;
15919
15920		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15921			/*
15922			 * There isn't any typed information for this probe.
15923			 * Set the argument number to DTRACE_ARGNONE.
15924			 */
15925			desc.dtargd_ndx = DTRACE_ARGNONE;
15926		} else {
15927			desc.dtargd_native[0] = '\0';
15928			desc.dtargd_xlate[0] = '\0';
15929			desc.dtargd_mapping = desc.dtargd_ndx;
15930
15931			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15932			    probe->dtpr_id, probe->dtpr_arg, &desc);
15933		}
15934
15935		mutex_exit(&mod_lock);
15936		mutex_exit(&dtrace_provider_lock);
15937
15938		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15939			return (EFAULT);
15940
15941		return (0);
15942	}
15943
15944	case DTRACEIOC_GO: {
15945		processorid_t cpuid;
15946		rval = dtrace_state_go(state, &cpuid);
15947
15948		if (rval != 0)
15949			return (rval);
15950
15951		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15952			return (EFAULT);
15953
15954		return (0);
15955	}
15956
15957	case DTRACEIOC_STOP: {
15958		processorid_t cpuid;
15959
15960		mutex_enter(&dtrace_lock);
15961		rval = dtrace_state_stop(state, &cpuid);
15962		mutex_exit(&dtrace_lock);
15963
15964		if (rval != 0)
15965			return (rval);
15966
15967		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15968			return (EFAULT);
15969
15970		return (0);
15971	}
15972
15973	case DTRACEIOC_DOFGET: {
15974		dof_hdr_t hdr, *dof;
15975		uint64_t len;
15976
15977		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15978			return (EFAULT);
15979
15980		mutex_enter(&dtrace_lock);
15981		dof = dtrace_dof_create(state);
15982		mutex_exit(&dtrace_lock);
15983
15984		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15985		rval = copyout(dof, (void *)arg, len);
15986		dtrace_dof_destroy(dof);
15987
15988		return (rval == 0 ? 0 : EFAULT);
15989	}
15990
15991	case DTRACEIOC_AGGSNAP:
15992	case DTRACEIOC_BUFSNAP: {
15993		dtrace_bufdesc_t desc;
15994		caddr_t cached;
15995		dtrace_buffer_t *buf;
15996
15997		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15998			return (EFAULT);
15999
16000		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16001			return (EINVAL);
16002
16003		mutex_enter(&dtrace_lock);
16004
16005		if (cmd == DTRACEIOC_BUFSNAP) {
16006			buf = &state->dts_buffer[desc.dtbd_cpu];
16007		} else {
16008			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16009		}
16010
16011		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16012			size_t sz = buf->dtb_offset;
16013
16014			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16015				mutex_exit(&dtrace_lock);
16016				return (EBUSY);
16017			}
16018
16019			/*
16020			 * If this buffer has already been consumed, we're
16021			 * going to indicate that there's nothing left here
16022			 * to consume.
16023			 */
16024			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16025				mutex_exit(&dtrace_lock);
16026
16027				desc.dtbd_size = 0;
16028				desc.dtbd_drops = 0;
16029				desc.dtbd_errors = 0;
16030				desc.dtbd_oldest = 0;
16031				sz = sizeof (desc);
16032
16033				if (copyout(&desc, (void *)arg, sz) != 0)
16034					return (EFAULT);
16035
16036				return (0);
16037			}
16038
16039			/*
16040			 * If this is a ring buffer that has wrapped, we want
16041			 * to copy the whole thing out.
16042			 */
16043			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16044				dtrace_buffer_polish(buf);
16045				sz = buf->dtb_size;
16046			}
16047
16048			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16049				mutex_exit(&dtrace_lock);
16050				return (EFAULT);
16051			}
16052
16053			desc.dtbd_size = sz;
16054			desc.dtbd_drops = buf->dtb_drops;
16055			desc.dtbd_errors = buf->dtb_errors;
16056			desc.dtbd_oldest = buf->dtb_xamot_offset;
16057
16058			mutex_exit(&dtrace_lock);
16059
16060			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16061				return (EFAULT);
16062
16063			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16064
16065			return (0);
16066		}
16067
16068		if (buf->dtb_tomax == NULL) {
16069			ASSERT(buf->dtb_xamot == NULL);
16070			mutex_exit(&dtrace_lock);
16071			return (ENOENT);
16072		}
16073
16074		cached = buf->dtb_tomax;
16075		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16076
16077		dtrace_xcall(desc.dtbd_cpu,
16078		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16079
16080		state->dts_errors += buf->dtb_xamot_errors;
16081
16082		/*
16083		 * If the buffers did not actually switch, then the cross call
16084		 * did not take place -- presumably because the given CPU is
16085		 * not in the ready set.  If this is the case, we'll return
16086		 * ENOENT.
