dtrace.c revision 192853
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: head/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 192853 2009-05-26 20:28:22Z sson $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * DTrace - Dynamic Tracing for Solaris
33 *
34 * This is the implementation of the Solaris Dynamic Tracing framework
35 * (DTrace).  The user-visible interface to DTrace is described at length in
36 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37 * library, the in-kernel DTrace framework, and the DTrace providers are
38 * described in the block comments in the <sys/dtrace.h> header file.  The
39 * internal architecture of DTrace is described in the block comments in the
40 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41 * implementation very much assume mastery of all of these sources; if one has
42 * an unanswered question about the implementation, one should consult them
43 * first.
44 *
45 * The functions here are ordered roughly as follows:
46 *
47 *   - Probe context functions
48 *   - Probe hashing functions
49 *   - Non-probe context utility functions
50 *   - Matching functions
51 *   - Provider-to-Framework API functions
52 *   - Probe management functions
53 *   - DIF object functions
54 *   - Format functions
55 *   - Predicate functions
56 *   - ECB functions
57 *   - Buffer functions
58 *   - Enabling functions
59 *   - DOF functions
60 *   - Anonymous enabling functions
61 *   - Consumer state functions
62 *   - Helper functions
63 *   - Hook functions
64 *   - Driver cookbook functions
65 *
66 * Each group of functions begins with a block comment labelled the "DTrace
67 * [Group] Functions", allowing one to find each block by searching forward
68 * on capital-f functions.
69 */
70#include <sys/errno.h>
71#if !defined(sun)
72#include <sys/time.h>
73#endif
74#include <sys/stat.h>
75#include <sys/modctl.h>
76#include <sys/conf.h>
77#include <sys/systm.h>
78#if defined(sun)
79#include <sys/ddi.h>
80#include <sys/sunddi.h>
81#endif
82#include <sys/cpuvar.h>
83#include <sys/kmem.h>
84#if defined(sun)
85#include <sys/strsubr.h>
86#endif
87#include <sys/sysmacros.h>
88#include <sys/dtrace_impl.h>
89#include <sys/atomic.h>
90#include <sys/cmn_err.h>
91#if defined(sun)
92#include <sys/mutex_impl.h>
93#include <sys/rwlock_impl.h>
94#endif
95#include <sys/ctf_api.h>
96#if defined(sun)
97#include <sys/panic.h>
98#include <sys/priv_impl.h>
99#endif
100#include <sys/policy.h>
101#if defined(sun)
102#include <sys/cred_impl.h>
103#include <sys/procfs_isa.h>
104#endif
105#include <sys/taskq.h>
106#if defined(sun)
107#include <sys/mkdev.h>
108#include <sys/kdi.h>
109#endif
110#include <sys/zone.h>
111#include <sys/socket.h>
112#include <netinet/in.h>
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/limits.h>
119#include <sys/kdb.h>
120#include <sys/kernel.h>
121#include <sys/malloc.h>
122#include <sys/sysctl.h>
123#include <sys/lock.h>
124#include <sys/mutex.h>
125#include <sys/rwlock.h>
126#include <sys/sx.h>
127#include <sys/dtrace_bsd.h>
128#include <netinet/in.h>
129#include "dtrace_cddl.h"
130#include "dtrace_debug.c"
131#endif
132
133/*
134 * DTrace Tunable Variables
135 *
136 * The following variables may be tuned by adding a line to /etc/system that
137 * includes both the name of the DTrace module ("dtrace") and the name of the
138 * variable.  For example:
139 *
140 *   set dtrace:dtrace_destructive_disallow = 1
141 *
142 * In general, the only variables that one should be tuning this way are those
143 * that affect system-wide DTrace behavior, and for which the default behavior
144 * is undesirable.  Most of these variables are tunable on a per-consumer
145 * basis using DTrace options, and need not be tuned on a system-wide basis.
146 * When tuning these variables, avoid pathological values; while some attempt
147 * is made to verify the integrity of these variables, they are not considered
148 * part of the supported interface to DTrace, and they are therefore not
149 * checked comprehensively.  Further, these variables should not be tuned
150 * dynamically via "mdb -kw" or other means; they should only be tuned via
151 * /etc/system.
152 */
153int		dtrace_destructive_disallow = 0;
154dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155size_t		dtrace_difo_maxsize = (256 * 1024);
156dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
157size_t		dtrace_global_maxsize = (16 * 1024);
158size_t		dtrace_actions_max = (16 * 1024);
159size_t		dtrace_retain_max = 1024;
160dtrace_optval_t	dtrace_helper_actions_max = 32;
161dtrace_optval_t	dtrace_helper_providers_max = 32;
162dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
163size_t		dtrace_strsize_default = 256;
164dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
165dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
166dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
167dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
168dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
170dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
171dtrace_optval_t	dtrace_nspec_default = 1;
172dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
173dtrace_optval_t dtrace_stackframes_default = 20;
174dtrace_optval_t dtrace_ustackframes_default = 20;
175dtrace_optval_t dtrace_jstackframes_default = 50;
176dtrace_optval_t dtrace_jstackstrsize_default = 512;
177int		dtrace_msgdsize_max = 128;
178hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
179hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
180int		dtrace_devdepth_max = 32;
181int		dtrace_err_verbose;
182hrtime_t	dtrace_deadman_interval = NANOSEC;
183hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185
186/*
187 * DTrace External Variables
188 *
189 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
190 * available to DTrace consumers via the backtick (`) syntax.  One of these,
191 * dtrace_zero, is made deliberately so:  it is provided as a source of
192 * well-known, zero-filled memory.  While this variable is not documented,
193 * it is used by some translators as an implementation detail.
194 */
195const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
196
197/*
198 * DTrace Internal Variables
199 */
200#if defined(sun)
201static dev_info_t	*dtrace_devi;		/* device info */
202#endif
203#if defined(sun)
204static vmem_t		*dtrace_arena;		/* probe ID arena */
205static vmem_t		*dtrace_minor;		/* minor number arena */
206static taskq_t		*dtrace_taskq;		/* task queue */
207#else
208static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
209#endif
210static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
211static int		dtrace_nprobes;		/* number of probes */
212static dtrace_provider_t *dtrace_provider;	/* provider list */
213static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
214static int		dtrace_opens;		/* number of opens */
215static int		dtrace_helpers;		/* number of helpers */
216#if defined(sun)
217static void		*dtrace_softstate;	/* softstate pointer */
218#endif
219static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
220static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
221static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
222static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
223static int		dtrace_toxranges;	/* number of toxic ranges */
224static int		dtrace_toxranges_max;	/* size of toxic range array */
225static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
226static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
227static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
228static kthread_t	*dtrace_panicked;	/* panicking thread */
229static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
230static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
231static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
232static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
233static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
234#if !defined(sun)
235static struct mtx	dtrace_unr_mtx;
236MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
237int		dtrace_in_probe;	/* non-zero if executing a probe */
238#if defined(__i386__) || defined(__amd64__)
239uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
240#endif
241#endif
242
243/*
244 * DTrace Locking
245 * DTrace is protected by three (relatively coarse-grained) locks:
246 *
247 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
248 *     including enabling state, probes, ECBs, consumer state, helper state,
249 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
250 *     probe context is lock-free -- synchronization is handled via the
251 *     dtrace_sync() cross call mechanism.
252 *
253 * (2) dtrace_provider_lock is required when manipulating provider state, or
254 *     when provider state must be held constant.
255 *
256 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
257 *     when meta provider state must be held constant.
258 *
259 * The lock ordering between these three locks is dtrace_meta_lock before
260 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
261 * several places where dtrace_provider_lock is held by the framework as it
262 * calls into the providers -- which then call back into the framework,
263 * grabbing dtrace_lock.)
264 *
265 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
266 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
267 * role as a coarse-grained lock; it is acquired before both of these locks.
268 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
269 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
270 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
271 * acquired _between_ dtrace_provider_lock and dtrace_lock.
272 */
273static kmutex_t		dtrace_lock;		/* probe state lock */
274static kmutex_t		dtrace_provider_lock;	/* provider state lock */
275static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
276
277#if !defined(sun)
278/* XXX FreeBSD hacks. */
279static kmutex_t		mod_lock;
280
281#define cr_suid		cr_svuid
282#define cr_sgid		cr_svgid
283#define	ipaddr_t	in_addr_t
284#define mod_modname	pathname
285#define vuprintf	vprintf
286#define ttoproc(_a)	((_a)->td_proc)
287#define crgetzoneid(_a)	0
288#define	NCPU		MAXCPU
289#define SNOCD		0
290#define CPU_ON_INTR(_a)	0
291
292#define PRIV_EFFECTIVE		(1 << 0)
293#define PRIV_DTRACE_KERNEL	(1 << 1)
294#define PRIV_DTRACE_PROC	(1 << 2)
295#define PRIV_DTRACE_USER	(1 << 3)
296#define PRIV_PROC_OWNER		(1 << 4)
297#define PRIV_PROC_ZONE		(1 << 5)
298#define PRIV_ALL		~0
299
300SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
301#endif
302
303#if defined(sun)
304#define curcpu	CPU->cpu_id
305#endif
306
307
308/*
309 * DTrace Provider Variables
310 *
311 * These are the variables relating to DTrace as a provider (that is, the
312 * provider of the BEGIN, END, and ERROR probes).
313 */
314static dtrace_pattr_t	dtrace_provider_attr = {
315{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320};
321
322static void
323dtrace_nullop(void)
324{}
325
326static dtrace_pops_t	dtrace_provider_ops = {
327	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
328	(void (*)(void *, modctl_t *))dtrace_nullop,
329	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333	NULL,
334	NULL,
335	NULL,
336	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
337};
338
339static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
340static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
341dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
342
343/*
344 * DTrace Helper Tracing Variables
345 */
346uint32_t dtrace_helptrace_next = 0;
347uint32_t dtrace_helptrace_nlocals;
348char	*dtrace_helptrace_buffer;
349int	dtrace_helptrace_bufsize = 512 * 1024;
350
351#ifdef DEBUG
352int	dtrace_helptrace_enabled = 1;
353#else
354int	dtrace_helptrace_enabled = 0;
355#endif
356
357/*
358 * DTrace Error Hashing
359 *
360 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
361 * table.  This is very useful for checking coverage of tests that are
362 * expected to induce DIF or DOF processing errors, and may be useful for
363 * debugging problems in the DIF code generator or in DOF generation .  The
364 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
365 */
366#ifdef DEBUG
367static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
368static const char *dtrace_errlast;
369static kthread_t *dtrace_errthread;
370static kmutex_t dtrace_errlock;
371#endif
372
373/*
374 * DTrace Macros and Constants
375 *
376 * These are various macros that are useful in various spots in the
377 * implementation, along with a few random constants that have no meaning
378 * outside of the implementation.  There is no real structure to this cpp
379 * mishmash -- but is there ever?
380 */
381#define	DTRACE_HASHSTR(hash, probe)	\
382	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
383
384#define	DTRACE_HASHNEXT(hash, probe)	\
385	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
386
387#define	DTRACE_HASHPREV(hash, probe)	\
388	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
389
390#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
391	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
392	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
393
394#define	DTRACE_AGGHASHSIZE_SLEW		17
395
396#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
397
398/*
399 * The key for a thread-local variable consists of the lower 61 bits of the
400 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
401 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
402 * equal to a variable identifier.  This is necessary (but not sufficient) to
403 * assure that global associative arrays never collide with thread-local
404 * variables.  To guarantee that they cannot collide, we must also define the
405 * order for keying dynamic variables.  That order is:
406 *
407 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
408 *
409 * Because the variable-key and the tls-key are in orthogonal spaces, there is
410 * no way for a global variable key signature to match a thread-local key
411 * signature.
412 */
413#if defined(sun)
414#define	DTRACE_TLS_THRKEY(where) { \
415	uint_t intr = 0; \
416	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
417	for (; actv; actv >>= 1) \
418		intr++; \
419	ASSERT(intr < (1 << 3)); \
420	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
421	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
422}
423#else
424#define	DTRACE_TLS_THRKEY(where) { \
425	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
426	uint_t intr = 0; \
427	uint_t actv = _c->cpu_intr_actv; \
428	for (; actv; actv >>= 1) \
429		intr++; \
430	ASSERT(intr < (1 << 3)); \
431	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
432	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
433}
434#endif
435
436#define	DT_BSWAP_8(x)	((x) & 0xff)
437#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
438#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
439#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
440
441#define	DT_MASK_LO 0x00000000FFFFFFFFULL
442
443#define	DTRACE_STORE(type, tomax, offset, what) \
444	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
445
446#ifndef __i386
447#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
448	if (addr & (size - 1)) {					\
449		*flags |= CPU_DTRACE_BADALIGN;				\
450		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
451		return (0);						\
452	}
453#else
454#define	DTRACE_ALIGNCHECK(addr, size, flags)
455#endif
456
457/*
458 * Test whether a range of memory starting at testaddr of size testsz falls
459 * within the range of memory described by addr, sz.  We take care to avoid
460 * problems with overflow and underflow of the unsigned quantities, and
461 * disallow all negative sizes.  Ranges of size 0 are allowed.
462 */
463#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
464	((testaddr) - (baseaddr) < (basesz) && \
465	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
466	(testaddr) + (testsz) >= (testaddr))
467
468/*
469 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
470 * alloc_sz on the righthand side of the comparison in order to avoid overflow
471 * or underflow in the comparison with it.  This is simpler than the INRANGE
472 * check above, because we know that the dtms_scratch_ptr is valid in the
473 * range.  Allocations of size zero are allowed.
474 */
475#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
476	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
477	(mstate)->dtms_scratch_ptr >= (alloc_sz))
478
479#define	DTRACE_LOADFUNC(bits)						\
480/*CSTYLED*/								\
481uint##bits##_t								\
482dtrace_load##bits(uintptr_t addr)					\
483{									\
484	size_t size = bits / NBBY;					\
485	/*CSTYLED*/							\
486	uint##bits##_t rval;						\
487	int i;								\
488	volatile uint16_t *flags = (volatile uint16_t *)		\
489	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
490									\
491	DTRACE_ALIGNCHECK(addr, size, flags);				\
492									\
493	for (i = 0; i < dtrace_toxranges; i++) {			\
494		if (addr >= dtrace_toxrange[i].dtt_limit)		\
495			continue;					\
496									\
497		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
498			continue;					\
499									\
500		/*							\
501		 * This address falls within a toxic region; return 0.	\
502		 */							\
503		*flags |= CPU_DTRACE_BADADDR;				\
504		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
505		return (0);						\
506	}								\
507									\
508	*flags |= CPU_DTRACE_NOFAULT;					\
509	/*CSTYLED*/							\
510	rval = *((volatile uint##bits##_t *)addr);			\
511	*flags &= ~CPU_DTRACE_NOFAULT;					\
512									\
513	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
514}
515
516#ifdef _LP64
517#define	dtrace_loadptr	dtrace_load64
518#else
519#define	dtrace_loadptr	dtrace_load32
520#endif
521
522#define	DTRACE_DYNHASH_FREE	0
523#define	DTRACE_DYNHASH_SINK	1
524#define	DTRACE_DYNHASH_VALID	2
525
526#define	DTRACE_MATCH_NEXT	0
527#define	DTRACE_MATCH_DONE	1
528#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
529#define	DTRACE_STATE_ALIGN	64
530
531#define	DTRACE_FLAGS2FLT(flags)						\
532	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
533	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
534	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
535	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
536	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
537	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
538	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
539	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
540	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
541	DTRACEFLT_UNKNOWN)
542
543#define	DTRACEACT_ISSTRING(act)						\
544	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
545	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
546
547/* Function prototype definitions: */
548static size_t dtrace_strlen(const char *, size_t);
549static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
550static void dtrace_enabling_provide(dtrace_provider_t *);
551static int dtrace_enabling_match(dtrace_enabling_t *, int *);
552static void dtrace_enabling_matchall(void);
553static dtrace_state_t *dtrace_anon_grab(void);
554#if defined(sun)
555static uint64_t dtrace_helper(int, dtrace_mstate_t *,
556    dtrace_state_t *, uint64_t, uint64_t);
557static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
558#endif
559static void dtrace_buffer_drop(dtrace_buffer_t *);
560static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
561    dtrace_state_t *, dtrace_mstate_t *);
562static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
563    dtrace_optval_t);
564static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
565#if defined(sun)
566static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
567#endif
568uint16_t dtrace_load16(uintptr_t);
569uint32_t dtrace_load32(uintptr_t);
570uint64_t dtrace_load64(uintptr_t);
571uint8_t dtrace_load8(uintptr_t);
572void dtrace_dynvar_clean(dtrace_dstate_t *);
573dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
574    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
575uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
576
577/*
578 * DTrace Probe Context Functions
579 *
580 * These functions are called from probe context.  Because probe context is
581 * any context in which C may be called, arbitrarily locks may be held,
582 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
583 * As a result, functions called from probe context may only call other DTrace
584 * support functions -- they may not interact at all with the system at large.
585 * (Note that the ASSERT macro is made probe-context safe by redefining it in
586 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
587 * loads are to be performed from probe context, they _must_ be in terms of
588 * the safe dtrace_load*() variants.
589 *
590 * Some functions in this block are not actually called from probe context;
591 * for these functions, there will be a comment above the function reading
592 * "Note:  not called from probe context."
593 */
594void
595dtrace_panic(const char *format, ...)
596{
597	va_list alist;
598
599	va_start(alist, format);
600	dtrace_vpanic(format, alist);
601	va_end(alist);
602}
603
604int
605dtrace_assfail(const char *a, const char *f, int l)
606{
607	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
608
609	/*
610	 * We just need something here that even the most clever compiler
611	 * cannot optimize away.
612	 */
613	return (a[(uintptr_t)f]);
614}
615
616/*
617 * Atomically increment a specified error counter from probe context.
618 */
619static void
620dtrace_error(uint32_t *counter)
621{
622	/*
623	 * Most counters stored to in probe context are per-CPU counters.
624	 * However, there are some error conditions that are sufficiently
625	 * arcane that they don't merit per-CPU storage.  If these counters
626	 * are incremented concurrently on different CPUs, scalability will be
627	 * adversely affected -- but we don't expect them to be white-hot in a
628	 * correctly constructed enabling...
629	 */
630	uint32_t oval, nval;
631
632	do {
633		oval = *counter;
634
635		if ((nval = oval + 1) == 0) {
636			/*
637			 * If the counter would wrap, set it to 1 -- assuring
638			 * that the counter is never zero when we have seen
639			 * errors.  (The counter must be 32-bits because we
640			 * aren't guaranteed a 64-bit compare&swap operation.)
641			 * To save this code both the infamy of being fingered
642			 * by a priggish news story and the indignity of being
643			 * the target of a neo-puritan witch trial, we're
644			 * carefully avoiding any colorful description of the
645			 * likelihood of this condition -- but suffice it to
646			 * say that it is only slightly more likely than the
647			 * overflow of predicate cache IDs, as discussed in
648			 * dtrace_predicate_create().
649			 */
650			nval = 1;
651		}
652	} while (dtrace_cas32(counter, oval, nval) != oval);
653}
654
655/*
656 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
657 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
658 */
659DTRACE_LOADFUNC(8)
660DTRACE_LOADFUNC(16)
661DTRACE_LOADFUNC(32)
662DTRACE_LOADFUNC(64)
663
664static int
665dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
666{
667	if (dest < mstate->dtms_scratch_base)
668		return (0);
669
670	if (dest + size < dest)
671		return (0);
672
673	if (dest + size > mstate->dtms_scratch_ptr)
674		return (0);
675
676	return (1);
677}
678
679static int
680dtrace_canstore_statvar(uint64_t addr, size_t sz,
681    dtrace_statvar_t **svars, int nsvars)
682{
683	int i;
684
685	for (i = 0; i < nsvars; i++) {
686		dtrace_statvar_t *svar = svars[i];
687
688		if (svar == NULL || svar->dtsv_size == 0)
689			continue;
690
691		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
692			return (1);
693	}
694
695	return (0);
696}
697
698/*
699 * Check to see if the address is within a memory region to which a store may
700 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
701 * region.  The caller of dtrace_canstore() is responsible for performing any
702 * alignment checks that are needed before stores are actually executed.
703 */
704static int
705dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
706    dtrace_vstate_t *vstate)
707{
708	/*
709	 * First, check to see if the address is in scratch space...
710	 */
711	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
712	    mstate->dtms_scratch_size))
713		return (1);
714
715	/*
716	 * Now check to see if it's a dynamic variable.  This check will pick
717	 * up both thread-local variables and any global dynamically-allocated
718	 * variables.
719	 */
720	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
721	    vstate->dtvs_dynvars.dtds_size)) {
722		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
723		uintptr_t base = (uintptr_t)dstate->dtds_base +
724		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
725		uintptr_t chunkoffs;
726
727		/*
728		 * Before we assume that we can store here, we need to make
729		 * sure that it isn't in our metadata -- storing to our
730		 * dynamic variable metadata would corrupt our state.  For
731		 * the range to not include any dynamic variable metadata,
732		 * it must:
733		 *
734		 *	(1) Start above the hash table that is at the base of
735		 *	the dynamic variable space
736		 *
737		 *	(2) Have a starting chunk offset that is beyond the
738		 *	dtrace_dynvar_t that is at the base of every chunk
739		 *
740		 *	(3) Not span a chunk boundary
741		 *
742		 */
743		if (addr < base)
744			return (0);
745
746		chunkoffs = (addr - base) % dstate->dtds_chunksize;
747
748		if (chunkoffs < sizeof (dtrace_dynvar_t))
749			return (0);
750
751		if (chunkoffs + sz > dstate->dtds_chunksize)
752			return (0);
753
754		return (1);
755	}
756
757	/*
758	 * Finally, check the static local and global variables.  These checks
759	 * take the longest, so we perform them last.
760	 */
761	if (dtrace_canstore_statvar(addr, sz,
762	    vstate->dtvs_locals, vstate->dtvs_nlocals))
763		return (1);
764
765	if (dtrace_canstore_statvar(addr, sz,
766	    vstate->dtvs_globals, vstate->dtvs_nglobals))
767		return (1);
768
769	return (0);
770}
771
772
773/*
774 * Convenience routine to check to see if the address is within a memory
775 * region in which a load may be issued given the user's privilege level;
776 * if not, it sets the appropriate error flags and loads 'addr' into the
777 * illegal value slot.
778 *
779 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
780 * appropriate memory access protection.
781 */
782static int
783dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
784    dtrace_vstate_t *vstate)
785{
786	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
787
788	/*
789	 * If we hold the privilege to read from kernel memory, then
790	 * everything is readable.
791	 */
792	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
793		return (1);
794
795	/*
796	 * You can obviously read that which you can store.
797	 */
798	if (dtrace_canstore(addr, sz, mstate, vstate))
799		return (1);
800
801	/*
802	 * We're allowed to read from our own string table.
803	 */
804	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
805	    mstate->dtms_difo->dtdo_strlen))
806		return (1);
807
808	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
809	*illval = addr;
810	return (0);
811}
812
813/*
814 * Convenience routine to check to see if a given string is within a memory
815 * region in which a load may be issued given the user's privilege level;
816 * this exists so that we don't need to issue unnecessary dtrace_strlen()
817 * calls in the event that the user has all privileges.
818 */
819static int
820dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
821    dtrace_vstate_t *vstate)
822{
823	size_t strsz;
824
825	/*
826	 * If we hold the privilege to read from kernel memory, then
827	 * everything is readable.
828	 */
829	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
830		return (1);
831
832	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
833	if (dtrace_canload(addr, strsz, mstate, vstate))
834		return (1);
835
836	return (0);
837}
838
839/*
840 * Convenience routine to check to see if a given variable is within a memory
841 * region in which a load may be issued given the user's privilege level.
842 */
843static int
844dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
845    dtrace_vstate_t *vstate)
846{
847	size_t sz;
848	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
849
850	/*
851	 * If we hold the privilege to read from kernel memory, then
852	 * everything is readable.
853	 */
854	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
855		return (1);
856
857	if (type->dtdt_kind == DIF_TYPE_STRING)
858		sz = dtrace_strlen(src,
859		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
860	else
861		sz = type->dtdt_size;
862
863	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
864}
865
866/*
867 * Compare two strings using safe loads.
868 */
869static int
870dtrace_strncmp(char *s1, char *s2, size_t limit)
871{
872	uint8_t c1, c2;
873	volatile uint16_t *flags;
874
875	if (s1 == s2 || limit == 0)
876		return (0);
877
878	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
879
880	do {
881		if (s1 == NULL) {
882			c1 = '\0';
883		} else {
884			c1 = dtrace_load8((uintptr_t)s1++);
885		}
886
887		if (s2 == NULL) {
888			c2 = '\0';
889		} else {
890			c2 = dtrace_load8((uintptr_t)s2++);
891		}
892
893		if (c1 != c2)
894			return (c1 - c2);
895	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
896
897	return (0);
898}
899
900/*
901 * Compute strlen(s) for a string using safe memory accesses.  The additional
902 * len parameter is used to specify a maximum length to ensure completion.
903 */
904static size_t
905dtrace_strlen(const char *s, size_t lim)
906{
907	uint_t len;
908
909	for (len = 0; len != lim; len++) {
910		if (dtrace_load8((uintptr_t)s++) == '\0')
911			break;
912	}
913
914	return (len);
915}
916
917/*
918 * Check if an address falls within a toxic region.
919 */
920static int
921dtrace_istoxic(uintptr_t kaddr, size_t size)
922{
923	uintptr_t taddr, tsize;
924	int i;
925
926	for (i = 0; i < dtrace_toxranges; i++) {
927		taddr = dtrace_toxrange[i].dtt_base;
928		tsize = dtrace_toxrange[i].dtt_limit - taddr;
929
930		if (kaddr - taddr < tsize) {
931			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
932			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
933			return (1);
934		}
935
936		if (taddr - kaddr < size) {
937			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
938			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
939			return (1);
940		}
941	}
942
943	return (0);
944}
945
946/*
947 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
948 * memory specified by the DIF program.  The dst is assumed to be safe memory
949 * that we can store to directly because it is managed by DTrace.  As with
950 * standard bcopy, overlapping copies are handled properly.
951 */
952static void
953dtrace_bcopy(const void *src, void *dst, size_t len)
954{
955	if (len != 0) {
956		uint8_t *s1 = dst;
957		const uint8_t *s2 = src;
958
959		if (s1 <= s2) {
960			do {
961				*s1++ = dtrace_load8((uintptr_t)s2++);
962			} while (--len != 0);
963		} else {
964			s2 += len;
965			s1 += len;
966
967			do {
968				*--s1 = dtrace_load8((uintptr_t)--s2);
969			} while (--len != 0);
970		}
971	}
972}
973
974/*
975 * Copy src to dst using safe memory accesses, up to either the specified
976 * length, or the point that a nul byte is encountered.  The src is assumed to
977 * be unsafe memory specified by the DIF program.  The dst is assumed to be
978 * safe memory that we can store to directly because it is managed by DTrace.
979 * Unlike dtrace_bcopy(), overlapping regions are not handled.
980 */
981static void
982dtrace_strcpy(const void *src, void *dst, size_t len)
983{
984	if (len != 0) {
985		uint8_t *s1 = dst, c;
986		const uint8_t *s2 = src;
987
988		do {
989			*s1++ = c = dtrace_load8((uintptr_t)s2++);
990		} while (--len != 0 && c != '\0');
991	}
992}
993
994/*
995 * Copy src to dst, deriving the size and type from the specified (BYREF)
996 * variable type.  The src is assumed to be unsafe memory specified by the DIF
997 * program.  The dst is assumed to be DTrace variable memory that is of the
998 * specified type; we assume that we can store to directly.
999 */
1000static void
1001dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1002{
1003	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1004
1005	if (type->dtdt_kind == DIF_TYPE_STRING) {
1006		dtrace_strcpy(src, dst, type->dtdt_size);
1007	} else {
1008		dtrace_bcopy(src, dst, type->dtdt_size);
1009	}
1010}
1011
1012/*
1013 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1014 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1015 * safe memory that we can access directly because it is managed by DTrace.
1016 */
1017static int
1018dtrace_bcmp(const void *s1, const void *s2, size_t len)
1019{
1020	volatile uint16_t *flags;
1021
1022	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1023
1024	if (s1 == s2)
1025		return (0);
1026
1027	if (s1 == NULL || s2 == NULL)
1028		return (1);
1029
1030	if (s1 != s2 && len != 0) {
1031		const uint8_t *ps1 = s1;
1032		const uint8_t *ps2 = s2;
1033
1034		do {
1035			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1036				return (1);
1037		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1038	}
1039	return (0);
1040}
1041
1042/*
1043 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1044 * is for safe DTrace-managed memory only.
1045 */
1046static void
1047dtrace_bzero(void *dst, size_t len)
1048{
1049	uchar_t *cp;
1050
1051	for (cp = dst; len != 0; len--)
1052		*cp++ = 0;
1053}
1054
1055static void
1056dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1057{
1058	uint64_t result[2];
1059
1060	result[0] = addend1[0] + addend2[0];
1061	result[1] = addend1[1] + addend2[1] +
1062	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1063
1064	sum[0] = result[0];
1065	sum[1] = result[1];
1066}
1067
1068/*
1069 * Shift the 128-bit value in a by b. If b is positive, shift left.
