dtrace.c revision 211608
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: head/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 211608 2010-08-22 10:53:32Z rpaulo $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * DTrace - Dynamic Tracing for Solaris
33 *
34 * This is the implementation of the Solaris Dynamic Tracing framework
35 * (DTrace).  The user-visible interface to DTrace is described at length in
36 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37 * library, the in-kernel DTrace framework, and the DTrace providers are
38 * described in the block comments in the <sys/dtrace.h> header file.  The
39 * internal architecture of DTrace is described in the block comments in the
40 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41 * implementation very much assume mastery of all of these sources; if one has
42 * an unanswered question about the implementation, one should consult them
43 * first.
44 *
45 * The functions here are ordered roughly as follows:
46 *
47 *   - Probe context functions
48 *   - Probe hashing functions
49 *   - Non-probe context utility functions
50 *   - Matching functions
51 *   - Provider-to-Framework API functions
52 *   - Probe management functions
53 *   - DIF object functions
54 *   - Format functions
55 *   - Predicate functions
56 *   - ECB functions
57 *   - Buffer functions
58 *   - Enabling functions
59 *   - DOF functions
60 *   - Anonymous enabling functions
61 *   - Consumer state functions
62 *   - Helper functions
63 *   - Hook functions
64 *   - Driver cookbook functions
65 *
66 * Each group of functions begins with a block comment labelled the "DTrace
67 * [Group] Functions", allowing one to find each block by searching forward
68 * on capital-f functions.
69 */
70#include <sys/errno.h>
71#if !defined(sun)
72#include <sys/time.h>
73#endif
74#include <sys/stat.h>
75#include <sys/modctl.h>
76#include <sys/conf.h>
77#include <sys/systm.h>
78#if defined(sun)
79#include <sys/ddi.h>
80#include <sys/sunddi.h>
81#endif
82#include <sys/cpuvar.h>
83#include <sys/kmem.h>
84#if defined(sun)
85#include <sys/strsubr.h>
86#endif
87#include <sys/sysmacros.h>
88#include <sys/dtrace_impl.h>
89#include <sys/atomic.h>
90#include <sys/cmn_err.h>
91#if defined(sun)
92#include <sys/mutex_impl.h>
93#include <sys/rwlock_impl.h>
94#endif
95#include <sys/ctf_api.h>
96#if defined(sun)
97#include <sys/panic.h>
98#include <sys/priv_impl.h>
99#endif
100#include <sys/policy.h>
101#if defined(sun)
102#include <sys/cred_impl.h>
103#include <sys/procfs_isa.h>
104#endif
105#include <sys/taskq.h>
106#if defined(sun)
107#include <sys/mkdev.h>
108#include <sys/kdi.h>
109#endif
110#include <sys/zone.h>
111#include <sys/socket.h>
112#include <netinet/in.h>
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/limits.h>
119#include <sys/kdb.h>
120#include <sys/kernel.h>
121#include <sys/malloc.h>
122#include <sys/sysctl.h>
123#include <sys/lock.h>
124#include <sys/mutex.h>
125#include <sys/rwlock.h>
126#include <sys/sx.h>
127#include <sys/dtrace_bsd.h>
128#include <netinet/in.h>
129#include "dtrace_cddl.h"
130#include "dtrace_debug.c"
131#endif
132
133/*
134 * DTrace Tunable Variables
135 *
136 * The following variables may be tuned by adding a line to /etc/system that
137 * includes both the name of the DTrace module ("dtrace") and the name of the
138 * variable.  For example:
139 *
140 *   set dtrace:dtrace_destructive_disallow = 1
141 *
142 * In general, the only variables that one should be tuning this way are those
143 * that affect system-wide DTrace behavior, and for which the default behavior
144 * is undesirable.  Most of these variables are tunable on a per-consumer
145 * basis using DTrace options, and need not be tuned on a system-wide basis.
146 * When tuning these variables, avoid pathological values; while some attempt
147 * is made to verify the integrity of these variables, they are not considered
148 * part of the supported interface to DTrace, and they are therefore not
149 * checked comprehensively.  Further, these variables should not be tuned
150 * dynamically via "mdb -kw" or other means; they should only be tuned via
151 * /etc/system.
152 */
153int		dtrace_destructive_disallow = 0;
154dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155size_t		dtrace_difo_maxsize = (256 * 1024);
156dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
157size_t		dtrace_global_maxsize = (16 * 1024);
158size_t		dtrace_actions_max = (16 * 1024);
159size_t		dtrace_retain_max = 1024;
160dtrace_optval_t	dtrace_helper_actions_max = 32;
161dtrace_optval_t	dtrace_helper_providers_max = 32;
162dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
163size_t		dtrace_strsize_default = 256;
164dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
165dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
166dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
167dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
168dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
170dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
171dtrace_optval_t	dtrace_nspec_default = 1;
172dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
173dtrace_optval_t dtrace_stackframes_default = 20;
174dtrace_optval_t dtrace_ustackframes_default = 20;
175dtrace_optval_t dtrace_jstackframes_default = 50;
176dtrace_optval_t dtrace_jstackstrsize_default = 512;
177int		dtrace_msgdsize_max = 128;
178hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
179hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
180int		dtrace_devdepth_max = 32;
181int		dtrace_err_verbose;
182hrtime_t	dtrace_deadman_interval = NANOSEC;
183hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185
186/*
187 * DTrace External Variables
188 *
189 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
190 * available to DTrace consumers via the backtick (`) syntax.  One of these,
191 * dtrace_zero, is made deliberately so:  it is provided as a source of
192 * well-known, zero-filled memory.  While this variable is not documented,
193 * it is used by some translators as an implementation detail.
194 */
195const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
196
197/*
198 * DTrace Internal Variables
199 */
200#if defined(sun)
201static dev_info_t	*dtrace_devi;		/* device info */
202#endif
203#if defined(sun)
204static vmem_t		*dtrace_arena;		/* probe ID arena */
205static vmem_t		*dtrace_minor;		/* minor number arena */
206static taskq_t		*dtrace_taskq;		/* task queue */
207#else
208static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
209#endif
210static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
211static int		dtrace_nprobes;		/* number of probes */
212static dtrace_provider_t *dtrace_provider;	/* provider list */
213static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
214static int		dtrace_opens;		/* number of opens */
215static int		dtrace_helpers;		/* number of helpers */
216#if defined(sun)
217static void		*dtrace_softstate;	/* softstate pointer */
218#endif
219static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
220static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
221static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
222static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
223static int		dtrace_toxranges;	/* number of toxic ranges */
224static int		dtrace_toxranges_max;	/* size of toxic range array */
225static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
226static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
227static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
228static kthread_t	*dtrace_panicked;	/* panicking thread */
229static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
230static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
231static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
232static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
233static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
234#if !defined(sun)
235static struct mtx	dtrace_unr_mtx;
236MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
237int		dtrace_in_probe;	/* non-zero if executing a probe */
238#if defined(__i386__) || defined(__amd64__)
239uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
240#endif
241#endif
242
243/*
244 * DTrace Locking
245 * DTrace is protected by three (relatively coarse-grained) locks:
246 *
247 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
248 *     including enabling state, probes, ECBs, consumer state, helper state,
249 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
250 *     probe context is lock-free -- synchronization is handled via the
251 *     dtrace_sync() cross call mechanism.
252 *
253 * (2) dtrace_provider_lock is required when manipulating provider state, or
254 *     when provider state must be held constant.
255 *
256 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
257 *     when meta provider state must be held constant.
258 *
259 * The lock ordering between these three locks is dtrace_meta_lock before
260 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
261 * several places where dtrace_provider_lock is held by the framework as it
262 * calls into the providers -- which then call back into the framework,
263 * grabbing dtrace_lock.)
264 *
265 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
266 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
267 * role as a coarse-grained lock; it is acquired before both of these locks.
268 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
269 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
270 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
271 * acquired _between_ dtrace_provider_lock and dtrace_lock.
272 */
273static kmutex_t		dtrace_lock;		/* probe state lock */
274static kmutex_t		dtrace_provider_lock;	/* provider state lock */
275static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
276
277#if !defined(sun)
278/* XXX FreeBSD hacks. */
279static kmutex_t		mod_lock;
280
281#define cr_suid		cr_svuid
282#define cr_sgid		cr_svgid
283#define	ipaddr_t	in_addr_t
284#define mod_modname	pathname
285#define vuprintf	vprintf
286#define ttoproc(_a)	((_a)->td_proc)
287#define crgetzoneid(_a)	0
288#define	NCPU		MAXCPU
289#define SNOCD		0
290#define CPU_ON_INTR(_a)	0
291
292#define PRIV_EFFECTIVE		(1 << 0)
293#define PRIV_DTRACE_KERNEL	(1 << 1)
294#define PRIV_DTRACE_PROC	(1 << 2)
295#define PRIV_DTRACE_USER	(1 << 3)
296#define PRIV_PROC_OWNER		(1 << 4)
297#define PRIV_PROC_ZONE		(1 << 5)
298#define PRIV_ALL		~0
299
300SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
301#endif
302
303#if defined(sun)
304#define curcpu	CPU->cpu_id
305#endif
306
307
308/*
309 * DTrace Provider Variables
310 *
311 * These are the variables relating to DTrace as a provider (that is, the
312 * provider of the BEGIN, END, and ERROR probes).
313 */
314static dtrace_pattr_t	dtrace_provider_attr = {
315{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320};
321
322static void
323dtrace_nullop(void)
324{}
325
326static dtrace_pops_t	dtrace_provider_ops = {
327	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
328	(void (*)(void *, modctl_t *))dtrace_nullop,
329	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333	NULL,
334	NULL,
335	NULL,
336	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
337};
338
339static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
340static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
341dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
342
343/*
344 * DTrace Helper Tracing Variables
345 */
346uint32_t dtrace_helptrace_next = 0;
347uint32_t dtrace_helptrace_nlocals;
348char	*dtrace_helptrace_buffer;
349int	dtrace_helptrace_bufsize = 512 * 1024;
350
351#ifdef DEBUG
352int	dtrace_helptrace_enabled = 1;
353#else
354int	dtrace_helptrace_enabled = 0;
355#endif
356
357/*
358 * DTrace Error Hashing
359 *
360 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
361 * table.  This is very useful for checking coverage of tests that are
362 * expected to induce DIF or DOF processing errors, and may be useful for
363 * debugging problems in the DIF code generator or in DOF generation .  The
364 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
365 */
366#ifdef DEBUG
367static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
368static const char *dtrace_errlast;
369static kthread_t *dtrace_errthread;
370static kmutex_t dtrace_errlock;
371#endif
372
373/*
374 * DTrace Macros and Constants
375 *
376 * These are various macros that are useful in various spots in the
377 * implementation, along with a few random constants that have no meaning
378 * outside of the implementation.  There is no real structure to this cpp
379 * mishmash -- but is there ever?
380 */
381#define	DTRACE_HASHSTR(hash, probe)	\
382	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
383
384#define	DTRACE_HASHNEXT(hash, probe)	\
385	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
386
387#define	DTRACE_HASHPREV(hash, probe)	\
388	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
389
390#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
391	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
392	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
393
394#define	DTRACE_AGGHASHSIZE_SLEW		17
395
396#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
397
398/*
399 * The key for a thread-local variable consists of the lower 61 bits of the
400 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
401 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
402 * equal to a variable identifier.  This is necessary (but not sufficient) to
403 * assure that global associative arrays never collide with thread-local
404 * variables.  To guarantee that they cannot collide, we must also define the
405 * order for keying dynamic variables.  That order is:
406 *
407 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
408 *
409 * Because the variable-key and the tls-key are in orthogonal spaces, there is
410 * no way for a global variable key signature to match a thread-local key
411 * signature.
412 */
413#if defined(sun)
414#define	DTRACE_TLS_THRKEY(where) { \
415	uint_t intr = 0; \
416	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
417	for (; actv; actv >>= 1) \
418		intr++; \
419	ASSERT(intr < (1 << 3)); \
420	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
421	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
422}
423#else
424#define	DTRACE_TLS_THRKEY(where) { \
425	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
426	uint_t intr = 0; \
427	uint_t actv = _c->cpu_intr_actv; \
428	for (; actv; actv >>= 1) \
429		intr++; \
430	ASSERT(intr < (1 << 3)); \
431	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
432	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
433}
434#endif
435
436#define	DT_BSWAP_8(x)	((x) & 0xff)
437#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
438#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
439#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
440
441#define	DT_MASK_LO 0x00000000FFFFFFFFULL
442
443#define	DTRACE_STORE(type, tomax, offset, what) \
444	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
445
446#ifndef __i386
447#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
448	if (addr & (size - 1)) {					\
449		*flags |= CPU_DTRACE_BADALIGN;				\
450		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
451		return (0);						\
452	}
453#else
454#define	DTRACE_ALIGNCHECK(addr, size, flags)
455#endif
456
457/*
458 * Test whether a range of memory starting at testaddr of size testsz falls
459 * within the range of memory described by addr, sz.  We take care to avoid
460 * problems with overflow and underflow of the unsigned quantities, and
461 * disallow all negative sizes.  Ranges of size 0 are allowed.
462 */
463#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
464	((testaddr) - (baseaddr) < (basesz) && \
465	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
466	(testaddr) + (testsz) >= (testaddr))
467
468/*
469 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
470 * alloc_sz on the righthand side of the comparison in order to avoid overflow
471 * or underflow in the comparison with it.  This is simpler than the INRANGE
472 * check above, because we know that the dtms_scratch_ptr is valid in the
473 * range.  Allocations of size zero are allowed.
474 */
475#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
476	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
477	(mstate)->dtms_scratch_ptr >= (alloc_sz))
478
479#define	DTRACE_LOADFUNC(bits)						\
480/*CSTYLED*/								\
481uint##bits##_t								\
482dtrace_load##bits(uintptr_t addr)					\
483{									\
484	size_t size = bits / NBBY;					\
485	/*CSTYLED*/							\
486	uint##bits##_t rval;						\
487	int i;								\
488	volatile uint16_t *flags = (volatile uint16_t *)		\
489	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
490									\
491	DTRACE_ALIGNCHECK(addr, size, flags);				\
492									\
493	for (i = 0; i < dtrace_toxranges; i++) {			\
494		if (addr >= dtrace_toxrange[i].dtt_limit)		\
495			continue;					\
496									\
497		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
498			continue;					\
499									\
500		/*							\
501		 * This address falls within a toxic region; return 0.	\
502		 */							\
503		*flags |= CPU_DTRACE_BADADDR;				\
504		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
505		return (0);						\
506	}								\
507									\
508	*flags |= CPU_DTRACE_NOFAULT;					\
509	/*CSTYLED*/							\
510	rval = *((volatile uint##bits##_t *)addr);			\
511	*flags &= ~CPU_DTRACE_NOFAULT;					\
512									\
513	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
514}
515
516#ifdef _LP64
517#define	dtrace_loadptr	dtrace_load64
518#else
519#define	dtrace_loadptr	dtrace_load32
520#endif
521
522#define	DTRACE_DYNHASH_FREE	0
523#define	DTRACE_DYNHASH_SINK	1
524#define	DTRACE_DYNHASH_VALID	2
525
526#define	DTRACE_MATCH_NEXT	0
527#define	DTRACE_MATCH_DONE	1
528#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
529#define	DTRACE_STATE_ALIGN	64
530
531#define	DTRACE_FLAGS2FLT(flags)						\
532	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
533	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
534	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
535	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
536	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
537	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
538	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
539	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
540	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
541	DTRACEFLT_UNKNOWN)
542
543#define	DTRACEACT_ISSTRING(act)						\
544	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
545	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
546
547/* Function prototype definitions: */
548static size_t dtrace_strlen(const char *, size_t);
549static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
550static void dtrace_enabling_provide(dtrace_provider_t *);
551static int dtrace_enabling_match(dtrace_enabling_t *, int *);
552static void dtrace_enabling_matchall(void);
553static dtrace_state_t *dtrace_anon_grab(void);
554static uint64_t dtrace_helper(int, dtrace_mstate_t *,
555    dtrace_state_t *, uint64_t, uint64_t);
556static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
557static void dtrace_buffer_drop(dtrace_buffer_t *);
558static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
559    dtrace_state_t *, dtrace_mstate_t *);
560static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
561    dtrace_optval_t);
562static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
563static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
564uint16_t dtrace_load16(uintptr_t);
565uint32_t dtrace_load32(uintptr_t);
566uint64_t dtrace_load64(uintptr_t);
567uint8_t dtrace_load8(uintptr_t);
568void dtrace_dynvar_clean(dtrace_dstate_t *);
569dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
570    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
571uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
572
573/*
574 * DTrace Probe Context Functions
575 *
576 * These functions are called from probe context.  Because probe context is
577 * any context in which C may be called, arbitrarily locks may be held,
578 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
579 * As a result, functions called from probe context may only call other DTrace
580 * support functions -- they may not interact at all with the system at large.
581 * (Note that the ASSERT macro is made probe-context safe by redefining it in
582 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
583 * loads are to be performed from probe context, they _must_ be in terms of
584 * the safe dtrace_load*() variants.
585 *
586 * Some functions in this block are not actually called from probe context;
587 * for these functions, there will be a comment above the function reading
588 * "Note:  not called from probe context."
589 */
590void
591dtrace_panic(const char *format, ...)
592{
593	va_list alist;
594
595	va_start(alist, format);
596	dtrace_vpanic(format, alist);
597	va_end(alist);
598}
599
600int
601dtrace_assfail(const char *a, const char *f, int l)
602{
603	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
604
605	/*
606	 * We just need something here that even the most clever compiler
607	 * cannot optimize away.
608	 */
609	return (a[(uintptr_t)f]);
610}
611
612/*
613 * Atomically increment a specified error counter from probe context.
614 */
615static void
616dtrace_error(uint32_t *counter)
617{
618	/*
619	 * Most counters stored to in probe context are per-CPU counters.
620	 * However, there are some error conditions that are sufficiently
621	 * arcane that they don't merit per-CPU storage.  If these counters
622	 * are incremented concurrently on different CPUs, scalability will be
623	 * adversely affected -- but we don't expect them to be white-hot in a
624	 * correctly constructed enabling...
625	 */
626	uint32_t oval, nval;
627
628	do {
629		oval = *counter;
630
631		if ((nval = oval + 1) == 0) {
632			/*
633			 * If the counter would wrap, set it to 1 -- assuring
634			 * that the counter is never zero when we have seen
635			 * errors.  (The counter must be 32-bits because we
636			 * aren't guaranteed a 64-bit compare&swap operation.)
637			 * To save this code both the infamy of being fingered
638			 * by a priggish news story and the indignity of being
639			 * the target of a neo-puritan witch trial, we're
640			 * carefully avoiding any colorful description of the
641			 * likelihood of this condition -- but suffice it to
642			 * say that it is only slightly more likely than the
643			 * overflow of predicate cache IDs, as discussed in
644			 * dtrace_predicate_create().
645			 */
646			nval = 1;
647		}
648	} while (dtrace_cas32(counter, oval, nval) != oval);
649}
650
651/*
652 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
653 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
654 */
655DTRACE_LOADFUNC(8)
656DTRACE_LOADFUNC(16)
657DTRACE_LOADFUNC(32)
658DTRACE_LOADFUNC(64)
659
660static int
661dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
662{
663	if (dest < mstate->dtms_scratch_base)
664		return (0);
665
666	if (dest + size < dest)
667		return (0);
668
669	if (dest + size > mstate->dtms_scratch_ptr)
670		return (0);
671
672	return (1);
673}
674
675static int
676dtrace_canstore_statvar(uint64_t addr, size_t sz,
677    dtrace_statvar_t **svars, int nsvars)
678{
679	int i;
680
681	for (i = 0; i < nsvars; i++) {
682		dtrace_statvar_t *svar = svars[i];
683
684		if (svar == NULL || svar->dtsv_size == 0)
685			continue;
686
687		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
688			return (1);
689	}
690
691	return (0);
692}
693
694/*
695 * Check to see if the address is within a memory region to which a store may
696 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
697 * region.  The caller of dtrace_canstore() is responsible for performing any
698 * alignment checks that are needed before stores are actually executed.
699 */
700static int
701dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
702    dtrace_vstate_t *vstate)
703{
704	/*
705	 * First, check to see if the address is in scratch space...
706	 */
707	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
708	    mstate->dtms_scratch_size))
709		return (1);
710
711	/*
712	 * Now check to see if it's a dynamic variable.  This check will pick
713	 * up both thread-local variables and any global dynamically-allocated
714	 * variables.
715	 */
716	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
717	    vstate->dtvs_dynvars.dtds_size)) {
718		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
719		uintptr_t base = (uintptr_t)dstate->dtds_base +
720		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
721		uintptr_t chunkoffs;
722
723		/*
724		 * Before we assume that we can store here, we need to make
725		 * sure that it isn't in our metadata -- storing to our
726		 * dynamic variable metadata would corrupt our state.  For
727		 * the range to not include any dynamic variable metadata,
728		 * it must:
729		 *
730		 *	(1) Start above the hash table that is at the base of
731		 *	the dynamic variable space
732		 *
733		 *	(2) Have a starting chunk offset that is beyond the
734		 *	dtrace_dynvar_t that is at the base of every chunk
735		 *
736		 *	(3) Not span a chunk boundary
737		 *
738		 */
739		if (addr < base)
740			return (0);
741
742		chunkoffs = (addr - base) % dstate->dtds_chunksize;
743
744		if (chunkoffs < sizeof (dtrace_dynvar_t))
745			return (0);
746
747		if (chunkoffs + sz > dstate->dtds_chunksize)
748			return (0);
749
750		return (1);
751	}
752
753	/*
754	 * Finally, check the static local and global variables.  These checks
755	 * take the longest, so we perform them last.
756	 */
757	if (dtrace_canstore_statvar(addr, sz,
758	    vstate->dtvs_locals, vstate->dtvs_nlocals))
759		return (1);
760
761	if (dtrace_canstore_statvar(addr, sz,
762	    vstate->dtvs_globals, vstate->dtvs_nglobals))
763		return (1);
764
765	return (0);
766}
767
768
769/*
770 * Convenience routine to check to see if the address is within a memory
771 * region in which a load may be issued given the user's privilege level;
772 * if not, it sets the appropriate error flags and loads 'addr' into the
773 * illegal value slot.
774 *
775 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
776 * appropriate memory access protection.
777 */
778static int
779dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780    dtrace_vstate_t *vstate)
781{
782	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
783
784	/*
785	 * If we hold the privilege to read from kernel memory, then
786	 * everything is readable.
787	 */
788	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
789		return (1);
790
791	/*
792	 * You can obviously read that which you can store.
793	 */
794	if (dtrace_canstore(addr, sz, mstate, vstate))
795		return (1);
796
797	/*
798	 * We're allowed to read from our own string table.
799	 */
800	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
801	    mstate->dtms_difo->dtdo_strlen))
802		return (1);
803
804	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805	*illval = addr;
806	return (0);
807}
808
809/*
810 * Convenience routine to check to see if a given string is within a memory
811 * region in which a load may be issued given the user's privilege level;
812 * this exists so that we don't need to issue unnecessary dtrace_strlen()
813 * calls in the event that the user has all privileges.
814 */
815static int
816dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817    dtrace_vstate_t *vstate)
818{
819	size_t strsz;
820
821	/*
822	 * If we hold the privilege to read from kernel memory, then
823	 * everything is readable.
824	 */
825	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826		return (1);
827
828	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829	if (dtrace_canload(addr, strsz, mstate, vstate))
830		return (1);
831
832	return (0);
833}
834
835/*
836 * Convenience routine to check to see if a given variable is within a memory
837 * region in which a load may be issued given the user's privilege level.
838 */
839static int
840dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841    dtrace_vstate_t *vstate)
842{
843	size_t sz;
844	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845
846	/*
847	 * If we hold the privilege to read from kernel memory, then
848	 * everything is readable.
849	 */
850	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851		return (1);
852
853	if (type->dtdt_kind == DIF_TYPE_STRING)
854		sz = dtrace_strlen(src,
855		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856	else
857		sz = type->dtdt_size;
858
859	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860}
861
862/*
863 * Compare two strings using safe loads.
864 */
865static int
866dtrace_strncmp(char *s1, char *s2, size_t limit)
867{
868	uint8_t c1, c2;
869	volatile uint16_t *flags;
870
871	if (s1 == s2 || limit == 0)
872		return (0);
873
874	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
875
876	do {
877		if (s1 == NULL) {
878			c1 = '\0';
879		} else {
880			c1 = dtrace_load8((uintptr_t)s1++);
881		}
882
883		if (s2 == NULL) {
884			c2 = '\0';
885		} else {
886			c2 = dtrace_load8((uintptr_t)s2++);
887		}
888
889		if (c1 != c2)
890			return (c1 - c2);
891	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
892
893	return (0);
894}
895
896/*
897 * Compute strlen(s) for a string using safe memory accesses.  The additional
898 * len parameter is used to specify a maximum length to ensure completion.
899 */
900static size_t
901dtrace_strlen(const char *s, size_t lim)
902{
903	uint_t len;
904
905	for (len = 0; len != lim; len++) {
906		if (dtrace_load8((uintptr_t)s++) == '\0')
907			break;
908	}
909
910	return (len);
911}
912
913/*
914 * Check if an address falls within a toxic region.
915 */
916static int
917dtrace_istoxic(uintptr_t kaddr, size_t size)
918{
919	uintptr_t taddr, tsize;
920	int i;
921
922	for (i = 0; i < dtrace_toxranges; i++) {
923		taddr = dtrace_toxrange[i].dtt_base;
924		tsize = dtrace_toxrange[i].dtt_limit - taddr;
925
926		if (kaddr - taddr < tsize) {
927			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
928			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
929			return (1);
930		}
931
932		if (taddr - kaddr < size) {
933			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
935			return (1);
936		}
937	}
938
939	return (0);
940}
941
942/*
943 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
944 * memory specified by the DIF program.  The dst is assumed to be safe memory
945 * that we can store to directly because it is managed by DTrace.  As with
946 * standard bcopy, overlapping copies are handled properly.
947 */
948static void
949dtrace_bcopy(const void *src, void *dst, size_t len)
950{
951	if (len != 0) {
952		uint8_t *s1 = dst;
953		const uint8_t *s2 = src;
954
955		if (s1 <= s2) {
956			do {
957				*s1++ = dtrace_load8((uintptr_t)s2++);
958			} while (--len != 0);
959		} else {
960			s2 += len;
961			s1 += len;
962
963			do {
964				*--s1 = dtrace_load8((uintptr_t)--s2);
965			} while (--len != 0);
966		}
967	}
968}
969
970/*
971 * Copy src to dst using safe memory accesses, up to either the specified
972 * length, or the point that a nul byte is encountered.  The src is assumed to
973 * be unsafe memory specified by the DIF program.  The dst is assumed to be
974 * safe memory that we can store to directly because it is managed by DTrace.
975 * Unlike dtrace_bcopy(), overlapping regions are not handled.
976 */
977static void
978dtrace_strcpy(const void *src, void *dst, size_t len)
979{
980	if (len != 0) {
981		uint8_t *s1 = dst, c;
982		const uint8_t *s2 = src;
983
984		do {
985			*s1++ = c = dtrace_load8((uintptr_t)s2++);
986		} while (--len != 0 && c != '\0');
987	}
988}
989
990/*
991 * Copy src to dst, deriving the size and type from the specified (BYREF)
992 * variable type.  The src is assumed to be unsafe memory specified by the DIF
993 * program.  The dst is assumed to be DTrace variable memory that is of the
994 * specified type; we assume that we can store to directly.
995 */
996static void
997dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
998{
999	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1000
1001	if (type->dtdt_kind == DIF_TYPE_STRING) {
1002		dtrace_strcpy(src, dst, type->dtdt_size);
1003	} else {
1004		dtrace_bcopy(src, dst, type->dtdt_size);
1005	}
1006}
1007
1008/*
1009 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1010 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1011 * safe memory that we can access directly because it is managed by DTrace.
1012 */
1013static int
1014dtrace_bcmp(const void *s1, const void *s2, size_t len)
1015{
1016	volatile uint16_t *flags;
1017
1018	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1019
1020	if (s1 == s2)
1021		return (0);
1022
1023	if (s1 == NULL || s2 == NULL)
1024		return (1);
1025
1026	if (s1 != s2 && len != 0) {
1027		const uint8_t *ps1 = s1;
1028		const uint8_t *ps2 = s2;
1029
1030		do {
1031			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1032				return (1);
1033		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1034	}
1035	return (0);
1036}
1037
1038/*
1039 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1040 * is for safe DTrace-managed memory only.
1041 */
1042static void
1043dtrace_bzero(void *dst, size_t len)
1044{
1045	uchar_t *cp;
1046
1047	for (cp = dst; len != 0; len--)
1048		*cp++ = 0;
1049}
1050
1051static void
1052dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1053{
1054	uint64_t result[2];
1055
1056	result[0] = addend1[0] + addend2[0];
1057	result[1] = addend1[1] + addend2[1] +
1058	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1059
1060	sum[0] = result[0];
1061	sum[1] = result[1];
1062}
1063
1064/*
1065 * Shift the 128-bit value in a by b. If b is positive, shift left.
1066 * If b is negative, shift right.
1067 */
1068static void
1069dtrace_shift_128(uint64_t *a, int b)
1070{
1071	uint64_t mask;
1072
1073	if (b == 0)
1074		return;
1075
1076	if (b < 0) {
1077		b = -b;
1078		if (b >= 64) {
1079			a[0] = a[1] >> (b - 64);
1080			a[1] = 0;
1081		} else {
1082			a[0] >>= b;
1083			mask = 1LL << (64 - b);
1084			mask -= 1;
1085			a[0] |= ((a[1] & mask) << (64 - b));
1086			a[1] >>= b;
1087		}
1088	} else {
1089		if (b >= 64) {
1090			a[1] = a[0] << (b - 64);
1091			a[0] = 0;
1092		} else {
1093			a[1] <<= b;
1094			mask = a[0] >> (64 - b);
1095			a[1] |= mask;
1096			a[0] <<= b;
1097		}
1098	}
1099}
1100
1101/*
1102 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1103 * use native multiplication on those, and then re-combine into the
1104 * resulting 128-bit value.
1105 *
1106 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1107 *     hi1 * hi2 << 64 +
1108 *     hi1 * lo2 << 32 +
1109 *     hi2 * lo1 << 32 +
1110 *     lo1 * lo2
1111 */
1112static void
1113dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1114{
1115	uint64_t hi1, hi2, lo1, lo2;
1116	uint64_t tmp[2];
1117
1118	hi1 = factor1 >> 32;
1119	hi2 = factor2 >> 32;
1120
1121	lo1 = factor1 & DT_MASK_LO;
1122	lo2 = factor2 & DT_MASK_LO;
1123
1124	product[0] = lo1 * lo2;
1125	product[1] = hi1 * hi2;
1126
1127	tmp[0] = hi1 * lo2;
1128	tmp[1] = 0;
1129	dtrace_shift_128(tmp, 32);
1130	dtrace_add_128(product, tmp, product);
1131
1132	tmp[0] = hi2 * lo1;
1133	tmp[1] = 0;
1134	dtrace_shift_128(tmp, 32);
1135	dtrace_add_128(product, tmp, product);
1136}
1137
1138/*
1139 * This privilege check should be used by actions and subroutines to
1140 * verify that the user credentials of the process that enabled the
1141 * invoking ECB match the target credentials
1142 */
1143static int
1144dtrace_priv_proc_common_user(dtrace_state_t *state)
1145{
1146	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1147
1148	/*
1149	 * We should always have a non-NULL state cred here, since if cred
1150	 * is null (anonymous tracing), we fast-path bypass this routine.
1151	 */
1152	ASSERT(s_cr != NULL);
1153
1154	if ((cr = CRED()) != NULL &&
1155	    s_cr->cr_uid == cr->cr_uid &&
1156	    s_cr->cr_uid == cr->cr_ruid &&
1157	    s_cr->cr_uid == cr->cr_suid &&
1158	    s_cr->cr_gid == cr->cr_gid &&
1159	    s_cr->cr_gid == cr->cr_rgid &&
1160	    s_cr->cr_gid == cr->cr_sgid)
1161		return (1);
1162
1163	return (0);
1164}
1165
1166/*
1167 * This privilege check should be used by actions and subroutines to
1168 * verify that the zone of the process that enabled the invoking ECB
1169 * matches the target credentials
1170 */
1171static int
1172dtrace_priv_proc_common_zone(dtrace_state_t *state)
1173{
1174#if defined(sun)
1175	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1176
1177	/*
1178	 * We should always have a non-NULL state cred here, since if cred
1179	 * is null (anonymous tracing), we fast-path bypass this routine.
1180	 */
1181	ASSERT(s_cr != NULL);
1182
1183	if ((cr = CRED()) != NULL &&
1184	    s_cr->cr_zone == cr->cr_zone)
1185		return (1);
1186
1187	return (0);
1188#else
1189	return (1);
1190#endif
1191}
1192
1193/*
1194 * This privilege check should be used by actions and subroutines to
1195 * verify that the process has not setuid or changed credentials.
1196 */
1197static int
1198dtrace_priv_proc_common_nocd(void)
1199{
1200	proc_t *proc;
1201
1202	if ((proc = ttoproc(curthread)) != NULL &&
1203	    !(proc->p_flag & SNOCD))
1204		return (1);
1205
1206	return (0);
1207}
1208
1209static int
1210dtrace_priv_proc_destructive(dtrace_state_t *state)
1211{
1212	int action = state->dts_cred.dcr_action;
1213
1214	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1215	    dtrace_priv_proc_common_zone(state) == 0)
1216		goto bad;
1217
1218	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1219	    dtrace_priv_proc_common_user(state) == 0)
1220		goto bad;
1221
1222	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1223	    dtrace_priv_proc_common_nocd() == 0)
1224		goto bad;
1225
1226	return (1);
1227
1228bad:
1229	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1230
1231	return (0);
1232}
1233
1234static int
1235dtrace_priv_proc_control(dtrace_state_t *state)
1236{
1237	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1238		return (1);
1239
1240	if (dtrace_priv_proc_common_zone(state) &&
1241	    dtrace_priv_proc_common_user(state) &&
1242	    dtrace_priv_proc_common_nocd())
1243		return (1);
1244
1245	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1246
1247	return (0);
1248}
1249
1250static int
1251dtrace_priv_proc(dtrace_state_t *state)
1252{
1253	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1254		return (1);
1255
1256	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257
1258	return (0);
1259}
1260
1261static int
1262dtrace_priv_kernel(dtrace_state_t *state)
1263{
1264	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265		return (1);
1266
1267	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268
1269	return (0);
1270}
1271
1272static int
1273dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274{
1275	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276		return (1);
1277
1278	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279
1280	return (0);
1281}
1282
1283/*
1284 * Note:  not called from probe context.  This function is called
1285 * asynchronously (and at a regular interval) from outside of probe context to
1286 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1287 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1288 */
1289void
1290dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1291{
1292	dtrace_dynvar_t *dirty;
1293	dtrace_dstate_percpu_t *dcpu;
1294	int i, work = 0;
1295
1296	for (i = 0; i < NCPU; i++) {
1297		dcpu = &dstate->dtds_percpu[i];
1298
1299		ASSERT(dcpu->dtdsc_rinsing == NULL);
1300
1301		/*
1302		 * If the dirty list is NULL, there is no dirty work to do.
1303		 */
1304		if (dcpu->dtdsc_dirty == NULL)
1305			continue;
1306
1307		/*
1308		 * If the clean list is non-NULL, then we're not going to do
1309		 * any work for this CPU -- it means that there has not been
1310		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1311		 * since the last time we cleaned house.
1312		 */
1313		if (dcpu->dtdsc_clean != NULL)
1314			continue;
1315
1316		work = 1;
1317
1318		/*
1319		 * Atomically move the dirty list aside.
1320		 */
1321		do {
1322			dirty = dcpu->dtdsc_dirty;
1323
1324			/*
1325			 * Before we zap the dirty list, set the rinsing list.
1326			 * (This allows for a potential assertion in
1327			 * dtrace_dynvar():  if a free dynamic variable appears
1328			 * on a hash chain, either the dirty list or the
1329			 * rinsing list for some CPU must be non-NULL.)
1330			 */
1331			dcpu->dtdsc_rinsing = dirty;
1332			dtrace_membar_producer();
1333		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1334		    dirty, NULL) != dirty);
1335	}
1336
1337	if (!work) {
1338		/*
1339		 * We have no work to do; we can simply return.
1340		 */
1341		return;
1342	}
1343
1344	dtrace_sync();
1345
1346	for (i = 0; i < NCPU; i++) {
1347		dcpu = &dstate->dtds_percpu[i];
1348
1349		if (dcpu->dtdsc_rinsing == NULL)
1350			continue;
1351
1352		/*
1353		 * We are now guaranteed that no hash chain contains a pointer
1354		 * into this dirty list; we can make it clean.
1355		 */
1356		ASSERT(dcpu->dtdsc_clean == NULL);
1357		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1358		dcpu->dtdsc_rinsing = NULL;
1359	}
1360
1361	/*
1362	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1363	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1364	 * This prevents a race whereby a CPU incorrectly decides that
1365	 * the state should be something other than DTRACE_DSTATE_CLEAN
1366	 * after dtrace_dynvar_clean() has completed.
1367	 */
1368	dtrace_sync();
1369
1370	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1371}
1372
1373/*
1374 * Depending on the value of the op parameter, this function looks-up,
1375 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1376 * allocation is requested, this function will return a pointer to a
1377 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1378 * variable can be allocated.  If NULL is returned, the appropriate counter
1379 * will be incremented.
1380 */
1381dtrace_dynvar_t *
1382dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1383    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1384    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1385{
1386	uint64_t hashval = DTRACE_DYNHASH_VALID;
1387	dtrace_dynhash_t *hash = dstate->dtds_hash;
1388	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1389	processorid_t me = curcpu, cpu = me;
1390	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1391	size_t bucket, ksize;
1392	size_t chunksize = dstate->dtds_chunksize;
1393	uintptr_t kdata, lock, nstate;
1394	uint_t i;
1395
1396	ASSERT(nkeys != 0);
1397
1398	/*
1399	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1400	 * algorithm.  For the by-value portions, we perform the algorithm in
1401	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1402	 * bit, and seems to have only a minute effect on distribution.  For
1403	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1404	 * over each referenced byte.  It's painful to do this, but it's much
1405	 * better than pathological hash distribution.  The efficacy of the
1406	 * hashing algorithm (and a comparison with other algorithms) may be
1407	 * found by running the ::dtrace_dynstat MDB dcmd.
1408	 */
1409	for (i = 0; i < nkeys; i++) {
1410		if (key[i].dttk_size == 0) {
1411			uint64_t val = key[i].dttk_value;
1412
1413			hashval += (val >> 48) & 0xffff;
1414			hashval += (hashval << 10);
1415			hashval ^= (hashval >> 6);
1416
1417			hashval += (val >> 32) & 0xffff;
1418			hashval += (hashval << 10);
1419			hashval ^= (hashval >> 6);
1420
1421			hashval += (val >> 16) & 0xffff;
1422			hashval += (hashval << 10);
1423			hashval ^= (hashval >> 6);
1424
1425			hashval += val & 0xffff;
1426			hashval += (hashval << 10);
1427			hashval ^= (hashval >> 6);
1428		} else {
1429			/*
1430			 * This is incredibly painful, but it beats the hell
1431			 * out of the alternative.
1432			 */
1433			uint64_t j, size = key[i].dttk_size;
1434			uintptr_t base = (uintptr_t)key[i].dttk_value;
1435
1436			if (!dtrace_canload(base, size, mstate, vstate))
1437				break;
1438
1439			for (j = 0; j < size; j++) {
1440				hashval += dtrace_load8(base + j);
1441				hashval += (hashval << 10);
1442				hashval ^= (hashval >> 6);
1443			}
1444		}
1445	}
1446
1447	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1448		return (NULL);
1449
1450	hashval += (hashval << 3);
1451	hashval ^= (hashval >> 11);
1452	hashval += (hashval << 15);
1453
1454	/*
1455	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1456	 * comes out to be one of our two sentinel hash values.  If this
1457	 * actually happens, we set the hashval to be a value known to be a
1458	 * non-sentinel value.
1459	 */
1460	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1461		hashval = DTRACE_DYNHASH_VALID;
1462
1463	/*
1464	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1465	 * important here, tricks can be pulled to reduce it.  (However, it's
1466	 * critical that hash collisions be kept to an absolute minimum;
1467	 * they're much more painful than a divide.)  It's better to have a
1468	 * solution that generates few collisions and still keeps things
1469	 * relatively simple.
1470	 */
1471	bucket = hashval % dstate->dtds_hashsize;
1472
1473	if (op == DTRACE_DYNVAR_DEALLOC) {
1474		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1475
1476		for (;;) {
1477			while ((lock = *lockp) & 1)
1478				continue;
1479
1480			if (dtrace_casptr((volatile void *)lockp,
1481			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1482				break;
1483		}
1484
1485		dtrace_membar_producer();
1486	}
1487
1488top:
1489	prev = NULL;
1490	lock = hash[bucket].dtdh_lock;
1491
1492	dtrace_membar_consumer();
1493
1494	start = hash[bucket].dtdh_chain;
1495	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1496	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1497	    op != DTRACE_DYNVAR_DEALLOC));
1498
1499	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1500		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1501		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1502
1503		if (dvar->dtdv_hashval != hashval) {
1504			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1505				/*
1506				 * We've reached the sink, and therefore the
1507				 * end of the hash chain; we can kick out of
1508				 * the loop knowing that we have seen a valid
1509				 * snapshot of state.
1510				 */
1511				ASSERT(dvar->dtdv_next == NULL);
1512				ASSERT(dvar == &dtrace_dynhash_sink);
1513				break;
1514			}
1515
1516			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1517				/*
1518				 * We've gone off the rails:  somewhere along
1519				 * the line, one of the members of this hash
1520				 * chain was deleted.  Note that we could also
1521				 * detect this by simply letting this loop run
1522				 * to completion, as we would eventually hit
1523				 * the end of the dirty list.  However, we
1524				 * want to avoid running the length of the
1525				 * dirty list unnecessarily (it might be quite
1526				 * long), so we catch this as early as
1527				 * possible by detecting the hash marker.  In
1528				 * this case, we simply set dvar to NULL and
1529				 * break; the conditional after the loop will
1530				 * send us back to top.
1531				 */
1532				dvar = NULL;
1533				break;
1534			}
1535
1536			goto next;
1537		}
1538
1539		if (dtuple->dtt_nkeys != nkeys)
1540			goto next;
1541
1542		for (i = 0; i < nkeys; i++, dkey++) {
1543			if (dkey->dttk_size != key[i].dttk_size)
1544				goto next; /* size or type mismatch */
1545
1546			if (dkey->dttk_size != 0) {
1547				if (dtrace_bcmp(
1548				    (void *)(uintptr_t)key[i].dttk_value,
1549				    (void *)(uintptr_t)dkey->dttk_value,
1550				    dkey->dttk_size))
1551					goto next;
1552			} else {
1553				if (dkey->dttk_value != key[i].dttk_value)
1554					goto next;
1555			}
1556		}
1557
1558		if (op != DTRACE_DYNVAR_DEALLOC)
1559			return (dvar);
1560
1561		ASSERT(dvar->dtdv_next == NULL ||
1562		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1563
1564		if (prev != NULL) {
1565			ASSERT(hash[bucket].dtdh_chain != dvar);
1566			ASSERT(start != dvar);
1567			ASSERT(prev->dtdv_next == dvar);
1568			prev->dtdv_next = dvar->dtdv_next;
1569		} else {
1570			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1571			    start, dvar->dtdv_next) != start) {
1572				/*
1573				 * We have failed to atomically swing the
1574				 * hash table head pointer, presumably because
1575				 * of a conflicting allocation on another CPU.
1576				 * We need to reread the hash chain and try
1577				 * again.
1578				 */
1579				goto top;
1580			}
1581		}
1582
1583		dtrace_membar_producer();
1584
1585		/*
1586		 * Now set the hash value to indicate that it's free.
1587		 */
1588		ASSERT(hash[bucket].dtdh_chain != dvar);
1589		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1590
1591		dtrace_membar_producer();
1592
1593		/*
1594		 * Set the next pointer to point at the dirty list, and
1595		 * atomically swing the dirty pointer to the newly freed dvar.
1596		 */
1597		do {
1598			next = dcpu->dtdsc_dirty;
1599			dvar->dtdv_next = next;
1600		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1601
1602		/*
1603		 * Finally, unlock this hash bucket.
1604		 */
1605		ASSERT(hash[bucket].dtdh_lock == lock);
1606		ASSERT(lock & 1);
1607		hash[bucket].dtdh_lock++;
1608
1609		return (NULL);
1610next:
1611		prev = dvar;
1612		continue;
1613	}
1614
1615	if (dvar == NULL) {
1616		/*
1617		 * If dvar is NULL, it is because we went off the rails:
1618		 * one of the elements that we traversed in the hash chain
1619		 * was deleted while we were traversing it.  In this case,
1620		 * we assert that we aren't doing a dealloc (deallocs lock
1621		 * the hash bucket to prevent themselves from racing with
1622		 * one another), and retry the hash chain traversal.
1623		 */
1624		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1625		goto top;
1626	}
1627
1628	if (op != DTRACE_DYNVAR_ALLOC) {
1629		/*
1630		 * If we are not to allocate a new variable, we want to
1631		 * return NULL now.  Before we return, check that the value
1632		 * of the lock word hasn't changed.  If it has, we may have
1633		 * seen an inconsistent snapshot.
1634		 */
1635		if (op == DTRACE_DYNVAR_NOALLOC) {
1636			if (hash[bucket].dtdh_lock != lock)
1637				goto top;
1638		} else {
1639			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1640			ASSERT(hash[bucket].dtdh_lock == lock);
1641			ASSERT(lock & 1);
1642			hash[bucket].dtdh_lock++;
1643		}
1644
1645		return (NULL);
1646	}
1647
1648	/*
1649	 * We need to allocate a new dynamic variable.  The size we need is the
1650	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1651	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1652	 * the size of any referred-to data (dsize).  We then round the final
1653	 * size up to the chunksize for allocation.
1654	 */
1655	for (ksize = 0, i = 0; i < nkeys; i++)
1656		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1657
1658	/*
1659	 * This should be pretty much impossible, but could happen if, say,
1660	 * strange DIF specified the tuple.  Ideally, this should be an
1661	 * assertion and not an error condition -- but that requires that the
1662	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1663	 * bullet-proof.  (That is, it must not be able to be fooled by
1664	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1665	 * solving this would presumably not amount to solving the Halting
1666	 * Problem -- but it still seems awfully hard.
1667	 */
1668	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1669	    ksize + dsize > chunksize) {
1670		dcpu->dtdsc_drops++;
1671		return (NULL);
1672	}
1673
1674	nstate = DTRACE_DSTATE_EMPTY;
1675
1676	do {
1677retry:
1678		free = dcpu->dtdsc_free;
1679
1680		if (free == NULL) {
1681			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1682			void *rval;
1683
1684			if (clean == NULL) {
1685				/*
1686				 * We're out of dynamic variable space on
1687				 * this CPU.  Unless we have tried all CPUs,
1688				 * we'll try to allocate from a different
1689				 * CPU.
1690				 */
1691				switch (dstate->dtds_state) {
1692				case DTRACE_DSTATE_CLEAN: {
1693					void *sp = &dstate->dtds_state;
1694
1695					if (++cpu >= NCPU)
1696						cpu = 0;
1697
1698					if (dcpu->dtdsc_dirty != NULL &&
1699					    nstate == DTRACE_DSTATE_EMPTY)
1700						nstate = DTRACE_DSTATE_DIRTY;
1701
1702					if (dcpu->dtdsc_rinsing != NULL)
1703						nstate = DTRACE_DSTATE_RINSING;
1704
1705					dcpu = &dstate->dtds_percpu[cpu];
1706
1707					if (cpu != me)
1708						goto retry;
1709
1710					(void) dtrace_cas32(sp,
1711					    DTRACE_DSTATE_CLEAN, nstate);
1712
1713					/*
1714					 * To increment the correct bean
1715					 * counter, take another lap.
1716					 */
1717					goto retry;
1718				}
1719
1720				case DTRACE_DSTATE_DIRTY:
1721					dcpu->dtdsc_dirty_drops++;
1722					break;
1723
1724				case DTRACE_DSTATE_RINSING:
1725					dcpu->dtdsc_rinsing_drops++;
1726					break;
1727
1728				case DTRACE_DSTATE_EMPTY:
1729					dcpu->dtdsc_drops++;
1730					break;
1731				}
1732
1733				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1734				return (NULL);
1735			}
1736
1737			/*
1738			 * The clean list appears to be non-empty.  We want to
1739			 * move the clean list to the free list; we start by
1740			 * moving the clean pointer aside.
1741			 */
1742			if (dtrace_casptr(&dcpu->dtdsc_clean,
1743			    clean, NULL) != clean) {
1744				/*
1745				 * We are in one of two situations:
1746				 *
1747				 *  (a)	The clean list was switched to the
1748				 *	free list by another CPU.
1749				 *
1750				 *  (b)	The clean list was added to by the
1751				 *	cleansing cyclic.
1752				 *
1753				 * In either of these situations, we can
1754				 * just reattempt the free list allocation.
1755				 */
1756				goto retry;
1757			}
1758
1759			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1760
1761			/*
1762			 * Now we'll move the clean list to the free list.
1763			 * It's impossible for this to fail:  the only way
1764			 * the free list can be updated is through this
1765			 * code path, and only one CPU can own the clean list.
1766			 * Thus, it would only be possible for this to fail if
1767			 * this code were racing with dtrace_dynvar_clean().
1768			 * (That is, if dtrace_dynvar_clean() updated the clean
1769			 * list, and we ended up racing to update the free
1770			 * list.)  This race is prevented by the dtrace_sync()
1771			 * in dtrace_dynvar_clean() -- which flushes the
1772			 * owners of the clean lists out before resetting
1773			 * the clean lists.
1774			 */
1775			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1776			ASSERT(rval == NULL);
1777			goto retry;
1778		}
1779
1780		dvar = free;
1781		new_free = dvar->dtdv_next;
1782	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1783
1784	/*
1785	 * We have now allocated a new chunk.  We copy the tuple keys into the
1786	 * tuple array and copy any referenced key data into the data space
1787	 * following the tuple array.  As we do this, we relocate dttk_value
1788	 * in the final tuple to point to the key data address in the chunk.
1789	 */
1790	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1791	dvar->dtdv_data = (void *)(kdata + ksize);
1792	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1793
1794	for (i = 0; i < nkeys; i++) {
1795		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1796		size_t kesize = key[i].dttk_size;
1797
1798		if (kesize != 0) {
1799			dtrace_bcopy(
1800			    (const void *)(uintptr_t)key[i].dttk_value,
1801			    (void *)kdata, kesize);
1802			dkey->dttk_value = kdata;
1803			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1804		} else {
1805			dkey->dttk_value = key[i].dttk_value;
1806		}
1807
1808		dkey->dttk_size = kesize;
1809	}
1810
1811	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1812	dvar->dtdv_hashval = hashval;
1813	dvar->dtdv_next = start;
1814
1815	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1816		return (dvar);
1817
1818	/*
1819	 * The cas has failed.  Either another CPU is adding an element to
1820	 * this hash chain, or another CPU is deleting an element from this
1821	 * hash chain.  The simplest way to deal with both of these cases
1822	 * (though not necessarily the most efficient) is to free our
1823	 * allocated block and tail-call ourselves.  Note that the free is
1824	 * to the dirty list and _not_ to the free list.  This is to prevent
1825	 * races with allocators, above.
1826	 */
1827	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1828
1829	dtrace_membar_producer();
1830
1831	do {
1832		free = dcpu->dtdsc_dirty;
1833		dvar->dtdv_next = free;
1834	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1835
1836	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1837}
1838
1839/*ARGSUSED*/
1840static void
1841dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1842{
1843	if ((int64_t)nval < (int64_t)*oval)
1844		*oval = nval;
1845}
1846
1847/*ARGSUSED*/
1848static void
1849dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1850{
1851	if ((int64_t)nval > (int64_t)*oval)
1852		*oval = nval;
1853}
1854
1855static void
1856dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1857{
1858	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1859	int64_t val = (int64_t)nval;
1860
1861	if (val < 0) {
1862		for (i = 0; i < zero; i++) {
1863			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1864				quanta[i] += incr;
1865				return;
1866			}
1867		}
1868	} else {
1869		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1870			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1871				quanta[i - 1] += incr;
1872				return;
1873			}
1874		}
1875
1876		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1877		return;
1878	}
1879
1880	ASSERT(0);
1881}
1882
1883static void
1884dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1885{
1886	uint64_t arg = *lquanta++;
1887	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1888	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1889	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1890	int32_t val = (int32_t)nval, level;
1891
1892	ASSERT(step != 0);
1893	ASSERT(levels != 0);
1894
1895	if (val < base) {
1896		/*
1897		 * This is an underflow.
1898		 */
1899		lquanta[0] += incr;
1900		return;
1901	}
1902
1903	level = (val - base) / step;
1904
1905	if (level < levels) {
1906		lquanta[level + 1] += incr;
1907		return;
1908	}
1909
1910	/*
1911	 * This is an overflow.
1912	 */
1913	lquanta[levels + 1] += incr;
1914}
1915
1916/*ARGSUSED*/
1917static void
1918dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1919{
1920	data[0]++;
1921	data[1] += nval;
1922}
1923
1924/*ARGSUSED*/
1925static void
1926dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1927{
1928	int64_t snval = (int64_t)nval;
1929	uint64_t tmp[2];
1930
1931	data[0]++;
1932	data[1] += nval;
1933
1934	/*
1935	 * What we want to say here is:
1936	 *
1937	 * data[2] += nval * nval;
1938	 *
1939	 * But given that nval is 64-bit, we could easily overflow, so
1940	 * we do this as 128-bit arithmetic.
1941	 */
1942	if (snval < 0)
1943		snval = -snval;
1944
1945	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1946	dtrace_add_128(data + 2, tmp, data + 2);
1947}
1948
1949/*ARGSUSED*/
1950static void
1951dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1952{
1953	*oval = *oval + 1;
1954}
1955
1956/*ARGSUSED*/
1957static void
1958dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1959{
1960	*oval += nval;
1961}
1962
1963/*
1964 * Aggregate given the tuple in the principal data buffer, and the aggregating
1965 * action denoted by the specified dtrace_aggregation_t.  The aggregation
1966 * buffer is specified as the buf parameter.  This routine does not return
1967 * failure; if there is no space in the aggregation buffer, the data will be
1968 * dropped, and a corresponding counter incremented.
1969 */
1970static void
1971dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1972    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1973{
1974	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1975	uint32_t i, ndx, size, fsize;
1976	uint32_t align = sizeof (uint64_t) - 1;
1977	dtrace_aggbuffer_t *agb;
1978	dtrace_aggkey_t *key;
1979	uint32_t hashval = 0, limit, isstr;
1980	caddr_t tomax, data, kdata;
1981	dtrace_actkind_t action;
1982	dtrace_action_t *act;
1983	uintptr_t offs;
1984
1985	if (buf == NULL)
1986		return;
1987
1988	if (!agg->dtag_hasarg) {
1989		/*
1990		 * Currently, only quantize() and lquantize() take additional
1991		 * arguments, and they have the same semantics:  an increment
1992		 * value that defaults to 1 when not present.  If additional
1993		 * aggregating actions take arguments, the setting of the
1994		 * default argument value will presumably have to become more
1995		 * sophisticated...
1996		 */
1997		arg = 1;
1998	}
1999
2000	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2001	size = rec->dtrd_offset - agg->dtag_base;
2002	fsize = size + rec->dtrd_size;
2003
2004	ASSERT(dbuf->dtb_tomax != NULL);
2005	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2006
2007	if ((tomax = buf->dtb_tomax) == NULL) {
2008		dtrace_buffer_drop(buf);
2009		return;
2010	}
2011
2012	/*
2013	 * The metastructure is always at the bottom of the buffer.
2014	 */
2015	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2016	    sizeof (dtrace_aggbuffer_t));
2017
2018	if (buf->dtb_offset == 0) {
2019		/*
2020		 * We just kludge up approximately 1/8th of the size to be
2021		 * buckets.  If this guess ends up being routinely
2022		 * off-the-mark, we may need to dynamically readjust this
2023		 * based on past performance.
2024		 */
2025		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2026
2027		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2028		    (uintptr_t)tomax || hashsize == 0) {
2029			/*
2030			 * We've been given a ludicrously small buffer;
2031			 * increment our drop count and leave.
2032			 */
2033			dtrace_buffer_drop(buf);
2034			return;
2035		}
2036
2037		/*
2038		 * And now, a pathetic attempt to try to get a an odd (or
2039		 * perchance, a prime) hash size for better hash distribution.
2040		 */
2041		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2042			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2043
2044		agb->dtagb_hashsize = hashsize;
2045		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2046		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2047		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2048
2049		for (i = 0; i < agb->dtagb_hashsize; i++)
2050			agb->dtagb_hash[i] = NULL;
2051	}
2052
2053	ASSERT(agg->dtag_first != NULL);
2054	ASSERT(agg->dtag_first->dta_intuple);
2055
2056	/*
2057	 * Calculate the hash value based on the key.  Note that we _don't_
2058	 * include the aggid in the hashing (but we will store it as part of
2059	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2060	 * algorithm: a simple, quick algorithm that has no known funnels, and
2061	 * gets good distribution in practice.  The efficacy of the hashing
2062	 * algorithm (and a comparison with other algorithms) may be found by
2063	 * running the ::dtrace_aggstat MDB dcmd.
2064	 */
2065	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2066		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2067		limit = i + act->dta_rec.dtrd_size;
2068		ASSERT(limit <= size);
2069		isstr = DTRACEACT_ISSTRING(act);
2070
2071		for (; i < limit; i++) {
2072			hashval += data[i];
2073			hashval += (hashval << 10);
2074			hashval ^= (hashval >> 6);
2075
2076			if (isstr && data[i] == '\0')
2077				break;
2078		}
2079	}
2080
2081	hashval += (hashval << 3);
2082	hashval ^= (hashval >> 11);
2083	hashval += (hashval << 15);
2084
2085	/*
2086	 * Yes, the divide here is expensive -- but it's generally the least
2087	 * of the performance issues given the amount of data that we iterate
2088	 * over to compute hash values, compare data, etc.
2089	 */
2090	ndx = hashval % agb->dtagb_hashsize;
2091
2092	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2093		ASSERT((caddr_t)key >= tomax);
2094		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2095
2096		if (hashval != key->dtak_hashval || key->dtak_size != size)
2097			continue;
2098
2099		kdata = key->dtak_data;
2100		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2101
2102		for (act = agg->dtag_first; act->dta_intuple;
2103		    act = act->dta_next) {
2104			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2105			limit = i + act->dta_rec.dtrd_size;
2106			ASSERT(limit <= size);
2107			isstr = DTRACEACT_ISSTRING(act);
2108
2109			for (; i < limit; i++) {
2110				if (kdata[i] != data[i])
2111					goto next;
2112
2113				if (isstr && data[i] == '\0')
2114					break;
2115			}
2116		}
2117
2118		if (action != key->dtak_action) {
2119			/*
2120			 * We are aggregating on the same value in the same
2121			 * aggregation with two different aggregating actions.