16087		 */
16088		if (buf->dtb_tomax == cached) {
16089			ASSERT(buf->dtb_xamot != cached);
16090			mutex_exit(&dtrace_lock);
16091			return (ENOENT);
16092		}
16093
16094		ASSERT(cached == buf->dtb_xamot);
16095
16096		/*
16097		 * We have our snapshot; now copy it out.
16098		 */
16099		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16100		    buf->dtb_xamot_offset) != 0) {
16101			mutex_exit(&dtrace_lock);
16102			return (EFAULT);
16103		}
16104
16105		desc.dtbd_size = buf->dtb_xamot_offset;
16106		desc.dtbd_drops = buf->dtb_xamot_drops;
16107		desc.dtbd_errors = buf->dtb_xamot_errors;
16108		desc.dtbd_oldest = 0;
16109
16110		mutex_exit(&dtrace_lock);
16111
16112		/*
16113		 * Finally, copy out the buffer description.
16114		 */
16115		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16116			return (EFAULT);
16117
16118		return (0);
16119	}
16120
16121	case DTRACEIOC_CONF: {
16122		dtrace_conf_t conf;
16123
16124		bzero(&conf, sizeof (conf));
16125		conf.dtc_difversion = DIF_VERSION;
16126		conf.dtc_difintregs = DIF_DIR_NREGS;
16127		conf.dtc_diftupregs = DIF_DTR_NREGS;
16128		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16129
16130		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16131			return (EFAULT);
16132
16133		return (0);
16134	}
16135
16136	case DTRACEIOC_STATUS: {
16137		dtrace_status_t stat;
16138		dtrace_dstate_t *dstate;
16139		int i, j;
16140		uint64_t nerrs;
16141
16142		/*
16143		 * See the comment in dtrace_state_deadman() for the reason
16144		 * for setting dts_laststatus to INT64_MAX before setting
16145		 * it to the correct value.
16146		 */
16147		state->dts_laststatus = INT64_MAX;
16148		dtrace_membar_producer();
16149		state->dts_laststatus = dtrace_gethrtime();
16150
16151		bzero(&stat, sizeof (stat));
16152
16153		mutex_enter(&dtrace_lock);
16154
16155		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16156			mutex_exit(&dtrace_lock);
16157			return (ENOENT);
16158		}
16159
16160		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16161			stat.dtst_exiting = 1;
16162
16163		nerrs = state->dts_errors;
16164		dstate = &state->dts_vstate.dtvs_dynvars;
16165
16166		for (i = 0; i < NCPU; i++) {
16167			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16168
16169			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16170			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16171			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16172
16173			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16174				stat.dtst_filled++;
16175
16176			nerrs += state->dts_buffer[i].dtb_errors;
16177
16178			for (j = 0; j < state->dts_nspeculations; j++) {
16179				dtrace_speculation_t *spec;
16180				dtrace_buffer_t *buf;
16181
16182				spec = &state->dts_speculations[j];
16183				buf = &spec->dtsp_buffer[i];
16184				stat.dtst_specdrops += buf->dtb_xamot_drops;
16185			}
16186		}
16187
16188		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16189		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16190		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16191		stat.dtst_dblerrors = state->dts_dblerrors;
16192		stat.dtst_killed =
16193		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16194		stat.dtst_errors = nerrs;
16195
16196		mutex_exit(&dtrace_lock);
16197
16198		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16199			return (EFAULT);
16200
16201		return (0);
16202	}
16203
16204	case DTRACEIOC_FORMAT: {
16205		dtrace_fmtdesc_t fmt;
16206		char *str;
16207		int len;
16208
16209		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16210			return (EFAULT);
16211
16212		mutex_enter(&dtrace_lock);
16213
16214		if (fmt.dtfd_format == 0 ||
16215		    fmt.dtfd_format > state->dts_nformats) {
16216			mutex_exit(&dtrace_lock);
16217			return (EINVAL);
16218		}
16219
16220		/*
16221		 * Format strings are allocated contiguously and they are
16222		 * never freed; if a format index is less than the number
16223		 * of formats, we can assert that the format map is non-NULL
16224		 * and that the format for the specified index is non-NULL.