1070 * If b is negative, shift right.
1071 */
1072static void
1073dtrace_shift_128(uint64_t *a, int b)
1074{
1075	uint64_t mask;
1076
1077	if (b == 0)
1078		return;
1079
1080	if (b < 0) {
1081		b = -b;
1082		if (b >= 64) {
1083			a[0] = a[1] >> (b - 64);
1084			a[1] = 0;
1085		} else {
1086			a[0] >>= b;
1087			mask = 1LL << (64 - b);
1088			mask -= 1;
1089			a[0] |= ((a[1] & mask) << (64 - b));
1090			a[1] >>= b;
1091		}
1092	} else {
1093		if (b >= 64) {
1094			a[1] = a[0] << (b - 64);
1095			a[0] = 0;
1096		} else {
1097			a[1] <<= b;
1098			mask = a[0] >> (64 - b);
1099			a[1] |= mask;
1100			a[0] <<= b;
1101		}
1102	}
1103}
1104
1105/*
1106 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1107 * use native multiplication on those, and then re-combine into the
1108 * resulting 128-bit value.
1109 *
1110 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1111 *     hi1 * hi2 << 64 +
1112 *     hi1 * lo2 << 32 +
1113 *     hi2 * lo1 << 32 +
1114 *     lo1 * lo2
1115 */
1116static void
1117dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1118{
1119	uint64_t hi1, hi2, lo1, lo2;
1120	uint64_t tmp[2];
1121
1122	hi1 = factor1 >> 32;
1123	hi2 = factor2 >> 32;
1124
1125	lo1 = factor1 & DT_MASK_LO;
1126	lo2 = factor2 & DT_MASK_LO;
1127
1128	product[0] = lo1 * lo2;
1129	product[1] = hi1 * hi2;
1130
1131	tmp[0] = hi1 * lo2;
1132	tmp[1] = 0;
1133	dtrace_shift_128(tmp, 32);
1134	dtrace_add_128(product, tmp, product);
1135
1136	tmp[0] = hi2 * lo1;
1137	tmp[1] = 0;
1138	dtrace_shift_128(tmp, 32);
1139	dtrace_add_128(product, tmp, product);
1140}
1141
1142/*
1143 * This privilege check should be used by actions and subroutines to
1144 * verify that the user credentials of the process that enabled the
1145 * invoking ECB match the target credentials
1146 */
1147static int
1148dtrace_priv_proc_common_user(dtrace_state_t *state)
1149{
1150	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1151
1152	/*
1153	 * We should always have a non-NULL state cred here, since if cred
1154	 * is null (anonymous tracing), we fast-path bypass this routine.
1155	 */
1156	ASSERT(s_cr != NULL);
1157
1158	if ((cr = CRED()) != NULL &&
1159	    s_cr->cr_uid == cr->cr_uid &&
1160	    s_cr->cr_uid == cr->cr_ruid &&
1161	    s_cr->cr_uid == cr->cr_suid &&
1162	    s_cr->cr_gid == cr->cr_gid &&
1163	    s_cr->cr_gid == cr->cr_rgid &&
1164	    s_cr->cr_gid == cr->cr_sgid)
1165		return (1);
1166
1167	return (0);
1168}
1169
1170/*
1171 * This privilege check should be used by actions and subroutines to
1172 * verify that the zone of the process that enabled the invoking ECB
1173 * matches the target credentials
1174 */
1175static int
1176dtrace_priv_proc_common_zone(dtrace_state_t *state)
1177{
1178#if defined(sun)
1179	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1180
1181	/*
1182	 * We should always have a non-NULL state cred here, since if cred
1183	 * is null (anonymous tracing), we fast-path bypass this routine.
1184	 */
1185	ASSERT(s_cr != NULL);
1186
1187	if ((cr = CRED()) != NULL &&
1188	    s_cr->cr_zone == cr->cr_zone)
1189		return (1);
1190
1191	return (0);
1192#else
1193	return (1);
1194#endif
1195}
1196
1197/*
1198 * This privilege check should be used by actions and subroutines to
1199 * verify that the process has not setuid or changed credentials.
1200 */
1201static int
1202dtrace_priv_proc_common_nocd(void)
1203{
1204	proc_t *proc;
1205
1206	if ((proc = ttoproc(curthread)) != NULL &&
1207	    !(proc->p_flag & SNOCD))
1208		return (1);
1209
1210	return (0);
1211}
1212
1213static int
1214dtrace_priv_proc_destructive(dtrace_state_t *state)
1215{
1216	int action = state->dts_cred.dcr_action;
1217
1218	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1219	    dtrace_priv_proc_common_zone(state) == 0)
1220		goto bad;
1221
1222	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1223	    dtrace_priv_proc_common_user(state) == 0)
1224		goto bad;
1225
1226	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1227	    dtrace_priv_proc_common_nocd() == 0)
1228		goto bad;
1229
1230	return (1);
1231
1232bad:
1233	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1234
1235	return (0);
1236}
1237
1238static int
1239dtrace_priv_proc_control(dtrace_state_t *state)
1240{
1241	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1242		return (1);
1243
1244	if (dtrace_priv_proc_common_zone(state) &&
1245	    dtrace_priv_proc_common_user(state) &&
1246	    dtrace_priv_proc_common_nocd())
1247		return (1);
1248
1249	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1250
1251	return (0);
1252}
1253
1254static int
1255dtrace_priv_proc(dtrace_state_t *state)
1256{
1257	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1258		return (1);
1259
1260	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1261
1262	return (0);
1263}
1264
1265static int
1266dtrace_priv_kernel(dtrace_state_t *state)
1267{
1268	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1269		return (1);
1270
1271	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1272
1273	return (0);
1274}
1275
1276static int
1277dtrace_priv_kernel_destructive(dtrace_state_t *state)
1278{
1279	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1280		return (1);
1281
1282	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1283
1284	return (0);
1285}
1286
1287/*
1288 * Note:  not called from probe context.  This function is called
1289 * asynchronously (and at a regular interval) from outside of probe context to
1290 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1291 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1292 */
1293void
1294dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1295{
1296	dtrace_dynvar_t *dirty;
1297	dtrace_dstate_percpu_t *dcpu;
1298	int i, work = 0;
1299
1300	for (i = 0; i < NCPU; i++) {
1301		dcpu = &dstate->dtds_percpu[i];
1302
1303		ASSERT(dcpu->dtdsc_rinsing == NULL);
1304
1305		/*
1306		 * If the dirty list is NULL, there is no dirty work to do.
1307		 */
1308		if (dcpu->dtdsc_dirty == NULL)
1309			continue;
1310
1311		/*
1312		 * If the clean list is non-NULL, then we're not going to do
1313		 * any work for this CPU -- it means that there has not been
1314		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1315		 * since the last time we cleaned house.
1316		 */
1317		if (dcpu->dtdsc_clean != NULL)
1318			continue;
1319
1320		work = 1;
1321
1322		/*
1323		 * Atomically move the dirty list aside.
1324		 */
1325		do {
1326			dirty = dcpu->dtdsc_dirty;
1327
1328			/*
1329			 * Before we zap the dirty list, set the rinsing list.
1330			 * (This allows for a potential assertion in
1331			 * dtrace_dynvar():  if a free dynamic variable appears
1332			 * on a hash chain, either the dirty list or the
1333			 * rinsing list for some CPU must be non-NULL.)
1334			 */
1335			dcpu->dtdsc_rinsing = dirty;
1336			dtrace_membar_producer();
1337		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1338		    dirty, NULL) != dirty);
1339	}
1340
1341	if (!work) {
1342		/*
1343		 * We have no work to do; we can simply return.
1344		 */
1345		return;
1346	}
1347
1348	dtrace_sync();
1349
1350	for (i = 0; i < NCPU; i++) {
1351		dcpu = &dstate->dtds_percpu[i];
1352
1353		if (dcpu->dtdsc_rinsing == NULL)
1354			continue;
1355
1356		/*
1357		 * We are now guaranteed that no hash chain contains a pointer
1358		 * into this dirty list; we can make it clean.
1359		 */
1360		ASSERT(dcpu->dtdsc_clean == NULL);
1361		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1362		dcpu->dtdsc_rinsing = NULL;
1363	}
1364
1365	/*
1366	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1367	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1368	 * This prevents a race whereby a CPU incorrectly decides that
1369	 * the state should be something other than DTRACE_DSTATE_CLEAN
1370	 * after dtrace_dynvar_clean() has completed.
1371	 */
1372	dtrace_sync();
1373
1374	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1375}
1376
1377/*
1378 * Depending on the value of the op parameter, this function looks-up,
1379 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1380 * allocation is requested, this function will return a pointer to a
1381 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1382 * variable can be allocated.  If NULL is returned, the appropriate counter
1383 * will be incremented.
1384 */
1385dtrace_dynvar_t *
1386dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1387    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1388    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1389{
1390	uint64_t hashval = DTRACE_DYNHASH_VALID;
1391	dtrace_dynhash_t *hash = dstate->dtds_hash;
1392	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1393	processorid_t me = curcpu, cpu = me;
1394	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1395	size_t bucket, ksize;
1396	size_t chunksize = dstate->dtds_chunksize;
1397	uintptr_t kdata, lock, nstate;
1398	uint_t i;
1399
1400	ASSERT(nkeys != 0);
1401
1402	/*
1403	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1404	 * algorithm.  For the by-value portions, we perform the algorithm in
1405	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1406	 * bit, and seems to have only a minute effect on distribution.  For
1407	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1408	 * over each referenced byte.  It's painful to do this, but it's much
1409	 * better than pathological hash distribution.  The efficacy of the
1410	 * hashing algorithm (and a comparison with other algorithms) may be
1411	 * found by running the ::dtrace_dynstat MDB dcmd.
1412	 */
1413	for (i = 0; i < nkeys; i++) {
1414		if (key[i].dttk_size == 0) {
1415			uint64_t val = key[i].dttk_value;
1416
1417			hashval += (val >> 48) & 0xffff;
1418			hashval += (hashval << 10);
1419			hashval ^= (hashval >> 6);
1420
1421			hashval += (val >> 32) & 0xffff;
1422			hashval += (hashval << 10);
1423			hashval ^= (hashval >> 6);
1424
1425			hashval += (val >> 16) & 0xffff;
1426			hashval += (hashval << 10);
1427			hashval ^= (hashval >> 6);
1428
1429			hashval += val & 0xffff;
1430			hashval += (hashval << 10);
1431			hashval ^= (hashval >> 6);
1432		} else {
1433			/*
1434			 * This is incredibly painful, but it beats the hell
1435			 * out of the alternative.
1436			 */
1437			uint64_t j, size = key[i].dttk_size;
1438			uintptr_t base = (uintptr_t)key[i].dttk_value;
1439
1440			if (!dtrace_canload(base, size, mstate, vstate))
1441				break;
1442
1443			for (j = 0; j < size; j++) {
1444				hashval += dtrace_load8(base + j);
1445				hashval += (hashval << 10);
1446				hashval ^= (hashval >> 6);
1447			}
1448		}
1449	}
1450
1451	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1452		return (NULL);
1453
1454	hashval += (hashval << 3);
1455	hashval ^= (hashval >> 11);
1456	hashval += (hashval << 15);
1457
1458	/*
1459	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1460	 * comes out to be one of our two sentinel hash values.  If this
1461	 * actually happens, we set the hashval to be a value known to be a
1462	 * non-sentinel value.
1463	 */
1464	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1465		hashval = DTRACE_DYNHASH_VALID;
1466
1467	/*
1468	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1469	 * important here, tricks can be pulled to reduce it.  (However, it's
1470	 * critical that hash collisions be kept to an absolute minimum;
1471	 * they're much more painful than a divide.)  It's better to have a
1472	 * solution that generates few collisions and still keeps things
1473	 * relatively simple.
1474	 */
1475	bucket = hashval % dstate->dtds_hashsize;
1476
1477	if (op == DTRACE_DYNVAR_DEALLOC) {
1478		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1479
1480		for (;;) {
1481			while ((lock = *lockp) & 1)
1482				continue;
1483
1484			if (dtrace_casptr((volatile void *)lockp,
1485			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1486				break;
1487		}
1488
1489		dtrace_membar_producer();
1490	}
1491
1492top:
1493	prev = NULL;
1494	lock = hash[bucket].dtdh_lock;
1495
1496	dtrace_membar_consumer();
1497
1498	start = hash[bucket].dtdh_chain;
1499	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1500	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1501	    op != DTRACE_DYNVAR_DEALLOC));
1502
1503	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1504		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1505		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1506
1507		if (dvar->dtdv_hashval != hashval) {
1508			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1509				/*
1510				 * We've reached the sink, and therefore the
1511				 * end of the hash chain; we can kick out of
1512				 * the loop knowing that we have seen a valid
1513				 * snapshot of state.
1514				 */
1515				ASSERT(dvar->dtdv_next == NULL);
1516				ASSERT(dvar == &dtrace_dynhash_sink);
1517				break;
1518			}
1519
1520			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1521				/*
1522				 * We've gone off the rails:  somewhere along
1523				 * the line, one of the members of this hash
1524				 * chain was deleted.  Note that we could also
1525				 * detect this by simply letting this loop run
1526				 * to completion, as we would eventually hit
1527				 * the end of the dirty list.  However, we
1528				 * want to avoid running the length of the
1529				 * dirty list unnecessarily (it might be quite
1530				 * long), so we catch this as early as
1531				 * possible by detecting the hash marker.  In
1532				 * this case, we simply set dvar to NULL and
1533				 * break; the conditional after the loop will
1534				 * send us back to top.
1535				 */
1536				dvar = NULL;
1537				break;
1538			}
1539
1540			goto next;
1541		}
1542
1543		if (dtuple->dtt_nkeys != nkeys)
1544			goto next;
1545
1546		for (i = 0; i < nkeys; i++, dkey++) {
1547			if (dkey->dttk_size != key[i].dttk_size)
1548				goto next; /* size or type mismatch */
1549
1550			if (dkey->dttk_size != 0) {
1551				if (dtrace_bcmp(
1552				    (void *)(uintptr_t)key[i].dttk_value,
1553				    (void *)(uintptr_t)dkey->dttk_value,
1554				    dkey->dttk_size))
1555					goto next;
1556			} else {
1557				if (dkey->dttk_value != key[i].dttk_value)
1558					goto next;
1559			}
1560		}
1561
1562		if (op != DTRACE_DYNVAR_DEALLOC)
1563			return (dvar);
1564
1565		ASSERT(dvar->dtdv_next == NULL ||
1566		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1567
1568		if (prev != NULL) {
1569			ASSERT(hash[bucket].dtdh_chain != dvar);
1570			ASSERT(start != dvar);
1571			ASSERT(prev->dtdv_next == dvar);
1572			prev->dtdv_next = dvar->dtdv_next;
1573		} else {
1574			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1575			    start, dvar->dtdv_next) != start) {
1576				/*
1577				 * We have failed to atomically swing the
1578				 * hash table head pointer, presumably because
1579				 * of a conflicting allocation on another CPU.
1580				 * We need to reread the hash chain and try
1581				 * again.
1582				 */
1583				goto top;
1584			}
1585		}
1586
1587		dtrace_membar_producer();
1588
1589		/*
1590		 * Now set the hash value to indicate that it's free.
1591		 */
1592		ASSERT(hash[bucket].dtdh_chain != dvar);
1593		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1594
1595		dtrace_membar_producer();
1596
1597		/*
1598		 * Set the next pointer to point at the dirty list, and
1599		 * atomically swing the dirty pointer to the newly freed dvar.
1600		 */
1601		do {
1602			next = dcpu->dtdsc_dirty;
1603			dvar->dtdv_next = next;
1604		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1605
1606		/*
1607		 * Finally, unlock this hash bucket.
1608		 */
1609		ASSERT(hash[bucket].dtdh_lock == lock);
1610		ASSERT(lock & 1);
1611		hash[bucket].dtdh_lock++;
1612
1613		return (NULL);
1614next:
1615		prev = dvar;
1616		continue;
1617	}
1618
1619	if (dvar == NULL) {
1620		/*
1621		 * If dvar is NULL, it is because we went off the rails:
1622		 * one of the elements that we traversed in the hash chain
1623		 * was deleted while we were traversing it.  In this case,
1624		 * we assert that we aren't doing a dealloc (deallocs lock
1625		 * the hash bucket to prevent themselves from racing with
1626		 * one another), and retry the hash chain traversal.
1627		 */
1628		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1629		goto top;
1630	}
1631
1632	if (op != DTRACE_DYNVAR_ALLOC) {
1633		/*
1634		 * If we are not to allocate a new variable, we want to
1635		 * return NULL now.  Before we return, check that the value
1636		 * of the lock word hasn't changed.  If it has, we may have
1637		 * seen an inconsistent snapshot.
1638		 */
1639		if (op == DTRACE_DYNVAR_NOALLOC) {
1640			if (hash[bucket].dtdh_lock != lock)
1641				goto top;
1642		} else {
1643			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1644			ASSERT(hash[bucket].dtdh_lock == lock);
1645			ASSERT(lock & 1);
1646			hash[bucket].dtdh_lock++;
1647		}
1648
1649		return (NULL);
1650	}
1651
1652	/*
1653	 * We need to allocate a new dynamic variable.  The size we need is the
1654	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1655	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1656	 * the size of any referred-to data (dsize).  We then round the final
1657	 * size up to the chunksize for allocation.
1658	 */
1659	for (ksize = 0, i = 0; i < nkeys; i++)
1660		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1661
1662	/*
1663	 * This should be pretty much impossible, but could happen if, say,
1664	 * strange DIF specified the tuple.  Ideally, this should be an
1665	 * assertion and not an error condition -- but that requires that the
1666	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1667	 * bullet-proof.  (That is, it must not be able to be fooled by
1668	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1669	 * solving this would presumably not amount to solving the Halting
1670	 * Problem -- but it still seems awfully hard.
1671	 */
1672	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1673	    ksize + dsize > chunksize) {
1674		dcpu->dtdsc_drops++;
1675		return (NULL);
1676	}
1677
1678	nstate = DTRACE_DSTATE_EMPTY;
1679
1680	do {
1681retry:
1682		free = dcpu->dtdsc_free;
1683
1684		if (free == NULL) {
1685			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1686			void *rval;
1687
1688			if (clean == NULL) {
1689				/*
1690				 * We're out of dynamic variable space on
1691				 * this CPU.  Unless we have tried all CPUs,
1692				 * we'll try to allocate from a different
1693				 * CPU.
1694				 */
1695				switch (dstate->dtds_state) {
1696				case DTRACE_DSTATE_CLEAN: {
1697					void *sp = &dstate->dtds_state;
1698
1699					if (++cpu >= NCPU)
1700						cpu = 0;
1701
1702					if (dcpu->dtdsc_dirty != NULL &&
1703					    nstate == DTRACE_DSTATE_EMPTY)
1704						nstate = DTRACE_DSTATE_DIRTY;
1705
1706					if (dcpu->dtdsc_rinsing != NULL)
1707						nstate = DTRACE_DSTATE_RINSING;
1708
1709					dcpu = &dstate->dtds_percpu[cpu];
1710
1711					if (cpu != me)
1712						goto retry;
1713
1714					(void) dtrace_cas32(sp,
1715					    DTRACE_DSTATE_CLEAN, nstate);
1716
1717					/*
1718					 * To increment the correct bean
1719					 * counter, take another lap.
1720					 */
1721					goto retry;
1722				}
1723
1724				case DTRACE_DSTATE_DIRTY:
1725					dcpu->dtdsc_dirty_drops++;
1726					break;
1727
1728				case DTRACE_DSTATE_RINSING:
1729					dcpu->dtdsc_rinsing_drops++;
1730					break;
1731
1732				case DTRACE_DSTATE_EMPTY:
1733					dcpu->dtdsc_drops++;
1734					break;
1735				}
1736
1737				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1738				return (NULL);
1739			}
1740
1741			/*
1742			 * The clean list appears to be non-empty.  We want to
1743			 * move the clean list to the free list; we start by
1744			 * moving the clean pointer aside.
1745			 */
1746			if (dtrace_casptr(&dcpu->dtdsc_clean,
1747			    clean, NULL) != clean) {
1748				/*
1749				 * We are in one of two situations:
1750				 *
1751				 *  (a)	The clean list was switched to the
1752				 *	free list by another CPU.
1753				 *
1754				 *  (b)	The clean list was added to by the
1755				 *	cleansing cyclic.
1756				 *
1757				 * In either of these situations, we can
1758				 * just reattempt the free list allocation.
1759				 */
1760				goto retry;
1761			}
1762
1763			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1764
1765			/*
1766			 * Now we'll move the clean list to the free list.
1767			 * It's impossible for this to fail:  the only way
1768			 * the free list can be updated is through this
1769			 * code path, and only one CPU can own the clean list.
1770			 * Thus, it would only be possible for this to fail if
1771			 * this code were racing with dtrace_dynvar_clean().
1772			 * (That is, if dtrace_dynvar_clean() updated the clean
1773			 * list, and we ended up racing to update the free
1774			 * list.)  This race is prevented by the dtrace_sync()
1775			 * in dtrace_dynvar_clean() -- which flushes the
1776			 * owners of the clean lists out before resetting
1777			 * the clean lists.
1778			 */
1779			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1780			ASSERT(rval == NULL);
1781			goto retry;
1782		}
1783
1784		dvar = free;
1785		new_free = dvar->dtdv_next;
1786	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1787
1788	/*
1789	 * We have now allocated a new chunk.  We copy the tuple keys into the
1790	 * tuple array and copy any referenced key data into the data space
1791	 * following the tuple array.  As we do this, we relocate dttk_value
1792	 * in the final tuple to point to the key data address in the chunk.
1793	 */
1794	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1795	dvar->dtdv_data = (void *)(kdata + ksize);
1796	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1797
1798	for (i = 0; i < nkeys; i++) {
1799		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1800		size_t kesize = key[i].dttk_size;
1801
1802		if (kesize != 0) {
1803			dtrace_bcopy(
1804			    (const void *)(uintptr_t)key[i].dttk_value,
1805			    (void *)kdata, kesize);
1806			dkey->dttk_value = kdata;
1807			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1808		} else {
1809			dkey->dttk_value = key[i].dttk_value;
1810		}
1811
1812		dkey->dttk_size = kesize;
1813	}
1814
1815	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1816	dvar->dtdv_hashval = hashval;
1817	dvar->dtdv_next = start;
1818
1819	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1820		return (dvar);
1821
1822	/*
1823	 * The cas has failed.  Either another CPU is adding an element to
1824	 * this hash chain, or another CPU is deleting an element from this
1825	 * hash chain.  The simplest way to deal with both of these cases
1826	 * (though not necessarily the most efficient) is to free our
1827	 * allocated block and tail-call ourselves.  Note that the free is
1828	 * to the dirty list and _not_ to the free list.  This is to prevent
1829	 * races with allocators, above.
1830	 */
1831	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1832
1833	dtrace_membar_producer();
1834
1835	do {
1836		free = dcpu->dtdsc_dirty;
1837		dvar->dtdv_next = free;
1838	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1839
1840	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1841}
1842
1843/*ARGSUSED*/
1844static void
1845dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1846{
1847	if ((int64_t)nval < (int64_t)*oval)
1848		*oval = nval;
1849}
1850
1851/*ARGSUSED*/
1852static void
1853dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1854{
1855	if ((int64_t)nval > (int64_t)*oval)
1856		*oval = nval;
1857}
1858
1859static void
1860dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1861{
1862	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1863	int64_t val = (int64_t)nval;
1864
1865	if (val < 0) {
1866		for (i = 0; i < zero; i++) {
1867			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1868				quanta[i] += incr;
1869				return;
1870			}
1871		}
1872	} else {
1873		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1874			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1875				quanta[i - 1] += incr;
1876				return;
1877			}
1878		}
1879
1880		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1881		return;
1882	}
1883
1884	ASSERT(0);
1885}
1886
1887static void
1888dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1889{
1890	uint64_t arg = *lquanta++;
1891	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1892	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1893	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1894	int32_t val = (int32_t)nval, level;
1895
1896	ASSERT(step != 0);
1897	ASSERT(levels != 0);
1898
1899	if (val < base) {
1900		/*
1901		 * This is an underflow.
1902		 */
1903		lquanta[0] += incr;
1904		return;
1905	}
1906
1907	level = (val - base) / step;
1908
1909	if (level < levels) {
1910		lquanta[level + 1] += incr;
1911		return;
1912	}
1913
1914	/*
1915	 * This is an overflow.
1916	 */
1917	lquanta[levels + 1] += incr;
1918}
1919
1920/*ARGSUSED*/
1921static void
1922dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1923{
1924	data[0]++;
1925	data[1] += nval;
1926}
1927
1928/*ARGSUSED*/
1929static void
1930dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1931{
1932	int64_t snval = (int64_t)nval;
1933	uint64_t tmp[2];
1934
1935	data[0]++;
1936	data[1] += nval;
1937
1938	/*
1939	 * What we want to say here is:
1940	 *
1941	 * data[2] += nval * nval;
1942	 *
1943	 * But given that nval is 64-bit, we could easily overflow, so
1944	 * we do this as 128-bit arithmetic.
1945	 */
1946	if (snval < 0)
1947		snval = -snval;
1948
1949	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1950	dtrace_add_128(data + 2, tmp, data + 2);
1951}
1952
1953/*ARGSUSED*/
1954static void
1955dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1956{
1957	*oval = *oval + 1;
1958}
1959
1960/*ARGSUSED*/
1961static void
1962dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1963{
1964	*oval += nval;
1965}
1966
1967/*
1968 * Aggregate given the tuple in the principal data buffer, and the aggregating
1969 * action denoted by the specified dtrace_aggregation_t.  The aggregation
1970 * buffer is specified as the buf parameter.  This routine does not return
1971 * failure; if there is no space in the aggregation buffer, the data will be
1972 * dropped, and a corresponding counter incremented.
1973 */
1974static void
1975dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1976    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1977{
1978	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1979	uint32_t i, ndx, size, fsize;
1980	uint32_t align = sizeof (uint64_t) - 1;
1981	dtrace_aggbuffer_t *agb;
1982	dtrace_aggkey_t *key;
1983	uint32_t hashval = 0, limit, isstr;
1984	caddr_t tomax, data, kdata;
1985	dtrace_actkind_t action;
1986	dtrace_action_t *act;
1987	uintptr_t offs;
1988
1989	if (buf == NULL)
1990		return;
1991
1992	if (!agg->dtag_hasarg) {
1993		/*
1994		 * Currently, only quantize() and lquantize() take additional
1995		 * arguments, and they have the same semantics:  an increment
1996		 * value that defaults to 1 when not present.  If additional
1997		 * aggregating actions take arguments, the setting of the
1998		 * default argument value will presumably have to become more
1999		 * sophisticated...
2000		 */
2001		arg = 1;
2002	}
2003
2004	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2005	size = rec->dtrd_offset - agg->dtag_base;
2006	fsize = size + rec->dtrd_size;
2007
2008	ASSERT(dbuf->dtb_tomax != NULL);
2009	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2010
2011	if ((tomax = buf->dtb_tomax) == NULL) {
2012		dtrace_buffer_drop(buf);
2013		return;
2014	}
2015
2016	/*
2017	 * The metastructure is always at the bottom of the buffer.
2018	 */
2019	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2020	    sizeof (dtrace_aggbuffer_t));
2021
2022	if (buf->dtb_offset == 0) {
2023		/*
2024		 * We just kludge up approximately 1/8th of the size to be
2025		 * buckets.  If this guess ends up being routinely
2026		 * off-the-mark, we may need to dynamically readjust this
2027		 * based on past performance.
2028		 */
2029		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2030
2031		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2032		    (uintptr_t)tomax || hashsize == 0) {
2033			/*
2034			 * We've been given a ludicrously small buffer;
2035			 * increment our drop count and leave.
2036			 */
2037			dtrace_buffer_drop(buf);
2038			return;
2039		}
2040
2041		/*
2042		 * And now, a pathetic attempt to try to get a an odd (or
2043		 * perchance, a prime) hash size for better hash distribution.
2044		 */
2045		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2046			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2047
2048		agb->dtagb_hashsize = hashsize;
2049		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2050		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2051		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2052
2053		for (i = 0; i < agb->dtagb_hashsize; i++)
2054			agb->dtagb_hash[i] = NULL;
2055	}
2056
2057	ASSERT(agg->dtag_first != NULL);
2058	ASSERT(agg->dtag_first->dta_intuple);
2059
2060	/*
2061	 * Calculate the hash value based on the key.  Note that we _don't_
2062	 * include the aggid in the hashing (but we will store it as part of
2063	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2064	 * algorithm: a simple, quick algorithm that has no known funnels, and
2065	 * gets good distribution in practice.  The efficacy of the hashing
2066	 * algorithm (and a comparison with other algorithms) may be found by
2067	 * running the ::dtrace_aggstat MDB dcmd.
2068	 */
2069	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2070		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2071		limit = i + act->dta_rec.dtrd_size;
2072		ASSERT(limit <= size);
2073		isstr = DTRACEACT_ISSTRING(act);
2074
2075		for (; i < limit; i++) {
2076			hashval += data[i];
2077			hashval += (hashval << 10);
2078			hashval ^= (hashval >> 6);
2079
2080			if (isstr && data[i] == '\0')
2081				break;
2082		}
2083	}
2084
2085	hashval += (hashval << 3);
2086	hashval ^= (hashval >> 11);
2087	hashval += (hashval << 15);
2088
2089	/*
2090	 * Yes, the divide here is expensive -- but it's generally the least
2091	 * of the performance issues given the amount of data that we iterate
2092	 * over to compute hash values, compare data, etc.