2122			 * (This should have been picked up in the compiler,
2123			 * so we may be dealing with errant or devious DIF.)
2124			 * This is an error condition; we indicate as much,
2125			 * and return.
2126			 */
2127			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2128			return;
2129		}
2130
2131		/*
2132		 * This is a hit:  we need to apply the aggregator to
2133		 * the value at this key.
2134		 */
2135		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2136		return;
2137next:
2138		continue;
2139	}
2140
2141	/*
2142	 * We didn't find it.  We need to allocate some zero-filled space,
2143	 * link it into the hash table appropriately, and apply the aggregator
2144	 * to the (zero-filled) value.
2145	 */
2146	offs = buf->dtb_offset;
2147	while (offs & (align - 1))
2148		offs += sizeof (uint32_t);
2149
2150	/*
2151	 * If we don't have enough room to both allocate a new key _and_
2152	 * its associated data, increment the drop count and return.
2153	 */
2154	if ((uintptr_t)tomax + offs + fsize >
2155	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2156		dtrace_buffer_drop(buf);
2157		return;
2158	}
2159
2160	/*CONSTCOND*/
2161	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2162	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2163	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2164
2165	key->dtak_data = kdata = tomax + offs;
2166	buf->dtb_offset = offs + fsize;
2167
2168	/*
2169	 * Now copy the data across.
2170	 */
2171	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2172
2173	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2174		kdata[i] = data[i];
2175
2176	/*
2177	 * Because strings are not zeroed out by default, we need to iterate
2178	 * looking for actions that store strings, and we need to explicitly
2179	 * pad these strings out with zeroes.
2180	 */
2181	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2182		int nul;
2183
2184		if (!DTRACEACT_ISSTRING(act))
2185			continue;
2186
2187		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2188		limit = i + act->dta_rec.dtrd_size;
2189		ASSERT(limit <= size);
2190
2191		for (nul = 0; i < limit; i++) {
2192			if (nul) {
2193				kdata[i] = '\0';
2194				continue;
2195			}
2196
2197			if (data[i] != '\0')
2198				continue;
2199
2200			nul = 1;
2201		}
2202	}
2203
2204	for (i = size; i < fsize; i++)
2205		kdata[i] = 0;
2206
2207	key->dtak_hashval = hashval;
2208	key->dtak_size = size;
2209	key->dtak_action = action;
2210	key->dtak_next = agb->dtagb_hash[ndx];
2211	agb->dtagb_hash[ndx] = key;
2212
2213	/*
2214	 * Finally, apply the aggregator.
2215	 */
2216	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2217	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2218}
2219
2220/*
2221 * Given consumer state, this routine finds a speculation in the INACTIVE
2222 * state and transitions it into the ACTIVE state.  If there is no speculation
2223 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2224 * incremented -- it is up to the caller to take appropriate action.
2225 */
2226static int
2227dtrace_speculation(dtrace_state_t *state)
2228{
2229	int i = 0;
2230	dtrace_speculation_state_t current;
2231	uint32_t *stat = &state->dts_speculations_unavail, count;
2232
2233	while (i < state->dts_nspeculations) {
2234		dtrace_speculation_t *spec = &state->dts_speculations[i];
2235
2236		current = spec->dtsp_state;
2237
2238		if (current != DTRACESPEC_INACTIVE) {
2239			if (current == DTRACESPEC_COMMITTINGMANY ||
2240			    current == DTRACESPEC_COMMITTING ||
2241			    current == DTRACESPEC_DISCARDING)
2242				stat = &state->dts_speculations_busy;
2243			i++;
2244			continue;
2245		}
2246
2247		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2248		    current, DTRACESPEC_ACTIVE) == current)
2249			return (i + 1);
2250	}
2251
2252	/*
2253	 * We couldn't find a speculation.  If we found as much as a single
2254	 * busy speculation buffer, we'll attribute this failure as "busy"
2255	 * instead of "unavail".
2256	 */
2257	do {
2258		count = *stat;
2259	} while (dtrace_cas32(stat, count, count + 1) != count);
2260
2261	return (0);
2262}
2263
2264/*
2265 * This routine commits an active speculation.  If the specified speculation
2266 * is not in a valid state to perform a commit(), this routine will silently do
2267 * nothing.  The state of the specified speculation is transitioned according
2268 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2269 */
2270static void
2271dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2272    dtrace_specid_t which)
2273{
2274	dtrace_speculation_t *spec;
2275	dtrace_buffer_t *src, *dest;
2276	uintptr_t daddr, saddr, dlimit;
2277	dtrace_speculation_state_t current, new = 0;
2278	intptr_t offs;
2279
2280	if (which == 0)
2281		return;
2282
2283	if (which > state->dts_nspeculations) {
2284		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2285		return;
2286	}
2287
2288	spec = &state->dts_speculations[which - 1];
2289	src = &spec->dtsp_buffer[cpu];
2290	dest = &state->dts_buffer[cpu];
2291
2292	do {
2293		current = spec->dtsp_state;
2294
2295		if (current == DTRACESPEC_COMMITTINGMANY)
2296			break;
2297
2298		switch (current) {
2299		case DTRACESPEC_INACTIVE:
2300		case DTRACESPEC_DISCARDING:
2301			return;
2302
2303		case DTRACESPEC_COMMITTING:
2304			/*
2305			 * This is only possible if we are (a) commit()'ing
2306			 * without having done a prior speculate() on this CPU
2307			 * and (b) racing with another commit() on a different
2308			 * CPU.  There's nothing to do -- we just assert that
2309			 * our offset is 0.
2310			 */
2311			ASSERT(src->dtb_offset == 0);
2312			return;
2313
2314		case DTRACESPEC_ACTIVE:
2315			new = DTRACESPEC_COMMITTING;
2316			break;
2317
2318		case DTRACESPEC_ACTIVEONE:
2319			/*
2320			 * This speculation is active on one CPU.  If our
2321			 * buffer offset is non-zero, we know that the one CPU
2322			 * must be us.  Otherwise, we are committing on a
2323			 * different CPU from the speculate(), and we must
2324			 * rely on being asynchronously cleaned.
2325			 */
2326			if (src->dtb_offset != 0) {
2327				new = DTRACESPEC_COMMITTING;
2328				break;
2329			}
2330			/*FALLTHROUGH*/
2331
2332		case DTRACESPEC_ACTIVEMANY:
2333			new = DTRACESPEC_COMMITTINGMANY;
2334			break;
2335
2336		default:
2337			ASSERT(0);
2338		}
2339	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2340	    current, new) != current);
2341
2342	/*
2343	 * We have set the state to indicate that we are committing this
2344	 * speculation.  Now reserve the necessary space in the destination
2345	 * buffer.
2346	 */
2347	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2348	    sizeof (uint64_t), state, NULL)) < 0) {
2349		dtrace_buffer_drop(dest);
2350		goto out;
2351	}
2352
2353	/*
2354	 * We have the space; copy the buffer across.  (Note that this is a
2355	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2356	 * a serious performance issue, a high-performance DTrace-specific
2357	 * bcopy() should obviously be invented.)
2358	 */
2359	daddr = (uintptr_t)dest->dtb_tomax + offs;
2360	dlimit = daddr + src->dtb_offset;
2361	saddr = (uintptr_t)src->dtb_tomax;
2362
2363	/*
2364	 * First, the aligned portion.
2365	 */
2366	while (dlimit - daddr >= sizeof (uint64_t)) {
2367		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2368
2369		daddr += sizeof (uint64_t);
2370		saddr += sizeof (uint64_t);
2371	}
2372
2373	/*
2374	 * Now any left-over bit...
2375	 */
2376	while (dlimit - daddr)
2377		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2378
2379	/*
2380	 * Finally, commit the reserved space in the destination buffer.
2381	 */
2382	dest->dtb_offset = offs + src->dtb_offset;
2383
2384out:
2385	/*
2386	 * If we're lucky enough to be the only active CPU on this speculation
2387	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2388	 */
2389	if (current == DTRACESPEC_ACTIVE ||
2390	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2391		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2392		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2393
2394		ASSERT(rval == DTRACESPEC_COMMITTING);
2395	}
2396
2397	src->dtb_offset = 0;
2398	src->dtb_xamot_drops += src->dtb_drops;
2399	src->dtb_drops = 0;
2400}
2401
2402/*
2403 * This routine discards an active speculation.  If the specified speculation
2404 * is not in a valid state to perform a discard(), this routine will silently
2405 * do nothing.  The state of the specified speculation is transitioned
2406 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2407 */
2408static void
2409dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2410    dtrace_specid_t which)
2411{
2412	dtrace_speculation_t *spec;
2413	dtrace_speculation_state_t current, new = 0;
2414	dtrace_buffer_t *buf;
2415
2416	if (which == 0)
2417		return;
2418
2419	if (which > state->dts_nspeculations) {
2420		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2421		return;
2422	}
2423
2424	spec = &state->dts_speculations[which - 1];
2425	buf = &spec->dtsp_buffer[cpu];
2426
2427	do {
2428		current = spec->dtsp_state;
2429
2430		switch (current) {
2431		case DTRACESPEC_INACTIVE:
2432		case DTRACESPEC_COMMITTINGMANY:
2433		case DTRACESPEC_COMMITTING:
2434		case DTRACESPEC_DISCARDING:
2435			return;
2436
2437		case DTRACESPEC_ACTIVE:
2438		case DTRACESPEC_ACTIVEMANY:
2439			new = DTRACESPEC_DISCARDING;
2440			break;
2441
2442		case DTRACESPEC_ACTIVEONE:
2443			if (buf->dtb_offset != 0) {
2444				new = DTRACESPEC_INACTIVE;
2445			} else {
2446				new = DTRACESPEC_DISCARDING;
2447			}
2448			break;
2449
2450		default:
2451			ASSERT(0);
2452		}
2453	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2454	    current, new) != current);
2455
2456	buf->dtb_offset = 0;
2457	buf->dtb_drops = 0;
2458}
2459
2460/*
2461 * Note:  not called from probe context.  This function is called
2462 * asynchronously from cross call context to clean any speculations that are
2463 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2464 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2465 * speculation.
2466 */
2467static void
2468dtrace_speculation_clean_here(dtrace_state_t *state)
2469{
2470	dtrace_icookie_t cookie;
2471	processorid_t cpu = curcpu;
2472	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2473	dtrace_specid_t i;
2474
2475	cookie = dtrace_interrupt_disable();
2476
2477	if (dest->dtb_tomax == NULL) {
2478		dtrace_interrupt_enable(cookie);
2479		return;
2480	}
2481
2482	for (i = 0; i < state->dts_nspeculations; i++) {
2483		dtrace_speculation_t *spec = &state->dts_speculations[i];
2484		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2485
2486		if (src->dtb_tomax == NULL)
2487			continue;
2488
2489		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2490			src->dtb_offset = 0;
2491			continue;
2492		}
2493
2494		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2495			continue;
2496
2497		if (src->dtb_offset == 0)
2498			continue;
2499
2500		dtrace_speculation_commit(state, cpu, i + 1);
2501	}
2502
2503	dtrace_interrupt_enable(cookie);
2504}
2505
2506/*
2507 * Note:  not called from probe context.  This function is called
2508 * asynchronously (and at a regular interval) to clean any speculations that
2509 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2510 * is work to be done, it cross calls all CPUs to perform that work;
2511 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2512 * INACTIVE state until they have been cleaned by all CPUs.
2513 */
2514static void
2515dtrace_speculation_clean(dtrace_state_t *state)
2516{
2517	int work = 0, rv;
2518	dtrace_specid_t i;
2519
2520	for (i = 0; i < state->dts_nspeculations; i++) {
2521		dtrace_speculation_t *spec = &state->dts_speculations[i];
2522
2523		ASSERT(!spec->dtsp_cleaning);
2524
2525		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2526		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2527			continue;
2528
2529		work++;
2530		spec->dtsp_cleaning = 1;
2531	}
2532
2533	if (!work)
2534		return;
2535
2536	dtrace_xcall(DTRACE_CPUALL,
2537	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2538
2539	/*
2540	 * We now know that all CPUs have committed or discarded their
2541	 * speculation buffers, as appropriate.  We can now set the state
2542	 * to inactive.
2543	 */
2544	for (i = 0; i < state->dts_nspeculations; i++) {
2545		dtrace_speculation_t *spec = &state->dts_speculations[i];
2546		dtrace_speculation_state_t current, new;
2547
2548		if (!spec->dtsp_cleaning)
2549			continue;
2550
2551		current = spec->dtsp_state;
2552		ASSERT(current == DTRACESPEC_DISCARDING ||
2553		    current == DTRACESPEC_COMMITTINGMANY);
2554
2555		new = DTRACESPEC_INACTIVE;
2556
2557		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2558		ASSERT(rv == current);
2559		spec->dtsp_cleaning = 0;
2560	}
2561}
2562
2563/*
2564 * Called as part of a speculate() to get the speculative buffer associated
2565 * with a given speculation.  Returns NULL if the specified speculation is not
2566 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2567 * the active CPU is not the specified CPU -- the speculation will be
2568 * atomically transitioned into the ACTIVEMANY state.
2569 */
2570static dtrace_buffer_t *
2571dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2572    dtrace_specid_t which)
2573{
2574	dtrace_speculation_t *spec;
2575	dtrace_speculation_state_t current, new = 0;
2576	dtrace_buffer_t *buf;
2577
2578	if (which == 0)
2579		return (NULL);
2580
2581	if (which > state->dts_nspeculations) {
2582		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2583		return (NULL);
2584	}
2585
2586	spec = &state->dts_speculations[which - 1];
2587	buf = &spec->dtsp_buffer[cpuid];
2588
2589	do {
2590		current = spec->dtsp_state;
2591
2592		switch (current) {
2593		case DTRACESPEC_INACTIVE:
2594		case DTRACESPEC_COMMITTINGMANY:
2595		case DTRACESPEC_DISCARDING:
2596			return (NULL);
2597
2598		case DTRACESPEC_COMMITTING:
2599			ASSERT(buf->dtb_offset == 0);
2600			return (NULL);
2601
2602		case DTRACESPEC_ACTIVEONE:
2603			/*
2604			 * This speculation is currently active on one CPU.
2605			 * Check the offset in the buffer; if it's non-zero,
2606			 * that CPU must be us (and we leave the state alone).
2607			 * If it's zero, assume that we're starting on a new
2608			 * CPU -- and change the state to indicate that the
2609			 * speculation is active on more than one CPU.
2610			 */
2611			if (buf->dtb_offset != 0)
2612				return (buf);
2613
2614			new = DTRACESPEC_ACTIVEMANY;
2615			break;
2616
2617		case DTRACESPEC_ACTIVEMANY:
2618			return (buf);
2619
2620		case DTRACESPEC_ACTIVE:
2621			new = DTRACESPEC_ACTIVEONE;
2622			break;
2623
2624		default:
2625			ASSERT(0);
2626		}
2627	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2628	    current, new) != current);
2629
2630	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2631	return (buf);
2632}
2633
2634/*
2635 * Return a string.  In the event that the user lacks the privilege to access
2636 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2637 * don't fail access checking.
2638 *
2639 * dtrace_dif_variable() uses this routine as a helper for various
2640 * builtin values such as 'execname' and 'probefunc.'
2641 */
2642uintptr_t
2643dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2644    dtrace_mstate_t *mstate)
2645{
2646	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2647	uintptr_t ret;
2648	size_t strsz;
2649
2650	/*
2651	 * The easy case: this probe is allowed to read all of memory, so
2652	 * we can just return this as a vanilla pointer.
2653	 */
2654	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2655		return (addr);
2656
2657	/*
2658	 * This is the tougher case: we copy the string in question from
2659	 * kernel memory into scratch memory and return it that way: this
2660	 * ensures that we won't trip up when access checking tests the
2661	 * BYREF return value.
2662	 */
2663	strsz = dtrace_strlen((char *)addr, size) + 1;
2664
2665	if (mstate->dtms_scratch_ptr + strsz >
2666	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2667		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2668		return (0);
2669	}
2670
2671	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2672	    strsz);
2673	ret = mstate->dtms_scratch_ptr;
2674	mstate->dtms_scratch_ptr += strsz;
2675	return (ret);
2676}
2677
2678/*
2679 * Return a string from a memoy address which is known to have one or
2680 * more concatenated, individually zero terminated, sub-strings.
2681 * In the event that the user lacks the privilege to access
2682 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2683 * don't fail access checking.
2684 *
2685 * dtrace_dif_variable() uses this routine as a helper for various
2686 * builtin values such as 'execargs'.
2687 */
2688static uintptr_t
2689dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2690    dtrace_mstate_t *mstate)
2691{
2692	char *p;
2693	size_t i;
2694	uintptr_t ret;
2695
2696	if (mstate->dtms_scratch_ptr + strsz >
2697	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2698		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2699		return (0);
2700	}
2701
2702	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2703	    strsz);
2704
2705	/* Replace sub-string termination characters with a space. */
2706	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2707	    p++, i++)
2708		if (*p == '\0')
2709			*p = ' ';
2710
2711	ret = mstate->dtms_scratch_ptr;
2712	mstate->dtms_scratch_ptr += strsz;
2713	return (ret);
2714}
2715
2716/*
2717 * This function implements the DIF emulator's variable lookups.  The emulator
2718 * passes a reserved variable identifier and optional built-in array index.
2719 */
2720static uint64_t
2721dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2722    uint64_t ndx)
2723{
2724	/*
2725	 * If we're accessing one of the uncached arguments, we'll turn this
2726	 * into a reference in the args array.
2727	 */
2728	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2729		ndx = v - DIF_VAR_ARG0;
2730		v = DIF_VAR_ARGS;
2731	}
2732
2733	switch (v) {
2734	case DIF_VAR_ARGS:
2735		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2736		if (ndx >= sizeof (mstate->dtms_arg) /
2737		    sizeof (mstate->dtms_arg[0])) {
2738			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2739			dtrace_provider_t *pv;
2740			uint64_t val;
2741
2742			pv = mstate->dtms_probe->dtpr_provider;
2743			if (pv->dtpv_pops.dtps_getargval != NULL)
2744				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2745				    mstate->dtms_probe->dtpr_id,
2746				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2747			else
2748				val = dtrace_getarg(ndx, aframes);
2749
2750			/*
2751			 * This is regrettably required to keep the compiler
2752			 * from tail-optimizing the call to dtrace_getarg().
2753			 * The condition always evaluates to true, but the
2754			 * compiler has no way of figuring that out a priori.
2755			 * (None of this would be necessary if the compiler
2756			 * could be relied upon to _always_ tail-optimize
2757			 * the call to dtrace_getarg() -- but it can't.)
2758			 */
2759			if (mstate->dtms_probe != NULL)
2760				return (val);
2761
2762			ASSERT(0);
2763		}
2764
2765		return (mstate->dtms_arg[ndx]);
2766
2767#if defined(sun)
2768	case DIF_VAR_UREGS: {
2769		klwp_t *lwp;
2770
2771		if (!dtrace_priv_proc(state))
2772			return (0);
2773
2774		if ((lwp = curthread->t_lwp) == NULL) {
2775			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2776			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2777			return (0);
2778		}
2779
2780		return (dtrace_getreg(lwp->lwp_regs, ndx));
2781		return (0);
2782	}
2783#else
2784	case DIF_VAR_UREGS: {
2785		struct trapframe *tframe;
2786
2787		if (!dtrace_priv_proc(state))
2788			return (0);
2789
2790		if ((tframe = curthread->td_frame) == NULL) {
2791			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2792			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2793			return (0);
2794		}
2795
2796		return (dtrace_getreg(tframe, ndx));
2797	}
2798#endif
2799
2800	case DIF_VAR_CURTHREAD:
2801		if (!dtrace_priv_kernel(state))
2802			return (0);
2803		return ((uint64_t)(uintptr_t)curthread);
2804
2805	case DIF_VAR_TIMESTAMP:
2806		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2807			mstate->dtms_timestamp = dtrace_gethrtime();
2808			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2809		}
2810		return (mstate->dtms_timestamp);
2811
2812	case DIF_VAR_VTIMESTAMP:
2813		ASSERT(dtrace_vtime_references != 0);
2814		return (curthread->t_dtrace_vtime);
2815
2816	case DIF_VAR_WALLTIMESTAMP:
2817		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2818			mstate->dtms_walltimestamp = dtrace_gethrestime();
2819			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2820		}
2821		return (mstate->dtms_walltimestamp);
2822
2823#if defined(sun)
2824	case DIF_VAR_IPL:
2825		if (!dtrace_priv_kernel(state))
2826			return (0);
2827		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2828			mstate->dtms_ipl = dtrace_getipl();
2829			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2830		}
2831		return (mstate->dtms_ipl);
2832#endif
2833
2834	case DIF_VAR_EPID:
2835		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2836		return (mstate->dtms_epid);
2837
2838	case DIF_VAR_ID:
2839		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2840		return (mstate->dtms_probe->dtpr_id);
2841
2842	case DIF_VAR_STACKDEPTH:
2843		if (!dtrace_priv_kernel(state))
2844			return (0);
2845		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2846			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2847
2848			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2849			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2850		}
2851		return (mstate->dtms_stackdepth);
2852
2853	case DIF_VAR_USTACKDEPTH:
2854		if (!dtrace_priv_proc(state))
2855			return (0);
2856		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2857			/*
2858			 * See comment in DIF_VAR_PID.
2859			 */
2860			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2861			    CPU_ON_INTR(CPU)) {
2862				mstate->dtms_ustackdepth = 0;
2863			} else {
2864				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2865				mstate->dtms_ustackdepth =
2866				    dtrace_getustackdepth();
2867				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2868			}
2869			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2870		}
2871		return (mstate->dtms_ustackdepth);
2872
2873	case DIF_VAR_CALLER:
2874		if (!dtrace_priv_kernel(state))
2875			return (0);
2876		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2877			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2878
2879			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2880				/*
2881				 * If this is an unanchored probe, we are
2882				 * required to go through the slow path:
2883				 * dtrace_caller() only guarantees correct
2884				 * results for anchored probes.
2885				 */
2886				pc_t caller[2] = {0, 0};
2887
2888				dtrace_getpcstack(caller, 2, aframes,
2889				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2890				mstate->dtms_caller = caller[1];
2891			} else if ((mstate->dtms_caller =
2892			    dtrace_caller(aframes)) == -1) {
2893				/*
2894				 * We have failed to do this the quick way;
2895				 * we must resort to the slower approach of
2896				 * calling dtrace_getpcstack().
2897				 */
2898				pc_t caller = 0;
2899
2900				dtrace_getpcstack(&caller, 1, aframes, NULL);
2901				mstate->dtms_caller = caller;
2902			}
2903
2904			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2905		}
2906		return (mstate->dtms_caller);
2907
2908	case DIF_VAR_UCALLER:
2909		if (!dtrace_priv_proc(state))
2910			return (0);
2911
2912		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2913			uint64_t ustack[3];
2914
2915			/*
2916			 * dtrace_getupcstack() fills in the first uint64_t
2917			 * with the current PID.  The second uint64_t will
2918			 * be the program counter at user-level.  The third
2919			 * uint64_t will contain the caller, which is what
2920			 * we're after.
2921			 */
2922			ustack[2] = 0;
2923			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2924			dtrace_getupcstack(ustack, 3);
2925			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2926			mstate->dtms_ucaller = ustack[2];
2927			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2928		}
2929
2930		return (mstate->dtms_ucaller);
2931
2932	case DIF_VAR_PROBEPROV:
2933		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2934		return (dtrace_dif_varstr(
2935		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2936		    state, mstate));
2937
2938	case DIF_VAR_PROBEMOD:
2939		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2940		return (dtrace_dif_varstr(
2941		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2942		    state, mstate));
2943
2944	case DIF_VAR_PROBEFUNC:
2945		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2946		return (dtrace_dif_varstr(
2947		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2948		    state, mstate));
2949
2950	case DIF_VAR_PROBENAME:
2951		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2952		return (dtrace_dif_varstr(
2953		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2954		    state, mstate));
2955
2956	case DIF_VAR_PID:
2957		if (!dtrace_priv_proc(state))
2958			return (0);
2959
2960#if defined(sun)
2961		/*
2962		 * Note that we are assuming that an unanchored probe is
2963		 * always due to a high-level interrupt.  (And we're assuming
2964		 * that there is only a single high level interrupt.)
2965		 */
2966		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2967			return (pid0.pid_id);
2968
2969		/*
2970		 * It is always safe to dereference one's own t_procp pointer:
2971		 * it always points to a valid, allocated proc structure.
2972		 * Further, it is always safe to dereference the p_pidp member
2973		 * of one's own proc structure.  (These are truisms becuase
2974		 * threads and processes don't clean up their own state --
2975		 * they leave that task to whomever reaps them.)
2976		 */
2977		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2978#else
2979		return ((uint64_t)curproc->p_pid);
2980#endif
2981
2982	case DIF_VAR_PPID:
2983		if (!dtrace_priv_proc(state))
2984			return (0);
2985
2986#if defined(sun)
2987		/*
2988		 * See comment in DIF_VAR_PID.
2989		 */
2990		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2991			return (pid0.pid_id);
2992
2993		/*
2994		 * It is always safe to dereference one's own t_procp pointer:
2995		 * it always points to a valid, allocated proc structure.
2996		 * (This is true because threads don't clean up their own
2997		 * state -- they leave that task to whomever reaps them.)
2998		 */
2999		return ((uint64_t)curthread->t_procp->p_ppid);
3000#else
3001		return ((uint64_t)curproc->p_pptr->p_pid);
3002#endif
3003
3004	case DIF_VAR_TID:
3005#if defined(sun)
3006		/*
3007		 * See comment in DIF_VAR_PID.
3008		 */
3009		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3010			return (0);
3011#endif
3012
3013		return ((uint64_t)curthread->t_tid);
3014
3015	case DIF_VAR_EXECARGS: {
3016		struct pargs *p_args = curthread->td_proc->p_args;
3017
3018		if (p_args == NULL)
3019			return(0);
3020
3021		return (dtrace_dif_varstrz(
3022		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3023	}
3024
3025	case DIF_VAR_EXECNAME:
3026#if defined(sun)
3027		if (!dtrace_priv_proc(state))
3028			return (0);
3029
3030		/*
3031		 * See comment in DIF_VAR_PID.
3032		 */
3033		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3034			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3035
3036		/*
3037		 * It is always safe to dereference one's own t_procp pointer:
3038		 * it always points to a valid, allocated proc structure.
3039		 * (This is true because threads don't clean up their own
3040		 * state -- they leave that task to whomever reaps them.)
3041		 */
3042		return (dtrace_dif_varstr(
3043		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3044		    state, mstate));
3045#else
3046		return (dtrace_dif_varstr(
3047		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3048#endif
3049
3050	case DIF_VAR_ZONENAME:
3051#if defined(sun)
3052		if (!dtrace_priv_proc(state))
3053			return (0);
3054
3055		/*
3056		 * See comment in DIF_VAR_PID.
3057		 */
3058		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3059			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3060
3061		/*
3062		 * It is always safe to dereference one's own t_procp pointer:
3063		 * it always points to a valid, allocated proc structure.
3064		 * (This is true because threads don't clean up their own
3065		 * state -- they leave that task to whomever reaps them.)
3066		 */
3067		return (dtrace_dif_varstr(
3068		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3069		    state, mstate));
3070#else
3071		return (0);
3072#endif
3073
3074	case DIF_VAR_UID:
3075		if (!dtrace_priv_proc(state))
3076			return (0);
3077
3078#if defined(sun)
3079		/*
3080		 * See comment in DIF_VAR_PID.
3081		 */
3082		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3083			return ((uint64_t)p0.p_cred->cr_uid);
3084#endif
3085
3086		/*
3087		 * It is always safe to dereference one's own t_procp pointer:
3088		 * it always points to a valid, allocated proc structure.
3089		 * (This is true because threads don't clean up their own
3090		 * state -- they leave that task to whomever reaps them.)
3091		 *
3092		 * Additionally, it is safe to dereference one's own process
3093		 * credential, since this is never NULL after process birth.
3094		 */
3095		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3096
3097	case DIF_VAR_GID:
3098		if (!dtrace_priv_proc(state))
3099			return (0);
3100
3101#if defined(sun)
3102		/*
3103		 * See comment in DIF_VAR_PID.
3104		 */
3105		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3106			return ((uint64_t)p0.p_cred->cr_gid);
3107#endif
3108
3109		/*
3110		 * It is always safe to dereference one's own t_procp pointer:
3111		 * it always points to a valid, allocated proc structure.
3112		 * (This is true because threads don't clean up their own
3113		 * state -- they leave that task to whomever reaps them.)
3114		 *
3115		 * Additionally, it is safe to dereference one's own process
3116		 * credential, since this is never NULL after process birth.
3117		 */
3118		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3119
3120	case DIF_VAR_ERRNO: {
3121#if defined(sun)
3122		klwp_t *lwp;
3123		if (!dtrace_priv_proc(state))
3124			return (0);
3125
3126		/*
3127		 * See comment in DIF_VAR_PID.
3128		 */
3129		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3130			return (0);
3131
3132		/*
3133		 * It is always safe to dereference one's own t_lwp pointer in
3134		 * the event that this pointer is non-NULL.  (This is true
3135		 * because threads and lwps don't clean up their own state --
3136		 * they leave that task to whomever reaps them.)
3137		 */
3138		if ((lwp = curthread->t_lwp) == NULL)
3139			return (0);
3140
3141		return ((uint64_t)lwp->lwp_errno);
3142#else
3143		return (curthread->td_errno);
3144#endif
3145	}
3146	default:
3147		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3148		return (0);
3149	}
3150}
3151
3152/*
3153 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3154 * Notice that we don't bother validating the proper number of arguments or
3155 * their types in the tuple stack.  This isn't needed because all argument
3156 * interpretation is safe because of our load safety -- the worst that can
3157 * happen is that a bogus program can obtain bogus results.
3158 */
3159static void
3160dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3161    dtrace_key_t *tupregs, int nargs,
3162    dtrace_mstate_t *mstate, dtrace_state_t *state)
3163{
3164	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3165	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3166	dtrace_vstate_t *vstate = &state->dts_vstate;
3167
3168#if defined(sun)
3169	union {
3170		mutex_impl_t mi;
3171		uint64_t mx;
3172	} m;
3173
3174	union {
3175		krwlock_t ri;
3176		uintptr_t rw;
3177	} r;
3178#else
3179	struct thread *lowner;
3180	union {
3181		struct lock_object *li;
3182		uintptr_t lx;
3183	} l;
3184#endif
3185
3186	switch (subr) {
3187	case DIF_SUBR_RAND:
3188		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3189		break;
3190
3191#if defined(sun)
3192	case DIF_SUBR_MUTEX_OWNED:
3193		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3194		    mstate, vstate)) {
3195			regs[rd] = 0;
3196			break;
3197		}
3198
3199		m.mx = dtrace_load64(tupregs[0].dttk_value);
3200		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3201			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3202		else
3203			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3204		break;
3205
3206	case DIF_SUBR_MUTEX_OWNER:
3207		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3208		    mstate, vstate)) {
3209			regs[rd] = 0;
3210			break;
3211		}
3212
3213		m.mx = dtrace_load64(tupregs[0].dttk_value);
3214		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3215		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3216			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3217		else
3218			regs[rd] = 0;
3219		break;
3220
3221	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3222		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3223		    mstate, vstate)) {
3224			regs[rd] = 0;
3225			break;
3226		}
3227
3228		m.mx = dtrace_load64(tupregs[0].dttk_value);
3229		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3230		break;
3231
3232	case DIF_SUBR_MUTEX_TYPE_SPIN:
3233		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3234		    mstate, vstate)) {
3235			regs[rd] = 0;
3236			break;
3237		}
3238
3239		m.mx = dtrace_load64(tupregs[0].dttk_value);
3240		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3241		break;
3242
3243	case DIF_SUBR_RW_READ_HELD: {
3244		uintptr_t tmp;
3245
3246		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3247		    mstate, vstate)) {
3248			regs[rd] = 0;
3249			break;
3250		}
3251
3252		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3253		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3254		break;
3255	}
3256
3257	case DIF_SUBR_RW_WRITE_HELD:
3258		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3259		    mstate, vstate)) {
3260			regs[rd] = 0;
3261			break;
3262		}
3263
3264		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3265		regs[rd] = _RW_WRITE_HELD(&r.ri);
3266		break;
3267
3268	case DIF_SUBR_RW_ISWRITER:
3269		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3270		    mstate, vstate)) {
3271			regs[rd] = 0;
3272			break;
3273		}
3274
3275		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3276		regs[rd] = _RW_ISWRITER(&r.ri);
3277		break;
3278
3279#else
3280	case DIF_SUBR_MUTEX_OWNED:
3281		if (!dtrace_canload(tupregs[0].dttk_value,
3282			sizeof (struct lock_object), mstate, vstate)) {
3283			regs[rd] = 0;
3284			break;
3285		}
3286		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3287		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3288		break;
3289
3290	case DIF_SUBR_MUTEX_OWNER:
3291		if (!dtrace_canload(tupregs[0].dttk_value,
3292			sizeof (struct lock_object), mstate, vstate)) {
3293			regs[rd] = 0;
3294			break;
3295		}
3296		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3297		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3298		regs[rd] = (uintptr_t)lowner;
3299		break;
3300
3301	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3302		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3303		    mstate, vstate)) {
3304			regs[rd] = 0;
3305			break;
3306		}
3307		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3308		/* XXX - should be only LC_SLEEPABLE? */
3309		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3310		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3311		break;
3312
3313	case DIF_SUBR_MUTEX_TYPE_SPIN:
3314		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3315		    mstate, vstate)) {
3316			regs[rd] = 0;
3317			break;
3318		}
3319		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3320		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3321		break;
3322
3323	case DIF_SUBR_RW_READ_HELD:
3324	case DIF_SUBR_SX_SHARED_HELD:
3325		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3326		    mstate, vstate)) {
3327			regs[rd] = 0;
3328			break;
3329		}
3330		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3331		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3332		    lowner == NULL;
3333		break;
3334
3335	case DIF_SUBR_RW_WRITE_HELD:
3336	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3337		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3338		    mstate, vstate)) {
3339			regs[rd] = 0;
3340			break;
3341		}
3342		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3343		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3344		regs[rd] = (lowner == curthread);
3345		break;
3346
3347	case DIF_SUBR_RW_ISWRITER:
3348	case DIF_SUBR_SX_ISEXCLUSIVE:
3349		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3350		    mstate, vstate)) {
3351			regs[rd] = 0;
3352			break;
3353		}
3354		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3355		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3356		    lowner != NULL;
3357		break;
3358#endif /* ! defined(sun) */
3359
3360	case DIF_SUBR_BCOPY: {
3361		/*
3362		 * We need to be sure that the destination is in the scratch
3363		 * region -- no other region is allowed.
3364		 */
3365		uintptr_t src = tupregs[0].dttk_value;
3366		uintptr_t dest = tupregs[1].dttk_value;
3367		size_t size = tupregs[2].dttk_value;
3368
3369		if (!dtrace_inscratch(dest, size, mstate)) {
3370			*flags |= CPU_DTRACE_BADADDR;
3371			*illval = regs[rd];
3372			break;
3373		}
3374
3375		if (!dtrace_canload(src, size, mstate, vstate)) {
3376			regs[rd] = 0;
3377			break;
3378		}
3379
3380		dtrace_bcopy((void *)src, (void *)dest, size);
3381		break;
3382	}
3383
3384	case DIF_SUBR_ALLOCA:
3385	case DIF_SUBR_COPYIN: {
3386		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3387		uint64_t size =
3388		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3389		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3390
3391		/*
3392		 * This action doesn't require any credential checks since
3393		 * probes will not activate in user contexts to which the
3394		 * enabling user does not have permissions.
3395		 */
3396
3397		/*
3398		 * Rounding up the user allocation size could have overflowed
3399		 * a large, bogus allocation (like -1ULL) to 0.
3400		 */
3401		if (scratch_size < size ||
3402		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3403			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3404			regs[rd] = 0;
3405			break;
3406		}
3407
3408		if (subr == DIF_SUBR_COPYIN) {
3409			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3410			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3411			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3412		}
3413
3414		mstate->dtms_scratch_ptr += scratch_size;
3415		regs[rd] = dest;
3416		break;
3417	}
3418
3419	case DIF_SUBR_COPYINTO: {
3420		uint64_t size = tupregs[1].dttk_value;
3421		uintptr_t dest = tupregs[2].dttk_value;
3422
3423		/*
3424		 * This action doesn't require any credential checks since
3425		 * probes will not activate in user contexts to which the
3426		 * enabling user does not have permissions.
3427		 */
3428		if (!dtrace_inscratch(dest, size, mstate)) {
3429			*flags |= CPU_DTRACE_BADADDR;
3430			*illval = regs[rd];
3431			break;
3432		}
3433
3434		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3435		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3436		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3437		break;
3438	}
3439
3440	case DIF_SUBR_COPYINSTR: {
3441		uintptr_t dest = mstate->dtms_scratch_ptr;
3442		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3443
3444		if (nargs > 1 && tupregs[1].dttk_value < size)
3445			size = tupregs[1].dttk_value + 1;
3446
3447		/*
3448		 * This action doesn't require any credential checks since
3449		 * probes will not activate in user contexts to which the
3450		 * enabling user does not have permissions.
3451		 */
3452		if (!DTRACE_INSCRATCH(mstate, size)) {
3453			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3454			regs[rd] = 0;
3455			break;
3456		}
3457
3458		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3459		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3460		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3461
3462		((char *)dest)[size - 1] = '\0';
3463		mstate->dtms_scratch_ptr += size;
3464		regs[rd] = dest;
3465		break;
3466	}
3467
3468#if defined(sun)
3469	case DIF_SUBR_MSGSIZE:
3470	case DIF_SUBR_MSGDSIZE: {
3471		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3472		uintptr_t wptr, rptr;
3473		size_t count = 0;
3474		int cont = 0;
3475
3476		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3477
3478			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3479			    vstate)) {
3480				regs[rd] = 0;
3481				break;
3482			}
3483
3484			wptr = dtrace_loadptr(baddr +
3485			    offsetof(mblk_t, b_wptr));
3486
3487			rptr = dtrace_loadptr(baddr +
3488			    offsetof(mblk_t, b_rptr));
3489
3490			if (wptr < rptr) {
3491				*flags |= CPU_DTRACE_BADADDR;
3492				*illval = tupregs[0].dttk_value;
3493				break;
3494			}
3495
3496			daddr = dtrace_loadptr(baddr +
3497			    offsetof(mblk_t, b_datap));
3498
3499			baddr = dtrace_loadptr(baddr +
3500			    offsetof(mblk_t, b_cont));
3501
3502			/*
3503			 * We want to prevent against denial-of-service here,
3504			 * so we're only going to search the list for
3505			 * dtrace_msgdsize_max mblks.
3506			 */
3507			if (cont++ > dtrace_msgdsize_max) {
3508				*flags |= CPU_DTRACE_ILLOP;
3509				break;
3510			}
3511
3512			if (subr == DIF_SUBR_MSGDSIZE) {
3513				if (dtrace_load8(daddr +
3514				    offsetof(dblk_t, db_type)) != M_DATA)
3515					continue;
3516			}
3517
3518			count += wptr - rptr;
3519		}
3520
3521		if (!(*flags & CPU_DTRACE_FAULT))
3522			regs[rd] = count;
3523
3524		break;
3525	}
3526#endif
3527
3528	case DIF_SUBR_PROGENYOF: {
3529		pid_t pid = tupregs[0].dttk_value;
3530		proc_t *p;
3531		int rval = 0;
3532
3533		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3534
3535		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3536#if defined(sun)
3537			if (p->p_pidp->pid_id == pid) {
3538#else
3539			if (p->p_pid == pid) {
3540#endif
3541				rval = 1;
3542				break;
3543			}
3544		}
3545
3546		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3547
3548		regs[rd] = rval;
3549		break;
3550	}
3551
3552	case DIF_SUBR_SPECULATION:
3553		regs[rd] = dtrace_speculation(state);
3554		break;
3555
3556	case DIF_SUBR_COPYOUT: {
3557		uintptr_t kaddr = tupregs[0].dttk_value;
3558		uintptr_t uaddr = tupregs[1].dttk_value;
3559		uint64_t size = tupregs[2].dttk_value;
3560
3561		if (!dtrace_destructive_disallow &&
3562		    dtrace_priv_proc_control(state) &&
3563		    !dtrace_istoxic(kaddr, size)) {
3564			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3565			dtrace_copyout(kaddr, uaddr, size, flags);
3566			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3567		}
3568		break;
3569	}
3570
3571	case DIF_SUBR_COPYOUTSTR: {
3572		uintptr_t kaddr = tupregs[0].dttk_value;
3573		uintptr_t uaddr = tupregs[1].dttk_value;
3574		uint64_t size = tupregs[2].dttk_value;
3575
3576		if (!dtrace_destructive_disallow &&
3577		    dtrace_priv_proc_control(state) &&
3578		    !dtrace_istoxic(kaddr, size)) {
3579			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3580			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3581			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3582		}
3583		break;
3584	}
3585
3586	case DIF_SUBR_STRLEN: {
3587		size_t sz;
3588		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3589		sz = dtrace_strlen((char *)addr,
3590		    state->dts_options[DTRACEOPT_STRSIZE]);
3591
3592		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3593			regs[rd] = 0;
3594			break;
3595		}
3596
3597		regs[rd] = sz;
3598
3599		break;
3600	}
3601
3602	case DIF_SUBR_STRCHR:
3603	case DIF_SUBR_STRRCHR: {
3604		/*
3605		 * We're going to iterate over the string looking for the
3606		 * specified character.  We will iterate until we have reached
3607		 * the string length or we have found the character.  If this
3608		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3609		 * of the specified character instead of the first.
3610		 */
3611		uintptr_t saddr = tupregs[0].dttk_value;
3612		uintptr_t addr = tupregs[0].dttk_value;
3613		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3614		char c, target = (char)tupregs[1].dttk_value;
3615
3616		for (regs[rd] = 0; addr < limit; addr++) {
3617			if ((c = dtrace_load8(addr)) == target) {
3618				regs[rd] = addr;
3619
3620				if (subr == DIF_SUBR_STRCHR)
3621					break;
3622			}
3623
3624			if (c == '\0')
3625				break;
3626		}
3627
3628		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3629			regs[rd] = 0;
3630			break;
3631		}
3632
3633		break;
3634	}
3635
3636	case DIF_SUBR_STRSTR:
3637	case DIF_SUBR_INDEX:
3638	case DIF_SUBR_RINDEX: {
3639		/*
3640		 * We're going to iterate over the string looking for the
3641		 * specified string.  We will iterate until we have reached
3642		 * the string length or we have found the string.  (Yes, this
3643		 * is done in the most naive way possible -- but considering
3644		 * that the string we're searching for is likely to be
3645		 * relatively short, the complexity of Rabin-Karp or similar
3646		 * hardly seems merited.)
3647		 */
3648		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3649		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3650		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3651		size_t len = dtrace_strlen(addr, size);
3652		size_t sublen = dtrace_strlen(substr, size);
3653		char *limit = addr + len, *orig = addr;
3654		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3655		int inc = 1;
3656
3657		regs[rd] = notfound;
3658
3659		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3660			regs[rd] = 0;
3661			break;
3662		}
3663
3664		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3665		    vstate)) {
3666			regs[rd] = 0;
3667			break;
3668		}
3669
3670		/*
3671		 * strstr() and index()/rindex() have similar semantics if
3672		 * both strings are the empty string: strstr() returns a
3673		 * pointer to the (empty) string, and index() and rindex()
3674		 * both return index 0 (regardless of any position argument).
3675		 */
3676		if (sublen == 0 && len == 0) {
3677			if (subr == DIF_SUBR_STRSTR)
3678				regs[rd] = (uintptr_t)addr;
3679			else
3680				regs[rd] = 0;
3681			break;
3682		}
3683
3684		if (subr != DIF_SUBR_STRSTR) {
3685			if (subr == DIF_SUBR_RINDEX) {
3686				limit = orig - 1;
3687				addr += len;
3688				inc = -1;
3689			}
3690
3691			/*
3692			 * Both index() and rindex() take an optional position
3693			 * argument that denotes the starting position.
3694			 */
3695			if (nargs == 3) {
3696				int64_t pos = (int64_t)tupregs[2].dttk_value;
3697
3698				/*
3699				 * If the position argument to index() is
3700				 * negative, Perl implicitly clamps it at
3701				 * zero.  This semantic is a little surprising
3702				 * given the special meaning of negative
3703				 * positions to similar Perl functions like
3704				 * substr(), but it appears to reflect a
3705				 * notion that index() can start from a
3706				 * negative index and increment its way up to
3707				 * the string.  Given this notion, Perl's
3708				 * rindex() is at least self-consistent in
3709				 * that it implicitly clamps positions greater
3710				 * than the string length to be the string
3711				 * length.  Where Perl completely loses
3712				 * coherence, however, is when the specified
3713				 * substring is the empty string ("").  In
3714				 * this case, even if the position is
3715				 * negative, rindex() returns 0 -- and even if
3716				 * the position is greater than the length,
3717				 * index() returns the string length.  These
3718				 * semantics violate the notion that index()
3719				 * should never return a value less than the
3720				 * specified position and that rindex() should
3721				 * never return a value greater than the
3722				 * specified position.  (One assumes that
3723				 * these semantics are artifacts of Perl's
3724				 * implementation and not the results of
3725				 * deliberate design -- it beggars belief that
3726				 * even Larry Wall could desire such oddness.)
3727				 * While in the abstract one would wish for
3728				 * consistent position semantics across
3729				 * substr(), index() and rindex() -- or at the
3730				 * very least self-consistent position
3731				 * semantics for index() and rindex() -- we
3732				 * instead opt to keep with the extant Perl
3733				 * semantics, in all their broken glory.  (Do
3734				 * we have more desire to maintain Perl's
3735				 * semantics than Perl does?  Probably.)
3736				 */
3737				if (subr == DIF_SUBR_RINDEX) {
3738					if (pos < 0) {
3739						if (sublen == 0)
3740							regs[rd] = 0;
3741						break;
3742					}
3743
3744					if (pos > len)
3745						pos = len;
3746				} else {
3747					if (pos < 0)
3748						pos = 0;
3749
3750					if (pos >= len) {
3751						if (sublen == 0)
3752							regs[rd] = len;
3753						break;
3754					}
3755				}
3756
3757				addr = orig + pos;
3758			}
3759		}
3760
3761		for (regs[rd] = notfound; addr != limit; addr += inc) {
3762			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3763				if (subr != DIF_SUBR_STRSTR) {
3764					/*
3765					 * As D index() and rindex() are
3766					 * modeled on Perl (and not on awk),
3767					 * we return a zero-based (and not a
3768					 * one-based) index.  (For you Perl
3769					 * weenies: no, we're not going to add
3770					 * $[ -- and shouldn't you be at a con
3771					 * or something?)
3772					 */
3773					regs[rd] = (uintptr_t)(addr - orig);
3774					break;
3775				}
3776
3777				ASSERT(subr == DIF_SUBR_STRSTR);
3778				regs[rd] = (uintptr_t)addr;
3779				break;
3780			}
3781		}
3782
3783		break;
3784	}
3785
3786	case DIF_SUBR_STRTOK: {
3787		uintptr_t addr = tupregs[0].dttk_value;
3788		uintptr_t tokaddr = tupregs[1].dttk_value;
3789		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3790		uintptr_t limit, toklimit = tokaddr + size;
3791		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3792		char *dest = (char *)mstate->dtms_scratch_ptr;
3793		int i;
3794
3795		/*
3796		 * Check both the token buffer and (later) the input buffer,
3797		 * since both could be non-scratch addresses.
3798		 */
3799		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3800			regs[rd] = 0;
3801			break;
3802		}
3803
3804		if (!DTRACE_INSCRATCH(mstate, size)) {
3805			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3806			regs[rd] = 0;
3807			break;
3808		}
3809
3810		if (addr == 0) {
3811			/*
3812			 * If the address specified is NULL, we use our saved
3813			 * strtok pointer from the mstate.  Note that this
3814			 * means that the saved strtok pointer is _only_
3815			 * valid within multiple enablings of the same probe --
3816			 * it behaves like an implicit clause-local variable.
3817			 */
3818			addr = mstate->dtms_strtok;
3819		} else {
3820			/*
3821			 * If the user-specified address is non-NULL we must
3822			 * access check it.  This is the only time we have
3823			 * a chance to do so, since this address may reside
3824			 * in the string table of this clause-- future calls
3825			 * (when we fetch addr from mstate->dtms_strtok)
3826			 * would fail this access check.
3827			 */
3828			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3829				regs[rd] = 0;
3830				break;
3831			}
3832		}
3833
3834		/*
3835		 * First, zero the token map, and then process the token
3836		 * string -- setting a bit in the map for every character
3837		 * found in the token string.
3838		 */
3839		for (i = 0; i < sizeof (tokmap); i++)
3840			tokmap[i] = 0;
3841
3842		for (; tokaddr < toklimit; tokaddr++) {
3843			if ((c = dtrace_load8(tokaddr)) == '\0')
3844				break;
3845
3846			ASSERT((c >> 3) < sizeof (tokmap));
3847			tokmap[c >> 3] |= (1 << (c & 0x7));
3848		}
3849
3850		for (limit = addr + size; addr < limit; addr++) {
3851			/*
3852			 * We're looking for a character that is _not_ contained
3853			 * in the token string.
3854			 */
3855			if ((c = dtrace_load8(addr)) == '\0')
3856				break;
3857
3858			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3859				break;
3860		}
3861
3862		if (c == '\0') {
3863			/*
3864			 * We reached the end of the string without finding
3865			 * any character that was not in the token string.
3866			 * We return NULL in this case, and we set the saved
3867			 * address to NULL as well.
3868			 */
3869			regs[rd] = 0;
3870			mstate->dtms_strtok = 0;
3871			break;
3872		}
3873
3874		/*
3875		 * From here on, we're copying into the destination string.
3876		 */
3877		for (i = 0; addr < limit && i < size - 1; addr++) {
3878			if ((c = dtrace_load8(addr)) == '\0')
3879				break;
3880
3881			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3882				break;
3883
3884			ASSERT(i < size);
3885			dest[i++] = c;
3886		}
3887
3888		ASSERT(i < size);
3889		dest[i] = '\0';
3890		regs[rd] = (uintptr_t)dest;
3891		mstate->dtms_scratch_ptr += size;
3892		mstate->dtms_strtok = addr;
3893		break;
3894	}
3895
3896	case DIF_SUBR_SUBSTR: {
3897		uintptr_t s = tupregs[0].dttk_value;
3898		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3899		char *d = (char *)mstate->dtms_scratch_ptr;
3900		int64_t index = (int64_t)tupregs[1].dttk_value;
3901		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3902		size_t len = dtrace_strlen((char *)s, size);
3903		int64_t i = 0;
3904
3905		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3906			regs[rd] = 0;
3907			break;
3908		}
3909
3910		if (!DTRACE_INSCRATCH(mstate, size)) {
3911			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3912			regs[rd] = 0;
3913			break;
3914		}
3915
3916		if (nargs <= 2)
3917			remaining = (int64_t)size;
3918
3919		if (index < 0) {
3920			index += len;
3921
3922			if (index < 0 && index + remaining > 0) {
3923				remaining += index;
3924				index = 0;
3925			}
3926		}
3927
3928		if (index >= len || index < 0) {
3929			remaining = 0;
3930		} else if (remaining < 0) {
3931			remaining += len - index;
3932		} else if (index + remaining > size) {
3933			remaining = size - index;
3934		}
3935
3936		for (i = 0; i < remaining; i++) {
3937			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3938				break;
3939		}
3940
3941		d[i] = '\0';
3942
3943		mstate->dtms_scratch_ptr += size;
3944		regs[rd] = (uintptr_t)d;
3945		break;
3946	}
3947
3948#if defined(sun)
3949	case DIF_SUBR_GETMAJOR:
3950#ifdef _LP64
3951		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3952#else
3953		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3954#endif
3955		break;
3956
3957	case DIF_SUBR_GETMINOR:
3958#ifdef _LP64
3959		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3960#else
3961		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3962#endif
3963		break;
3964
3965	case DIF_SUBR_DDI_PATHNAME: {
3966		/*
3967		 * This one is a galactic mess.  We are going to roughly
3968		 * emulate ddi_pathname(), but it's made more complicated
3969		 * by the fact that we (a) want to include the minor name and
3970		 * (b) must proceed iteratively instead of recursively.
3971		 */
3972		uintptr_t dest = mstate->dtms_scratch_ptr;
3973		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3974		char *start = (char *)dest, *end = start + size - 1;
3975		uintptr_t daddr = tupregs[0].dttk_value;
3976		int64_t minor = (int64_t)tupregs[1].dttk_value;
3977		char *s;
3978		int i, len, depth = 0;
3979
3980		/*
3981		 * Due to all the pointer jumping we do and context we must
3982		 * rely upon, we just mandate that the user must have kernel
3983		 * read privileges to use this routine.
3984		 */
3985		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3986			*flags |= CPU_DTRACE_KPRIV;
3987			*illval = daddr;
3988			regs[rd] = 0;
3989		}
3990
3991		if (!DTRACE_INSCRATCH(mstate, size)) {
3992			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3993			regs[rd] = 0;
3994			break;
3995		}
3996
3997		*end = '\0';
3998
3999		/*
4000		 * We want to have a name for the minor.  In order to do this,
4001		 * we need to walk the minor list from the devinfo.  We want
4002		 * to be sure that we don't infinitely walk a circular list,
4003		 * so we check for circularity by sending a scout pointer
4004		 * ahead two elements for every element that we iterate over;
4005		 * if the list is circular, these will ultimately point to the
4006		 * same element.  You may recognize this little trick as the
4007		 * answer to a stupid interview question -- one that always
4008		 * seems to be asked by those who had to have it laboriously
4009		 * explained to them, and who can't even concisely describe
4010		 * the conditions under which one would be forced to resort to
4011		 * this technique.  Needless to say, those conditions are
4012		 * found here -- and probably only here.  Is this the only use
4013		 * of this infamous trick in shipping, production code?  If it
4014		 * isn't, it probably should be...
4015		 */
4016		if (minor != -1) {
4017			uintptr_t maddr = dtrace_loadptr(daddr +
4018			    offsetof(struct dev_info, devi_minor));
4019
4020			uintptr_t next = offsetof(struct ddi_minor_data, next);
4021			uintptr_t name = offsetof(struct ddi_minor_data,
4022			    d_minor) + offsetof(struct ddi_minor, name);
4023			uintptr_t dev = offsetof(struct ddi_minor_data,
4024			    d_minor) + offsetof(struct ddi_minor, dev);
4025			uintptr_t scout;
4026
4027			if (maddr != NULL)
4028				scout = dtrace_loadptr(maddr + next);
4029
4030			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4031				uint64_t m;
4032#ifdef _LP64
4033				m = dtrace_load64(maddr + dev) & MAXMIN64;
4034#else
4035				m = dtrace_load32(maddr + dev) & MAXMIN;
4036#endif
4037				if (m != minor) {
4038					maddr = dtrace_loadptr(maddr + next);
4039
4040					if (scout == NULL)
4041						continue;
4042
4043					scout = dtrace_loadptr(scout + next);
4044
4045					if (scout == NULL)
4046						continue;
4047
4048					scout = dtrace_loadptr(scout + next);
4049
4050					if (scout == NULL)
4051						continue;
4052
4053					if (scout == maddr) {
4054						*flags |= CPU_DTRACE_ILLOP;
4055						break;
4056					}
4057
4058					continue;
4059				}
4060
4061				/*
4062				 * We have the minor data.  Now we need to
4063				 * copy the minor's name into the end of the
4064				 * pathname.
4065				 */
4066				s = (char *)dtrace_loadptr(maddr + name);
4067				len = dtrace_strlen(s, size);
4068
4069				if (*flags & CPU_DTRACE_FAULT)
4070					break;
4071
4072				if (len != 0) {
4073					if ((end -= (len + 1)) < start)
4074						break;
4075
4076					*end = ':';
4077				}
4078
4079				for (i = 1; i <= len; i++)
4080					end[i] = dtrace_load8((uintptr_t)s++);
4081				break;
4082			}
4083		}
4084
4085		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4086			ddi_node_state_t devi_state;
4087
4088			devi_state = dtrace_load32(daddr +
4089			    offsetof(struct dev_info, devi_node_state));
4090
4091			if (*flags & CPU_DTRACE_FAULT)
4092				break;
4093
4094			if (devi_state >= DS_INITIALIZED) {
4095				s = (char *)dtrace_loadptr(daddr +
4096				    offsetof(struct dev_info, devi_addr));
4097				len = dtrace_strlen(s, size);
4098
4099				if (*flags & CPU_DTRACE_FAULT)
4100					break;
4101
4102				if (len != 0) {
4103					if ((end -= (len + 1)) < start)
4104						break;
4105
4106					*end = '@';
4107				}
4108
4109				for (i = 1; i <= len; i++)
4110					end[i] = dtrace_load8((uintptr_t)s++);
4111			}
4112
4113			/*
4114			 * Now for the node name...
4115			 */
4116			s = (char *)dtrace_loadptr(daddr +
4117			    offsetof(struct dev_info, devi_node_name));
4118
4119			daddr = dtrace_loadptr(daddr +
4120			    offsetof(struct dev_info, devi_parent));
4121
4122			/*
4123			 * If our parent is NULL (that is, if we're the root
4124			 * node), we're going to use the special path
4125			 * "devices".