16225		 */
16226		ASSERT(state->dts_formats != NULL);
16227		str = state->dts_formats[fmt.dtfd_format - 1];
16228		ASSERT(str != NULL);
16229
16230		len = strlen(str) + 1;
16231
16232		if (len > fmt.dtfd_length) {
16233			fmt.dtfd_length = len;
16234
16235			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16236				mutex_exit(&dtrace_lock);
16237				return (EINVAL);
16238			}
16239		} else {
16240			if (copyout(str, fmt.dtfd_string, len) != 0) {
16241				mutex_exit(&dtrace_lock);
16242				return (EINVAL);
16243			}
16244		}
16245
16246		mutex_exit(&dtrace_lock);
16247		return (0);
16248	}
16249
16250	default:
16251		break;
16252	}
16253
16254	return (ENOTTY);
16255}
16256
16257/*ARGSUSED*/
16258static int
16259dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16260{
16261	dtrace_state_t *state;
16262
16263	switch (cmd) {
16264	case DDI_DETACH:
16265		break;
16266
16267	case DDI_SUSPEND:
16268		return (DDI_SUCCESS);
16269
16270	default:
16271		return (DDI_FAILURE);
16272	}
16273
16274	mutex_enter(&cpu_lock);
16275	mutex_enter(&dtrace_provider_lock);
16276	mutex_enter(&dtrace_lock);
16277
16278	ASSERT(dtrace_opens == 0);
16279
16280	if (dtrace_helpers > 0) {
16281		mutex_exit(&dtrace_provider_lock);
16282		mutex_exit(&dtrace_lock);
16283		mutex_exit(&cpu_lock);
16284		return (DDI_FAILURE);
16285	}
16286
16287	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16288		mutex_exit(&dtrace_provider_lock);
16289		mutex_exit(&dtrace_lock);
16290		mutex_exit(&cpu_lock);
16291		return (DDI_FAILURE);
16292	}
16293
16294	dtrace_provider = NULL;
16295
16296	if ((state = dtrace_anon_grab()) != NULL) {
16297		/*
16298		 * If there were ECBs on this state, the provider should
16299		 * have not been allowed to detach; assert that there is
16300		 * none.
16301		 */
16302		ASSERT(state->dts_necbs == 0);
16303		dtrace_state_destroy(state);
16304
16305		/*
16306		 * If we're being detached with anonymous state, we need to
16307		 * indicate to the kernel debugger that DTrace is now inactive.
16308		 */
16309		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16310	}
16311
16312	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16313	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16314	dtrace_cpu_init = NULL;
16315	dtrace_helpers_cleanup = NULL;
16316	dtrace_helpers_fork = NULL;
16317	dtrace_cpustart_init = NULL;
16318	dtrace_cpustart_fini = NULL;
16319	dtrace_debugger_init = NULL;
16320	dtrace_debugger_fini = NULL;
16321	dtrace_modload = NULL;
16322	dtrace_modunload = NULL;
16323
16324	mutex_exit(&cpu_lock);
16325
16326	if (dtrace_helptrace_enabled) {
16327		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16328		dtrace_helptrace_buffer = NULL;
16329	}
16330
16331	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16332	dtrace_probes = NULL;
16333	dtrace_nprobes = 0;
16334
16335	dtrace_hash_destroy(dtrace_bymod);
16336	dtrace_hash_destroy(dtrace_byfunc);
16337	dtrace_hash_destroy(dtrace_byname);
16338	dtrace_bymod = NULL;
16339	dtrace_byfunc = NULL;
16340	dtrace_byname = NULL;
16341
16342	kmem_cache_destroy(dtrace_state_cache);
16343	vmem_destroy(dtrace_minor);
16344	vmem_destroy(dtrace_arena);
16345
16346	if (dtrace_toxrange != NULL) {
16347		kmem_free(dtrace_toxrange,
16348		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16349		dtrace_toxrange = NULL;
16350		dtrace_toxranges = 0;
16351		dtrace_toxranges_max = 0;
16352	}
16353
16354	ddi_remove_minor_node(dtrace_devi, NULL);
16355	dtrace_devi = NULL;
16356
16357	ddi_soft_state_fini(&dtrace_softstate);
16358
16359	ASSERT(dtrace_vtime_references == 0);
16360	ASSERT(dtrace_opens == 0);
16361	ASSERT(dtrace_retained == NULL);
16362
16363	mutex_exit(&dtrace_lock);
16364	mutex_exit(&dtrace_provider_lock);
16365
16366	/*
16367	 * We don't destroy the task queue until after we have dropped our
16368	 * locks (taskq_destroy() may block on running tasks).  To prevent
16369	 * attempting to do work after we have effectively detached but before
16370	 * the task queue has been destroyed, all tasks dispatched via the
16371	 * task queue must check that DTrace is still attached before
16372	 * performing any operation.