2093	 */
2094	ndx = hashval % agb->dtagb_hashsize;
2095
2096	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2097		ASSERT((caddr_t)key >= tomax);
2098		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2099
2100		if (hashval != key->dtak_hashval || key->dtak_size != size)
2101			continue;
2102
2103		kdata = key->dtak_data;
2104		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2105
2106		for (act = agg->dtag_first; act->dta_intuple;
2107		    act = act->dta_next) {
2108			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2109			limit = i + act->dta_rec.dtrd_size;
2110			ASSERT(limit <= size);
2111			isstr = DTRACEACT_ISSTRING(act);
2112
2113			for (; i < limit; i++) {
2114				if (kdata[i] != data[i])
2115					goto next;
2116
2117				if (isstr && data[i] == '\0')
2118					break;
2119			}
2120		}
2121
2122		if (action != key->dtak_action) {
2123			/*
2124			 * We are aggregating on the same value in the same
2125			 * aggregation with two different aggregating actions.
2126			 * (This should have been picked up in the compiler,
2127			 * so we may be dealing with errant or devious DIF.)
2128			 * This is an error condition; we indicate as much,
2129			 * and return.
2130			 */
2131			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2132			return;
2133		}
2134
2135		/*
2136		 * This is a hit:  we need to apply the aggregator to
2137		 * the value at this key.
2138		 */
2139		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2140		return;
2141next:
2142		continue;
2143	}
2144
2145	/*
2146	 * We didn't find it.  We need to allocate some zero-filled space,
2147	 * link it into the hash table appropriately, and apply the aggregator
2148	 * to the (zero-filled) value.
2149	 */
2150	offs = buf->dtb_offset;
2151	while (offs & (align - 1))
2152		offs += sizeof (uint32_t);
2153
2154	/*
2155	 * If we don't have enough room to both allocate a new key _and_
2156	 * its associated data, increment the drop count and return.
2157	 */
2158	if ((uintptr_t)tomax + offs + fsize >
2159	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2160		dtrace_buffer_drop(buf);
2161		return;
2162	}
2163
2164	/*CONSTCOND*/
2165	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2166	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2167	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2168
2169	key->dtak_data = kdata = tomax + offs;
2170	buf->dtb_offset = offs + fsize;
2171
2172	/*
2173	 * Now copy the data across.
2174	 */
2175	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2176
2177	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2178		kdata[i] = data[i];
2179
2180	/*
2181	 * Because strings are not zeroed out by default, we need to iterate
2182	 * looking for actions that store strings, and we need to explicitly
2183	 * pad these strings out with zeroes.
2184	 */
2185	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2186		int nul;
2187
2188		if (!DTRACEACT_ISSTRING(act))
2189			continue;
2190
2191		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2192		limit = i + act->dta_rec.dtrd_size;
2193		ASSERT(limit <= size);
2194
2195		for (nul = 0; i < limit; i++) {
2196			if (nul) {
2197				kdata[i] = '\0';
2198				continue;
2199			}
2200
2201			if (data[i] != '\0')
2202				continue;
2203
2204			nul = 1;
2205		}
2206	}
2207
2208	for (i = size; i < fsize; i++)
2209		kdata[i] = 0;
2210
2211	key->dtak_hashval = hashval;
2212	key->dtak_size = size;
2213	key->dtak_action = action;
2214	key->dtak_next = agb->dtagb_hash[ndx];
2215	agb->dtagb_hash[ndx] = key;
2216
2217	/*
2218	 * Finally, apply the aggregator.
2219	 */
2220	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2221	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2222}
2223
2224/*
2225 * Given consumer state, this routine finds a speculation in the INACTIVE
2226 * state and transitions it into the ACTIVE state.  If there is no speculation
2227 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2228 * incremented -- it is up to the caller to take appropriate action.
2229 */
2230static int
2231dtrace_speculation(dtrace_state_t *state)
2232{
2233	int i = 0;
2234	dtrace_speculation_state_t current;
2235	uint32_t *stat = &state->dts_speculations_unavail, count;
2236
2237	while (i < state->dts_nspeculations) {
2238		dtrace_speculation_t *spec = &state->dts_speculations[i];
2239
2240		current = spec->dtsp_state;
2241
2242		if (current != DTRACESPEC_INACTIVE) {
2243			if (current == DTRACESPEC_COMMITTINGMANY ||
2244			    current == DTRACESPEC_COMMITTING ||
2245			    current == DTRACESPEC_DISCARDING)
2246				stat = &state->dts_speculations_busy;
2247			i++;
2248			continue;
2249		}
2250
2251		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2252		    current, DTRACESPEC_ACTIVE) == current)
2253			return (i + 1);
2254	}
2255
2256	/*
2257	 * We couldn't find a speculation.  If we found as much as a single
2258	 * busy speculation buffer, we'll attribute this failure as "busy"
2259	 * instead of "unavail".
2260	 */
2261	do {
2262		count = *stat;
2263	} while (dtrace_cas32(stat, count, count + 1) != count);
2264
2265	return (0);
2266}
2267
2268/*
2269 * This routine commits an active speculation.  If the specified speculation
2270 * is not in a valid state to perform a commit(), this routine will silently do
2271 * nothing.  The state of the specified speculation is transitioned according
2272 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2273 */
2274static void
2275dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2276    dtrace_specid_t which)
2277{
2278	dtrace_speculation_t *spec;
2279	dtrace_buffer_t *src, *dest;
2280	uintptr_t daddr, saddr, dlimit;
2281	dtrace_speculation_state_t current, new = 0;
2282	intptr_t offs;
2283
2284	if (which == 0)
2285		return;
2286
2287	if (which > state->dts_nspeculations) {
2288		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2289		return;
2290	}
2291
2292	spec = &state->dts_speculations[which - 1];
2293	src = &spec->dtsp_buffer[cpu];
2294	dest = &state->dts_buffer[cpu];
2295
2296	do {
2297		current = spec->dtsp_state;
2298
2299		if (current == DTRACESPEC_COMMITTINGMANY)
2300			break;
2301
2302		switch (current) {
2303		case DTRACESPEC_INACTIVE:
2304		case DTRACESPEC_DISCARDING:
2305			return;
2306
2307		case DTRACESPEC_COMMITTING:
2308			/*
2309			 * This is only possible if we are (a) commit()'ing
2310			 * without having done a prior speculate() on this CPU
2311			 * and (b) racing with another commit() on a different
2312			 * CPU.  There's nothing to do -- we just assert that
2313			 * our offset is 0.
2314			 */
2315			ASSERT(src->dtb_offset == 0);
2316			return;
2317
2318		case DTRACESPEC_ACTIVE:
2319			new = DTRACESPEC_COMMITTING;
2320			break;
2321
2322		case DTRACESPEC_ACTIVEONE:
2323			/*
2324			 * This speculation is active on one CPU.  If our
2325			 * buffer offset is non-zero, we know that the one CPU
2326			 * must be us.  Otherwise, we are committing on a
2327			 * different CPU from the speculate(), and we must
2328			 * rely on being asynchronously cleaned.
2329			 */
2330			if (src->dtb_offset != 0) {
2331				new = DTRACESPEC_COMMITTING;
2332				break;
2333			}
2334			/*FALLTHROUGH*/
2335
2336		case DTRACESPEC_ACTIVEMANY:
2337			new = DTRACESPEC_COMMITTINGMANY;
2338			break;
2339
2340		default:
2341			ASSERT(0);
2342		}
2343	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2344	    current, new) != current);
2345
2346	/*
2347	 * We have set the state to indicate that we are committing this
2348	 * speculation.  Now reserve the necessary space in the destination
2349	 * buffer.
2350	 */
2351	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2352	    sizeof (uint64_t), state, NULL)) < 0) {
2353		dtrace_buffer_drop(dest);
2354		goto out;
2355	}
2356
2357	/*
2358	 * We have the space; copy the buffer across.  (Note that this is a
2359	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2360	 * a serious performance issue, a high-performance DTrace-specific
2361	 * bcopy() should obviously be invented.)
2362	 */
2363	daddr = (uintptr_t)dest->dtb_tomax + offs;
2364	dlimit = daddr + src->dtb_offset;
2365	saddr = (uintptr_t)src->dtb_tomax;
2366
2367	/*
2368	 * First, the aligned portion.
2369	 */
2370	while (dlimit - daddr >= sizeof (uint64_t)) {
2371		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2372
2373		daddr += sizeof (uint64_t);
2374		saddr += sizeof (uint64_t);
2375	}
2376
2377	/*
2378	 * Now any left-over bit...
2379	 */
2380	while (dlimit - daddr)
2381		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2382
2383	/*
2384	 * Finally, commit the reserved space in the destination buffer.
2385	 */
2386	dest->dtb_offset = offs + src->dtb_offset;
2387
2388out:
2389	/*
2390	 * If we're lucky enough to be the only active CPU on this speculation
2391	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2392	 */
2393	if (current == DTRACESPEC_ACTIVE ||
2394	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2395		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2396		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2397
2398		ASSERT(rval == DTRACESPEC_COMMITTING);
2399	}
2400
2401	src->dtb_offset = 0;
2402	src->dtb_xamot_drops += src->dtb_drops;
2403	src->dtb_drops = 0;
2404}
2405
2406/*
2407 * This routine discards an active speculation.  If the specified speculation
2408 * is not in a valid state to perform a discard(), this routine will silently
2409 * do nothing.  The state of the specified speculation is transitioned
2410 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2411 */
2412static void
2413dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2414    dtrace_specid_t which)
2415{
2416	dtrace_speculation_t *spec;
2417	dtrace_speculation_state_t current, new = 0;
2418	dtrace_buffer_t *buf;
2419
2420	if (which == 0)
2421		return;
2422
2423	if (which > state->dts_nspeculations) {
2424		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2425		return;
2426	}
2427
2428	spec = &state->dts_speculations[which - 1];
2429	buf = &spec->dtsp_buffer[cpu];
2430
2431	do {
2432		current = spec->dtsp_state;
2433
2434		switch (current) {
2435		case DTRACESPEC_INACTIVE:
2436		case DTRACESPEC_COMMITTINGMANY:
2437		case DTRACESPEC_COMMITTING:
2438		case DTRACESPEC_DISCARDING:
2439			return;
2440
2441		case DTRACESPEC_ACTIVE:
2442		case DTRACESPEC_ACTIVEMANY:
2443			new = DTRACESPEC_DISCARDING;
2444			break;
2445
2446		case DTRACESPEC_ACTIVEONE:
2447			if (buf->dtb_offset != 0) {
2448				new = DTRACESPEC_INACTIVE;
2449			} else {
2450				new = DTRACESPEC_DISCARDING;
2451			}
2452			break;
2453
2454		default:
2455			ASSERT(0);
2456		}
2457	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2458	    current, new) != current);
2459
2460	buf->dtb_offset = 0;
2461	buf->dtb_drops = 0;
2462}
2463
2464/*
2465 * Note:  not called from probe context.  This function is called
2466 * asynchronously from cross call context to clean any speculations that are
2467 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2468 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2469 * speculation.
2470 */
2471static void
2472dtrace_speculation_clean_here(dtrace_state_t *state)
2473{
2474	dtrace_icookie_t cookie;
2475	processorid_t cpu = curcpu;
2476	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2477	dtrace_specid_t i;
2478
2479	cookie = dtrace_interrupt_disable();
2480
2481	if (dest->dtb_tomax == NULL) {
2482		dtrace_interrupt_enable(cookie);
2483		return;
2484	}
2485
2486	for (i = 0; i < state->dts_nspeculations; i++) {
2487		dtrace_speculation_t *spec = &state->dts_speculations[i];
2488		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2489
2490		if (src->dtb_tomax == NULL)
2491			continue;
2492
2493		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2494			src->dtb_offset = 0;
2495			continue;
2496		}
2497
2498		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2499			continue;
2500
2501		if (src->dtb_offset == 0)
2502			continue;
2503
2504		dtrace_speculation_commit(state, cpu, i + 1);
2505	}
2506
2507	dtrace_interrupt_enable(cookie);
2508}
2509
2510/*
2511 * Note:  not called from probe context.  This function is called
2512 * asynchronously (and at a regular interval) to clean any speculations that
2513 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2514 * is work to be done, it cross calls all CPUs to perform that work;
2515 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2516 * INACTIVE state until they have been cleaned by all CPUs.
2517 */
2518static void
2519dtrace_speculation_clean(dtrace_state_t *state)
2520{
2521	int work = 0, rv;
2522	dtrace_specid_t i;
2523
2524	for (i = 0; i < state->dts_nspeculations; i++) {
2525		dtrace_speculation_t *spec = &state->dts_speculations[i];
2526
2527		ASSERT(!spec->dtsp_cleaning);
2528
2529		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2530		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2531			continue;
2532
2533		work++;
2534		spec->dtsp_cleaning = 1;
2535	}
2536
2537	if (!work)
2538		return;
2539
2540	dtrace_xcall(DTRACE_CPUALL,
2541	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2542
2543	/*
2544	 * We now know that all CPUs have committed or discarded their
2545	 * speculation buffers, as appropriate.  We can now set the state
2546	 * to inactive.
2547	 */
2548	for (i = 0; i < state->dts_nspeculations; i++) {
2549		dtrace_speculation_t *spec = &state->dts_speculations[i];
2550		dtrace_speculation_state_t current, new;
2551
2552		if (!spec->dtsp_cleaning)
2553			continue;
2554
2555		current = spec->dtsp_state;
2556		ASSERT(current == DTRACESPEC_DISCARDING ||
2557		    current == DTRACESPEC_COMMITTINGMANY);
2558
2559		new = DTRACESPEC_INACTIVE;
2560
2561		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2562		ASSERT(rv == current);
2563		spec->dtsp_cleaning = 0;
2564	}
2565}
2566
2567/*
2568 * Called as part of a speculate() to get the speculative buffer associated
2569 * with a given speculation.  Returns NULL if the specified speculation is not
2570 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2571 * the active CPU is not the specified CPU -- the speculation will be
2572 * atomically transitioned into the ACTIVEMANY state.
2573 */
2574static dtrace_buffer_t *
2575dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2576    dtrace_specid_t which)
2577{
2578	dtrace_speculation_t *spec;
2579	dtrace_speculation_state_t current, new = 0;
2580	dtrace_buffer_t *buf;
2581
2582	if (which == 0)
2583		return (NULL);
2584
2585	if (which > state->dts_nspeculations) {
2586		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2587		return (NULL);
2588	}
2589
2590	spec = &state->dts_speculations[which - 1];
2591	buf = &spec->dtsp_buffer[cpuid];
2592
2593	do {
2594		current = spec->dtsp_state;
2595
2596		switch (current) {
2597		case DTRACESPEC_INACTIVE:
2598		case DTRACESPEC_COMMITTINGMANY:
2599		case DTRACESPEC_DISCARDING:
2600			return (NULL);
2601
2602		case DTRACESPEC_COMMITTING:
2603			ASSERT(buf->dtb_offset == 0);
2604			return (NULL);
2605
2606		case DTRACESPEC_ACTIVEONE:
2607			/*
2608			 * This speculation is currently active on one CPU.
2609			 * Check the offset in the buffer; if it's non-zero,
2610			 * that CPU must be us (and we leave the state alone).
2611			 * If it's zero, assume that we're starting on a new
2612			 * CPU -- and change the state to indicate that the
2613			 * speculation is active on more than one CPU.
2614			 */
2615			if (buf->dtb_offset != 0)
2616				return (buf);
2617
2618			new = DTRACESPEC_ACTIVEMANY;
2619			break;
2620
2621		case DTRACESPEC_ACTIVEMANY:
2622			return (buf);
2623
2624		case DTRACESPEC_ACTIVE:
2625			new = DTRACESPEC_ACTIVEONE;
2626			break;
2627
2628		default:
2629			ASSERT(0);
2630		}
2631	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2632	    current, new) != current);
2633
2634	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2635	return (buf);
2636}
2637
2638/*
2639 * Return a string.  In the event that the user lacks the privilege to access
2640 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2641 * don't fail access checking.
2642 *
2643 * dtrace_dif_variable() uses this routine as a helper for various
2644 * builtin values such as 'execname' and 'probefunc.'
2645 */
2646uintptr_t
2647dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2648    dtrace_mstate_t *mstate)
2649{
2650	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2651	uintptr_t ret;
2652	size_t strsz;
2653
2654	/*
2655	 * The easy case: this probe is allowed to read all of memory, so
2656	 * we can just return this as a vanilla pointer.
2657	 */
2658	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2659		return (addr);
2660
2661	/*
2662	 * This is the tougher case: we copy the string in question from
2663	 * kernel memory into scratch memory and return it that way: this
2664	 * ensures that we won't trip up when access checking tests the
2665	 * BYREF return value.
2666	 */
2667	strsz = dtrace_strlen((char *)addr, size) + 1;
2668
2669	if (mstate->dtms_scratch_ptr + strsz >
2670	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2671		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2672		return (0);
2673	}
2674
2675	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2676	    strsz);
2677	ret = mstate->dtms_scratch_ptr;
2678	mstate->dtms_scratch_ptr += strsz;
2679	return (ret);
2680}
2681
2682/*
2683 * Return a string from a memoy address which is known to have one or
2684 * more concatenated, individually zero terminated, sub-strings.
2685 * In the event that the user lacks the privilege to access
2686 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2687 * don't fail access checking.
2688 *
2689 * dtrace_dif_variable() uses this routine as a helper for various
2690 * builtin values such as 'execargs'.
2691 */
2692static uintptr_t
2693dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2694    dtrace_mstate_t *mstate)
2695{
2696	char *p;
2697	size_t i;
2698	uintptr_t ret;
2699
2700	if (mstate->dtms_scratch_ptr + strsz >
2701	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2702		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2703		return (0);
2704	}
2705
2706	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2707	    strsz);
2708
2709	/* Replace sub-string termination characters with a space. */
2710	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2711	    p++, i++)
2712		if (*p == '\0')
2713			*p = ' ';
2714
2715	ret = mstate->dtms_scratch_ptr;
2716	mstate->dtms_scratch_ptr += strsz;
2717	return (ret);
2718}
2719
2720/*
2721 * This function implements the DIF emulator's variable lookups.  The emulator
2722 * passes a reserved variable identifier and optional built-in array index.
2723 */
2724static uint64_t
2725dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2726    uint64_t ndx)
2727{
2728	/*
2729	 * If we're accessing one of the uncached arguments, we'll turn this
2730	 * into a reference in the args array.
2731	 */
2732	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2733		ndx = v - DIF_VAR_ARG0;
2734		v = DIF_VAR_ARGS;
2735	}
2736
2737	switch (v) {
2738	case DIF_VAR_ARGS:
2739		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2740		if (ndx >= sizeof (mstate->dtms_arg) /
2741		    sizeof (mstate->dtms_arg[0])) {
2742			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2743			dtrace_provider_t *pv;
2744			uint64_t val;
2745
2746			pv = mstate->dtms_probe->dtpr_provider;
2747			if (pv->dtpv_pops.dtps_getargval != NULL)
2748				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2749				    mstate->dtms_probe->dtpr_id,
2750				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2751			else
2752				val = dtrace_getarg(ndx, aframes);
2753
2754			/*
2755			 * This is regrettably required to keep the compiler
2756			 * from tail-optimizing the call to dtrace_getarg().
2757			 * The condition always evaluates to true, but the
2758			 * compiler has no way of figuring that out a priori.
2759			 * (None of this would be necessary if the compiler
2760			 * could be relied upon to _always_ tail-optimize
2761			 * the call to dtrace_getarg() -- but it can't.)
2762			 */
2763			if (mstate->dtms_probe != NULL)
2764				return (val);
2765
2766			ASSERT(0);
2767		}
2768
2769		return (mstate->dtms_arg[ndx]);
2770
2771#if defined(sun)
2772	case DIF_VAR_UREGS: {
2773		klwp_t *lwp;
2774
2775		if (!dtrace_priv_proc(state))
2776			return (0);
2777
2778		if ((lwp = curthread->t_lwp) == NULL) {
2779			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2780			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2781			return (0);
2782		}
2783
2784		return (dtrace_getreg(lwp->lwp_regs, ndx));
2785		return (0);
2786	}
2787#endif
2788
2789	case DIF_VAR_CURTHREAD:
2790		if (!dtrace_priv_kernel(state))
2791			return (0);
2792		return ((uint64_t)(uintptr_t)curthread);
2793
2794	case DIF_VAR_TIMESTAMP:
2795		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2796			mstate->dtms_timestamp = dtrace_gethrtime();
2797			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2798		}
2799		return (mstate->dtms_timestamp);
2800
2801	case DIF_VAR_VTIMESTAMP:
2802		ASSERT(dtrace_vtime_references != 0);
2803		return (curthread->t_dtrace_vtime);
2804
2805	case DIF_VAR_WALLTIMESTAMP:
2806		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2807			mstate->dtms_walltimestamp = dtrace_gethrestime();
2808			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2809		}
2810		return (mstate->dtms_walltimestamp);
2811
2812#if defined(sun)
2813	case DIF_VAR_IPL:
2814		if (!dtrace_priv_kernel(state))
2815			return (0);
2816		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2817			mstate->dtms_ipl = dtrace_getipl();
2818			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2819		}
2820		return (mstate->dtms_ipl);
2821#endif
2822
2823	case DIF_VAR_EPID:
2824		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2825		return (mstate->dtms_epid);
2826
2827	case DIF_VAR_ID:
2828		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2829		return (mstate->dtms_probe->dtpr_id);
2830
2831	case DIF_VAR_STACKDEPTH:
2832		if (!dtrace_priv_kernel(state))
2833			return (0);
2834		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2835			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2836
2837			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2838			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2839		}
2840		return (mstate->dtms_stackdepth);
2841
2842#if defined(sun)
2843	case DIF_VAR_USTACKDEPTH:
2844		if (!dtrace_priv_proc(state))
2845			return (0);
2846		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2847			/*
2848			 * See comment in DIF_VAR_PID.
2849			 */
2850			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2851			    CPU_ON_INTR(CPU)) {
2852				mstate->dtms_ustackdepth = 0;
2853			} else {
2854				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2855				mstate->dtms_ustackdepth =
2856				    dtrace_getustackdepth();
2857				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2858			}
2859			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2860		}
2861		return (mstate->dtms_ustackdepth);
2862#endif
2863
2864	case DIF_VAR_CALLER:
2865		if (!dtrace_priv_kernel(state))
2866			return (0);
2867		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2868			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2869
2870			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2871				/*
2872				 * If this is an unanchored probe, we are
2873				 * required to go through the slow path:
2874				 * dtrace_caller() only guarantees correct
2875				 * results for anchored probes.
2876				 */
2877				pc_t caller[2] = {0, 0};
2878
2879				dtrace_getpcstack(caller, 2, aframes,
2880				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2881				mstate->dtms_caller = caller[1];
2882			} else if ((mstate->dtms_caller =
2883			    dtrace_caller(aframes)) == -1) {
2884				/*
2885				 * We have failed to do this the quick way;
2886				 * we must resort to the slower approach of
2887				 * calling dtrace_getpcstack().
2888				 */
2889				pc_t caller = 0;
2890
2891				dtrace_getpcstack(&caller, 1, aframes, NULL);
2892				mstate->dtms_caller = caller;
2893			}
2894
2895			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2896		}
2897		return (mstate->dtms_caller);
2898
2899#if defined(sun)
2900	case DIF_VAR_UCALLER:
2901		if (!dtrace_priv_proc(state))
2902			return (0);
2903
2904		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2905			uint64_t ustack[3];
2906
2907			/*
2908			 * dtrace_getupcstack() fills in the first uint64_t
2909			 * with the current PID.  The second uint64_t will
2910			 * be the program counter at user-level.  The third
2911			 * uint64_t will contain the caller, which is what
2912			 * we're after.
2913			 */
2914			ustack[2] = 0;
2915			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2916			dtrace_getupcstack(ustack, 3);
2917			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2918			mstate->dtms_ucaller = ustack[2];
2919			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2920		}
2921
2922		return (mstate->dtms_ucaller);
2923#endif
2924
2925	case DIF_VAR_PROBEPROV:
2926		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2927		return (dtrace_dif_varstr(
2928		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2929		    state, mstate));
2930
2931	case DIF_VAR_PROBEMOD:
2932		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2933		return (dtrace_dif_varstr(
2934		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2935		    state, mstate));
2936
2937	case DIF_VAR_PROBEFUNC:
2938		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2939		return (dtrace_dif_varstr(
2940		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2941		    state, mstate));
2942
2943	case DIF_VAR_PROBENAME:
2944		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2945		return (dtrace_dif_varstr(
2946		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2947		    state, mstate));
2948
2949	case DIF_VAR_PID:
2950		if (!dtrace_priv_proc(state))
2951			return (0);
2952
2953#if defined(sun)
2954		/*
2955		 * Note that we are assuming that an unanchored probe is
2956		 * always due to a high-level interrupt.  (And we're assuming
2957		 * that there is only a single high level interrupt.)
2958		 */
2959		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2960			return (pid0.pid_id);
2961
2962		/*
2963		 * It is always safe to dereference one's own t_procp pointer:
2964		 * it always points to a valid, allocated proc structure.
2965		 * Further, it is always safe to dereference the p_pidp member
2966		 * of one's own proc structure.  (These are truisms becuase
2967		 * threads and processes don't clean up their own state --
2968		 * they leave that task to whomever reaps them.)
2969		 */
2970		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2971#else
2972		return ((uint64_t)curproc->p_pid);
2973#endif
2974
2975	case DIF_VAR_PPID:
2976		if (!dtrace_priv_proc(state))
2977			return (0);
2978
2979#if defined(sun)
2980		/*
2981		 * See comment in DIF_VAR_PID.
2982		 */
2983		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2984			return (pid0.pid_id);
2985
2986		/*
2987		 * It is always safe to dereference one's own t_procp pointer:
2988		 * it always points to a valid, allocated proc structure.
2989		 * (This is true because threads don't clean up their own
2990		 * state -- they leave that task to whomever reaps them.)
2991		 */
2992		return ((uint64_t)curthread->t_procp->p_ppid);
2993#else
2994		return ((uint64_t)curproc->p_pptr->p_pid);
2995#endif
2996
2997	case DIF_VAR_TID:
2998#if defined(sun)
2999		/*
3000		 * See comment in DIF_VAR_PID.
3001		 */
3002		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3003			return (0);
3004#endif
3005
3006		return ((uint64_t)curthread->t_tid);
3007
3008	case DIF_VAR_EXECARGS: {
3009		struct pargs *p_args = curthread->td_proc->p_args;
3010
3011		if (p_args == NULL)
3012			return(0);
3013
3014		return (dtrace_dif_varstrz(
3015		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3016	}
3017
3018	case DIF_VAR_EXECNAME:
3019#if defined(sun)
3020		if (!dtrace_priv_proc(state))
3021			return (0);
3022
3023		/*
3024		 * See comment in DIF_VAR_PID.
3025		 */
3026		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3027			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3028
3029		/*
3030		 * It is always safe to dereference one's own t_procp pointer:
3031		 * it always points to a valid, allocated proc structure.
3032		 * (This is true because threads don't clean up their own
3033		 * state -- they leave that task to whomever reaps them.)
3034		 */
3035		return (dtrace_dif_varstr(
3036		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3037		    state, mstate));
3038#else
3039		return (dtrace_dif_varstr(
3040		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3041#endif
3042
3043	case DIF_VAR_ZONENAME:
3044#if defined(sun)
3045		if (!dtrace_priv_proc(state))
3046			return (0);
3047
3048		/*
3049		 * See comment in DIF_VAR_PID.
3050		 */
3051		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3052			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3053
3054		/*
3055		 * It is always safe to dereference one's own t_procp pointer:
3056		 * it always points to a valid, allocated proc structure.
3057		 * (This is true because threads don't clean up their own
3058		 * state -- they leave that task to whomever reaps them.)
3059		 */
3060		return (dtrace_dif_varstr(
3061		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3062		    state, mstate));
3063#else
3064		return (0);
3065#endif
3066
3067	case DIF_VAR_UID:
3068		if (!dtrace_priv_proc(state))
3069			return (0);
3070
3071#if defined(sun)
3072		/*
3073		 * See comment in DIF_VAR_PID.
3074		 */
3075		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3076			return ((uint64_t)p0.p_cred->cr_uid);
3077#endif
3078
3079		/*
3080		 * It is always safe to dereference one's own t_procp pointer:
3081		 * it always points to a valid, allocated proc structure.
3082		 * (This is true because threads don't clean up their own
3083		 * state -- they leave that task to whomever reaps them.)
3084		 *
3085		 * Additionally, it is safe to dereference one's own process
3086		 * credential, since this is never NULL after process birth.
3087		 */
3088		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3089
3090	case DIF_VAR_GID:
3091		if (!dtrace_priv_proc(state))
3092			return (0);
3093
3094#if defined(sun)
3095		/*
3096		 * See comment in DIF_VAR_PID.