4126			 */
4127			if (daddr == 0)
4128				s = "devices";
4129
4130			len = dtrace_strlen(s, size);
4131			if (*flags & CPU_DTRACE_FAULT)
4132				break;
4133
4134			if ((end -= (len + 1)) < start)
4135				break;
4136
4137			for (i = 1; i <= len; i++)
4138				end[i] = dtrace_load8((uintptr_t)s++);
4139			*end = '/';
4140
4141			if (depth++ > dtrace_devdepth_max) {
4142				*flags |= CPU_DTRACE_ILLOP;
4143				break;
4144			}
4145		}
4146
4147		if (end < start)
4148			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4149
4150		if (daddr == 0) {
4151			regs[rd] = (uintptr_t)end;
4152			mstate->dtms_scratch_ptr += size;
4153		}
4154
4155		break;
4156	}
4157#endif
4158
4159	case DIF_SUBR_STRJOIN: {
4160		char *d = (char *)mstate->dtms_scratch_ptr;
4161		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4162		uintptr_t s1 = tupregs[0].dttk_value;
4163		uintptr_t s2 = tupregs[1].dttk_value;
4164		int i = 0;
4165
4166		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4167		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4168			regs[rd] = 0;
4169			break;
4170		}
4171
4172		if (!DTRACE_INSCRATCH(mstate, size)) {
4173			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4174			regs[rd] = 0;
4175			break;
4176		}
4177
4178		for (;;) {
4179			if (i >= size) {
4180				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4181				regs[rd] = 0;
4182				break;
4183			}
4184
4185			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4186				i--;
4187				break;
4188			}
4189		}
4190
4191		for (;;) {
4192			if (i >= size) {
4193				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4194				regs[rd] = 0;
4195				break;
4196			}
4197
4198			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4199				break;
4200		}
4201
4202		if (i < size) {
4203			mstate->dtms_scratch_ptr += i;
4204			regs[rd] = (uintptr_t)d;
4205		}
4206
4207		break;
4208	}
4209
4210	case DIF_SUBR_LLTOSTR: {
4211		int64_t i = (int64_t)tupregs[0].dttk_value;
4212		int64_t val = i < 0 ? i * -1 : i;
4213		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4214		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4215
4216		if (!DTRACE_INSCRATCH(mstate, size)) {
4217			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4218			regs[rd] = 0;
4219			break;
4220		}
4221
4222		for (*end-- = '\0'; val; val /= 10)
4223			*end-- = '0' + (val % 10);
4224
4225		if (i == 0)
4226			*end-- = '0';
4227
4228		if (i < 0)
4229			*end-- = '-';
4230
4231		regs[rd] = (uintptr_t)end + 1;
4232		mstate->dtms_scratch_ptr += size;
4233		break;
4234	}
4235
4236	case DIF_SUBR_HTONS:
4237	case DIF_SUBR_NTOHS:
4238#if BYTE_ORDER == BIG_ENDIAN
4239		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4240#else
4241		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4242#endif
4243		break;
4244
4245
4246	case DIF_SUBR_HTONL:
4247	case DIF_SUBR_NTOHL:
4248#if BYTE_ORDER == BIG_ENDIAN
4249		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4250#else
4251		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4252#endif
4253		break;
4254
4255
4256	case DIF_SUBR_HTONLL:
4257	case DIF_SUBR_NTOHLL:
4258#if BYTE_ORDER == BIG_ENDIAN
4259		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4260#else
4261		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4262#endif
4263		break;
4264
4265
4266	case DIF_SUBR_DIRNAME:
4267	case DIF_SUBR_BASENAME: {
4268		char *dest = (char *)mstate->dtms_scratch_ptr;
4269		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4270		uintptr_t src = tupregs[0].dttk_value;
4271		int i, j, len = dtrace_strlen((char *)src, size);
4272		int lastbase = -1, firstbase = -1, lastdir = -1;
4273		int start, end;
4274
4275		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4276			regs[rd] = 0;
4277			break;
4278		}
4279
4280		if (!DTRACE_INSCRATCH(mstate, size)) {
4281			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4282			regs[rd] = 0;
4283			break;
4284		}
4285
4286		/*
4287		 * The basename and dirname for a zero-length string is
4288		 * defined to be "."
4289		 */
4290		if (len == 0) {
4291			len = 1;
4292			src = (uintptr_t)".";
4293		}
4294
4295		/*
4296		 * Start from the back of the string, moving back toward the
4297		 * front until we see a character that isn't a slash.  That
4298		 * character is the last character in the basename.
4299		 */
4300		for (i = len - 1; i >= 0; i--) {
4301			if (dtrace_load8(src + i) != '/')
4302				break;
4303		}
4304
4305		if (i >= 0)
4306			lastbase = i;
4307
4308		/*
4309		 * Starting from the last character in the basename, move
4310		 * towards the front until we find a slash.  The character
4311		 * that we processed immediately before that is the first
4312		 * character in the basename.
4313		 */
4314		for (; i >= 0; i--) {
4315			if (dtrace_load8(src + i) == '/')
4316				break;
4317		}
4318
4319		if (i >= 0)
4320			firstbase = i + 1;
4321
4322		/*
4323		 * Now keep going until we find a non-slash character.  That
4324		 * character is the last character in the dirname.
4325		 */
4326		for (; i >= 0; i--) {
4327			if (dtrace_load8(src + i) != '/')
4328				break;
4329		}
4330
4331		if (i >= 0)
4332			lastdir = i;
4333
4334		ASSERT(!(lastbase == -1 && firstbase != -1));
4335		ASSERT(!(firstbase == -1 && lastdir != -1));
4336
4337		if (lastbase == -1) {
4338			/*
4339			 * We didn't find a non-slash character.  We know that
4340			 * the length is non-zero, so the whole string must be
4341			 * slashes.  In either the dirname or the basename
4342			 * case, we return '/'.
4343			 */
4344			ASSERT(firstbase == -1);
4345			firstbase = lastbase = lastdir = 0;
4346		}
4347
4348		if (firstbase == -1) {
4349			/*
4350			 * The entire string consists only of a basename
4351			 * component.  If we're looking for dirname, we need
4352			 * to change our string to be just "."; if we're
4353			 * looking for a basename, we'll just set the first
4354			 * character of the basename to be 0.
4355			 */
4356			if (subr == DIF_SUBR_DIRNAME) {
4357				ASSERT(lastdir == -1);
4358				src = (uintptr_t)".";
4359				lastdir = 0;
4360			} else {
4361				firstbase = 0;
4362			}
4363		}
4364
4365		if (subr == DIF_SUBR_DIRNAME) {
4366			if (lastdir == -1) {
4367				/*
4368				 * We know that we have a slash in the name --
4369				 * or lastdir would be set to 0, above.  And
4370				 * because lastdir is -1, we know that this
4371				 * slash must be the first character.  (That
4372				 * is, the full string must be of the form
4373				 * "/basename".)  In this case, the last
4374				 * character of the directory name is 0.
4375				 */
4376				lastdir = 0;
4377			}
4378
4379			start = 0;
4380			end = lastdir;
4381		} else {
4382			ASSERT(subr == DIF_SUBR_BASENAME);
4383			ASSERT(firstbase != -1 && lastbase != -1);
4384			start = firstbase;
4385			end = lastbase;
4386		}
4387
4388		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4389			dest[j] = dtrace_load8(src + i);
4390
4391		dest[j] = '\0';
4392		regs[rd] = (uintptr_t)dest;
4393		mstate->dtms_scratch_ptr += size;
4394		break;
4395	}
4396
4397	case DIF_SUBR_CLEANPATH: {
4398		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4399		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4400		uintptr_t src = tupregs[0].dttk_value;
4401		int i = 0, j = 0;
4402
4403		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4404			regs[rd] = 0;
4405			break;
4406		}
4407
4408		if (!DTRACE_INSCRATCH(mstate, size)) {
4409			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4410			regs[rd] = 0;
4411			break;
4412		}
4413
4414		/*
4415		 * Move forward, loading each character.
4416		 */
4417		do {
4418			c = dtrace_load8(src + i++);
4419next:
4420			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4421				break;
4422
4423			if (c != '/') {
4424				dest[j++] = c;
4425				continue;
4426			}
4427
4428			c = dtrace_load8(src + i++);
4429
4430			if (c == '/') {
4431				/*
4432				 * We have two slashes -- we can just advance
4433				 * to the next character.
4434				 */
4435				goto next;
4436			}
4437
4438			if (c != '.') {
4439				/*
4440				 * This is not "." and it's not ".." -- we can
4441				 * just store the "/" and this character and
4442				 * drive on.
4443				 */
4444				dest[j++] = '/';
4445				dest[j++] = c;
4446				continue;
4447			}
4448
4449			c = dtrace_load8(src + i++);
4450
4451			if (c == '/') {
4452				/*
4453				 * This is a "/./" component.  We're not going
4454				 * to store anything in the destination buffer;
4455				 * we're just going to go to the next component.
4456				 */
4457				goto next;
4458			}
4459
4460			if (c != '.') {
4461				/*
4462				 * This is not ".." -- we can just store the
4463				 * "/." and this character and continue
4464				 * processing.
4465				 */
4466				dest[j++] = '/';
4467				dest[j++] = '.';
4468				dest[j++] = c;
4469				continue;
4470			}
4471
4472			c = dtrace_load8(src + i++);
4473
4474			if (c != '/' && c != '\0') {
4475				/*
4476				 * This is not ".." -- it's "..[mumble]".
4477				 * We'll store the "/.." and this character
4478				 * and continue processing.
4479				 */
4480				dest[j++] = '/';
4481				dest[j++] = '.';
4482				dest[j++] = '.';
4483				dest[j++] = c;
4484				continue;
4485			}
4486
4487			/*
4488			 * This is "/../" or "/..\0".  We need to back up
4489			 * our destination pointer until we find a "/".
4490			 */
4491			i--;
4492			while (j != 0 && dest[--j] != '/')
4493				continue;
4494
4495			if (c == '\0')
4496				dest[++j] = '/';
4497		} while (c != '\0');
4498
4499		dest[j] = '\0';
4500		regs[rd] = (uintptr_t)dest;
4501		mstate->dtms_scratch_ptr += size;
4502		break;
4503	}
4504
4505	case DIF_SUBR_INET_NTOA:
4506	case DIF_SUBR_INET_NTOA6:
4507	case DIF_SUBR_INET_NTOP: {
4508		size_t size;
4509		int af, argi, i;
4510		char *base, *end;
4511
4512		if (subr == DIF_SUBR_INET_NTOP) {
4513			af = (int)tupregs[0].dttk_value;
4514			argi = 1;
4515		} else {
4516			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4517			argi = 0;
4518		}
4519
4520		if (af == AF_INET) {
4521			ipaddr_t ip4;
4522			uint8_t *ptr8, val;
4523
4524			/*
4525			 * Safely load the IPv4 address.
4526			 */
4527			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4528
4529			/*
4530			 * Check an IPv4 string will fit in scratch.
4531			 */
4532			size = INET_ADDRSTRLEN;
4533			if (!DTRACE_INSCRATCH(mstate, size)) {
4534				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4535				regs[rd] = 0;
4536				break;
4537			}
4538			base = (char *)mstate->dtms_scratch_ptr;
4539			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4540
4541			/*
4542			 * Stringify as a dotted decimal quad.
4543			 */
4544			*end-- = '\0';
4545			ptr8 = (uint8_t *)&ip4;
4546			for (i = 3; i >= 0; i--) {
4547				val = ptr8[i];
4548
4549				if (val == 0) {
4550					*end-- = '0';
4551				} else {
4552					for (; val; val /= 10) {
4553						*end-- = '0' + (val % 10);
4554					}
4555				}
4556
4557				if (i > 0)
4558					*end-- = '.';
4559			}
4560			ASSERT(end + 1 >= base);
4561
4562		} else if (af == AF_INET6) {
4563			struct in6_addr ip6;
4564			int firstzero, tryzero, numzero, v6end;
4565			uint16_t val;
4566			const char digits[] = "0123456789abcdef";
4567
4568			/*
4569			 * Stringify using RFC 1884 convention 2 - 16 bit
4570			 * hexadecimal values with a zero-run compression.
4571			 * Lower case hexadecimal digits are used.
4572			 * 	eg, fe80::214:4fff:fe0b:76c8.
4573			 * The IPv4 embedded form is returned for inet_ntop,
4574			 * just the IPv4 string is returned for inet_ntoa6.
4575			 */
4576
4577			/*
4578			 * Safely load the IPv6 address.
4579			 */
4580			dtrace_bcopy(
4581			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4582			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4583
4584			/*
4585			 * Check an IPv6 string will fit in scratch.
4586			 */
4587			size = INET6_ADDRSTRLEN;
4588			if (!DTRACE_INSCRATCH(mstate, size)) {
4589				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4590				regs[rd] = 0;
4591				break;
4592			}
4593			base = (char *)mstate->dtms_scratch_ptr;
4594			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4595			*end-- = '\0';
4596
4597			/*
4598			 * Find the longest run of 16 bit zero values
4599			 * for the single allowed zero compression - "::".
4600			 */
4601			firstzero = -1;
4602			tryzero = -1;
4603			numzero = 1;
4604			for (i = 0; i < sizeof (struct in6_addr); i++) {
4605#if defined(sun)
4606				if (ip6._S6_un._S6_u8[i] == 0 &&
4607#else
4608				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4609#endif
4610				    tryzero == -1 && i % 2 == 0) {
4611					tryzero = i;
4612					continue;
4613				}
4614
4615				if (tryzero != -1 &&
4616#if defined(sun)
4617				    (ip6._S6_un._S6_u8[i] != 0 ||
4618#else
4619				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4620#endif
4621				    i == sizeof (struct in6_addr) - 1)) {
4622
4623					if (i - tryzero <= numzero) {
4624						tryzero = -1;
4625						continue;
4626					}
4627
4628					firstzero = tryzero;
4629					numzero = i - i % 2 - tryzero;
4630					tryzero = -1;
4631
4632#if defined(sun)
4633					if (ip6._S6_un._S6_u8[i] == 0 &&
4634#else
4635					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4636#endif
4637					    i == sizeof (struct in6_addr) - 1)
4638						numzero += 2;
4639				}
4640			}
4641			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4642
4643			/*
4644			 * Check for an IPv4 embedded address.
4645			 */
4646			v6end = sizeof (struct in6_addr) - 2;
4647			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4648			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4649				for (i = sizeof (struct in6_addr) - 1;
4650				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4651					ASSERT(end >= base);
4652
4653#if defined(sun)
4654					val = ip6._S6_un._S6_u8[i];
4655#else
4656					val = ip6.__u6_addr.__u6_addr8[i];
4657#endif
4658
4659					if (val == 0) {
4660						*end-- = '0';
4661					} else {
4662						for (; val; val /= 10) {
4663							*end-- = '0' + val % 10;
4664						}
4665					}
4666
4667					if (i > DTRACE_V4MAPPED_OFFSET)
4668						*end-- = '.';
4669				}
4670
4671				if (subr == DIF_SUBR_INET_NTOA6)
4672					goto inetout;
4673
4674				/*
4675				 * Set v6end to skip the IPv4 address that
4676				 * we have already stringified.
4677				 */
4678				v6end = 10;
4679			}
4680
4681			/*
4682			 * Build the IPv6 string by working through the
4683			 * address in reverse.
4684			 */
4685			for (i = v6end; i >= 0; i -= 2) {
4686				ASSERT(end >= base);
4687
4688				if (i == firstzero + numzero - 2) {
4689					*end-- = ':';
4690					*end-- = ':';
4691					i -= numzero - 2;
4692					continue;
4693				}
4694
4695				if (i < 14 && i != firstzero - 2)
4696					*end-- = ':';
4697
4698#if defined(sun)
4699				val = (ip6._S6_un._S6_u8[i] << 8) +
4700				    ip6._S6_un._S6_u8[i + 1];
4701#else
4702				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4703				    ip6.__u6_addr.__u6_addr8[i + 1];
4704#endif
4705
4706				if (val == 0) {
4707					*end-- = '0';
4708				} else {
4709					for (; val; val /= 16) {
4710						*end-- = digits[val % 16];
4711					}
4712				}
4713			}
4714			ASSERT(end + 1 >= base);
4715
4716		} else {
4717			/*
4718			 * The user didn't use AH_INET or AH_INET6.
4719			 */
4720			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4721			regs[rd] = 0;
4722			break;
4723		}
4724
4725inetout:	regs[rd] = (uintptr_t)end + 1;
4726		mstate->dtms_scratch_ptr += size;
4727		break;
4728	}
4729
4730	case DIF_SUBR_MEMREF: {
4731		uintptr_t size = 2 * sizeof(uintptr_t);
4732		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4733		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4734
4735		/* address and length */
4736		memref[0] = tupregs[0].dttk_value;
4737		memref[1] = tupregs[1].dttk_value;
4738
4739		regs[rd] = (uintptr_t) memref;
4740		mstate->dtms_scratch_ptr += scratch_size;
4741		break;
4742	}
4743
4744	case DIF_SUBR_TYPEREF: {
4745		uintptr_t size = 4 * sizeof(uintptr_t);
4746		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4747		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4748
4749		/* address, num_elements, type_str, type_len */
4750		typeref[0] = tupregs[0].dttk_value;
4751		typeref[1] = tupregs[1].dttk_value;
4752		typeref[2] = tupregs[2].dttk_value;
4753		typeref[3] = tupregs[3].dttk_value;
4754
4755		regs[rd] = (uintptr_t) typeref;
4756		mstate->dtms_scratch_ptr += scratch_size;
4757		break;
4758	}
4759	}
4760}
4761
4762/*
4763 * Emulate the execution of DTrace IR instructions specified by the given
4764 * DIF object.  This function is deliberately void of assertions as all of
4765 * the necessary checks are handled by a call to dtrace_difo_validate().
4766 */
4767static uint64_t
4768dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4769    dtrace_vstate_t *vstate, dtrace_state_t *state)
4770{
4771	const dif_instr_t *text = difo->dtdo_buf;
4772	const uint_t textlen = difo->dtdo_len;
4773	const char *strtab = difo->dtdo_strtab;
4774	const uint64_t *inttab = difo->dtdo_inttab;
4775
4776	uint64_t rval = 0;
4777	dtrace_statvar_t *svar;
4778	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4779	dtrace_difv_t *v;
4780	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4781	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4782
4783	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4784	uint64_t regs[DIF_DIR_NREGS];
4785	uint64_t *tmp;
4786
4787	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4788	int64_t cc_r;
4789	uint_t pc = 0, id, opc = 0;
4790	uint8_t ttop = 0;
4791	dif_instr_t instr;
4792	uint_t r1, r2, rd;
4793
4794	/*
4795	 * We stash the current DIF object into the machine state: we need it
4796	 * for subsequent access checking.
4797	 */
4798	mstate->dtms_difo = difo;
4799
4800	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4801
4802	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4803		opc = pc;
4804
4805		instr = text[pc++];
4806		r1 = DIF_INSTR_R1(instr);
4807		r2 = DIF_INSTR_R2(instr);
4808		rd = DIF_INSTR_RD(instr);
4809
4810		switch (DIF_INSTR_OP(instr)) {
4811		case DIF_OP_OR:
4812			regs[rd] = regs[r1] | regs[r2];
4813			break;
4814		case DIF_OP_XOR:
4815			regs[rd] = regs[r1] ^ regs[r2];
4816			break;
4817		case DIF_OP_AND:
4818			regs[rd] = regs[r1] & regs[r2];
4819			break;
4820		case DIF_OP_SLL:
4821			regs[rd] = regs[r1] << regs[r2];
4822			break;
4823		case DIF_OP_SRL:
4824			regs[rd] = regs[r1] >> regs[r2];
4825			break;
4826		case DIF_OP_SUB:
4827			regs[rd] = regs[r1] - regs[r2];
4828			break;
4829		case DIF_OP_ADD:
4830			regs[rd] = regs[r1] + regs[r2];
4831			break;
4832		case DIF_OP_MUL:
4833			regs[rd] = regs[r1] * regs[r2];
4834			break;
4835		case DIF_OP_SDIV:
4836			if (regs[r2] == 0) {
4837				regs[rd] = 0;
4838				*flags |= CPU_DTRACE_DIVZERO;
4839			} else {
4840				regs[rd] = (int64_t)regs[r1] /
4841				    (int64_t)regs[r2];
4842			}
4843			break;
4844
4845		case DIF_OP_UDIV:
4846			if (regs[r2] == 0) {
4847				regs[rd] = 0;
4848				*flags |= CPU_DTRACE_DIVZERO;
4849			} else {
4850				regs[rd] = regs[r1] / regs[r2];
4851			}
4852			break;
4853
4854		case DIF_OP_SREM:
4855			if (regs[r2] == 0) {
4856				regs[rd] = 0;
4857				*flags |= CPU_DTRACE_DIVZERO;
4858			} else {
4859				regs[rd] = (int64_t)regs[r1] %
4860				    (int64_t)regs[r2];
4861			}
4862			break;
4863
4864		case DIF_OP_UREM:
4865			if (regs[r2] == 0) {
4866				regs[rd] = 0;
4867				*flags |= CPU_DTRACE_DIVZERO;
4868			} else {
4869				regs[rd] = regs[r1] % regs[r2];
4870			}
4871			break;
4872
4873		case DIF_OP_NOT:
4874			regs[rd] = ~regs[r1];
4875			break;
4876		case DIF_OP_MOV:
4877			regs[rd] = regs[r1];
4878			break;
4879		case DIF_OP_CMP:
4880			cc_r = regs[r1] - regs[r2];
4881			cc_n = cc_r < 0;
4882			cc_z = cc_r == 0;
4883			cc_v = 0;
4884			cc_c = regs[r1] < regs[r2];
4885			break;
4886		case DIF_OP_TST:
4887			cc_n = cc_v = cc_c = 0;
4888			cc_z = regs[r1] == 0;
4889			break;
4890		case DIF_OP_BA:
4891			pc = DIF_INSTR_LABEL(instr);
4892			break;
4893		case DIF_OP_BE:
4894			if (cc_z)
4895				pc = DIF_INSTR_LABEL(instr);
4896			break;
4897		case DIF_OP_BNE:
4898			if (cc_z == 0)
4899				pc = DIF_INSTR_LABEL(instr);
4900			break;
4901		case DIF_OP_BG:
4902			if ((cc_z | (cc_n ^ cc_v)) == 0)
4903				pc = DIF_INSTR_LABEL(instr);
4904			break;
4905		case DIF_OP_BGU:
4906			if ((cc_c | cc_z) == 0)
4907				pc = DIF_INSTR_LABEL(instr);
4908			break;
4909		case DIF_OP_BGE:
4910			if ((cc_n ^ cc_v) == 0)
4911				pc = DIF_INSTR_LABEL(instr);
4912			break;
4913		case DIF_OP_BGEU:
4914			if (cc_c == 0)
4915				pc = DIF_INSTR_LABEL(instr);
4916			break;
4917		case DIF_OP_BL:
4918			if (cc_n ^ cc_v)
4919				pc = DIF_INSTR_LABEL(instr);
4920			break;
4921		case DIF_OP_BLU:
4922			if (cc_c)
4923				pc = DIF_INSTR_LABEL(instr);
4924			break;
4925		case DIF_OP_BLE:
4926			if (cc_z | (cc_n ^ cc_v))
4927				pc = DIF_INSTR_LABEL(instr);
4928			break;
4929		case DIF_OP_BLEU:
4930			if (cc_c | cc_z)
4931				pc = DIF_INSTR_LABEL(instr);
4932			break;
4933		case DIF_OP_RLDSB:
4934			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4935				*flags |= CPU_DTRACE_KPRIV;
4936				*illval = regs[r1];
4937				break;
4938			}
4939			/*FALLTHROUGH*/
4940		case DIF_OP_LDSB:
4941			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4942			break;
4943		case DIF_OP_RLDSH:
4944			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4945				*flags |= CPU_DTRACE_KPRIV;
4946				*illval = regs[r1];
4947				break;
4948			}
4949			/*FALLTHROUGH*/
4950		case DIF_OP_LDSH:
4951			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4952			break;
4953		case DIF_OP_RLDSW:
4954			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4955				*flags |= CPU_DTRACE_KPRIV;
4956				*illval = regs[r1];
4957				break;
4958			}
4959			/*FALLTHROUGH*/
4960		case DIF_OP_LDSW:
4961			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4962			break;
4963		case DIF_OP_RLDUB:
4964			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4965				*flags |= CPU_DTRACE_KPRIV;
4966				*illval = regs[r1];
4967				break;
4968			}
4969			/*FALLTHROUGH*/
4970		case DIF_OP_LDUB:
4971			regs[rd] = dtrace_load8(regs[r1]);
4972			break;
4973		case DIF_OP_RLDUH:
4974			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4975				*flags |= CPU_DTRACE_KPRIV;
4976				*illval = regs[r1];
4977				break;
4978			}
4979			/*FALLTHROUGH*/
4980		case DIF_OP_LDUH:
4981			regs[rd] = dtrace_load16(regs[r1]);
4982			break;
4983		case DIF_OP_RLDUW:
4984			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4985				*flags |= CPU_DTRACE_KPRIV;
4986				*illval = regs[r1];
4987				break;
4988			}
4989			/*FALLTHROUGH*/
4990		case DIF_OP_LDUW:
4991			regs[rd] = dtrace_load32(regs[r1]);
4992			break;
4993		case DIF_OP_RLDX:
4994			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4995				*flags |= CPU_DTRACE_KPRIV;
4996				*illval = regs[r1];
4997				break;
4998			}
4999			/*FALLTHROUGH*/
5000		case DIF_OP_LDX:
5001			regs[rd] = dtrace_load64(regs[r1]);
5002			break;
5003		case DIF_OP_ULDSB:
5004			regs[rd] = (int8_t)
5005			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5006			break;
5007		case DIF_OP_ULDSH:
5008			regs[rd] = (int16_t)
5009			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5010			break;
5011		case DIF_OP_ULDSW:
5012			regs[rd] = (int32_t)
5013			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5014			break;
5015		case DIF_OP_ULDUB:
5016			regs[rd] =
5017			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5018			break;
5019		case DIF_OP_ULDUH:
5020			regs[rd] =
5021			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5022			break;
5023		case DIF_OP_ULDUW:
5024			regs[rd] =
5025			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5026			break;
5027		case DIF_OP_ULDX:
5028			regs[rd] =
5029			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5030			break;
5031		case DIF_OP_RET:
5032			rval = regs[rd];
5033			pc = textlen;
5034			break;
5035		case DIF_OP_NOP:
5036			break;
5037		case DIF_OP_SETX:
5038			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5039			break;
5040		case DIF_OP_SETS:
5041			regs[rd] = (uint64_t)(uintptr_t)
5042			    (strtab + DIF_INSTR_STRING(instr));
5043			break;
5044		case DIF_OP_SCMP: {
5045			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5046			uintptr_t s1 = regs[r1];
5047			uintptr_t s2 = regs[r2];
5048
5049			if (s1 != 0 &&
5050			    !dtrace_strcanload(s1, sz, mstate, vstate))
5051				break;
5052			if (s2 != 0 &&
5053			    !dtrace_strcanload(s2, sz, mstate, vstate))
5054				break;
5055
5056			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5057
5058			cc_n = cc_r < 0;
5059			cc_z = cc_r == 0;
5060			cc_v = cc_c = 0;
5061			break;
5062		}
5063		case DIF_OP_LDGA:
5064			regs[rd] = dtrace_dif_variable(mstate, state,
5065			    r1, regs[r2]);
5066			break;
5067		case DIF_OP_LDGS:
5068			id = DIF_INSTR_VAR(instr);
5069
5070			if (id >= DIF_VAR_OTHER_UBASE) {
5071				uintptr_t a;
5072
5073				id -= DIF_VAR_OTHER_UBASE;
5074				svar = vstate->dtvs_globals[id];
5075				ASSERT(svar != NULL);
5076				v = &svar->dtsv_var;
5077
5078				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5079					regs[rd] = svar->dtsv_data;
5080					break;
5081				}
5082
5083				a = (uintptr_t)svar->dtsv_data;
5084
5085				if (*(uint8_t *)a == UINT8_MAX) {
5086					/*
5087					 * If the 0th byte is set to UINT8_MAX
5088					 * then this is to be treated as a
5089					 * reference to a NULL variable.
5090					 */
5091					regs[rd] = 0;
5092				} else {
5093					regs[rd] = a + sizeof (uint64_t);
5094				}
5095
5096				break;
5097			}
5098
5099			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5100			break;
5101
5102		case DIF_OP_STGS:
5103			id = DIF_INSTR_VAR(instr);
5104
5105			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5106			id -= DIF_VAR_OTHER_UBASE;
5107
5108			svar = vstate->dtvs_globals[id];
5109			ASSERT(svar != NULL);
5110			v = &svar->dtsv_var;
5111
5112			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5113				uintptr_t a = (uintptr_t)svar->dtsv_data;
5114
5115				ASSERT(a != 0);
5116				ASSERT(svar->dtsv_size != 0);
5117
5118				if (regs[rd] == 0) {
5119					*(uint8_t *)a = UINT8_MAX;
5120					break;
5121				} else {
5122					*(uint8_t *)a = 0;
5123					a += sizeof (uint64_t);
5124				}
5125				if (!dtrace_vcanload(
5126				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5127				    mstate, vstate))
5128					break;
5129
5130				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5131				    (void *)a, &v->dtdv_type);
5132				break;
5133			}
5134
5135			svar->dtsv_data = regs[rd];
5136			break;
5137
5138		case DIF_OP_LDTA:
5139			/*
5140			 * There are no DTrace built-in thread-local arrays at
5141			 * present.  This opcode is saved for future work.
5142			 */
5143			*flags |= CPU_DTRACE_ILLOP;
5144			regs[rd] = 0;
5145			break;
5146
5147		case DIF_OP_LDLS:
5148			id = DIF_INSTR_VAR(instr);
5149
5150			if (id < DIF_VAR_OTHER_UBASE) {
5151				/*
5152				 * For now, this has no meaning.
5153				 */
5154				regs[rd] = 0;
5155				break;
5156			}
5157
5158			id -= DIF_VAR_OTHER_UBASE;
5159
5160			ASSERT(id < vstate->dtvs_nlocals);
5161			ASSERT(vstate->dtvs_locals != NULL);
5162
5163			svar = vstate->dtvs_locals[id];
5164			ASSERT(svar != NULL);
5165			v = &svar->dtsv_var;
5166
5167			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5168				uintptr_t a = (uintptr_t)svar->dtsv_data;
5169				size_t sz = v->dtdv_type.dtdt_size;
5170
5171				sz += sizeof (uint64_t);
5172				ASSERT(svar->dtsv_size == NCPU * sz);
5173				a += curcpu * sz;
5174
5175				if (*(uint8_t *)a == UINT8_MAX) {
5176					/*
5177					 * If the 0th byte is set to UINT8_MAX
5178					 * then this is to be treated as a
5179					 * reference to a NULL variable.
5180					 */
5181					regs[rd] = 0;
5182				} else {
5183					regs[rd] = a + sizeof (uint64_t);
5184				}
5185
5186				break;
5187			}
5188
5189			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5190			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5191			regs[rd] = tmp[curcpu];
5192			break;
5193
5194		case DIF_OP_STLS:
5195			id = DIF_INSTR_VAR(instr);
5196
5197			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5198			id -= DIF_VAR_OTHER_UBASE;
5199			ASSERT(id < vstate->dtvs_nlocals);
5200
5201			ASSERT(vstate->dtvs_locals != NULL);
5202			svar = vstate->dtvs_locals[id];
5203			ASSERT(svar != NULL);
5204			v = &svar->dtsv_var;
5205
5206			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5207				uintptr_t a = (uintptr_t)svar->dtsv_data;
5208				size_t sz = v->dtdv_type.dtdt_size;
5209
5210				sz += sizeof (uint64_t);
5211				ASSERT(svar->dtsv_size == NCPU * sz);
5212				a += curcpu * sz;
5213
5214				if (regs[rd] == 0) {
5215					*(uint8_t *)a = UINT8_MAX;
5216					break;
5217				} else {
5218					*(uint8_t *)a = 0;
5219					a += sizeof (uint64_t);
5220				}
5221
5222				if (!dtrace_vcanload(
5223				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5224				    mstate, vstate))
5225					break;
5226
5227				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5228				    (void *)a, &v->dtdv_type);
5229				break;
5230			}
5231
5232			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5233			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5234			tmp[curcpu] = regs[rd];
5235			break;
5236
5237		case DIF_OP_LDTS: {
5238			dtrace_dynvar_t *dvar;
5239			dtrace_key_t *key;
5240
5241			id = DIF_INSTR_VAR(instr);
5242			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5243			id -= DIF_VAR_OTHER_UBASE;
5244			v = &vstate->dtvs_tlocals[id];
5245
5246			key = &tupregs[DIF_DTR_NREGS];
5247			key[0].dttk_value = (uint64_t)id;
5248			key[0].dttk_size = 0;
5249			DTRACE_TLS_THRKEY(key[1].dttk_value);
5250			key[1].dttk_size = 0;
5251
5252			dvar = dtrace_dynvar(dstate, 2, key,
5253			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5254			    mstate, vstate);
5255
5256			if (dvar == NULL) {
5257				regs[rd] = 0;
5258				break;
5259			}
5260
5261			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5262				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5263			} else {
5264				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5265			}
5266
5267			break;
5268		}
5269
5270		case DIF_OP_STTS: {
5271			dtrace_dynvar_t *dvar;
5272			dtrace_key_t *key;
5273
5274			id = DIF_INSTR_VAR(instr);
5275			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5276			id -= DIF_VAR_OTHER_UBASE;
5277
5278			key = &tupregs[DIF_DTR_NREGS];
5279			key[0].dttk_value = (uint64_t)id;
5280			key[0].dttk_size = 0;
5281			DTRACE_TLS_THRKEY(key[1].dttk_value);
5282			key[1].dttk_size = 0;
5283			v = &vstate->dtvs_tlocals[id];
5284
5285			dvar = dtrace_dynvar(dstate, 2, key,
5286			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5287			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5288			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5289			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5290
5291			/*
5292			 * Given that we're storing to thread-local data,
5293			 * we need to flush our predicate cache.
5294			 */
5295			curthread->t_predcache = 0;
5296
5297			if (dvar == NULL)
5298				break;
5299
5300			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5301				if (!dtrace_vcanload(
5302				    (void *)(uintptr_t)regs[rd],
5303				    &v->dtdv_type, mstate, vstate))
5304					break;
5305
5306				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5307				    dvar->dtdv_data, &v->dtdv_type);
5308			} else {
5309				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5310			}
5311
5312			break;
5313		}
5314
5315		case DIF_OP_SRA:
5316			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5317			break;
5318
5319		case DIF_OP_CALL:
5320			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5321			    regs, tupregs, ttop, mstate, state);
5322			break;
5323
5324		case DIF_OP_PUSHTR:
5325			if (ttop == DIF_DTR_NREGS) {
5326				*flags |= CPU_DTRACE_TUPOFLOW;
5327				break;
5328			}
5329
5330			if (r1 == DIF_TYPE_STRING) {
5331				/*
5332				 * If this is a string type and the size is 0,
5333				 * we'll use the system-wide default string
5334				 * size.  Note that we are _not_ looking at
5335				 * the value of the DTRACEOPT_STRSIZE option;
5336				 * had this been set, we would expect to have
5337				 * a non-zero size value in the "pushtr".
5338				 */
5339				tupregs[ttop].dttk_size =
5340				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5341				    regs[r2] ? regs[r2] :
5342				    dtrace_strsize_default) + 1;
5343			} else {
5344				tupregs[ttop].dttk_size = regs[r2];
5345			}
5346
5347			tupregs[ttop++].dttk_value = regs[rd];
5348			break;
5349
5350		case DIF_OP_PUSHTV:
5351			if (ttop == DIF_DTR_NREGS) {
5352				*flags |= CPU_DTRACE_TUPOFLOW;
5353				break;
5354			}
5355
5356			tupregs[ttop].dttk_value = regs[rd];
5357			tupregs[ttop++].dttk_size = 0;
5358			break;
5359
5360		case DIF_OP_POPTS:
5361			if (ttop != 0)
5362				ttop--;
5363			break;
5364
5365		case DIF_OP_FLUSHTS:
5366			ttop = 0;
5367			break;
5368
5369		case DIF_OP_LDGAA:
5370		case DIF_OP_LDTAA: {
5371			dtrace_dynvar_t *dvar;
5372			dtrace_key_t *key = tupregs;
5373			uint_t nkeys = ttop;
5374
5375			id = DIF_INSTR_VAR(instr);
5376			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5377			id -= DIF_VAR_OTHER_UBASE;
5378
5379			key[nkeys].dttk_value = (uint64_t)id;
5380			key[nkeys++].dttk_size = 0;
5381
5382			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5383				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5384				key[nkeys++].dttk_size = 0;
5385				v = &vstate->dtvs_tlocals[id];
5386			} else {
5387				v = &vstate->dtvs_globals[id]->dtsv_var;
5388			}
5389
5390			dvar = dtrace_dynvar(dstate, nkeys, key,
5391			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5392			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5393			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5394
5395			if (dvar == NULL) {
5396				regs[rd] = 0;
5397				break;
5398			}
5399
5400			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5401				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5402			} else {
5403				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5404			}
5405
5406			break;
5407		}
5408
5409		case DIF_OP_STGAA:
5410		case DIF_OP_STTAA: {
5411			dtrace_dynvar_t *dvar;
5412			dtrace_key_t *key = tupregs;
5413			uint_t nkeys = ttop;
5414
5415			id = DIF_INSTR_VAR(instr);
5416			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5417			id -= DIF_VAR_OTHER_UBASE;
5418
5419			key[nkeys].dttk_value = (uint64_t)id;
5420			key[nkeys++].dttk_size = 0;
5421
5422			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5423				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5424				key[nkeys++].dttk_size = 0;
5425				v = &vstate->dtvs_tlocals[id];
5426			} else {
5427				v = &vstate->dtvs_globals[id]->dtsv_var;
5428			}
5429
5430			dvar = dtrace_dynvar(dstate, nkeys, key,
5431			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5432			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5433			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5434			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5435
5436			if (dvar == NULL)
5437				break;
5438
5439			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5440				if (!dtrace_vcanload(
5441				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5442				    mstate, vstate))
5443					break;
5444
5445				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5446				    dvar->dtdv_data, &v->dtdv_type);
5447			} else {
5448				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5449			}
5450
5451			break;
5452		}
5453
5454		case DIF_OP_ALLOCS: {
5455			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5456			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5457
5458			/*
5459			 * Rounding up the user allocation size could have
5460			 * overflowed large, bogus allocations (like -1ULL) to
5461			 * 0.
5462			 */
5463			if (size < regs[r1] ||
5464			    !DTRACE_INSCRATCH(mstate, size)) {
5465				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5466				regs[rd] = 0;
5467				break;
5468			}
5469
5470			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5471			mstate->dtms_scratch_ptr += size;
5472			regs[rd] = ptr;
5473			break;
5474		}
5475
5476		case DIF_OP_COPYS:
5477			if (!dtrace_canstore(regs[rd], regs[r2],
5478			    mstate, vstate)) {
5479				*flags |= CPU_DTRACE_BADADDR;
5480				*illval = regs[rd];
5481				break;
5482			}
5483
5484			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5485				break;
5486
5487			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5488			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5489			break;
5490
5491		case DIF_OP_STB:
5492			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5493				*flags |= CPU_DTRACE_BADADDR;
5494				*illval = regs[rd];
5495				break;
5496			}
5497			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5498			break;
5499
5500		case DIF_OP_STH:
5501			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5502				*flags |= CPU_DTRACE_BADADDR;
5503				*illval = regs[rd];
5504				break;
5505			}
5506			if (regs[rd] & 1) {
5507				*flags |= CPU_DTRACE_BADALIGN;
5508				*illval = regs[rd];
5509				break;
5510			}
5511			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5512			break;
5513
5514		case DIF_OP_STW:
5515			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5516				*flags |= CPU_DTRACE_BADADDR;
5517				*illval = regs[rd];
5518				break;
5519			}
5520			if (regs[rd] & 3) {
5521				*flags |= CPU_DTRACE_BADALIGN;
5522				*illval = regs[rd];
5523				break;
5524			}
5525			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5526			break;
5527
5528		case DIF_OP_STX:
5529			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5530				*flags |= CPU_DTRACE_BADADDR;
5531				*illval = regs[rd];
5532				break;
5533			}
5534			if (regs[rd] & 7) {
5535				*flags |= CPU_DTRACE_BADALIGN;
5536				*illval = regs[rd];
5537				break;
5538			}
5539			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5540			break;
5541		}
5542	}
5543
5544	if (!(*flags & CPU_DTRACE_FAULT))
5545		return (rval);
5546
5547	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5548	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5549
5550	return (0);
5551}
5552
5553static void
5554dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5555{
5556	dtrace_probe_t *probe = ecb->dte_probe;
5557	dtrace_provider_t *prov = probe->dtpr_provider;
5558	char c[DTRACE_FULLNAMELEN + 80], *str;
5559	char *msg = "dtrace: breakpoint action at probe ";
5560	char *ecbmsg = " (ecb ";
5561	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5562	uintptr_t val = (uintptr_t)ecb;
5563	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5564
5565	if (dtrace_destructive_disallow)
5566		return;
5567
5568	/*
5569	 * It's impossible to be taking action on the NULL probe.
5570	 */
5571	ASSERT(probe != NULL);
5572
5573	/*
5574	 * This is a poor man's (destitute man's?) sprintf():  we want to
5575	 * print the provider name, module name, function name and name of
5576	 * the probe, along with the hex address of the ECB with the breakpoint
5577	 * action -- all of which we must place in the character buffer by
5578	 * hand.
5579	 */
5580	while (*msg != '\0')
5581		c[i++] = *msg++;
5582
5583	for (str = prov->dtpv_name; *str != '\0'; str++)
5584		c[i++] = *str;
5585	c[i++] = ':';
5586
5587	for (str = probe->dtpr_mod; *str != '\0'; str++)
5588		c[i++] = *str;
5589	c[i++] = ':';
5590
5591	for (str = probe->dtpr_func; *str != '\0'; str++)
5592		c[i++] = *str;
5593	c[i++] = ':';
5594
5595	for (str = probe->dtpr_name; *str != '\0'; str++)
5596		c[i++] = *str;
5597
5598	while (*ecbmsg != '\0')
5599		c[i++] = *ecbmsg++;
5600
5601	while (shift >= 0) {
5602		mask = (uintptr_t)0xf << shift;
5603
5604		if (val >= ((uintptr_t)1 << shift))
5605			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5606		shift -= 4;
5607	}
5608
5609	c[i++] = ')';
5610	c[i] = '\0';
5611
5612#if defined(sun)
5613	debug_enter(c);
5614#else
5615	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5616#endif
5617}
5618
5619static void
5620dtrace_action_panic(dtrace_ecb_t *ecb)
5621{
5622	dtrace_probe_t *probe = ecb->dte_probe;
5623
5624	/*
5625	 * It's impossible to be taking action on the NULL probe.
5626	 */
5627	ASSERT(probe != NULL);
5628
5629	if (dtrace_destructive_disallow)
5630		return;
5631
5632	if (dtrace_panicked != NULL)
5633		return;
5634
5635	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5636		return;
5637
5638	/*
5639	 * We won the right to panic.  (We want to be sure that only one
5640	 * thread calls panic() from dtrace_probe(), and that panic() is
5641	 * called exactly once.)
5642	 */
5643	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5644	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5645	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5646}
5647
5648static void
5649dtrace_action_raise(uint64_t sig)
5650{
5651	if (dtrace_destructive_disallow)
5652		return;
5653
5654	if (sig >= NSIG) {
5655		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5656		return;
5657	}
5658
5659#if defined(sun)
5660	/*
5661	 * raise() has a queue depth of 1 -- we ignore all subsequent
5662	 * invocations of the raise() action.
5663	 */
5664	if (curthread->t_dtrace_sig == 0)
5665		curthread->t_dtrace_sig = (uint8_t)sig;
5666
5667	curthread->t_sig_check = 1;
5668	aston(curthread);
5669#else
5670	struct proc *p = curproc;
5671	PROC_LOCK(p);
5672	psignal(p, sig);
5673	PROC_UNLOCK(p);
5674#endif
5675}
5676
5677static void
5678dtrace_action_stop(void)
5679{
5680	if (dtrace_destructive_disallow)
5681		return;
5682
5683#if defined(sun)
5684	if (!curthread->t_dtrace_stop) {
5685		curthread->t_dtrace_stop = 1;
5686		curthread->t_sig_check = 1;
5687		aston(curthread);
5688	}
5689#else
5690	struct proc *p = curproc;
5691	PROC_LOCK(p);
5692	psignal(p, SIGSTOP);
5693	PROC_UNLOCK(p);
5694#endif
5695}
5696
5697static void
5698dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5699{
5700	hrtime_t now;
5701	volatile uint16_t *flags;
5702#if defined(sun)
5703	cpu_t *cpu = CPU;
5704#else
5705	cpu_t *cpu = &solaris_cpu[curcpu];
5706#endif
5707
5708	if (dtrace_destructive_disallow)
5709		return;
5710
5711	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5712
5713	now = dtrace_gethrtime();
5714
5715	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5716		/*
5717		 * We need to advance the mark to the current time.
5718		 */
5719		cpu->cpu_dtrace_chillmark = now;
5720		cpu->cpu_dtrace_chilled = 0;
5721	}
5722
5723	/*
5724	 * Now check to see if the requested chill time would take us over
5725	 * the maximum amount of time allowed in the chill interval.  (Or
5726	 * worse, if the calculation itself induces overflow.)
5727	 */
5728	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5729	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5730		*flags |= CPU_DTRACE_ILLOP;
5731		return;
5732	}
5733
5734	while (dtrace_gethrtime() - now < val)
5735		continue;
5736
5737	/*
5738	 * Normally, we assure that the value of the variable "timestamp" does
5739	 * not change within an ECB.  The presence of chill() represents an
5740	 * exception to this rule, however.
5741	 */
5742	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5743	cpu->cpu_dtrace_chilled += val;
5744}
5745
5746static void
5747dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5748    uint64_t *buf, uint64_t arg)
5749{
5750	int nframes = DTRACE_USTACK_NFRAMES(arg);
5751	int strsize = DTRACE_USTACK_STRSIZE(arg);
5752	uint64_t *pcs = &buf[1], *fps;
5753	char *str = (char *)&pcs[nframes];
5754	int size, offs = 0, i, j;
5755	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5756	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5757	char *sym;
5758
5759	/*
5760	 * Should be taking a faster path if string space has not been
5761	 * allocated.
5762	 */
5763	ASSERT(strsize != 0);
5764
5765	/*
5766	 * We will first allocate some temporary space for the frame pointers.
5767	 */
5768	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5769	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5770	    (nframes * sizeof (uint64_t));
5771
5772	if (!DTRACE_INSCRATCH(mstate, size)) {
5773		/*
5774		 * Not enough room for our frame pointers -- need to indicate
5775		 * that we ran out of scratch space.
5776		 */
5777		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5778		return;
5779	}
5780
5781	mstate->dtms_scratch_ptr += size;
5782	saved = mstate->dtms_scratch_ptr;
5783
5784	/*
5785	 * Now get a stack with both program counters and frame pointers.
5786	 */
5787	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5788	dtrace_getufpstack(buf, fps, nframes + 1);
5789	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5790
5791	/*
5792	 * If that faulted, we're cooked.
5793	 */
5794	if (*flags & CPU_DTRACE_FAULT)
5795		goto out;
5796
5797	/*
5798	 * Now we want to walk up the stack, calling the USTACK helper.  For
5799	 * each iteration, we restore the scratch pointer.
5800	 */
5801	for (i = 0; i < nframes; i++) {
5802		mstate->dtms_scratch_ptr = saved;
5803
5804		if (offs >= strsize)
5805			break;
5806
5807		sym = (char *)(uintptr_t)dtrace_helper(
5808		    DTRACE_HELPER_ACTION_USTACK,
5809		    mstate, state, pcs[i], fps[i]);
5810
5811		/*
5812		 * If we faulted while running the helper, we're going to
5813		 * clear the fault and null out the corresponding string.
5814		 */
5815		if (*flags & CPU_DTRACE_FAULT) {
5816			*flags &= ~CPU_DTRACE_FAULT;
5817			str[offs++] = '\0';
5818			continue;
5819		}
5820
5821		if (sym == NULL) {
5822			str[offs++] = '\0';
5823			continue;
5824		}
5825
5826		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5827
5828		/*
5829		 * Now copy in the string that the helper returned to us.
5830		 */
5831		for (j = 0; offs + j < strsize; j++) {
5832			if ((str[offs + j] = sym[j]) == '\0')
5833				break;
5834		}
5835
5836		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5837
5838		offs += j + 1;
5839	}
5840
5841	if (offs >= strsize) {
5842		/*
5843		 * If we didn't have room for all of the strings, we don't
5844		 * abort processing -- this needn't be a fatal error -- but we
5845		 * still want to increment a counter (dts_stkstroverflows) to
5846		 * allow this condition to be warned about.  (If this is from
5847		 * a jstack() action, it is easily tuned via jstackstrsize.)
5848		 */
5849		dtrace_error(&state->dts_stkstroverflows);
5850	}
5851
5852	while (offs < strsize)
5853		str[offs++] = '\0';
5854
5855out:
5856	mstate->dtms_scratch_ptr = old;
5857}
5858
5859/*
5860 * If you're looking for the epicenter of DTrace, you just found it.  This
5861 * is the function called by the provider to fire a probe -- from which all
5862 * subsequent probe-context DTrace activity emanates.
5863 */
5864void
5865dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5866    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5867{
5868	processorid_t cpuid;
5869	dtrace_icookie_t cookie;
5870	dtrace_probe_t *probe;
5871	dtrace_mstate_t mstate;
5872	dtrace_ecb_t *ecb;
5873	dtrace_action_t *act;
5874	intptr_t offs;
5875	size_t size;
5876	int vtime, onintr;
5877	volatile uint16_t *flags;
5878	hrtime_t now;
5879
5880#if defined(sun)
5881	/*
5882	 * Kick out immediately if this CPU is still being born (in which case
5883	 * curthread will be set to -1) or the current thread can't allow
5884	 * probes in its current context.
5885	 */
5886	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5887		return;
5888#endif
5889
5890	cookie = dtrace_interrupt_disable();
5891	probe = dtrace_probes[id - 1];
5892	cpuid = curcpu;
5893	onintr = CPU_ON_INTR(CPU);
5894
5895	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5896	    probe->dtpr_predcache == curthread->t_predcache) {
5897		/*
5898		 * We have hit in the predicate cache; we know that
5899		 * this predicate would evaluate to be false.
5900		 */
5901		dtrace_interrupt_enable(cookie);
5902		return;
5903	}
5904
5905#if defined(sun)
5906	if (panic_quiesce) {
5907#else
5908	if (panicstr != NULL) {
5909#endif
5910		/*
5911		 * We don't trace anything if we're panicking.
5912		 */
5913		dtrace_interrupt_enable(cookie);
5914		return;
5915	}
5916
5917	now = dtrace_gethrtime();
5918	vtime = dtrace_vtime_references != 0;
5919
5920	if (vtime && curthread->t_dtrace_start)
5921		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5922
5923	mstate.dtms_difo = NULL;
5924	mstate.dtms_probe = probe;
5925	mstate.dtms_strtok = 0;
5926	mstate.dtms_arg[0] = arg0;
5927	mstate.dtms_arg[1] = arg1;
5928	mstate.dtms_arg[2] = arg2;
5929	mstate.dtms_arg[3] = arg3;
5930	mstate.dtms_arg[4] = arg4;
5931
5932	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5933
5934	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5935		dtrace_predicate_t *pred = ecb->dte_predicate;
5936		dtrace_state_t *state = ecb->dte_state;
5937		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5938		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5939		dtrace_vstate_t *vstate = &state->dts_vstate;
5940		dtrace_provider_t *prov = probe->dtpr_provider;
5941		int committed = 0;
5942		caddr_t tomax;
5943
5944		/*
5945		 * A little subtlety with the following (seemingly innocuous)
5946		 * declaration of the automatic 'val':  by looking at the
5947		 * code, you might think that it could be declared in the
5948		 * action processing loop, below.  (That is, it's only used in
5949		 * the action processing loop.)  However, it must be declared
5950		 * out of that scope because in the case of DIF expression
5951		 * arguments to aggregating actions, one iteration of the
5952		 * action loop will use the last iteration's value.
5953		 */
5954		uint64_t val = 0;
5955
5956		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5957		*flags &= ~CPU_DTRACE_ERROR;
5958
5959		if (prov == dtrace_provider) {
5960			/*
5961			 * If dtrace itself is the provider of this probe,
5962			 * we're only going to continue processing the ECB if
5963			 * arg0 (the dtrace_state_t) is equal to the ECB's
5964			 * creating state.  (This prevents disjoint consumers
5965			 * from seeing one another's metaprobes.)
5966			 */
5967			if (arg0 != (uint64_t)(uintptr_t)state)
5968				continue;
5969		}
5970
5971		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5972			/*
5973			 * We're not currently active.  If our provider isn't
5974			 * the dtrace pseudo provider, we're not interested.
5975			 */
5976			if (prov != dtrace_provider)
5977				continue;
5978
5979			/*
5980			 * Now we must further check if we are in the BEGIN
5981			 * probe.  If we are, we will only continue processing
5982			 * if we're still in WARMUP -- if one BEGIN enabling
5983			 * has invoked the exit() action, we don't want to
5984			 * evaluate subsequent BEGIN enablings.
5985			 */
5986			if (probe->dtpr_id == dtrace_probeid_begin &&
5987			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5988				ASSERT(state->dts_activity ==
5989				    DTRACE_ACTIVITY_DRAINING);
5990				continue;
5991			}
5992		}
5993
5994		if (ecb->dte_cond) {
5995			/*
5996			 * If the dte_cond bits indicate that this
5997			 * consumer is only allowed to see user-mode firings
5998			 * of this probe, call the provider's dtps_usermode()
5999			 * entry point to check that the probe was fired
6000			 * while in a user context. Skip this ECB if that's
6001			 * not the case.
6002			 */
6003			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6004			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6005			    probe->dtpr_id, probe->dtpr_arg) == 0)
6006				continue;
6007
6008#if defined(sun)
6009			/*
6010			 * This is more subtle than it looks. We have to be
6011			 * absolutely certain that CRED() isn't going to
6012			 * change out from under us so it's only legit to
6013			 * examine that structure if we're in constrained
6014			 * situations. Currently, the only times we'll this
6015			 * check is if a non-super-user has enabled the
6016			 * profile or syscall providers -- providers that
6017			 * allow visibility of all processes. For the
6018			 * profile case, the check above will ensure that
6019			 * we're examining a user context.
6020			 */
6021			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6022				cred_t *cr;
6023				cred_t *s_cr =
6024				    ecb->dte_state->dts_cred.dcr_cred;
6025				proc_t *proc;
6026
6027				ASSERT(s_cr != NULL);
6028
6029				if ((cr = CRED()) == NULL ||
6030				    s_cr->cr_uid != cr->cr_uid ||
6031				    s_cr->cr_uid != cr->cr_ruid ||
6032				    s_cr->cr_uid != cr->cr_suid ||
6033				    s_cr->cr_gid != cr->cr_gid ||
6034				    s_cr->cr_gid != cr->cr_rgid ||
6035				    s_cr->cr_gid != cr->cr_sgid ||
6036				    (proc = ttoproc(curthread)) == NULL ||
6037				    (proc->p_flag & SNOCD))
6038					continue;
6039			}
6040
6041			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6042				cred_t *cr;
6043				cred_t *s_cr =
6044				    ecb->dte_state->dts_cred.dcr_cred;
6045
6046				ASSERT(s_cr != NULL);
6047
6048				if ((cr = CRED()) == NULL ||
6049				    s_cr->cr_zone->zone_id !=
6050				    cr->cr_zone->zone_id)
6051					continue;
6052			}
6053#endif
6054		}
6055
6056		if (now - state->dts_alive > dtrace_deadman_timeout) {
6057			/*
6058			 * We seem to be dead.  Unless we (a) have kernel
6059			 * destructive permissions (b) have expicitly enabled
6060			 * destructive actions and (c) destructive actions have
6061			 * not been disabled, we're going to transition into
6062			 * the KILLED state, from which no further processing
6063			 * on this state will be performed.
6064			 */
6065			if (!dtrace_priv_kernel_destructive(state) ||
6066			    !state->dts_cred.dcr_destructive ||
6067			    dtrace_destructive_disallow) {
6068				void *activity = &state->dts_activity;
6069				dtrace_activity_t current;
6070
6071				do {
6072					current = state->dts_activity;
6073				} while (dtrace_cas32(activity, current,
6074				    DTRACE_ACTIVITY_KILLED) != current);
6075
6076				continue;
6077			}
6078		}
6079
6080		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6081		    ecb->dte_alignment, state, &mstate)) < 0)
6082			continue;
6083
6084		tomax = buf->dtb_tomax;
6085		ASSERT(tomax != NULL);
6086
6087		if (ecb->dte_size != 0)
6088			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6089
6090		mstate.dtms_epid = ecb->dte_epid;
6091		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6092
6093		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6094			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6095		else
6096			mstate.dtms_access = 0;
6097
6098		if (pred != NULL) {
6099			dtrace_difo_t *dp = pred->dtp_difo;
6100			int rval;
6101
6102			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6103
6104			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6105				dtrace_cacheid_t cid = probe->dtpr_predcache;
6106
6107				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6108					/*
6109					 * Update the predicate cache...
6110					 */
6111					ASSERT(cid == pred->dtp_cacheid);
6112					curthread->t_predcache = cid;
6113				}
6114
6115				continue;
6116			}
6117		}
6118
6119		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6120		    act != NULL; act = act->dta_next) {
6121			size_t valoffs;
6122			dtrace_difo_t *dp;
6123			dtrace_recdesc_t *rec = &act->dta_rec;
6124
6125			size = rec->dtrd_size;
6126			valoffs = offs + rec->dtrd_offset;
6127
6128			if (DTRACEACT_ISAGG(act->dta_kind)) {
6129				uint64_t v = 0xbad;
6130				dtrace_aggregation_t *agg;
6131
6132				agg = (dtrace_aggregation_t *)act;
6133
6134				if ((dp = act->dta_difo) != NULL)
6135					v = dtrace_dif_emulate(dp,
6136					    &mstate, vstate, state);
6137
6138				if (*flags & CPU_DTRACE_ERROR)
6139					continue;
6140
6141				/*
6142				 * Note that we always pass the expression
6143				 * value from the previous iteration of the
6144				 * action loop.  This value will only be used
6145				 * if there is an expression argument to the
6146				 * aggregating action, denoted by the
6147				 * dtag_hasarg field.
6148				 */
6149				dtrace_aggregate(agg, buf,
6150				    offs, aggbuf, v, val);
6151				continue;
6152			}
6153
6154			switch (act->dta_kind) {
6155			case DTRACEACT_STOP:
6156				if (dtrace_priv_proc_destructive(state))
6157					dtrace_action_stop();
6158				continue;
6159
6160			case DTRACEACT_BREAKPOINT:
6161				if (dtrace_priv_kernel_destructive(state))
6162					dtrace_action_breakpoint(ecb);
6163				continue;
6164
6165			case DTRACEACT_PANIC:
6166				if (dtrace_priv_kernel_destructive(state))
6167					dtrace_action_panic(ecb);
6168				continue;
6169
6170			case DTRACEACT_STACK:
6171				if (!dtrace_priv_kernel(state))
6172					continue;
6173
6174				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6175				    size / sizeof (pc_t), probe->dtpr_aframes,
6176				    DTRACE_ANCHORED(probe) ? NULL :
6177				    (uint32_t *)arg0);
6178				continue;
6179
6180			case DTRACEACT_JSTACK:
6181			case DTRACEACT_USTACK:
6182				if (!dtrace_priv_proc(state))
6183					continue;
6184
6185				/*
6186				 * See comment in DIF_VAR_PID.