16373	 */
16374	taskq_destroy(dtrace_taskq);
16375	dtrace_taskq = NULL;
16376
16377	return (DDI_SUCCESS);
16378}
16379#endif
16380
16381#if defined(sun)
16382/*ARGSUSED*/
16383static int
16384dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16385{
16386	int error;
16387
16388	switch (infocmd) {
16389	case DDI_INFO_DEVT2DEVINFO:
16390		*result = (void *)dtrace_devi;
16391		error = DDI_SUCCESS;
16392		break;
16393	case DDI_INFO_DEVT2INSTANCE:
16394		*result = (void *)0;
16395		error = DDI_SUCCESS;
16396		break;
16397	default:
16398		error = DDI_FAILURE;
16399	}
16400	return (error);
16401}
16402#endif
16403
16404#if defined(sun)
16405static struct cb_ops dtrace_cb_ops = {
16406	dtrace_open,		/* open */
16407	dtrace_close,		/* close */
16408	nulldev,		/* strategy */
16409	nulldev,		/* print */
16410	nodev,			/* dump */
16411	nodev,			/* read */
16412	nodev,			/* write */
16413	dtrace_ioctl,		/* ioctl */
16414	nodev,			/* devmap */
16415	nodev,			/* mmap */
16416	nodev,			/* segmap */
16417	nochpoll,		/* poll */
16418	ddi_prop_op,		/* cb_prop_op */
16419	0,			/* streamtab  */
16420	D_NEW | D_MP		/* Driver compatibility flag */
16421};
16422
16423static struct dev_ops dtrace_ops = {
16424	DEVO_REV,		/* devo_rev */
16425	0,			/* refcnt */
16426	dtrace_info,		/* get_dev_info */
16427	nulldev,		/* identify */
16428	nulldev,		/* probe */
16429	dtrace_attach,		/* attach */
16430	dtrace_detach,		/* detach */
16431	nodev,			/* reset */
16432	&dtrace_cb_ops,		/* driver operations */
16433	NULL,			/* bus operations */
16434	nodev			/* dev power */
16435};
16436
16437static struct modldrv modldrv = {
16438	&mod_driverops,		/* module type (this is a pseudo driver) */
16439	"Dynamic Tracing",	/* name of module */
16440	&dtrace_ops,		/* driver ops */
16441};
16442
16443static struct modlinkage modlinkage = {
16444	MODREV_1,
16445	(void *)&modldrv,
16446	NULL
16447};
16448
16449int
16450_init(void)
16451{
16452	return (mod_install(&modlinkage));
16453}
16454
16455int
16456_info(struct modinfo *modinfop)
16457{
16458	return (mod_info(&modlinkage, modinfop));
16459}
16460
16461int
16462_fini(void)
16463{
16464	return (mod_remove(&modlinkage));
16465}
16466#else
16467
16468static d_ioctl_t	dtrace_ioctl;
16469static d_ioctl_t	dtrace_ioctl_helper;
16470static void		dtrace_load(void *);
16471static int		dtrace_unload(void);
16472#if __FreeBSD_version < 800039
16473static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16474static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16475static eventhandler_tag	eh_tag;			/* Event handler tag. */
16476#else
16477static struct cdev	*dtrace_dev;
16478static struct cdev	*helper_dev;
16479#endif
16480
16481void dtrace_invop_init(void);
16482void dtrace_invop_uninit(void);
16483
16484static struct cdevsw dtrace_cdevsw = {
16485	.d_version	= D_VERSION,
16486	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16487	.d_close	= dtrace_close,
16488	.d_ioctl	= dtrace_ioctl,
16489	.d_open		= dtrace_open,
16490	.d_name		= "dtrace",
16491};
16492
16493static struct cdevsw helper_cdevsw = {
16494	.d_version	= D_VERSION,
16495	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16496	.d_ioctl	= dtrace_ioctl_helper,
16497	.d_name		= "helper",
16498};
16499
16500#include <dtrace_anon.c>
16501#if __FreeBSD_version < 800039
16502#include <dtrace_clone.c>
16503#endif
16504#include <dtrace_ioctl.c>
16505#include <dtrace_load.c>
16506#include <dtrace_modevent.c>
16507#include <dtrace_sysctl.c>
16508#include <dtrace_unload.c>
16509#include <dtrace_vtime.c>
16510#include <dtrace_hacks.c>
16511#include <dtrace_isa.c>
16512
16513SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16514SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16515SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16516
16517DEV_MODULE(dtrace, dtrace_modevent, NULL);
16518MODULE_VERSION(dtrace, 1);
16519MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16520MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16521#endif
16522