3097		 */
3098		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3099			return ((uint64_t)p0.p_cred->cr_gid);
3100#endif
3101
3102		/*
3103		 * It is always safe to dereference one's own t_procp pointer:
3104		 * it always points to a valid, allocated proc structure.
3105		 * (This is true because threads don't clean up their own
3106		 * state -- they leave that task to whomever reaps them.)
3107		 *
3108		 * Additionally, it is safe to dereference one's own process
3109		 * credential, since this is never NULL after process birth.
3110		 */
3111		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3112
3113	case DIF_VAR_ERRNO: {
3114#if defined(sun)
3115		klwp_t *lwp;
3116		if (!dtrace_priv_proc(state))
3117			return (0);
3118
3119		/*
3120		 * See comment in DIF_VAR_PID.
3121		 */
3122		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3123			return (0);
3124
3125		/*
3126		 * It is always safe to dereference one's own t_lwp pointer in
3127		 * the event that this pointer is non-NULL.  (This is true
3128		 * because threads and lwps don't clean up their own state --
3129		 * they leave that task to whomever reaps them.)
3130		 */
3131		if ((lwp = curthread->t_lwp) == NULL)
3132			return (0);
3133
3134		return ((uint64_t)lwp->lwp_errno);
3135#else
3136		return (curthread->td_errno);
3137#endif
3138	}
3139	default:
3140		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3141		return (0);
3142	}
3143}
3144
3145/*
3146 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3147 * Notice that we don't bother validating the proper number of arguments or
3148 * their types in the tuple stack.  This isn't needed because all argument
3149 * interpretation is safe because of our load safety -- the worst that can
3150 * happen is that a bogus program can obtain bogus results.
3151 */
3152static void
3153dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3154    dtrace_key_t *tupregs, int nargs,
3155    dtrace_mstate_t *mstate, dtrace_state_t *state)
3156{
3157	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3158	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3159	dtrace_vstate_t *vstate = &state->dts_vstate;
3160
3161#if defined(sun)
3162	union {
3163		mutex_impl_t mi;
3164		uint64_t mx;
3165	} m;
3166
3167	union {
3168		krwlock_t ri;
3169		uintptr_t rw;
3170	} r;
3171#else
3172	struct thread *lowner;
3173	union {
3174		struct lock_object *li;
3175		uintptr_t lx;
3176	} l;
3177#endif
3178
3179	switch (subr) {
3180	case DIF_SUBR_RAND:
3181		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3182		break;
3183
3184#if defined(sun)
3185	case DIF_SUBR_MUTEX_OWNED:
3186		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3187		    mstate, vstate)) {
3188			regs[rd] = 0;
3189			break;
3190		}
3191
3192		m.mx = dtrace_load64(tupregs[0].dttk_value);
3193		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3194			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3195		else
3196			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3197		break;
3198
3199	case DIF_SUBR_MUTEX_OWNER:
3200		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3201		    mstate, vstate)) {
3202			regs[rd] = 0;
3203			break;
3204		}
3205
3206		m.mx = dtrace_load64(tupregs[0].dttk_value);
3207		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3208		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3209			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3210		else
3211			regs[rd] = 0;
3212		break;
3213
3214	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3215		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3216		    mstate, vstate)) {
3217			regs[rd] = 0;
3218			break;
3219		}
3220
3221		m.mx = dtrace_load64(tupregs[0].dttk_value);
3222		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3223		break;
3224
3225	case DIF_SUBR_MUTEX_TYPE_SPIN:
3226		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3227		    mstate, vstate)) {
3228			regs[rd] = 0;
3229			break;
3230		}
3231
3232		m.mx = dtrace_load64(tupregs[0].dttk_value);
3233		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3234		break;
3235
3236	case DIF_SUBR_RW_READ_HELD: {
3237		uintptr_t tmp;
3238
3239		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3240		    mstate, vstate)) {
3241			regs[rd] = 0;
3242			break;
3243		}
3244
3245		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3246		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3247		break;
3248	}
3249
3250	case DIF_SUBR_RW_WRITE_HELD:
3251		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3252		    mstate, vstate)) {
3253			regs[rd] = 0;
3254			break;
3255		}
3256
3257		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3258		regs[rd] = _RW_WRITE_HELD(&r.ri);
3259		break;
3260
3261	case DIF_SUBR_RW_ISWRITER:
3262		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3263		    mstate, vstate)) {
3264			regs[rd] = 0;
3265			break;
3266		}
3267
3268		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3269		regs[rd] = _RW_ISWRITER(&r.ri);
3270		break;
3271
3272#else
3273	case DIF_SUBR_MUTEX_OWNED:
3274		if (!dtrace_canload(tupregs[0].dttk_value,
3275			sizeof (struct lock_object), mstate, vstate)) {
3276			regs[rd] = 0;
3277			break;
3278		}
3279		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3280		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3281		break;
3282
3283	case DIF_SUBR_MUTEX_OWNER:
3284		if (!dtrace_canload(tupregs[0].dttk_value,
3285			sizeof (struct lock_object), mstate, vstate)) {
3286			regs[rd] = 0;
3287			break;
3288		}
3289		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3290		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3291		regs[rd] = (uintptr_t)lowner;
3292		break;
3293
3294	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3295		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3296		    mstate, vstate)) {
3297			regs[rd] = 0;
3298			break;
3299		}
3300		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3301		/* XXX - should be only LC_SLEEPABLE? */
3302		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3303		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3304		break;
3305
3306	case DIF_SUBR_MUTEX_TYPE_SPIN:
3307		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3308		    mstate, vstate)) {
3309			regs[rd] = 0;
3310			break;
3311		}
3312		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3313		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3314		break;
3315
3316	case DIF_SUBR_RW_READ_HELD:
3317	case DIF_SUBR_SX_SHARED_HELD:
3318		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3319		    mstate, vstate)) {
3320			regs[rd] = 0;
3321			break;
3322		}
3323		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3324		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3325		    lowner == NULL;
3326		break;
3327
3328	case DIF_SUBR_RW_WRITE_HELD:
3329	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3330		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3331		    mstate, vstate)) {
3332			regs[rd] = 0;
3333			break;
3334		}
3335		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3336		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3337		regs[rd] = (lowner == curthread);
3338		break;
3339
3340	case DIF_SUBR_RW_ISWRITER:
3341	case DIF_SUBR_SX_ISEXCLUSIVE:
3342		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3343		    mstate, vstate)) {
3344			regs[rd] = 0;
3345			break;
3346		}
3347		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3348		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3349		    lowner != NULL;
3350		break;
3351#endif /* ! defined(sun) */
3352
3353	case DIF_SUBR_BCOPY: {
3354		/*
3355		 * We need to be sure that the destination is in the scratch
3356		 * region -- no other region is allowed.
3357		 */
3358		uintptr_t src = tupregs[0].dttk_value;
3359		uintptr_t dest = tupregs[1].dttk_value;
3360		size_t size = tupregs[2].dttk_value;
3361
3362		if (!dtrace_inscratch(dest, size, mstate)) {
3363			*flags |= CPU_DTRACE_BADADDR;
3364			*illval = regs[rd];
3365			break;
3366		}
3367
3368		if (!dtrace_canload(src, size, mstate, vstate)) {
3369			regs[rd] = 0;
3370			break;
3371		}
3372
3373		dtrace_bcopy((void *)src, (void *)dest, size);
3374		break;
3375	}
3376
3377	case DIF_SUBR_ALLOCA:
3378	case DIF_SUBR_COPYIN: {
3379		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3380		uint64_t size =
3381		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3382		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3383
3384		/*
3385		 * This action doesn't require any credential checks since
3386		 * probes will not activate in user contexts to which the
3387		 * enabling user does not have permissions.
3388		 */
3389
3390		/*
3391		 * Rounding up the user allocation size could have overflowed
3392		 * a large, bogus allocation (like -1ULL) to 0.
3393		 */
3394		if (scratch_size < size ||
3395		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3396			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3397			regs[rd] = 0;
3398			break;
3399		}
3400
3401		if (subr == DIF_SUBR_COPYIN) {
3402			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3403			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3404			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3405		}
3406
3407		mstate->dtms_scratch_ptr += scratch_size;
3408		regs[rd] = dest;
3409		break;
3410	}
3411
3412	case DIF_SUBR_COPYINTO: {
3413		uint64_t size = tupregs[1].dttk_value;
3414		uintptr_t dest = tupregs[2].dttk_value;
3415
3416		/*
3417		 * This action doesn't require any credential checks since
3418		 * probes will not activate in user contexts to which the
3419		 * enabling user does not have permissions.
3420		 */
3421		if (!dtrace_inscratch(dest, size, mstate)) {
3422			*flags |= CPU_DTRACE_BADADDR;
3423			*illval = regs[rd];
3424			break;
3425		}
3426
3427		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3428		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3429		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3430		break;
3431	}
3432
3433	case DIF_SUBR_COPYINSTR: {
3434		uintptr_t dest = mstate->dtms_scratch_ptr;
3435		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3436
3437		if (nargs > 1 && tupregs[1].dttk_value < size)
3438			size = tupregs[1].dttk_value + 1;
3439
3440		/*
3441		 * This action doesn't require any credential checks since
3442		 * probes will not activate in user contexts to which the
3443		 * enabling user does not have permissions.
3444		 */
3445		if (!DTRACE_INSCRATCH(mstate, size)) {
3446			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3447			regs[rd] = 0;
3448			break;
3449		}
3450
3451		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3452		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3453		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3454
3455		((char *)dest)[size - 1] = '\0';
3456		mstate->dtms_scratch_ptr += size;
3457		regs[rd] = dest;
3458		break;
3459	}
3460
3461#if defined(sun)
3462	case DIF_SUBR_MSGSIZE:
3463	case DIF_SUBR_MSGDSIZE: {
3464		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3465		uintptr_t wptr, rptr;
3466		size_t count = 0;
3467		int cont = 0;
3468
3469		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3470
3471			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3472			    vstate)) {
3473				regs[rd] = 0;
3474				break;
3475			}
3476
3477			wptr = dtrace_loadptr(baddr +
3478			    offsetof(mblk_t, b_wptr));
3479
3480			rptr = dtrace_loadptr(baddr +
3481			    offsetof(mblk_t, b_rptr));
3482
3483			if (wptr < rptr) {
3484				*flags |= CPU_DTRACE_BADADDR;
3485				*illval = tupregs[0].dttk_value;
3486				break;
3487			}
3488
3489			daddr = dtrace_loadptr(baddr +
3490			    offsetof(mblk_t, b_datap));
3491
3492			baddr = dtrace_loadptr(baddr +
3493			    offsetof(mblk_t, b_cont));
3494
3495			/*
3496			 * We want to prevent against denial-of-service here,
3497			 * so we're only going to search the list for
3498			 * dtrace_msgdsize_max mblks.
3499			 */
3500			if (cont++ > dtrace_msgdsize_max) {
3501				*flags |= CPU_DTRACE_ILLOP;
3502				break;
3503			}
3504
3505			if (subr == DIF_SUBR_MSGDSIZE) {
3506				if (dtrace_load8(daddr +
3507				    offsetof(dblk_t, db_type)) != M_DATA)
3508					continue;
3509			}
3510
3511			count += wptr - rptr;
3512		}
3513
3514		if (!(*flags & CPU_DTRACE_FAULT))
3515			regs[rd] = count;
3516
3517		break;
3518	}
3519#endif
3520
3521	case DIF_SUBR_PROGENYOF: {
3522		pid_t pid = tupregs[0].dttk_value;
3523		proc_t *p;
3524		int rval = 0;
3525
3526		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3527
3528		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3529#if defined(sun)
3530			if (p->p_pidp->pid_id == pid) {
3531#else
3532			if (p->p_pid == pid) {
3533#endif
3534				rval = 1;
3535				break;
3536			}
3537		}
3538
3539		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3540
3541		regs[rd] = rval;
3542		break;
3543	}
3544
3545	case DIF_SUBR_SPECULATION:
3546		regs[rd] = dtrace_speculation(state);
3547		break;
3548
3549	case DIF_SUBR_COPYOUT: {
3550		uintptr_t kaddr = tupregs[0].dttk_value;
3551		uintptr_t uaddr = tupregs[1].dttk_value;
3552		uint64_t size = tupregs[2].dttk_value;
3553
3554		if (!dtrace_destructive_disallow &&
3555		    dtrace_priv_proc_control(state) &&
3556		    !dtrace_istoxic(kaddr, size)) {
3557			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3558			dtrace_copyout(kaddr, uaddr, size, flags);
3559			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3560		}
3561		break;
3562	}
3563
3564	case DIF_SUBR_COPYOUTSTR: {
3565		uintptr_t kaddr = tupregs[0].dttk_value;
3566		uintptr_t uaddr = tupregs[1].dttk_value;
3567		uint64_t size = tupregs[2].dttk_value;
3568
3569		if (!dtrace_destructive_disallow &&
3570		    dtrace_priv_proc_control(state) &&
3571		    !dtrace_istoxic(kaddr, size)) {
3572			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3573			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3574			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3575		}
3576		break;
3577	}
3578
3579	case DIF_SUBR_STRLEN: {
3580		size_t sz;
3581		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3582		sz = dtrace_strlen((char *)addr,
3583		    state->dts_options[DTRACEOPT_STRSIZE]);
3584
3585		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3586			regs[rd] = 0;
3587			break;
3588		}
3589
3590		regs[rd] = sz;
3591
3592		break;
3593	}
3594
3595	case DIF_SUBR_STRCHR:
3596	case DIF_SUBR_STRRCHR: {
3597		/*
3598		 * We're going to iterate over the string looking for the
3599		 * specified character.  We will iterate until we have reached
3600		 * the string length or we have found the character.  If this
3601		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3602		 * of the specified character instead of the first.
3603		 */
3604		uintptr_t saddr = tupregs[0].dttk_value;
3605		uintptr_t addr = tupregs[0].dttk_value;
3606		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3607		char c, target = (char)tupregs[1].dttk_value;
3608
3609		for (regs[rd] = 0; addr < limit; addr++) {
3610			if ((c = dtrace_load8(addr)) == target) {
3611				regs[rd] = addr;
3612
3613				if (subr == DIF_SUBR_STRCHR)
3614					break;
3615			}
3616
3617			if (c == '\0')
3618				break;
3619		}
3620
3621		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3622			regs[rd] = 0;
3623			break;
3624		}
3625
3626		break;
3627	}
3628
3629	case DIF_SUBR_STRSTR:
3630	case DIF_SUBR_INDEX:
3631	case DIF_SUBR_RINDEX: {
3632		/*
3633		 * We're going to iterate over the string looking for the
3634		 * specified string.  We will iterate until we have reached
3635		 * the string length or we have found the string.  (Yes, this
3636		 * is done in the most naive way possible -- but considering
3637		 * that the string we're searching for is likely to be
3638		 * relatively short, the complexity of Rabin-Karp or similar
3639		 * hardly seems merited.)
3640		 */
3641		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3642		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3643		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3644		size_t len = dtrace_strlen(addr, size);
3645		size_t sublen = dtrace_strlen(substr, size);
3646		char *limit = addr + len, *orig = addr;
3647		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3648		int inc = 1;
3649
3650		regs[rd] = notfound;
3651
3652		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3653			regs[rd] = 0;
3654			break;
3655		}
3656
3657		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3658		    vstate)) {
3659			regs[rd] = 0;
3660			break;
3661		}
3662
3663		/*
3664		 * strstr() and index()/rindex() have similar semantics if
3665		 * both strings are the empty string: strstr() returns a
3666		 * pointer to the (empty) string, and index() and rindex()
3667		 * both return index 0 (regardless of any position argument).
3668		 */
3669		if (sublen == 0 && len == 0) {
3670			if (subr == DIF_SUBR_STRSTR)
3671				regs[rd] = (uintptr_t)addr;
3672			else
3673				regs[rd] = 0;
3674			break;
3675		}
3676
3677		if (subr != DIF_SUBR_STRSTR) {
3678			if (subr == DIF_SUBR_RINDEX) {
3679				limit = orig - 1;
3680				addr += len;
3681				inc = -1;
3682			}
3683
3684			/*
3685			 * Both index() and rindex() take an optional position
3686			 * argument that denotes the starting position.
3687			 */
3688			if (nargs == 3) {
3689				int64_t pos = (int64_t)tupregs[2].dttk_value;
3690
3691				/*
3692				 * If the position argument to index() is
3693				 * negative, Perl implicitly clamps it at
3694				 * zero.  This semantic is a little surprising
3695				 * given the special meaning of negative
3696				 * positions to similar Perl functions like
3697				 * substr(), but it appears to reflect a
3698				 * notion that index() can start from a
3699				 * negative index and increment its way up to
3700				 * the string.  Given this notion, Perl's
3701				 * rindex() is at least self-consistent in
3702				 * that it implicitly clamps positions greater
3703				 * than the string length to be the string
3704				 * length.  Where Perl completely loses
3705				 * coherence, however, is when the specified
3706				 * substring is the empty string ("").  In
3707				 * this case, even if the position is
3708				 * negative, rindex() returns 0 -- and even if
3709				 * the position is greater than the length,
3710				 * index() returns the string length.  These
3711				 * semantics violate the notion that index()
3712				 * should never return a value less than the
3713				 * specified position and that rindex() should
3714				 * never return a value greater than the
3715				 * specified position.  (One assumes that
3716				 * these semantics are artifacts of Perl's
3717				 * implementation and not the results of
3718				 * deliberate design -- it beggars belief that
3719				 * even Larry Wall could desire such oddness.)
3720				 * While in the abstract one would wish for
3721				 * consistent position semantics across
3722				 * substr(), index() and rindex() -- or at the
3723				 * very least self-consistent position
3724				 * semantics for index() and rindex() -- we
3725				 * instead opt to keep with the extant Perl
3726				 * semantics, in all their broken glory.  (Do
3727				 * we have more desire to maintain Perl's
3728				 * semantics than Perl does?  Probably.)
3729				 */
3730				if (subr == DIF_SUBR_RINDEX) {
3731					if (pos < 0) {
3732						if (sublen == 0)
3733							regs[rd] = 0;
3734						break;
3735					}
3736
3737					if (pos > len)
3738						pos = len;
3739				} else {
3740					if (pos < 0)
3741						pos = 0;
3742
3743					if (pos >= len) {
3744						if (sublen == 0)
3745							regs[rd] = len;
3746						break;
3747					}
3748				}
3749
3750				addr = orig + pos;
3751			}
3752		}
3753
3754		for (regs[rd] = notfound; addr != limit; addr += inc) {
3755			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3756				if (subr != DIF_SUBR_STRSTR) {
3757					/*
3758					 * As D index() and rindex() are
3759					 * modeled on Perl (and not on awk),
3760					 * we return a zero-based (and not a
3761					 * one-based) index.  (For you Perl
3762					 * weenies: no, we're not going to add
3763					 * $[ -- and shouldn't you be at a con
3764					 * or something?)
3765					 */
3766					regs[rd] = (uintptr_t)(addr - orig);
3767					break;
3768				}
3769
3770				ASSERT(subr == DIF_SUBR_STRSTR);
3771				regs[rd] = (uintptr_t)addr;
3772				break;
3773			}
3774		}
3775
3776		break;
3777	}
3778
3779	case DIF_SUBR_STRTOK: {
3780		uintptr_t addr = tupregs[0].dttk_value;
3781		uintptr_t tokaddr = tupregs[1].dttk_value;
3782		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3783		uintptr_t limit, toklimit = tokaddr + size;
3784		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3785		char *dest = (char *)mstate->dtms_scratch_ptr;
3786		int i;
3787
3788		/*
3789		 * Check both the token buffer and (later) the input buffer,
3790		 * since both could be non-scratch addresses.
3791		 */
3792		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3793			regs[rd] = 0;
3794			break;
3795		}
3796
3797		if (!DTRACE_INSCRATCH(mstate, size)) {
3798			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3799			regs[rd] = 0;
3800			break;
3801		}
3802
3803		if (addr == 0) {
3804			/*
3805			 * If the address specified is NULL, we use our saved
3806			 * strtok pointer from the mstate.  Note that this
3807			 * means that the saved strtok pointer is _only_
3808			 * valid within multiple enablings of the same probe --
3809			 * it behaves like an implicit clause-local variable.
3810			 */
3811			addr = mstate->dtms_strtok;
3812		} else {
3813			/*
3814			 * If the user-specified address is non-NULL we must
3815			 * access check it.  This is the only time we have
3816			 * a chance to do so, since this address may reside
3817			 * in the string table of this clause-- future calls
3818			 * (when we fetch addr from mstate->dtms_strtok)
3819			 * would fail this access check.
3820			 */
3821			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3822				regs[rd] = 0;
3823				break;
3824			}
3825		}
3826
3827		/*
3828		 * First, zero the token map, and then process the token
3829		 * string -- setting a bit in the map for every character
3830		 * found in the token string.
3831		 */
3832		for (i = 0; i < sizeof (tokmap); i++)
3833			tokmap[i] = 0;
3834
3835		for (; tokaddr < toklimit; tokaddr++) {
3836			if ((c = dtrace_load8(tokaddr)) == '\0')
3837				break;
3838
3839			ASSERT((c >> 3) < sizeof (tokmap));
3840			tokmap[c >> 3] |= (1 << (c & 0x7));
3841		}
3842
3843		for (limit = addr + size; addr < limit; addr++) {
3844			/*
3845			 * We're looking for a character that is _not_ contained
3846			 * in the token string.
3847			 */
3848			if ((c = dtrace_load8(addr)) == '\0')
3849				break;
3850
3851			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3852				break;
3853		}
3854
3855		if (c == '\0') {
3856			/*
3857			 * We reached the end of the string without finding
3858			 * any character that was not in the token string.
3859			 * We return NULL in this case, and we set the saved
3860			 * address to NULL as well.
3861			 */
3862			regs[rd] = 0;
3863			mstate->dtms_strtok = 0;
3864			break;
3865		}
3866
3867		/*
3868		 * From here on, we're copying into the destination string.
3869		 */
3870		for (i = 0; addr < limit && i < size - 1; addr++) {
3871			if ((c = dtrace_load8(addr)) == '\0')
3872				break;
3873
3874			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3875				break;
3876
3877			ASSERT(i < size);
3878			dest[i++] = c;
3879		}
3880
3881		ASSERT(i < size);
3882		dest[i] = '\0';
3883		regs[rd] = (uintptr_t)dest;
3884		mstate->dtms_scratch_ptr += size;
3885		mstate->dtms_strtok = addr;
3886		break;
3887	}
3888
3889	case DIF_SUBR_SUBSTR: {
3890		uintptr_t s = tupregs[0].dttk_value;
3891		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3892		char *d = (char *)mstate->dtms_scratch_ptr;
3893		int64_t index = (int64_t)tupregs[1].dttk_value;
3894		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3895		size_t len = dtrace_strlen((char *)s, size);
3896		int64_t i = 0;
3897
3898		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3899			regs[rd] = 0;
3900			break;
3901		}
3902
3903		if (!DTRACE_INSCRATCH(mstate, size)) {
3904			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3905			regs[rd] = 0;
3906			break;
3907		}
3908
3909		if (nargs <= 2)
3910			remaining = (int64_t)size;
3911
3912		if (index < 0) {
3913			index += len;
3914
3915			if (index < 0 && index + remaining > 0) {
3916				remaining += index;
3917				index = 0;
3918			}
3919		}
3920
3921		if (index >= len || index < 0) {
3922			remaining = 0;
3923		} else if (remaining < 0) {
3924			remaining += len - index;
3925		} else if (index + remaining > size) {
3926			remaining = size - index;
3927		}
3928
3929		for (i = 0; i < remaining; i++) {
3930			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3931				break;
3932		}
3933
3934		d[i] = '\0';
3935
3936		mstate->dtms_scratch_ptr += size;
3937		regs[rd] = (uintptr_t)d;
3938		break;
3939	}
3940
3941#if defined(sun)
3942	case DIF_SUBR_GETMAJOR:
3943#ifdef _LP64
3944		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3945#else
3946		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3947#endif
3948		break;
3949
3950	case DIF_SUBR_GETMINOR:
3951#ifdef _LP64
3952		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3953#else
3954		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3955#endif
3956		break;
3957
3958	case DIF_SUBR_DDI_PATHNAME: {
3959		/*
3960		 * This one is a galactic mess.  We are going to roughly
3961		 * emulate ddi_pathname(), but it's made more complicated
3962		 * by the fact that we (a) want to include the minor name and
3963		 * (b) must proceed iteratively instead of recursively.
3964		 */
3965		uintptr_t dest = mstate->dtms_scratch_ptr;
3966		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3967		char *start = (char *)dest, *end = start + size - 1;
3968		uintptr_t daddr = tupregs[0].dttk_value;
3969		int64_t minor = (int64_t)tupregs[1].dttk_value;
3970		char *s;
3971		int i, len, depth = 0;
3972
3973		/*
3974		 * Due to all the pointer jumping we do and context we must
3975		 * rely upon, we just mandate that the user must have kernel
3976		 * read privileges to use this routine.
3977		 */
3978		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3979			*flags |= CPU_DTRACE_KPRIV;
3980			*illval = daddr;
3981			regs[rd] = 0;
3982		}
3983
3984		if (!DTRACE_INSCRATCH(mstate, size)) {
3985			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3986			regs[rd] = 0;
3987			break;
3988		}
3989
3990		*end = '\0';
3991
3992		/*
3993		 * We want to have a name for the minor.  In order to do this,
3994		 * we need to walk the minor list from the devinfo.  We want
3995		 * to be sure that we don't infinitely walk a circular list,
3996		 * so we check for circularity by sending a scout pointer
3997		 * ahead two elements for every element that we iterate over;
3998		 * if the list is circular, these will ultimately point to the
3999		 * same element.  You may recognize this little trick as the
4000		 * answer to a stupid interview question -- one that always
4001		 * seems to be asked by those who had to have it laboriously
4002		 * explained to them, and who can't even concisely describe
4003		 * the conditions under which one would be forced to resort to
4004		 * this technique.  Needless to say, those conditions are
4005		 * found here -- and probably only here.  Is this the only use
4006		 * of this infamous trick in shipping, production code?  If it
4007		 * isn't, it probably should be...
4008		 */
4009		if (minor != -1) {
4010			uintptr_t maddr = dtrace_loadptr(daddr +
4011			    offsetof(struct dev_info, devi_minor));
4012
4013			uintptr_t next = offsetof(struct ddi_minor_data, next);
4014			uintptr_t name = offsetof(struct ddi_minor_data,
4015			    d_minor) + offsetof(struct ddi_minor, name);
4016			uintptr_t dev = offsetof(struct ddi_minor_data,
4017			    d_minor) + offsetof(struct ddi_minor, dev);
4018			uintptr_t scout;
4019
4020			if (maddr != NULL)
4021				scout = dtrace_loadptr(maddr + next);
4022
4023			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4024				uint64_t m;
4025#ifdef _LP64
4026				m = dtrace_load64(maddr + dev) & MAXMIN64;
4027#else
4028				m = dtrace_load32(maddr + dev) & MAXMIN;
4029#endif
4030				if (m != minor) {
4031					maddr = dtrace_loadptr(maddr + next);
4032
4033					if (scout == NULL)
4034						continue;
4035
4036					scout = dtrace_loadptr(scout + next);
4037
4038					if (scout == NULL)
4039						continue;
4040
4041					scout = dtrace_loadptr(scout + next);
4042
4043					if (scout == NULL)
4044						continue;
4045
4046					if (scout == maddr) {
4047						*flags |= CPU_DTRACE_ILLOP;
4048						break;
4049					}
4050
4051					continue;
4052				}
4053
4054				/*
4055				 * We have the minor data.  Now we need to
4056				 * copy the minor's name into the end of the
4057				 * pathname.
4058				 */
4059				s = (char *)dtrace_loadptr(maddr + name);
4060				len = dtrace_strlen(s, size);
4061
4062				if (*flags & CPU_DTRACE_FAULT)
4063					break;
4064
4065				if (len != 0) {
4066					if ((end -= (len + 1)) < start)
4067						break;
4068
4069					*end = ':';
4070				}
4071
4072				for (i = 1; i <= len; i++)
4073					end[i] = dtrace_load8((uintptr_t)s++);
4074				break;
4075			}
4076		}
4077
4078		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4079			ddi_node_state_t devi_state;
4080
4081			devi_state = dtrace_load32(daddr +
4082			    offsetof(struct dev_info, devi_node_state));
4083
4084			if (*flags & CPU_DTRACE_FAULT)
4085				break;
4086
4087			if (devi_state >= DS_INITIALIZED) {
4088				s = (char *)dtrace_loadptr(daddr +
4089				    offsetof(struct dev_info, devi_addr));
4090				len = dtrace_strlen(s, size);
4091
4092				if (*flags & CPU_DTRACE_FAULT)
4093					break;
4094
4095				if (len != 0) {
4096					if ((end -= (len + 1)) < start)
4097						break;
4098
4099					*end = '@';
4100				}
4101
4102				for (i = 1; i <= len; i++)
4103					end[i] = dtrace_load8((uintptr_t)s++);
4104			}
4105
4106			/*
4107			 * Now for the node name...