6187				 */
6188				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6189				    CPU_ON_INTR(CPU)) {
6190					int depth = DTRACE_USTACK_NFRAMES(
6191					    rec->dtrd_arg) + 1;
6192
6193					dtrace_bzero((void *)(tomax + valoffs),
6194					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6195					    + depth * sizeof (uint64_t));
6196
6197					continue;
6198				}
6199
6200				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6201				    curproc->p_dtrace_helpers != NULL) {
6202					/*
6203					 * This is the slow path -- we have
6204					 * allocated string space, and we're
6205					 * getting the stack of a process that
6206					 * has helpers.  Call into a separate
6207					 * routine to perform this processing.
6208					 */
6209					dtrace_action_ustack(&mstate, state,
6210					    (uint64_t *)(tomax + valoffs),
6211					    rec->dtrd_arg);
6212					continue;
6213				}
6214
6215				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6216				dtrace_getupcstack((uint64_t *)
6217				    (tomax + valoffs),
6218				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6219				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6220				continue;
6221
6222			default:
6223				break;
6224			}
6225
6226			dp = act->dta_difo;
6227			ASSERT(dp != NULL);
6228
6229			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6230
6231			if (*flags & CPU_DTRACE_ERROR)
6232				continue;
6233
6234			switch (act->dta_kind) {
6235			case DTRACEACT_SPECULATE:
6236				ASSERT(buf == &state->dts_buffer[cpuid]);
6237				buf = dtrace_speculation_buffer(state,
6238				    cpuid, val);
6239
6240				if (buf == NULL) {
6241					*flags |= CPU_DTRACE_DROP;
6242					continue;
6243				}
6244
6245				offs = dtrace_buffer_reserve(buf,
6246				    ecb->dte_needed, ecb->dte_alignment,
6247				    state, NULL);
6248
6249				if (offs < 0) {
6250					*flags |= CPU_DTRACE_DROP;
6251					continue;
6252				}
6253
6254				tomax = buf->dtb_tomax;
6255				ASSERT(tomax != NULL);
6256
6257				if (ecb->dte_size != 0)
6258					DTRACE_STORE(uint32_t, tomax, offs,
6259					    ecb->dte_epid);
6260				continue;
6261
6262			case DTRACEACT_PRINTM: {
6263				/* The DIF returns a 'memref'. */
6264				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6265
6266				/* Get the size from the memref. */
6267				size = memref[1];
6268
6269				/*
6270				 * Check if the size exceeds the allocated
6271				 * buffer size.
6272				 */
6273				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6274					/* Flag a drop! */
6275					*flags |= CPU_DTRACE_DROP;
6276					continue;
6277				}
6278
6279				/* Store the size in the buffer first. */
6280				DTRACE_STORE(uintptr_t, tomax,
6281				    valoffs, size);
6282
6283				/*
6284				 * Offset the buffer address to the start
6285				 * of the data.
6286				 */
6287				valoffs += sizeof(uintptr_t);
6288
6289				/*
6290				 * Reset to the memory address rather than
6291				 * the memref array, then let the BYREF
6292				 * code below do the work to store the
6293				 * memory data in the buffer.
6294				 */
6295				val = memref[0];
6296				break;
6297			}
6298
6299			case DTRACEACT_PRINTT: {
6300				/* The DIF returns a 'typeref'. */
6301				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6302				char c = '\0' + 1;
6303				size_t s;
6304
6305				/*
6306				 * Get the type string length and round it
6307				 * up so that the data that follows is
6308				 * aligned for easy access.
6309				 */
6310				size_t typs = strlen((char *) typeref[2]) + 1;
6311				typs = roundup(typs,  sizeof(uintptr_t));
6312
6313				/*
6314				 *Get the size from the typeref using the
6315				 * number of elements and the type size.
6316				 */
6317				size = typeref[1] * typeref[3];
6318
6319				/*
6320				 * Check if the size exceeds the allocated
6321				 * buffer size.
6322				 */
6323				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6324					/* Flag a drop! */
6325					*flags |= CPU_DTRACE_DROP;
6326
6327				}
6328
6329				/* Store the size in the buffer first. */
6330				DTRACE_STORE(uintptr_t, tomax,
6331				    valoffs, size);
6332				valoffs += sizeof(uintptr_t);
6333
6334				/* Store the type size in the buffer. */
6335				DTRACE_STORE(uintptr_t, tomax,
6336				    valoffs, typeref[3]);
6337				valoffs += sizeof(uintptr_t);
6338
6339				val = typeref[2];
6340
6341				for (s = 0; s < typs; s++) {
6342					if (c != '\0')
6343						c = dtrace_load8(val++);
6344
6345					DTRACE_STORE(uint8_t, tomax,
6346					    valoffs++, c);
6347				}
6348
6349				/*
6350				 * Reset to the memory address rather than
6351				 * the typeref array, then let the BYREF
6352				 * code below do the work to store the
6353				 * memory data in the buffer.
6354				 */
6355				val = typeref[0];
6356				break;
6357			}
6358
6359			case DTRACEACT_CHILL:
6360				if (dtrace_priv_kernel_destructive(state))
6361					dtrace_action_chill(&mstate, val);
6362				continue;
6363
6364			case DTRACEACT_RAISE:
6365				if (dtrace_priv_proc_destructive(state))
6366					dtrace_action_raise(val);
6367				continue;
6368
6369			case DTRACEACT_COMMIT:
6370				ASSERT(!committed);
6371
6372				/*
6373				 * We need to commit our buffer state.
6374				 */
6375				if (ecb->dte_size)
6376					buf->dtb_offset = offs + ecb->dte_size;
6377				buf = &state->dts_buffer[cpuid];
6378				dtrace_speculation_commit(state, cpuid, val);
6379				committed = 1;
6380				continue;
6381
6382			case DTRACEACT_DISCARD:
6383				dtrace_speculation_discard(state, cpuid, val);
6384				continue;
6385
6386			case DTRACEACT_DIFEXPR:
6387			case DTRACEACT_LIBACT:
6388			case DTRACEACT_PRINTF:
6389			case DTRACEACT_PRINTA:
6390			case DTRACEACT_SYSTEM:
6391			case DTRACEACT_FREOPEN:
6392				break;
6393
6394			case DTRACEACT_SYM:
6395			case DTRACEACT_MOD:
6396				if (!dtrace_priv_kernel(state))
6397					continue;
6398				break;
6399
6400			case DTRACEACT_USYM:
6401			case DTRACEACT_UMOD:
6402			case DTRACEACT_UADDR: {
6403#if defined(sun)
6404				struct pid *pid = curthread->t_procp->p_pidp;
6405#endif
6406
6407				if (!dtrace_priv_proc(state))
6408					continue;
6409
6410				DTRACE_STORE(uint64_t, tomax,
6411#if defined(sun)
6412				    valoffs, (uint64_t)pid->pid_id);
6413#else
6414				    valoffs, (uint64_t) curproc->p_pid);
6415#endif
6416				DTRACE_STORE(uint64_t, tomax,
6417				    valoffs + sizeof (uint64_t), val);
6418
6419				continue;
6420			}
6421
6422			case DTRACEACT_EXIT: {
6423				/*
6424				 * For the exit action, we are going to attempt
6425				 * to atomically set our activity to be
6426				 * draining.  If this fails (either because
6427				 * another CPU has beat us to the exit action,
6428				 * or because our current activity is something
6429				 * other than ACTIVE or WARMUP), we will
6430				 * continue.  This assures that the exit action
6431				 * can be successfully recorded at most once
6432				 * when we're in the ACTIVE state.  If we're
6433				 * encountering the exit() action while in
6434				 * COOLDOWN, however, we want to honor the new
6435				 * status code.  (We know that we're the only
6436				 * thread in COOLDOWN, so there is no race.)
6437				 */
6438				void *activity = &state->dts_activity;
6439				dtrace_activity_t current = state->dts_activity;
6440
6441				if (current == DTRACE_ACTIVITY_COOLDOWN)
6442					break;
6443
6444				if (current != DTRACE_ACTIVITY_WARMUP)
6445					current = DTRACE_ACTIVITY_ACTIVE;
6446
6447				if (dtrace_cas32(activity, current,
6448				    DTRACE_ACTIVITY_DRAINING) != current) {
6449					*flags |= CPU_DTRACE_DROP;
6450					continue;
6451				}
6452
6453				break;
6454			}
6455
6456			default:
6457				ASSERT(0);
6458			}
6459
6460			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6461				uintptr_t end = valoffs + size;
6462
6463				if (!dtrace_vcanload((void *)(uintptr_t)val,
6464				    &dp->dtdo_rtype, &mstate, vstate))
6465					continue;
6466
6467				/*
6468				 * If this is a string, we're going to only
6469				 * load until we find the zero byte -- after
6470				 * which we'll store zero bytes.
6471				 */
6472				if (dp->dtdo_rtype.dtdt_kind ==
6473				    DIF_TYPE_STRING) {
6474					char c = '\0' + 1;
6475					int intuple = act->dta_intuple;
6476					size_t s;
6477
6478					for (s = 0; s < size; s++) {
6479						if (c != '\0')
6480							c = dtrace_load8(val++);
6481
6482						DTRACE_STORE(uint8_t, tomax,
6483						    valoffs++, c);
6484
6485						if (c == '\0' && intuple)
6486							break;
6487					}
6488
6489					continue;
6490				}
6491
6492				while (valoffs < end) {
6493					DTRACE_STORE(uint8_t, tomax, valoffs++,
6494					    dtrace_load8(val++));
6495				}
6496
6497				continue;
6498			}
6499
6500			switch (size) {
6501			case 0:
6502				break;
6503
6504			case sizeof (uint8_t):
6505				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6506				break;
6507			case sizeof (uint16_t):
6508				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6509				break;
6510			case sizeof (uint32_t):
6511				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6512				break;
6513			case sizeof (uint64_t):
6514				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6515				break;
6516			default:
6517				/*
6518				 * Any other size should have been returned by
6519				 * reference, not by value.
6520				 */
6521				ASSERT(0);
6522				break;
6523			}
6524		}
6525
6526		if (*flags & CPU_DTRACE_DROP)
6527			continue;
6528
6529		if (*flags & CPU_DTRACE_FAULT) {
6530			int ndx;
6531			dtrace_action_t *err;
6532
6533			buf->dtb_errors++;
6534
6535			if (probe->dtpr_id == dtrace_probeid_error) {
6536				/*
6537				 * There's nothing we can do -- we had an
6538				 * error on the error probe.  We bump an
6539				 * error counter to at least indicate that
6540				 * this condition happened.
6541				 */
6542				dtrace_error(&state->dts_dblerrors);
6543				continue;
6544			}
6545
6546			if (vtime) {
6547				/*
6548				 * Before recursing on dtrace_probe(), we
6549				 * need to explicitly clear out our start
6550				 * time to prevent it from being accumulated
6551				 * into t_dtrace_vtime.
6552				 */
6553				curthread->t_dtrace_start = 0;
6554			}
6555
6556			/*
6557			 * Iterate over the actions to figure out which action
6558			 * we were processing when we experienced the error.
6559			 * Note that act points _past_ the faulting action; if
6560			 * act is ecb->dte_action, the fault was in the
6561			 * predicate, if it's ecb->dte_action->dta_next it's
6562			 * in action #1, and so on.
6563			 */
6564			for (err = ecb->dte_action, ndx = 0;
6565			    err != act; err = err->dta_next, ndx++)
6566				continue;
6567
6568			dtrace_probe_error(state, ecb->dte_epid, ndx,
6569			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6570			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6571			    cpu_core[cpuid].cpuc_dtrace_illval);
6572
6573			continue;
6574		}
6575
6576		if (!committed)
6577			buf->dtb_offset = offs + ecb->dte_size;
6578	}
6579
6580	if (vtime)
6581		curthread->t_dtrace_start = dtrace_gethrtime();
6582
6583	dtrace_interrupt_enable(cookie);
6584}
6585
6586/*
6587 * DTrace Probe Hashing Functions
6588 *
6589 * The functions in this section (and indeed, the functions in remaining
6590 * sections) are not _called_ from probe context.  (Any exceptions to this are
6591 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6592 * DTrace framework to look-up probes in, add probes to and remove probes from
6593 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6594 * probe tuple -- allowing for fast lookups, regardless of what was
6595 * specified.)
6596 */
6597static uint_t
6598dtrace_hash_str(const char *p)
6599{
6600	unsigned int g;
6601	uint_t hval = 0;
6602
6603	while (*p) {
6604		hval = (hval << 4) + *p++;
6605		if ((g = (hval & 0xf0000000)) != 0)
6606			hval ^= g >> 24;
6607		hval &= ~g;
6608	}
6609	return (hval);
6610}
6611
6612static dtrace_hash_t *
6613dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6614{
6615	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6616
6617	hash->dth_stroffs = stroffs;
6618	hash->dth_nextoffs = nextoffs;
6619	hash->dth_prevoffs = prevoffs;
6620
6621	hash->dth_size = 1;
6622	hash->dth_mask = hash->dth_size - 1;
6623
6624	hash->dth_tab = kmem_zalloc(hash->dth_size *
6625	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6626
6627	return (hash);
6628}
6629
6630static void
6631dtrace_hash_destroy(dtrace_hash_t *hash)
6632{
6633#ifdef DEBUG
6634	int i;
6635
6636	for (i = 0; i < hash->dth_size; i++)
6637		ASSERT(hash->dth_tab[i] == NULL);
6638#endif
6639
6640	kmem_free(hash->dth_tab,
6641	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6642	kmem_free(hash, sizeof (dtrace_hash_t));
6643}
6644
6645static void
6646dtrace_hash_resize(dtrace_hash_t *hash)
6647{
6648	int size = hash->dth_size, i, ndx;
6649	int new_size = hash->dth_size << 1;
6650	int new_mask = new_size - 1;
6651	dtrace_hashbucket_t **new_tab, *bucket, *next;
6652
6653	ASSERT((new_size & new_mask) == 0);
6654
6655	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6656
6657	for (i = 0; i < size; i++) {
6658		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6659			dtrace_probe_t *probe = bucket->dthb_chain;
6660
6661			ASSERT(probe != NULL);
6662			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6663
6664			next = bucket->dthb_next;
6665			bucket->dthb_next = new_tab[ndx];
6666			new_tab[ndx] = bucket;
6667		}
6668	}
6669
6670	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6671	hash->dth_tab = new_tab;
6672	hash->dth_size = new_size;
6673	hash->dth_mask = new_mask;
6674}
6675
6676static void
6677dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6678{
6679	int hashval = DTRACE_HASHSTR(hash, new);
6680	int ndx = hashval & hash->dth_mask;
6681	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6682	dtrace_probe_t **nextp, **prevp;
6683
6684	for (; bucket != NULL; bucket = bucket->dthb_next) {
6685		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6686			goto add;
6687	}
6688
6689	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6690		dtrace_hash_resize(hash);
6691		dtrace_hash_add(hash, new);
6692		return;
6693	}
6694
6695	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6696	bucket->dthb_next = hash->dth_tab[ndx];
6697	hash->dth_tab[ndx] = bucket;
6698	hash->dth_nbuckets++;
6699
6700add:
6701	nextp = DTRACE_HASHNEXT(hash, new);
6702	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6703	*nextp = bucket->dthb_chain;
6704
6705	if (bucket->dthb_chain != NULL) {
6706		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6707		ASSERT(*prevp == NULL);
6708		*prevp = new;
6709	}
6710
6711	bucket->dthb_chain = new;
6712	bucket->dthb_len++;
6713}
6714
6715static dtrace_probe_t *
6716dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6717{
6718	int hashval = DTRACE_HASHSTR(hash, template);
6719	int ndx = hashval & hash->dth_mask;
6720	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6721
6722	for (; bucket != NULL; bucket = bucket->dthb_next) {
6723		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6724			return (bucket->dthb_chain);
6725	}
6726
6727	return (NULL);
6728}
6729
6730static int
6731dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6732{
6733	int hashval = DTRACE_HASHSTR(hash, template);
6734	int ndx = hashval & hash->dth_mask;
6735	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6736
6737	for (; bucket != NULL; bucket = bucket->dthb_next) {
6738		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6739			return (bucket->dthb_len);
6740	}
6741
6742	return (0);
6743}
6744
6745static void
6746dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6747{
6748	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6749	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6750
6751	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6752	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6753
6754	/*
6755	 * Find the bucket that we're removing this probe from.
6756	 */
6757	for (; bucket != NULL; bucket = bucket->dthb_next) {
6758		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6759			break;
6760	}
6761
6762	ASSERT(bucket != NULL);
6763
6764	if (*prevp == NULL) {
6765		if (*nextp == NULL) {
6766			/*
6767			 * The removed probe was the only probe on this
6768			 * bucket; we need to remove the bucket.
6769			 */
6770			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6771
6772			ASSERT(bucket->dthb_chain == probe);
6773			ASSERT(b != NULL);
6774
6775			if (b == bucket) {
6776				hash->dth_tab[ndx] = bucket->dthb_next;
6777			} else {
6778				while (b->dthb_next != bucket)
6779					b = b->dthb_next;
6780				b->dthb_next = bucket->dthb_next;
6781			}
6782
6783			ASSERT(hash->dth_nbuckets > 0);
6784			hash->dth_nbuckets--;
6785			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6786			return;
6787		}
6788
6789		bucket->dthb_chain = *nextp;
6790	} else {
6791		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6792	}
6793
6794	if (*nextp != NULL)
6795		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6796}
6797
6798/*
6799 * DTrace Utility Functions
6800 *
6801 * These are random utility functions that are _not_ called from probe context.
6802 */
6803static int
6804dtrace_badattr(const dtrace_attribute_t *a)
6805{
6806	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6807	    a->dtat_data > DTRACE_STABILITY_MAX ||
6808	    a->dtat_class > DTRACE_CLASS_MAX);
6809}
6810
6811/*
6812 * Return a duplicate copy of a string.  If the specified string is NULL,
6813 * this function returns a zero-length string.
6814 */
6815static char *
6816dtrace_strdup(const char *str)
6817{
6818	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6819
6820	if (str != NULL)
6821		(void) strcpy(new, str);
6822
6823	return (new);
6824}
6825
6826#define	DTRACE_ISALPHA(c)	\
6827	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6828
6829static int
6830dtrace_badname(const char *s)
6831{
6832	char c;
6833
6834	if (s == NULL || (c = *s++) == '\0')
6835		return (0);
6836
6837	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6838		return (1);
6839
6840	while ((c = *s++) != '\0') {
6841		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6842		    c != '-' && c != '_' && c != '.' && c != '`')
6843			return (1);
6844	}
6845
6846	return (0);
6847}
6848
6849static void
6850dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6851{
6852	uint32_t priv;
6853
6854#if defined(sun)
6855	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6856		/*
6857		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6858		 */
6859		priv = DTRACE_PRIV_ALL;
6860	} else {
6861		*uidp = crgetuid(cr);
6862		*zoneidp = crgetzoneid(cr);
6863
6864		priv = 0;
6865		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6866			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6867		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6868			priv |= DTRACE_PRIV_USER;
6869		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6870			priv |= DTRACE_PRIV_PROC;
6871		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6872			priv |= DTRACE_PRIV_OWNER;
6873		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6874			priv |= DTRACE_PRIV_ZONEOWNER;
6875	}
6876#else
6877	priv = DTRACE_PRIV_ALL;
6878#endif
6879
6880	*privp = priv;
6881}
6882
6883#ifdef DTRACE_ERRDEBUG
6884static void
6885dtrace_errdebug(const char *str)
6886{
6887	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6888	int occupied = 0;
6889
6890	mutex_enter(&dtrace_errlock);
6891	dtrace_errlast = str;
6892	dtrace_errthread = curthread;
6893
6894	while (occupied++ < DTRACE_ERRHASHSZ) {
6895		if (dtrace_errhash[hval].dter_msg == str) {
6896			dtrace_errhash[hval].dter_count++;
6897			goto out;
6898		}
6899
6900		if (dtrace_errhash[hval].dter_msg != NULL) {
6901			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6902			continue;
6903		}
6904
6905		dtrace_errhash[hval].dter_msg = str;
6906		dtrace_errhash[hval].dter_count = 1;
6907		goto out;
6908	}
6909
6910	panic("dtrace: undersized error hash");
6911out:
6912	mutex_exit(&dtrace_errlock);
6913}
6914#endif
6915
6916/*
6917 * DTrace Matching Functions
6918 *
6919 * These functions are used to match groups of probes, given some elements of
6920 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6921 */
6922static int
6923dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6924    zoneid_t zoneid)
6925{
6926	if (priv != DTRACE_PRIV_ALL) {
6927		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6928		uint32_t match = priv & ppriv;
6929
6930		/*
6931		 * No PRIV_DTRACE_* privileges...
6932		 */
6933		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6934		    DTRACE_PRIV_KERNEL)) == 0)
6935			return (0);
6936
6937		/*
6938		 * No matching bits, but there were bits to match...
6939		 */
6940		if (match == 0 && ppriv != 0)
6941			return (0);
6942
6943		/*
6944		 * Need to have permissions to the process, but don't...
6945		 */
6946		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6947		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6948			return (0);
6949		}
6950
6951		/*
6952		 * Need to be in the same zone unless we possess the
6953		 * privilege to examine all zones.
6954		 */
6955		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6956		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6957			return (0);
6958		}
6959	}
6960
6961	return (1);
6962}
6963
6964/*
6965 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6966 * consists of input pattern strings and an ops-vector to evaluate them.
6967 * This function returns >0 for match, 0 for no match, and <0 for error.
6968 */
6969static int
6970dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6971    uint32_t priv, uid_t uid, zoneid_t zoneid)
6972{
6973	dtrace_provider_t *pvp = prp->dtpr_provider;
6974	int rv;
6975
6976	if (pvp->dtpv_defunct)
6977		return (0);
6978
6979	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6980		return (rv);
6981
6982	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6983		return (rv);
6984
6985	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6986		return (rv);
6987
6988	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6989		return (rv);
6990
6991	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6992		return (0);
6993
6994	return (rv);
6995}
6996
6997/*
6998 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6999 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7000 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7001 * In addition, all of the recursion cases except for '*' matching have been
7002 * unwound.  For '*', we still implement recursive evaluation, but a depth
7003 * counter is maintained and matching is aborted if we recurse too deep.
7004 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7005 */
7006static int
7007dtrace_match_glob(const char *s, const char *p, int depth)
7008{
7009	const char *olds;
7010	char s1, c;
7011	int gs;
7012
7013	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7014		return (-1);
7015
7016	if (s == NULL)
7017		s = ""; /* treat NULL as empty string */
7018
7019top:
7020	olds = s;
7021	s1 = *s++;
7022
7023	if (p == NULL)
7024		return (0);
7025
7026	if ((c = *p++) == '\0')
7027		return (s1 == '\0');
7028
7029	switch (c) {
7030	case '[': {
7031		int ok = 0, notflag = 0;
7032		char lc = '\0';
7033
7034		if (s1 == '\0')
7035			return (0);
7036
7037		if (*p == '!') {
7038			notflag = 1;
7039			p++;
7040		}
7041
7042		if ((c = *p++) == '\0')
7043			return (0);
7044
7045		do {
7046			if (c == '-' && lc != '\0' && *p != ']') {
7047				if ((c = *p++) == '\0')
7048					return (0);
7049				if (c == '\\' && (c = *p++) == '\0')
7050					return (0);
7051
7052				if (notflag) {
7053					if (s1 < lc || s1 > c)
7054						ok++;
7055					else
7056						return (0);
7057				} else if (lc <= s1 && s1 <= c)
7058					ok++;
7059
7060			} else if (c == '\\' && (c = *p++) == '\0')
7061				return (0);
7062
7063			lc = c; /* save left-hand 'c' for next iteration */
7064
7065			if (notflag) {
7066				if (s1 != c)
7067					ok++;
7068				else
7069					return (0);
7070			} else if (s1 == c)
7071				ok++;
7072
7073			if ((c = *p++) == '\0')
7074				return (0);
7075
7076		} while (c != ']');
7077
7078		if (ok)
7079			goto top;
7080
7081		return (0);
7082	}
7083
7084	case '\\':
7085		if ((c = *p++) == '\0')
7086			return (0);
7087		/*FALLTHRU*/
7088
7089	default:
7090		if (c != s1)
7091			return (0);
7092		/*FALLTHRU*/
7093
7094	case '?':
7095		if (s1 != '\0')
7096			goto top;
7097		return (0);
7098
7099	case '*':
7100		while (*p == '*')
7101			p++; /* consecutive *'s are identical to a single one */
7102
7103		if (*p == '\0')
7104			return (1);
7105
7106		for (s = olds; *s != '\0'; s++) {
7107			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7108				return (gs);
7109		}
7110
7111		return (0);
7112	}
7113}
7114
7115/*ARGSUSED*/
7116static int
7117dtrace_match_string(const char *s, const char *p, int depth)
7118{
7119	return (s != NULL && strcmp(s, p) == 0);
7120}
7121
7122/*ARGSUSED*/
7123static int
7124dtrace_match_nul(const char *s, const char *p, int depth)
7125{
7126	return (1); /* always match the empty pattern */
7127}
7128
7129/*ARGSUSED*/
7130static int
7131dtrace_match_nonzero(const char *s, const char *p, int depth)
7132{
7133	return (s != NULL && s[0] != '\0');
7134}
7135
7136static int
7137dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7138    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7139{
7140	dtrace_probe_t template, *probe;
7141	dtrace_hash_t *hash = NULL;
7142	int len, best = INT_MAX, nmatched = 0;
7143	dtrace_id_t i;
7144
7145	ASSERT(MUTEX_HELD(&dtrace_lock));
7146
7147	/*
7148	 * If the probe ID is specified in the key, just lookup by ID and
7149	 * invoke the match callback once if a matching probe is found.
7150	 */
7151	if (pkp->dtpk_id != DTRACE_IDNONE) {
7152		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7153		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7154			(void) (*matched)(probe, arg);
7155			nmatched++;
7156		}
7157		return (nmatched);
7158	}
7159
7160	template.dtpr_mod = (char *)pkp->dtpk_mod;
7161	template.dtpr_func = (char *)pkp->dtpk_func;
7162	template.dtpr_name = (char *)pkp->dtpk_name;
7163
7164	/*
7165	 * We want to find the most distinct of the module name, function
7166	 * name, and name.  So for each one that is not a glob pattern or
7167	 * empty string, we perform a lookup in the corresponding hash and
7168	 * use the hash table with the fewest collisions to do our search.
7169	 */
7170	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7171	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7172		best = len;
7173		hash = dtrace_bymod;
7174	}
7175
7176	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7177	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7178		best = len;
7179		hash = dtrace_byfunc;
7180	}
7181
7182	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7183	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7184		best = len;
7185		hash = dtrace_byname;
7186	}
7187
7188	/*
7189	 * If we did not select a hash table, iterate over every probe and
7190	 * invoke our callback for each one that matches our input probe key.
7191	 */
7192	if (hash == NULL) {
7193		for (i = 0; i < dtrace_nprobes; i++) {
7194			if ((probe = dtrace_probes[i]) == NULL ||
7195			    dtrace_match_probe(probe, pkp, priv, uid,
7196			    zoneid) <= 0)
7197				continue;
7198
7199			nmatched++;
7200
7201			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7202				break;
7203		}
7204
7205		return (nmatched);
7206	}
7207
7208	/*
7209	 * If we selected a hash table, iterate over each probe of the same key
7210	 * name and invoke the callback for every probe that matches the other
7211	 * attributes of our input probe key.
7212	 */
7213	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7214	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7215
7216		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7217			continue;
7218
7219		nmatched++;
7220
7221		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7222			break;
7223	}
7224
7225	return (nmatched);
7226}
7227
7228/*
7229 * Return the function pointer dtrace_probecmp() should use to compare the
7230 * specified pattern with a string.  For NULL or empty patterns, we select
7231 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7232 * For non-empty non-glob strings, we use dtrace_match_string().
7233 */
7234static dtrace_probekey_f *
7235dtrace_probekey_func(const char *p)
7236{
7237	char c;
7238
7239	if (p == NULL || *p == '\0')
7240		return (&dtrace_match_nul);
7241
7242	while ((c = *p++) != '\0') {
7243		if (c == '[' || c == '?' || c == '*' || c == '\\')
7244			return (&dtrace_match_glob);
7245	}
7246
7247	return (&dtrace_match_string);
7248}
7249
7250/*
7251 * Build a probe comparison key for use with dtrace_match_probe() from the
7252 * given probe description.  By convention, a null key only matches anchored
7253 * probes: if each field is the empty string, reset dtpk_fmatch to
7254 * dtrace_match_nonzero().
7255 */
7256static void
7257dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7258{
7259	pkp->dtpk_prov = pdp->dtpd_provider;
7260	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7261
7262	pkp->dtpk_mod = pdp->dtpd_mod;
7263	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7264
7265	pkp->dtpk_func = pdp->dtpd_func;
7266	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7267
7268	pkp->dtpk_name = pdp->dtpd_name;
7269	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7270
7271	pkp->dtpk_id = pdp->dtpd_id;
7272
7273	if (pkp->dtpk_id == DTRACE_IDNONE &&
7274	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7275	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7276	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7277	    pkp->dtpk_nmatch == &dtrace_match_nul)
7278		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7279}
7280
7281/*
7282 * DTrace Provider-to-Framework API Functions
7283 *
7284 * These functions implement much of the Provider-to-Framework API, as
7285 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7286 * the functions in the API for probe management (found below), and
7287 * dtrace_probe() itself (found above).
7288 */
7289
7290/*
7291 * Register the calling provider with the DTrace framework.  This should
7292 * generally be called by DTrace providers in their attach(9E) entry point.
7293 */
7294int
7295dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7296    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7297{
7298	dtrace_provider_t *provider;
7299
7300	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7301		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7302		    "arguments", name ? name : "<NULL>");
7303		return (EINVAL);
7304	}
7305
7306	if (name[0] == '\0' || dtrace_badname(name)) {
7307		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7308		    "provider name", name);
7309		return (EINVAL);
7310	}
7311
7312	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7313	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7314	    pops->dtps_destroy == NULL ||
7315	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7316		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7317		    "provider ops", name);
7318		return (EINVAL);
7319	}
7320
7321	if (dtrace_badattr(&pap->dtpa_provider) ||
7322	    dtrace_badattr(&pap->dtpa_mod) ||
7323	    dtrace_badattr(&pap->dtpa_func) ||
7324	    dtrace_badattr(&pap->dtpa_name) ||
7325	    dtrace_badattr(&pap->dtpa_args)) {
7326		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7327		    "provider attributes", name);
7328		return (EINVAL);
7329	}
7330
7331	if (priv & ~DTRACE_PRIV_ALL) {
7332		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7333		    "privilege attributes", name);
7334		return (EINVAL);
7335	}
7336
7337	if ((priv & DTRACE_PRIV_KERNEL) &&
7338	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7339	    pops->dtps_usermode == NULL) {
7340		cmn_err(CE_WARN, "failed to register provider '%s': need "
7341		    "dtps_usermode() op for given privilege attributes", name);
7342		return (EINVAL);
7343	}
7344
7345	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7346	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7347	(void) strcpy(provider->dtpv_name, name);
7348
7349	provider->dtpv_attr = *pap;
7350	provider->dtpv_priv.dtpp_flags = priv;
7351	if (cr != NULL) {
7352		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7353		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7354	}
7355	provider->dtpv_pops = *pops;
7356
7357	if (pops->dtps_provide == NULL) {
7358		ASSERT(pops->dtps_provide_module != NULL);
7359		provider->dtpv_pops.dtps_provide =
7360		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7361	}
7362
7363	if (pops->dtps_provide_module == NULL) {
7364		ASSERT(pops->dtps_provide != NULL);
7365		provider->dtpv_pops.dtps_provide_module =
7366		    (void (*)(void *, modctl_t *))dtrace_nullop;
7367	}
7368
7369	if (pops->dtps_suspend == NULL) {
7370		ASSERT(pops->dtps_resume == NULL);
7371		provider->dtpv_pops.dtps_suspend =
7372		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7373		provider->dtpv_pops.dtps_resume =
7374		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7375	}
7376
7377	provider->dtpv_arg = arg;
7378	*idp = (dtrace_provider_id_t)provider;
7379
7380	if (pops == &dtrace_provider_ops) {
7381		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7382		ASSERT(MUTEX_HELD(&dtrace_lock));
7383		ASSERT(dtrace_anon.dta_enabling == NULL);
7384
7385		/*
7386		 * We make sure that the DTrace provider is at the head of
7387		 * the provider chain.
7388		 */
7389		provider->dtpv_next = dtrace_provider;
7390		dtrace_provider = provider;
7391		return (0);
7392	}
7393
7394	mutex_enter(&dtrace_provider_lock);
7395	mutex_enter(&dtrace_lock);
7396
7397	/*
7398	 * If there is at least one provider registered, we'll add this
7399	 * provider after the first provider.
7400	 */
7401	if (dtrace_provider != NULL) {
7402		provider->dtpv_next = dtrace_provider->dtpv_next;
7403		dtrace_provider->dtpv_next = provider;
7404	} else {
7405		dtrace_provider = provider;
7406	}
7407
7408	if (dtrace_retained != NULL) {
7409		dtrace_enabling_provide(provider);
7410
7411		/*
7412		 * Now we need to call dtrace_enabling_matchall() -- which
7413		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7414		 * to drop all of our locks before calling into it...
7415		 */
7416		mutex_exit(&dtrace_lock);
7417		mutex_exit(&dtrace_provider_lock);
7418		dtrace_enabling_matchall();
7419
7420		return (0);
7421	}
7422
7423	mutex_exit(&dtrace_lock);
7424	mutex_exit(&dtrace_provider_lock);
7425
7426	return (0);
7427}
7428
7429/*
7430 * Unregister the specified provider from the DTrace framework.  This should
7431 * generally be called by DTrace providers in their detach(9E) entry point.
7432 */
7433int
7434dtrace_unregister(dtrace_provider_id_t id)
7435{
7436	dtrace_provider_t *old = (dtrace_provider_t *)id;
7437	dtrace_provider_t *prev = NULL;
7438	int i, self = 0;
7439	dtrace_probe_t *probe, *first = NULL;
7440
7441	if (old->dtpv_pops.dtps_enable ==
7442	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7443		/*
7444		 * If DTrace itself is the provider, we're called with locks
7445		 * already held.
7446		 */
7447		ASSERT(old == dtrace_provider);
7448#if defined(sun)
7449		ASSERT(dtrace_devi != NULL);
7450#endif
7451		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7452		ASSERT(MUTEX_HELD(&dtrace_lock));
7453		self = 1;
7454
7455		if (dtrace_provider->dtpv_next != NULL) {
7456			/*
7457			 * There's another provider here; return failure.
7458			 */
7459			return (EBUSY);
7460		}
7461	} else {
7462		mutex_enter(&dtrace_provider_lock);
7463		mutex_enter(&mod_lock);
7464		mutex_enter(&dtrace_lock);
7465	}
7466
7467	/*
7468	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7469	 * probes, we refuse to let providers slither away, unless this
7470	 * provider has already been explicitly invalidated.
7471	 */
7472	if (!old->dtpv_defunct &&
7473	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7474	    dtrace_anon.dta_state->dts_necbs > 0))) {
7475		if (!self) {
7476			mutex_exit(&dtrace_lock);
7477			mutex_exit(&mod_lock);
7478			mutex_exit(&dtrace_provider_lock);
7479		}
7480		return (EBUSY);
7481	}
7482
7483	/*
7484	 * Attempt to destroy the probes associated with this provider.
7485	 */
7486	for (i = 0; i < dtrace_nprobes; i++) {
7487		if ((probe = dtrace_probes[i]) == NULL)
7488			continue;
7489
7490		if (probe->dtpr_provider != old)
7491			continue;
7492
7493		if (probe->dtpr_ecb == NULL)
7494			continue;
7495
7496		/*
7497		 * We have at least one ECB; we can't remove this provider.
7498		 */
7499		if (!self) {
7500			mutex_exit(&dtrace_lock);
7501			mutex_exit(&mod_lock);
7502			mutex_exit(&dtrace_provider_lock);
7503		}
7504		return (EBUSY);
7505	}
7506
7507	/*
7508	 * All of the probes for this provider are disabled; we can safely
7509	 * remove all of them from their hash chains and from the probe array.
7510	 */
7511	for (i = 0; i < dtrace_nprobes; i++) {
7512		if ((probe = dtrace_probes[i]) == NULL)
7513			continue;
7514
7515		if (probe->dtpr_provider != old)
7516			continue;
7517
7518		dtrace_probes[i] = NULL;
7519
7520		dtrace_hash_remove(dtrace_bymod, probe);
7521		dtrace_hash_remove(dtrace_byfunc, probe);
7522		dtrace_hash_remove(dtrace_byname, probe);
7523
7524		if (first == NULL) {
7525			first = probe;
7526			probe->dtpr_nextmod = NULL;
7527		} else {
7528			probe->dtpr_nextmod = first;
7529			first = probe;
7530		}
7531	}
7532
7533	/*
7534	 * The provider's probes have been removed from the hash chains and
7535	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7536	 * everyone has cleared out from any probe array processing.
7537	 */
7538	dtrace_sync();
7539
7540	for (probe = first; probe != NULL; probe = first) {
7541		first = probe->dtpr_nextmod;
7542
7543		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7544		    probe->dtpr_arg);
7545		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7546		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7547		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7548#if defined(sun)
7549		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7550#else
7551		free_unr(dtrace_arena, probe->dtpr_id);
7552#endif
7553		kmem_free(probe, sizeof (dtrace_probe_t));
7554	}
7555
7556	if ((prev = dtrace_provider) == old) {
7557#if defined(sun)
7558		ASSERT(self || dtrace_devi == NULL);
7559		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7560#endif
7561		dtrace_provider = old->dtpv_next;
7562	} else {
7563		while (prev != NULL && prev->dtpv_next != old)
7564			prev = prev->dtpv_next;
7565
7566		if (prev == NULL) {
7567			panic("attempt to unregister non-existent "
7568			    "dtrace provider %p\n", (void *)id);
7569		}
7570
7571		prev->dtpv_next = old->dtpv_next;
7572	}
7573
7574	if (!self) {
7575		mutex_exit(&dtrace_lock);
7576		mutex_exit(&mod_lock);
7577		mutex_exit(&dtrace_provider_lock);
7578	}
7579
7580	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7581	kmem_free(old, sizeof (dtrace_provider_t));
7582
7583	return (0);
7584}
7585
7586/*
7587 * Invalidate the specified provider.  All subsequent probe lookups for the
7588 * specified provider will fail, but its probes will not be removed.
7589 */
7590void
7591dtrace_invalidate(dtrace_provider_id_t id)
7592{
7593	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7594
7595	ASSERT(pvp->dtpv_pops.dtps_enable !=
7596	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7597
7598	mutex_enter(&dtrace_provider_lock);
7599	mutex_enter(&dtrace_lock);
7600
7601	pvp->dtpv_defunct = 1;
7602
7603	mutex_exit(&dtrace_lock);
7604	mutex_exit(&dtrace_provider_lock);
7605}
7606
7607/*
7608 * Indicate whether or not DTrace has attached.
7609 */
7610int
7611dtrace_attached(void)
7612{
7613	/*
7614	 * dtrace_provider will be non-NULL iff the DTrace driver has
7615	 * attached.  (It's non-NULL because DTrace is always itself a
7616	 * provider.)
7617	 */
7618	return (dtrace_provider != NULL);
7619}
7620
7621/*
7622 * Remove all the unenabled probes for the given provider.  This function is
7623 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7624 * -- just as many of its associated probes as it can.
7625 */
7626int
7627dtrace_condense(dtrace_provider_id_t id)
7628{
7629	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7630	int i;
7631	dtrace_probe_t *probe;
7632
7633	/*
7634	 * Make sure this isn't the dtrace provider itself.
7635	 */
7636	ASSERT(prov->dtpv_pops.dtps_enable !=
7637	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7638
7639	mutex_enter(&dtrace_provider_lock);
7640	mutex_enter(&dtrace_lock);
7641
7642	/*
7643	 * Attempt to destroy the probes associated with this provider.
7644	 */
7645	for (i = 0; i < dtrace_nprobes; i++) {
7646		if ((probe = dtrace_probes[i]) == NULL)
7647			continue;
7648
7649		if (probe->dtpr_provider != prov)
7650			continue;
7651
7652		if (probe->dtpr_ecb != NULL)
7653			continue;
7654
7655		dtrace_probes[i] = NULL;
7656
7657		dtrace_hash_remove(dtrace_bymod, probe);
7658		dtrace_hash_remove(dtrace_byfunc, probe);
7659		dtrace_hash_remove(dtrace_byname, probe);
7660
7661		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7662		    probe->dtpr_arg);
7663		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7664		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7665		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7666		kmem_free(probe, sizeof (dtrace_probe_t));
7667#if defined(sun)
7668		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7669#else
7670		free_unr(dtrace_arena, i + 1);
7671#endif
7672	}
7673
7674	mutex_exit(&dtrace_lock);
7675	mutex_exit(&dtrace_provider_lock);
7676
7677	return (0);
7678}
7679
7680/*
7681 * DTrace Probe Management Functions
7682 *
7683 * The functions in this section perform the DTrace probe management,
7684 * including functions to create probes, look-up probes, and call into the
7685 * providers to request that probes be provided.  Some of these functions are
7686 * in the Provider-to-Framework API; these functions can be identified by the
7687 * fact that they are not declared "static".
7688 */
7689
7690/*
7691 * Create a probe with the specified module name, function name, and name.
7692 */
7693dtrace_id_t
7694dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7695    const char *func, const char *name, int aframes, void *arg)
7696{
7697	dtrace_probe_t *probe, **probes;
7698	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7699	dtrace_id_t id;
7700
7701	if (provider == dtrace_provider) {
7702		ASSERT(MUTEX_HELD(&dtrace_lock));
7703	} else {
7704		mutex_enter(&dtrace_lock);
7705	}
7706
7707#if defined(sun)
7708	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7709	    VM_BESTFIT | VM_SLEEP);
7710#else
7711	id = alloc_unr(dtrace_arena);
7712#endif
7713	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7714
7715	probe->dtpr_id = id;
7716	probe->dtpr_gen = dtrace_probegen++;
7717	probe->dtpr_mod = dtrace_strdup(mod);
7718	probe->dtpr_func = dtrace_strdup(func);
7719	probe->dtpr_name = dtrace_strdup(name);
7720	probe->dtpr_arg = arg;
7721	probe->dtpr_aframes = aframes;
7722	probe->dtpr_provider = provider;
7723
7724	dtrace_hash_add(dtrace_bymod, probe);
7725	dtrace_hash_add(dtrace_byfunc, probe);
7726	dtrace_hash_add(dtrace_byname, probe);
7727
7728	if (id - 1 >= dtrace_nprobes) {
7729		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7730		size_t nsize = osize << 1;
7731
7732		if (nsize == 0) {
7733			ASSERT(osize == 0);
7734			ASSERT(dtrace_probes == NULL);
7735			nsize = sizeof (dtrace_probe_t *);
7736		}
7737
7738		probes = kmem_zalloc(nsize, KM_SLEEP);
7739
7740		if (dtrace_probes == NULL) {
7741			ASSERT(osize == 0);
7742			dtrace_probes = probes;
7743			dtrace_nprobes = 1;
7744		} else {
7745			dtrace_probe_t **oprobes = dtrace_probes;
7746
7747			bcopy(oprobes, probes, osize);
7748			dtrace_membar_producer();
7749			dtrace_probes = probes;
7750
7751			dtrace_sync();
7752
7753			/*
7754			 * All CPUs are now seeing the new probes array; we can
7755			 * safely free the old array.
7756			 */
7757			kmem_free(oprobes, osize);
7758			dtrace_nprobes <<= 1;
7759		}
7760
7761		ASSERT(id - 1 < dtrace_nprobes);
7762	}
7763
7764	ASSERT(dtrace_probes[id - 1] == NULL);
7765	dtrace_probes[id - 1] = probe;
7766
7767	if (provider != dtrace_provider)
7768		mutex_exit(&dtrace_lock);
7769
7770	return (id);
7771}
7772
7773static dtrace_probe_t *
7774dtrace_probe_lookup_id(dtrace_id_t id)
7775{
7776	ASSERT(MUTEX_HELD(&dtrace_lock));
7777
7778	if (id == 0 || id > dtrace_nprobes)
7779		return (NULL);
7780
7781	return (dtrace_probes[id - 1]);
7782}
7783
7784static int
7785dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7786{
7787	*((dtrace_id_t *)arg) = probe->dtpr_id;
7788
7789	return (DTRACE_MATCH_DONE);
7790}
7791
7792/*
7793 * Look up a probe based on provider and one or more of module name, function
7794 * name and probe name.
7795 */
7796dtrace_id_t
7797dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7798    char *func, char *name)
7799{
7800	dtrace_probekey_t pkey;
7801	dtrace_id_t id;
7802	int match;
7803
7804	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7805	pkey.dtpk_pmatch = &dtrace_match_string;
7806	pkey.dtpk_mod = mod;
7807	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7808	pkey.dtpk_func = func;
7809	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7810	pkey.dtpk_name = name;
7811	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7812	pkey.dtpk_id = DTRACE_IDNONE;
7813
7814	mutex_enter(&dtrace_lock);
7815	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7816	    dtrace_probe_lookup_match, &id);
7817	mutex_exit(&dtrace_lock);
7818
7819	ASSERT(match == 1 || match == 0);
7820	return (match ? id : 0);
7821}
7822
7823/*
7824 * Returns the probe argument associated with the specified probe.
7825 */
7826void *
7827dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7828{
7829	dtrace_probe_t *probe;
7830	void *rval = NULL;
7831
7832	mutex_enter(&dtrace_lock);
7833
7834	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7835	    probe->dtpr_provider == (dtrace_provider_t *)id)
7836		rval = probe->dtpr_arg;
7837
7838	mutex_exit(&dtrace_lock);
7839
7840	return (rval);
7841}
7842
7843/*
7844 * Copy a probe into a probe description.
7845 */
7846static void
7847dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7848{
7849	bzero(pdp, sizeof (dtrace_probedesc_t));
7850	pdp->dtpd_id = prp->dtpr_id;
7851
7852	(void) strncpy(pdp->dtpd_provider,
7853	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7854
7855	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7856	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7857	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7858}
7859
7860#if !defined(sun)
7861static int
7862dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7863{
7864	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7865
7866	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7867
7868	return(0);
7869}
7870#endif
7871
7872
7873/*
7874 * Called to indicate that a probe -- or probes -- should be provided by a
7875 * specfied provider.  If the specified description is NULL, the provider will
7876 * be told to provide all of its probes.  (This is done whenever a new
7877 * consumer comes along, or whenever a retained enabling is to be matched.) If
7878 * the specified description is non-NULL, the provider is given the
7879 * opportunity to dynamically provide the specified probe, allowing providers
7880 * to support the creation of probes on-the-fly.  (So-called _autocreated_
7881 * probes.)  If the provider is NULL, the operations will be applied to all
7882 * providers; if the provider is non-NULL the operations will only be applied
7883 * to the specified provider.  The dtrace_provider_lock must be held, and the
7884 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7885 * will need to grab the dtrace_lock when it reenters the framework through
7886 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7887 */
7888static void
7889dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7890{
7891#if defined(sun)
7892	modctl_t *ctl;
7893#endif
7894	int all = 0;
7895
7896	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7897
7898	if (prv == NULL) {
7899		all = 1;
7900		prv = dtrace_provider;
7901	}
7902
7903	do {
7904		/*
7905		 * First, call the blanket provide operation.
7906		 */
7907		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7908
7909		/*
7910		 * Now call the per-module provide operation.  We will grab
7911		 * mod_lock to prevent the list from being modified.  Note
7912		 * that this also prevents the mod_busy bits from changing.
7913		 * (mod_busy can only be changed with mod_lock held.)
7914		 */
7915		mutex_enter(&mod_lock);
7916
7917#if defined(sun)
7918		ctl = &modules;
7919		do {
7920			if (ctl->mod_busy || ctl->mod_mp == NULL)
7921				continue;
7922
7923			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7924
7925		} while ((ctl = ctl->mod_next) != &modules);
7926#else
7927		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
7928#endif
7929
7930		mutex_exit(&mod_lock);
7931	} while (all && (prv = prv->dtpv_next) != NULL);
7932}
7933
7934#if defined(sun)
7935/*
7936 * Iterate over each probe, and call the Framework-to-Provider API function
7937 * denoted by offs.
7938 */
7939static void
7940dtrace_probe_foreach(uintptr_t offs)
7941{
7942	dtrace_provider_t *prov;
7943	void (*func)(void *, dtrace_id_t, void *);
7944	dtrace_probe_t *probe;
7945	dtrace_icookie_t cookie;
7946	int i;
7947
7948	/*
7949	 * We disable interrupts to walk through the probe array.  This is
7950	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7951	 * won't see stale data.
7952	 */
7953	cookie = dtrace_interrupt_disable();
7954
7955	for (i = 0; i < dtrace_nprobes; i++) {
7956		if ((probe = dtrace_probes[i]) == NULL)
7957			continue;
7958
7959		if (probe->dtpr_ecb == NULL) {
7960			/*
7961			 * This probe isn't enabled -- don't call the function.
7962			 */
7963			continue;
7964		}
7965
7966		prov = probe->dtpr_provider;
7967		func = *((void(**)(void *, dtrace_id_t, void *))
7968		    ((uintptr_t)&prov->dtpv_pops + offs));
7969
7970		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7971	}
7972
7973	dtrace_interrupt_enable(cookie);
7974}
7975#endif
7976
7977static int
7978dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7979{
7980	dtrace_probekey_t pkey;
7981	uint32_t priv;
7982	uid_t uid;
7983	zoneid_t zoneid;
7984
7985	ASSERT(MUTEX_HELD(&dtrace_lock));
7986	dtrace_ecb_create_cache = NULL;
7987
7988	if (desc == NULL) {
7989		/*
7990		 * If we're passed a NULL description, we're being asked to
7991		 * create an ECB with a NULL probe.
7992		 */
7993		(void) dtrace_ecb_create_enable(NULL, enab);
7994		return (0);
7995	}
7996
7997	dtrace_probekey(desc, &pkey);
7998	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7999	    &priv, &uid, &zoneid);
8000
8001	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8002	    enab));
8003}
8004
8005/*
8006 * DTrace Helper Provider Functions
8007 */
8008static void
8009dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8010{
8011	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8012	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8013	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8014}
8015
8016static void
8017dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8018    const dof_provider_t *dofprov, char *strtab)
8019{
8020	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8021	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8022	    dofprov->dofpv_provattr);
8023	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8024	    dofprov->dofpv_modattr);
8025	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8026	    dofprov->dofpv_funcattr);
8027	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8028	    dofprov->dofpv_nameattr);
8029	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8030	    dofprov->dofpv_argsattr);
8031}
8032
8033static void
8034dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8035{
8036	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8037	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8038	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8039	dof_provider_t *provider;
8040	dof_probe_t *probe;
8041	uint32_t *off, *enoff;
8042	uint8_t *arg;
8043	char *strtab;
8044	uint_t i, nprobes;
8045	dtrace_helper_provdesc_t dhpv;
8046	dtrace_helper_probedesc_t dhpb;
8047	dtrace_meta_t *meta = dtrace_meta_pid;
8048	dtrace_mops_t *mops = &meta->dtm_mops;
8049	void *parg;
8050
8051	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8052	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8053	    provider->dofpv_strtab * dof->dofh_secsize);
8054	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8055	    provider->dofpv_probes * dof->dofh_secsize);
8056	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8057	    provider->dofpv_prargs * dof->dofh_secsize);
8058	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8059	    provider->dofpv_proffs * dof->dofh_secsize);
8060
8061	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8062	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8063	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8064	enoff = NULL;
8065
8066	/*
8067	 * See dtrace_helper_provider_validate().
8068	 */
8069	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8070	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8071		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8072		    provider->dofpv_prenoffs * dof->dofh_secsize);
8073		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8074	}
8075
8076	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8077
8078	/*
8079	 * Create the provider.
8080	 */
8081	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8082
8083	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8084		return;
8085
8086	meta->dtm_count++;
8087
8088	/*
8089	 * Create the probes.
8090	 */
8091	for (i = 0; i < nprobes; i++) {
8092		probe = (dof_probe_t *)(uintptr_t)(daddr +
8093		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8094
8095		dhpb.dthpb_mod = dhp->dofhp_mod;
8096		dhpb.dthpb_func = strtab + probe->dofpr_func;
8097		dhpb.dthpb_name = strtab + probe->dofpr_name;
8098		dhpb.dthpb_base = probe->dofpr_addr;
8099		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8100		dhpb.dthpb_noffs = probe->dofpr_noffs;
8101		if (enoff != NULL) {
8102			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8103			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8104		} else {
8105			dhpb.dthpb_enoffs = NULL;
8106			dhpb.dthpb_nenoffs = 0;
8107		}
8108		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8109		dhpb.dthpb_nargc = probe->dofpr_nargc;
8110		dhpb.dthpb_xargc = probe->dofpr_xargc;
8111		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8112		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8113
8114		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8115	}
8116}
8117
8118static void
8119dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8120{
8121	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8122	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8123	int i;
8124
8125	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8126
8127	for (i = 0; i < dof->dofh_secnum; i++) {
8128		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8129		    dof->dofh_secoff + i * dof->dofh_secsize);
8130
8131		if (sec->dofs_type != DOF_SECT_PROVIDER)
8132			continue;
8133
8134		dtrace_helper_provide_one(dhp, sec, pid);
8135	}
8136
8137	/*
8138	 * We may have just created probes, so we must now rematch against
8139	 * any retained enablings.  Note that this call will acquire both
8140	 * cpu_lock and dtrace_lock; the fact that we are holding
8141	 * dtrace_meta_lock now is what defines the ordering with respect to
8142	 * these three locks.
8143	 */
8144	dtrace_enabling_matchall();
8145}
8146
8147static void
8148dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8149{
8150	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8151	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8152	dof_sec_t *str_sec;
8153	dof_provider_t *provider;
8154	char *strtab;
8155	dtrace_helper_provdesc_t dhpv;
8156	dtrace_meta_t *meta = dtrace_meta_pid;
8157	dtrace_mops_t *mops = &meta->dtm_mops;
8158
8159	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8160	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8161	    provider->dofpv_strtab * dof->dofh_secsize);
8162
8163	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8164
8165	/*
8166	 * Create the provider.
8167	 */
8168	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8169
8170	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8171
8172	meta->dtm_count--;
8173}
8174
8175static void
8176dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8177{
8178	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8179	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8180	int i;
8181
8182	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8183
8184	for (i = 0; i < dof->dofh_secnum; i++) {
8185		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8186		    dof->dofh_secoff + i * dof->dofh_secsize);
8187
8188		if (sec->dofs_type != DOF_SECT_PROVIDER)
8189			continue;
8190
8191		dtrace_helper_provider_remove_one(dhp, sec, pid);
8192	}
8193}
8194
8195/*
8196 * DTrace Meta Provider-to-Framework API Functions
8197 *
8198 * These functions implement the Meta Provider-to-Framework API, as described
8199 * in <sys/dtrace.h>.
8200 */
8201int
8202dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8203    dtrace_meta_provider_id_t *idp)
8204{
8205	dtrace_meta_t *meta;
8206	dtrace_helpers_t *help, *next;
8207	int i;
8208
8209	*idp = DTRACE_METAPROVNONE;
8210
8211	/*
8212	 * We strictly don't need the name, but we hold onto it for
8213	 * debuggability. All hail error queues!
8214	 */
8215	if (name == NULL) {
8216		cmn_err(CE_WARN, "failed to register meta-provider: "
8217		    "invalid name");
8218		return (EINVAL);
8219	}
8220
8221	if (mops == NULL ||
8222	    mops->dtms_create_probe == NULL ||
8223	    mops->dtms_provide_pid == NULL ||
8224	    mops->dtms_remove_pid == NULL) {
8225		cmn_err(CE_WARN, "failed to register meta-register %s: "
8226		    "invalid ops", name);
8227		return (EINVAL);
8228	}
8229
8230	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8231	meta->dtm_mops = *mops;
8232	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8233	(void) strcpy(meta->dtm_name, name);
8234	meta->dtm_arg = arg;
8235
8236	mutex_enter(&dtrace_meta_lock);
8237	mutex_enter(&dtrace_lock);
8238
8239	if (dtrace_meta_pid != NULL) {
8240		mutex_exit(&dtrace_lock);
8241		mutex_exit(&dtrace_meta_lock);
8242		cmn_err(CE_WARN, "failed to register meta-register %s: "
8243		    "user-land meta-provider exists", name);
8244		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8245		kmem_free(meta, sizeof (dtrace_meta_t));
8246		return (EINVAL);
8247	}
8248
8249	dtrace_meta_pid = meta;
8250	*idp = (dtrace_meta_provider_id_t)meta;
8251
8252	/*
8253	 * If there are providers and probes ready to go, pass them
8254	 * off to the new meta provider now.
8255	 */
8256
8257	help = dtrace_deferred_pid;
8258	dtrace_deferred_pid = NULL;
8259
8260	mutex_exit(&dtrace_lock);
8261
8262	while (help != NULL) {
8263		for (i = 0; i < help->dthps_nprovs; i++) {
8264			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8265			    help->dthps_pid);
8266		}
8267
8268		next = help->dthps_next;
8269		help->dthps_next = NULL;
8270		help->dthps_prev = NULL;
8271		help->dthps_deferred = 0;
8272		help = next;
8273	}
8274
8275	mutex_exit(&dtrace_meta_lock);
8276
8277	return (0);
8278}
8279
8280int
8281dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8282{
8283	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8284
8285	mutex_enter(&dtrace_meta_lock);
8286	mutex_enter(&dtrace_lock);
8287
8288	if (old == dtrace_meta_pid) {
8289		pp = &dtrace_meta_pid;
8290	} else {
8291		panic("attempt to unregister non-existent "
8292		    "dtrace meta-provider %p\n", (void *)old);
8293	}
8294
8295	if (old->dtm_count != 0) {
8296		mutex_exit(&dtrace_lock);
8297		mutex_exit(&dtrace_meta_lock);
8298		return (EBUSY);
8299	}
8300
8301	*pp = NULL;
8302
8303	mutex_exit(&dtrace_lock);
8304	mutex_exit(&dtrace_meta_lock);
8305
8306	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8307	kmem_free(old, sizeof (dtrace_meta_t));
8308
8309	return (0);
8310}
8311
8312
8313/*
8314 * DTrace DIF Object Functions
8315 */
8316static int
8317dtrace_difo_err(uint_t pc, const char *format, ...)
8318{
8319	if (dtrace_err_verbose) {
8320		va_list alist;
8321
8322		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8323		va_start(alist, format);
8324		(void) vuprintf(format, alist);
8325		va_end(alist);
8326	}
8327
8328#ifdef DTRACE_ERRDEBUG
8329	dtrace_errdebug(format);
8330#endif
8331	return (1);
8332}
8333
8334/*
8335 * Validate a DTrace DIF object by checking the IR instructions.  The following
8336 * rules are currently enforced by dtrace_difo_validate():
8337 *
8338 * 1. Each instruction must have a valid opcode
8339 * 2. Each register, string, variable, or subroutine reference must be valid
8340 * 3. No instruction can modify register %r0 (must be zero)
8341 * 4. All instruction reserved bits must be set to zero
8342 * 5. The last instruction must be a "ret" instruction
8343 * 6. All branch targets must reference a valid instruction _after_ the branch
8344 */
8345static int
8346dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8347    cred_t *cr)
8348{
8349	int err = 0, i;
8350	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8351	int kcheckload;
8352	uint_t pc;
8353
8354	kcheckload = cr == NULL ||
8355	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8356
8357	dp->dtdo_destructive = 0;
8358
8359	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8360		dif_instr_t instr = dp->dtdo_buf[pc];
8361
8362		uint_t r1 = DIF_INSTR_R1(instr);
8363		uint_t r2 = DIF_INSTR_R2(instr);
8364		uint_t rd = DIF_INSTR_RD(instr);
8365		uint_t rs = DIF_INSTR_RS(instr);
8366		uint_t label = DIF_INSTR_LABEL(instr);
8367		uint_t v = DIF_INSTR_VAR(instr);
8368		uint_t subr = DIF_INSTR_SUBR(instr);
8369		uint_t type = DIF_INSTR_TYPE(instr);
8370		uint_t op = DIF_INSTR_OP(instr);
8371
8372		switch (op) {
8373		case DIF_OP_OR:
8374		case DIF_OP_XOR:
8375		case DIF_OP_AND:
8376		case DIF_OP_SLL:
8377		case DIF_OP_SRL:
8378		case DIF_OP_SRA:
8379		case DIF_OP_SUB:
8380		case DIF_OP_ADD:
8381		case DIF_OP_MUL:
8382		case DIF_OP_SDIV:
8383		case DIF_OP_UDIV:
8384		case DIF_OP_SREM:
8385		case DIF_OP_UREM:
8386		case DIF_OP_COPYS:
8387			if (r1 >= nregs)
8388				err += efunc(pc, "invalid register %u\n", r1);
8389			if (r2 >= nregs)
8390				err += efunc(pc, "invalid register %u\n", r2);
8391			if (rd >= nregs)
8392				err += efunc(pc, "invalid register %u\n", rd);
8393			if (rd == 0)
8394				err += efunc(pc, "cannot write to %r0\n");
8395			break;
8396		case DIF_OP_NOT:
8397		case DIF_OP_MOV:
8398		case DIF_OP_ALLOCS:
8399			if (r1 >= nregs)
8400				err += efunc(pc, "invalid register %u\n", r1);
8401			if (r2 != 0)
8402				err += efunc(pc, "non-zero reserved bits\n");
8403			if (rd >= nregs)
8404				err += efunc(pc, "invalid register %u\n", rd);
8405			if (rd == 0)
8406				err += efunc(pc, "cannot write to %r0\n");
8407			break;
8408		case DIF_OP_LDSB:
8409		case DIF_OP_LDSH:
8410		case DIF_OP_LDSW:
8411		case DIF_OP_LDUB:
8412		case DIF_OP_LDUH:
8413		case DIF_OP_LDUW:
8414		case DIF_OP_LDX:
8415			if (r1 >= nregs)
8416				err += efunc(pc, "invalid register %u\n", r1);
8417			if (r2 != 0)
8418				err += efunc(pc, "non-zero reserved bits\n");
8419			if (rd >= nregs)
8420				err += efunc(pc, "invalid register %u\n", rd);
8421			if (rd == 0)
8422				err += efunc(pc, "cannot write to %r0\n");
8423			if (kcheckload)
8424				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8425				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8426			break;
8427		case DIF_OP_RLDSB:
8428		case DIF_OP_RLDSH:
8429		case DIF_OP_RLDSW:
8430		case DIF_OP_RLDUB:
8431		case DIF_OP_RLDUH:
8432		case DIF_OP_RLDUW:
8433		case DIF_OP_RLDX:
8434			if (r1 >= nregs)
8435				err += efunc(pc, "invalid register %u\n", r1);
8436			if (r2 != 0)
8437				err += efunc(pc, "non-zero reserved bits\n");
8438			if (rd >= nregs)
8439				err += efunc(pc, "invalid register %u\n", rd);
8440			if (rd == 0)
8441				err += efunc(pc, "cannot write to %r0\n");
8442			break;
8443		case DIF_OP_ULDSB:
8444		case DIF_OP_ULDSH:
8445		case DIF_OP_ULDSW:
8446		case DIF_OP_ULDUB:
8447		case DIF_OP_ULDUH:
8448		case DIF_OP_ULDUW:
8449		case DIF_OP_ULDX:
8450			if (r1 >= nregs)
8451				err += efunc(pc, "invalid register %u\n", r1);
8452			if (r2 != 0)
8453				err += efunc(pc, "non-zero reserved bits\n");
8454			if (rd >= nregs)
8455				err += efunc(pc, "invalid register %u\n", rd);
8456			if (rd == 0)
8457				err += efunc(pc, "cannot write to %r0\n");
8458			break;
8459		case DIF_OP_STB:
8460		case DIF_OP_STH:
8461		case DIF_OP_STW:
8462		case DIF_OP_STX:
8463			if (r1 >= nregs)
8464				err += efunc(pc, "invalid register %u\n", r1);
8465			if (r2 != 0)
8466				err += efunc(pc, "non-zero reserved bits\n");
8467			if (rd >= nregs)
8468				err += efunc(pc, "invalid register %u\n", rd);
8469			if (rd == 0)
8470				err += efunc(pc, "cannot write to 0 address\n");
8471			break;
8472		case DIF_OP_CMP:
8473		case DIF_OP_SCMP:
8474			if (r1 >= nregs)
8475				err += efunc(pc, "invalid register %u\n", r1);
8476			if (r2 >= nregs)
8477				err += efunc(pc, "invalid register %u\n", r2);
8478			if (rd != 0)
8479				err += efunc(pc, "non-zero reserved bits\n");
8480			break;
8481		case DIF_OP_TST:
8482			if (r1 >= nregs)
8483				err += efunc(pc, "invalid register %u\n", r1);
8484			if (r2 != 0 || rd != 0)
8485				err += efunc(pc, "non-zero reserved bits\n");
8486			break;
8487		case DIF_OP_BA:
8488		case DIF_OP_BE:
8489		case DIF_OP_BNE:
8490		case DIF_OP_BG:
8491		case DIF_OP_BGU:
8492		case DIF_OP_BGE:
8493		case DIF_OP_BGEU:
8494		case DIF_OP_BL:
8495		case DIF_OP_BLU:
8496		case DIF_OP_BLE:
8497		case DIF_OP_BLEU:
8498			if (label >= dp->dtdo_len) {
8499				err += efunc(pc, "invalid branch target %u\n",
8500				    label);
8501			}
8502			if (label <= pc) {
8503				err += efunc(pc, "backward branch to %u\n",
8504				    label);
8505			}
8506			break;
8507		case DIF_OP_RET:
8508			if (r1 != 0 || r2 != 0)
8509				err += efunc(pc, "non-zero reserved bits\n");
8510			if (rd >= nregs)
8511				err += efunc(pc, "invalid register %u\n", rd);
8512			break;
8513		case DIF_OP_NOP:
8514		case DIF_OP_POPTS:
8515		case DIF_OP_FLUSHTS:
8516			if (r1 != 0 || r2 != 0 || rd != 0)
8517				err += efunc(pc, "non-zero reserved bits\n");
8518			break;
8519		case DIF_OP_SETX:
8520			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8521				err += efunc(pc, "invalid integer ref %u\n",
8522				    DIF_INSTR_INTEGER(instr));
8523			}
8524			if (rd >= nregs)
8525				err += efunc(pc, "invalid register %u\n", rd);
8526			if (rd == 0)
8527				err += efunc(pc, "cannot write to %r0\n");
8528			break;
8529		case DIF_OP_SETS:
8530			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8531				err += efunc(pc, "invalid string ref %u\n",
8532				    DIF_INSTR_STRING(instr));
8533			}
8534			if (rd >= nregs)
8535				err += efunc(pc, "invalid register %u\n", rd);
8536			if (rd == 0)
8537				err += efunc(pc, "cannot write to %r0\n");
8538			break;
8539		case DIF_OP_LDGA:
8540		case DIF_OP_LDTA:
8541			if (r1 > DIF_VAR_ARRAY_MAX)
8542				err += efunc(pc, "invalid array %u\n", r1);
8543			if (r2 >= nregs)
8544				err += efunc(pc, "invalid register %u\n", r2);
8545			if (rd >= nregs)
8546				err += efunc(pc, "invalid register %u\n", rd);
8547			if (rd == 0)
8548				err += efunc(pc, "cannot write to %r0\n");
8549			break;
8550		case DIF_OP_LDGS:
8551		case DIF_OP_LDTS:
8552		case DIF_OP_LDLS:
8553		case DIF_OP_LDGAA:
8554		case DIF_OP_LDTAA:
8555			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8556				err += efunc(pc, "invalid variable %u\n", v);
8557			if (rd >= nregs)
8558				err += efunc(pc, "invalid register %u\n", rd);
8559			if (rd == 0)
8560				err += efunc(pc, "cannot write to %r0\n");
8561			break;
8562		case DIF_OP_STGS:
8563		case DIF_OP_STTS:
8564		case DIF_OP_STLS:
8565		case DIF_OP_STGAA:
8566		case DIF_OP_STTAA:
8567			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8568				err += efunc(pc, "invalid variable %u\n", v);
8569			if (rs >= nregs)
8570				err += efunc(pc, "invalid register %u\n", rd);
8571			break;
8572		case DIF_OP_CALL:
8573			if (subr > DIF_SUBR_MAX)
8574				err += efunc(pc, "invalid subr %u\n", subr);
8575			if (rd >= nregs)
8576				err += efunc(pc, "invalid register %u\n", rd);
8577			if (rd == 0)
8578				err += efunc(pc, "cannot write to %r0\n");
8579
8580			if (subr == DIF_SUBR_COPYOUT ||
8581			    subr == DIF_SUBR_COPYOUTSTR) {
8582				dp->dtdo_destructive = 1;
8583			}
8584			break;
8585		case DIF_OP_PUSHTR:
8586			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8587				err += efunc(pc, "invalid ref type %u\n", type);
8588			if (r2 >= nregs)
8589				err += efunc(pc, "invalid register %u\n", r2);
8590			if (rs >= nregs)
8591				err += efunc(pc, "invalid register %u\n", rs);
8592			break;
8593		case DIF_OP_PUSHTV:
8594			if (type != DIF_TYPE_CTF)
8595				err += efunc(pc, "invalid val type %u\n", type);
8596			if (r2 >= nregs)
8597				err += efunc(pc, "invalid register %u\n", r2);
8598			if (rs >= nregs)
8599				err += efunc(pc, "invalid register %u\n", rs);
8600			break;
8601		default:
8602			err += efunc(pc, "invalid opcode %u\n",
8603			    DIF_INSTR_OP(instr));
8604		}
8605	}
8606
8607	if (dp->dtdo_len != 0 &&
8608	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8609		err += efunc(dp->dtdo_len - 1,
8610		    "expected 'ret' as last DIF instruction\n");
8611	}
8612
8613	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8614		/*
8615		 * If we're not returning by reference, the size must be either
8616		 * 0 or the size of one of the base types.
8617		 */
8618		switch (dp->dtdo_rtype.dtdt_size) {
8619		case 0:
8620		case sizeof (uint8_t):
8621		case sizeof (uint16_t):
8622		case sizeof (uint32_t):
8623		case sizeof (uint64_t):
8624			break;
8625
8626		default:
8627			err += efunc(dp->dtdo_len - 1, "bad return size");
8628		}
8629	}
8630
8631	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8632		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8633		dtrace_diftype_t *vt, *et;
8634		uint_t id, ndx;
8635
8636		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8637		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8638		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8639			err += efunc(i, "unrecognized variable scope %d\n",
8640			    v->dtdv_scope);
8641			break;
8642		}
8643
8644		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8645		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8646			err += efunc(i, "unrecognized variable type %d\n",
8647			    v->dtdv_kind);
8648			break;
8649		}
8650
8651		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8652			err += efunc(i, "%d exceeds variable id limit\n", id);
8653			break;
8654		}
8655
8656		if (id < DIF_VAR_OTHER_UBASE)
8657			continue;
8658
8659		/*
8660		 * For user-defined variables, we need to check that this
8661		 * definition is identical to any previous definition that we
8662		 * encountered.
8663		 */
8664		ndx = id - DIF_VAR_OTHER_UBASE;
8665
8666		switch (v->dtdv_scope) {
8667		case DIFV_SCOPE_GLOBAL:
8668			if (ndx < vstate->dtvs_nglobals) {
8669				dtrace_statvar_t *svar;
8670
8671				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8672					existing = &svar->dtsv_var;
8673			}
8674
8675			break;
8676
8677		case DIFV_SCOPE_THREAD:
8678			if (ndx < vstate->dtvs_ntlocals)
8679				existing = &vstate->dtvs_tlocals[ndx];
8680			break;
8681
8682		case DIFV_SCOPE_LOCAL:
8683			if (ndx < vstate->dtvs_nlocals) {
8684				dtrace_statvar_t *svar;
8685
8686				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8687					existing = &svar->dtsv_var;
8688			}
8689
8690			break;
8691		}
8692
8693		vt = &v->dtdv_type;
8694
8695		if (vt->dtdt_flags & DIF_TF_BYREF) {
8696			if (vt->dtdt_size == 0) {
8697				err += efunc(i, "zero-sized variable\n");
8698				break;
8699			}
8700
8701			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8702			    vt->dtdt_size > dtrace_global_maxsize) {
8703				err += efunc(i, "oversized by-ref global\n");
8704				break;
8705			}
8706		}
8707
8708		if (existing == NULL || existing->dtdv_id == 0)
8709			continue;
8710
8711		ASSERT(existing->dtdv_id == v->dtdv_id);
8712		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8713
8714		if (existing->dtdv_kind != v->dtdv_kind)
8715			err += efunc(i, "%d changed variable kind\n", id);
8716
8717		et = &existing->dtdv_type;
8718
8719		if (vt->dtdt_flags != et->dtdt_flags) {
8720			err += efunc(i, "%d changed variable type flags\n", id);
8721			break;
8722		}
8723
8724		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8725			err += efunc(i, "%d changed variable type size\n", id);
8726			break;
8727		}
8728	}
8729
8730	return (err);
8731}
8732
8733/*
8734 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8735 * are much more constrained than normal DIFOs.  Specifically, they may
8736 * not:
8737 *
8738 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8739 *    miscellaneous string routines
8740 * 2. Access DTrace variables other than the args[] array, and the
8741 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8742 * 3. Have thread-local variables.
8743 * 4. Have dynamic variables.
8744 */
8745static int
8746dtrace_difo_validate_helper(dtrace_difo_t *dp)
8747{
8748	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8749	int err = 0;
8750	uint_t pc;
8751
8752	for (pc = 0; pc < dp->dtdo_len; pc++) {
8753		dif_instr_t instr = dp->dtdo_buf[pc];
8754
8755		uint_t v = DIF_INSTR_VAR(instr);
8756		uint_t subr = DIF_INSTR_SUBR(instr);
8757		uint_t op = DIF_INSTR_OP(instr);
8758
8759		switch (op) {
8760		case DIF_OP_OR:
8761		case DIF_OP_XOR:
8762		case DIF_OP_AND:
8763		case DIF_OP_SLL:
8764		case DIF_OP_SRL:
8765		case DIF_OP_SRA:
8766		case DIF_OP_SUB:
8767		case DIF_OP_ADD:
8768		case DIF_OP_MUL:
8769		case DIF_OP_SDIV:
8770		case DIF_OP_UDIV:
8771		case DIF_OP_SREM:
8772		case DIF_OP_UREM:
8773		case DIF_OP_COPYS:
8774		case DIF_OP_NOT:
8775		case DIF_OP_MOV:
8776		case DIF_OP_RLDSB:
8777		case DIF_OP_RLDSH:
8778		case DIF_OP_RLDSW:
8779		case DIF_OP_RLDUB:
8780		case DIF_OP_RLDUH:
8781		case DIF_OP_RLDUW:
8782		case DIF_OP_RLDX:
8783		case DIF_OP_ULDSB:
8784		case DIF_OP_ULDSH:
8785		case DIF_OP_ULDSW:
8786		case DIF_OP_ULDUB:
8787		case DIF_OP_ULDUH:
8788		case DIF_OP_ULDUW:
8789		case DIF_OP_ULDX:
8790		case DIF_OP_STB:
8791		case DIF_OP_STH:
8792		case DIF_OP_STW:
8793		case DIF_OP_STX:
8794		case DIF_OP_ALLOCS:
8795		case DIF_OP_CMP:
8796		case DIF_OP_SCMP:
8797		case DIF_OP_TST:
8798		case DIF_OP_BA:
8799		case DIF_OP_BE:
8800		case DIF_OP_BNE:
8801		case DIF_OP_BG:
8802		case DIF_OP_BGU:
8803		case DIF_OP_BGE:
8804		case DIF_OP_BGEU:
8805		case DIF_OP_BL:
8806		case DIF_OP_BLU:
8807		case DIF_OP_BLE:
8808		case DIF_OP_BLEU:
8809		case DIF_OP_RET:
8810		case DIF_OP_NOP:
8811		case DIF_OP_POPTS:
8812		case DIF_OP_FLUSHTS:
8813		case DIF_OP_SETX:
8814		case DIF_OP_SETS:
8815		case DIF_OP_LDGA:
8816		case DIF_OP_LDLS:
8817		case DIF_OP_STGS:
8818		case DIF_OP_STLS:
8819		case DIF_OP_PUSHTR:
8820		case DIF_OP_PUSHTV:
8821			break;
8822
8823		case DIF_OP_LDGS:
8824			if (v >= DIF_VAR_OTHER_UBASE)
8825				break;
8826
8827			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8828				break;
8829
8830			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8831			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8832			    v == DIF_VAR_EXECARGS ||
8833			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8834			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8835				break;
8836
8837			err += efunc(pc, "illegal variable %u\n", v);
8838			break;
8839
8840		case DIF_OP_LDTA:
8841		case DIF_OP_LDTS:
8842		case DIF_OP_LDGAA:
8843		case DIF_OP_LDTAA:
8844			err += efunc(pc, "illegal dynamic variable load\n");
8845			break;
8846
8847		case DIF_OP_STTS:
8848		case DIF_OP_STGAA:
8849		case DIF_OP_STTAA:
8850			err += efunc(pc, "illegal dynamic variable store\n");
8851			break;
8852
8853		case DIF_OP_CALL:
8854			if (subr == DIF_SUBR_ALLOCA ||
8855			    subr == DIF_SUBR_BCOPY ||
8856			    subr == DIF_SUBR_COPYIN ||
8857			    subr == DIF_SUBR_COPYINTO ||
8858			    subr == DIF_SUBR_COPYINSTR ||
8859			    subr == DIF_SUBR_INDEX ||
8860			    subr == DIF_SUBR_INET_NTOA ||
8861			    subr == DIF_SUBR_INET_NTOA6 ||
8862			    subr == DIF_SUBR_INET_NTOP ||
8863			    subr == DIF_SUBR_LLTOSTR ||
8864			    subr == DIF_SUBR_RINDEX ||
8865			    subr == DIF_SUBR_STRCHR ||
8866			    subr == DIF_SUBR_STRJOIN ||
8867			    subr == DIF_SUBR_STRRCHR ||
8868			    subr == DIF_SUBR_STRSTR ||
8869			    subr == DIF_SUBR_HTONS ||
8870			    subr == DIF_SUBR_HTONL ||
8871			    subr == DIF_SUBR_HTONLL ||
8872			    subr == DIF_SUBR_NTOHS ||
8873			    subr == DIF_SUBR_NTOHL ||
8874			    subr == DIF_SUBR_NTOHLL ||
8875			    subr == DIF_SUBR_MEMREF ||
8876			    subr == DIF_SUBR_TYPEREF)
8877				break;
8878
8879			err += efunc(pc, "invalid subr %u\n", subr);
8880			break;
8881
8882		default:
8883			err += efunc(pc, "invalid opcode %u\n",
8884			    DIF_INSTR_OP(instr));
8885		}
8886	}
8887
8888	return (err);
8889}
8890
8891/*
8892 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8893 * basis; 0 if not.
8894 */
8895static int
8896dtrace_difo_cacheable(dtrace_difo_t *dp)
8897{
8898	int i;
8899
8900	if (dp == NULL)
8901		return (0);
8902
8903	for (i = 0; i < dp->dtdo_varlen; i++) {
8904		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8905
8906		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8907			continue;
8908
8909		switch (v->dtdv_id) {
8910		case DIF_VAR_CURTHREAD:
8911		case DIF_VAR_PID:
8912		case DIF_VAR_TID:
8913		case DIF_VAR_EXECARGS:
8914		case DIF_VAR_EXECNAME:
8915		case DIF_VAR_ZONENAME:
8916			break;
8917
8918		default:
8919			return (0);
8920		}
8921	}
8922
8923	/*
8924	 * This DIF object may be cacheable.  Now we need to look for any
8925	 * array loading instructions, any memory loading instructions, or
8926	 * any stores to thread-local variables.
8927	 */
8928	for (i = 0; i < dp->dtdo_len; i++) {
8929		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8930
8931		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8932		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8933		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8934		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8935			return (0);
8936	}
8937
8938	return (1);
8939}
8940
8941static void
8942dtrace_difo_hold(dtrace_difo_t *dp)
8943{
8944	int i;
8945
8946	ASSERT(MUTEX_HELD(&dtrace_lock));
8947
8948	dp->dtdo_refcnt++;
8949	ASSERT(dp->dtdo_refcnt != 0);
8950
8951	/*
8952	 * We need to check this DIF object for references to the variable
8953	 * DIF_VAR_VTIMESTAMP.
8954	 */
8955	for (i = 0; i < dp->dtdo_varlen; i++) {
8956		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8957
8958		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8959			continue;
8960
8961		if (dtrace_vtime_references++ == 0)
8962			dtrace_vtime_enable();
8963	}
8964}
8965
8966/*
8967 * This routine calculates the dynamic variable chunksize for a given DIF
8968 * object.  The calculation is not fool-proof, and can probably be tricked by
8969 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8970 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8971 * if a dynamic variable size exceeds the chunksize.
8972 */
8973static void
8974dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8975{
8976	uint64_t sval = 0;
8977	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8978	const dif_instr_t *text = dp->dtdo_buf;
8979	uint_t pc, srd = 0;
8980	uint_t ttop = 0;
8981	size_t size, ksize;
8982	uint_t id, i;
8983
8984	for (pc = 0; pc < dp->dtdo_len; pc++) {
8985		dif_instr_t instr = text[pc];
8986		uint_t op = DIF_INSTR_OP(instr);
8987		uint_t rd = DIF_INSTR_RD(instr);
8988		uint_t r1 = DIF_INSTR_R1(instr);
8989		uint_t nkeys = 0;
8990		uchar_t scope = 0;
8991
8992		dtrace_key_t *key = tupregs;
8993
8994		switch (op) {
8995		case DIF_OP_SETX:
8996			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8997			srd = rd;
8998			continue;
8999
9000		case DIF_OP_STTS:
9001			key = &tupregs[DIF_DTR_NREGS];
9002			key[0].dttk_size = 0;
9003			key[1].dttk_size = 0;
9004			nkeys = 2;
9005			scope = DIFV_SCOPE_THREAD;
9006			break;
9007
9008		case DIF_OP_STGAA:
9009		case DIF_OP_STTAA:
9010			nkeys = ttop;
9011
9012			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9013				key[nkeys++].dttk_size = 0;
9014
9015			key[nkeys++].dttk_size = 0;
9016
9017			if (op == DIF_OP_STTAA) {
9018				scope = DIFV_SCOPE_THREAD;
9019			} else {
9020				scope = DIFV_SCOPE_GLOBAL;
9021			}
9022
9023			break;
9024
9025		case DIF_OP_PUSHTR:
9026			if (ttop == DIF_DTR_NREGS)
9027				return;
9028
9029			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9030				/*
9031				 * If the register for the size of the "pushtr"
9032				 * is %r0 (or the value is 0) and the type is
9033				 * a string, we'll use the system-wide default
9034				 * string size.
9035				 */
9036				tupregs[ttop++].dttk_size =
9037				    dtrace_strsize_default;
9038			} else {
9039				if (srd == 0)
9040					return;
9041
9042				tupregs[ttop++].dttk_size = sval;
9043			}
9044
9045			break;
9046
9047		case DIF_OP_PUSHTV:
9048			if (ttop == DIF_DTR_NREGS)
9049				return;
9050
9051			tupregs[ttop++].dttk_size = 0;
9052			break;
9053
9054		case DIF_OP_FLUSHTS:
9055			ttop = 0;
9056			break;
9057
9058		case DIF_OP_POPTS:
9059			if (ttop != 0)
9060				ttop--;
9061			break;
9062		}
9063
9064		sval = 0;
9065		srd = 0;
9066
9067		if (nkeys == 0)
9068			continue;
9069
9070		/*
9071		 * We have a dynamic variable allocation; calculate its size.
9072		 */
9073		for (ksize = 0, i = 0; i < nkeys; i++)
9074			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9075
9076		size = sizeof (dtrace_dynvar_t);
9077		size += sizeof (dtrace_key_t) * (nkeys - 1);
9078		size += ksize;
9079
9080		/*
9081		 * Now we need to determine the size of the stored data.
9082		 */
9083		id = DIF_INSTR_VAR(instr);
9084
9085		for (i = 0; i < dp->dtdo_varlen; i++) {
9086			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9087
9088			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9089				size += v->dtdv_type.dtdt_size;
9090				break;
9091			}
9092		}
9093
9094		if (i == dp->dtdo_varlen)
9095			return;
9096
9097		/*
9098		 * We have the size.  If this is larger than the chunk size
9099		 * for our dynamic variable state, reset the chunk size.
9100		 */
9101		size = P2ROUNDUP(size, sizeof (uint64_t));
9102
9103		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9104			vstate->dtvs_dynvars.dtds_chunksize = size;
9105	}
9106}
9107
9108static void
9109dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9110{
9111	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9112	uint_t id;
9113
9114	ASSERT(MUTEX_HELD(&dtrace_lock));
9115	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9116
9117	for (i = 0; i < dp->dtdo_varlen; i++) {
9118		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9119		dtrace_statvar_t *svar, ***svarp = NULL;
9120		size_t dsize = 0;
9121		uint8_t scope = v->dtdv_scope;
9122		int *np = NULL;
9123
9124		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9125			continue;
9126
9127		id -= DIF_VAR_OTHER_UBASE;
9128
9129		switch (scope) {
9130		case DIFV_SCOPE_THREAD:
9131			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9132				dtrace_difv_t *tlocals;
9133
9134				if ((ntlocals = (otlocals << 1)) == 0)
9135					ntlocals = 1;
9136
9137				osz = otlocals * sizeof (dtrace_difv_t);
9138				nsz = ntlocals * sizeof (dtrace_difv_t);
9139
9140				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9141
9142				if (osz != 0) {
9143					bcopy(vstate->dtvs_tlocals,
9144					    tlocals, osz);
9145					kmem_free(vstate->dtvs_tlocals, osz);
9146				}
9147
9148				vstate->dtvs_tlocals = tlocals;
9149				vstate->dtvs_ntlocals = ntlocals;
9150			}
9151
9152			vstate->dtvs_tlocals[id] = *v;
9153			continue;
9154
9155		case DIFV_SCOPE_LOCAL:
9156			np = &vstate->dtvs_nlocals;
9157			svarp = &vstate->dtvs_locals;
9158
9159			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9160				dsize = NCPU * (v->dtdv_type.dtdt_size +
9161				    sizeof (uint64_t));
9162			else
9163				dsize = NCPU * sizeof (uint64_t);
9164
9165			break;
9166
9167		case DIFV_SCOPE_GLOBAL:
9168			np = &vstate->dtvs_nglobals;
9169			svarp = &vstate->dtvs_globals;
9170
9171			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9172				dsize = v->dtdv_type.dtdt_size +
9173				    sizeof (uint64_t);
9174
9175			break;
9176
9177		default:
9178			ASSERT(0);
9179		}
9180
9181		while (id >= (oldsvars = *np)) {
9182			dtrace_statvar_t **statics;
9183			int newsvars, oldsize, newsize;
9184
9185			if ((newsvars = (oldsvars << 1)) == 0)
9186				newsvars = 1;
9187
9188			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9189			newsize = newsvars * sizeof (dtrace_statvar_t *);
9190
9191			statics = kmem_zalloc(newsize, KM_SLEEP);
9192
9193			if (oldsize != 0) {
9194				bcopy(*svarp, statics, oldsize);
9195				kmem_free(*svarp, oldsize);
9196			}
9197
9198			*svarp = statics;
9199			*np = newsvars;
9200		}
9201
9202		if ((svar = (*svarp)[id]) == NULL) {
9203			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9204			svar->dtsv_var = *v;
9205
9206			if ((svar->dtsv_size = dsize) != 0) {
9207				svar->dtsv_data = (uint64_t)(uintptr_t)
9208				    kmem_zalloc(dsize, KM_SLEEP);
9209			}
9210
9211			(*svarp)[id] = svar;
9212		}
9213
9214		svar->dtsv_refcnt++;
9215	}
9216
9217	dtrace_difo_chunksize(dp, vstate);
9218	dtrace_difo_hold(dp);
9219}
9220
9221#if defined(sun)
9222static dtrace_difo_t *
9223dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9224{
9225	dtrace_difo_t *new;
9226	size_t sz;
9227
9228	ASSERT(dp->dtdo_buf != NULL);
9229	ASSERT(dp->dtdo_refcnt != 0);
9230
9231	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9232
9233	ASSERT(dp->dtdo_buf != NULL);
9234	sz = dp->dtdo_len * sizeof (dif_instr_t);
9235	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9236	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9237	new->dtdo_len = dp->dtdo_len;
9238
9239	if (dp->dtdo_strtab != NULL) {
9240		ASSERT(dp->dtdo_strlen != 0);
9241		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9242		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9243		new->dtdo_strlen = dp->dtdo_strlen;
9244	}
9245
9246	if (dp->dtdo_inttab != NULL) {
9247		ASSERT(dp->dtdo_intlen != 0);
9248		sz = dp->dtdo_intlen * sizeof (uint64_t);
9249		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9250		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9251		new->dtdo_intlen = dp->dtdo_intlen;
9252	}
9253
9254	if (dp->dtdo_vartab != NULL) {
9255		ASSERT(dp->dtdo_varlen != 0);
9256		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9257		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9258		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9259		new->dtdo_varlen = dp->dtdo_varlen;
9260	}
9261
9262	dtrace_difo_init(new, vstate);
9263	return (new);
9264}
9265#endif
9266
9267static void
9268dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9269{
9270	int i;
9271
9272	ASSERT(dp->dtdo_refcnt == 0);
9273
9274	for (i = 0; i < dp->dtdo_varlen; i++) {
9275		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9276		dtrace_statvar_t *svar, **svarp = NULL;
9277		uint_t id;
9278		uint8_t scope = v->dtdv_scope;
9279		int *np = NULL;
9280
9281		switch (scope) {
9282		case DIFV_SCOPE_THREAD:
9283			continue;
9284
9285		case DIFV_SCOPE_LOCAL:
9286			np = &vstate->dtvs_nlocals;
9287			svarp = vstate->dtvs_locals;
9288			break;
9289
9290		case DIFV_SCOPE_GLOBAL:
9291			np = &vstate->dtvs_nglobals;
9292			svarp = vstate->dtvs_globals;
9293			break;
9294
9295		default:
9296			ASSERT(0);
9297		}
9298
9299		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9300			continue;
9301
9302		id -= DIF_VAR_OTHER_UBASE;
9303		ASSERT(id < *np);
9304
9305		svar = svarp[id];
9306		ASSERT(svar != NULL);
9307		ASSERT(svar->dtsv_refcnt > 0);
9308
9309		if (--svar->dtsv_refcnt > 0)
9310			continue;
9311
9312		if (svar->dtsv_size != 0) {
9313			ASSERT(svar->dtsv_data != 0);
9314			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9315			    svar->dtsv_size);
9316		}
9317
9318		kmem_free(svar, sizeof (dtrace_statvar_t));
9319		svarp[id] = NULL;
9320	}
9321
9322	if (dp->dtdo_buf != NULL)
9323		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9324	if (dp->dtdo_inttab != NULL)
9325		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9326	if (dp->dtdo_strtab != NULL)
9327		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9328	if (dp->dtdo_vartab != NULL)
9329		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9330
9331	kmem_free(dp, sizeof (dtrace_difo_t));
9332}
9333
9334static void
9335dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9336{
9337	int i;
9338
9339	ASSERT(MUTEX_HELD(&dtrace_lock));
9340	ASSERT(dp->dtdo_refcnt != 0);
9341
9342	for (i = 0; i < dp->dtdo_varlen; i++) {
9343		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9344
9345		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9346			continue;
9347
9348		ASSERT(dtrace_vtime_references > 0);
9349		if (--dtrace_vtime_references == 0)
9350			dtrace_vtime_disable();
9351	}
9352
9353	if (--dp->dtdo_refcnt == 0)
9354		dtrace_difo_destroy(dp, vstate);
9355}
9356
9357/*
9358 * DTrace Format Functions
9359 */
9360static uint16_t
9361dtrace_format_add(dtrace_state_t *state, char *str)
9362{
9363	char *fmt, **new;
9364	uint16_t ndx, len = strlen(str) + 1;
9365
9366	fmt = kmem_zalloc(len, KM_SLEEP);
9367	bcopy(str, fmt, len);
9368
9369	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9370		if (state->dts_formats[ndx] == NULL) {
9371			state->dts_formats[ndx] = fmt;
9372			return (ndx + 1);
9373		}
9374	}
9375
9376	if (state->dts_nformats == USHRT_MAX) {
9377		/*
9378		 * This is only likely if a denial-of-service attack is being
9379		 * attempted.  As such, it's okay to fail silently here.
9380		 */
9381		kmem_free(fmt, len);
9382		return (0);
9383	}
9384
9385	/*
9386	 * For simplicity, we always resize the formats array to be exactly the
9387	 * number of formats.
9388	 */
9389	ndx = state->dts_nformats++;
9390	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9391
9392	if (state->dts_formats != NULL) {
9393		ASSERT(ndx != 0);
9394		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9395		kmem_free(state->dts_formats, ndx * sizeof (char *));
9396	}
9397
9398	state->dts_formats = new;
9399	state->dts_formats[ndx] = fmt;
9400
9401	return (ndx + 1);
9402}
9403
9404static void
9405dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9406{
9407	char *fmt;
9408
9409	ASSERT(state->dts_formats != NULL);
9410	ASSERT(format <= state->dts_nformats);
9411	ASSERT(state->dts_formats[format - 1] != NULL);
9412
9413	fmt = state->dts_formats[format - 1];
9414	kmem_free(fmt, strlen(fmt) + 1);
9415	state->dts_formats[format - 1] = NULL;
9416}
9417
9418static void
9419dtrace_format_destroy(dtrace_state_t *state)
9420{
9421	int i;
9422
9423	if (state->dts_nformats == 0) {
9424		ASSERT(state->dts_formats == NULL);
9425		return;
9426	}
9427
9428	ASSERT(state->dts_formats != NULL);
9429
9430	for (i = 0; i < state->dts_nformats; i++) {
9431		char *fmt = state->dts_formats[i];
9432
9433		if (fmt == NULL)
9434			continue;
9435
9436		kmem_free(fmt, strlen(fmt) + 1);
9437	}
9438
9439	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9440	state->dts_nformats = 0;
9441	state->dts_formats = NULL;
9442}
9443
9444/*
9445 * DTrace Predicate Functions
9446 */
9447static dtrace_predicate_t *
9448dtrace_predicate_create(dtrace_difo_t *dp)
9449{
9450	dtrace_predicate_t *pred;
9451
9452	ASSERT(MUTEX_HELD(&dtrace_lock));
9453	ASSERT(dp->dtdo_refcnt != 0);
9454
9455	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9456	pred->dtp_difo = dp;
9457	pred->dtp_refcnt = 1;
9458
9459	if (!dtrace_difo_cacheable(dp))
9460		return (pred);
9461
9462	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9463		/*
9464		 * This is only theoretically possible -- we have had 2^32
9465		 * cacheable predicates on this machine.  We cannot allow any
9466		 * more predicates to become cacheable:  as unlikely as it is,
9467		 * there may be a thread caching a (now stale) predicate cache
9468		 * ID. (N.B.: the temptation is being successfully resisted to
9469		 * have this cmn_err() "Holy shit -- we executed this code!")
9470		 */
9471		return (pred);
9472	}
9473
9474	pred->dtp_cacheid = dtrace_predcache_id++;
9475
9476	return (pred);
9477}
9478
9479static void
9480dtrace_predicate_hold(dtrace_predicate_t *pred)
9481{
9482	ASSERT(MUTEX_HELD(&dtrace_lock));
9483	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9484	ASSERT(pred->dtp_refcnt > 0);
9485
9486	pred->dtp_refcnt++;
9487}
9488
9489static void
9490dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9491{
9492	dtrace_difo_t *dp = pred->dtp_difo;
9493
9494	ASSERT(MUTEX_HELD(&dtrace_lock));
9495	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9496	ASSERT(pred->dtp_refcnt > 0);
9497
9498	if (--pred->dtp_refcnt == 0) {
9499		dtrace_difo_release(pred->dtp_difo, vstate);
9500		kmem_free(pred, sizeof (dtrace_predicate_t));
9501	}
9502}
9503
9504/*
9505 * DTrace Action Description Functions
9506 */
9507static dtrace_actdesc_t *
9508dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9509    uint64_t uarg, uint64_t arg)
9510{
9511	dtrace_actdesc_t *act;
9512
9513#if defined(sun)
9514	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9515	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9516#endif
9517
9518	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9519	act->dtad_kind = kind;
9520	act->dtad_ntuple = ntuple;
9521	act->dtad_uarg = uarg;
9522	act->dtad_arg = arg;
9523	act->dtad_refcnt = 1;
9524
9525	return (act);
9526}
9527
9528static void
9529dtrace_actdesc_hold(dtrace_actdesc_t *act)
9530{
9531	ASSERT(act->dtad_refcnt >= 1);
9532	act->dtad_refcnt++;
9533}
9534
9535static void
9536dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9537{
9538	dtrace_actkind_t kind = act->dtad_kind;
9539	dtrace_difo_t *dp;
9540
9541	ASSERT(act->dtad_refcnt >= 1);
9542
9543	if (--act->dtad_refcnt != 0)
9544		return;
9545
9546	if ((dp = act->dtad_difo) != NULL)
9547		dtrace_difo_release(dp, vstate);
9548
9549	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9550		char *str = (char *)(uintptr_t)act->dtad_arg;
9551
9552#if defined(sun)
9553		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9554		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9555#endif
9556
9557		if (str != NULL)
9558			kmem_free(str, strlen(str) + 1);
9559	}
9560
9561	kmem_free(act, sizeof (dtrace_actdesc_t));
9562}
9563
9564/*
9565 * DTrace ECB Functions
9566 */
9567static dtrace_ecb_t *
9568dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9569{
9570	dtrace_ecb_t *ecb;
9571	dtrace_epid_t epid;
9572
9573	ASSERT(MUTEX_HELD(&dtrace_lock));
9574
9575	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9576	ecb->dte_predicate = NULL;
9577	ecb->dte_probe = probe;
9578
9579	/*
9580	 * The default size is the size of the default action: recording
9581	 * the epid.
9582	 */
9583	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9584	ecb->dte_alignment = sizeof (dtrace_epid_t);
9585
9586	epid = state->dts_epid++;
9587
9588	if (epid - 1 >= state->dts_necbs) {
9589		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9590		int necbs = state->dts_necbs << 1;
9591
9592		ASSERT(epid == state->dts_necbs + 1);
9593
9594		if (necbs == 0) {
9595			ASSERT(oecbs == NULL);
9596			necbs = 1;
9597		}
9598
9599		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9600
9601		if (oecbs != NULL)
9602			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9603
9604		dtrace_membar_producer();
9605		state->dts_ecbs = ecbs;
9606
9607		if (oecbs != NULL) {
9608			/*
9609			 * If this state is active, we must dtrace_sync()
9610			 * before we can free the old dts_ecbs array:  we're
9611			 * coming in hot, and there may be active ring
9612			 * buffer processing (which indexes into the dts_ecbs
9613			 * array) on another CPU.
9614			 */
9615			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9616				dtrace_sync();
9617
9618			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9619		}
9620
9621		dtrace_membar_producer();
9622		state->dts_necbs = necbs;
9623	}
9624
9625	ecb->dte_state = state;
9626
9627	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9628	dtrace_membar_producer();
9629	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9630
9631	return (ecb);
9632}
9633
9634static void
9635dtrace_ecb_enable(dtrace_ecb_t *ecb)
9636{
9637	dtrace_probe_t *probe = ecb->dte_probe;
9638
9639	ASSERT(MUTEX_HELD(&cpu_lock));
9640	ASSERT(MUTEX_HELD(&dtrace_lock));
9641	ASSERT(ecb->dte_next == NULL);
9642
9643	if (probe == NULL) {
9644		/*
9645		 * This is the NULL probe -- there's nothing to do.
9646		 */
9647		return;
9648	}
9649
9650	if (probe->dtpr_ecb == NULL) {
9651		dtrace_provider_t *prov = probe->dtpr_provider;
9652
9653		/*
9654		 * We're the first ECB on this probe.
9655		 */
9656		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9657
9658		if (ecb->dte_predicate != NULL)
9659			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9660
9661		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9662		    probe->dtpr_id, probe->dtpr_arg);
9663	} else {
9664		/*
9665		 * This probe is already active.  Swing the last pointer to
9666		 * point to the new ECB, and issue a dtrace_sync() to assure
9667		 * that all CPUs have seen the change.
9668		 */
9669		ASSERT(probe->dtpr_ecb_last != NULL);
9670		probe->dtpr_ecb_last->dte_next = ecb;
9671		probe->dtpr_ecb_last = ecb;
9672		probe->dtpr_predcache = 0;
9673
9674		dtrace_sync();
9675	}
9676}
9677
9678static void
9679dtrace_ecb_resize(dtrace_ecb_t *ecb)
9680{
9681	uint32_t maxalign = sizeof (dtrace_epid_t);
9682	uint32_t align = sizeof (uint8_t), offs, diff;
9683	dtrace_action_t *act;
9684	int wastuple = 0;
9685	uint32_t aggbase = UINT32_MAX;
9686	dtrace_state_t *state = ecb->dte_state;
9687
9688	/*
9689	 * If we record anything, we always record the epid.  (And we always
9690	 * record it first.)
9691	 */
9692	offs = sizeof (dtrace_epid_t);
9693	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9694
9695	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9696		dtrace_recdesc_t *rec = &act->dta_rec;
9697
9698		if ((align = rec->dtrd_alignment) > maxalign)
9699			maxalign = align;
9700
9701		if (!wastuple && act->dta_intuple) {
9702			/*
9703			 * This is the first record in a tuple.  Align the
9704			 * offset to be at offset 4 in an 8-byte aligned
9705			 * block.
9706			 */
9707			diff = offs + sizeof (dtrace_aggid_t);
9708
9709			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9710				offs += sizeof (uint64_t) - diff;
9711
9712			aggbase = offs - sizeof (dtrace_aggid_t);
9713			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9714		}
9715
9716		/*LINTED*/
9717		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9718			/*
9719			 * The current offset is not properly aligned; align it.
9720			 */
9721			offs += align - diff;
9722		}
9723
9724		rec->dtrd_offset = offs;
9725
9726		if (offs + rec->dtrd_size > ecb->dte_needed) {
9727			ecb->dte_needed = offs + rec->dtrd_size;
9728
9729			if (ecb->dte_needed > state->dts_needed)
9730				state->dts_needed = ecb->dte_needed;
9731		}
9732
9733		if (DTRACEACT_ISAGG(act->dta_kind)) {
9734			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9735			dtrace_action_t *first = agg->dtag_first, *prev;
9736
9737			ASSERT(rec->dtrd_size != 0 && first != NULL);
9738			ASSERT(wastuple);
9739			ASSERT(aggbase != UINT32_MAX);
9740
9741			agg->dtag_base = aggbase;
9742
9743			while ((prev = first->dta_prev) != NULL &&
9744			    DTRACEACT_ISAGG(prev->dta_kind)) {
9745				agg = (dtrace_aggregation_t *)prev;
9746				first = agg->dtag_first;
9747			}
9748
9749			if (prev != NULL) {
9750				offs = prev->dta_rec.dtrd_offset +
9751				    prev->dta_rec.dtrd_size;
9752			} else {
9753				offs = sizeof (dtrace_epid_t);
9754			}
9755			wastuple = 0;
9756		} else {
9757			if (!act->dta_intuple)
9758				ecb->dte_size = offs + rec->dtrd_size;
9759
9760			offs += rec->dtrd_size;
9761		}
9762
9763		wastuple = act->dta_intuple;
9764	}
9765
9766	if ((act = ecb->dte_action) != NULL &&
9767	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9768	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9769		/*
9770		 * If the size is still sizeof (dtrace_epid_t), then all
9771		 * actions store no data; set the size to 0.
9772		 */
9773		ecb->dte_alignment = maxalign;
9774		ecb->dte_size = 0;
9775
9776		/*
9777		 * If the needed space is still sizeof (dtrace_epid_t), then
9778		 * all actions need no additional space; set the needed
9779		 * size to 0.
9780		 */
9781		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9782			ecb->dte_needed = 0;
9783
9784		return;
9785	}
9786
9787	/*
9788	 * Set our alignment, and make sure that the dte_size and dte_needed
9789	 * are aligned to the size of an EPID.
9790	 */
9791	ecb->dte_alignment = maxalign;
9792	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9793	    ~(sizeof (dtrace_epid_t) - 1);
9794	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9795	    ~(sizeof (dtrace_epid_t) - 1);
9796	ASSERT(ecb->dte_size <= ecb->dte_needed);
9797}
9798
9799static dtrace_action_t *
9800dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9801{
9802	dtrace_aggregation_t *agg;
9803	size_t size = sizeof (uint64_t);
9804	int ntuple = desc->dtad_ntuple;
9805	dtrace_action_t *act;
9806	dtrace_recdesc_t *frec;
9807	dtrace_aggid_t aggid;
9808	dtrace_state_t *state = ecb->dte_state;
9809
9810	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9811	agg->dtag_ecb = ecb;
9812
9813	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9814
9815	switch (desc->dtad_kind) {
9816	case DTRACEAGG_MIN:
9817		agg->dtag_initial = INT64_MAX;
9818		agg->dtag_aggregate = dtrace_aggregate_min;
9819		break;
9820
9821	case DTRACEAGG_MAX:
9822		agg->dtag_initial = INT64_MIN;
9823		agg->dtag_aggregate = dtrace_aggregate_max;
9824		break;
9825
9826	case DTRACEAGG_COUNT:
9827		agg->dtag_aggregate = dtrace_aggregate_count;
9828		break;
9829
9830	case DTRACEAGG_QUANTIZE:
9831		agg->dtag_aggregate = dtrace_aggregate_quantize;
9832		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9833		    sizeof (uint64_t);
9834		break;
9835
9836	case DTRACEAGG_LQUANTIZE: {
9837		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9838		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9839
9840		agg->dtag_initial = desc->dtad_arg;
9841		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9842
9843		if (step == 0 || levels == 0)
9844			goto err;
9845
9846		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9847		break;
9848	}
9849
9850	case DTRACEAGG_AVG:
9851		agg->dtag_aggregate = dtrace_aggregate_avg;
9852		size = sizeof (uint64_t) * 2;
9853		break;
9854
9855	case DTRACEAGG_STDDEV:
9856		agg->dtag_aggregate = dtrace_aggregate_stddev;
9857		size = sizeof (uint64_t) * 4;
9858		break;
9859
9860	case DTRACEAGG_SUM:
9861		agg->dtag_aggregate = dtrace_aggregate_sum;
9862		break;
9863
9864	default:
9865		goto err;
9866	}
9867
9868	agg->dtag_action.dta_rec.dtrd_size = size;
9869
9870	if (ntuple == 0)
9871		goto err;
9872
9873	/*
9874	 * We must make sure that we have enough actions for the n-tuple.
9875	 */
9876	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9877		if (DTRACEACT_ISAGG(act->dta_kind))
9878			break;
9879
9880		if (--ntuple == 0) {
9881			/*
9882			 * This is the action with which our n-tuple begins.
9883			 */
9884			agg->dtag_first = act;
9885			goto success;
9886		}
9887	}
9888
9889	/*
9890	 * This n-tuple is short by ntuple elements.  Return failure.
9891	 */
9892	ASSERT(ntuple != 0);
9893err:
9894	kmem_free(agg, sizeof (dtrace_aggregation_t));
9895	return (NULL);
9896
9897success:
9898	/*
9899	 * If the last action in the tuple has a size of zero, it's actually
9900	 * an expression argument for the aggregating action.
9901	 */
9902	ASSERT(ecb->dte_action_last != NULL);
9903	act = ecb->dte_action_last;
9904
9905	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9906		ASSERT(act->dta_difo != NULL);
9907
9908		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9909			agg->dtag_hasarg = 1;
9910	}
9911
9912	/*
9913	 * We need to allocate an id for this aggregation.
9914	 */
9915#if defined(sun)
9916	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9917	    VM_BESTFIT | VM_SLEEP);
9918#else
9919	aggid = alloc_unr(state->dts_aggid_arena);
9920#endif
9921
9922	if (aggid - 1 >= state->dts_naggregations) {
9923		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9924		dtrace_aggregation_t **aggs;
9925		int naggs = state->dts_naggregations << 1;
9926		int onaggs = state->dts_naggregations;
9927
9928		ASSERT(aggid == state->dts_naggregations + 1);
9929
9930		if (naggs == 0) {
9931			ASSERT(oaggs == NULL);
9932			naggs = 1;
9933		}
9934
9935		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9936
9937		if (oaggs != NULL) {
9938			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9939			kmem_free(oaggs, onaggs * sizeof (*aggs));
9940		}
9941
9942		state->dts_aggregations = aggs;
9943		state->dts_naggregations = naggs;
9944	}
9945
9946	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9947	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9948
9949	frec = &agg->dtag_first->dta_rec;
9950	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9951		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9952
9953	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9954		ASSERT(!act->dta_intuple);
9955		act->dta_intuple = 1;
9956	}
9957
9958	return (&agg->dtag_action);
9959}
9960
9961static void
9962dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9963{
9964	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9965	dtrace_state_t *state = ecb->dte_state;
9966	dtrace_aggid_t aggid = agg->dtag_id;
9967
9968	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9969#if defined(sun)
9970	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9971#else
9972	free_unr(state->dts_aggid_arena, aggid);
9973#endif
9974
9975	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9976	state->dts_aggregations[aggid - 1] = NULL;
9977
9978	kmem_free(agg, sizeof (dtrace_aggregation_t));
9979}
9980
9981static int
9982dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9983{
9984	dtrace_action_t *action, *last;
9985	dtrace_difo_t *dp = desc->dtad_difo;
9986	uint32_t size = 0, align = sizeof (uint8_t), mask;
9987	uint16_t format = 0;
9988	dtrace_recdesc_t *rec;
9989	dtrace_state_t *state = ecb->dte_state;
9990	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
9991	uint64_t arg = desc->dtad_arg;
9992
9993	ASSERT(MUTEX_HELD(&dtrace_lock));
9994	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9995
9996	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9997		/*
9998		 * If this is an aggregating action, there must be neither
9999		 * a speculate nor a commit on the action chain.
10000		 */
10001		dtrace_action_t *act;
10002
10003		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10004			if (act->dta_kind == DTRACEACT_COMMIT)
10005				return (EINVAL);
10006
10007			if (act->dta_kind == DTRACEACT_SPECULATE)
10008				return (EINVAL);
10009		}
10010
10011		action = dtrace_ecb_aggregation_create(ecb, desc);
10012
10013		if (action == NULL)
10014			return (EINVAL);
10015	} else {
10016		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10017		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10018		    dp != NULL && dp->dtdo_destructive)) {
10019			state->dts_destructive = 1;
10020		}
10021
10022		switch (desc->dtad_kind) {
10023		case DTRACEACT_PRINTF:
10024		case DTRACEACT_PRINTA:
10025		case DTRACEACT_SYSTEM:
10026		case DTRACEACT_FREOPEN:
10027			/*
10028			 * We know that our arg is a string -- turn it into a
10029			 * format.
10030			 */
10031			if (arg == 0) {
10032				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10033				format = 0;
10034			} else {
10035				ASSERT(arg != 0);
10036#if defined(sun)
10037				ASSERT(arg > KERNELBASE);
10038#endif
10039				format = dtrace_format_add(state,
10040				    (char *)(uintptr_t)arg);
10041			}
10042
10043			/*FALLTHROUGH*/
10044		case DTRACEACT_LIBACT:
10045		case DTRACEACT_DIFEXPR:
10046			if (dp == NULL)
10047				return (EINVAL);
10048
10049			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10050				break;
10051
10052			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10053				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10054					return (EINVAL);
10055
10056				size = opt[DTRACEOPT_STRSIZE];
10057			}
10058
10059			break;
10060
10061		case DTRACEACT_STACK:
10062			if ((nframes = arg) == 0) {
10063				nframes = opt[DTRACEOPT_STACKFRAMES];
10064				ASSERT(nframes > 0);
10065				arg = nframes;
10066			}
10067
10068			size = nframes * sizeof (pc_t);
10069			break;
10070
10071		case DTRACEACT_JSTACK:
10072			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10073				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10074
10075			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10076				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10077
10078			arg = DTRACE_USTACK_ARG(nframes, strsize);
10079
10080			/*FALLTHROUGH*/
10081		case DTRACEACT_USTACK:
10082			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10083			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10084				strsize = DTRACE_USTACK_STRSIZE(arg);
10085				nframes = opt[DTRACEOPT_USTACKFRAMES];
10086				ASSERT(nframes > 0);
10087				arg = DTRACE_USTACK_ARG(nframes, strsize);
10088			}
10089
10090			/*
10091			 * Save a slot for the pid.
10092			 */
10093			size = (nframes + 1) * sizeof (uint64_t);
10094			size += DTRACE_USTACK_STRSIZE(arg);
10095			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10096
10097			break;
10098
10099		case DTRACEACT_SYM:
10100		case DTRACEACT_MOD:
10101			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10102			    sizeof (uint64_t)) ||
10103			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10104				return (EINVAL);
10105			break;
10106
10107		case DTRACEACT_USYM:
10108		case DTRACEACT_UMOD:
10109		case DTRACEACT_UADDR:
10110			if (dp == NULL ||
10111			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10112			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10113				return (EINVAL);
10114
10115			/*
10116			 * We have a slot for the pid, plus a slot for the
10117			 * argument.  To keep things simple (aligned with
10118			 * bitness-neutral sizing), we store each as a 64-bit
10119			 * quantity.
10120			 */
10121			size = 2 * sizeof (uint64_t);
10122			break;
10123
10124		case DTRACEACT_STOP:
10125		case DTRACEACT_BREAKPOINT:
10126		case DTRACEACT_PANIC:
10127			break;
10128
10129		case DTRACEACT_CHILL:
10130		case DTRACEACT_DISCARD:
10131		case DTRACEACT_RAISE:
10132			if (dp == NULL)
10133				return (EINVAL);
10134			break;
10135
10136		case DTRACEACT_EXIT:
10137			if (dp == NULL ||
10138			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10139			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10140				return (EINVAL);
10141			break;
10142
10143		case DTRACEACT_SPECULATE:
10144			if (ecb->dte_size > sizeof (dtrace_epid_t))
10145				return (EINVAL);
10146
10147			if (dp == NULL)
10148				return (EINVAL);
10149
10150			state->dts_speculates = 1;
10151			break;
10152
10153		case DTRACEACT_PRINTM:
10154		    	size = dp->dtdo_rtype.dtdt_size;
10155			break;
10156
10157		case DTRACEACT_PRINTT:
10158		    	size = dp->dtdo_rtype.dtdt_size;
10159			break;
10160
10161		case DTRACEACT_COMMIT: {
10162			dtrace_action_t *act = ecb->dte_action;
10163
10164			for (; act != NULL; act = act->dta_next) {
10165				if (act->dta_kind == DTRACEACT_COMMIT)
10166					return (EINVAL);
10167			}
10168
10169			if (dp == NULL)
10170				return (EINVAL);
10171			break;
10172		}
10173
10174		default:
10175			return (EINVAL);
10176		}
10177
10178		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10179			/*
10180			 * If this is a data-storing action or a speculate,
10181			 * we must be sure that there isn't a commit on the
10182			 * action chain.
10183			 */
10184			dtrace_action_t *act = ecb->dte_action;
10185
10186			for (; act != NULL; act = act->dta_next) {
10187				if (act->dta_kind == DTRACEACT_COMMIT)
10188					return (EINVAL);
10189			}
10190		}
10191
10192		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10193		action->dta_rec.dtrd_size = size;
10194	}
10195
10196	action->dta_refcnt = 1;
10197	rec = &action->dta_rec;
10198	size = rec->dtrd_size;
10199
10200	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10201		if (!(size & mask)) {
10202			align = mask + 1;
10203			break;
10204		}
10205	}
10206
10207	action->dta_kind = desc->dtad_kind;
10208
10209	if ((action->dta_difo = dp) != NULL)
10210		dtrace_difo_hold(dp);
10211
10212	rec->dtrd_action = action->dta_kind;
10213	rec->dtrd_arg = arg;
10214	rec->dtrd_uarg = desc->dtad_uarg;
10215	rec->dtrd_alignment = (uint16_t)align;
10216	rec->dtrd_format = format;
10217
10218	if ((last = ecb->dte_action_last) != NULL) {
10219		ASSERT(ecb->dte_action != NULL);
10220		action->dta_prev = last;
10221		last->dta_next = action;
10222	} else {
10223		ASSERT(ecb->dte_action == NULL);
10224		ecb->dte_action = action;
10225	}
10226
10227	ecb->dte_action_last = action;
10228
10229	return (0);
10230}
10231
10232static void
10233dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10234{
10235	dtrace_action_t *act = ecb->dte_action, *next;
10236	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10237	dtrace_difo_t *dp;
10238	uint16_t format;
10239
10240	if (act != NULL && act->dta_refcnt > 1) {
10241		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10242		act->dta_refcnt--;
10243	} else {
10244		for (; act != NULL; act = next) {
10245			next = act->dta_next;
10246			ASSERT(next != NULL || act == ecb->dte_action_last);
10247			ASSERT(act->dta_refcnt == 1);
10248
10249			if ((format = act->dta_rec.dtrd_format) != 0)
10250				dtrace_format_remove(ecb->dte_state, format);
10251
10252			if ((dp = act->dta_difo) != NULL)
10253				dtrace_difo_release(dp, vstate);
10254
10255			if (DTRACEACT_ISAGG(act->dta_kind)) {
10256				dtrace_ecb_aggregation_destroy(ecb, act);
10257			} else {
10258				kmem_free(act, sizeof (dtrace_action_t));
10259			}
10260		}
10261	}
10262
10263	ecb->dte_action = NULL;
10264	ecb->dte_action_last = NULL;
10265	ecb->dte_size = sizeof (dtrace_epid_t);
10266}
10267
10268static void
10269dtrace_ecb_disable(dtrace_ecb_t *ecb)
10270{
10271	/*
10272	 * We disable the ECB by removing it from its probe.