4108			 */
4109			s = (char *)dtrace_loadptr(daddr +
4110			    offsetof(struct dev_info, devi_node_name));
4111
4112			daddr = dtrace_loadptr(daddr +
4113			    offsetof(struct dev_info, devi_parent));
4114
4115			/*
4116			 * If our parent is NULL (that is, if we're the root
4117			 * node), we're going to use the special path
4118			 * "devices".
4119			 */
4120			if (daddr == 0)
4121				s = "devices";
4122
4123			len = dtrace_strlen(s, size);
4124			if (*flags & CPU_DTRACE_FAULT)
4125				break;
4126
4127			if ((end -= (len + 1)) < start)
4128				break;
4129
4130			for (i = 1; i <= len; i++)
4131				end[i] = dtrace_load8((uintptr_t)s++);
4132			*end = '/';
4133
4134			if (depth++ > dtrace_devdepth_max) {
4135				*flags |= CPU_DTRACE_ILLOP;
4136				break;
4137			}
4138		}
4139
4140		if (end < start)
4141			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4142
4143		if (daddr == 0) {
4144			regs[rd] = (uintptr_t)end;
4145			mstate->dtms_scratch_ptr += size;
4146		}
4147
4148		break;
4149	}
4150#endif
4151
4152	case DIF_SUBR_STRJOIN: {
4153		char *d = (char *)mstate->dtms_scratch_ptr;
4154		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4155		uintptr_t s1 = tupregs[0].dttk_value;
4156		uintptr_t s2 = tupregs[1].dttk_value;
4157		int i = 0;
4158
4159		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4160		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4161			regs[rd] = 0;
4162			break;
4163		}
4164
4165		if (!DTRACE_INSCRATCH(mstate, size)) {
4166			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4167			regs[rd] = 0;
4168			break;
4169		}
4170
4171		for (;;) {
4172			if (i >= size) {
4173				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4174				regs[rd] = 0;
4175				break;
4176			}
4177
4178			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4179				i--;
4180				break;
4181			}
4182		}
4183
4184		for (;;) {
4185			if (i >= size) {
4186				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4187				regs[rd] = 0;
4188				break;
4189			}
4190
4191			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4192				break;
4193		}
4194
4195		if (i < size) {
4196			mstate->dtms_scratch_ptr += i;
4197			regs[rd] = (uintptr_t)d;
4198		}
4199
4200		break;
4201	}
4202
4203	case DIF_SUBR_LLTOSTR: {
4204		int64_t i = (int64_t)tupregs[0].dttk_value;
4205		int64_t val = i < 0 ? i * -1 : i;
4206		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4207		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4208
4209		if (!DTRACE_INSCRATCH(mstate, size)) {
4210			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4211			regs[rd] = 0;
4212			break;
4213		}
4214
4215		for (*end-- = '\0'; val; val /= 10)
4216			*end-- = '0' + (val % 10);
4217
4218		if (i == 0)
4219			*end-- = '0';
4220
4221		if (i < 0)
4222			*end-- = '-';
4223
4224		regs[rd] = (uintptr_t)end + 1;
4225		mstate->dtms_scratch_ptr += size;
4226		break;
4227	}
4228
4229	case DIF_SUBR_HTONS:
4230	case DIF_SUBR_NTOHS:
4231#if BYTE_ORDER == BIG_ENDIAN
4232		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4233#else
4234		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4235#endif
4236		break;
4237
4238
4239	case DIF_SUBR_HTONL:
4240	case DIF_SUBR_NTOHL:
4241#if BYTE_ORDER == BIG_ENDIAN
4242		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4243#else
4244		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4245#endif
4246		break;
4247
4248
4249	case DIF_SUBR_HTONLL:
4250	case DIF_SUBR_NTOHLL:
4251#if BYTE_ORDER == BIG_ENDIAN
4252		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4253#else
4254		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4255#endif
4256		break;
4257
4258
4259	case DIF_SUBR_DIRNAME:
4260	case DIF_SUBR_BASENAME: {
4261		char *dest = (char *)mstate->dtms_scratch_ptr;
4262		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4263		uintptr_t src = tupregs[0].dttk_value;
4264		int i, j, len = dtrace_strlen((char *)src, size);
4265		int lastbase = -1, firstbase = -1, lastdir = -1;
4266		int start, end;
4267
4268		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4269			regs[rd] = 0;
4270			break;
4271		}
4272
4273		if (!DTRACE_INSCRATCH(mstate, size)) {
4274			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4275			regs[rd] = 0;
4276			break;
4277		}
4278
4279		/*
4280		 * The basename and dirname for a zero-length string is
4281		 * defined to be "."
4282		 */
4283		if (len == 0) {
4284			len = 1;
4285			src = (uintptr_t)".";
4286		}
4287
4288		/*
4289		 * Start from the back of the string, moving back toward the
4290		 * front until we see a character that isn't a slash.  That
4291		 * character is the last character in the basename.
4292		 */
4293		for (i = len - 1; i >= 0; i--) {
4294			if (dtrace_load8(src + i) != '/')
4295				break;
4296		}
4297
4298		if (i >= 0)
4299			lastbase = i;
4300
4301		/*
4302		 * Starting from the last character in the basename, move
4303		 * towards the front until we find a slash.  The character
4304		 * that we processed immediately before that is the first
4305		 * character in the basename.
4306		 */
4307		for (; i >= 0; i--) {
4308			if (dtrace_load8(src + i) == '/')
4309				break;
4310		}
4311
4312		if (i >= 0)
4313			firstbase = i + 1;
4314
4315		/*
4316		 * Now keep going until we find a non-slash character.  That
4317		 * character is the last character in the dirname.
4318		 */
4319		for (; i >= 0; i--) {
4320			if (dtrace_load8(src + i) != '/')
4321				break;
4322		}
4323
4324		if (i >= 0)
4325			lastdir = i;
4326
4327		ASSERT(!(lastbase == -1 && firstbase != -1));
4328		ASSERT(!(firstbase == -1 && lastdir != -1));
4329
4330		if (lastbase == -1) {
4331			/*
4332			 * We didn't find a non-slash character.  We know that
4333			 * the length is non-zero, so the whole string must be
4334			 * slashes.  In either the dirname or the basename
4335			 * case, we return '/'.
4336			 */
4337			ASSERT(firstbase == -1);
4338			firstbase = lastbase = lastdir = 0;
4339		}
4340
4341		if (firstbase == -1) {
4342			/*
4343			 * The entire string consists only of a basename
4344			 * component.  If we're looking for dirname, we need
4345			 * to change our string to be just "."; if we're
4346			 * looking for a basename, we'll just set the first
4347			 * character of the basename to be 0.
4348			 */
4349			if (subr == DIF_SUBR_DIRNAME) {
4350				ASSERT(lastdir == -1);
4351				src = (uintptr_t)".";
4352				lastdir = 0;
4353			} else {
4354				firstbase = 0;
4355			}
4356		}
4357
4358		if (subr == DIF_SUBR_DIRNAME) {
4359			if (lastdir == -1) {
4360				/*
4361				 * We know that we have a slash in the name --
4362				 * or lastdir would be set to 0, above.  And
4363				 * because lastdir is -1, we know that this
4364				 * slash must be the first character.  (That
4365				 * is, the full string must be of the form
4366				 * "/basename".)  In this case, the last
4367				 * character of the directory name is 0.
4368				 */
4369				lastdir = 0;
4370			}
4371
4372			start = 0;
4373			end = lastdir;
4374		} else {
4375			ASSERT(subr == DIF_SUBR_BASENAME);
4376			ASSERT(firstbase != -1 && lastbase != -1);
4377			start = firstbase;
4378			end = lastbase;
4379		}
4380
4381		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4382			dest[j] = dtrace_load8(src + i);
4383
4384		dest[j] = '\0';
4385		regs[rd] = (uintptr_t)dest;
4386		mstate->dtms_scratch_ptr += size;
4387		break;
4388	}
4389
4390	case DIF_SUBR_CLEANPATH: {
4391		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4392		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4393		uintptr_t src = tupregs[0].dttk_value;
4394		int i = 0, j = 0;
4395
4396		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4397			regs[rd] = 0;
4398			break;
4399		}
4400
4401		if (!DTRACE_INSCRATCH(mstate, size)) {
4402			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4403			regs[rd] = 0;
4404			break;
4405		}
4406
4407		/*
4408		 * Move forward, loading each character.
4409		 */
4410		do {
4411			c = dtrace_load8(src + i++);
4412next:
4413			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4414				break;
4415
4416			if (c != '/') {
4417				dest[j++] = c;
4418				continue;
4419			}
4420
4421			c = dtrace_load8(src + i++);
4422
4423			if (c == '/') {
4424				/*
4425				 * We have two slashes -- we can just advance
4426				 * to the next character.
4427				 */
4428				goto next;
4429			}
4430
4431			if (c != '.') {
4432				/*
4433				 * This is not "." and it's not ".." -- we can
4434				 * just store the "/" and this character and
4435				 * drive on.
4436				 */
4437				dest[j++] = '/';
4438				dest[j++] = c;
4439				continue;
4440			}
4441
4442			c = dtrace_load8(src + i++);
4443
4444			if (c == '/') {
4445				/*
4446				 * This is a "/./" component.  We're not going
4447				 * to store anything in the destination buffer;
4448				 * we're just going to go to the next component.
4449				 */
4450				goto next;
4451			}
4452
4453			if (c != '.') {
4454				/*
4455				 * This is not ".." -- we can just store the
4456				 * "/." and this character and continue
4457				 * processing.
4458				 */
4459				dest[j++] = '/';
4460				dest[j++] = '.';
4461				dest[j++] = c;
4462				continue;
4463			}
4464
4465			c = dtrace_load8(src + i++);
4466
4467			if (c != '/' && c != '\0') {
4468				/*
4469				 * This is not ".." -- it's "..[mumble]".
4470				 * We'll store the "/.." and this character
4471				 * and continue processing.
4472				 */
4473				dest[j++] = '/';
4474				dest[j++] = '.';
4475				dest[j++] = '.';
4476				dest[j++] = c;
4477				continue;
4478			}
4479
4480			/*
4481			 * This is "/../" or "/..\0".  We need to back up
4482			 * our destination pointer until we find a "/".
4483			 */
4484			i--;
4485			while (j != 0 && dest[--j] != '/')
4486				continue;
4487
4488			if (c == '\0')
4489				dest[++j] = '/';
4490		} while (c != '\0');
4491
4492		dest[j] = '\0';
4493		regs[rd] = (uintptr_t)dest;
4494		mstate->dtms_scratch_ptr += size;
4495		break;
4496	}
4497
4498	case DIF_SUBR_INET_NTOA:
4499	case DIF_SUBR_INET_NTOA6:
4500	case DIF_SUBR_INET_NTOP: {
4501		size_t size;
4502		int af, argi, i;
4503		char *base, *end;
4504
4505		if (subr == DIF_SUBR_INET_NTOP) {
4506			af = (int)tupregs[0].dttk_value;
4507			argi = 1;
4508		} else {
4509			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4510			argi = 0;
4511		}
4512
4513		if (af == AF_INET) {
4514			ipaddr_t ip4;
4515			uint8_t *ptr8, val;
4516
4517			/*
4518			 * Safely load the IPv4 address.
4519			 */
4520			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4521
4522			/*
4523			 * Check an IPv4 string will fit in scratch.
4524			 */
4525			size = INET_ADDRSTRLEN;
4526			if (!DTRACE_INSCRATCH(mstate, size)) {
4527				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4528				regs[rd] = 0;
4529				break;
4530			}
4531			base = (char *)mstate->dtms_scratch_ptr;
4532			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4533
4534			/*
4535			 * Stringify as a dotted decimal quad.
4536			 */
4537			*end-- = '\0';
4538			ptr8 = (uint8_t *)&ip4;
4539			for (i = 3; i >= 0; i--) {
4540				val = ptr8[i];
4541
4542				if (val == 0) {
4543					*end-- = '0';
4544				} else {
4545					for (; val; val /= 10) {
4546						*end-- = '0' + (val % 10);
4547					}
4548				}
4549
4550				if (i > 0)
4551					*end-- = '.';
4552			}
4553			ASSERT(end + 1 >= base);
4554
4555		} else if (af == AF_INET6) {
4556			struct in6_addr ip6;
4557			int firstzero, tryzero, numzero, v6end;
4558			uint16_t val;
4559			const char digits[] = "0123456789abcdef";
4560
4561			/*
4562			 * Stringify using RFC 1884 convention 2 - 16 bit
4563			 * hexadecimal values with a zero-run compression.
4564			 * Lower case hexadecimal digits are used.
4565			 * 	eg, fe80::214:4fff:fe0b:76c8.
4566			 * The IPv4 embedded form is returned for inet_ntop,
4567			 * just the IPv4 string is returned for inet_ntoa6.
4568			 */
4569
4570			/*
4571			 * Safely load the IPv6 address.
4572			 */
4573			dtrace_bcopy(
4574			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4575			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4576
4577			/*
4578			 * Check an IPv6 string will fit in scratch.
4579			 */
4580			size = INET6_ADDRSTRLEN;
4581			if (!DTRACE_INSCRATCH(mstate, size)) {
4582				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4583				regs[rd] = 0;
4584				break;
4585			}
4586			base = (char *)mstate->dtms_scratch_ptr;
4587			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4588			*end-- = '\0';
4589
4590			/*
4591			 * Find the longest run of 16 bit zero values
4592			 * for the single allowed zero compression - "::".
4593			 */
4594			firstzero = -1;
4595			tryzero = -1;
4596			numzero = 1;
4597			for (i = 0; i < sizeof (struct in6_addr); i++) {
4598#if defined(sun)
4599				if (ip6._S6_un._S6_u8[i] == 0 &&
4600#else
4601				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4602#endif
4603				    tryzero == -1 && i % 2 == 0) {
4604					tryzero = i;
4605					continue;
4606				}
4607
4608				if (tryzero != -1 &&
4609#if defined(sun)
4610				    (ip6._S6_un._S6_u8[i] != 0 ||
4611#else
4612				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4613#endif
4614				    i == sizeof (struct in6_addr) - 1)) {
4615
4616					if (i - tryzero <= numzero) {
4617						tryzero = -1;
4618						continue;
4619					}
4620
4621					firstzero = tryzero;
4622					numzero = i - i % 2 - tryzero;
4623					tryzero = -1;
4624
4625#if defined(sun)
4626					if (ip6._S6_un._S6_u8[i] == 0 &&
4627#else
4628					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4629#endif
4630					    i == sizeof (struct in6_addr) - 1)
4631						numzero += 2;
4632				}
4633			}
4634			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4635
4636			/*
4637			 * Check for an IPv4 embedded address.
4638			 */
4639			v6end = sizeof (struct in6_addr) - 2;
4640			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4641			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4642				for (i = sizeof (struct in6_addr) - 1;
4643				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4644					ASSERT(end >= base);
4645
4646#if defined(sun)
4647					val = ip6._S6_un._S6_u8[i];
4648#else
4649					val = ip6.__u6_addr.__u6_addr8[i];
4650#endif
4651
4652					if (val == 0) {
4653						*end-- = '0';
4654					} else {
4655						for (; val; val /= 10) {
4656							*end-- = '0' + val % 10;
4657						}
4658					}
4659
4660					if (i > DTRACE_V4MAPPED_OFFSET)
4661						*end-- = '.';
4662				}
4663
4664				if (subr == DIF_SUBR_INET_NTOA6)
4665					goto inetout;
4666
4667				/*
4668				 * Set v6end to skip the IPv4 address that
4669				 * we have already stringified.
4670				 */
4671				v6end = 10;
4672			}
4673
4674			/*
4675			 * Build the IPv6 string by working through the
4676			 * address in reverse.
4677			 */
4678			for (i = v6end; i >= 0; i -= 2) {
4679				ASSERT(end >= base);
4680
4681				if (i == firstzero + numzero - 2) {
4682					*end-- = ':';
4683					*end-- = ':';
4684					i -= numzero - 2;
4685					continue;
4686				}
4687
4688				if (i < 14 && i != firstzero - 2)
4689					*end-- = ':';
4690
4691#if defined(sun)
4692				val = (ip6._S6_un._S6_u8[i] << 8) +
4693				    ip6._S6_un._S6_u8[i + 1];
4694#else
4695				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4696				    ip6.__u6_addr.__u6_addr8[i + 1];
4697#endif
4698
4699				if (val == 0) {
4700					*end-- = '0';
4701				} else {
4702					for (; val; val /= 16) {
4703						*end-- = digits[val % 16];
4704					}
4705				}
4706			}
4707			ASSERT(end + 1 >= base);
4708
4709		} else {
4710			/*
4711			 * The user didn't use AH_INET or AH_INET6.
4712			 */
4713			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4714			regs[rd] = 0;
4715			break;
4716		}
4717
4718inetout:	regs[rd] = (uintptr_t)end + 1;
4719		mstate->dtms_scratch_ptr += size;
4720		break;
4721	}
4722
4723	case DIF_SUBR_MEMREF: {
4724		uintptr_t size = 2 * sizeof(uintptr_t);
4725		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4726		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4727
4728		/* address and length */
4729		memref[0] = tupregs[0].dttk_value;
4730		memref[1] = tupregs[1].dttk_value;
4731
4732		regs[rd] = (uintptr_t) memref;
4733		mstate->dtms_scratch_ptr += scratch_size;
4734		break;
4735	}
4736
4737	case DIF_SUBR_TYPEREF: {
4738		uintptr_t size = 4 * sizeof(uintptr_t);
4739		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4740		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4741
4742		/* address, num_elements, type_str, type_len */
4743		typeref[0] = tupregs[0].dttk_value;
4744		typeref[1] = tupregs[1].dttk_value;
4745		typeref[2] = tupregs[2].dttk_value;
4746		typeref[3] = tupregs[3].dttk_value;
4747
4748		regs[rd] = (uintptr_t) typeref;
4749		mstate->dtms_scratch_ptr += scratch_size;
4750		break;
4751	}
4752	}
4753}
4754
4755/*
4756 * Emulate the execution of DTrace IR instructions specified by the given
4757 * DIF object.  This function is deliberately void of assertions as all of
4758 * the necessary checks are handled by a call to dtrace_difo_validate().
4759 */
4760static uint64_t
4761dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4762    dtrace_vstate_t *vstate, dtrace_state_t *state)
4763{
4764	const dif_instr_t *text = difo->dtdo_buf;
4765	const uint_t textlen = difo->dtdo_len;
4766	const char *strtab = difo->dtdo_strtab;
4767	const uint64_t *inttab = difo->dtdo_inttab;
4768
4769	uint64_t rval = 0;
4770	dtrace_statvar_t *svar;
4771	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4772	dtrace_difv_t *v;
4773	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4774	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4775
4776	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4777	uint64_t regs[DIF_DIR_NREGS];
4778	uint64_t *tmp;
4779
4780	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4781	int64_t cc_r;
4782	uint_t pc = 0, id, opc = 0;
4783	uint8_t ttop = 0;
4784	dif_instr_t instr;
4785	uint_t r1, r2, rd;
4786
4787	/*
4788	 * We stash the current DIF object into the machine state: we need it
4789	 * for subsequent access checking.
4790	 */
4791	mstate->dtms_difo = difo;
4792
4793	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4794
4795	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4796		opc = pc;
4797
4798		instr = text[pc++];
4799		r1 = DIF_INSTR_R1(instr);
4800		r2 = DIF_INSTR_R2(instr);
4801		rd = DIF_INSTR_RD(instr);
4802
4803		switch (DIF_INSTR_OP(instr)) {
4804		case DIF_OP_OR:
4805			regs[rd] = regs[r1] | regs[r2];
4806			break;
4807		case DIF_OP_XOR:
4808			regs[rd] = regs[r1] ^ regs[r2];
4809			break;
4810		case DIF_OP_AND:
4811			regs[rd] = regs[r1] & regs[r2];
4812			break;
4813		case DIF_OP_SLL:
4814			regs[rd] = regs[r1] << regs[r2];
4815			break;
4816		case DIF_OP_SRL:
4817			regs[rd] = regs[r1] >> regs[r2];
4818			break;
4819		case DIF_OP_SUB:
4820			regs[rd] = regs[r1] - regs[r2];
4821			break;
4822		case DIF_OP_ADD:
4823			regs[rd] = regs[r1] + regs[r2];
4824			break;
4825		case DIF_OP_MUL:
4826			regs[rd] = regs[r1] * regs[r2];
4827			break;
4828		case DIF_OP_SDIV:
4829			if (regs[r2] == 0) {
4830				regs[rd] = 0;
4831				*flags |= CPU_DTRACE_DIVZERO;
4832			} else {
4833				regs[rd] = (int64_t)regs[r1] /
4834				    (int64_t)regs[r2];
4835			}
4836			break;
4837
4838		case DIF_OP_UDIV:
4839			if (regs[r2] == 0) {
4840				regs[rd] = 0;
4841				*flags |= CPU_DTRACE_DIVZERO;
4842			} else {
4843				regs[rd] = regs[r1] / regs[r2];
4844			}
4845			break;
4846
4847		case DIF_OP_SREM:
4848			if (regs[r2] == 0) {
4849				regs[rd] = 0;
4850				*flags |= CPU_DTRACE_DIVZERO;
4851			} else {
4852				regs[rd] = (int64_t)regs[r1] %
4853				    (int64_t)regs[r2];
4854			}
4855			break;
4856
4857		case DIF_OP_UREM:
4858			if (regs[r2] == 0) {
4859				regs[rd] = 0;
4860				*flags |= CPU_DTRACE_DIVZERO;
4861			} else {
4862				regs[rd] = regs[r1] % regs[r2];
4863			}
4864			break;
4865
4866		case DIF_OP_NOT:
4867			regs[rd] = ~regs[r1];
4868			break;
4869		case DIF_OP_MOV:
4870			regs[rd] = regs[r1];
4871			break;
4872		case DIF_OP_CMP:
4873			cc_r = regs[r1] - regs[r2];
4874			cc_n = cc_r < 0;
4875			cc_z = cc_r == 0;
4876			cc_v = 0;
4877			cc_c = regs[r1] < regs[r2];
4878			break;
4879		case DIF_OP_TST:
4880			cc_n = cc_v = cc_c = 0;
4881			cc_z = regs[r1] == 0;
4882			break;
4883		case DIF_OP_BA:
4884			pc = DIF_INSTR_LABEL(instr);
4885			break;
4886		case DIF_OP_BE:
4887			if (cc_z)
4888				pc = DIF_INSTR_LABEL(instr);
4889			break;
4890		case DIF_OP_BNE:
4891			if (cc_z == 0)
4892				pc = DIF_INSTR_LABEL(instr);
4893			break;
4894		case DIF_OP_BG:
4895			if ((cc_z | (cc_n ^ cc_v)) == 0)
4896				pc = DIF_INSTR_LABEL(instr);
4897			break;
4898		case DIF_OP_BGU:
4899			if ((cc_c | cc_z) == 0)
4900				pc = DIF_INSTR_LABEL(instr);
4901			break;
4902		case DIF_OP_BGE:
4903			if ((cc_n ^ cc_v) == 0)
4904				pc = DIF_INSTR_LABEL(instr);
4905			break;
4906		case DIF_OP_BGEU:
4907			if (cc_c == 0)
4908				pc = DIF_INSTR_LABEL(instr);
4909			break;
4910		case DIF_OP_BL:
4911			if (cc_n ^ cc_v)
4912				pc = DIF_INSTR_LABEL(instr);
4913			break;
4914		case DIF_OP_BLU:
4915			if (cc_c)
4916				pc = DIF_INSTR_LABEL(instr);
4917			break;
4918		case DIF_OP_BLE:
4919			if (cc_z | (cc_n ^ cc_v))
4920				pc = DIF_INSTR_LABEL(instr);
4921			break;
4922		case DIF_OP_BLEU:
4923			if (cc_c | cc_z)
4924				pc = DIF_INSTR_LABEL(instr);
4925			break;
4926		case DIF_OP_RLDSB:
4927			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4928				*flags |= CPU_DTRACE_KPRIV;
4929				*illval = regs[r1];
4930				break;
4931			}
4932			/*FALLTHROUGH*/
4933		case DIF_OP_LDSB:
4934			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4935			break;
4936		case DIF_OP_RLDSH:
4937			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4938				*flags |= CPU_DTRACE_KPRIV;
4939				*illval = regs[r1];
4940				break;
4941			}
4942			/*FALLTHROUGH*/
4943		case DIF_OP_LDSH:
4944			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4945			break;
4946		case DIF_OP_RLDSW:
4947			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4948				*flags |= CPU_DTRACE_KPRIV;
4949				*illval = regs[r1];
4950				break;
4951			}
4952			/*FALLTHROUGH*/
4953		case DIF_OP_LDSW:
4954			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4955			break;
4956		case DIF_OP_RLDUB:
4957			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4958				*flags |= CPU_DTRACE_KPRIV;
4959				*illval = regs[r1];
4960				break;
4961			}
4962			/*FALLTHROUGH*/
4963		case DIF_OP_LDUB:
4964			regs[rd] = dtrace_load8(regs[r1]);
4965			break;
4966		case DIF_OP_RLDUH:
4967			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4968				*flags |= CPU_DTRACE_KPRIV;
4969				*illval = regs[r1];
4970				break;
4971			}
4972			/*FALLTHROUGH*/
4973		case DIF_OP_LDUH:
4974			regs[rd] = dtrace_load16(regs[r1]);
4975			break;
4976		case DIF_OP_RLDUW:
4977			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4978				*flags |= CPU_DTRACE_KPRIV;
4979				*illval = regs[r1];
4980				break;
4981			}
4982			/*FALLTHROUGH*/
4983		case DIF_OP_LDUW:
4984			regs[rd] = dtrace_load32(regs[r1]);
4985			break;
4986		case DIF_OP_RLDX:
4987			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4988				*flags |= CPU_DTRACE_KPRIV;
4989				*illval = regs[r1];
4990				break;
4991			}
4992			/*FALLTHROUGH*/
4993		case DIF_OP_LDX:
4994			regs[rd] = dtrace_load64(regs[r1]);
4995			break;
4996		case DIF_OP_ULDSB:
4997			regs[rd] = (int8_t)
4998			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4999			break;
5000		case DIF_OP_ULDSH:
5001			regs[rd] = (int16_t)
5002			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5003			break;
5004		case DIF_OP_ULDSW:
5005			regs[rd] = (int32_t)
5006			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5007			break;
5008		case DIF_OP_ULDUB:
5009			regs[rd] =
5010			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5011			break;
5012		case DIF_OP_ULDUH:
5013			regs[rd] =
5014			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5015			break;
5016		case DIF_OP_ULDUW:
5017			regs[rd] =
5018			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5019			break;
5020		case DIF_OP_ULDX:
5021			regs[rd] =
5022			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5023			break;
5024		case DIF_OP_RET:
5025			rval = regs[rd];
5026			pc = textlen;
5027			break;
5028		case DIF_OP_NOP:
5029			break;
5030		case DIF_OP_SETX:
5031			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5032			break;
5033		case DIF_OP_SETS:
5034			regs[rd] = (uint64_t)(uintptr_t)
5035			    (strtab + DIF_INSTR_STRING(instr));
5036			break;
5037		case DIF_OP_SCMP: {
5038			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5039			uintptr_t s1 = regs[r1];
5040			uintptr_t s2 = regs[r2];
5041
5042			if (s1 != 0 &&
5043			    !dtrace_strcanload(s1, sz, mstate, vstate))
5044				break;
5045			if (s2 != 0 &&
5046			    !dtrace_strcanload(s2, sz, mstate, vstate))
5047				break;
5048
5049			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5050
5051			cc_n = cc_r < 0;
5052			cc_z = cc_r == 0;
5053			cc_v = cc_c = 0;
5054			break;
5055		}
5056		case DIF_OP_LDGA:
5057			regs[rd] = dtrace_dif_variable(mstate, state,
5058			    r1, regs[r2]);
5059			break;
5060		case DIF_OP_LDGS:
5061			id = DIF_INSTR_VAR(instr);
5062
5063			if (id >= DIF_VAR_OTHER_UBASE) {
5064				uintptr_t a;
5065
5066				id -= DIF_VAR_OTHER_UBASE;
5067				svar = vstate->dtvs_globals[id];
5068				ASSERT(svar != NULL);
5069				v = &svar->dtsv_var;
5070
5071				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5072					regs[rd] = svar->dtsv_data;
5073					break;
5074				}
5075
5076				a = (uintptr_t)svar->dtsv_data;
5077
5078				if (*(uint8_t *)a == UINT8_MAX) {
5079					/*
5080					 * If the 0th byte is set to UINT8_MAX
5081					 * then this is to be treated as a
5082					 * reference to a NULL variable.