10273	 */
10274	dtrace_ecb_t *pecb, *prev = NULL;
10275	dtrace_probe_t *probe = ecb->dte_probe;
10276
10277	ASSERT(MUTEX_HELD(&dtrace_lock));
10278
10279	if (probe == NULL) {
10280		/*
10281		 * This is the NULL probe; there is nothing to disable.
10282		 */
10283		return;
10284	}
10285
10286	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10287		if (pecb == ecb)
10288			break;
10289		prev = pecb;
10290	}
10291
10292	ASSERT(pecb != NULL);
10293
10294	if (prev == NULL) {
10295		probe->dtpr_ecb = ecb->dte_next;
10296	} else {
10297		prev->dte_next = ecb->dte_next;
10298	}
10299
10300	if (ecb == probe->dtpr_ecb_last) {
10301		ASSERT(ecb->dte_next == NULL);
10302		probe->dtpr_ecb_last = prev;
10303	}
10304
10305	/*
10306	 * The ECB has been disconnected from the probe; now sync to assure
10307	 * that all CPUs have seen the change before returning.
10308	 */
10309	dtrace_sync();
10310
10311	if (probe->dtpr_ecb == NULL) {
10312		/*
10313		 * That was the last ECB on the probe; clear the predicate
10314		 * cache ID for the probe, disable it and sync one more time
10315		 * to assure that we'll never hit it again.
10316		 */
10317		dtrace_provider_t *prov = probe->dtpr_provider;
10318
10319		ASSERT(ecb->dte_next == NULL);
10320		ASSERT(probe->dtpr_ecb_last == NULL);
10321		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10322		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10323		    probe->dtpr_id, probe->dtpr_arg);
10324		dtrace_sync();
10325	} else {
10326		/*
10327		 * There is at least one ECB remaining on the probe.  If there
10328		 * is _exactly_ one, set the probe's predicate cache ID to be
10329		 * the predicate cache ID of the remaining ECB.
10330		 */
10331		ASSERT(probe->dtpr_ecb_last != NULL);
10332		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10333
10334		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10335			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10336
10337			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10338
10339			if (p != NULL)
10340				probe->dtpr_predcache = p->dtp_cacheid;
10341		}
10342
10343		ecb->dte_next = NULL;
10344	}
10345}
10346
10347static void
10348dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10349{
10350	dtrace_state_t *state = ecb->dte_state;
10351	dtrace_vstate_t *vstate = &state->dts_vstate;
10352	dtrace_predicate_t *pred;
10353	dtrace_epid_t epid = ecb->dte_epid;
10354
10355	ASSERT(MUTEX_HELD(&dtrace_lock));
10356	ASSERT(ecb->dte_next == NULL);
10357	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10358
10359	if ((pred = ecb->dte_predicate) != NULL)
10360		dtrace_predicate_release(pred, vstate);
10361
10362	dtrace_ecb_action_remove(ecb);
10363
10364	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10365	state->dts_ecbs[epid - 1] = NULL;
10366
10367	kmem_free(ecb, sizeof (dtrace_ecb_t));
10368}
10369
10370static dtrace_ecb_t *
10371dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10372    dtrace_enabling_t *enab)
10373{
10374	dtrace_ecb_t *ecb;
10375	dtrace_predicate_t *pred;
10376	dtrace_actdesc_t *act;
10377	dtrace_provider_t *prov;
10378	dtrace_ecbdesc_t *desc = enab->dten_current;
10379
10380	ASSERT(MUTEX_HELD(&dtrace_lock));
10381	ASSERT(state != NULL);
10382
10383	ecb = dtrace_ecb_add(state, probe);
10384	ecb->dte_uarg = desc->dted_uarg;
10385
10386	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10387		dtrace_predicate_hold(pred);
10388		ecb->dte_predicate = pred;
10389	}
10390
10391	if (probe != NULL) {
10392		/*
10393		 * If the provider shows more leg than the consumer is old
10394		 * enough to see, we need to enable the appropriate implicit
10395		 * predicate bits to prevent the ecb from activating at
10396		 * revealing times.
10397		 *
10398		 * Providers specifying DTRACE_PRIV_USER at register time
10399		 * are stating that they need the /proc-style privilege
10400		 * model to be enforced, and this is what DTRACE_COND_OWNER
10401		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10402		 */
10403		prov = probe->dtpr_provider;
10404		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10405		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10406			ecb->dte_cond |= DTRACE_COND_OWNER;
10407
10408		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10409		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10410			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10411
10412		/*
10413		 * If the provider shows us kernel innards and the user
10414		 * is lacking sufficient privilege, enable the
10415		 * DTRACE_COND_USERMODE implicit predicate.
10416		 */
10417		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10418		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10419			ecb->dte_cond |= DTRACE_COND_USERMODE;
10420	}
10421
10422	if (dtrace_ecb_create_cache != NULL) {
10423		/*
10424		 * If we have a cached ecb, we'll use its action list instead
10425		 * of creating our own (saving both time and space).
10426		 */
10427		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10428		dtrace_action_t *act = cached->dte_action;
10429
10430		if (act != NULL) {
10431			ASSERT(act->dta_refcnt > 0);
10432			act->dta_refcnt++;
10433			ecb->dte_action = act;
10434			ecb->dte_action_last = cached->dte_action_last;
10435			ecb->dte_needed = cached->dte_needed;
10436			ecb->dte_size = cached->dte_size;
10437			ecb->dte_alignment = cached->dte_alignment;
10438		}
10439
10440		return (ecb);
10441	}
10442
10443	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10444		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10445			dtrace_ecb_destroy(ecb);
10446			return (NULL);
10447		}
10448	}
10449
10450	dtrace_ecb_resize(ecb);
10451
10452	return (dtrace_ecb_create_cache = ecb);
10453}
10454
10455static int
10456dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10457{
10458	dtrace_ecb_t *ecb;
10459	dtrace_enabling_t *enab = arg;
10460	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10461
10462	ASSERT(state != NULL);
10463
10464	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10465		/*
10466		 * This probe was created in a generation for which this
10467		 * enabling has previously created ECBs; we don't want to
10468		 * enable it again, so just kick out.
10469		 */
10470		return (DTRACE_MATCH_NEXT);
10471	}
10472
10473	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10474		return (DTRACE_MATCH_DONE);
10475
10476	dtrace_ecb_enable(ecb);
10477	return (DTRACE_MATCH_NEXT);
10478}
10479
10480static dtrace_ecb_t *
10481dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10482{
10483	dtrace_ecb_t *ecb;
10484
10485	ASSERT(MUTEX_HELD(&dtrace_lock));
10486
10487	if (id == 0 || id > state->dts_necbs)
10488		return (NULL);
10489
10490	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10491	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10492
10493	return (state->dts_ecbs[id - 1]);
10494}
10495
10496static dtrace_aggregation_t *
10497dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10498{
10499	dtrace_aggregation_t *agg;
10500
10501	ASSERT(MUTEX_HELD(&dtrace_lock));
10502
10503	if (id == 0 || id > state->dts_naggregations)
10504		return (NULL);
10505
10506	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10507	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10508	    agg->dtag_id == id);
10509
10510	return (state->dts_aggregations[id - 1]);
10511}
10512
10513/*
10514 * DTrace Buffer Functions
10515 *
10516 * The following functions manipulate DTrace buffers.  Most of these functions
10517 * are called in the context of establishing or processing consumer state;
10518 * exceptions are explicitly noted.
10519 */
10520
10521/*
10522 * Note:  called from cross call context.  This function switches the two
10523 * buffers on a given CPU.  The atomicity of this operation is assured by
10524 * disabling interrupts while the actual switch takes place; the disabling of
10525 * interrupts serializes the execution with any execution of dtrace_probe() on
10526 * the same CPU.
10527 */
10528static void
10529dtrace_buffer_switch(dtrace_buffer_t *buf)
10530{
10531	caddr_t tomax = buf->dtb_tomax;
10532	caddr_t xamot = buf->dtb_xamot;
10533	dtrace_icookie_t cookie;
10534
10535	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10536	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10537
10538	cookie = dtrace_interrupt_disable();
10539	buf->dtb_tomax = xamot;
10540	buf->dtb_xamot = tomax;
10541	buf->dtb_xamot_drops = buf->dtb_drops;
10542	buf->dtb_xamot_offset = buf->dtb_offset;
10543	buf->dtb_xamot_errors = buf->dtb_errors;
10544	buf->dtb_xamot_flags = buf->dtb_flags;
10545	buf->dtb_offset = 0;
10546	buf->dtb_drops = 0;
10547	buf->dtb_errors = 0;
10548	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10549	dtrace_interrupt_enable(cookie);
10550}
10551
10552/*
10553 * Note:  called from cross call context.  This function activates a buffer
10554 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10555 * is guaranteed by the disabling of interrupts.
10556 */
10557static void
10558dtrace_buffer_activate(dtrace_state_t *state)
10559{
10560	dtrace_buffer_t *buf;
10561	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10562
10563	buf = &state->dts_buffer[curcpu];
10564
10565	if (buf->dtb_tomax != NULL) {
10566		/*
10567		 * We might like to assert that the buffer is marked inactive,
10568		 * but this isn't necessarily true:  the buffer for the CPU
10569		 * that processes the BEGIN probe has its buffer activated
10570		 * manually.  In this case, we take the (harmless) action
10571		 * re-clearing the bit INACTIVE bit.
10572		 */
10573		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10574	}
10575
10576	dtrace_interrupt_enable(cookie);
10577}
10578
10579static int
10580dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10581    processorid_t cpu)
10582{
10583#if defined(sun)
10584	cpu_t *cp;
10585#endif
10586	dtrace_buffer_t *buf;
10587
10588#if defined(sun)
10589	ASSERT(MUTEX_HELD(&cpu_lock));
10590	ASSERT(MUTEX_HELD(&dtrace_lock));
10591
10592	if (size > dtrace_nonroot_maxsize &&
10593	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10594		return (EFBIG);
10595
10596	cp = cpu_list;
10597
10598	do {
10599		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10600			continue;
10601
10602		buf = &bufs[cp->cpu_id];
10603
10604		/*
10605		 * If there is already a buffer allocated for this CPU, it
10606		 * is only possible that this is a DR event.  In this case,
10607		 */
10608		if (buf->dtb_tomax != NULL) {
10609			ASSERT(buf->dtb_size == size);
10610			continue;
10611		}
10612
10613		ASSERT(buf->dtb_xamot == NULL);
10614
10615		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10616			goto err;
10617
10618		buf->dtb_size = size;
10619		buf->dtb_flags = flags;
10620		buf->dtb_offset = 0;
10621		buf->dtb_drops = 0;
10622
10623		if (flags & DTRACEBUF_NOSWITCH)
10624			continue;
10625
10626		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10627			goto err;
10628	} while ((cp = cp->cpu_next) != cpu_list);
10629
10630	return (0);
10631
10632err:
10633	cp = cpu_list;
10634
10635	do {
10636		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10637			continue;
10638
10639		buf = &bufs[cp->cpu_id];
10640
10641		if (buf->dtb_xamot != NULL) {
10642			ASSERT(buf->dtb_tomax != NULL);
10643			ASSERT(buf->dtb_size == size);
10644			kmem_free(buf->dtb_xamot, size);
10645		}
10646
10647		if (buf->dtb_tomax != NULL) {
10648			ASSERT(buf->dtb_size == size);
10649			kmem_free(buf->dtb_tomax, size);
10650		}
10651
10652		buf->dtb_tomax = NULL;
10653		buf->dtb_xamot = NULL;
10654		buf->dtb_size = 0;
10655	} while ((cp = cp->cpu_next) != cpu_list);
10656
10657	return (ENOMEM);
10658#else
10659	int i;
10660
10661#if defined(__amd64__)
10662	/*
10663	 * FreeBSD isn't good at limiting the amount of memory we
10664	 * ask to malloc, so let's place a limit here before trying
10665	 * to do something that might well end in tears at bedtime.
10666	 */
10667	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10668		return(ENOMEM);
10669#endif
10670
10671	ASSERT(MUTEX_HELD(&dtrace_lock));
10672	CPU_FOREACH(i) {
10673		if (cpu != DTRACE_CPUALL && cpu != i)
10674			continue;
10675
10676		buf = &bufs[i];
10677
10678		/*
10679		 * If there is already a buffer allocated for this CPU, it
10680		 * is only possible that this is a DR event.  In this case,
10681		 * the buffer size must match our specified size.
10682		 */
10683		if (buf->dtb_tomax != NULL) {
10684			ASSERT(buf->dtb_size == size);
10685			continue;
10686		}
10687
10688		ASSERT(buf->dtb_xamot == NULL);
10689
10690		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10691			goto err;
10692
10693		buf->dtb_size = size;
10694		buf->dtb_flags = flags;
10695		buf->dtb_offset = 0;
10696		buf->dtb_drops = 0;
10697
10698		if (flags & DTRACEBUF_NOSWITCH)
10699			continue;
10700
10701		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10702			goto err;
10703	}
10704
10705	return (0);
10706
10707err:
10708	/*
10709	 * Error allocating memory, so free the buffers that were
10710	 * allocated before the failed allocation.
10711	 */
10712	CPU_FOREACH(i) {
10713		if (cpu != DTRACE_CPUALL && cpu != i)
10714			continue;
10715
10716		buf = &bufs[i];
10717
10718		if (buf->dtb_xamot != NULL) {
10719			ASSERT(buf->dtb_tomax != NULL);
10720			ASSERT(buf->dtb_size == size);
10721			kmem_free(buf->dtb_xamot, size);
10722		}
10723
10724		if (buf->dtb_tomax != NULL) {
10725			ASSERT(buf->dtb_size == size);
10726			kmem_free(buf->dtb_tomax, size);
10727		}
10728
10729		buf->dtb_tomax = NULL;
10730		buf->dtb_xamot = NULL;
10731		buf->dtb_size = 0;
10732
10733	}
10734
10735	return (ENOMEM);
10736#endif
10737}
10738
10739/*
10740 * Note:  called from probe context.  This function just increments the drop
10741 * count on a buffer.  It has been made a function to allow for the
10742 * possibility of understanding the source of mysterious drop counts.  (A
10743 * problem for which one may be particularly disappointed that DTrace cannot
10744 * be used to understand DTrace.)
10745 */
10746static void
10747dtrace_buffer_drop(dtrace_buffer_t *buf)
10748{
10749	buf->dtb_drops++;
10750}
10751
10752/*
10753 * Note:  called from probe context.  This function is called to reserve space
10754 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10755 * mstate.  Returns the new offset in the buffer, or a negative value if an
10756 * error has occurred.
10757 */
10758static intptr_t
10759dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10760    dtrace_state_t *state, dtrace_mstate_t *mstate)
10761{
10762	intptr_t offs = buf->dtb_offset, soffs;
10763	intptr_t woffs;
10764	caddr_t tomax;
10765	size_t total;
10766
10767	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10768		return (-1);
10769
10770	if ((tomax = buf->dtb_tomax) == NULL) {
10771		dtrace_buffer_drop(buf);
10772		return (-1);
10773	}
10774
10775	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10776		while (offs & (align - 1)) {
10777			/*
10778			 * Assert that our alignment is off by a number which
10779			 * is itself sizeof (uint32_t) aligned.
10780			 */
10781			ASSERT(!((align - (offs & (align - 1))) &
10782			    (sizeof (uint32_t) - 1)));
10783			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10784			offs += sizeof (uint32_t);
10785		}
10786
10787		if ((soffs = offs + needed) > buf->dtb_size) {
10788			dtrace_buffer_drop(buf);
10789			return (-1);
10790		}
10791
10792		if (mstate == NULL)
10793			return (offs);
10794
10795		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10796		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10797		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10798
10799		return (offs);
10800	}
10801
10802	if (buf->dtb_flags & DTRACEBUF_FILL) {
10803		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10804		    (buf->dtb_flags & DTRACEBUF_FULL))
10805			return (-1);
10806		goto out;
10807	}
10808
10809	total = needed + (offs & (align - 1));
10810
10811	/*
10812	 * For a ring buffer, life is quite a bit more complicated.  Before
10813	 * we can store any padding, we need to adjust our wrapping offset.
10814	 * (If we've never before wrapped or we're not about to, no adjustment
10815	 * is required.)
10816	 */
10817	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10818	    offs + total > buf->dtb_size) {
10819		woffs = buf->dtb_xamot_offset;
10820
10821		if (offs + total > buf->dtb_size) {
10822			/*
10823			 * We can't fit in the end of the buffer.  First, a
10824			 * sanity check that we can fit in the buffer at all.
10825			 */
10826			if (total > buf->dtb_size) {
10827				dtrace_buffer_drop(buf);
10828				return (-1);
10829			}
10830
10831			/*
10832			 * We're going to be storing at the top of the buffer,
10833			 * so now we need to deal with the wrapped offset.  We
10834			 * only reset our wrapped offset to 0 if it is
10835			 * currently greater than the current offset.  If it
10836			 * is less than the current offset, it is because a
10837			 * previous allocation induced a wrap -- but the
10838			 * allocation didn't subsequently take the space due
10839			 * to an error or false predicate evaluation.  In this
10840			 * case, we'll just leave the wrapped offset alone: if
10841			 * the wrapped offset hasn't been advanced far enough
10842			 * for this allocation, it will be adjusted in the
10843			 * lower loop.
10844			 */
10845			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10846				if (woffs >= offs)
10847					woffs = 0;
10848			} else {
10849				woffs = 0;
10850			}
10851
10852			/*
10853			 * Now we know that we're going to be storing to the
10854			 * top of the buffer and that there is room for us
10855			 * there.  We need to clear the buffer from the current
10856			 * offset to the end (there may be old gunk there).
10857			 */
10858			while (offs < buf->dtb_size)
10859				tomax[offs++] = 0;
10860
10861			/*
10862			 * We need to set our offset to zero.  And because we
10863			 * are wrapping, we need to set the bit indicating as
10864			 * much.  We can also adjust our needed space back
10865			 * down to the space required by the ECB -- we know
10866			 * that the top of the buffer is aligned.
10867			 */
10868			offs = 0;
10869			total = needed;
10870			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10871		} else {
10872			/*
10873			 * There is room for us in the buffer, so we simply
10874			 * need to check the wrapped offset.
10875			 */
10876			if (woffs < offs) {
10877				/*
10878				 * The wrapped offset is less than the offset.
10879				 * This can happen if we allocated buffer space
10880				 * that induced a wrap, but then we didn't
10881				 * subsequently take the space due to an error
10882				 * or false predicate evaluation.  This is
10883				 * okay; we know that _this_ allocation isn't
10884				 * going to induce a wrap.  We still can't
10885				 * reset the wrapped offset to be zero,
10886				 * however: the space may have been trashed in
10887				 * the previous failed probe attempt.  But at
10888				 * least the wrapped offset doesn't need to
10889				 * be adjusted at all...
10890				 */
10891				goto out;
10892			}
10893		}
10894
10895		while (offs + total > woffs) {
10896			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10897			size_t size;
10898
10899			if (epid == DTRACE_EPIDNONE) {
10900				size = sizeof (uint32_t);
10901			} else {
10902				ASSERT(epid <= state->dts_necbs);
10903				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10904
10905				size = state->dts_ecbs[epid - 1]->dte_size;
10906			}
10907
10908			ASSERT(woffs + size <= buf->dtb_size);
10909			ASSERT(size != 0);
10910
10911			if (woffs + size == buf->dtb_size) {
10912				/*
10913				 * We've reached the end of the buffer; we want
10914				 * to set the wrapped offset to 0 and break
10915				 * out.  However, if the offs is 0, then we're
10916				 * in a strange edge-condition:  the amount of
10917				 * space that we want to reserve plus the size
10918				 * of the record that we're overwriting is
10919				 * greater than the size of the buffer.  This
10920				 * is problematic because if we reserve the
10921				 * space but subsequently don't consume it (due
10922				 * to a failed predicate or error) the wrapped
10923				 * offset will be 0 -- yet the EPID at offset 0
10924				 * will not be committed.  This situation is
10925				 * relatively easy to deal with:  if we're in
10926				 * this case, the buffer is indistinguishable
10927				 * from one that hasn't wrapped; we need only
10928				 * finish the job by clearing the wrapped bit,
10929				 * explicitly setting the offset to be 0, and
10930				 * zero'ing out the old data in the buffer.
10931				 */
10932				if (offs == 0) {
10933					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10934					buf->dtb_offset = 0;
10935					woffs = total;
10936
10937					while (woffs < buf->dtb_size)
10938						tomax[woffs++] = 0;
10939				}
10940
10941				woffs = 0;
10942				break;
10943			}
10944
10945			woffs += size;
10946		}
10947
10948		/*
10949		 * We have a wrapped offset.  It may be that the wrapped offset
10950		 * has become zero -- that's okay.
10951		 */
10952		buf->dtb_xamot_offset = woffs;
10953	}
10954
10955out:
10956	/*
10957	 * Now we can plow the buffer with any necessary padding.
10958	 */
10959	while (offs & (align - 1)) {
10960		/*
10961		 * Assert that our alignment is off by a number which
10962		 * is itself sizeof (uint32_t) aligned.
10963		 */
10964		ASSERT(!((align - (offs & (align - 1))) &
10965		    (sizeof (uint32_t) - 1)));
10966		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10967		offs += sizeof (uint32_t);
10968	}
10969
10970	if (buf->dtb_flags & DTRACEBUF_FILL) {
10971		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10972			buf->dtb_flags |= DTRACEBUF_FULL;
10973			return (-1);
10974		}
10975	}
10976
10977	if (mstate == NULL)
10978		return (offs);
10979
10980	/*
10981	 * For ring buffers and fill buffers, the scratch space is always
10982	 * the inactive buffer.
10983	 */
10984	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10985	mstate->dtms_scratch_size = buf->dtb_size;
10986	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10987
10988	return (offs);
10989}
10990
10991static void
10992dtrace_buffer_polish(dtrace_buffer_t *buf)
10993{
10994	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10995	ASSERT(MUTEX_HELD(&dtrace_lock));
10996
10997	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10998		return;
10999
11000	/*
11001	 * We need to polish the ring buffer.  There are three cases:
11002	 *
11003	 * - The first (and presumably most common) is that there is no gap
11004	 *   between the buffer offset and the wrapped offset.  In this case,
11005	 *   there is nothing in the buffer that isn't valid data; we can
11006	 *   mark the buffer as polished and return.
11007	 *
11008	 * - The second (less common than the first but still more common
11009	 *   than the third) is that there is a gap between the buffer offset
11010	 *   and the wrapped offset, and the wrapped offset is larger than the
11011	 *   buffer offset.  This can happen because of an alignment issue, or
11012	 *   can happen because of a call to dtrace_buffer_reserve() that
11013	 *   didn't subsequently consume the buffer space.  In this case,
11014	 *   we need to zero the data from the buffer offset to the wrapped
11015	 *   offset.
11016	 *
11017	 * - The third (and least common) is that there is a gap between the
11018	 *   buffer offset and the wrapped offset, but the wrapped offset is
11019	 *   _less_ than the buffer offset.  This can only happen because a
11020	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11021	 *   was not subsequently consumed.  In this case, we need to zero the
11022	 *   space from the offset to the end of the buffer _and_ from the
11023	 *   top of the buffer to the wrapped offset.
11024	 */
11025	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11026		bzero(buf->dtb_tomax + buf->dtb_offset,
11027		    buf->dtb_xamot_offset - buf->dtb_offset);
11028	}
11029
11030	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11031		bzero(buf->dtb_tomax + buf->dtb_offset,
11032		    buf->dtb_size - buf->dtb_offset);
11033		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11034	}
11035}
11036
11037static void
11038dtrace_buffer_free(dtrace_buffer_t *bufs)
11039{
11040	int i;
11041
11042	for (i = 0; i < NCPU; i++) {
11043		dtrace_buffer_t *buf = &bufs[i];
11044
11045		if (buf->dtb_tomax == NULL) {
11046			ASSERT(buf->dtb_xamot == NULL);
11047			ASSERT(buf->dtb_size == 0);
11048			continue;
11049		}
11050
11051		if (buf->dtb_xamot != NULL) {
11052			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11053			kmem_free(buf->dtb_xamot, buf->dtb_size);
11054		}
11055
11056		kmem_free(buf->dtb_tomax, buf->dtb_size);
11057		buf->dtb_size = 0;
11058		buf->dtb_tomax = NULL;
11059		buf->dtb_xamot = NULL;
11060	}
11061}
11062
11063/*
11064 * DTrace Enabling Functions
11065 */
11066static dtrace_enabling_t *
11067dtrace_enabling_create(dtrace_vstate_t *vstate)
11068{
11069	dtrace_enabling_t *enab;
11070
11071	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11072	enab->dten_vstate = vstate;
11073
11074	return (enab);
11075}
11076
11077static void
11078dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11079{
11080	dtrace_ecbdesc_t **ndesc;
11081	size_t osize, nsize;
11082
11083	/*
11084	 * We can't add to enablings after we've enabled them, or after we've
11085	 * retained them.
11086	 */
11087	ASSERT(enab->dten_probegen == 0);
11088	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11089
11090	if (enab->dten_ndesc < enab->dten_maxdesc) {
11091		enab->dten_desc[enab->dten_ndesc++] = ecb;
11092		return;
11093	}
11094
11095	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11096
11097	if (enab->dten_maxdesc == 0) {
11098		enab->dten_maxdesc = 1;
11099	} else {
11100		enab->dten_maxdesc <<= 1;
11101	}
11102
11103	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11104
11105	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11106	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11107	bcopy(enab->dten_desc, ndesc, osize);
11108	if (enab->dten_desc != NULL)
11109		kmem_free(enab->dten_desc, osize);
11110
11111	enab->dten_desc = ndesc;
11112	enab->dten_desc[enab->dten_ndesc++] = ecb;
11113}
11114
11115static void
11116dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11117    dtrace_probedesc_t *pd)
11118{
11119	dtrace_ecbdesc_t *new;
11120	dtrace_predicate_t *pred;
11121	dtrace_actdesc_t *act;
11122
11123	/*
11124	 * We're going to create a new ECB description that matches the
11125	 * specified ECB in every way, but has the specified probe description.
11126	 */
11127	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11128
11129	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11130		dtrace_predicate_hold(pred);
11131
11132	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11133		dtrace_actdesc_hold(act);
11134
11135	new->dted_action = ecb->dted_action;
11136	new->dted_pred = ecb->dted_pred;
11137	new->dted_probe = *pd;
11138	new->dted_uarg = ecb->dted_uarg;
11139
11140	dtrace_enabling_add(enab, new);
11141}
11142
11143static void
11144dtrace_enabling_dump(dtrace_enabling_t *enab)
11145{
11146	int i;
11147
11148	for (i = 0; i < enab->dten_ndesc; i++) {
11149		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11150
11151		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11152		    desc->dtpd_provider, desc->dtpd_mod,
11153		    desc->dtpd_func, desc->dtpd_name);
11154	}
11155}
11156
11157static void
11158dtrace_enabling_destroy(dtrace_enabling_t *enab)
11159{
11160	int i;
11161	dtrace_ecbdesc_t *ep;
11162	dtrace_vstate_t *vstate = enab->dten_vstate;
11163
11164	ASSERT(MUTEX_HELD(&dtrace_lock));
11165
11166	for (i = 0; i < enab->dten_ndesc; i++) {
11167		dtrace_actdesc_t *act, *next;
11168		dtrace_predicate_t *pred;
11169
11170		ep = enab->dten_desc[i];
11171
11172		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11173			dtrace_predicate_release(pred, vstate);
11174
11175		for (act = ep->dted_action; act != NULL; act = next) {
11176			next = act->dtad_next;
11177			dtrace_actdesc_release(act, vstate);
11178		}
11179
11180		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11181	}
11182
11183	if (enab->dten_desc != NULL)
11184		kmem_free(enab->dten_desc,
11185		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11186
11187	/*
11188	 * If this was a retained enabling, decrement the dts_nretained count
11189	 * and take it off of the dtrace_retained list.
11190	 */
11191	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11192	    dtrace_retained == enab) {
11193		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11194		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11195		enab->dten_vstate->dtvs_state->dts_nretained--;
11196	}
11197
11198	if (enab->dten_prev == NULL) {
11199		if (dtrace_retained == enab) {
11200			dtrace_retained = enab->dten_next;
11201
11202			if (dtrace_retained != NULL)
11203				dtrace_retained->dten_prev = NULL;
11204		}
11205	} else {
11206		ASSERT(enab != dtrace_retained);
11207		ASSERT(dtrace_retained != NULL);
11208		enab->dten_prev->dten_next = enab->dten_next;
11209	}
11210
11211	if (enab->dten_next != NULL) {
11212		ASSERT(dtrace_retained != NULL);
11213		enab->dten_next->dten_prev = enab->dten_prev;
11214	}
11215
11216	kmem_free(enab, sizeof (dtrace_enabling_t));
11217}
11218
11219static int
11220dtrace_enabling_retain(dtrace_enabling_t *enab)
11221{
11222	dtrace_state_t *state;
11223
11224	ASSERT(MUTEX_HELD(&dtrace_lock));
11225	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11226	ASSERT(enab->dten_vstate != NULL);
11227
11228	state = enab->dten_vstate->dtvs_state;
11229	ASSERT(state != NULL);
11230
11231	/*
11232	 * We only allow each state to retain dtrace_retain_max enablings.
11233	 */
11234	if (state->dts_nretained >= dtrace_retain_max)
11235		return (ENOSPC);
11236
11237	state->dts_nretained++;
11238
11239	if (dtrace_retained == NULL) {
11240		dtrace_retained = enab;
11241		return (0);
11242	}
11243
11244	enab->dten_next = dtrace_retained;
11245	dtrace_retained->dten_prev = enab;
11246	dtrace_retained = enab;
11247
11248	return (0);
11249}
11250
11251static int
11252dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11253    dtrace_probedesc_t *create)
11254{
11255	dtrace_enabling_t *new, *enab;
11256	int found = 0, err = ENOENT;
11257
11258	ASSERT(MUTEX_HELD(&dtrace_lock));
11259	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11260	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11261	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11262	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11263
11264	new = dtrace_enabling_create(&state->dts_vstate);
11265
11266	/*
11267	 * Iterate over all retained enablings, looking for enablings that
11268	 * match the specified state.
11269	 */
11270	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11271		int i;
11272
11273		/*
11274		 * dtvs_state can only be NULL for helper enablings -- and
11275		 * helper enablings can't be retained.
11276		 */
11277		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11278
11279		if (enab->dten_vstate->dtvs_state != state)
11280			continue;
11281
11282		/*
11283		 * Now iterate over each probe description; we're looking for
11284		 * an exact match to the specified probe description.
11285		 */
11286		for (i = 0; i < enab->dten_ndesc; i++) {
11287			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11288			dtrace_probedesc_t *pd = &ep->dted_probe;
11289
11290			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11291				continue;
11292
11293			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11294				continue;
11295
11296			if (strcmp(pd->dtpd_func, match->dtpd_func))
11297				continue;
11298
11299			if (strcmp(pd->dtpd_name, match->dtpd_name))
11300				continue;
11301
11302			/*
11303			 * We have a winning probe!  Add it to our growing
11304			 * enabling.
11305			 */
11306			found = 1;
11307			dtrace_enabling_addlike(new, ep, create);
11308		}
11309	}
11310
11311	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11312		dtrace_enabling_destroy(new);
11313		return (err);
11314	}
11315
11316	return (0);
11317}
11318
11319static void
11320dtrace_enabling_retract(dtrace_state_t *state)
11321{
11322	dtrace_enabling_t *enab, *next;
11323
11324	ASSERT(MUTEX_HELD(&dtrace_lock));
11325
11326	/*
11327	 * Iterate over all retained enablings, destroy the enablings retained
11328	 * for the specified state.
11329	 */
11330	for (enab = dtrace_retained; enab != NULL; enab = next) {
11331		next = enab->dten_next;
11332
11333		/*
11334		 * dtvs_state can only be NULL for helper enablings -- and
11335		 * helper enablings can't be retained.
11336		 */
11337		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11338
11339		if (enab->dten_vstate->dtvs_state == state) {
11340			ASSERT(state->dts_nretained > 0);
11341			dtrace_enabling_destroy(enab);
11342		}
11343	}
11344
11345	ASSERT(state->dts_nretained == 0);
11346}
11347
11348static int
11349dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11350{
11351	int i = 0;
11352	int matched = 0;
11353
11354	ASSERT(MUTEX_HELD(&cpu_lock));
11355	ASSERT(MUTEX_HELD(&dtrace_lock));
11356
11357	for (i = 0; i < enab->dten_ndesc; i++) {
11358		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11359
11360		enab->dten_current = ep;
11361		enab->dten_error = 0;
11362
11363		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11364
11365		if (enab->dten_error != 0) {
11366			/*
11367			 * If we get an error half-way through enabling the
11368			 * probes, we kick out -- perhaps with some number of
11369			 * them enabled.  Leaving enabled probes enabled may
11370			 * be slightly confusing for user-level, but we expect
11371			 * that no one will attempt to actually drive on in
11372			 * the face of such errors.  If this is an anonymous
11373			 * enabling (indicated with a NULL nmatched pointer),
11374			 * we cmn_err() a message.  We aren't expecting to
11375			 * get such an error -- such as it can exist at all,
11376			 * it would be a result of corrupted DOF in the driver
11377			 * properties.
11378			 */
11379			if (nmatched == NULL) {
11380				cmn_err(CE_WARN, "dtrace_enabling_match() "
11381				    "error on %p: %d", (void *)ep,
11382				    enab->dten_error);
11383			}
11384
11385			return (enab->dten_error);
11386		}
11387	}
11388
11389	enab->dten_probegen = dtrace_probegen;
11390	if (nmatched != NULL)
11391		*nmatched = matched;
11392
11393	return (0);
11394}
11395
11396static void
11397dtrace_enabling_matchall(void)
11398{
11399	dtrace_enabling_t *enab;
11400
11401	mutex_enter(&cpu_lock);
11402	mutex_enter(&dtrace_lock);
11403
11404	/*
11405	 * Iterate over all retained enablings to see if any probes match
11406	 * against them.  We only perform this operation on enablings for which
11407	 * we have sufficient permissions by virtue of being in the global zone
11408	 * or in the same zone as the DTrace client.  Because we can be called
11409	 * after dtrace_detach() has been called, we cannot assert that there
11410	 * are retained enablings.  We can safely load from dtrace_retained,
11411	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11412	 * block pending our completion.
11413	 */
11414	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11415#if defined(sun)
11416		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11417
11418		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11419#endif
11420			(void) dtrace_enabling_match(enab, NULL);
11421	}
11422
11423	mutex_exit(&dtrace_lock);
11424	mutex_exit(&cpu_lock);
11425}
11426
11427/*
11428 * If an enabling is to be enabled without having matched probes (that is, if
11429 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11430 * enabling must be _primed_ by creating an ECB for every ECB description.
11431 * This must be done to assure that we know the number of speculations, the
11432 * number of aggregations, the minimum buffer size needed, etc. before we
11433 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11434 * enabling any probes, we create ECBs for every ECB decription, but with a
11435 * NULL probe -- which is exactly what this function does.
11436 */
11437static void
11438dtrace_enabling_prime(dtrace_state_t *state)
11439{
11440	dtrace_enabling_t *enab;
11441	int i;
11442
11443	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11444		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11445
11446		if (enab->dten_vstate->dtvs_state != state)
11447			continue;
11448
11449		/*
11450		 * We don't want to prime an enabling more than once, lest
11451		 * we allow a malicious user to induce resource exhaustion.
11452		 * (The ECBs that result from priming an enabling aren't
11453		 * leaked -- but they also aren't deallocated until the
11454		 * consumer state is destroyed.)
11455		 */
11456		if (enab->dten_primed)
11457			continue;
11458
11459		for (i = 0; i < enab->dten_ndesc; i++) {
11460			enab->dten_current = enab->dten_desc[i];
11461			(void) dtrace_probe_enable(NULL, enab);
11462		}
11463
11464		enab->dten_primed = 1;
11465	}
11466}
11467
11468/*
11469 * Called to indicate that probes should be provided due to retained
11470 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11471 * must take an initial lap through the enabling calling the dtps_provide()
11472 * entry point explicitly to allow for autocreated probes.
11473 */
11474static void
11475dtrace_enabling_provide(dtrace_provider_t *prv)
11476{
11477	int i, all = 0;
11478	dtrace_probedesc_t desc;
11479
11480	ASSERT(MUTEX_HELD(&dtrace_lock));
11481	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11482
11483	if (prv == NULL) {
11484		all = 1;
11485		prv = dtrace_provider;
11486	}
11487
11488	do {
11489		dtrace_enabling_t *enab = dtrace_retained;
11490		void *parg = prv->dtpv_arg;
11491
11492		for (; enab != NULL; enab = enab->dten_next) {
11493			for (i = 0; i < enab->dten_ndesc; i++) {
11494				desc = enab->dten_desc[i]->dted_probe;
11495				mutex_exit(&dtrace_lock);
11496				prv->dtpv_pops.dtps_provide(parg, &desc);
11497				mutex_enter(&dtrace_lock);
11498			}
11499		}
11500	} while (all && (prv = prv->dtpv_next) != NULL);
11501
11502	mutex_exit(&dtrace_lock);
11503	dtrace_probe_provide(NULL, all ? NULL : prv);
11504	mutex_enter(&dtrace_lock);
11505}
11506
11507/*
11508 * DTrace DOF Functions
11509 */
11510/*ARGSUSED*/
11511static void
11512dtrace_dof_error(dof_hdr_t *dof, const char *str)
11513{
11514	if (dtrace_err_verbose)
11515		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11516
11517#ifdef DTRACE_ERRDEBUG
11518	dtrace_errdebug(str);
11519#endif
11520}
11521
11522/*
11523 * Create DOF out of a currently enabled state.  Right now, we only create
11524 * DOF containing the run-time options -- but this could be expanded to create
11525 * complete DOF representing the enabled state.
11526 */
11527static dof_hdr_t *
11528dtrace_dof_create(dtrace_state_t *state)
11529{
11530	dof_hdr_t *dof;
11531	dof_sec_t *sec;
11532	dof_optdesc_t *opt;
11533	int i, len = sizeof (dof_hdr_t) +
11534	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11535	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11536
11537	ASSERT(MUTEX_HELD(&dtrace_lock));
11538
11539	dof = kmem_zalloc(len, KM_SLEEP);
11540	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11541	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11542	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11543	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11544
11545	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11546	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11547	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11548	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11549	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11550	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11551
11552	dof->dofh_flags = 0;
11553	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11554	dof->dofh_secsize = sizeof (dof_sec_t);
11555	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11556	dof->dofh_secoff = sizeof (dof_hdr_t);
11557	dof->dofh_loadsz = len;
11558	dof->dofh_filesz = len;
11559	dof->dofh_pad = 0;
11560
11561	/*
11562	 * Fill in the option section header...
11563	 */
11564	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11565	sec->dofs_type = DOF_SECT_OPTDESC;
11566	sec->dofs_align = sizeof (uint64_t);
11567	sec->dofs_flags = DOF_SECF_LOAD;
11568	sec->dofs_entsize = sizeof (dof_optdesc_t);
11569
11570	opt = (dof_optdesc_t *)((uintptr_t)sec +
11571	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11572
11573	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11574	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11575
11576	for (i = 0; i < DTRACEOPT_MAX; i++) {
11577		opt[i].dofo_option = i;
11578		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11579		opt[i].dofo_value = state->dts_options[i];
11580	}
11581
11582	return (dof);
11583}
11584
11585static dof_hdr_t *
11586dtrace_dof_copyin(uintptr_t uarg, int *errp)
11587{
11588	dof_hdr_t hdr, *dof;
11589
11590	ASSERT(!MUTEX_HELD(&dtrace_lock));
11591
11592	/*
11593	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11594	 */
11595	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11596		dtrace_dof_error(NULL, "failed to copyin DOF header");
11597		*errp = EFAULT;
11598		return (NULL);
11599	}
11600
11601	/*
11602	 * Now we'll allocate the entire DOF and copy it in -- provided
11603	 * that the length isn't outrageous.
11604	 */
11605	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11606		dtrace_dof_error(&hdr, "load size exceeds maximum");
11607		*errp = E2BIG;
11608		return (NULL);
11609	}
11610
11611	if (hdr.dofh_loadsz < sizeof (hdr)) {
11612		dtrace_dof_error(&hdr, "invalid load size");
11613		*errp = EINVAL;
11614		return (NULL);
11615	}
11616
11617	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11618
11619	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11620		kmem_free(dof, hdr.dofh_loadsz);
11621		*errp = EFAULT;
11622		return (NULL);
11623	}
11624
11625	return (dof);
11626}
11627
11628#if !defined(sun)
11629static __inline uchar_t
11630dtrace_dof_char(char c) {
11631	switch (c) {
11632	case '0':
11633	case '1':
11634	case '2':
11635	case '3':
11636	case '4':
11637	case '5':
11638	case '6':
11639	case '7':
11640	case '8':
11641	case '9':
11642		return (c - '0');
11643	case 'A':
11644	case 'B':
11645	case 'C':
11646	case 'D':
11647	case 'E':
11648	case 'F':
11649		return (c - 'A' + 10);
11650	case 'a':
11651	case 'b':
11652	case 'c':
11653	case 'd':
11654	case 'e':
11655	case 'f':
11656		return (c - 'a' + 10);
11657	}
11658	/* Should not reach here. */
11659	return (0);
11660}
11661#endif
11662
11663static dof_hdr_t *
11664dtrace_dof_property(const char *name)
11665{
11666	uchar_t *buf;
11667	uint64_t loadsz;
11668	unsigned int len, i;
11669	dof_hdr_t *dof;
11670
11671#if defined(sun)
11672	/*
11673	 * Unfortunately, array of values in .conf files are always (and
11674	 * only) interpreted to be integer arrays.  We must read our DOF
11675	 * as an integer array, and then squeeze it into a byte array.
11676	 */
11677	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11678	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11679		return (NULL);
11680
11681	for (i = 0; i < len; i++)
11682		buf[i] = (uchar_t)(((int *)buf)[i]);
11683
11684	if (len < sizeof (dof_hdr_t)) {
11685		ddi_prop_free(buf);
11686		dtrace_dof_error(NULL, "truncated header");
11687		return (NULL);
11688	}
11689
11690	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11691		ddi_prop_free(buf);
11692		dtrace_dof_error(NULL, "truncated DOF");
11693		return (NULL);
11694	}
11695
11696	if (loadsz >= dtrace_dof_maxsize) {
11697		ddi_prop_free(buf);
11698		dtrace_dof_error(NULL, "oversized DOF");
11699		return (NULL);
11700	}
11701
11702	dof = kmem_alloc(loadsz, KM_SLEEP);
11703	bcopy(buf, dof, loadsz);
11704	ddi_prop_free(buf);
11705#else
11706	char *p;
11707	char *p_env;
11708
11709	if ((p_env = getenv(name)) == NULL)
11710		return (NULL);
11711
11712	len = strlen(p_env) / 2;
11713
11714	buf = kmem_alloc(len, KM_SLEEP);
11715
11716	dof = (dof_hdr_t *) buf;
11717
11718	p = p_env;
11719
11720	for (i = 0; i < len; i++) {
11721		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11722		     dtrace_dof_char(p[1]);
11723		p += 2;
11724	}
11725
11726	freeenv(p_env);
11727
11728	if (len < sizeof (dof_hdr_t)) {
11729		kmem_free(buf, 0);
11730		dtrace_dof_error(NULL, "truncated header");
11731		return (NULL);
11732	}
11733
11734	if (len < (loadsz = dof->dofh_loadsz)) {
11735		kmem_free(buf, 0);
11736		dtrace_dof_error(NULL, "truncated DOF");
11737		return (NULL);
11738	}
11739
11740	if (loadsz >= dtrace_dof_maxsize) {
11741		kmem_free(buf, 0);
11742		dtrace_dof_error(NULL, "oversized DOF");
11743		return (NULL);
11744	}
11745#endif
11746
11747	return (dof);
11748}
11749
11750static void
11751dtrace_dof_destroy(dof_hdr_t *dof)
11752{
11753	kmem_free(dof, dof->dofh_loadsz);
11754}
11755
11756/*
11757 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11758 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11759 * a type other than DOF_SECT_NONE is specified, the header is checked against
11760 * this type and NULL is returned if the types do not match.
11761 */
11762static dof_sec_t *
11763dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11764{
11765	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11766	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11767
11768	if (i >= dof->dofh_secnum) {
11769		dtrace_dof_error(dof, "referenced section index is invalid");
11770		return (NULL);
11771	}
11772
11773	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11774		dtrace_dof_error(dof, "referenced section is not loadable");
11775		return (NULL);
11776	}
11777
11778	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11779		dtrace_dof_error(dof, "referenced section is the wrong type");
11780		return (NULL);
11781	}
11782
11783	return (sec);
11784}
11785
11786static dtrace_probedesc_t *
11787dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11788{
11789	dof_probedesc_t *probe;
11790	dof_sec_t *strtab;
11791	uintptr_t daddr = (uintptr_t)dof;
11792	uintptr_t str;
11793	size_t size;
11794
11795	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11796		dtrace_dof_error(dof, "invalid probe section");
11797		return (NULL);
11798	}
11799
11800	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11801		dtrace_dof_error(dof, "bad alignment in probe description");
11802		return (NULL);
11803	}
11804
11805	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11806		dtrace_dof_error(dof, "truncated probe description");
11807		return (NULL);
11808	}
11809
11810	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11811	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11812
11813	if (strtab == NULL)
11814		return (NULL);
11815
11816	str = daddr + strtab->dofs_offset;
11817	size = strtab->dofs_size;
11818
11819	if (probe->dofp_provider >= strtab->dofs_size) {
11820		dtrace_dof_error(dof, "corrupt probe provider");
11821		return (NULL);
11822	}
11823
11824	(void) strncpy(desc->dtpd_provider,
11825	    (char *)(str + probe->dofp_provider),
11826	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11827
11828	if (probe->dofp_mod >= strtab->dofs_size) {
11829		dtrace_dof_error(dof, "corrupt probe module");
11830		return (NULL);
11831	}
11832
11833	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11834	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11835
11836	if (probe->dofp_func >= strtab->dofs_size) {
11837		dtrace_dof_error(dof, "corrupt probe function");
11838		return (NULL);
11839	}
11840
11841	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11842	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11843
11844	if (probe->dofp_name >= strtab->dofs_size) {
11845		dtrace_dof_error(dof, "corrupt probe name");
11846		return (NULL);
11847	}
11848
11849	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11850	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11851
11852	return (desc);
11853}
11854
11855static dtrace_difo_t *
11856dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11857    cred_t *cr)
11858{
11859	dtrace_difo_t *dp;
11860	size_t ttl = 0;
11861	dof_difohdr_t *dofd;
11862	uintptr_t daddr = (uintptr_t)dof;
11863	size_t max = dtrace_difo_maxsize;
11864	int i, l, n;
11865
11866	static const struct {
11867		int section;
11868		int bufoffs;
11869		int lenoffs;
11870		int entsize;
11871		int align;
11872		const char *msg;
11873	} difo[] = {
11874		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11875		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11876		sizeof (dif_instr_t), "multiple DIF sections" },
11877
11878		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11879		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11880		sizeof (uint64_t), "multiple integer tables" },
11881
11882		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11883		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11884		sizeof (char), "multiple string tables" },
11885
11886		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11887		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11888		sizeof (uint_t), "multiple variable tables" },
11889
11890		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11891	};
11892
11893	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11894		dtrace_dof_error(dof, "invalid DIFO header section");
11895		return (NULL);
11896	}
11897
11898	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11899		dtrace_dof_error(dof, "bad alignment in DIFO header");
11900		return (NULL);
11901	}
11902
11903	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11904	    sec->dofs_size % sizeof (dof_secidx_t)) {
11905		dtrace_dof_error(dof, "bad size in DIFO header");
11906		return (NULL);
11907	}
11908
11909	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11910	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11911
11912	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11913	dp->dtdo_rtype = dofd->dofd_rtype;
11914
11915	for (l = 0; l < n; l++) {
11916		dof_sec_t *subsec;
11917		void **bufp;
11918		uint32_t *lenp;
11919
11920		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11921		    dofd->dofd_links[l])) == NULL)
11922			goto err; /* invalid section link */
11923
11924		if (ttl + subsec->dofs_size > max) {
11925			dtrace_dof_error(dof, "exceeds maximum size");
11926			goto err;
11927		}
11928
11929		ttl += subsec->dofs_size;
11930
11931		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11932			if (subsec->dofs_type != difo[i].section)
11933				continue;
11934
11935			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11936				dtrace_dof_error(dof, "section not loaded");
11937				goto err;
11938			}
11939
11940			if (subsec->dofs_align != difo[i].align) {
11941				dtrace_dof_error(dof, "bad alignment");
11942				goto err;
11943			}
11944
11945			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11946			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11947
11948			if (*bufp != NULL) {
11949				dtrace_dof_error(dof, difo[i].msg);
11950				goto err;
11951			}
11952
11953			if (difo[i].entsize != subsec->dofs_entsize) {
11954				dtrace_dof_error(dof, "entry size mismatch");
11955				goto err;
11956			}
11957
11958			if (subsec->dofs_entsize != 0 &&
11959			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11960				dtrace_dof_error(dof, "corrupt entry size");
11961				goto err;
11962			}
11963
11964			*lenp = subsec->dofs_size;
11965			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11966			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11967			    *bufp, subsec->dofs_size);
11968
11969			if (subsec->dofs_entsize != 0)
11970				*lenp /= subsec->dofs_entsize;
11971
11972			break;
11973		}
11974
11975		/*
11976		 * If we encounter a loadable DIFO sub-section that is not
11977		 * known to us, assume this is a broken program and fail.
11978		 */
11979		if (difo[i].section == DOF_SECT_NONE &&
11980		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11981			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11982			goto err;
11983		}
11984	}
11985
11986	if (dp->dtdo_buf == NULL) {
11987		/*
11988		 * We can't have a DIF object without DIF text.
11989		 */
11990		dtrace_dof_error(dof, "missing DIF text");
11991		goto err;
11992	}
11993
11994	/*
11995	 * Before we validate the DIF object, run through the variable table
11996	 * looking for the strings -- if any of their size are under, we'll set
11997	 * their size to be the system-wide default string size.  Note that
11998	 * this should _not_ happen if the "strsize" option has been set --
11999	 * in this case, the compiler should have set the size to reflect the
12000	 * setting of the option.
12001	 */
12002	for (i = 0; i < dp->dtdo_varlen; i++) {
12003		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12004		dtrace_diftype_t *t = &v->dtdv_type;
12005
12006		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12007			continue;
12008
12009		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12010			t->dtdt_size = dtrace_strsize_default;
12011	}
12012
12013	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12014		goto err;
12015
12016	dtrace_difo_init(dp, vstate);
12017	return (dp);
12018
12019err:
12020	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12021	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12022	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12023	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12024
12025	kmem_free(dp, sizeof (dtrace_difo_t));
12026	return (NULL);
12027}
12028
12029static dtrace_predicate_t *
12030dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12031    cred_t *cr)
12032{
12033	dtrace_difo_t *dp;
12034
12035	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12036		return (NULL);
12037
12038	return (dtrace_predicate_create(dp));
12039}
12040
12041static dtrace_actdesc_t *
12042dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12043    cred_t *cr)
12044{
12045	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12046	dof_actdesc_t *desc;
12047	dof_sec_t *difosec;
12048	size_t offs;
12049	uintptr_t daddr = (uintptr_t)dof;
12050	uint64_t arg;
12051	dtrace_actkind_t kind;
12052
12053	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12054		dtrace_dof_error(dof, "invalid action section");
12055		return (NULL);
12056	}
12057
12058	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12059		dtrace_dof_error(dof, "truncated action description");
12060		return (NULL);
12061	}
12062
12063	if (sec->dofs_align != sizeof (uint64_t)) {
12064		dtrace_dof_error(dof, "bad alignment in action description");
12065		return (NULL);
12066	}
12067
12068	if (sec->dofs_size < sec->dofs_entsize) {
12069		dtrace_dof_error(dof, "section entry size exceeds total size");
12070		return (NULL);
12071	}
12072
12073	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12074		dtrace_dof_error(dof, "bad entry size in action description");
12075		return (NULL);
12076	}
12077
12078	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12079		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12080		return (NULL);
12081	}
12082
12083	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12084		desc = (dof_actdesc_t *)(daddr +
12085		    (uintptr_t)sec->dofs_offset + offs);
12086		kind = (dtrace_actkind_t)desc->dofa_kind;
12087
12088		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12089		    (kind != DTRACEACT_PRINTA ||
12090		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12091			dof_sec_t *strtab;
12092			char *str, *fmt;
12093			uint64_t i;
12094
12095			/*
12096			 * printf()-like actions must have a format string.
12097			 */
12098			if ((strtab = dtrace_dof_sect(dof,
12099			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12100				goto err;
12101
12102			str = (char *)((uintptr_t)dof +
12103			    (uintptr_t)strtab->dofs_offset);
12104
12105			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12106				if (str[i] == '\0')
12107					break;
12108			}
12109
12110			if (i >= strtab->dofs_size) {
12111				dtrace_dof_error(dof, "bogus format string");
12112				goto err;
12113			}
12114
12115			if (i == desc->dofa_arg) {
12116				dtrace_dof_error(dof, "empty format string");
12117				goto err;
12118			}
12119
12120			i -= desc->dofa_arg;
12121			fmt = kmem_alloc(i + 1, KM_SLEEP);
12122			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12123			arg = (uint64_t)(uintptr_t)fmt;
12124		} else {
12125			if (kind == DTRACEACT_PRINTA) {
12126				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12127				arg = 0;
12128			} else {
12129				arg = desc->dofa_arg;
12130			}
12131		}
12132
12133		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12134		    desc->dofa_uarg, arg);
12135
12136		if (last != NULL) {
12137			last->dtad_next = act;
12138		} else {
12139			first = act;
12140		}
12141
12142		last = act;
12143
12144		if (desc->dofa_difo == DOF_SECIDX_NONE)
12145			continue;
12146
12147		if ((difosec = dtrace_dof_sect(dof,
12148		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12149			goto err;
12150
12151		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12152
12153		if (act->dtad_difo == NULL)
12154			goto err;
12155	}
12156
12157	ASSERT(first != NULL);
12158	return (first);
12159
12160err:
12161	for (act = first; act != NULL; act = next) {
12162		next = act->dtad_next;
12163		dtrace_actdesc_release(act, vstate);
12164	}
12165
12166	return (NULL);
12167}
12168
12169static dtrace_ecbdesc_t *
12170dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12171    cred_t *cr)
12172{
12173	dtrace_ecbdesc_t *ep;
12174	dof_ecbdesc_t *ecb;
12175	dtrace_probedesc_t *desc;
12176	dtrace_predicate_t *pred = NULL;
12177
12178	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12179		dtrace_dof_error(dof, "truncated ECB description");
12180		return (NULL);
12181	}
12182
12183	if (sec->dofs_align != sizeof (uint64_t)) {
12184		dtrace_dof_error(dof, "bad alignment in ECB description");
12185		return (NULL);
12186	}
12187
12188	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12189	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12190
12191	if (sec == NULL)
12192		return (NULL);
12193
12194	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12195	ep->dted_uarg = ecb->dofe_uarg;
12196	desc = &ep->dted_probe;
12197
12198	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12199		goto err;
12200
12201	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12202		if ((sec = dtrace_dof_sect(dof,
12203		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12204			goto err;
12205
12206		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12207			goto err;
12208
12209		ep->dted_pred.dtpdd_predicate = pred;
12210	}
12211
12212	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12213		if ((sec = dtrace_dof_sect(dof,
12214		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12215			goto err;
12216
12217		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12218
12219		if (ep->dted_action == NULL)
12220			goto err;
12221	}
12222
12223	return (ep);
12224
12225err:
12226	if (pred != NULL)
12227		dtrace_predicate_release(pred, vstate);
12228	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12229	return (NULL);
12230}
12231
12232/*
12233 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12234 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12235 * site of any user SETX relocations to account for load object base address.
12236 * In the future, if we need other relocations, this function can be extended.
12237 */
12238static int
12239dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12240{
12241	uintptr_t daddr = (uintptr_t)dof;
12242	dof_relohdr_t *dofr =
12243	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12244	dof_sec_t *ss, *rs, *ts;
12245	dof_relodesc_t *r;
12246	uint_t i, n;
12247
12248	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12249	    sec->dofs_align != sizeof (dof_secidx_t)) {
12250		dtrace_dof_error(dof, "invalid relocation header");
12251		return (-1);
12252	}
12253
12254	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12255	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12256	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12257
12258	if (ss == NULL || rs == NULL || ts == NULL)
12259		return (-1); /* dtrace_dof_error() has been called already */
12260
12261	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12262	    rs->dofs_align != sizeof (uint64_t)) {
12263		dtrace_dof_error(dof, "invalid relocation section");
12264		return (-1);
12265	}
12266
12267	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12268	n = rs->dofs_size / rs->dofs_entsize;
12269
12270	for (i = 0; i < n; i++) {
12271		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12272
12273		switch (r->dofr_type) {
12274		case DOF_RELO_NONE:
12275			break;
12276		case DOF_RELO_SETX:
12277			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12278			    sizeof (uint64_t) > ts->dofs_size) {
12279				dtrace_dof_error(dof, "bad relocation offset");
12280				return (-1);
12281			}
12282
12283			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12284				dtrace_dof_error(dof, "misaligned setx relo");
12285				return (-1);
12286			}
12287
12288			*(uint64_t *)taddr += ubase;
12289			break;
12290		default:
12291			dtrace_dof_error(dof, "invalid relocation type");
12292			return (-1);
12293		}
12294
12295		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12296	}
12297
12298	return (0);
12299}
12300
12301/*
12302 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12303 * header:  it should be at the front of a memory region that is at least
12304 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12305 * size.  It need not be validated in any other way.
12306 */
12307static int
12308dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12309    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12310{
12311	uint64_t len = dof->dofh_loadsz, seclen;
12312	uintptr_t daddr = (uintptr_t)dof;
12313	dtrace_ecbdesc_t *ep;
12314	dtrace_enabling_t *enab;
12315	uint_t i;
12316
12317	ASSERT(MUTEX_HELD(&dtrace_lock));
12318	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12319
12320	/*
12321	 * Check the DOF header identification bytes.  In addition to checking
12322	 * valid settings, we also verify that unused bits/bytes are zeroed so
12323	 * we can use them later without fear of regressing existing binaries.
12324	 */
12325	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12326	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12327		dtrace_dof_error(dof, "DOF magic string mismatch");
12328		return (-1);
12329	}
12330
12331	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12332	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12333		dtrace_dof_error(dof, "DOF has invalid data model");
12334		return (-1);
12335	}
12336
12337	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12338		dtrace_dof_error(dof, "DOF encoding mismatch");
12339		return (-1);
12340	}
12341
12342	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12343	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12344		dtrace_dof_error(dof, "DOF version mismatch");
12345		return (-1);
12346	}
12347
12348	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12349		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12350		return (-1);
12351	}
12352
12353	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12354		dtrace_dof_error(dof, "DOF uses too many integer registers");
12355		return (-1);
12356	}
12357
12358	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12359		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12360		return (-1);
12361	}
12362
12363	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12364		if (dof->dofh_ident[i] != 0) {
12365			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12366			return (-1);
12367		}
12368	}
12369
12370	if (dof->dofh_flags & ~DOF_FL_VALID) {
12371		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12372		return (-1);
12373	}
12374
12375	if (dof->dofh_secsize == 0) {
12376		dtrace_dof_error(dof, "zero section header size");
12377		return (-1);
12378	}
12379
12380	/*
12381	 * Check that the section headers don't exceed the amount of DOF
12382	 * data.  Note that we cast the section size and number of sections
12383	 * to uint64_t's to prevent possible overflow in the multiplication.
12384	 */
12385	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12386
12387	if (dof->dofh_secoff > len || seclen > len ||
12388	    dof->dofh_secoff + seclen > len) {
12389		dtrace_dof_error(dof, "truncated section headers");
12390		return (-1);
12391	}
12392
12393	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12394		dtrace_dof_error(dof, "misaligned section headers");
12395		return (-1);
12396	}
12397
12398	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12399		dtrace_dof_error(dof, "misaligned section size");
12400		return (-1);
12401	}
12402
12403	/*
12404	 * Take an initial pass through the section headers to be sure that
12405	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12406	 * set, do not permit sections relating to providers, probes, or args.
12407	 */
12408	for (i = 0; i < dof->dofh_secnum; i++) {
12409		dof_sec_t *sec = (dof_sec_t *)(daddr +
12410		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12411
12412		if (noprobes) {
12413			switch (sec->dofs_type) {
12414			case DOF_SECT_PROVIDER:
12415			case DOF_SECT_PROBES:
12416			case DOF_SECT_PRARGS:
12417			case DOF_SECT_PROFFS:
12418				dtrace_dof_error(dof, "illegal sections "
12419				    "for enabling");
12420				return (-1);
12421			}
12422		}
12423
12424		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12425			continue; /* just ignore non-loadable sections */
12426
12427		if (sec->dofs_align & (sec->dofs_align - 1)) {
12428			dtrace_dof_error(dof, "bad section alignment");
12429			return (-1);
12430		}
12431
12432		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12433			dtrace_dof_error(dof, "misaligned section");
12434			return (-1);
12435		}
12436
12437		if (sec->dofs_offset > len || sec->dofs_size > len ||
12438		    sec->dofs_offset + sec->dofs_size > len) {
12439			dtrace_dof_error(dof, "corrupt section header");
12440			return (-1);
12441		}
12442
12443		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12444		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12445			dtrace_dof_error(dof, "non-terminating string table");
12446			return (-1);
12447		}
12448	}
12449
12450	/*
12451	 * Take a second pass through the sections and locate and perform any
12452	 * relocations that are present.  We do this after the first pass to
12453	 * be sure that all sections have had their headers validated.
12454	 */
12455	for (i = 0; i < dof->dofh_secnum; i++) {
12456		dof_sec_t *sec = (dof_sec_t *)(daddr +
12457		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12458
12459		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12460			continue; /* skip sections that are not loadable */
12461
12462		switch (sec->dofs_type) {
12463		case DOF_SECT_URELHDR:
12464			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12465				return (-1);
12466			break;
12467		}
12468	}
12469
12470	if ((enab = *enabp) == NULL)
12471		enab = *enabp = dtrace_enabling_create(vstate);
12472
12473	for (i = 0; i < dof->dofh_secnum; i++) {
12474		dof_sec_t *sec = (dof_sec_t *)(daddr +
12475		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12476
12477		if (sec->dofs_type != DOF_SECT_ECBDESC)
12478			continue;
12479
12480		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12481			dtrace_enabling_destroy(enab);
12482			*enabp = NULL;
12483			return (-1);
12484		}
12485
12486		dtrace_enabling_add(enab, ep);
12487	}
12488
12489	return (0);
12490}
12491
12492/*
12493 * Process DOF for any options.  This routine assumes that the DOF has been
12494 * at least processed by dtrace_dof_slurp().
12495 */
12496static int
12497dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12498{
12499	int i, rval;
12500	uint32_t entsize;
12501	size_t offs;
12502	dof_optdesc_t *desc;
12503
12504	for (i = 0; i < dof->dofh_secnum; i++) {
12505		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12506		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12507
12508		if (sec->dofs_type != DOF_SECT_OPTDESC)
12509			continue;
12510
12511		if (sec->dofs_align != sizeof (uint64_t)) {
12512			dtrace_dof_error(dof, "bad alignment in "
12513			    "option description");
12514			return (EINVAL);
12515		}
12516
12517		if ((entsize = sec->dofs_entsize) == 0) {
12518			dtrace_dof_error(dof, "zeroed option entry size");
12519			return (EINVAL);
12520		}
12521
12522		if (entsize < sizeof (dof_optdesc_t)) {
12523			dtrace_dof_error(dof, "bad option entry size");
12524			return (EINVAL);
12525		}
12526
12527		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12528			desc = (dof_optdesc_t *)((uintptr_t)dof +
12529			    (uintptr_t)sec->dofs_offset + offs);
12530
12531			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12532				dtrace_dof_error(dof, "non-zero option string");
12533				return (EINVAL);
12534			}
12535
12536			if (desc->dofo_value == DTRACEOPT_UNSET) {
12537				dtrace_dof_error(dof, "unset option");
12538				return (EINVAL);
12539			}
12540
12541			if ((rval = dtrace_state_option(state,
12542			    desc->dofo_option, desc->dofo_value)) != 0) {
12543				dtrace_dof_error(dof, "rejected option");
12544				return (rval);
12545			}
12546		}
12547	}
12548
12549	return (0);
12550}
12551
12552/*
12553 * DTrace Consumer State Functions
12554 */
12555static int
12556dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12557{
12558	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12559	void *base;
12560	uintptr_t limit;
12561	dtrace_dynvar_t *dvar, *next, *start;
12562	int i;
12563
12564	ASSERT(MUTEX_HELD(&dtrace_lock));
12565	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12566
12567	bzero(dstate, sizeof (dtrace_dstate_t));
12568
12569	if ((dstate->dtds_chunksize = chunksize) == 0)
12570		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12571
12572	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12573		size = min;
12574
12575	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12576		return (ENOMEM);
12577
12578	dstate->dtds_size = size;
12579	dstate->dtds_base = base;
12580	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12581	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12582
12583	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12584
12585	if (hashsize != 1 && (hashsize & 1))
12586		hashsize--;
12587
12588	dstate->dtds_hashsize = hashsize;
12589	dstate->dtds_hash = dstate->dtds_base;
12590
12591	/*
12592	 * Set all of our hash buckets to point to the single sink, and (if
12593	 * it hasn't already been set), set the sink's hash value to be the
12594	 * sink sentinel value.  The sink is needed for dynamic variable
12595	 * lookups to know that they have iterated over an entire, valid hash
12596	 * chain.
12597	 */
12598	for (i = 0; i < hashsize; i++)
12599		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12600
12601	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12602		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12603
12604	/*
12605	 * Determine number of active CPUs.  Divide free list evenly among
12606	 * active CPUs.
12607	 */
12608	start = (dtrace_dynvar_t *)
12609	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12610	limit = (uintptr_t)base + size;
12611
12612	maxper = (limit - (uintptr_t)start) / NCPU;
12613	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12614
12615#if !defined(sun)
12616	CPU_FOREACH(i) {
12617#else
12618	for (i = 0; i < NCPU; i++) {
12619#endif
12620		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12621
12622		/*
12623		 * If we don't even have enough chunks to make it once through
12624		 * NCPUs, we're just going to allocate everything to the first
12625		 * CPU.  And if we're on the last CPU, we're going to allocate
12626		 * whatever is left over.  In either case, we set the limit to
12627		 * be the limit of the dynamic variable space.
12628		 */
12629		if (maxper == 0 || i == NCPU - 1) {
12630			limit = (uintptr_t)base + size;
12631			start = NULL;
12632		} else {
12633			limit = (uintptr_t)start + maxper;
12634			start = (dtrace_dynvar_t *)limit;
12635		}
12636
12637		ASSERT(limit <= (uintptr_t)base + size);
12638
12639		for (;;) {
12640			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12641			    dstate->dtds_chunksize);
12642
12643			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12644				break;
12645
12646			dvar->dtdv_next = next;
12647			dvar = next;
12648		}
12649
12650		if (maxper == 0)
12651			break;
12652	}
12653
12654	return (0);
12655}
12656
12657static void
12658dtrace_dstate_fini(dtrace_dstate_t *dstate)
12659{
12660	ASSERT(MUTEX_HELD(&cpu_lock));
12661
12662	if (dstate->dtds_base == NULL)
12663		return;
12664
12665	kmem_free(dstate->dtds_base, dstate->dtds_size);
12666	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12667}
12668
12669static void
12670dtrace_vstate_fini(dtrace_vstate_t *vstate)
12671{
12672	/*
12673	 * Logical XOR, where are you?
12674	 */
12675	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12676
12677	if (vstate->dtvs_nglobals > 0) {
12678		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12679		    sizeof (dtrace_statvar_t *));
12680	}
12681
12682	if (vstate->dtvs_ntlocals > 0) {
12683		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12684		    sizeof (dtrace_difv_t));
12685	}
12686
12687	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12688
12689	if (vstate->dtvs_nlocals > 0) {
12690		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12691		    sizeof (dtrace_statvar_t *));
12692	}
12693}
12694
12695#if defined(sun)
12696static void
12697dtrace_state_clean(dtrace_state_t *state)
12698{
12699	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12700		return;
12701
12702	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12703	dtrace_speculation_clean(state);
12704}
12705
12706static void
12707dtrace_state_deadman(dtrace_state_t *state)
12708{
12709	hrtime_t now;
12710
12711	dtrace_sync();
12712
12713	now = dtrace_gethrtime();
12714
12715	if (state != dtrace_anon.dta_state &&
12716	    now - state->dts_laststatus >= dtrace_deadman_user)
12717		return;
12718
12719	/*
12720	 * We must be sure that dts_alive never appears to be less than the
12721	 * value upon entry to dtrace_state_deadman(), and because we lack a
12722	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12723	 * store INT64_MAX to it, followed by a memory barrier, followed by
12724	 * the new value.  This assures that dts_alive never appears to be
12725	 * less than its true value, regardless of the order in which the
12726	 * stores to the underlying storage are issued.
12727	 */
12728	state->dts_alive = INT64_MAX;
12729	dtrace_membar_producer();
12730	state->dts_alive = now;
12731}
12732#else
12733static void
12734dtrace_state_clean(void *arg)
12735{
12736	dtrace_state_t *state = arg;
12737	dtrace_optval_t *opt = state->dts_options;
12738
12739	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12740		return;
12741
12742	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12743	dtrace_speculation_clean(state);
12744
12745	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12746	    dtrace_state_clean, state);
12747}
12748
12749static void
12750dtrace_state_deadman(void *arg)
12751{
12752	dtrace_state_t *state = arg;
12753	hrtime_t now;
12754
12755	dtrace_sync();
12756
12757	dtrace_debug_output();
12758
12759	now = dtrace_gethrtime();
12760
12761	if (state != dtrace_anon.dta_state &&
12762	    now - state->dts_laststatus >= dtrace_deadman_user)
12763		return;
12764
12765	/*
12766	 * We must be sure that dts_alive never appears to be less than the
12767	 * value upon entry to dtrace_state_deadman(), and because we lack a
12768	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12769	 * store INT64_MAX to it, followed by a memory barrier, followed by
12770	 * the new value.  This assures that dts_alive never appears to be
12771	 * less than its true value, regardless of the order in which the
12772	 * stores to the underlying storage are issued.
12773	 */
12774	state->dts_alive = INT64_MAX;
12775	dtrace_membar_producer();
12776	state->dts_alive = now;
12777
12778	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12779	    dtrace_state_deadman, state);
12780}
12781#endif
12782
12783static dtrace_state_t *
12784#if defined(sun)
12785dtrace_state_create(dev_t *devp, cred_t *cr)
12786#else
12787dtrace_state_create(struct cdev *dev)
12788#endif
12789{
12790#if defined(sun)
12791	minor_t minor;
12792	major_t major;
12793#else
12794	cred_t *cr = NULL;
12795	int m = 0;
12796#endif
12797	char c[30];
12798	dtrace_state_t *state;
12799	dtrace_optval_t *opt;
12800	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12801
12802	ASSERT(MUTEX_HELD(&dtrace_lock));
12803	ASSERT(MUTEX_HELD(&cpu_lock));
12804
12805#if defined(sun)
12806	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12807	    VM_BESTFIT | VM_SLEEP);
12808
12809	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12810		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12811		return (NULL);
12812	}
12813
12814	state = ddi_get_soft_state(dtrace_softstate, minor);
12815#else
12816	if (dev != NULL) {
12817		cr = dev->si_cred;
12818		m = dev2unit(dev);
12819		}
12820
12821	/* Allocate memory for the state. */
12822	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12823#endif
12824
12825	state->dts_epid = DTRACE_EPIDNONE + 1;
12826
12827	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12828#if defined(sun)
12829	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12830	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12831
12832	if (devp != NULL) {
12833		major = getemajor(*devp);
12834	} else {
12835		major = ddi_driver_major(dtrace_devi);
12836	}
12837
12838	state->dts_dev = makedevice(major, minor);
12839
12840	if (devp != NULL)
12841		*devp = state->dts_dev;
12842#else
12843	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12844	state->dts_dev = dev;
12845#endif
12846
12847	/*
12848	 * We allocate NCPU buffers.  On the one hand, this can be quite
12849	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12850	 * other hand, it saves an additional memory reference in the probe
12851	 * path.
12852	 */
12853	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12854	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12855
12856#if defined(sun)
12857	state->dts_cleaner = CYCLIC_NONE;
12858	state->dts_deadman = CYCLIC_NONE;
12859#else
12860	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
12861	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
12862#endif
12863	state->dts_vstate.dtvs_state = state;
12864
12865	for (i = 0; i < DTRACEOPT_MAX; i++)
12866		state->dts_options[i] = DTRACEOPT_UNSET;
12867
12868	/*
12869	 * Set the default options.
12870	 */
12871	opt = state->dts_options;
12872	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12873	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12874	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12875	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12876	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12877	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12878	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12879	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12880	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12881	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12882	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12883	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12884	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12885	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12886
12887	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12888
12889	/*
12890	 * Depending on the user credentials, we set flag bits which alter probe
12891	 * visibility or the amount of destructiveness allowed.  In the case of
12892	 * actual anonymous tracing, or the possession of all privileges, all of
12893	 * the normal checks are bypassed.
12894	 */
12895	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12896		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12897		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12898	} else {
12899		/*
12900		 * Set up the credentials for this instantiation.  We take a
12901		 * hold on the credential to prevent it from disappearing on
12902		 * us; this in turn prevents the zone_t referenced by this
12903		 * credential from disappearing.  This means that we can
12904		 * examine the credential and the zone from probe context.
12905		 */
12906		crhold(cr);
12907		state->dts_cred.dcr_cred = cr;
12908
12909		/*
12910		 * CRA_PROC means "we have *some* privilege for dtrace" and
12911		 * unlocks the use of variables like pid, zonename, etc.
12912		 */
12913		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12914		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12915			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12916		}
12917
12918		/*
12919		 * dtrace_user allows use of syscall and profile providers.
12920		 * If the user also has proc_owner and/or proc_zone, we
12921		 * extend the scope to include additional visibility and
12922		 * destructive power.
12923		 */
12924		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12925			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12926				state->dts_cred.dcr_visible |=
12927				    DTRACE_CRV_ALLPROC;
12928
12929				state->dts_cred.dcr_action |=
12930				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12931			}
12932
12933			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12934				state->dts_cred.dcr_visible |=
12935				    DTRACE_CRV_ALLZONE;
12936
12937				state->dts_cred.dcr_action |=
12938				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12939			}
12940
12941			/*
12942			 * If we have all privs in whatever zone this is,
12943			 * we can do destructive things to processes which
12944			 * have altered credentials.
12945			 */
12946#if defined(sun)
12947			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12948			    cr->cr_zone->zone_privset)) {
12949				state->dts_cred.dcr_action |=
12950				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12951			}
12952#endif
12953		}
12954
12955		/*
12956		 * Holding the dtrace_kernel privilege also implies that
12957		 * the user has the dtrace_user privilege from a visibility
12958		 * perspective.  But without further privileges, some
12959		 * destructive actions are not available.
12960		 */
12961		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12962			/*
12963			 * Make all probes in all zones visible.  However,
12964			 * this doesn't mean that all actions become available
12965			 * to all zones.
12966			 */
12967			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12968			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12969
12970			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12971			    DTRACE_CRA_PROC;
12972			/*
12973			 * Holding proc_owner means that destructive actions
12974			 * for *this* zone are allowed.
12975			 */
12976			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12977				state->dts_cred.dcr_action |=
12978				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12979
12980			/*
12981			 * Holding proc_zone means that destructive actions
12982			 * for this user/group ID in all zones is allowed.
12983			 */
12984			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12985				state->dts_cred.dcr_action |=
12986				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12987
12988#if defined(sun)
12989			/*
12990			 * If we have all privs in whatever zone this is,
12991			 * we can do destructive things to processes which
12992			 * have altered credentials.
12993			 */
12994			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12995			    cr->cr_zone->zone_privset)) {
12996				state->dts_cred.dcr_action |=
12997				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12998			}
12999#endif
13000		}
13001
13002		/*
13003		 * Holding the dtrace_proc privilege gives control over fasttrap
13004		 * and pid providers.  We need to grant wider destructive
13005		 * privileges in the event that the user has proc_owner and/or
13006		 * proc_zone.
13007		 */
13008		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13009			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13010				state->dts_cred.dcr_action |=
13011				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13012
13013			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13014				state->dts_cred.dcr_action |=
13015				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13016		}
13017	}
13018
13019	return (state);
13020}
13021
13022static int
13023dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13024{
13025	dtrace_optval_t *opt = state->dts_options, size;
13026	processorid_t cpu = 0;;
13027	int flags = 0, rval;
13028
13029	ASSERT(MUTEX_HELD(&dtrace_lock));
13030	ASSERT(MUTEX_HELD(&cpu_lock));
13031	ASSERT(which < DTRACEOPT_MAX);
13032	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13033	    (state == dtrace_anon.dta_state &&
13034	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13035
13036	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13037		return (0);
13038
13039	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13040		cpu = opt[DTRACEOPT_CPU];
13041
13042	if (which == DTRACEOPT_SPECSIZE)
13043		flags |= DTRACEBUF_NOSWITCH;
13044
13045	if (which == DTRACEOPT_BUFSIZE) {
13046		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13047			flags |= DTRACEBUF_RING;
13048
13049		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13050			flags |= DTRACEBUF_FILL;
13051
13052		if (state != dtrace_anon.dta_state ||
13053		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13054			flags |= DTRACEBUF_INACTIVE;
13055	}
13056
13057	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13058		/*
13059		 * The size must be 8-byte aligned.  If the size is not 8-byte
13060		 * aligned, drop it down by the difference.
13061		 */
13062		if (size & (sizeof (uint64_t) - 1))
13063			size -= size & (sizeof (uint64_t) - 1);
13064
13065		if (size < state->dts_reserve) {
13066			/*
13067			 * Buffers always must be large enough to accommodate
13068			 * their prereserved space.  We return E2BIG instead
13069			 * of ENOMEM in this case to allow for user-level
13070			 * software to differentiate the cases.
13071			 */
13072			return (E2BIG);
13073		}
13074
13075		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13076
13077		if (rval != ENOMEM) {
13078			opt[which] = size;
13079			return (rval);
13080		}
13081
13082		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13083			return (rval);
13084	}
13085
13086	return (ENOMEM);
13087}
13088
13089static int
13090dtrace_state_buffers(dtrace_state_t *state)
13091{
13092	dtrace_speculation_t *spec = state->dts_speculations;
13093	int rval, i;
13094
13095	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13096	    DTRACEOPT_BUFSIZE)) != 0)
13097		return (rval);
13098
13099	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13100	    DTRACEOPT_AGGSIZE)) != 0)
13101		return (rval);
13102
13103	for (i = 0; i < state->dts_nspeculations; i++) {
13104		if ((rval = dtrace_state_buffer(state,
13105		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13106			return (rval);
13107	}
13108
13109	return (0);
13110}
13111
13112static void
13113dtrace_state_prereserve(dtrace_state_t *state)
13114{
13115	dtrace_ecb_t *ecb;
13116	dtrace_probe_t *probe;
13117
13118	state->dts_reserve = 0;
13119
13120	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13121		return;
13122
13123	/*
13124	 * If our buffer policy is a "fill" buffer policy, we need to set the
13125	 * prereserved space to be the space required by the END probes.
13126	 */
13127	probe = dtrace_probes[dtrace_probeid_end - 1];
13128	ASSERT(probe != NULL);
13129
13130	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13131		if (ecb->dte_state != state)
13132			continue;
13133
13134		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13135	}
13136}
13137
13138static int
13139dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13140{
13141	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13142	dtrace_speculation_t *spec;
13143	dtrace_buffer_t *buf;
13144#if defined(sun)
13145	cyc_handler_t hdlr;
13146	cyc_time_t when;
13147#endif
13148	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13149	dtrace_icookie_t cookie;
13150
13151	mutex_enter(&cpu_lock);
13152	mutex_enter(&dtrace_lock);
13153
13154	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13155		rval = EBUSY;
13156		goto out;
13157	}
13158
13159	/*
13160	 * Before we can perform any checks, we must prime all of the
13161	 * retained enablings that correspond to this state.
13162	 */
13163	dtrace_enabling_prime(state);
13164
13165	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13166		rval = EACCES;
13167		goto out;
13168	}
13169
13170	dtrace_state_prereserve(state);
13171
13172	/*
13173	 * Now we want to do is try to allocate our speculations.
13174	 * We do not automatically resize the number of speculations; if
13175	 * this fails, we will fail the operation.
13176	 */
13177	nspec = opt[DTRACEOPT_NSPEC];
13178	ASSERT(nspec != DTRACEOPT_UNSET);
13179
13180	if (nspec > INT_MAX) {
13181		rval = ENOMEM;
13182		goto out;
13183	}
13184
13185	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13186
13187	if (spec == NULL) {
13188		rval = ENOMEM;
13189		goto out;
13190	}
13191
13192	state->dts_speculations = spec;
13193	state->dts_nspeculations = (int)nspec;
13194
13195	for (i = 0; i < nspec; i++) {
13196		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13197			rval = ENOMEM;
13198			goto err;
13199		}
13200
13201		spec[i].dtsp_buffer = buf;
13202	}
13203
13204	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13205		if (dtrace_anon.dta_state == NULL) {
13206			rval = ENOENT;
13207			goto out;
13208		}
13209
13210		if (state->dts_necbs != 0) {
13211			rval = EALREADY;
13212			goto out;
13213		}
13214
13215		state->dts_anon = dtrace_anon_grab();
13216		ASSERT(state->dts_anon != NULL);
13217		state = state->dts_anon;
13218
13219		/*
13220		 * We want "grabanon" to be set in the grabbed state, so we'll
13221		 * copy that option value from the grabbing state into the
13222		 * grabbed state.
13223		 */
13224		state->dts_options[DTRACEOPT_GRABANON] =
13225		    opt[DTRACEOPT_GRABANON];
13226
13227		*cpu = dtrace_anon.dta_beganon;
13228
13229		/*
13230		 * If the anonymous state is active (as it almost certainly
13231		 * is if the anonymous enabling ultimately matched anything),
13232		 * we don't allow any further option processing -- but we
13233		 * don't return failure.
13234		 */
13235		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13236			goto out;
13237	}
13238
13239	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13240	    opt[DTRACEOPT_AGGSIZE] != 0) {
13241		if (state->dts_aggregations == NULL) {
13242			/*
13243			 * We're not going to create an aggregation buffer
13244			 * because we don't have any ECBs that contain
13245			 * aggregations -- set this option to 0.
13246			 */
13247			opt[DTRACEOPT_AGGSIZE] = 0;
13248		} else {
13249			/*
13250			 * If we have an aggregation buffer, we must also have
13251			 * a buffer to use as scratch.
13252			 */
13253			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13254			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13255				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13256			}
13257		}
13258	}
13259
13260	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13261	    opt[DTRACEOPT_SPECSIZE] != 0) {
13262		if (!state->dts_speculates) {
13263			/*
13264			 * We're not going to create speculation buffers
13265			 * because we don't have any ECBs that actually
13266			 * speculate -- set the speculation size to 0.
13267			 */
13268			opt[DTRACEOPT_SPECSIZE] = 0;
13269		}
13270	}
13271
13272	/*
13273	 * The bare minimum size for any buffer that we're actually going to
13274	 * do anything to is sizeof (uint64_t).
13275	 */
13276	sz = sizeof (uint64_t);
13277
13278	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13279	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13280	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13281		/*
13282		 * A buffer size has been explicitly set to 0 (or to a size
13283		 * that will be adjusted to 0) and we need the space -- we
13284		 * need to return failure.  We return ENOSPC to differentiate
13285		 * it from failing to allocate a buffer due to failure to meet
13286		 * the reserve (for which we return E2BIG).
13287		 */
13288		rval = ENOSPC;
13289		goto out;
13290	}
13291
13292	if ((rval = dtrace_state_buffers(state)) != 0)
13293		goto err;
13294
13295	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13296		sz = dtrace_dstate_defsize;
13297
13298	do {
13299		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13300
13301		if (rval == 0)
13302			break;
13303
13304		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13305			goto err;
13306	} while (sz >>= 1);
13307
13308	opt[DTRACEOPT_DYNVARSIZE] = sz;
13309
13310	if (rval != 0)
13311		goto err;
13312
13313	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13314		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13315
13316	if (opt[DTRACEOPT_CLEANRATE] == 0)
13317		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13318
13319	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13320		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13321
13322	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13323		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13324
13325	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13326#if defined(sun)
13327	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13328	hdlr.cyh_arg = state;
13329	hdlr.cyh_level = CY_LOW_LEVEL;
13330
13331	when.cyt_when = 0;
13332	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13333
13334	state->dts_cleaner = cyclic_add(&hdlr, &when);
13335
13336	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13337	hdlr.cyh_arg = state;
13338	hdlr.cyh_level = CY_LOW_LEVEL;
13339
13340	when.cyt_when = 0;
13341	when.cyt_interval = dtrace_deadman_interval;
13342
13343	state->dts_deadman = cyclic_add(&hdlr, &when);
13344#else
13345	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13346	    dtrace_state_clean, state);
13347	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13348	    dtrace_state_deadman, state);
13349#endif
13350
13351	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13352
13353	/*
13354	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13355	 * interrupts here both to record the CPU on which we fired the BEGIN
13356	 * probe (the data from this CPU will be processed first at user
13357	 * level) and to manually activate the buffer for this CPU.
13358	 */
13359	cookie = dtrace_interrupt_disable();
13360	*cpu = curcpu;
13361	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13362	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13363
13364	dtrace_probe(dtrace_probeid_begin,
13365	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13366	dtrace_interrupt_enable(cookie);
13367	/*
13368	 * We may have had an exit action from a BEGIN probe; only change our
13369	 * state to ACTIVE if we're still in WARMUP.
13370	 */
13371	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13372	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13373
13374	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13375		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13376
13377	/*
13378	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13379	 * want each CPU to transition its principal buffer out of the
13380	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13381	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13382	 * atomically transition from processing none of a state's ECBs to
13383	 * processing all of them.
13384	 */
13385	dtrace_xcall(DTRACE_CPUALL,
13386	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13387	goto out;
13388
13389err:
13390	dtrace_buffer_free(state->dts_buffer);
13391	dtrace_buffer_free(state->dts_aggbuffer);
13392
13393	if ((nspec = state->dts_nspeculations) == 0) {
13394		ASSERT(state->dts_speculations == NULL);
13395		goto out;
13396	}
13397
13398	spec = state->dts_speculations;
13399	ASSERT(spec != NULL);
13400
13401	for (i = 0; i < state->dts_nspeculations; i++) {
13402		if ((buf = spec[i].dtsp_buffer) == NULL)
13403			break;
13404
13405		dtrace_buffer_free(buf);
13406		kmem_free(buf, bufsize);
13407	}
13408
13409	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13410	state->dts_nspeculations = 0;
13411	state->dts_speculations = NULL;
13412
13413out:
13414	mutex_exit(&dtrace_lock);
13415	mutex_exit(&cpu_lock);
13416
13417	return (rval);
13418}
13419
13420static int
13421dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13422{
13423	dtrace_icookie_t cookie;
13424
13425	ASSERT(MUTEX_HELD(&dtrace_lock));
13426
13427	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13428	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13429		return (EINVAL);
13430
13431	/*
13432	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13433	 * to be sure that every CPU has seen it.  See below for the details
13434	 * on why this is done.
13435	 */
13436	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13437	dtrace_sync();
13438
13439	/*
13440	 * By this point, it is impossible for any CPU to be still processing
13441	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13442	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13443	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13444	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13445	 * iff we're in the END probe.
13446	 */
13447	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13448	dtrace_sync();
13449	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13450
13451	/*
13452	 * Finally, we can release the reserve and call the END probe.  We
13453	 * disable interrupts across calling the END probe to allow us to
13454	 * return the CPU on which we actually called the END probe.  This
13455	 * allows user-land to be sure that this CPU's principal buffer is
13456	 * processed last.
13457	 */
13458	state->dts_reserve = 0;
13459
13460	cookie = dtrace_interrupt_disable();
13461	*cpu = curcpu;
13462	dtrace_probe(dtrace_probeid_end,
13463	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13464	dtrace_interrupt_enable(cookie);
13465
13466	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13467	dtrace_sync();
13468
13469	return (0);
13470}
13471
13472static int
13473dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13474    dtrace_optval_t val)
13475{
13476	ASSERT(MUTEX_HELD(&dtrace_lock));
13477
13478	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13479		return (EBUSY);
13480
13481	if (option >= DTRACEOPT_MAX)
13482		return (EINVAL);
13483
13484	if (option != DTRACEOPT_CPU && val < 0)
13485		return (EINVAL);
13486
13487	switch (option) {
13488	case DTRACEOPT_DESTRUCTIVE:
13489		if (dtrace_destructive_disallow)
13490			return (EACCES);
13491
13492		state->dts_cred.dcr_destructive = 1;
13493		break;
13494
13495	case DTRACEOPT_BUFSIZE:
13496	case DTRACEOPT_DYNVARSIZE:
13497	case DTRACEOPT_AGGSIZE:
13498	case DTRACEOPT_SPECSIZE:
13499	case DTRACEOPT_STRSIZE:
13500		if (val < 0)
13501			return (EINVAL);
13502
13503		if (val >= LONG_MAX) {
13504			/*
13505			 * If this is an otherwise negative value, set it to
13506			 * the highest multiple of 128m less than LONG_MAX.
13507			 * Technically, we're adjusting the size without
13508			 * regard to the buffer resizing policy, but in fact,
13509			 * this has no effect -- if we set the buffer size to
13510			 * ~LONG_MAX and the buffer policy is ultimately set to
13511			 * be "manual", the buffer allocation is guaranteed to
13512			 * fail, if only because the allocation requires two
13513			 * buffers.  (We set the the size to the highest
13514			 * multiple of 128m because it ensures that the size
13515			 * will remain a multiple of a megabyte when
13516			 * repeatedly halved -- all the way down to 15m.)
13517			 */
13518			val = LONG_MAX - (1 << 27) + 1;
13519		}
13520	}
13521
13522	state->dts_options[option] = val;
13523
13524	return (0);
13525}
13526
13527static void
13528dtrace_state_destroy(dtrace_state_t *state)
13529{
13530	dtrace_ecb_t *ecb;
13531	dtrace_vstate_t *vstate = &state->dts_vstate;
13532#if defined(sun)
13533	minor_t minor = getminor(state->dts_dev);
13534#endif
13535	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13536	dtrace_speculation_t *spec = state->dts_speculations;
13537	int nspec = state->dts_nspeculations;
13538	uint32_t match;
13539
13540	ASSERT(MUTEX_HELD(&dtrace_lock));
13541	ASSERT(MUTEX_HELD(&cpu_lock));
13542
13543	/*
13544	 * First, retract any retained enablings for this state.
13545	 */
13546	dtrace_enabling_retract(state);
13547	ASSERT(state->dts_nretained == 0);
13548
13549	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13550	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13551		/*
13552		 * We have managed to come into dtrace_state_destroy() on a
13553		 * hot enabling -- almost certainly because of a disorderly
13554		 * shutdown of a consumer.  (That is, a consumer that is
13555		 * exiting without having called dtrace_stop().) In this case,
13556		 * we're going to set our activity to be KILLED, and then
13557		 * issue a sync to be sure that everyone is out of probe
13558		 * context before we start blowing away ECBs.
13559		 */
13560		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13561		dtrace_sync();
13562	}
13563
13564	/*
13565	 * Release the credential hold we took in dtrace_state_create().
13566	 */
13567	if (state->dts_cred.dcr_cred != NULL)
13568		crfree(state->dts_cred.dcr_cred);
13569
13570	/*
13571	 * Now we can safely disable and destroy any enabled probes.  Because
13572	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13573	 * (especially if they're all enabled), we take two passes through the
13574	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13575	 * in the second we disable whatever is left over.
13576	 */
13577	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13578		for (i = 0; i < state->dts_necbs; i++) {
13579			if ((ecb = state->dts_ecbs[i]) == NULL)
13580				continue;
13581
13582			if (match && ecb->dte_probe != NULL) {
13583				dtrace_probe_t *probe = ecb->dte_probe;
13584				dtrace_provider_t *prov = probe->dtpr_provider;
13585
13586				if (!(prov->dtpv_priv.dtpp_flags & match))
13587					continue;
13588			}
13589
13590			dtrace_ecb_disable(ecb);
13591			dtrace_ecb_destroy(ecb);
13592		}
13593
13594		if (!match)
13595			break;
13596	}
13597
13598	/*
13599	 * Before we free the buffers, perform one more sync to assure that
13600	 * every CPU is out of probe context.
13601	 */
13602	dtrace_sync();
13603
13604	dtrace_buffer_free(state->dts_buffer);
13605	dtrace_buffer_free(state->dts_aggbuffer);
13606
13607	for (i = 0; i < nspec; i++)
13608		dtrace_buffer_free(spec[i].dtsp_buffer);
13609
13610#if defined(sun)
13611	if (state->dts_cleaner != CYCLIC_NONE)
13612		cyclic_remove(state->dts_cleaner);
13613
13614	if (state->dts_deadman != CYCLIC_NONE)
13615		cyclic_remove(state->dts_deadman);
13616#else
13617	callout_stop(&state->dts_cleaner);
13618	callout_drain(&state->dts_cleaner);
13619	callout_stop(&state->dts_deadman);
13620	callout_drain(&state->dts_deadman);
13621#endif
13622
13623	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13624	dtrace_vstate_fini(vstate);
13625	if (state->dts_ecbs != NULL)
13626		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13627
13628	if (state->dts_aggregations != NULL) {
13629#ifdef DEBUG
13630		for (i = 0; i < state->dts_naggregations; i++)
13631			ASSERT(state->dts_aggregations[i] == NULL);
13632#endif
13633		ASSERT(state->dts_naggregations > 0);
13634		kmem_free(state->dts_aggregations,
13635		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13636	}
13637
13638	kmem_free(state->dts_buffer, bufsize);
13639	kmem_free(state->dts_aggbuffer, bufsize);
13640
13641	for (i = 0; i < nspec; i++)
13642		kmem_free(spec[i].dtsp_buffer, bufsize);
13643
13644	if (spec != NULL)
13645		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13646
13647	dtrace_format_destroy(state);
13648
13649	if (state->dts_aggid_arena != NULL) {
13650#if defined(sun)
13651		vmem_destroy(state->dts_aggid_arena);
13652#else
13653		delete_unrhdr(state->dts_aggid_arena);
13654#endif
13655		state->dts_aggid_arena = NULL;
13656	}
13657#if defined(sun)
13658	ddi_soft_state_free(dtrace_softstate, minor);
13659	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13660#endif
13661}
13662
13663/*
13664 * DTrace Anonymous Enabling Functions
13665 */
13666static dtrace_state_t *
13667dtrace_anon_grab(void)
13668{
13669	dtrace_state_t *state;
13670
13671	ASSERT(MUTEX_HELD(&dtrace_lock));
13672
13673	if ((state = dtrace_anon.dta_state) == NULL) {
13674		ASSERT(dtrace_anon.dta_enabling == NULL);
13675		return (NULL);
13676	}
13677
13678	ASSERT(dtrace_anon.dta_enabling != NULL);
13679	ASSERT(dtrace_retained != NULL);
13680
13681	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13682	dtrace_anon.dta_enabling = NULL;
13683	dtrace_anon.dta_state = NULL;
13684
13685	return (state);
13686}
13687
13688static void
13689dtrace_anon_property(void)
13690{
13691	int i, rv;
13692	dtrace_state_t *state;
13693	dof_hdr_t *dof;
13694	char c[32];		/* enough for "dof-data-" + digits */
13695
13696	ASSERT(MUTEX_HELD(&dtrace_lock));
13697	ASSERT(MUTEX_HELD(&cpu_lock));
13698
13699	for (i = 0; ; i++) {
13700		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13701
13702		dtrace_err_verbose = 1;
13703
13704		if ((dof = dtrace_dof_property(c)) == NULL) {
13705			dtrace_err_verbose = 0;
13706			break;
13707		}
13708
13709#if defined(sun)
13710		/*
13711		 * We want to create anonymous state, so we need to transition
13712		 * the kernel debugger to indicate that DTrace is active.  If
13713		 * this fails (e.g. because the debugger has modified text in
13714		 * some way), we won't continue with the processing.
13715		 */
13716		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13717			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13718			    "enabling ignored.");
13719			dtrace_dof_destroy(dof);
13720			break;
13721		}
13722#endif
13723
13724		/*
13725		 * If we haven't allocated an anonymous state, we'll do so now.
13726		 */
13727		if ((state = dtrace_anon.dta_state) == NULL) {
13728#if defined(sun)
13729			state = dtrace_state_create(NULL, NULL);
13730#else
13731			state = dtrace_state_create(NULL);
13732#endif
13733			dtrace_anon.dta_state = state;
13734
13735			if (state == NULL) {
13736				/*
13737				 * This basically shouldn't happen:  the only
13738				 * failure mode from dtrace_state_create() is a
13739				 * failure of ddi_soft_state_zalloc() that
13740				 * itself should never happen.  Still, the
13741				 * interface allows for a failure mode, and
13742				 * we want to fail as gracefully as possible:
13743				 * we'll emit an error message and cease
13744				 * processing anonymous state in this case.
13745				 */
13746				cmn_err(CE_WARN, "failed to create "
13747				    "anonymous state");
13748				dtrace_dof_destroy(dof);
13749				break;
13750			}
13751		}
13752
13753		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13754		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13755
13756		if (rv == 0)
13757			rv = dtrace_dof_options(dof, state);
13758
13759		dtrace_err_verbose = 0;
13760		dtrace_dof_destroy(dof);
13761
13762		if (rv != 0) {
13763			/*
13764			 * This is malformed DOF; chuck any anonymous state
13765			 * that we created.
13766			 */
13767			ASSERT(dtrace_anon.dta_enabling == NULL);
13768			dtrace_state_destroy(state);
13769			dtrace_anon.dta_state = NULL;
13770			break;
13771		}
13772
13773		ASSERT(dtrace_anon.dta_enabling != NULL);
13774	}
13775
13776	if (dtrace_anon.dta_enabling != NULL) {
13777		int rval;
13778
13779		/*
13780		 * dtrace_enabling_retain() can only fail because we are
13781		 * trying to retain more enablings than are allowed -- but
13782		 * we only have one anonymous enabling, and we are guaranteed
13783		 * to be allowed at least one retained enabling; we assert
13784		 * that dtrace_enabling_retain() returns success.
13785		 */
13786		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13787		ASSERT(rval == 0);
13788
13789		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13790	}
13791}
13792
13793/*
13794 * DTrace Helper Functions
13795 */
13796static void
13797dtrace_helper_trace(dtrace_helper_action_t *helper,
13798    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13799{
13800	uint32_t size, next, nnext, i;
13801	dtrace_helptrace_t *ent;
13802	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13803
13804	if (!dtrace_helptrace_enabled)
13805		return;
13806
13807	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13808
13809	/*
13810	 * What would a tracing framework be without its own tracing
13811	 * framework?  (Well, a hell of a lot simpler, for starters...)
13812	 */
13813	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13814	    sizeof (uint64_t) - sizeof (uint64_t);
13815
13816	/*
13817	 * Iterate until we can allocate a slot in the trace buffer.
13818	 */
13819	do {
13820		next = dtrace_helptrace_next;
13821
13822		if (next + size < dtrace_helptrace_bufsize) {
13823			nnext = next + size;
13824		} else {
13825			nnext = size;
13826		}
13827	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13828
13829	/*
13830	 * We have our slot; fill it in.
13831	 */
13832	if (nnext == size)
13833		next = 0;
13834
13835	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13836	ent->dtht_helper = helper;
13837	ent->dtht_where = where;
13838	ent->dtht_nlocals = vstate->dtvs_nlocals;
13839
13840	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13841	    mstate->dtms_fltoffs : -1;
13842	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13843	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13844
13845	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13846		dtrace_statvar_t *svar;
13847
13848		if ((svar = vstate->dtvs_locals[i]) == NULL)
13849			continue;
13850
13851		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13852		ent->dtht_locals[i] =
13853		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13854	}
13855}
13856
13857static uint64_t
13858dtrace_helper(int which, dtrace_mstate_t *mstate,
13859    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13860{
13861	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13862	uint64_t sarg0 = mstate->dtms_arg[0];
13863	uint64_t sarg1 = mstate->dtms_arg[1];
13864	uint64_t rval = 0;
13865	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13866	dtrace_helper_action_t *helper;
13867	dtrace_vstate_t *vstate;
13868	dtrace_difo_t *pred;
13869	int i, trace = dtrace_helptrace_enabled;
13870
13871	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13872
13873	if (helpers == NULL)
13874		return (0);
13875
13876	if ((helper = helpers->dthps_actions[which]) == NULL)
13877		return (0);
13878
13879	vstate = &helpers->dthps_vstate;
13880	mstate->dtms_arg[0] = arg0;
13881	mstate->dtms_arg[1] = arg1;
13882
13883	/*
13884	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13885	 * we'll call the corresponding actions.  Note that the below calls
13886	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13887	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13888	 * the stored DIF offset with its own (which is the desired behavior).
13889	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13890	 * from machine state; this is okay, too.
13891	 */
13892	for (; helper != NULL; helper = helper->dtha_next) {
13893		if ((pred = helper->dtha_predicate) != NULL) {
13894			if (trace)
13895				dtrace_helper_trace(helper, mstate, vstate, 0);
13896
13897			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13898				goto next;
13899
13900			if (*flags & CPU_DTRACE_FAULT)
13901				goto err;
13902		}
13903
13904		for (i = 0; i < helper->dtha_nactions; i++) {
13905			if (trace)
13906				dtrace_helper_trace(helper,
13907				    mstate, vstate, i + 1);
13908
13909			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13910			    mstate, vstate, state);
13911
13912			if (*flags & CPU_DTRACE_FAULT)
13913				goto err;
13914		}
13915
13916next:
13917		if (trace)
13918			dtrace_helper_trace(helper, mstate, vstate,
13919			    DTRACE_HELPTRACE_NEXT);
13920	}
13921
13922	if (trace)
13923		dtrace_helper_trace(helper, mstate, vstate,
13924		    DTRACE_HELPTRACE_DONE);
13925
13926	/*
13927	 * Restore the arg0 that we saved upon entry.
13928	 */
13929	mstate->dtms_arg[0] = sarg0;
13930	mstate->dtms_arg[1] = sarg1;
13931
13932	return (rval);
13933
13934err:
13935	if (trace)
13936		dtrace_helper_trace(helper, mstate, vstate,
13937		    DTRACE_HELPTRACE_ERR);
13938
13939	/*
13940	 * Restore the arg0 that we saved upon entry.
13941	 */
13942	mstate->dtms_arg[0] = sarg0;
13943	mstate->dtms_arg[1] = sarg1;
13944
13945	return (0);
13946}
13947
13948static void
13949dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13950    dtrace_vstate_t *vstate)
13951{
13952	int i;
13953
13954	if (helper->dtha_predicate != NULL)
13955		dtrace_difo_release(helper->dtha_predicate, vstate);
13956
13957	for (i = 0; i < helper->dtha_nactions; i++) {
13958		ASSERT(helper->dtha_actions[i] != NULL);
13959		dtrace_difo_release(helper->dtha_actions[i], vstate);
13960	}
13961
13962	kmem_free(helper->dtha_actions,
13963	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13964	kmem_free(helper, sizeof (dtrace_helper_action_t));
13965}
13966
13967static int
13968dtrace_helper_destroygen(int gen)
13969{
13970	proc_t *p = curproc;
13971	dtrace_helpers_t *help = p->p_dtrace_helpers;
13972	dtrace_vstate_t *vstate;
13973	int i;
13974
13975	ASSERT(MUTEX_HELD(&dtrace_lock));
13976
13977	if (help == NULL || gen > help->dthps_generation)
13978		return (EINVAL);
13979
13980	vstate = &help->dthps_vstate;
13981
13982	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13983		dtrace_helper_action_t *last = NULL, *h, *next;
13984
13985		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13986			next = h->dtha_next;
13987
13988			if (h->dtha_generation == gen) {
13989				if (last != NULL) {
13990					last->dtha_next = next;
13991				} else {
13992					help->dthps_actions[i] = next;
13993				}
13994
13995				dtrace_helper_action_destroy(h, vstate);
13996			} else {
13997				last = h;
13998			}
13999		}
14000	}
14001
14002	/*
14003	 * Interate until we've cleared out all helper providers with the
14004	 * given generation number.
14005	 */
14006	for (;;) {
14007		dtrace_helper_provider_t *prov;
14008
14009		/*
14010		 * Look for a helper provider with the right generation. We
14011		 * have to start back at the beginning of the list each time
14012		 * because we drop dtrace_lock. It's unlikely that we'll make
14013		 * more than two passes.
14014		 */
14015		for (i = 0; i < help->dthps_nprovs; i++) {
14016			prov = help->dthps_provs[i];
14017
14018			if (prov->dthp_generation == gen)
14019				break;
14020		}
14021
14022		/*
14023		 * If there were no matches, we're done.
14024		 */
14025		if (i == help->dthps_nprovs)
14026			break;
14027
14028		/*
14029		 * Move the last helper provider into this slot.
14030		 */
14031		help->dthps_nprovs--;
14032		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14033		help->dthps_provs[help->dthps_nprovs] = NULL;
14034
14035		mutex_exit(&dtrace_lock);
14036
14037		/*
14038		 * If we have a meta provider, remove this helper provider.
14039		 */
14040		mutex_enter(&dtrace_meta_lock);
14041		if (dtrace_meta_pid != NULL) {
14042			ASSERT(dtrace_deferred_pid == NULL);
14043			dtrace_helper_provider_remove(&prov->dthp_prov,
14044			    p->p_pid);
14045		}
14046		mutex_exit(&dtrace_meta_lock);
14047
14048		dtrace_helper_provider_destroy(prov);
14049
14050		mutex_enter(&dtrace_lock);
14051	}
14052
14053	return (0);
14054}
14055
14056static int
14057dtrace_helper_validate(dtrace_helper_action_t *helper)
14058{
14059	int err = 0, i;
14060	dtrace_difo_t *dp;
14061
14062	if ((dp = helper->dtha_predicate) != NULL)
14063		err += dtrace_difo_validate_helper(dp);
14064
14065	for (i = 0; i < helper->dtha_nactions; i++)
14066		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14067
14068	return (err == 0);
14069}
14070
14071static int
14072dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14073{
14074	dtrace_helpers_t *help;
14075	dtrace_helper_action_t *helper, *last;
14076	dtrace_actdesc_t *act;
14077	dtrace_vstate_t *vstate;
14078	dtrace_predicate_t *pred;
14079	int count = 0, nactions = 0, i;
14080
14081	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14082		return (EINVAL);
14083
14084	help = curproc->p_dtrace_helpers;
14085	last = help->dthps_actions[which];
14086	vstate = &help->dthps_vstate;
14087
14088	for (count = 0; last != NULL; last = last->dtha_next) {
14089		count++;
14090		if (last->dtha_next == NULL)
14091			break;
14092	}
14093
14094	/*
14095	 * If we already have dtrace_helper_actions_max helper actions for this
14096	 * helper action type, we'll refuse to add a new one.
14097	 */
14098	if (count >= dtrace_helper_actions_max)
14099		return (ENOSPC);
14100
14101	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14102	helper->dtha_generation = help->dthps_generation;
14103
14104	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14105		ASSERT(pred->dtp_difo != NULL);
14106		dtrace_difo_hold(pred->dtp_difo);
14107		helper->dtha_predicate = pred->dtp_difo;
14108	}
14109
14110	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14111		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14112			goto err;
14113
14114		if (act->dtad_difo == NULL)
14115			goto err;
14116
14117		nactions++;
14118	}
14119
14120	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14121	    (helper->dtha_nactions = nactions), KM_SLEEP);
14122
14123	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14124		dtrace_difo_hold(act->dtad_difo);
14125		helper->dtha_actions[i++] = act->dtad_difo;
14126	}
14127
14128	if (!dtrace_helper_validate(helper))
14129		goto err;
14130
14131	if (last == NULL) {
14132		help->dthps_actions[which] = helper;
14133	} else {
14134		last->dtha_next = helper;
14135	}
14136
14137	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14138		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14139		dtrace_helptrace_next = 0;
14140	}
14141
14142	return (0);
14143err:
14144	dtrace_helper_action_destroy(helper, vstate);
14145	return (EINVAL);
14146}
14147
14148static void
14149dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14150    dof_helper_t *dofhp)
14151{
14152	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14153
14154	mutex_enter(&dtrace_meta_lock);
14155	mutex_enter(&dtrace_lock);
14156
14157	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14158		/*
14159		 * If the dtrace module is loaded but not attached, or if
14160		 * there aren't isn't a meta provider registered to deal with
14161		 * these provider descriptions, we need to postpone creating
14162		 * the actual providers until later.
14163		 */
14164
14165		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14166		    dtrace_deferred_pid != help) {
14167			help->dthps_deferred = 1;
14168			help->dthps_pid = p->p_pid;
14169			help->dthps_next = dtrace_deferred_pid;
14170			help->dthps_prev = NULL;
14171			if (dtrace_deferred_pid != NULL)
14172				dtrace_deferred_pid->dthps_prev = help;
14173			dtrace_deferred_pid = help;
14174		}
14175
14176		mutex_exit(&dtrace_lock);
14177
14178	} else if (dofhp != NULL) {
14179		/*
14180		 * If the dtrace module is loaded and we have a particular
14181		 * helper provider description, pass that off to the
14182		 * meta provider.
14183		 */
14184
14185		mutex_exit(&dtrace_lock);
14186
14187		dtrace_helper_provide(dofhp, p->p_pid);
14188
14189	} else {
14190		/*
14191		 * Otherwise, just pass all the helper provider descriptions
14192		 * off to the meta provider.
14193		 */
14194
14195		int i;
14196		mutex_exit(&dtrace_lock);
14197
14198		for (i = 0; i < help->dthps_nprovs; i++) {
14199			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14200			    p->p_pid);
14201		}
14202	}
14203
14204	mutex_exit(&dtrace_meta_lock);
14205}
14206
14207static int
14208dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14209{
14210	dtrace_helpers_t *help;
14211	dtrace_helper_provider_t *hprov, **tmp_provs;
14212	uint_t tmp_maxprovs, i;
14213
14214	ASSERT(MUTEX_HELD(&dtrace_lock));
14215
14216	help = curproc->p_dtrace_helpers;
14217	ASSERT(help != NULL);
14218
14219	/*
14220	 * If we already have dtrace_helper_providers_max helper providers,
14221	 * we're refuse to add a new one.
14222	 */
14223	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14224		return (ENOSPC);
14225
14226	/*
14227	 * Check to make sure this isn't a duplicate.
14228	 */
14229	for (i = 0; i < help->dthps_nprovs; i++) {
14230		if (dofhp->dofhp_addr ==
14231		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14232			return (EALREADY);
14233	}
14234
14235	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14236	hprov->dthp_prov = *dofhp;
14237	hprov->dthp_ref = 1;
14238	hprov->dthp_generation = gen;
14239
14240	/*
14241	 * Allocate a bigger table for helper providers if it's already full.
14242	 */
14243	if (help->dthps_maxprovs == help->dthps_nprovs) {
14244		tmp_maxprovs = help->dthps_maxprovs;
14245		tmp_provs = help->dthps_provs;
14246
14247		if (help->dthps_maxprovs == 0)
14248			help->dthps_maxprovs = 2;
14249		else
14250			help->dthps_maxprovs *= 2;
14251		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14252			help->dthps_maxprovs = dtrace_helper_providers_max;
14253
14254		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14255
14256		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14257		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14258
14259		if (tmp_provs != NULL) {
14260			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14261			    sizeof (dtrace_helper_provider_t *));
14262			kmem_free(tmp_provs, tmp_maxprovs *
14263			    sizeof (dtrace_helper_provider_t *));
14264		}
14265	}
14266
14267	help->dthps_provs[help->dthps_nprovs] = hprov;
14268	help->dthps_nprovs++;
14269
14270	return (0);
14271}
14272
14273static void
14274dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14275{
14276	mutex_enter(&dtrace_lock);
14277
14278	if (--hprov->dthp_ref == 0) {
14279		dof_hdr_t *dof;
14280		mutex_exit(&dtrace_lock);
14281		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14282		dtrace_dof_destroy(dof);
14283		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14284	} else {
14285		mutex_exit(&dtrace_lock);
14286	}
14287}
14288
14289static int
14290dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14291{
14292	uintptr_t daddr = (uintptr_t)dof;
14293	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14294	dof_provider_t *provider;
14295	dof_probe_t *probe;
14296	uint8_t *arg;
14297	char *strtab, *typestr;
14298	dof_stridx_t typeidx;
14299	size_t typesz;
14300	uint_t nprobes, j, k;
14301
14302	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14303
14304	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14305		dtrace_dof_error(dof, "misaligned section offset");
14306		return (-1);
14307	}
14308
14309	/*
14310	 * The section needs to be large enough to contain the DOF provider
14311	 * structure appropriate for the given version.
14312	 */
14313	if (sec->dofs_size <
14314	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14315	    offsetof(dof_provider_t, dofpv_prenoffs) :
14316	    sizeof (dof_provider_t))) {
14317		dtrace_dof_error(dof, "provider section too small");
14318		return (-1);
14319	}
14320
14321	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14322	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14323	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14324	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14325	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14326
14327	if (str_sec == NULL || prb_sec == NULL ||
14328	    arg_sec == NULL || off_sec == NULL)
14329		return (-1);
14330
14331	enoff_sec = NULL;
14332
14333	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14334	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14335	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14336	    provider->dofpv_prenoffs)) == NULL)
14337		return (-1);
14338
14339	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14340
14341	if (provider->dofpv_name >= str_sec->dofs_size ||
14342	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14343		dtrace_dof_error(dof, "invalid provider name");
14344		return (-1);
14345	}
14346
14347	if (prb_sec->dofs_entsize == 0 ||
14348	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14349		dtrace_dof_error(dof, "invalid entry size");
14350		return (-1);
14351	}
14352
14353	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14354		dtrace_dof_error(dof, "misaligned entry size");
14355		return (-1);
14356	}
14357
14358	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14359		dtrace_dof_error(dof, "invalid entry size");
14360		return (-1);
14361	}
14362
14363	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14364		dtrace_dof_error(dof, "misaligned section offset");
14365		return (-1);
14366	}
14367
14368	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14369		dtrace_dof_error(dof, "invalid entry size");
14370		return (-1);
14371	}
14372
14373	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14374
14375	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14376
14377	/*
14378	 * Take a pass through the probes to check for errors.
14379	 */
14380	for (j = 0; j < nprobes; j++) {
14381		probe = (dof_probe_t *)(uintptr_t)(daddr +
14382		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14383
14384		if (probe->dofpr_func >= str_sec->dofs_size) {
14385			dtrace_dof_error(dof, "invalid function name");
14386			return (-1);
14387		}
14388
14389		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14390			dtrace_dof_error(dof, "function name too long");
14391			return (-1);
14392		}
14393
14394		if (probe->dofpr_name >= str_sec->dofs_size ||
14395		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14396			dtrace_dof_error(dof, "invalid probe name");
14397			return (-1);
14398		}
14399
14400		/*
14401		 * The offset count must not wrap the index, and the offsets
14402		 * must also not overflow the section's data.
14403		 */
14404		if (probe->dofpr_offidx + probe->dofpr_noffs <
14405		    probe->dofpr_offidx ||
14406		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14407		    off_sec->dofs_entsize > off_sec->dofs_size) {
14408			dtrace_dof_error(dof, "invalid probe offset");
14409			return (-1);
14410		}
14411
14412		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14413			/*
14414			 * If there's no is-enabled offset section, make sure
14415			 * there aren't any is-enabled offsets. Otherwise
14416			 * perform the same checks as for probe offsets
14417			 * (immediately above).