5083					 */
5084					regs[rd] = 0;
5085				} else {
5086					regs[rd] = a + sizeof (uint64_t);
5087				}
5088
5089				break;
5090			}
5091
5092			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5093			break;
5094
5095		case DIF_OP_STGS:
5096			id = DIF_INSTR_VAR(instr);
5097
5098			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5099			id -= DIF_VAR_OTHER_UBASE;
5100
5101			svar = vstate->dtvs_globals[id];
5102			ASSERT(svar != NULL);
5103			v = &svar->dtsv_var;
5104
5105			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5106				uintptr_t a = (uintptr_t)svar->dtsv_data;
5107
5108				ASSERT(a != 0);
5109				ASSERT(svar->dtsv_size != 0);
5110
5111				if (regs[rd] == 0) {
5112					*(uint8_t *)a = UINT8_MAX;
5113					break;
5114				} else {
5115					*(uint8_t *)a = 0;
5116					a += sizeof (uint64_t);
5117				}
5118				if (!dtrace_vcanload(
5119				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5120				    mstate, vstate))
5121					break;
5122
5123				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5124				    (void *)a, &v->dtdv_type);
5125				break;
5126			}
5127
5128			svar->dtsv_data = regs[rd];
5129			break;
5130
5131		case DIF_OP_LDTA:
5132			/*
5133			 * There are no DTrace built-in thread-local arrays at
5134			 * present.  This opcode is saved for future work.
5135			 */
5136			*flags |= CPU_DTRACE_ILLOP;
5137			regs[rd] = 0;
5138			break;
5139
5140		case DIF_OP_LDLS:
5141			id = DIF_INSTR_VAR(instr);
5142
5143			if (id < DIF_VAR_OTHER_UBASE) {
5144				/*
5145				 * For now, this has no meaning.
5146				 */
5147				regs[rd] = 0;
5148				break;
5149			}
5150
5151			id -= DIF_VAR_OTHER_UBASE;
5152
5153			ASSERT(id < vstate->dtvs_nlocals);
5154			ASSERT(vstate->dtvs_locals != NULL);
5155
5156			svar = vstate->dtvs_locals[id];
5157			ASSERT(svar != NULL);
5158			v = &svar->dtsv_var;
5159
5160			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5161				uintptr_t a = (uintptr_t)svar->dtsv_data;
5162				size_t sz = v->dtdv_type.dtdt_size;
5163
5164				sz += sizeof (uint64_t);
5165				ASSERT(svar->dtsv_size == NCPU * sz);
5166				a += curcpu * sz;
5167
5168				if (*(uint8_t *)a == UINT8_MAX) {
5169					/*
5170					 * If the 0th byte is set to UINT8_MAX
5171					 * then this is to be treated as a
5172					 * reference to a NULL variable.
5173					 */
5174					regs[rd] = 0;
5175				} else {
5176					regs[rd] = a + sizeof (uint64_t);
5177				}
5178
5179				break;
5180			}
5181
5182			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5183			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5184			regs[rd] = tmp[curcpu];
5185			break;
5186
5187		case DIF_OP_STLS:
5188			id = DIF_INSTR_VAR(instr);
5189
5190			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5191			id -= DIF_VAR_OTHER_UBASE;
5192			ASSERT(id < vstate->dtvs_nlocals);
5193
5194			ASSERT(vstate->dtvs_locals != NULL);
5195			svar = vstate->dtvs_locals[id];
5196			ASSERT(svar != NULL);
5197			v = &svar->dtsv_var;
5198
5199			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5200				uintptr_t a = (uintptr_t)svar->dtsv_data;
5201				size_t sz = v->dtdv_type.dtdt_size;
5202
5203				sz += sizeof (uint64_t);
5204				ASSERT(svar->dtsv_size == NCPU * sz);
5205				a += curcpu * sz;
5206
5207				if (regs[rd] == 0) {
5208					*(uint8_t *)a = UINT8_MAX;
5209					break;
5210				} else {
5211					*(uint8_t *)a = 0;
5212					a += sizeof (uint64_t);
5213				}
5214
5215				if (!dtrace_vcanload(
5216				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5217				    mstate, vstate))
5218					break;
5219
5220				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5221				    (void *)a, &v->dtdv_type);
5222				break;
5223			}
5224
5225			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5226			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5227			tmp[curcpu] = regs[rd];
5228			break;
5229
5230		case DIF_OP_LDTS: {
5231			dtrace_dynvar_t *dvar;
5232			dtrace_key_t *key;
5233
5234			id = DIF_INSTR_VAR(instr);
5235			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5236			id -= DIF_VAR_OTHER_UBASE;
5237			v = &vstate->dtvs_tlocals[id];
5238
5239			key = &tupregs[DIF_DTR_NREGS];
5240			key[0].dttk_value = (uint64_t)id;
5241			key[0].dttk_size = 0;
5242			DTRACE_TLS_THRKEY(key[1].dttk_value);
5243			key[1].dttk_size = 0;
5244
5245			dvar = dtrace_dynvar(dstate, 2, key,
5246			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5247			    mstate, vstate);
5248
5249			if (dvar == NULL) {
5250				regs[rd] = 0;
5251				break;
5252			}
5253
5254			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5255				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5256			} else {
5257				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5258			}
5259
5260			break;
5261		}
5262
5263		case DIF_OP_STTS: {
5264			dtrace_dynvar_t *dvar;
5265			dtrace_key_t *key;
5266
5267			id = DIF_INSTR_VAR(instr);
5268			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5269			id -= DIF_VAR_OTHER_UBASE;
5270
5271			key = &tupregs[DIF_DTR_NREGS];
5272			key[0].dttk_value = (uint64_t)id;
5273			key[0].dttk_size = 0;
5274			DTRACE_TLS_THRKEY(key[1].dttk_value);
5275			key[1].dttk_size = 0;
5276			v = &vstate->dtvs_tlocals[id];
5277
5278			dvar = dtrace_dynvar(dstate, 2, key,
5279			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5280			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5281			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5282			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5283
5284			/*
5285			 * Given that we're storing to thread-local data,
5286			 * we need to flush our predicate cache.
5287			 */
5288			curthread->t_predcache = 0;
5289
5290			if (dvar == NULL)
5291				break;
5292
5293			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5294				if (!dtrace_vcanload(
5295				    (void *)(uintptr_t)regs[rd],
5296				    &v->dtdv_type, mstate, vstate))
5297					break;
5298
5299				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5300				    dvar->dtdv_data, &v->dtdv_type);
5301			} else {
5302				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5303			}
5304
5305			break;
5306		}
5307
5308		case DIF_OP_SRA:
5309			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5310			break;
5311
5312		case DIF_OP_CALL:
5313			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5314			    regs, tupregs, ttop, mstate, state);
5315			break;
5316
5317		case DIF_OP_PUSHTR:
5318			if (ttop == DIF_DTR_NREGS) {
5319				*flags |= CPU_DTRACE_TUPOFLOW;
5320				break;
5321			}
5322
5323			if (r1 == DIF_TYPE_STRING) {
5324				/*
5325				 * If this is a string type and the size is 0,
5326				 * we'll use the system-wide default string
5327				 * size.  Note that we are _not_ looking at
5328				 * the value of the DTRACEOPT_STRSIZE option;
5329				 * had this been set, we would expect to have
5330				 * a non-zero size value in the "pushtr".
5331				 */
5332				tupregs[ttop].dttk_size =
5333				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5334				    regs[r2] ? regs[r2] :
5335				    dtrace_strsize_default) + 1;
5336			} else {
5337				tupregs[ttop].dttk_size = regs[r2];
5338			}
5339
5340			tupregs[ttop++].dttk_value = regs[rd];
5341			break;
5342
5343		case DIF_OP_PUSHTV:
5344			if (ttop == DIF_DTR_NREGS) {
5345				*flags |= CPU_DTRACE_TUPOFLOW;
5346				break;
5347			}
5348
5349			tupregs[ttop].dttk_value = regs[rd];
5350			tupregs[ttop++].dttk_size = 0;
5351			break;
5352
5353		case DIF_OP_POPTS:
5354			if (ttop != 0)
5355				ttop--;
5356			break;
5357
5358		case DIF_OP_FLUSHTS:
5359			ttop = 0;
5360			break;
5361
5362		case DIF_OP_LDGAA:
5363		case DIF_OP_LDTAA: {
5364			dtrace_dynvar_t *dvar;
5365			dtrace_key_t *key = tupregs;
5366			uint_t nkeys = ttop;
5367
5368			id = DIF_INSTR_VAR(instr);
5369			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5370			id -= DIF_VAR_OTHER_UBASE;
5371
5372			key[nkeys].dttk_value = (uint64_t)id;
5373			key[nkeys++].dttk_size = 0;
5374
5375			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5376				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5377				key[nkeys++].dttk_size = 0;
5378				v = &vstate->dtvs_tlocals[id];
5379			} else {
5380				v = &vstate->dtvs_globals[id]->dtsv_var;
5381			}
5382
5383			dvar = dtrace_dynvar(dstate, nkeys, key,
5384			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5385			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5386			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5387
5388			if (dvar == NULL) {
5389				regs[rd] = 0;
5390				break;
5391			}
5392
5393			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5394				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5395			} else {
5396				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5397			}
5398
5399			break;
5400		}
5401
5402		case DIF_OP_STGAA:
5403		case DIF_OP_STTAA: {
5404			dtrace_dynvar_t *dvar;
5405			dtrace_key_t *key = tupregs;
5406			uint_t nkeys = ttop;
5407
5408			id = DIF_INSTR_VAR(instr);
5409			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5410			id -= DIF_VAR_OTHER_UBASE;
5411
5412			key[nkeys].dttk_value = (uint64_t)id;
5413			key[nkeys++].dttk_size = 0;
5414
5415			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5416				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5417				key[nkeys++].dttk_size = 0;
5418				v = &vstate->dtvs_tlocals[id];
5419			} else {
5420				v = &vstate->dtvs_globals[id]->dtsv_var;
5421			}
5422
5423			dvar = dtrace_dynvar(dstate, nkeys, key,
5424			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5425			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5426			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5427			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5428
5429			if (dvar == NULL)
5430				break;
5431
5432			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5433				if (!dtrace_vcanload(
5434				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5435				    mstate, vstate))
5436					break;
5437
5438				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5439				    dvar->dtdv_data, &v->dtdv_type);
5440			} else {
5441				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5442			}
5443
5444			break;
5445		}
5446
5447		case DIF_OP_ALLOCS: {
5448			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5449			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5450
5451			/*
5452			 * Rounding up the user allocation size could have
5453			 * overflowed large, bogus allocations (like -1ULL) to
5454			 * 0.
5455			 */
5456			if (size < regs[r1] ||
5457			    !DTRACE_INSCRATCH(mstate, size)) {
5458				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5459				regs[rd] = 0;
5460				break;
5461			}
5462
5463			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5464			mstate->dtms_scratch_ptr += size;
5465			regs[rd] = ptr;
5466			break;
5467		}
5468
5469		case DIF_OP_COPYS:
5470			if (!dtrace_canstore(regs[rd], regs[r2],
5471			    mstate, vstate)) {
5472				*flags |= CPU_DTRACE_BADADDR;
5473				*illval = regs[rd];
5474				break;
5475			}
5476
5477			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5478				break;
5479
5480			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5481			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5482			break;
5483
5484		case DIF_OP_STB:
5485			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5486				*flags |= CPU_DTRACE_BADADDR;
5487				*illval = regs[rd];
5488				break;
5489			}
5490			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5491			break;
5492
5493		case DIF_OP_STH:
5494			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5495				*flags |= CPU_DTRACE_BADADDR;
5496				*illval = regs[rd];
5497				break;
5498			}
5499			if (regs[rd] & 1) {
5500				*flags |= CPU_DTRACE_BADALIGN;
5501				*illval = regs[rd];
5502				break;
5503			}
5504			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5505			break;
5506
5507		case DIF_OP_STW:
5508			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5509				*flags |= CPU_DTRACE_BADADDR;
5510				*illval = regs[rd];
5511				break;
5512			}
5513			if (regs[rd] & 3) {
5514				*flags |= CPU_DTRACE_BADALIGN;
5515				*illval = regs[rd];
5516				break;
5517			}
5518			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5519			break;
5520
5521		case DIF_OP_STX:
5522			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5523				*flags |= CPU_DTRACE_BADADDR;
5524				*illval = regs[rd];
5525				break;
5526			}
5527			if (regs[rd] & 7) {
5528				*flags |= CPU_DTRACE_BADALIGN;
5529				*illval = regs[rd];
5530				break;
5531			}
5532			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5533			break;
5534		}
5535	}
5536
5537	if (!(*flags & CPU_DTRACE_FAULT))
5538		return (rval);
5539
5540	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5541	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5542
5543	return (0);
5544}
5545
5546static void
5547dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5548{
5549	dtrace_probe_t *probe = ecb->dte_probe;
5550	dtrace_provider_t *prov = probe->dtpr_provider;
5551	char c[DTRACE_FULLNAMELEN + 80], *str;
5552	char *msg = "dtrace: breakpoint action at probe ";
5553	char *ecbmsg = " (ecb ";
5554	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5555	uintptr_t val = (uintptr_t)ecb;
5556	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5557
5558	if (dtrace_destructive_disallow)
5559		return;
5560
5561	/*
5562	 * It's impossible to be taking action on the NULL probe.
5563	 */
5564	ASSERT(probe != NULL);
5565
5566	/*
5567	 * This is a poor man's (destitute man's?) sprintf():  we want to
5568	 * print the provider name, module name, function name and name of
5569	 * the probe, along with the hex address of the ECB with the breakpoint
5570	 * action -- all of which we must place in the character buffer by
5571	 * hand.
5572	 */
5573	while (*msg != '\0')
5574		c[i++] = *msg++;
5575
5576	for (str = prov->dtpv_name; *str != '\0'; str++)
5577		c[i++] = *str;
5578	c[i++] = ':';
5579
5580	for (str = probe->dtpr_mod; *str != '\0'; str++)
5581		c[i++] = *str;
5582	c[i++] = ':';
5583
5584	for (str = probe->dtpr_func; *str != '\0'; str++)
5585		c[i++] = *str;
5586	c[i++] = ':';
5587
5588	for (str = probe->dtpr_name; *str != '\0'; str++)
5589		c[i++] = *str;
5590
5591	while (*ecbmsg != '\0')
5592		c[i++] = *ecbmsg++;
5593
5594	while (shift >= 0) {
5595		mask = (uintptr_t)0xf << shift;
5596
5597		if (val >= ((uintptr_t)1 << shift))
5598			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5599		shift -= 4;
5600	}
5601
5602	c[i++] = ')';
5603	c[i] = '\0';
5604
5605#if defined(sun)
5606	debug_enter(c);
5607#else
5608	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5609#endif
5610}
5611
5612static void
5613dtrace_action_panic(dtrace_ecb_t *ecb)
5614{
5615	dtrace_probe_t *probe = ecb->dte_probe;
5616
5617	/*
5618	 * It's impossible to be taking action on the NULL probe.
5619	 */
5620	ASSERT(probe != NULL);
5621
5622	if (dtrace_destructive_disallow)
5623		return;
5624
5625	if (dtrace_panicked != NULL)
5626		return;
5627
5628	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5629		return;
5630
5631	/*
5632	 * We won the right to panic.  (We want to be sure that only one
5633	 * thread calls panic() from dtrace_probe(), and that panic() is
5634	 * called exactly once.)
5635	 */
5636	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5637	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5638	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5639}
5640
5641static void
5642dtrace_action_raise(uint64_t sig)
5643{
5644	if (dtrace_destructive_disallow)
5645		return;
5646
5647	if (sig >= NSIG) {
5648		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5649		return;
5650	}
5651
5652#if defined(sun)
5653	/*
5654	 * raise() has a queue depth of 1 -- we ignore all subsequent
5655	 * invocations of the raise() action.
5656	 */
5657	if (curthread->t_dtrace_sig == 0)
5658		curthread->t_dtrace_sig = (uint8_t)sig;
5659
5660	curthread->t_sig_check = 1;
5661	aston(curthread);
5662#else
5663	struct proc *p = curproc;
5664	PROC_LOCK(p);
5665	psignal(p, sig);
5666	PROC_UNLOCK(p);
5667#endif
5668}
5669
5670static void
5671dtrace_action_stop(void)
5672{
5673	if (dtrace_destructive_disallow)
5674		return;
5675
5676#if defined(sun)
5677	if (!curthread->t_dtrace_stop) {
5678		curthread->t_dtrace_stop = 1;
5679		curthread->t_sig_check = 1;
5680		aston(curthread);
5681	}
5682#else
5683	struct proc *p = curproc;
5684	PROC_LOCK(p);
5685	psignal(p, SIGSTOP);
5686	PROC_UNLOCK(p);
5687#endif
5688}
5689
5690static void
5691dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5692{
5693	hrtime_t now;
5694	volatile uint16_t *flags;
5695#if defined(sun)
5696	cpu_t *cpu = CPU;
5697#else
5698	cpu_t *cpu = &solaris_cpu[curcpu];
5699#endif
5700
5701	if (dtrace_destructive_disallow)
5702		return;
5703
5704	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5705
5706	now = dtrace_gethrtime();
5707
5708	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5709		/*
5710		 * We need to advance the mark to the current time.
5711		 */
5712		cpu->cpu_dtrace_chillmark = now;
5713		cpu->cpu_dtrace_chilled = 0;
5714	}
5715
5716	/*
5717	 * Now check to see if the requested chill time would take us over
5718	 * the maximum amount of time allowed in the chill interval.  (Or
5719	 * worse, if the calculation itself induces overflow.)
5720	 */
5721	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5722	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5723		*flags |= CPU_DTRACE_ILLOP;
5724		return;
5725	}
5726
5727	while (dtrace_gethrtime() - now < val)
5728		continue;
5729
5730	/*
5731	 * Normally, we assure that the value of the variable "timestamp" does
5732	 * not change within an ECB.  The presence of chill() represents an
5733	 * exception to this rule, however.
5734	 */
5735	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5736	cpu->cpu_dtrace_chilled += val;
5737}
5738
5739#if defined(sun)
5740static void
5741dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5742    uint64_t *buf, uint64_t arg)
5743{
5744	int nframes = DTRACE_USTACK_NFRAMES(arg);
5745	int strsize = DTRACE_USTACK_STRSIZE(arg);
5746	uint64_t *pcs = &buf[1], *fps;
5747	char *str = (char *)&pcs[nframes];
5748	int size, offs = 0, i, j;
5749	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5750	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5751	char *sym;
5752
5753	/*
5754	 * Should be taking a faster path if string space has not been
5755	 * allocated.
5756	 */
5757	ASSERT(strsize != 0);
5758
5759	/*
5760	 * We will first allocate some temporary space for the frame pointers.
5761	 */
5762	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5763	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5764	    (nframes * sizeof (uint64_t));
5765
5766	if (!DTRACE_INSCRATCH(mstate, size)) {
5767		/*
5768		 * Not enough room for our frame pointers -- need to indicate
5769		 * that we ran out of scratch space.
5770		 */
5771		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5772		return;
5773	}
5774
5775	mstate->dtms_scratch_ptr += size;
5776	saved = mstate->dtms_scratch_ptr;
5777
5778	/*
5779	 * Now get a stack with both program counters and frame pointers.
5780	 */
5781	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5782	dtrace_getufpstack(buf, fps, nframes + 1);
5783	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5784
5785	/*
5786	 * If that faulted, we're cooked.
5787	 */
5788	if (*flags & CPU_DTRACE_FAULT)
5789		goto out;
5790
5791	/*
5792	 * Now we want to walk up the stack, calling the USTACK helper.  For
5793	 * each iteration, we restore the scratch pointer.
5794	 */
5795	for (i = 0; i < nframes; i++) {
5796		mstate->dtms_scratch_ptr = saved;
5797
5798		if (offs >= strsize)
5799			break;
5800
5801		sym = (char *)(uintptr_t)dtrace_helper(
5802		    DTRACE_HELPER_ACTION_USTACK,
5803		    mstate, state, pcs[i], fps[i]);
5804
5805		/*
5806		 * If we faulted while running the helper, we're going to
5807		 * clear the fault and null out the corresponding string.
5808		 */
5809		if (*flags & CPU_DTRACE_FAULT) {
5810			*flags &= ~CPU_DTRACE_FAULT;
5811			str[offs++] = '\0';
5812			continue;
5813		}
5814
5815		if (sym == NULL) {
5816			str[offs++] = '\0';
5817			continue;
5818		}
5819
5820		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5821
5822		/*
5823		 * Now copy in the string that the helper returned to us.
5824		 */
5825		for (j = 0; offs + j < strsize; j++) {
5826			if ((str[offs + j] = sym[j]) == '\0')
5827				break;
5828		}
5829
5830		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5831
5832		offs += j + 1;
5833	}
5834
5835	if (offs >= strsize) {
5836		/*
5837		 * If we didn't have room for all of the strings, we don't
5838		 * abort processing -- this needn't be a fatal error -- but we
5839		 * still want to increment a counter (dts_stkstroverflows) to
5840		 * allow this condition to be warned about.  (If this is from
5841		 * a jstack() action, it is easily tuned via jstackstrsize.)
5842		 */
5843		dtrace_error(&state->dts_stkstroverflows);
5844	}
5845
5846	while (offs < strsize)
5847		str[offs++] = '\0';
5848
5849out:
5850	mstate->dtms_scratch_ptr = old;
5851}
5852#endif
5853
5854/*
5855 * If you're looking for the epicenter of DTrace, you just found it.  This
5856 * is the function called by the provider to fire a probe -- from which all
5857 * subsequent probe-context DTrace activity emanates.
5858 */
5859void
5860dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5861    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5862{
5863	processorid_t cpuid;
5864	dtrace_icookie_t cookie;
5865	dtrace_probe_t *probe;
5866	dtrace_mstate_t mstate;
5867	dtrace_ecb_t *ecb;
5868	dtrace_action_t *act;
5869	intptr_t offs;
5870	size_t size;
5871	int vtime, onintr;
5872	volatile uint16_t *flags;
5873	hrtime_t now;
5874
5875#if defined(sun)
5876	/*
5877	 * Kick out immediately if this CPU is still being born (in which case
5878	 * curthread will be set to -1) or the current thread can't allow
5879	 * probes in its current context.
5880	 */
5881	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5882		return;
5883#endif
5884
5885	cookie = dtrace_interrupt_disable();
5886	probe = dtrace_probes[id - 1];
5887	cpuid = curcpu;
5888	onintr = CPU_ON_INTR(CPU);
5889
5890	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5891	    probe->dtpr_predcache == curthread->t_predcache) {
5892		/*
5893		 * We have hit in the predicate cache; we know that
5894		 * this predicate would evaluate to be false.
5895		 */
5896		dtrace_interrupt_enable(cookie);
5897		return;
5898	}
5899
5900#if defined(sun)
5901	if (panic_quiesce) {
5902#else
5903	if (panicstr != NULL) {
5904#endif
5905		/*
5906		 * We don't trace anything if we're panicking.
5907		 */
5908		dtrace_interrupt_enable(cookie);
5909		return;
5910	}
5911
5912	now = dtrace_gethrtime();
5913	vtime = dtrace_vtime_references != 0;
5914
5915	if (vtime && curthread->t_dtrace_start)
5916		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5917
5918	mstate.dtms_difo = NULL;
5919	mstate.dtms_probe = probe;
5920	mstate.dtms_strtok = 0;
5921	mstate.dtms_arg[0] = arg0;
5922	mstate.dtms_arg[1] = arg1;
5923	mstate.dtms_arg[2] = arg2;
5924	mstate.dtms_arg[3] = arg3;
5925	mstate.dtms_arg[4] = arg4;
5926
5927	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5928
5929	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5930		dtrace_predicate_t *pred = ecb->dte_predicate;
5931		dtrace_state_t *state = ecb->dte_state;
5932		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5933		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5934		dtrace_vstate_t *vstate = &state->dts_vstate;
5935		dtrace_provider_t *prov = probe->dtpr_provider;
5936		int committed = 0;
5937		caddr_t tomax;
5938
5939		/*
5940		 * A little subtlety with the following (seemingly innocuous)
5941		 * declaration of the automatic 'val':  by looking at the
5942		 * code, you might think that it could be declared in the
5943		 * action processing loop, below.  (That is, it's only used in
5944		 * the action processing loop.)  However, it must be declared
5945		 * out of that scope because in the case of DIF expression
5946		 * arguments to aggregating actions, one iteration of the
5947		 * action loop will use the last iteration's value.
5948		 */
5949		uint64_t val = 0;
5950
5951		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5952		*flags &= ~CPU_DTRACE_ERROR;
5953
5954		if (prov == dtrace_provider) {
5955			/*
5956			 * If dtrace itself is the provider of this probe,
5957			 * we're only going to continue processing the ECB if
5958			 * arg0 (the dtrace_state_t) is equal to the ECB's
5959			 * creating state.  (This prevents disjoint consumers
5960			 * from seeing one another's metaprobes.)
5961			 */
5962			if (arg0 != (uint64_t)(uintptr_t)state)
5963				continue;
5964		}
5965
5966		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5967			/*
5968			 * We're not currently active.  If our provider isn't
5969			 * the dtrace pseudo provider, we're not interested.
5970			 */
5971			if (prov != dtrace_provider)
5972				continue;
5973
5974			/*
5975			 * Now we must further check if we are in the BEGIN
5976			 * probe.  If we are, we will only continue processing
5977			 * if we're still in WARMUP -- if one BEGIN enabling
5978			 * has invoked the exit() action, we don't want to
5979			 * evaluate subsequent BEGIN enablings.
5980			 */
5981			if (probe->dtpr_id == dtrace_probeid_begin &&
5982			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5983				ASSERT(state->dts_activity ==
5984				    DTRACE_ACTIVITY_DRAINING);
5985				continue;
5986			}
5987		}
5988
5989		if (ecb->dte_cond) {
5990			/*
5991			 * If the dte_cond bits indicate that this
5992			 * consumer is only allowed to see user-mode firings
5993			 * of this probe, call the provider's dtps_usermode()
5994			 * entry point to check that the probe was fired
5995			 * while in a user context. Skip this ECB if that's
5996			 * not the case.
5997			 */
5998			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5999			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6000			    probe->dtpr_id, probe->dtpr_arg) == 0)
6001				continue;
6002
6003#if defined(sun)
6004			/*
6005			 * This is more subtle than it looks. We have to be
6006			 * absolutely certain that CRED() isn't going to
6007			 * change out from under us so it's only legit to
6008			 * examine that structure if we're in constrained
6009			 * situations. Currently, the only times we'll this
6010			 * check is if a non-super-user has enabled the
6011			 * profile or syscall providers -- providers that
6012			 * allow visibility of all processes. For the
6013			 * profile case, the check above will ensure that
6014			 * we're examining a user context.
6015			 */
6016			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6017				cred_t *cr;
6018				cred_t *s_cr =
6019				    ecb->dte_state->dts_cred.dcr_cred;
6020				proc_t *proc;
6021
6022				ASSERT(s_cr != NULL);
6023
6024				if ((cr = CRED()) == NULL ||
6025				    s_cr->cr_uid != cr->cr_uid ||
6026				    s_cr->cr_uid != cr->cr_ruid ||
6027				    s_cr->cr_uid != cr->cr_suid ||
6028				    s_cr->cr_gid != cr->cr_gid ||
6029				    s_cr->cr_gid != cr->cr_rgid ||
6030				    s_cr->cr_gid != cr->cr_sgid ||
6031				    (proc = ttoproc(curthread)) == NULL ||
6032				    (proc->p_flag & SNOCD))
6033					continue;
6034			}
6035
6036			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6037				cred_t *cr;
6038				cred_t *s_cr =
6039				    ecb->dte_state->dts_cred.dcr_cred;
6040
6041				ASSERT(s_cr != NULL);
6042
6043				if ((cr = CRED()) == NULL ||
6044				    s_cr->cr_zone->zone_id !=
6045				    cr->cr_zone->zone_id)
6046					continue;
6047			}
6048#endif
6049		}
6050
6051		if (now - state->dts_alive > dtrace_deadman_timeout) {
6052			/*
6053			 * We seem to be dead.  Unless we (a) have kernel
6054			 * destructive permissions (b) have expicitly enabled
6055			 * destructive actions and (c) destructive actions have
6056			 * not been disabled, we're going to transition into
6057			 * the KILLED state, from which no further processing
6058			 * on this state will be performed.
6059			 */
6060			if (!dtrace_priv_kernel_destructive(state) ||
6061			    !state->dts_cred.dcr_destructive ||
6062			    dtrace_destructive_disallow) {
6063				void *activity = &state->dts_activity;
6064				dtrace_activity_t current;
6065
6066				do {
6067					current = state->dts_activity;
6068				} while (dtrace_cas32(activity, current,
6069				    DTRACE_ACTIVITY_KILLED) != current);
6070
6071				continue;
6072			}
6073		}
6074
6075		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6076		    ecb->dte_alignment, state, &mstate)) < 0)
6077			continue;
6078
6079		tomax = buf->dtb_tomax;
6080		ASSERT(tomax != NULL);
6081
6082		if (ecb->dte_size != 0)
6083			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6084
6085		mstate.dtms_epid = ecb->dte_epid;
6086		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6087
6088		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6089			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6090		else
6091			mstate.dtms_access = 0;
6092
6093		if (pred != NULL) {
6094			dtrace_difo_t *dp = pred->dtp_difo;
6095			int rval;
6096
6097			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6098
6099			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6100				dtrace_cacheid_t cid = probe->dtpr_predcache;
6101
6102				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6103					/*
6104					 * Update the predicate cache...
6105					 */
6106					ASSERT(cid == pred->dtp_cacheid);
6107					curthread->t_predcache = cid;
6108				}
6109
6110				continue;
6111			}
6112		}
6113
6114		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6115		    act != NULL; act = act->dta_next) {
6116			size_t valoffs;
6117			dtrace_difo_t *dp;
6118			dtrace_recdesc_t *rec = &act->dta_rec;
6119
6120			size = rec->dtrd_size;
6121			valoffs = offs + rec->dtrd_offset;
6122
6123			if (DTRACEACT_ISAGG(act->dta_kind)) {
6124				uint64_t v = 0xbad;
6125				dtrace_aggregation_t *agg;
6126
6127				agg = (dtrace_aggregation_t *)act;
6128
6129				if ((dp = act->dta_difo) != NULL)
6130					v = dtrace_dif_emulate(dp,
6131					    &mstate, vstate, state);
6132
6133				if (*flags & CPU_DTRACE_ERROR)
6134					continue;
6135
6136				/*
6137				 * Note that we always pass the expression
6138				 * value from the previous iteration of the
6139				 * action loop.  This value will only be used
6140				 * if there is an expression argument to the
6141				 * aggregating action, denoted by the
6142				 * dtag_hasarg field.
6143				 */
6144				dtrace_aggregate(agg, buf,
6145				    offs, aggbuf, v, val);
6146				continue;
6147			}
6148
6149			switch (act->dta_kind) {
6150			case DTRACEACT_STOP:
6151				if (dtrace_priv_proc_destructive(state))
6152					dtrace_action_stop();
6153				continue;
6154
6155			case DTRACEACT_BREAKPOINT:
6156				if (dtrace_priv_kernel_destructive(state))
6157					dtrace_action_breakpoint(ecb);
6158				continue;
6159
6160			case DTRACEACT_PANIC:
6161				if (dtrace_priv_kernel_destructive(state))
6162					dtrace_action_panic(ecb);
6163				continue;
6164
6165			case DTRACEACT_STACK:
6166				if (!dtrace_priv_kernel(state))
6167					continue;
6168
6169				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6170				    size / sizeof (pc_t), probe->dtpr_aframes,
6171				    DTRACE_ANCHORED(probe) ? NULL :
6172				    (uint32_t *)arg0);
6173				continue;
6174
6175#if defined(sun)
6176			case DTRACEACT_JSTACK:
6177			case DTRACEACT_USTACK:
6178				if (!dtrace_priv_proc(state))
6179					continue;
6180
6181				/*
6182				 * See comment in DIF_VAR_PID.
6183				 */
6184				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6185				    CPU_ON_INTR(CPU)) {
6186					int depth = DTRACE_USTACK_NFRAMES(
6187					    rec->dtrd_arg) + 1;
6188
6189					dtrace_bzero((void *)(tomax + valoffs),
6190					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6191					    + depth * sizeof (uint64_t));
6192
6193					continue;
6194				}
6195
6196				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6197				    curproc->p_dtrace_helpers != NULL) {
6198					/*
6199					 * This is the slow path -- we have
6200					 * allocated string space, and we're
6201					 * getting the stack of a process that
6202					 * has helpers.  Call into a separate
6203					 * routine to perform this processing.
6204					 */
6205					dtrace_action_ustack(&mstate, state,
6206					    (uint64_t *)(tomax + valoffs),
6207					    rec->dtrd_arg);
6208					continue;
6209				}
6210
6211				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6212				dtrace_getupcstack((uint64_t *)
6213				    (tomax + valoffs),
6214				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6215				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6216				continue;
6217#endif
6218
6219			default:
6220				break;
6221			}
6222
6223			dp = act->dta_difo;
6224			ASSERT(dp != NULL);
6225
6226			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6227
6228			if (*flags & CPU_DTRACE_ERROR)
6229				continue;
6230
6231			switch (act->dta_kind) {
6232			case DTRACEACT_SPECULATE:
6233				ASSERT(buf == &state->dts_buffer[cpuid]);
6234				buf = dtrace_speculation_buffer(state,
6235				    cpuid, val);
6236
6237				if (buf == NULL) {
6238					*flags |= CPU_DTRACE_DROP;
6239					continue;
6240				}
6241
6242				offs = dtrace_buffer_reserve(buf,
6243				    ecb->dte_needed, ecb->dte_alignment,
6244				    state, NULL);
6245
6246				if (offs < 0) {
6247					*flags |= CPU_DTRACE_DROP;
6248					continue;
6249				}
6250
6251				tomax = buf->dtb_tomax;
6252				ASSERT(tomax != NULL);
6253
6254				if (ecb->dte_size != 0)
6255					DTRACE_STORE(uint32_t, tomax, offs,
6256					    ecb->dte_epid);
6257				continue;
6258
6259			case DTRACEACT_PRINTM: {
6260				/* The DIF returns a 'memref'. */
6261				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6262
6263				/* Get the size from the memref. */
6264				size = memref[1];
6265
6266				/*
6267				 * Check if the size exceeds the allocated
6268				 * buffer size.
6269				 */
6270				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6271					/* Flag a drop! */
6272					*flags |= CPU_DTRACE_DROP;
6273					continue;
6274				}
6275
6276				/* Store the size in the buffer first. */
6277				DTRACE_STORE(uintptr_t, tomax,
6278				    valoffs, size);
6279
6280				/*
6281				 * Offset the buffer address to the start
6282				 * of the data.
6283				 */
6284				valoffs += sizeof(uintptr_t);
6285
6286				/*
6287				 * Reset to the memory address rather than
6288				 * the memref array, then let the BYREF
6289				 * code below do the work to store the
6290				 * memory data in the buffer.
6291				 */
6292				val = memref[0];
6293				break;
6294			}
6295
6296			case DTRACEACT_PRINTT: {
6297				/* The DIF returns a 'typeref'. */
6298				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6299				char c = '\0' + 1;
6300				size_t s;
6301
6302				/*
6303				 * Get the type string length and round it
6304				 * up so that the data that follows is
6305				 * aligned for easy access.
6306				 */
6307				size_t typs = strlen((char *) typeref[2]) + 1;
6308				typs = roundup(typs,  sizeof(uintptr_t));
6309
6310				/*
6311				 *Get the size from the typeref using the
6312				 * number of elements and the type size.
6313				 */
6314				size = typeref[1] * typeref[3];
6315
6316				/*
6317				 * Check if the size exceeds the allocated
6318				 * buffer size.
6319				 */
6320				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6321					/* Flag a drop! */
6322					*flags |= CPU_DTRACE_DROP;
6323
6324				}
6325
6326				/* Store the size in the buffer first. */
6327				DTRACE_STORE(uintptr_t, tomax,
6328				    valoffs, size);
6329				valoffs += sizeof(uintptr_t);
6330
6331				/* Store the type size in the buffer. */
6332				DTRACE_STORE(uintptr_t, tomax,
6333				    valoffs, typeref[3]);
6334				valoffs += sizeof(uintptr_t);
6335
6336				val = typeref[2];
6337
6338				for (s = 0; s < typs; s++) {
6339					if (c != '\0')
6340						c = dtrace_load8(val++);
6341
6342					DTRACE_STORE(uint8_t, tomax,
6343					    valoffs++, c);
6344				}
6345
6346				/*
6347				 * Reset to the memory address rather than
6348				 * the typeref array, then let the BYREF
6349				 * code below do the work to store the
6350				 * memory data in the buffer.
6351				 */
6352				val = typeref[0];
6353				break;
6354			}
6355
6356			case DTRACEACT_CHILL:
6357				if (dtrace_priv_kernel_destructive(state))
6358					dtrace_action_chill(&mstate, val);
6359				continue;
6360
6361			case DTRACEACT_RAISE:
6362				if (dtrace_priv_proc_destructive(state))
6363					dtrace_action_raise(val);
6364				continue;
6365
6366			case DTRACEACT_COMMIT:
6367				ASSERT(!committed);
6368
6369				/*
6370				 * We need to commit our buffer state.
6371				 */
6372				if (ecb->dte_size)
6373					buf->dtb_offset = offs + ecb->dte_size;
6374				buf = &state->dts_buffer[cpuid];
6375				dtrace_speculation_commit(state, cpuid, val);
6376				committed = 1;
6377				continue;
6378
6379			case DTRACEACT_DISCARD:
6380				dtrace_speculation_discard(state, cpuid, val);
6381				continue;
6382
6383			case DTRACEACT_DIFEXPR:
6384			case DTRACEACT_LIBACT:
6385			case DTRACEACT_PRINTF:
6386			case DTRACEACT_PRINTA:
6387			case DTRACEACT_SYSTEM:
6388			case DTRACEACT_FREOPEN:
6389				break;
6390
6391			case DTRACEACT_SYM:
6392			case DTRACEACT_MOD:
6393				if (!dtrace_priv_kernel(state))
6394					continue;
6395				break;
6396
6397			case DTRACEACT_USYM:
6398			case DTRACEACT_UMOD:
6399			case DTRACEACT_UADDR: {
6400#if defined(sun)
6401				struct pid *pid = curthread->t_procp->p_pidp;
6402#endif
6403
6404				if (!dtrace_priv_proc(state))
6405					continue;
6406
6407				DTRACE_STORE(uint64_t, tomax,
6408#if defined(sun)
6409				    valoffs, (uint64_t)pid->pid_id);
6410#else
6411				    valoffs, (uint64_t) curproc->p_pid);
6412#endif
6413				DTRACE_STORE(uint64_t, tomax,
6414				    valoffs + sizeof (uint64_t), val);
6415
6416				continue;
6417			}
6418
6419			case DTRACEACT_EXIT: {
6420				/*
6421				 * For the exit action, we are going to attempt
6422				 * to atomically set our activity to be
6423				 * draining.  If this fails (either because
6424				 * another CPU has beat us to the exit action,
6425				 * or because our current activity is something
6426				 * other than ACTIVE or WARMUP), we will
6427				 * continue.  This assures that the exit action
6428				 * can be successfully recorded at most once
6429				 * when we're in the ACTIVE state.  If we're
6430				 * encountering the exit() action while in
6431				 * COOLDOWN, however, we want to honor the new
6432				 * status code.  (We know that we're the only
6433				 * thread in COOLDOWN, so there is no race.)
6434				 */
6435				void *activity = &state->dts_activity;
6436				dtrace_activity_t current = state->dts_activity;
6437
6438				if (current == DTRACE_ACTIVITY_COOLDOWN)
6439					break;
6440
6441				if (current != DTRACE_ACTIVITY_WARMUP)
6442					current = DTRACE_ACTIVITY_ACTIVE;
6443
6444				if (dtrace_cas32(activity, current,
6445				    DTRACE_ACTIVITY_DRAINING) != current) {
6446					*flags |= CPU_DTRACE_DROP;
6447					continue;
6448				}
6449
6450				break;
6451			}
6452
6453			default:
6454				ASSERT(0);
6455			}
6456
6457			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6458				uintptr_t end = valoffs + size;
6459
6460				if (!dtrace_vcanload((void *)(uintptr_t)val,
6461				    &dp->dtdo_rtype, &mstate, vstate))
6462					continue;
6463
6464				/*
6465				 * If this is a string, we're going to only
6466				 * load until we find the zero byte -- after
6467				 * which we'll store zero bytes.
6468				 */
6469				if (dp->dtdo_rtype.dtdt_kind ==
6470				    DIF_TYPE_STRING) {
6471					char c = '\0' + 1;
6472					int intuple = act->dta_intuple;
6473					size_t s;
6474
6475					for (s = 0; s < size; s++) {
6476						if (c != '\0')
6477							c = dtrace_load8(val++);
6478
6479						DTRACE_STORE(uint8_t, tomax,
6480						    valoffs++, c);
6481
6482						if (c == '\0' && intuple)
6483							break;
6484					}
6485
6486					continue;
6487				}
6488
6489				while (valoffs < end) {
6490					DTRACE_STORE(uint8_t, tomax, valoffs++,
6491					    dtrace_load8(val++));
6492				}
6493
6494				continue;
6495			}
6496
6497			switch (size) {
6498			case 0:
6499				break;
6500
6501			case sizeof (uint8_t):
6502				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6503				break;
6504			case sizeof (uint16_t):
6505				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6506				break;
6507			case sizeof (uint32_t):
6508				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6509				break;
6510			case sizeof (uint64_t):
6511				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6512				break;
6513			default:
6514				/*
6515				 * Any other size should have been returned by
6516				 * reference, not by value.
6517				 */
6518				ASSERT(0);
6519				break;
6520			}
6521		}
6522
6523		if (*flags & CPU_DTRACE_DROP)
6524			continue;
6525
6526		if (*flags & CPU_DTRACE_FAULT) {
6527			int ndx;
6528			dtrace_action_t *err;
6529
6530			buf->dtb_errors++;
6531
6532			if (probe->dtpr_id == dtrace_probeid_error) {
6533				/*
6534				 * There's nothing we can do -- we had an
6535				 * error on the error probe.  We bump an
6536				 * error counter to at least indicate that
6537				 * this condition happened.
6538				 */
6539				dtrace_error(&state->dts_dblerrors);
6540				continue;
6541			}
6542
6543			if (vtime) {
6544				/*
6545				 * Before recursing on dtrace_probe(), we
6546				 * need to explicitly clear out our start
6547				 * time to prevent it from being accumulated
6548				 * into t_dtrace_vtime.
6549				 */
6550				curthread->t_dtrace_start = 0;
6551			}
6552
6553			/*
6554			 * Iterate over the actions to figure out which action
6555			 * we were processing when we experienced the error.
6556			 * Note that act points _past_ the faulting action; if
6557			 * act is ecb->dte_action, the fault was in the
6558			 * predicate, if it's ecb->dte_action->dta_next it's
6559			 * in action #1, and so on.
6560			 */
6561			for (err = ecb->dte_action, ndx = 0;
6562			    err != act; err = err->dta_next, ndx++)
6563				continue;
6564
6565			dtrace_probe_error(state, ecb->dte_epid, ndx,
6566			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6567			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6568			    cpu_core[cpuid].cpuc_dtrace_illval);
6569
6570			continue;
6571		}
6572
6573		if (!committed)
6574			buf->dtb_offset = offs + ecb->dte_size;
6575	}
6576
6577	if (vtime)
6578		curthread->t_dtrace_start = dtrace_gethrtime();
6579
6580	dtrace_interrupt_enable(cookie);
6581}
6582
6583/*
6584 * DTrace Probe Hashing Functions
6585 *
6586 * The functions in this section (and indeed, the functions in remaining
6587 * sections) are not _called_ from probe context.  (Any exceptions to this are
6588 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6589 * DTrace framework to look-up probes in, add probes to and remove probes from
6590 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6591 * probe tuple -- allowing for fast lookups, regardless of what was
6592 * specified.)
6593 */
6594static uint_t
6595dtrace_hash_str(const char *p)
6596{
6597	unsigned int g;
6598	uint_t hval = 0;
6599
6600	while (*p) {
6601		hval = (hval << 4) + *p++;
6602		if ((g = (hval & 0xf0000000)) != 0)
6603			hval ^= g >> 24;
6604		hval &= ~g;
6605	}
6606	return (hval);
6607}
6608
6609static dtrace_hash_t *
6610dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6611{
6612	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6613
6614	hash->dth_stroffs = stroffs;
6615	hash->dth_nextoffs = nextoffs;
6616	hash->dth_prevoffs = prevoffs;
6617
6618	hash->dth_size = 1;
6619	hash->dth_mask = hash->dth_size - 1;
6620
6621	hash->dth_tab = kmem_zalloc(hash->dth_size *
6622	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6623
6624	return (hash);
6625}
6626
6627static void
6628dtrace_hash_destroy(dtrace_hash_t *hash)
6629{
6630#ifdef DEBUG
6631	int i;
6632
6633	for (i = 0; i < hash->dth_size; i++)
6634		ASSERT(hash->dth_tab[i] == NULL);
6635#endif
6636
6637	kmem_free(hash->dth_tab,
6638	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6639	kmem_free(hash, sizeof (dtrace_hash_t));
6640}
6641
6642static void
6643dtrace_hash_resize(dtrace_hash_t *hash)
6644{
6645	int size = hash->dth_size, i, ndx;
6646	int new_size = hash->dth_size << 1;
6647	int new_mask = new_size - 1;
6648	dtrace_hashbucket_t **new_tab, *bucket, *next;
6649
6650	ASSERT((new_size & new_mask) == 0);
6651
6652	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6653
6654	for (i = 0; i < size; i++) {
6655		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6656			dtrace_probe_t *probe = bucket->dthb_chain;
6657
6658			ASSERT(probe != NULL);
6659			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6660
6661			next = bucket->dthb_next;
6662			bucket->dthb_next = new_tab[ndx];
6663			new_tab[ndx] = bucket;
6664		}
6665	}
6666
6667	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6668	hash->dth_tab = new_tab;
6669	hash->dth_size = new_size;
6670	hash->dth_mask = new_mask;
6671}
6672
6673static void
6674dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6675{
6676	int hashval = DTRACE_HASHSTR(hash, new);
6677	int ndx = hashval & hash->dth_mask;
6678	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6679	dtrace_probe_t **nextp, **prevp;
6680
6681	for (; bucket != NULL; bucket = bucket->dthb_next) {
6682		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6683			goto add;
6684	}
6685
6686	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6687		dtrace_hash_resize(hash);
6688		dtrace_hash_add(hash, new);
6689		return;
6690	}
6691
6692	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6693	bucket->dthb_next = hash->dth_tab[ndx];
6694	hash->dth_tab[ndx] = bucket;
6695	hash->dth_nbuckets++;
6696
6697add:
6698	nextp = DTRACE_HASHNEXT(hash, new);
6699	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6700	*nextp = bucket->dthb_chain;
6701
6702	if (bucket->dthb_chain != NULL) {
6703		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6704		ASSERT(*prevp == NULL);
6705		*prevp = new;
6706	}
6707
6708	bucket->dthb_chain = new;
6709	bucket->dthb_len++;
6710}
6711
6712static dtrace_probe_t *
6713dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6714{
6715	int hashval = DTRACE_HASHSTR(hash, template);
6716	int ndx = hashval & hash->dth_mask;
6717	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6718
6719	for (; bucket != NULL; bucket = bucket->dthb_next) {
6720		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6721			return (bucket->dthb_chain);
6722	}
6723
6724	return (NULL);
6725}
6726
6727static int
6728dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6729{
6730	int hashval = DTRACE_HASHSTR(hash, template);
6731	int ndx = hashval & hash->dth_mask;
6732	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6733
6734	for (; bucket != NULL; bucket = bucket->dthb_next) {
6735		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6736			return (bucket->dthb_len);
6737	}
6738
6739	return (0);
6740}
6741
6742static void
6743dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6744{
6745	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6746	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6747
6748	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6749	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6750
6751	/*
6752	 * Find the bucket that we're removing this probe from.
6753	 */
6754	for (; bucket != NULL; bucket = bucket->dthb_next) {
6755		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6756			break;
6757	}
6758
6759	ASSERT(bucket != NULL);
6760
6761	if (*prevp == NULL) {
6762		if (*nextp == NULL) {
6763			/*
6764			 * The removed probe was the only probe on this
6765			 * bucket; we need to remove the bucket.
6766			 */
6767			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6768
6769			ASSERT(bucket->dthb_chain == probe);
6770			ASSERT(b != NULL);
6771
6772			if (b == bucket) {
6773				hash->dth_tab[ndx] = bucket->dthb_next;
6774			} else {
6775				while (b->dthb_next != bucket)
6776					b = b->dthb_next;
6777				b->dthb_next = bucket->dthb_next;
6778			}
6779
6780			ASSERT(hash->dth_nbuckets > 0);
6781			hash->dth_nbuckets--;
6782			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6783			return;
6784		}
6785
6786		bucket->dthb_chain = *nextp;
6787	} else {
6788		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6789	}
6790
6791	if (*nextp != NULL)
6792		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6793}
6794
6795/*
6796 * DTrace Utility Functions
6797 *
6798 * These are random utility functions that are _not_ called from probe context.
6799 */
6800static int
6801dtrace_badattr(const dtrace_attribute_t *a)
6802{
6803	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6804	    a->dtat_data > DTRACE_STABILITY_MAX ||
6805	    a->dtat_class > DTRACE_CLASS_MAX);
6806}
6807
6808/*
6809 * Return a duplicate copy of a string.  If the specified string is NULL,
6810 * this function returns a zero-length string.
6811 */
6812static char *
6813dtrace_strdup(const char *str)
6814{
6815	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6816
6817	if (str != NULL)
6818		(void) strcpy(new, str);
6819
6820	return (new);
6821}
6822
6823#define	DTRACE_ISALPHA(c)	\
6824	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6825
6826static int
6827dtrace_badname(const char *s)
6828{
6829	char c;
6830
6831	if (s == NULL || (c = *s++) == '\0')
6832		return (0);
6833
6834	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6835		return (1);
6836
6837	while ((c = *s++) != '\0') {
6838		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6839		    c != '-' && c != '_' && c != '.' && c != '`')
6840			return (1);
6841	}
6842
6843	return (0);
6844}
6845
6846static void
6847dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6848{
6849	uint32_t priv;
6850
6851#if defined(sun)
6852	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6853		/*
6854		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6855		 */
6856		priv = DTRACE_PRIV_ALL;
6857	} else {
6858		*uidp = crgetuid(cr);
6859		*zoneidp = crgetzoneid(cr);
6860
6861		priv = 0;
6862		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6863			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6864		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6865			priv |= DTRACE_PRIV_USER;
6866		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6867			priv |= DTRACE_PRIV_PROC;
6868		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6869			priv |= DTRACE_PRIV_OWNER;
6870		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6871			priv |= DTRACE_PRIV_ZONEOWNER;
6872	}
6873#else
6874	priv = DTRACE_PRIV_ALL;
6875#endif
6876
6877	*privp = priv;
6878}
6879
6880#ifdef DTRACE_ERRDEBUG
6881static void
6882dtrace_errdebug(const char *str)
6883{
6884	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6885	int occupied = 0;
6886
6887	mutex_enter(&dtrace_errlock);
6888	dtrace_errlast = str;
6889	dtrace_errthread = curthread;
6890
6891	while (occupied++ < DTRACE_ERRHASHSZ) {
6892		if (dtrace_errhash[hval].dter_msg == str) {
6893			dtrace_errhash[hval].dter_count++;
6894			goto out;
6895		}
6896
6897		if (dtrace_errhash[hval].dter_msg != NULL) {
6898			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6899			continue;
6900		}
6901
6902		dtrace_errhash[hval].dter_msg = str;
6903		dtrace_errhash[hval].dter_count = 1;
6904		goto out;
6905	}
6906
6907	panic("dtrace: undersized error hash");
6908out:
6909	mutex_exit(&dtrace_errlock);
6910}
6911#endif
6912
6913/*
6914 * DTrace Matching Functions
6915 *
6916 * These functions are used to match groups of probes, given some elements of
6917 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6918 */
6919static int
6920dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6921    zoneid_t zoneid)
6922{
6923	if (priv != DTRACE_PRIV_ALL) {
6924		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6925		uint32_t match = priv & ppriv;
6926
6927		/*
6928		 * No PRIV_DTRACE_* privileges...
6929		 */
6930		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6931		    DTRACE_PRIV_KERNEL)) == 0)
6932			return (0);
6933
6934		/*
6935		 * No matching bits, but there were bits to match...
6936		 */
6937		if (match == 0 && ppriv != 0)
6938			return (0);
6939
6940		/*
6941		 * Need to have permissions to the process, but don't...
6942		 */
6943		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6944		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6945			return (0);
6946		}
6947
6948		/*
6949		 * Need to be in the same zone unless we possess the
6950		 * privilege to examine all zones.
6951		 */
6952		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6953		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6954			return (0);
6955		}
6956	}
6957
6958	return (1);
6959}
6960
6961/*
6962 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6963 * consists of input pattern strings and an ops-vector to evaluate them.
6964 * This function returns >0 for match, 0 for no match, and <0 for error.
6965 */
6966static int
6967dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6968    uint32_t priv, uid_t uid, zoneid_t zoneid)
6969{
6970	dtrace_provider_t *pvp = prp->dtpr_provider;
6971	int rv;
6972
6973	if (pvp->dtpv_defunct)
6974		return (0);
6975
6976	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6977		return (rv);
6978
6979	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6980		return (rv);
6981
6982	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6983		return (rv);
6984
6985	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6986		return (rv);
6987
6988	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6989		return (0);
6990
6991	return (rv);
6992}
6993
6994/*
6995 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6996 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6997 * libc's version, the kernel version only applies to 8-bit ASCII strings.
6998 * In addition, all of the recursion cases except for '*' matching have been
6999 * unwound.  For '*', we still implement recursive evaluation, but a depth
7000 * counter is maintained and matching is aborted if we recurse too deep.
7001 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7002 */
7003static int
7004dtrace_match_glob(const char *s, const char *p, int depth)
7005{
7006	const char *olds;
7007	char s1, c;
7008	int gs;
7009
7010	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7011		return (-1);
7012
7013	if (s == NULL)
7014		s = ""; /* treat NULL as empty string */
7015
7016top:
7017	olds = s;
7018	s1 = *s++;
7019
7020	if (p == NULL)
7021		return (0);
7022
7023	if ((c = *p++) == '\0')
7024		return (s1 == '\0');
7025
7026	switch (c) {
7027	case '[': {
7028		int ok = 0, notflag = 0;
7029		char lc = '\0';
7030
7031		if (s1 == '\0')
7032			return (0);
7033
7034		if (*p == '!') {
7035			notflag = 1;
7036			p++;
7037		}
7038
7039		if ((c = *p++) == '\0')
7040			return (0);
7041
7042		do {
7043			if (c == '-' && lc != '\0' && *p != ']') {
7044				if ((c = *p++) == '\0')
7045					return (0);
7046				if (c == '\\' && (c = *p++) == '\0')
7047					return (0);
7048
7049				if (notflag) {
7050					if (s1 < lc || s1 > c)
7051						ok++;
7052					else
7053						return (0);
7054				} else if (lc <= s1 && s1 <= c)
7055					ok++;
7056
7057			} else if (c == '\\' && (c = *p++) == '\0')
7058				return (0);
7059
7060			lc = c; /* save left-hand 'c' for next iteration */
7061
7062			if (notflag) {
7063				if (s1 != c)
7064					ok++;
7065				else
7066					return (0);
7067			} else if (s1 == c)
7068				ok++;
7069
7070			if ((c = *p++) == '\0')
7071				return (0);
7072
7073		} while (c != ']');
7074
7075		if (ok)
7076			goto top;
7077
7078		return (0);
7079	}
7080
7081	case '\\':
7082		if ((c = *p++) == '\0')
7083			return (0);
7084		/*FALLTHRU*/
7085
7086	default:
7087		if (c != s1)
7088			return (0);
7089		/*FALLTHRU*/
7090
7091	case '?':
7092		if (s1 != '\0')
7093			goto top;
7094		return (0);
7095
7096	case '*':
7097		while (*p == '*')
7098			p++; /* consecutive *'s are identical to a single one */
7099
7100		if (*p == '\0')
7101			return (1);
7102
7103		for (s = olds; *s != '\0'; s++) {
7104			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7105				return (gs);
7106		}
7107
7108		return (0);
7109	}
7110}
7111
7112/*ARGSUSED*/
7113static int
7114dtrace_match_string(const char *s, const char *p, int depth)
7115{
7116	return (s != NULL && strcmp(s, p) == 0);
7117}
7118
7119/*ARGSUSED*/
7120static int
7121dtrace_match_nul(const char *s, const char *p, int depth)
7122{
7123	return (1); /* always match the empty pattern */
7124}
7125
7126/*ARGSUSED*/
7127static int
7128dtrace_match_nonzero(const char *s, const char *p, int depth)
7129{
7130	return (s != NULL && s[0] != '\0');
7131}
7132
7133static int
7134dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7135    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7136{
7137	dtrace_probe_t template, *probe;
7138	dtrace_hash_t *hash = NULL;
7139	int len, best = INT_MAX, nmatched = 0;
7140	dtrace_id_t i;
7141
7142	ASSERT(MUTEX_HELD(&dtrace_lock));
7143
7144	/*
7145	 * If the probe ID is specified in the key, just lookup by ID and
7146	 * invoke the match callback once if a matching probe is found.
7147	 */
7148	if (pkp->dtpk_id != DTRACE_IDNONE) {
7149		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7150		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7151			(void) (*matched)(probe, arg);
7152			nmatched++;
7153		}
7154		return (nmatched);
7155	}
7156
7157	template.dtpr_mod = (char *)pkp->dtpk_mod;
7158	template.dtpr_func = (char *)pkp->dtpk_func;
7159	template.dtpr_name = (char *)pkp->dtpk_name;
7160
7161	/*
7162	 * We want to find the most distinct of the module name, function
7163	 * name, and name.  So for each one that is not a glob pattern or
7164	 * empty string, we perform a lookup in the corresponding hash and
7165	 * use the hash table with the fewest collisions to do our search.
7166	 */
7167	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7168	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7169		best = len;
7170		hash = dtrace_bymod;
7171	}
7172
7173	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7174	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7175		best = len;
7176		hash = dtrace_byfunc;
7177	}
7178
7179	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7180	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7181		best = len;
7182		hash = dtrace_byname;
7183	}
7184
7185	/*
7186	 * If we did not select a hash table, iterate over every probe and
7187	 * invoke our callback for each one that matches our input probe key.