14418			 */
14419			if (enoff_sec == NULL) {
14420				if (probe->dofpr_enoffidx != 0 ||
14421				    probe->dofpr_nenoffs != 0) {
14422					dtrace_dof_error(dof, "is-enabled "
14423					    "offsets with null section");
14424					return (-1);
14425				}
14426			} else if (probe->dofpr_enoffidx +
14427			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14428			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14429			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14430				dtrace_dof_error(dof, "invalid is-enabled "
14431				    "offset");
14432				return (-1);
14433			}
14434
14435			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14436				dtrace_dof_error(dof, "zero probe and "
14437				    "is-enabled offsets");
14438				return (-1);
14439			}
14440		} else if (probe->dofpr_noffs == 0) {
14441			dtrace_dof_error(dof, "zero probe offsets");
14442			return (-1);
14443		}
14444
14445		if (probe->dofpr_argidx + probe->dofpr_xargc <
14446		    probe->dofpr_argidx ||
14447		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14448		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14449			dtrace_dof_error(dof, "invalid args");
14450			return (-1);
14451		}
14452
14453		typeidx = probe->dofpr_nargv;
14454		typestr = strtab + probe->dofpr_nargv;
14455		for (k = 0; k < probe->dofpr_nargc; k++) {
14456			if (typeidx >= str_sec->dofs_size) {
14457				dtrace_dof_error(dof, "bad "
14458				    "native argument type");
14459				return (-1);
14460			}
14461
14462			typesz = strlen(typestr) + 1;
14463			if (typesz > DTRACE_ARGTYPELEN) {
14464				dtrace_dof_error(dof, "native "
14465				    "argument type too long");
14466				return (-1);
14467			}
14468			typeidx += typesz;
14469			typestr += typesz;
14470		}
14471
14472		typeidx = probe->dofpr_xargv;
14473		typestr = strtab + probe->dofpr_xargv;
14474		for (k = 0; k < probe->dofpr_xargc; k++) {
14475			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14476				dtrace_dof_error(dof, "bad "
14477				    "native argument index");
14478				return (-1);
14479			}
14480
14481			if (typeidx >= str_sec->dofs_size) {
14482				dtrace_dof_error(dof, "bad "
14483				    "translated argument type");
14484				return (-1);
14485			}
14486
14487			typesz = strlen(typestr) + 1;
14488			if (typesz > DTRACE_ARGTYPELEN) {
14489				dtrace_dof_error(dof, "translated argument "
14490				    "type too long");
14491				return (-1);
14492			}
14493
14494			typeidx += typesz;
14495			typestr += typesz;
14496		}
14497	}
14498
14499	return (0);
14500}
14501
14502static int
14503dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14504{
14505	dtrace_helpers_t *help;
14506	dtrace_vstate_t *vstate;
14507	dtrace_enabling_t *enab = NULL;
14508	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14509	uintptr_t daddr = (uintptr_t)dof;
14510
14511	ASSERT(MUTEX_HELD(&dtrace_lock));
14512
14513	if ((help = curproc->p_dtrace_helpers) == NULL)
14514		help = dtrace_helpers_create(curproc);
14515
14516	vstate = &help->dthps_vstate;
14517
14518	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14519	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14520		dtrace_dof_destroy(dof);
14521		return (rv);
14522	}
14523
14524	/*
14525	 * Look for helper providers and validate their descriptions.
14526	 */
14527	if (dhp != NULL) {
14528		for (i = 0; i < dof->dofh_secnum; i++) {
14529			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14530			    dof->dofh_secoff + i * dof->dofh_secsize);
14531
14532			if (sec->dofs_type != DOF_SECT_PROVIDER)
14533				continue;
14534
14535			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14536				dtrace_enabling_destroy(enab);
14537				dtrace_dof_destroy(dof);
14538				return (-1);
14539			}
14540
14541			nprovs++;
14542		}
14543	}
14544
14545	/*
14546	 * Now we need to walk through the ECB descriptions in the enabling.
14547	 */
14548	for (i = 0; i < enab->dten_ndesc; i++) {
14549		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14550		dtrace_probedesc_t *desc = &ep->dted_probe;
14551
14552		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14553			continue;
14554
14555		if (strcmp(desc->dtpd_mod, "helper") != 0)
14556			continue;
14557
14558		if (strcmp(desc->dtpd_func, "ustack") != 0)
14559			continue;
14560
14561		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14562		    ep)) != 0) {
14563			/*
14564			 * Adding this helper action failed -- we are now going
14565			 * to rip out the entire generation and return failure.
14566			 */
14567			(void) dtrace_helper_destroygen(help->dthps_generation);
14568			dtrace_enabling_destroy(enab);
14569			dtrace_dof_destroy(dof);
14570			return (-1);
14571		}
14572
14573		nhelpers++;
14574	}
14575
14576	if (nhelpers < enab->dten_ndesc)
14577		dtrace_dof_error(dof, "unmatched helpers");
14578
14579	gen = help->dthps_generation++;
14580	dtrace_enabling_destroy(enab);
14581
14582	if (dhp != NULL && nprovs > 0) {
14583		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14584		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14585			mutex_exit(&dtrace_lock);
14586			dtrace_helper_provider_register(curproc, help, dhp);
14587			mutex_enter(&dtrace_lock);
14588
14589			destroy = 0;
14590		}
14591	}
14592
14593	if (destroy)
14594		dtrace_dof_destroy(dof);
14595
14596	return (gen);
14597}
14598
14599static dtrace_helpers_t *
14600dtrace_helpers_create(proc_t *p)
14601{
14602	dtrace_helpers_t *help;
14603
14604	ASSERT(MUTEX_HELD(&dtrace_lock));
14605	ASSERT(p->p_dtrace_helpers == NULL);
14606
14607	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14608	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14609	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14610
14611	p->p_dtrace_helpers = help;
14612	dtrace_helpers++;
14613
14614	return (help);
14615}
14616
14617#if defined(sun)
14618static void
14619dtrace_helpers_destroy(void)
14620{
14621	dtrace_helpers_t *help;
14622	dtrace_vstate_t *vstate;
14623	proc_t *p = curproc;
14624	int i;
14625
14626	mutex_enter(&dtrace_lock);
14627
14628	ASSERT(p->p_dtrace_helpers != NULL);
14629	ASSERT(dtrace_helpers > 0);
14630
14631	help = p->p_dtrace_helpers;
14632	vstate = &help->dthps_vstate;
14633
14634	/*
14635	 * We're now going to lose the help from this process.
14636	 */
14637	p->p_dtrace_helpers = NULL;
14638	dtrace_sync();
14639
14640	/*
14641	 * Destory the helper actions.
14642	 */
14643	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14644		dtrace_helper_action_t *h, *next;
14645
14646		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14647			next = h->dtha_next;
14648			dtrace_helper_action_destroy(h, vstate);
14649			h = next;
14650		}
14651	}
14652
14653	mutex_exit(&dtrace_lock);
14654
14655	/*
14656	 * Destroy the helper providers.
14657	 */
14658	if (help->dthps_maxprovs > 0) {
14659		mutex_enter(&dtrace_meta_lock);
14660		if (dtrace_meta_pid != NULL) {
14661			ASSERT(dtrace_deferred_pid == NULL);
14662
14663			for (i = 0; i < help->dthps_nprovs; i++) {
14664				dtrace_helper_provider_remove(
14665				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14666			}
14667		} else {
14668			mutex_enter(&dtrace_lock);
14669			ASSERT(help->dthps_deferred == 0 ||
14670			    help->dthps_next != NULL ||
14671			    help->dthps_prev != NULL ||
14672			    help == dtrace_deferred_pid);
14673
14674			/*
14675			 * Remove the helper from the deferred list.
14676			 */
14677			if (help->dthps_next != NULL)
14678				help->dthps_next->dthps_prev = help->dthps_prev;
14679			if (help->dthps_prev != NULL)
14680				help->dthps_prev->dthps_next = help->dthps_next;
14681			if (dtrace_deferred_pid == help) {
14682				dtrace_deferred_pid = help->dthps_next;
14683				ASSERT(help->dthps_prev == NULL);
14684			}
14685
14686			mutex_exit(&dtrace_lock);
14687		}
14688
14689		mutex_exit(&dtrace_meta_lock);
14690
14691		for (i = 0; i < help->dthps_nprovs; i++) {
14692			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14693		}
14694
14695		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14696		    sizeof (dtrace_helper_provider_t *));
14697	}
14698
14699	mutex_enter(&dtrace_lock);
14700
14701	dtrace_vstate_fini(&help->dthps_vstate);
14702	kmem_free(help->dthps_actions,
14703	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14704	kmem_free(help, sizeof (dtrace_helpers_t));
14705
14706	--dtrace_helpers;
14707	mutex_exit(&dtrace_lock);
14708}
14709
14710static void
14711dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14712{
14713	dtrace_helpers_t *help, *newhelp;
14714	dtrace_helper_action_t *helper, *new, *last;
14715	dtrace_difo_t *dp;
14716	dtrace_vstate_t *vstate;
14717	int i, j, sz, hasprovs = 0;
14718
14719	mutex_enter(&dtrace_lock);
14720	ASSERT(from->p_dtrace_helpers != NULL);
14721	ASSERT(dtrace_helpers > 0);
14722
14723	help = from->p_dtrace_helpers;
14724	newhelp = dtrace_helpers_create(to);
14725	ASSERT(to->p_dtrace_helpers != NULL);
14726
14727	newhelp->dthps_generation = help->dthps_generation;
14728	vstate = &newhelp->dthps_vstate;
14729
14730	/*
14731	 * Duplicate the helper actions.
14732	 */
14733	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14734		if ((helper = help->dthps_actions[i]) == NULL)
14735			continue;
14736
14737		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14738			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14739			    KM_SLEEP);
14740			new->dtha_generation = helper->dtha_generation;
14741
14742			if ((dp = helper->dtha_predicate) != NULL) {
14743				dp = dtrace_difo_duplicate(dp, vstate);
14744				new->dtha_predicate = dp;
14745			}
14746
14747			new->dtha_nactions = helper->dtha_nactions;
14748			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14749			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14750
14751			for (j = 0; j < new->dtha_nactions; j++) {
14752				dtrace_difo_t *dp = helper->dtha_actions[j];
14753
14754				ASSERT(dp != NULL);
14755				dp = dtrace_difo_duplicate(dp, vstate);
14756				new->dtha_actions[j] = dp;
14757			}
14758
14759			if (last != NULL) {
14760				last->dtha_next = new;
14761			} else {
14762				newhelp->dthps_actions[i] = new;
14763			}
14764
14765			last = new;
14766		}
14767	}
14768
14769	/*
14770	 * Duplicate the helper providers and register them with the
14771	 * DTrace framework.
14772	 */
14773	if (help->dthps_nprovs > 0) {
14774		newhelp->dthps_nprovs = help->dthps_nprovs;
14775		newhelp->dthps_maxprovs = help->dthps_nprovs;
14776		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14777		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14778		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14779			newhelp->dthps_provs[i] = help->dthps_provs[i];
14780			newhelp->dthps_provs[i]->dthp_ref++;
14781		}
14782
14783		hasprovs = 1;
14784	}
14785
14786	mutex_exit(&dtrace_lock);
14787
14788	if (hasprovs)
14789		dtrace_helper_provider_register(to, newhelp, NULL);
14790}
14791#endif
14792
14793#if defined(sun)
14794/*
14795 * DTrace Hook Functions
14796 */
14797static void
14798dtrace_module_loaded(modctl_t *ctl)
14799{
14800	dtrace_provider_t *prv;
14801
14802	mutex_enter(&dtrace_provider_lock);
14803	mutex_enter(&mod_lock);
14804
14805	ASSERT(ctl->mod_busy);
14806
14807	/*
14808	 * We're going to call each providers per-module provide operation
14809	 * specifying only this module.
14810	 */
14811	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14812		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14813
14814	mutex_exit(&mod_lock);
14815	mutex_exit(&dtrace_provider_lock);
14816
14817	/*
14818	 * If we have any retained enablings, we need to match against them.
14819	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14820	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14821	 * module.  (In particular, this happens when loading scheduling
14822	 * classes.)  So if we have any retained enablings, we need to dispatch
14823	 * our task queue to do the match for us.
14824	 */
14825	mutex_enter(&dtrace_lock);
14826
14827	if (dtrace_retained == NULL) {
14828		mutex_exit(&dtrace_lock);
14829		return;
14830	}
14831
14832	(void) taskq_dispatch(dtrace_taskq,
14833	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14834
14835	mutex_exit(&dtrace_lock);
14836
14837	/*
14838	 * And now, for a little heuristic sleaze:  in general, we want to
14839	 * match modules as soon as they load.  However, we cannot guarantee
14840	 * this, because it would lead us to the lock ordering violation
14841	 * outlined above.  The common case, of course, is that cpu_lock is
14842	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14843	 * long enough for the task queue to do its work.  If it's not, it's
14844	 * not a serious problem -- it just means that the module that we
14845	 * just loaded may not be immediately instrumentable.
14846	 */
14847	delay(1);
14848}
14849
14850static void
14851dtrace_module_unloaded(modctl_t *ctl)
14852{
14853	dtrace_probe_t template, *probe, *first, *next;
14854	dtrace_provider_t *prov;
14855
14856	template.dtpr_mod = ctl->mod_modname;
14857
14858	mutex_enter(&dtrace_provider_lock);
14859	mutex_enter(&mod_lock);
14860	mutex_enter(&dtrace_lock);
14861
14862	if (dtrace_bymod == NULL) {
14863		/*
14864		 * The DTrace module is loaded (obviously) but not attached;
14865		 * we don't have any work to do.
14866		 */
14867		mutex_exit(&dtrace_provider_lock);
14868		mutex_exit(&mod_lock);
14869		mutex_exit(&dtrace_lock);
14870		return;
14871	}
14872
14873	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14874	    probe != NULL; probe = probe->dtpr_nextmod) {
14875		if (probe->dtpr_ecb != NULL) {
14876			mutex_exit(&dtrace_provider_lock);
14877			mutex_exit(&mod_lock);
14878			mutex_exit(&dtrace_lock);
14879
14880			/*
14881			 * This shouldn't _actually_ be possible -- we're
14882			 * unloading a module that has an enabled probe in it.
14883			 * (It's normally up to the provider to make sure that
14884			 * this can't happen.)  However, because dtps_enable()
14885			 * doesn't have a failure mode, there can be an
14886			 * enable/unload race.  Upshot:  we don't want to
14887			 * assert, but we're not going to disable the
14888			 * probe, either.
14889			 */
14890			if (dtrace_err_verbose) {
14891				cmn_err(CE_WARN, "unloaded module '%s' had "
14892				    "enabled probes", ctl->mod_modname);
14893			}
14894
14895			return;
14896		}
14897	}
14898
14899	probe = first;
14900
14901	for (first = NULL; probe != NULL; probe = next) {
14902		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14903
14904		dtrace_probes[probe->dtpr_id - 1] = NULL;
14905
14906		next = probe->dtpr_nextmod;
14907		dtrace_hash_remove(dtrace_bymod, probe);
14908		dtrace_hash_remove(dtrace_byfunc, probe);
14909		dtrace_hash_remove(dtrace_byname, probe);
14910
14911		if (first == NULL) {
14912			first = probe;
14913			probe->dtpr_nextmod = NULL;
14914		} else {
14915			probe->dtpr_nextmod = first;
14916			first = probe;
14917		}
14918	}
14919
14920	/*
14921	 * We've removed all of the module's probes from the hash chains and
14922	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14923	 * everyone has cleared out from any probe array processing.
14924	 */
14925	dtrace_sync();
14926
14927	for (probe = first; probe != NULL; probe = first) {
14928		first = probe->dtpr_nextmod;
14929		prov = probe->dtpr_provider;
14930		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14931		    probe->dtpr_arg);
14932		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14933		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14934		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14935		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14936		kmem_free(probe, sizeof (dtrace_probe_t));
14937	}
14938
14939	mutex_exit(&dtrace_lock);
14940	mutex_exit(&mod_lock);
14941	mutex_exit(&dtrace_provider_lock);
14942}
14943
14944static void
14945dtrace_suspend(void)
14946{
14947	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14948}
14949
14950static void
14951dtrace_resume(void)
14952{
14953	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14954}
14955#endif
14956
14957static int
14958dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14959{
14960	ASSERT(MUTEX_HELD(&cpu_lock));
14961	mutex_enter(&dtrace_lock);
14962
14963	switch (what) {
14964	case CPU_CONFIG: {
14965		dtrace_state_t *state;
14966		dtrace_optval_t *opt, rs, c;
14967
14968		/*
14969		 * For now, we only allocate a new buffer for anonymous state.
14970		 */
14971		if ((state = dtrace_anon.dta_state) == NULL)
14972			break;
14973
14974		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14975			break;
14976
14977		opt = state->dts_options;
14978		c = opt[DTRACEOPT_CPU];
14979
14980		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14981			break;
14982
14983		/*
14984		 * Regardless of what the actual policy is, we're going to
14985		 * temporarily set our resize policy to be manual.  We're
14986		 * also going to temporarily set our CPU option to denote
14987		 * the newly configured CPU.
14988		 */
14989		rs = opt[DTRACEOPT_BUFRESIZE];
14990		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14991		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14992
14993		(void) dtrace_state_buffers(state);
14994
14995		opt[DTRACEOPT_BUFRESIZE] = rs;
14996		opt[DTRACEOPT_CPU] = c;
14997
14998		break;
14999	}
15000
15001	case CPU_UNCONFIG:
15002		/*
15003		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15004		 * buffer will be freed when the consumer exits.)
15005		 */
15006		break;
15007
15008	default:
15009		break;
15010	}
15011
15012	mutex_exit(&dtrace_lock);
15013	return (0);
15014}
15015
15016#if defined(sun)
15017static void
15018dtrace_cpu_setup_initial(processorid_t cpu)
15019{
15020	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15021}
15022#endif
15023
15024static void
15025dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15026{
15027	if (dtrace_toxranges >= dtrace_toxranges_max) {
15028		int osize, nsize;
15029		dtrace_toxrange_t *range;
15030
15031		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15032
15033		if (osize == 0) {
15034			ASSERT(dtrace_toxrange == NULL);
15035			ASSERT(dtrace_toxranges_max == 0);
15036			dtrace_toxranges_max = 1;
15037		} else {
15038			dtrace_toxranges_max <<= 1;
15039		}
15040
15041		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15042		range = kmem_zalloc(nsize, KM_SLEEP);
15043
15044		if (dtrace_toxrange != NULL) {
15045			ASSERT(osize != 0);
15046			bcopy(dtrace_toxrange, range, osize);
15047			kmem_free(dtrace_toxrange, osize);
15048		}
15049
15050		dtrace_toxrange = range;
15051	}
15052
15053	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15054	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15055
15056	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15057	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15058	dtrace_toxranges++;
15059}
15060
15061/*
15062 * DTrace Driver Cookbook Functions
15063 */
15064#if defined(sun)
15065/*ARGSUSED*/
15066static int
15067dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15068{
15069	dtrace_provider_id_t id;
15070	dtrace_state_t *state = NULL;
15071	dtrace_enabling_t *enab;
15072
15073	mutex_enter(&cpu_lock);
15074	mutex_enter(&dtrace_provider_lock);
15075	mutex_enter(&dtrace_lock);
15076
15077	if (ddi_soft_state_init(&dtrace_softstate,
15078	    sizeof (dtrace_state_t), 0) != 0) {
15079		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15080		mutex_exit(&cpu_lock);
15081		mutex_exit(&dtrace_provider_lock);
15082		mutex_exit(&dtrace_lock);
15083		return (DDI_FAILURE);
15084	}
15085
15086	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15087	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15088	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15089	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15090		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15091		ddi_remove_minor_node(devi, NULL);
15092		ddi_soft_state_fini(&dtrace_softstate);
15093		mutex_exit(&cpu_lock);
15094		mutex_exit(&dtrace_provider_lock);
15095		mutex_exit(&dtrace_lock);
15096		return (DDI_FAILURE);
15097	}
15098
15099	ddi_report_dev(devi);
15100	dtrace_devi = devi;
15101
15102	dtrace_modload = dtrace_module_loaded;
15103	dtrace_modunload = dtrace_module_unloaded;
15104	dtrace_cpu_init = dtrace_cpu_setup_initial;
15105	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15106	dtrace_helpers_fork = dtrace_helpers_duplicate;
15107	dtrace_cpustart_init = dtrace_suspend;
15108	dtrace_cpustart_fini = dtrace_resume;
15109	dtrace_debugger_init = dtrace_suspend;
15110	dtrace_debugger_fini = dtrace_resume;
15111
15112	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15113
15114	ASSERT(MUTEX_HELD(&cpu_lock));
15115
15116	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15117	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15118	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15119	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15120	    VM_SLEEP | VMC_IDENTIFIER);
15121	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15122	    1, INT_MAX, 0);
15123
15124	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15125	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15126	    NULL, NULL, NULL, NULL, NULL, 0);
15127
15128	ASSERT(MUTEX_HELD(&cpu_lock));
15129	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15130	    offsetof(dtrace_probe_t, dtpr_nextmod),
15131	    offsetof(dtrace_probe_t, dtpr_prevmod));
15132
15133	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15134	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15135	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15136
15137	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15138	    offsetof(dtrace_probe_t, dtpr_nextname),
15139	    offsetof(dtrace_probe_t, dtpr_prevname));
15140
15141	if (dtrace_retain_max < 1) {
15142		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15143		    "setting to 1", dtrace_retain_max);
15144		dtrace_retain_max = 1;
15145	}
15146
15147	/*
15148	 * Now discover our toxic ranges.
15149	 */
15150	dtrace_toxic_ranges(dtrace_toxrange_add);
15151
15152	/*
15153	 * Before we register ourselves as a provider to our own framework,
15154	 * we would like to assert that dtrace_provider is NULL -- but that's
15155	 * not true if we were loaded as a dependency of a DTrace provider.
15156	 * Once we've registered, we can assert that dtrace_provider is our
15157	 * pseudo provider.
15158	 */
15159	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15160	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15161
15162	ASSERT(dtrace_provider != NULL);
15163	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15164
15165	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15166	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15167	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15168	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15169	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15170	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15171
15172	dtrace_anon_property();
15173	mutex_exit(&cpu_lock);
15174
15175	/*
15176	 * If DTrace helper tracing is enabled, we need to allocate the
15177	 * trace buffer and initialize the values.
15178	 */
15179	if (dtrace_helptrace_enabled) {
15180		ASSERT(dtrace_helptrace_buffer == NULL);
15181		dtrace_helptrace_buffer =
15182		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15183		dtrace_helptrace_next = 0;
15184	}
15185
15186	/*
15187	 * If there are already providers, we must ask them to provide their
15188	 * probes, and then match any anonymous enabling against them.  Note
15189	 * that there should be no other retained enablings at this time:
15190	 * the only retained enablings at this time should be the anonymous
15191	 * enabling.
15192	 */
15193	if (dtrace_anon.dta_enabling != NULL) {
15194		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15195
15196		dtrace_enabling_provide(NULL);
15197		state = dtrace_anon.dta_state;
15198
15199		/*
15200		 * We couldn't hold cpu_lock across the above call to
15201		 * dtrace_enabling_provide(), but we must hold it to actually
15202		 * enable the probes.  We have to drop all of our locks, pick
15203		 * up cpu_lock, and regain our locks before matching the
15204		 * retained anonymous enabling.
15205		 */
15206		mutex_exit(&dtrace_lock);
15207		mutex_exit(&dtrace_provider_lock);
15208
15209		mutex_enter(&cpu_lock);
15210		mutex_enter(&dtrace_provider_lock);
15211		mutex_enter(&dtrace_lock);
15212
15213		if ((enab = dtrace_anon.dta_enabling) != NULL)
15214			(void) dtrace_enabling_match(enab, NULL);
15215
15216		mutex_exit(&cpu_lock);
15217	}
15218
15219	mutex_exit(&dtrace_lock);
15220	mutex_exit(&dtrace_provider_lock);
15221
15222	if (state != NULL) {
15223		/*
15224		 * If we created any anonymous state, set it going now.
15225		 */
15226		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15227	}
15228
15229	return (DDI_SUCCESS);
15230}
15231#endif
15232
15233#if !defined(sun)
15234#if __FreeBSD_version >= 800039
15235static void
15236dtrace_dtr(void *data __unused)
15237{
15238}
15239#endif
15240#endif
15241
15242/*ARGSUSED*/
15243static int
15244#if defined(sun)
15245dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15246#else
15247dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15248#endif
15249{
15250	dtrace_state_t *state;
15251	uint32_t priv;
15252	uid_t uid;
15253	zoneid_t zoneid;
15254
15255#if defined(sun)
15256	if (getminor(*devp) == DTRACEMNRN_HELPER)
15257		return (0);
15258
15259	/*
15260	 * If this wasn't an open with the "helper" minor, then it must be
15261	 * the "dtrace" minor.
15262	 */
15263	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15264#else
15265	cred_t *cred_p = NULL;
15266
15267#if __FreeBSD_version < 800039
15268	/*
15269	 * The first minor device is the one that is cloned so there is
15270	 * nothing more to do here.
15271	 */
15272	if (dev2unit(dev) == 0)
15273		return 0;
15274
15275	/*
15276	 * Devices are cloned, so if the DTrace state has already
15277	 * been allocated, that means this device belongs to a
15278	 * different client. Each client should open '/dev/dtrace'
15279	 * to get a cloned device.
15280	 */
15281	if (dev->si_drv1 != NULL)
15282		return (EBUSY);
15283#endif
15284
15285	cred_p = dev->si_cred;
15286#endif
15287
15288	/*
15289	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15290	 * caller lacks sufficient permission to do anything with DTrace.
15291	 */
15292	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15293	if (priv == DTRACE_PRIV_NONE) {
15294#if !defined(sun)
15295#if __FreeBSD_version < 800039
15296		/* Destroy the cloned device. */
15297                destroy_dev(dev);
15298#endif
15299#endif
15300
15301		return (EACCES);
15302	}
15303
15304	/*
15305	 * Ask all providers to provide all their probes.
15306	 */
15307	mutex_enter(&dtrace_provider_lock);
15308	dtrace_probe_provide(NULL, NULL);
15309	mutex_exit(&dtrace_provider_lock);
15310
15311	mutex_enter(&cpu_lock);
15312	mutex_enter(&dtrace_lock);
15313	dtrace_opens++;
15314	dtrace_membar_producer();
15315
15316#if defined(sun)
15317	/*
15318	 * If the kernel debugger is active (that is, if the kernel debugger
15319	 * modified text in some way), we won't allow the open.
15320	 */
15321	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15322		dtrace_opens--;
15323		mutex_exit(&cpu_lock);
15324		mutex_exit(&dtrace_lock);
15325		return (EBUSY);
15326	}
15327
15328	state = dtrace_state_create(devp, cred_p);
15329#else
15330	state = dtrace_state_create(dev);
15331#if __FreeBSD_version < 800039
15332	dev->si_drv1 = state;
15333#else
15334	devfs_set_cdevpriv(state, dtrace_dtr);
15335#endif
15336#endif
15337
15338	mutex_exit(&cpu_lock);
15339
15340	if (state == NULL) {
15341#if defined(sun)
15342		if (--dtrace_opens == 0)
15343			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15344#else
15345		--dtrace_opens;
15346#endif
15347		mutex_exit(&dtrace_lock);
15348#if !defined(sun)
15349#if __FreeBSD_version < 800039
15350		/* Destroy the cloned device. */
15351                destroy_dev(dev);
15352#endif
15353#endif
15354		return (EAGAIN);
15355	}
15356
15357	mutex_exit(&dtrace_lock);
15358
15359	return (0);
15360}
15361
15362/*ARGSUSED*/
15363static int
15364#if defined(sun)
15365dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15366#else
15367dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15368#endif
15369{
15370#if defined(sun)
15371	minor_t minor = getminor(dev);
15372	dtrace_state_t *state;
15373
15374	if (minor == DTRACEMNRN_HELPER)
15375		return (0);
15376
15377	state = ddi_get_soft_state(dtrace_softstate, minor);
15378#else
15379#if __FreeBSD_version < 800039
15380	dtrace_state_t *state = dev->si_drv1;
15381
15382	/* Check if this is not a cloned device. */
15383	if (dev2unit(dev) == 0)
15384		return (0);
15385#else
15386	dtrace_state_t *state;
15387	devfs_get_cdevpriv((void **) &state);
15388#endif
15389
15390#endif
15391
15392	mutex_enter(&cpu_lock);
15393	mutex_enter(&dtrace_lock);
15394
15395	if (state != NULL) {
15396		if (state->dts_anon) {
15397			/*
15398			 * There is anonymous state. Destroy that first.
15399			 */
15400			ASSERT(dtrace_anon.dta_state == NULL);
15401			dtrace_state_destroy(state->dts_anon);
15402		}
15403
15404		dtrace_state_destroy(state);
15405
15406#if !defined(sun)
15407		kmem_free(state, 0);
15408#if __FreeBSD_version < 800039
15409		dev->si_drv1 = NULL;
15410#else
15411		devfs_clear_cdevpriv();
15412#endif
15413#endif
15414	}
15415
15416	ASSERT(dtrace_opens > 0);
15417#if defined(sun)
15418	if (--dtrace_opens == 0)
15419		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15420#else
15421	--dtrace_opens;
15422#endif
15423
15424	mutex_exit(&dtrace_lock);
15425	mutex_exit(&cpu_lock);
15426
15427#if __FreeBSD_version < 800039
15428	/* Schedule this cloned device to be destroyed. */
15429	destroy_dev_sched(dev);
15430#endif
15431
15432	return (0);
15433}
15434
15435#if defined(sun)
15436/*ARGSUSED*/
15437static int
15438dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15439{
15440	int rval;
15441	dof_helper_t help, *dhp = NULL;
15442
15443	switch (cmd) {
15444	case DTRACEHIOC_ADDDOF:
15445		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15446			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15447			return (EFAULT);
15448		}
15449
15450		dhp = &help;
15451		arg = (intptr_t)help.dofhp_dof;
15452		/*FALLTHROUGH*/
15453
15454	case DTRACEHIOC_ADD: {
15455		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15456
15457		if (dof == NULL)
15458			return (rval);
15459
15460		mutex_enter(&dtrace_lock);
15461
15462		/*
15463		 * dtrace_helper_slurp() takes responsibility for the dof --
15464		 * it may free it now or it may save it and free it later.
15465		 */
15466		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15467			*rv = rval;
15468			rval = 0;
15469		} else {
15470			rval = EINVAL;
15471		}
15472
15473		mutex_exit(&dtrace_lock);
15474		return (rval);
15475	}
15476
15477	case DTRACEHIOC_REMOVE: {
15478		mutex_enter(&dtrace_lock);
15479		rval = dtrace_helper_destroygen(arg);
15480		mutex_exit(&dtrace_lock);
15481
15482		return (rval);
15483	}
15484
15485	default:
15486		break;
15487	}
15488
15489	return (ENOTTY);
15490}
15491
15492/*ARGSUSED*/
15493static int
15494dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15495{
15496	minor_t minor = getminor(dev);
15497	dtrace_state_t *state;
15498	int rval;
15499
15500	if (minor == DTRACEMNRN_HELPER)
15501		return (dtrace_ioctl_helper(cmd, arg, rv));
15502
15503	state = ddi_get_soft_state(dtrace_softstate, minor);
15504
15505	if (state->dts_anon) {
15506		ASSERT(dtrace_anon.dta_state == NULL);
15507		state = state->dts_anon;
15508	}
15509
15510	switch (cmd) {
15511	case DTRACEIOC_PROVIDER: {
15512		dtrace_providerdesc_t pvd;
15513		dtrace_provider_t *pvp;
15514
15515		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15516			return (EFAULT);
15517
15518		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15519		mutex_enter(&dtrace_provider_lock);
15520
15521		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15522			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15523				break;
15524		}
15525
15526		mutex_exit(&dtrace_provider_lock);
15527
15528		if (pvp == NULL)
15529			return (ESRCH);
15530
15531		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15532		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15533
15534		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15535			return (EFAULT);
15536
15537		return (0);
15538	}
15539
15540	case DTRACEIOC_EPROBE: {
15541		dtrace_eprobedesc_t epdesc;
15542		dtrace_ecb_t *ecb;
15543		dtrace_action_t *act;
15544		void *buf;
15545		size_t size;
15546		uintptr_t dest;
15547		int nrecs;
15548
15549		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15550			return (EFAULT);
15551
15552		mutex_enter(&dtrace_lock);
15553
15554		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15555			mutex_exit(&dtrace_lock);
15556			return (EINVAL);
15557		}
15558
15559		if (ecb->dte_probe == NULL) {
15560			mutex_exit(&dtrace_lock);
15561			return (EINVAL);
15562		}
15563
15564		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15565		epdesc.dtepd_uarg = ecb->dte_uarg;
15566		epdesc.dtepd_size = ecb->dte_size;
15567
15568		nrecs = epdesc.dtepd_nrecs;
15569		epdesc.dtepd_nrecs = 0;
15570		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15571			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15572				continue;
15573
15574			epdesc.dtepd_nrecs++;
15575		}
15576
15577		/*
15578		 * Now that we have the size, we need to allocate a temporary
15579		 * buffer in which to store the complete description.  We need
15580		 * the temporary buffer to be able to drop dtrace_lock()
15581		 * across the copyout(), below.
15582		 */
15583		size = sizeof (dtrace_eprobedesc_t) +
15584		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15585
15586		buf = kmem_alloc(size, KM_SLEEP);
15587		dest = (uintptr_t)buf;
15588
15589		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15590		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15591
15592		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15593			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15594				continue;
15595
15596			if (nrecs-- == 0)
15597				break;
15598
15599			bcopy(&act->dta_rec, (void *)dest,
15600			    sizeof (dtrace_recdesc_t));
15601			dest += sizeof (dtrace_recdesc_t);
15602		}
15603
15604		mutex_exit(&dtrace_lock);
15605
15606		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15607			kmem_free(buf, size);
15608			return (EFAULT);
15609		}
15610
15611		kmem_free(buf, size);
15612		return (0);
15613	}
15614
15615	case DTRACEIOC_AGGDESC: {
15616		dtrace_aggdesc_t aggdesc;
15617		dtrace_action_t *act;
15618		dtrace_aggregation_t *agg;
15619		int nrecs;
15620		uint32_t offs;
15621		dtrace_recdesc_t *lrec;
15622		void *buf;
15623		size_t size;
15624		uintptr_t dest;
15625
15626		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15627			return (EFAULT);
15628
15629		mutex_enter(&dtrace_lock);
15630
15631		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15632			mutex_exit(&dtrace_lock);
15633			return (EINVAL);
15634		}
15635
15636		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15637
15638		nrecs = aggdesc.dtagd_nrecs;
15639		aggdesc.dtagd_nrecs = 0;
15640
15641		offs = agg->dtag_base;
15642		lrec = &agg->dtag_action.dta_rec;
15643		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15644
15645		for (act = agg->dtag_first; ; act = act->dta_next) {
15646			ASSERT(act->dta_intuple ||
15647			    DTRACEACT_ISAGG(act->dta_kind));
15648
15649			/*
15650			 * If this action has a record size of zero, it
15651			 * denotes an argument to the aggregating action.
15652			 * Because the presence of this record doesn't (or
15653			 * shouldn't) affect the way the data is interpreted,
15654			 * we don't copy it out to save user-level the
15655			 * confusion of dealing with a zero-length record.
15656			 */
15657			if (act->dta_rec.dtrd_size == 0) {
15658				ASSERT(agg->dtag_hasarg);
15659				continue;
15660			}
15661
15662			aggdesc.dtagd_nrecs++;
15663
15664			if (act == &agg->dtag_action)
15665				break;
15666		}
15667
15668		/*
15669		 * Now that we have the size, we need to allocate a temporary
15670		 * buffer in which to store the complete description.  We need
15671		 * the temporary buffer to be able to drop dtrace_lock()
15672		 * across the copyout(), below.
15673		 */
15674		size = sizeof (dtrace_aggdesc_t) +
15675		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15676
15677		buf = kmem_alloc(size, KM_SLEEP);
15678		dest = (uintptr_t)buf;
15679
15680		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15681		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15682
15683		for (act = agg->dtag_first; ; act = act->dta_next) {
15684			dtrace_recdesc_t rec = act->dta_rec;
15685
15686			/*
15687			 * See the comment in the above loop for why we pass
15688			 * over zero-length records.
15689			 */
15690			if (rec.dtrd_size == 0) {
15691				ASSERT(agg->dtag_hasarg);
15692				continue;
15693			}
15694
15695			if (nrecs-- == 0)
15696				break;
15697
15698			rec.dtrd_offset -= offs;
15699			bcopy(&rec, (void *)dest, sizeof (rec));
15700			dest += sizeof (dtrace_recdesc_t);
15701
15702			if (act == &agg->dtag_action)
15703				break;
15704		}
15705
15706		mutex_exit(&dtrace_lock);
15707
15708		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15709			kmem_free(buf, size);
15710			return (EFAULT);
15711		}
15712
15713		kmem_free(buf, size);
15714		return (0);
15715	}
15716
15717	case DTRACEIOC_ENABLE: {
15718		dof_hdr_t *dof;
15719		dtrace_enabling_t *enab = NULL;
15720		dtrace_vstate_t *vstate;
15721		int err = 0;
15722
15723		*rv = 0;
15724
15725		/*
15726		 * If a NULL argument has been passed, we take this as our
15727		 * cue to reevaluate our enablings.
15728		 */
15729		if (arg == NULL) {
15730			dtrace_enabling_matchall();
15731
15732			return (0);
15733		}
15734
15735		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15736			return (rval);
15737
15738		mutex_enter(&cpu_lock);
15739		mutex_enter(&dtrace_lock);
15740		vstate = &state->dts_vstate;
15741
15742		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15743			mutex_exit(&dtrace_lock);
15744			mutex_exit(&cpu_lock);
15745			dtrace_dof_destroy(dof);
15746			return (EBUSY);
15747		}
15748
15749		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15750			mutex_exit(&dtrace_lock);
15751			mutex_exit(&cpu_lock);
15752			dtrace_dof_destroy(dof);
15753			return (EINVAL);
15754		}
15755
15756		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15757			dtrace_enabling_destroy(enab);
15758			mutex_exit(&dtrace_lock);
15759			mutex_exit(&cpu_lock);
15760			dtrace_dof_destroy(dof);
15761			return (rval);
15762		}
15763
15764		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15765			err = dtrace_enabling_retain(enab);
15766		} else {
15767			dtrace_enabling_destroy(enab);
15768		}
15769
15770		mutex_exit(&cpu_lock);
15771		mutex_exit(&dtrace_lock);
15772		dtrace_dof_destroy(dof);
15773
15774		return (err);
15775	}
15776
15777	case DTRACEIOC_REPLICATE: {
15778		dtrace_repldesc_t desc;
15779		dtrace_probedesc_t *match = &desc.dtrpd_match;
15780		dtrace_probedesc_t *create = &desc.dtrpd_create;
15781		int err;
15782
15783		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15784			return (EFAULT);
15785
15786		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15787		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15788		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15789		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15790
15791		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15792		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15793		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15794		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15795
15796		mutex_enter(&dtrace_lock);
15797		err = dtrace_enabling_replicate(state, match, create);
15798		mutex_exit(&dtrace_lock);
15799
15800		return (err);
15801	}
15802
15803	case DTRACEIOC_PROBEMATCH:
15804	case DTRACEIOC_PROBES: {
15805		dtrace_probe_t *probe = NULL;
15806		dtrace_probedesc_t desc;
15807		dtrace_probekey_t pkey;
15808		dtrace_id_t i;
15809		int m = 0;
15810		uint32_t priv;
15811		uid_t uid;
15812		zoneid_t zoneid;
15813
15814		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15815			return (EFAULT);
15816
15817		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15818		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15819		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15820		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15821
15822		/*
15823		 * Before we attempt to match this probe, we want to give
15824		 * all providers the opportunity to provide it.
15825		 */
15826		if (desc.dtpd_id == DTRACE_IDNONE) {
15827			mutex_enter(&dtrace_provider_lock);
15828			dtrace_probe_provide(&desc, NULL);
15829			mutex_exit(&dtrace_provider_lock);
15830			desc.dtpd_id++;
15831		}
15832
15833		if (cmd == DTRACEIOC_PROBEMATCH)  {
15834			dtrace_probekey(&desc, &pkey);
15835			pkey.dtpk_id = DTRACE_IDNONE;
15836		}
15837
15838		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15839
15840		mutex_enter(&dtrace_lock);
15841
15842		if (cmd == DTRACEIOC_PROBEMATCH) {
15843			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15844				if ((probe = dtrace_probes[i - 1]) != NULL &&
15845				    (m = dtrace_match_probe(probe, &pkey,
15846				    priv, uid, zoneid)) != 0)
15847					break;
15848			}
15849
15850			if (m < 0) {
15851				mutex_exit(&dtrace_lock);
15852				return (EINVAL);
15853			}
15854
15855		} else {
15856			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15857				if ((probe = dtrace_probes[i - 1]) != NULL &&
15858				    dtrace_match_priv(probe, priv, uid, zoneid))
15859					break;
15860			}
15861		}
15862
15863		if (probe == NULL) {
15864			mutex_exit(&dtrace_lock);
15865			return (ESRCH);
15866		}
15867
15868		dtrace_probe_description(probe, &desc);
15869		mutex_exit(&dtrace_lock);
15870
15871		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15872			return (EFAULT);
15873
15874		return (0);
15875	}
15876
15877	case DTRACEIOC_PROBEARG: {
15878		dtrace_argdesc_t desc;
15879		dtrace_probe_t *probe;
15880		dtrace_provider_t *prov;
15881
15882		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15883			return (EFAULT);
15884
15885		if (desc.dtargd_id == DTRACE_IDNONE)
15886			return (EINVAL);
15887
15888		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15889			return (EINVAL);
15890
15891		mutex_enter(&dtrace_provider_lock);
15892		mutex_enter(&mod_lock);
15893		mutex_enter(&dtrace_lock);
15894
15895		if (desc.dtargd_id > dtrace_nprobes) {
15896			mutex_exit(&dtrace_lock);
15897			mutex_exit(&mod_lock);
15898			mutex_exit(&dtrace_provider_lock);
15899			return (EINVAL);
15900		}
15901
15902		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15903			mutex_exit(&dtrace_lock);
15904			mutex_exit(&mod_lock);
15905			mutex_exit(&dtrace_provider_lock);
15906			return (EINVAL);
15907		}
15908
15909		mutex_exit(&dtrace_lock);
15910
15911		prov = probe->dtpr_provider;
15912
15913		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15914			/*
15915			 * There isn't any typed information for this probe.
15916			 * Set the argument number to DTRACE_ARGNONE.
15917			 */
15918			desc.dtargd_ndx = DTRACE_ARGNONE;
15919		} else {
15920			desc.dtargd_native[0] = '\0';
15921			desc.dtargd_xlate[0] = '\0';
15922			desc.dtargd_mapping = desc.dtargd_ndx;
15923
15924			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15925			    probe->dtpr_id, probe->dtpr_arg, &desc);
15926		}
15927
15928		mutex_exit(&mod_lock);
15929		mutex_exit(&dtrace_provider_lock);
15930
15931		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15932			return (EFAULT);
15933
15934		return (0);
15935	}
15936
15937	case DTRACEIOC_GO: {
15938		processorid_t cpuid;
15939		rval = dtrace_state_go(state, &cpuid);
15940
15941		if (rval != 0)
15942			return (rval);
15943
15944		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15945			return (EFAULT);
15946
15947		return (0);
15948	}
15949
15950	case DTRACEIOC_STOP: {
15951		processorid_t cpuid;
15952
15953		mutex_enter(&dtrace_lock);
15954		rval = dtrace_state_stop(state, &cpuid);
15955		mutex_exit(&dtrace_lock);
15956
15957		if (rval != 0)
15958			return (rval);
15959
15960		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15961			return (EFAULT);
15962
15963		return (0);
15964	}
15965
15966	case DTRACEIOC_DOFGET: {
15967		dof_hdr_t hdr, *dof;
15968		uint64_t len;
15969
15970		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15971			return (EFAULT);
15972
15973		mutex_enter(&dtrace_lock);
15974		dof = dtrace_dof_create(state);
15975		mutex_exit(&dtrace_lock);
15976
15977		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15978		rval = copyout(dof, (void *)arg, len);
15979		dtrace_dof_destroy(dof);
15980
15981		return (rval == 0 ? 0 : EFAULT);
15982	}
15983
15984	case DTRACEIOC_AGGSNAP:
15985	case DTRACEIOC_BUFSNAP: {
15986		dtrace_bufdesc_t desc;
15987		caddr_t cached;
15988		dtrace_buffer_t *buf;
15989
15990		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15991			return (EFAULT);
15992
15993		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15994			return (EINVAL);
15995
15996		mutex_enter(&dtrace_lock);
15997
15998		if (cmd == DTRACEIOC_BUFSNAP) {
15999			buf = &state->dts_buffer[desc.dtbd_cpu];
16000		} else {
16001			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16002		}
16003
16004		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16005			size_t sz = buf->dtb_offset;
16006
16007			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16008				mutex_exit(&dtrace_lock);
16009				return (EBUSY);
16010			}
16011
16012			/*
16013			 * If this buffer has already been consumed, we're
16014			 * going to indicate that there's nothing left here
16015			 * to consume.
16016			 */
16017			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16018				mutex_exit(&dtrace_lock);
16019
16020				desc.dtbd_size = 0;
16021				desc.dtbd_drops = 0;
16022				desc.dtbd_errors = 0;
16023				desc.dtbd_oldest = 0;
16024				sz = sizeof (desc);
16025
16026				if (copyout(&desc, (void *)arg, sz) != 0)
16027					return (EFAULT);
16028
16029				return (0);
16030			}
16031
16032			/*
16033			 * If this is a ring buffer that has wrapped, we want
16034			 * to copy the whole thing out.
16035			 */
16036			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16037				dtrace_buffer_polish(buf);
16038				sz = buf->dtb_size;
16039			}
16040
16041			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16042				mutex_exit(&dtrace_lock);
16043				return (EFAULT);
16044			}
16045
16046			desc.dtbd_size = sz;
16047			desc.dtbd_drops = buf->dtb_drops;
16048			desc.dtbd_errors = buf->dtb_errors;
16049			desc.dtbd_oldest = buf->dtb_xamot_offset;
16050
16051			mutex_exit(&dtrace_lock);
16052
16053			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16054				return (EFAULT);
16055
16056			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16057
16058			return (0);
16059		}
16060
16061		if (buf->dtb_tomax == NULL) {
16062			ASSERT(buf->dtb_xamot == NULL);
16063			mutex_exit(&dtrace_lock);
16064			return (ENOENT);
16065		}
16066
16067		cached = buf->dtb_tomax;
16068		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16069
16070		dtrace_xcall(desc.dtbd_cpu,
16071		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16072
16073		state->dts_errors += buf->dtb_xamot_errors;
16074
16075		/*
16076		 * If the buffers did not actually switch, then the cross call
16077		 * did not take place -- presumably because the given CPU is
16078		 * not in the ready set.  If this is the case, we'll return
16079		 * ENOENT.
16080		 */
16081		if (buf->dtb_tomax == cached) {
16082			ASSERT(buf->dtb_xamot != cached);
16083			mutex_exit(&dtrace_lock);
16084			return (ENOENT);
16085		}
16086
16087		ASSERT(cached == buf->dtb_xamot);
16088
16089		/*
16090		 * We have our snapshot; now copy it out.
16091		 */
16092		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16093		    buf->dtb_xamot_offset) != 0) {
16094			mutex_exit(&dtrace_lock);
16095			return (EFAULT);
16096		}
16097
16098		desc.dtbd_size = buf->dtb_xamot_offset;
16099		desc.dtbd_drops = buf->dtb_xamot_drops;
16100		desc.dtbd_errors = buf->dtb_xamot_errors;
16101		desc.dtbd_oldest = 0;
16102
16103		mutex_exit(&dtrace_lock);
16104
16105		/*
16106		 * Finally, copy out the buffer description.
16107		 */
16108		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16109			return (EFAULT);
16110
16111		return (0);
16112	}
16113
16114	case DTRACEIOC_CONF: {
16115		dtrace_conf_t conf;
16116
16117		bzero(&conf, sizeof (conf));
16118		conf.dtc_difversion = DIF_VERSION;
16119		conf.dtc_difintregs = DIF_DIR_NREGS;
16120		conf.dtc_diftupregs = DIF_DTR_NREGS;
16121		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16122
16123		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16124			return (EFAULT);
16125
16126		return (0);
16127	}
16128
16129	case DTRACEIOC_STATUS: {
16130		dtrace_status_t stat;
16131		dtrace_dstate_t *dstate;
16132		int i, j;
16133		uint64_t nerrs;
16134
16135		/*
16136		 * See the comment in dtrace_state_deadman() for the reason
16137		 * for setting dts_laststatus to INT64_MAX before setting
16138		 * it to the correct value.
16139		 */
16140		state->dts_laststatus = INT64_MAX;
16141		dtrace_membar_producer();
16142		state->dts_laststatus = dtrace_gethrtime();
16143
16144		bzero(&stat, sizeof (stat));
16145
16146		mutex_enter(&dtrace_lock);
16147
16148		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16149			mutex_exit(&dtrace_lock);
16150			return (ENOENT);
16151		}
16152
16153		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16154			stat.dtst_exiting = 1;
16155
16156		nerrs = state->dts_errors;
16157		dstate = &state->dts_vstate.dtvs_dynvars;
16158
16159		for (i = 0; i < NCPU; i++) {
16160			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16161
16162			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16163			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16164			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16165
16166			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16167				stat.dtst_filled++;
16168
16169			nerrs += state->dts_buffer[i].dtb_errors;
16170
16171			for (j = 0; j < state->dts_nspeculations; j++) {
16172				dtrace_speculation_t *spec;
16173				dtrace_buffer_t *buf;
16174
16175				spec = &state->dts_speculations[j];
16176				buf = &spec->dtsp_buffer[i];
16177				stat.dtst_specdrops += buf->dtb_xamot_drops;
16178			}
16179		}
16180
16181		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16182		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16183		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16184		stat.dtst_dblerrors = state->dts_dblerrors;
16185		stat.dtst_killed =
16186		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16187		stat.dtst_errors = nerrs;
16188
16189		mutex_exit(&dtrace_lock);
16190
16191		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16192			return (EFAULT);
16193
16194		return (0);
16195	}
16196
16197	case DTRACEIOC_FORMAT: {
16198		dtrace_fmtdesc_t fmt;
16199		char *str;
16200		int len;
16201
16202		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16203			return (EFAULT);
16204
16205		mutex_enter(&dtrace_lock);
16206
16207		if (fmt.dtfd_format == 0 ||
16208		    fmt.dtfd_format > state->dts_nformats) {
16209			mutex_exit(&dtrace_lock);
16210			return (EINVAL);
16211		}
16212
16213		/*
16214		 * Format strings are allocated contiguously and they are
16215		 * never freed; if a format index is less than the number
16216		 * of formats, we can assert that the format map is non-NULL
16217		 * and that the format for the specified index is non-NULL.
16218		 */
16219		ASSERT(state->dts_formats != NULL);
16220		str = state->dts_formats[fmt.dtfd_format - 1];
16221		ASSERT(str != NULL);
16222
16223		len = strlen(str) + 1;
16224
16225		if (len > fmt.dtfd_length) {
16226			fmt.dtfd_length = len;
16227
16228			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16229				mutex_exit(&dtrace_lock);
16230				return (EINVAL);
16231			}
16232		} else {
16233			if (copyout(str, fmt.dtfd_string, len) != 0) {
16234				mutex_exit(&dtrace_lock);
16235				return (EINVAL);
16236			}
16237		}
16238
16239		mutex_exit(&dtrace_lock);
16240		return (0);
16241	}
16242
16243	default:
16244		break;
16245	}
16246
16247	return (ENOTTY);
16248}
16249
16250/*ARGSUSED*/
16251static int
16252dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16253{
16254	dtrace_state_t *state;
16255
16256	switch (cmd) {
16257	case DDI_DETACH:
16258		break;
16259
16260	case DDI_SUSPEND:
16261		return (DDI_SUCCESS);
16262
16263	default:
16264		return (DDI_FAILURE);
16265	}
16266
16267	mutex_enter(&cpu_lock);
16268	mutex_enter(&dtrace_provider_lock);
16269	mutex_enter(&dtrace_lock);
16270
16271	ASSERT(dtrace_opens == 0);
16272
16273	if (dtrace_helpers > 0) {
16274		mutex_exit(&dtrace_provider_lock);
16275		mutex_exit(&dtrace_lock);
16276		mutex_exit(&cpu_lock);
16277		return (DDI_FAILURE);
16278	}
16279
16280	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16281		mutex_exit(&dtrace_provider_lock);
16282		mutex_exit(&dtrace_lock);
16283		mutex_exit(&cpu_lock);
16284		return (DDI_FAILURE);
16285	}
16286
16287	dtrace_provider = NULL;
16288
16289	if ((state = dtrace_anon_grab()) != NULL) {
16290		/*
16291		 * If there were ECBs on this state, the provider should
16292		 * have not been allowed to detach; assert that there is
16293		 * none.
16294		 */
16295		ASSERT(state->dts_necbs == 0);
16296		dtrace_state_destroy(state);
16297
16298		/*
16299		 * If we're being detached with anonymous state, we need to
16300		 * indicate to the kernel debugger that DTrace is now inactive.
16301		 */
16302		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16303	}
16304
16305	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16306	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16307	dtrace_cpu_init = NULL;
16308	dtrace_helpers_cleanup = NULL;
16309	dtrace_helpers_fork = NULL;
16310	dtrace_cpustart_init = NULL;
16311	dtrace_cpustart_fini = NULL;
16312	dtrace_debugger_init = NULL;
16313	dtrace_debugger_fini = NULL;
16314	dtrace_modload = NULL;
16315	dtrace_modunload = NULL;
16316
16317	mutex_exit(&cpu_lock);
16318
16319	if (dtrace_helptrace_enabled) {
16320		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16321		dtrace_helptrace_buffer = NULL;
16322	}
16323
16324	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16325	dtrace_probes = NULL;
16326	dtrace_nprobes = 0;
16327
16328	dtrace_hash_destroy(dtrace_bymod);
16329	dtrace_hash_destroy(dtrace_byfunc);
16330	dtrace_hash_destroy(dtrace_byname);
16331	dtrace_bymod = NULL;
16332	dtrace_byfunc = NULL;
16333	dtrace_byname = NULL;
16334
16335	kmem_cache_destroy(dtrace_state_cache);
16336	vmem_destroy(dtrace_minor);
16337	vmem_destroy(dtrace_arena);
16338
16339	if (dtrace_toxrange != NULL) {
16340		kmem_free(dtrace_toxrange,
16341		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16342		dtrace_toxrange = NULL;
16343		dtrace_toxranges = 0;
16344		dtrace_toxranges_max = 0;
16345	}
16346
16347	ddi_remove_minor_node(dtrace_devi, NULL);
16348	dtrace_devi = NULL;
16349
16350	ddi_soft_state_fini(&dtrace_softstate);
16351
16352	ASSERT(dtrace_vtime_references == 0);
16353	ASSERT(dtrace_opens == 0);
16354	ASSERT(dtrace_retained == NULL);
16355
16356	mutex_exit(&dtrace_lock);
16357	mutex_exit(&dtrace_provider_lock);
16358
16359	/*
16360	 * We don't destroy the task queue until after we have dropped our
16361	 * locks (taskq_destroy() may block on running tasks).  To prevent
16362	 * attempting to do work after we have effectively detached but before
16363	 * the task queue has been destroyed, all tasks dispatched via the
16364	 * task queue must check that DTrace is still attached before
16365	 * performing any operation.
16366	 */
16367	taskq_destroy(dtrace_taskq);
16368	dtrace_taskq = NULL;
16369
16370	return (DDI_SUCCESS);
16371}
16372#endif
16373
16374#if defined(sun)
16375/*ARGSUSED*/
16376static int
16377dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16378{
16379	int error;
16380
16381	switch (infocmd) {
16382	case DDI_INFO_DEVT2DEVINFO:
16383		*result = (void *)dtrace_devi;
16384		error = DDI_SUCCESS;
16385		break;
16386	case DDI_INFO_DEVT2INSTANCE:
16387		*result = (void *)0;
16388		error = DDI_SUCCESS;
16389		break;
16390	default:
16391		error = DDI_FAILURE;
16392	}
16393	return (error);
16394}
16395#endif
16396
16397#if defined(sun)
16398static struct cb_ops dtrace_cb_ops = {
16399	dtrace_open,		/* open */
16400	dtrace_close,		/* close */
16401	nulldev,		/* strategy */
16402	nulldev,		/* print */
16403	nodev,			/* dump */
16404	nodev,			/* read */
16405	nodev,			/* write */
16406	dtrace_ioctl,		/* ioctl */
16407	nodev,			/* devmap */
16408	nodev,			/* mmap */
16409	nodev,			/* segmap */
16410	nochpoll,		/* poll */
16411	ddi_prop_op,		/* cb_prop_op */
16412	0,			/* streamtab  */
16413	D_NEW | D_MP		/* Driver compatibility flag */
16414};
16415
16416static struct dev_ops dtrace_ops = {
16417	DEVO_REV,		/* devo_rev */
16418	0,			/* refcnt */
16419	dtrace_info,		/* get_dev_info */
16420	nulldev,		/* identify */
16421	nulldev,		/* probe */
16422	dtrace_attach,		/* attach */
16423	dtrace_detach,		/* detach */
16424	nodev,			/* reset */
16425	&dtrace_cb_ops,		/* driver operations */
16426	NULL,			/* bus operations */
16427	nodev			/* dev power */
16428};
16429
16430static struct modldrv modldrv = {
16431	&mod_driverops,		/* module type (this is a pseudo driver) */
16432	"Dynamic Tracing",	/* name of module */
16433	&dtrace_ops,		/* driver ops */
16434};
16435
16436static struct modlinkage modlinkage = {
16437	MODREV_1,
16438	(void *)&modldrv,
16439	NULL
16440};
16441
16442int
16443_init(void)
16444{
16445	return (mod_install(&modlinkage));
16446}
16447
16448int
16449_info(struct modinfo *modinfop)
16450{
16451	return (mod_info(&modlinkage, modinfop));
16452}
16453
16454int
16455_fini(void)
16456{
16457	return (mod_remove(&modlinkage));
16458}
16459#else
16460
16461static d_ioctl_t	dtrace_ioctl;
16462static d_ioctl_t	dtrace_ioctl_helper;
16463static void		dtrace_load(void *);
16464static int		dtrace_unload(void);
16465#if __FreeBSD_version < 800039
16466static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16467static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16468static eventhandler_tag	eh_tag;			/* Event handler tag. */
16469#else
16470static struct cdev	*dtrace_dev;
16471static struct cdev	*helper_dev;
16472#endif
16473
16474void dtrace_invop_init(void);
16475void dtrace_invop_uninit(void);
16476
16477static struct cdevsw dtrace_cdevsw = {
16478	.d_version	= D_VERSION,
16479	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16480	.d_close	= dtrace_close,
16481	.d_ioctl	= dtrace_ioctl,
16482	.d_open		= dtrace_open,
16483	.d_name		= "dtrace",
16484};
16485
16486static struct cdevsw helper_cdevsw = {
16487	.d_version	= D_VERSION,
16488	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16489	.d_ioctl	= dtrace_ioctl_helper,
16490	.d_name		= "helper",
16491};
16492
16493#include <dtrace_anon.c>
16494#if __FreeBSD_version < 800039
16495#include <dtrace_clone.c>
16496#endif
16497#include <dtrace_ioctl.c>
16498#include <dtrace_load.c>
16499#include <dtrace_modevent.c>
16500#include <dtrace_sysctl.c>
16501#include <dtrace_unload.c>
16502#include <dtrace_vtime.c>
16503#include <dtrace_hacks.c>
16504#include <dtrace_isa.c>
16505
16506SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16507SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16508SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16509
16510DEV_MODULE(dtrace, dtrace_modevent, NULL);
16511MODULE_VERSION(dtrace, 1);
16512MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16513MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16514#endif
16515