7188	 */
7189	if (hash == NULL) {
7190		for (i = 0; i < dtrace_nprobes; i++) {
7191			if ((probe = dtrace_probes[i]) == NULL ||
7192			    dtrace_match_probe(probe, pkp, priv, uid,
7193			    zoneid) <= 0)
7194				continue;
7195
7196			nmatched++;
7197
7198			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7199				break;
7200		}
7201
7202		return (nmatched);
7203	}
7204
7205	/*
7206	 * If we selected a hash table, iterate over each probe of the same key
7207	 * name and invoke the callback for every probe that matches the other
7208	 * attributes of our input probe key.
7209	 */
7210	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7211	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7212
7213		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7214			continue;
7215
7216		nmatched++;
7217
7218		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7219			break;
7220	}
7221
7222	return (nmatched);
7223}
7224
7225/*
7226 * Return the function pointer dtrace_probecmp() should use to compare the
7227 * specified pattern with a string.  For NULL or empty patterns, we select
7228 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7229 * For non-empty non-glob strings, we use dtrace_match_string().
7230 */
7231static dtrace_probekey_f *
7232dtrace_probekey_func(const char *p)
7233{
7234	char c;
7235
7236	if (p == NULL || *p == '\0')
7237		return (&dtrace_match_nul);
7238
7239	while ((c = *p++) != '\0') {
7240		if (c == '[' || c == '?' || c == '*' || c == '\\')
7241			return (&dtrace_match_glob);
7242	}
7243
7244	return (&dtrace_match_string);
7245}
7246
7247/*
7248 * Build a probe comparison key for use with dtrace_match_probe() from the
7249 * given probe description.  By convention, a null key only matches anchored
7250 * probes: if each field is the empty string, reset dtpk_fmatch to
7251 * dtrace_match_nonzero().
7252 */
7253static void
7254dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7255{
7256	pkp->dtpk_prov = pdp->dtpd_provider;
7257	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7258
7259	pkp->dtpk_mod = pdp->dtpd_mod;
7260	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7261
7262	pkp->dtpk_func = pdp->dtpd_func;
7263	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7264
7265	pkp->dtpk_name = pdp->dtpd_name;
7266	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7267
7268	pkp->dtpk_id = pdp->dtpd_id;
7269
7270	if (pkp->dtpk_id == DTRACE_IDNONE &&
7271	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7272	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7273	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7274	    pkp->dtpk_nmatch == &dtrace_match_nul)
7275		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7276}
7277
7278/*
7279 * DTrace Provider-to-Framework API Functions
7280 *
7281 * These functions implement much of the Provider-to-Framework API, as
7282 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7283 * the functions in the API for probe management (found below), and
7284 * dtrace_probe() itself (found above).
7285 */
7286
7287/*
7288 * Register the calling provider with the DTrace framework.  This should
7289 * generally be called by DTrace providers in their attach(9E) entry point.
7290 */
7291int
7292dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7293    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7294{
7295	dtrace_provider_t *provider;
7296
7297	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7298		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7299		    "arguments", name ? name : "<NULL>");
7300		return (EINVAL);
7301	}
7302
7303	if (name[0] == '\0' || dtrace_badname(name)) {
7304		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7305		    "provider name", name);
7306		return (EINVAL);
7307	}
7308
7309	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7310	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7311	    pops->dtps_destroy == NULL ||
7312	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7313		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7314		    "provider ops", name);
7315		return (EINVAL);
7316	}
7317
7318	if (dtrace_badattr(&pap->dtpa_provider) ||
7319	    dtrace_badattr(&pap->dtpa_mod) ||
7320	    dtrace_badattr(&pap->dtpa_func) ||
7321	    dtrace_badattr(&pap->dtpa_name) ||
7322	    dtrace_badattr(&pap->dtpa_args)) {
7323		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7324		    "provider attributes", name);
7325		return (EINVAL);
7326	}
7327
7328	if (priv & ~DTRACE_PRIV_ALL) {
7329		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7330		    "privilege attributes", name);
7331		return (EINVAL);
7332	}
7333
7334	if ((priv & DTRACE_PRIV_KERNEL) &&
7335	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7336	    pops->dtps_usermode == NULL) {
7337		cmn_err(CE_WARN, "failed to register provider '%s': need "
7338		    "dtps_usermode() op for given privilege attributes", name);
7339		return (EINVAL);
7340	}
7341
7342	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7343	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7344	(void) strcpy(provider->dtpv_name, name);
7345
7346	provider->dtpv_attr = *pap;
7347	provider->dtpv_priv.dtpp_flags = priv;
7348	if (cr != NULL) {
7349		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7350		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7351	}
7352	provider->dtpv_pops = *pops;
7353
7354	if (pops->dtps_provide == NULL) {
7355		ASSERT(pops->dtps_provide_module != NULL);
7356		provider->dtpv_pops.dtps_provide =
7357		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7358	}
7359
7360	if (pops->dtps_provide_module == NULL) {
7361		ASSERT(pops->dtps_provide != NULL);
7362		provider->dtpv_pops.dtps_provide_module =
7363		    (void (*)(void *, modctl_t *))dtrace_nullop;
7364	}
7365
7366	if (pops->dtps_suspend == NULL) {
7367		ASSERT(pops->dtps_resume == NULL);
7368		provider->dtpv_pops.dtps_suspend =
7369		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7370		provider->dtpv_pops.dtps_resume =
7371		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7372	}
7373
7374	provider->dtpv_arg = arg;
7375	*idp = (dtrace_provider_id_t)provider;
7376
7377	if (pops == &dtrace_provider_ops) {
7378		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7379		ASSERT(MUTEX_HELD(&dtrace_lock));
7380		ASSERT(dtrace_anon.dta_enabling == NULL);
7381
7382		/*
7383		 * We make sure that the DTrace provider is at the head of
7384		 * the provider chain.
7385		 */
7386		provider->dtpv_next = dtrace_provider;
7387		dtrace_provider = provider;
7388		return (0);
7389	}
7390
7391	mutex_enter(&dtrace_provider_lock);
7392	mutex_enter(&dtrace_lock);
7393
7394	/*
7395	 * If there is at least one provider registered, we'll add this
7396	 * provider after the first provider.
7397	 */
7398	if (dtrace_provider != NULL) {
7399		provider->dtpv_next = dtrace_provider->dtpv_next;
7400		dtrace_provider->dtpv_next = provider;
7401	} else {
7402		dtrace_provider = provider;
7403	}
7404
7405	if (dtrace_retained != NULL) {
7406		dtrace_enabling_provide(provider);
7407
7408		/*
7409		 * Now we need to call dtrace_enabling_matchall() -- which
7410		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7411		 * to drop all of our locks before calling into it...
7412		 */
7413		mutex_exit(&dtrace_lock);
7414		mutex_exit(&dtrace_provider_lock);
7415		dtrace_enabling_matchall();
7416
7417		return (0);
7418	}
7419
7420	mutex_exit(&dtrace_lock);
7421	mutex_exit(&dtrace_provider_lock);
7422
7423	return (0);
7424}
7425
7426/*
7427 * Unregister the specified provider from the DTrace framework.  This should
7428 * generally be called by DTrace providers in their detach(9E) entry point.
7429 */
7430int
7431dtrace_unregister(dtrace_provider_id_t id)
7432{
7433	dtrace_provider_t *old = (dtrace_provider_t *)id;
7434	dtrace_provider_t *prev = NULL;
7435	int i, self = 0;
7436	dtrace_probe_t *probe, *first = NULL;
7437
7438	if (old->dtpv_pops.dtps_enable ==
7439	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7440		/*
7441		 * If DTrace itself is the provider, we're called with locks
7442		 * already held.
7443		 */
7444		ASSERT(old == dtrace_provider);
7445#if defined(sun)
7446		ASSERT(dtrace_devi != NULL);
7447#endif
7448		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7449		ASSERT(MUTEX_HELD(&dtrace_lock));
7450		self = 1;
7451
7452		if (dtrace_provider->dtpv_next != NULL) {
7453			/*
7454			 * There's another provider here; return failure.
7455			 */
7456			return (EBUSY);
7457		}
7458	} else {
7459		mutex_enter(&dtrace_provider_lock);
7460		mutex_enter(&mod_lock);
7461		mutex_enter(&dtrace_lock);
7462	}
7463
7464	/*
7465	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7466	 * probes, we refuse to let providers slither away, unless this
7467	 * provider has already been explicitly invalidated.
7468	 */
7469	if (!old->dtpv_defunct &&
7470	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7471	    dtrace_anon.dta_state->dts_necbs > 0))) {
7472		if (!self) {
7473			mutex_exit(&dtrace_lock);
7474			mutex_exit(&mod_lock);
7475			mutex_exit(&dtrace_provider_lock);
7476		}
7477		return (EBUSY);
7478	}
7479
7480	/*
7481	 * Attempt to destroy the probes associated with this provider.
7482	 */
7483	for (i = 0; i < dtrace_nprobes; i++) {
7484		if ((probe = dtrace_probes[i]) == NULL)
7485			continue;
7486
7487		if (probe->dtpr_provider != old)
7488			continue;
7489
7490		if (probe->dtpr_ecb == NULL)
7491			continue;
7492
7493		/*
7494		 * We have at least one ECB; we can't remove this provider.
7495		 */
7496		if (!self) {
7497			mutex_exit(&dtrace_lock);
7498			mutex_exit(&mod_lock);
7499			mutex_exit(&dtrace_provider_lock);
7500		}
7501		return (EBUSY);
7502	}
7503
7504	/*
7505	 * All of the probes for this provider are disabled; we can safely
7506	 * remove all of them from their hash chains and from the probe array.
7507	 */
7508	for (i = 0; i < dtrace_nprobes; i++) {
7509		if ((probe = dtrace_probes[i]) == NULL)
7510			continue;
7511
7512		if (probe->dtpr_provider != old)
7513			continue;
7514
7515		dtrace_probes[i] = NULL;
7516
7517		dtrace_hash_remove(dtrace_bymod, probe);
7518		dtrace_hash_remove(dtrace_byfunc, probe);
7519		dtrace_hash_remove(dtrace_byname, probe);
7520
7521		if (first == NULL) {
7522			first = probe;
7523			probe->dtpr_nextmod = NULL;
7524		} else {
7525			probe->dtpr_nextmod = first;
7526			first = probe;
7527		}
7528	}
7529
7530	/*
7531	 * The provider's probes have been removed from the hash chains and
7532	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7533	 * everyone has cleared out from any probe array processing.
7534	 */
7535	dtrace_sync();
7536
7537	for (probe = first; probe != NULL; probe = first) {
7538		first = probe->dtpr_nextmod;
7539
7540		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7541		    probe->dtpr_arg);
7542		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7543		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7544		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7545#if defined(sun)
7546		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7547#else
7548		free_unr(dtrace_arena, probe->dtpr_id);
7549#endif
7550		kmem_free(probe, sizeof (dtrace_probe_t));
7551	}
7552
7553	if ((prev = dtrace_provider) == old) {
7554#if defined(sun)
7555		ASSERT(self || dtrace_devi == NULL);
7556		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7557#endif
7558		dtrace_provider = old->dtpv_next;
7559	} else {
7560		while (prev != NULL && prev->dtpv_next != old)
7561			prev = prev->dtpv_next;
7562
7563		if (prev == NULL) {
7564			panic("attempt to unregister non-existent "
7565			    "dtrace provider %p\n", (void *)id);
7566		}
7567
7568		prev->dtpv_next = old->dtpv_next;
7569	}
7570
7571	if (!self) {
7572		mutex_exit(&dtrace_lock);
7573		mutex_exit(&mod_lock);
7574		mutex_exit(&dtrace_provider_lock);
7575	}
7576
7577	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7578	kmem_free(old, sizeof (dtrace_provider_t));
7579
7580	return (0);
7581}
7582
7583/*
7584 * Invalidate the specified provider.  All subsequent probe lookups for the
7585 * specified provider will fail, but its probes will not be removed.
7586 */
7587void
7588dtrace_invalidate(dtrace_provider_id_t id)
7589{
7590	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7591
7592	ASSERT(pvp->dtpv_pops.dtps_enable !=
7593	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7594
7595	mutex_enter(&dtrace_provider_lock);
7596	mutex_enter(&dtrace_lock);
7597
7598	pvp->dtpv_defunct = 1;
7599
7600	mutex_exit(&dtrace_lock);
7601	mutex_exit(&dtrace_provider_lock);
7602}
7603
7604/*
7605 * Indicate whether or not DTrace has attached.
7606 */
7607int
7608dtrace_attached(void)
7609{
7610	/*
7611	 * dtrace_provider will be non-NULL iff the DTrace driver has
7612	 * attached.  (It's non-NULL because DTrace is always itself a
7613	 * provider.)
7614	 */
7615	return (dtrace_provider != NULL);
7616}
7617
7618/*
7619 * Remove all the unenabled probes for the given provider.  This function is
7620 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7621 * -- just as many of its associated probes as it can.
7622 */
7623int
7624dtrace_condense(dtrace_provider_id_t id)
7625{
7626	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7627	int i;
7628	dtrace_probe_t *probe;
7629
7630	/*
7631	 * Make sure this isn't the dtrace provider itself.
7632	 */
7633	ASSERT(prov->dtpv_pops.dtps_enable !=
7634	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7635
7636	mutex_enter(&dtrace_provider_lock);
7637	mutex_enter(&dtrace_lock);
7638
7639	/*
7640	 * Attempt to destroy the probes associated with this provider.
7641	 */
7642	for (i = 0; i < dtrace_nprobes; i++) {
7643		if ((probe = dtrace_probes[i]) == NULL)
7644			continue;
7645
7646		if (probe->dtpr_provider != prov)
7647			continue;
7648
7649		if (probe->dtpr_ecb != NULL)
7650			continue;
7651
7652		dtrace_probes[i] = NULL;
7653
7654		dtrace_hash_remove(dtrace_bymod, probe);
7655		dtrace_hash_remove(dtrace_byfunc, probe);
7656		dtrace_hash_remove(dtrace_byname, probe);
7657
7658		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7659		    probe->dtpr_arg);
7660		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7661		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7662		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7663		kmem_free(probe, sizeof (dtrace_probe_t));
7664#if defined(sun)
7665		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7666#else
7667		free_unr(dtrace_arena, i + 1);
7668#endif
7669	}
7670
7671	mutex_exit(&dtrace_lock);
7672	mutex_exit(&dtrace_provider_lock);
7673
7674	return (0);
7675}
7676
7677/*
7678 * DTrace Probe Management Functions
7679 *
7680 * The functions in this section perform the DTrace probe management,
7681 * including functions to create probes, look-up probes, and call into the
7682 * providers to request that probes be provided.  Some of these functions are
7683 * in the Provider-to-Framework API; these functions can be identified by the
7684 * fact that they are not declared "static".
7685 */
7686
7687/*
7688 * Create a probe with the specified module name, function name, and name.
7689 */
7690dtrace_id_t
7691dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7692    const char *func, const char *name, int aframes, void *arg)
7693{
7694	dtrace_probe_t *probe, **probes;
7695	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7696	dtrace_id_t id;
7697
7698	if (provider == dtrace_provider) {
7699		ASSERT(MUTEX_HELD(&dtrace_lock));
7700	} else {
7701		mutex_enter(&dtrace_lock);
7702	}
7703
7704#if defined(sun)
7705	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7706	    VM_BESTFIT | VM_SLEEP);
7707#else
7708	id = alloc_unr(dtrace_arena);
7709#endif
7710	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7711
7712	probe->dtpr_id = id;
7713	probe->dtpr_gen = dtrace_probegen++;
7714	probe->dtpr_mod = dtrace_strdup(mod);
7715	probe->dtpr_func = dtrace_strdup(func);
7716	probe->dtpr_name = dtrace_strdup(name);
7717	probe->dtpr_arg = arg;
7718	probe->dtpr_aframes = aframes;
7719	probe->dtpr_provider = provider;
7720
7721	dtrace_hash_add(dtrace_bymod, probe);
7722	dtrace_hash_add(dtrace_byfunc, probe);
7723	dtrace_hash_add(dtrace_byname, probe);
7724
7725	if (id - 1 >= dtrace_nprobes) {
7726		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7727		size_t nsize = osize << 1;
7728
7729		if (nsize == 0) {
7730			ASSERT(osize == 0);
7731			ASSERT(dtrace_probes == NULL);
7732			nsize = sizeof (dtrace_probe_t *);
7733		}
7734
7735		probes = kmem_zalloc(nsize, KM_SLEEP);
7736
7737		if (dtrace_probes == NULL) {
7738			ASSERT(osize == 0);
7739			dtrace_probes = probes;
7740			dtrace_nprobes = 1;
7741		} else {
7742			dtrace_probe_t **oprobes = dtrace_probes;
7743
7744			bcopy(oprobes, probes, osize);
7745			dtrace_membar_producer();
7746			dtrace_probes = probes;
7747
7748			dtrace_sync();
7749
7750			/*
7751			 * All CPUs are now seeing the new probes array; we can
7752			 * safely free the old array.
7753			 */
7754			kmem_free(oprobes, osize);
7755			dtrace_nprobes <<= 1;
7756		}
7757
7758		ASSERT(id - 1 < dtrace_nprobes);
7759	}
7760
7761	ASSERT(dtrace_probes[id - 1] == NULL);
7762	dtrace_probes[id - 1] = probe;
7763
7764	if (provider != dtrace_provider)
7765		mutex_exit(&dtrace_lock);
7766
7767	return (id);
7768}
7769
7770static dtrace_probe_t *
7771dtrace_probe_lookup_id(dtrace_id_t id)
7772{
7773	ASSERT(MUTEX_HELD(&dtrace_lock));
7774
7775	if (id == 0 || id > dtrace_nprobes)
7776		return (NULL);
7777
7778	return (dtrace_probes[id - 1]);
7779}
7780
7781static int
7782dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7783{
7784	*((dtrace_id_t *)arg) = probe->dtpr_id;
7785
7786	return (DTRACE_MATCH_DONE);
7787}
7788
7789/*
7790 * Look up a probe based on provider and one or more of module name, function
7791 * name and probe name.
7792 */
7793dtrace_id_t
7794dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7795    char *func, char *name)
7796{
7797	dtrace_probekey_t pkey;
7798	dtrace_id_t id;
7799	int match;
7800
7801	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7802	pkey.dtpk_pmatch = &dtrace_match_string;
7803	pkey.dtpk_mod = mod;
7804	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7805	pkey.dtpk_func = func;
7806	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7807	pkey.dtpk_name = name;
7808	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7809	pkey.dtpk_id = DTRACE_IDNONE;
7810
7811	mutex_enter(&dtrace_lock);
7812	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7813	    dtrace_probe_lookup_match, &id);
7814	mutex_exit(&dtrace_lock);
7815
7816	ASSERT(match == 1 || match == 0);
7817	return (match ? id : 0);
7818}
7819
7820/*
7821 * Returns the probe argument associated with the specified probe.
7822 */
7823void *
7824dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7825{
7826	dtrace_probe_t *probe;
7827	void *rval = NULL;
7828
7829	mutex_enter(&dtrace_lock);
7830
7831	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7832	    probe->dtpr_provider == (dtrace_provider_t *)id)
7833		rval = probe->dtpr_arg;
7834
7835	mutex_exit(&dtrace_lock);
7836
7837	return (rval);
7838}
7839
7840/*
7841 * Copy a probe into a probe description.
7842 */
7843static void
7844dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7845{
7846	bzero(pdp, sizeof (dtrace_probedesc_t));
7847	pdp->dtpd_id = prp->dtpr_id;
7848
7849	(void) strncpy(pdp->dtpd_provider,
7850	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7851
7852	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7853	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7854	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7855}
7856
7857#if !defined(sun)
7858static int
7859dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7860{
7861	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7862
7863	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7864
7865	return(0);
7866}
7867#endif
7868
7869
7870/*
7871 * Called to indicate that a probe -- or probes -- should be provided by a
7872 * specfied provider.  If the specified description is NULL, the provider will
7873 * be told to provide all of its probes.  (This is done whenever a new
7874 * consumer comes along, or whenever a retained enabling is to be matched.) If
7875 * the specified description is non-NULL, the provider is given the
7876 * opportunity to dynamically provide the specified probe, allowing providers
7877 * to support the creation of probes on-the-fly.  (So-called _autocreated_
7878 * probes.)  If the provider is NULL, the operations will be applied to all
7879 * providers; if the provider is non-NULL the operations will only be applied
7880 * to the specified provider.  The dtrace_provider_lock must be held, and the
7881 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7882 * will need to grab the dtrace_lock when it reenters the framework through
7883 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7884 */
7885static void
7886dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7887{
7888#if defined(sun)
7889	modctl_t *ctl;
7890#endif
7891	int all = 0;
7892
7893	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7894
7895	if (prv == NULL) {
7896		all = 1;
7897		prv = dtrace_provider;
7898	}
7899
7900	do {
7901		/*
7902		 * First, call the blanket provide operation.
7903		 */
7904		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7905
7906		/*
7907		 * Now call the per-module provide operation.  We will grab
7908		 * mod_lock to prevent the list from being modified.  Note
7909		 * that this also prevents the mod_busy bits from changing.
7910		 * (mod_busy can only be changed with mod_lock held.)
7911		 */
7912		mutex_enter(&mod_lock);
7913
7914#if defined(sun)
7915		ctl = &modules;
7916		do {
7917			if (ctl->mod_busy || ctl->mod_mp == NULL)
7918				continue;
7919
7920			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7921
7922		} while ((ctl = ctl->mod_next) != &modules);
7923#else
7924		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
7925#endif
7926
7927		mutex_exit(&mod_lock);
7928	} while (all && (prv = prv->dtpv_next) != NULL);
7929}
7930
7931#if defined(sun)
7932/*
7933 * Iterate over each probe, and call the Framework-to-Provider API function
7934 * denoted by offs.
7935 */
7936static void
7937dtrace_probe_foreach(uintptr_t offs)
7938{
7939	dtrace_provider_t *prov;
7940	void (*func)(void *, dtrace_id_t, void *);
7941	dtrace_probe_t *probe;
7942	dtrace_icookie_t cookie;
7943	int i;
7944
7945	/*
7946	 * We disable interrupts to walk through the probe array.  This is
7947	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7948	 * won't see stale data.
7949	 */
7950	cookie = dtrace_interrupt_disable();
7951
7952	for (i = 0; i < dtrace_nprobes; i++) {
7953		if ((probe = dtrace_probes[i]) == NULL)
7954			continue;
7955
7956		if (probe->dtpr_ecb == NULL) {
7957			/*
7958			 * This probe isn't enabled -- don't call the function.
7959			 */
7960			continue;
7961		}
7962
7963		prov = probe->dtpr_provider;
7964		func = *((void(**)(void *, dtrace_id_t, void *))
7965		    ((uintptr_t)&prov->dtpv_pops + offs));
7966
7967		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7968	}
7969
7970	dtrace_interrupt_enable(cookie);
7971}
7972#endif
7973
7974static int
7975dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7976{
7977	dtrace_probekey_t pkey;
7978	uint32_t priv;
7979	uid_t uid;
7980	zoneid_t zoneid;
7981
7982	ASSERT(MUTEX_HELD(&dtrace_lock));
7983	dtrace_ecb_create_cache = NULL;
7984
7985	if (desc == NULL) {
7986		/*
7987		 * If we're passed a NULL description, we're being asked to
7988		 * create an ECB with a NULL probe.
7989		 */
7990		(void) dtrace_ecb_create_enable(NULL, enab);
7991		return (0);
7992	}
7993
7994	dtrace_probekey(desc, &pkey);
7995	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7996	    &priv, &uid, &zoneid);
7997
7998	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7999	    enab));
8000}
8001
8002/*
8003 * DTrace Helper Provider Functions
8004 */
8005static void
8006dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8007{
8008	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8009	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8010	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8011}
8012
8013static void
8014dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8015    const dof_provider_t *dofprov, char *strtab)
8016{
8017	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8018	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8019	    dofprov->dofpv_provattr);
8020	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8021	    dofprov->dofpv_modattr);
8022	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8023	    dofprov->dofpv_funcattr);
8024	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8025	    dofprov->dofpv_nameattr);
8026	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8027	    dofprov->dofpv_argsattr);
8028}
8029
8030static void
8031dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8032{
8033	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8034	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8035	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8036	dof_provider_t *provider;
8037	dof_probe_t *probe;
8038	uint32_t *off, *enoff;
8039	uint8_t *arg;
8040	char *strtab;
8041	uint_t i, nprobes;
8042	dtrace_helper_provdesc_t dhpv;
8043	dtrace_helper_probedesc_t dhpb;
8044	dtrace_meta_t *meta = dtrace_meta_pid;
8045	dtrace_mops_t *mops = &meta->dtm_mops;
8046	void *parg;
8047
8048	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8049	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8050	    provider->dofpv_strtab * dof->dofh_secsize);
8051	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8052	    provider->dofpv_probes * dof->dofh_secsize);
8053	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8054	    provider->dofpv_prargs * dof->dofh_secsize);
8055	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8056	    provider->dofpv_proffs * dof->dofh_secsize);
8057
8058	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8059	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8060	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8061	enoff = NULL;
8062
8063	/*
8064	 * See dtrace_helper_provider_validate().
8065	 */
8066	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8067	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8068		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8069		    provider->dofpv_prenoffs * dof->dofh_secsize);
8070		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8071	}
8072
8073	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8074
8075	/*
8076	 * Create the provider.
8077	 */
8078	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8079
8080	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8081		return;
8082
8083	meta->dtm_count++;
8084
8085	/*
8086	 * Create the probes.
8087	 */
8088	for (i = 0; i < nprobes; i++) {
8089		probe = (dof_probe_t *)(uintptr_t)(daddr +
8090		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8091
8092		dhpb.dthpb_mod = dhp->dofhp_mod;
8093		dhpb.dthpb_func = strtab + probe->dofpr_func;
8094		dhpb.dthpb_name = strtab + probe->dofpr_name;
8095		dhpb.dthpb_base = probe->dofpr_addr;
8096		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8097		dhpb.dthpb_noffs = probe->dofpr_noffs;
8098		if (enoff != NULL) {
8099			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8100			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8101		} else {
8102			dhpb.dthpb_enoffs = NULL;
8103			dhpb.dthpb_nenoffs = 0;
8104		}
8105		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8106		dhpb.dthpb_nargc = probe->dofpr_nargc;
8107		dhpb.dthpb_xargc = probe->dofpr_xargc;
8108		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8109		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8110
8111		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8112	}
8113}
8114
8115static void
8116dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8117{
8118	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8119	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8120	int i;
8121
8122	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8123
8124	for (i = 0; i < dof->dofh_secnum; i++) {
8125		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8126		    dof->dofh_secoff + i * dof->dofh_secsize);
8127
8128		if (sec->dofs_type != DOF_SECT_PROVIDER)
8129			continue;
8130
8131		dtrace_helper_provide_one(dhp, sec, pid);
8132	}
8133
8134	/*
8135	 * We may have just created probes, so we must now rematch against
8136	 * any retained enablings.  Note that this call will acquire both
8137	 * cpu_lock and dtrace_lock; the fact that we are holding
8138	 * dtrace_meta_lock now is what defines the ordering with respect to
8139	 * these three locks.
8140	 */
8141	dtrace_enabling_matchall();
8142}
8143
8144#if defined(sun)
8145static void
8146dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8147{
8148	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8149	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8150	dof_sec_t *str_sec;
8151	dof_provider_t *provider;
8152	char *strtab;
8153	dtrace_helper_provdesc_t dhpv;
8154	dtrace_meta_t *meta = dtrace_meta_pid;
8155	dtrace_mops_t *mops = &meta->dtm_mops;
8156
8157	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8158	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8159	    provider->dofpv_strtab * dof->dofh_secsize);
8160
8161	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8162
8163	/*
8164	 * Create the provider.
8165	 */
8166	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8167
8168	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8169
8170	meta->dtm_count--;
8171}
8172
8173static void
8174dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8175{
8176	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8177	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8178	int i;
8179
8180	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8181
8182	for (i = 0; i < dof->dofh_secnum; i++) {
8183		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8184		    dof->dofh_secoff + i * dof->dofh_secsize);
8185
8186		if (sec->dofs_type != DOF_SECT_PROVIDER)
8187			continue;
8188
8189		dtrace_helper_provider_remove_one(dhp, sec, pid);
8190	}
8191}
8192#endif
8193
8194/*
8195 * DTrace Meta Provider-to-Framework API Functions
8196 *
8197 * These functions implement the Meta Provider-to-Framework API, as described
8198 * in <sys/dtrace.h>.
8199 */
8200int
8201dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8202    dtrace_meta_provider_id_t *idp)
8203{
8204	dtrace_meta_t *meta;
8205	dtrace_helpers_t *help, *next;
8206	int i;
8207
8208	*idp = DTRACE_METAPROVNONE;
8209
8210	/*
8211	 * We strictly don't need the name, but we hold onto it for
8212	 * debuggability. All hail error queues!
8213	 */
8214	if (name == NULL) {
8215		cmn_err(CE_WARN, "failed to register meta-provider: "
8216		    "invalid name");
8217		return (EINVAL);
8218	}
8219
8220	if (mops == NULL ||
8221	    mops->dtms_create_probe == NULL ||
8222	    mops->dtms_provide_pid == NULL ||
8223	    mops->dtms_remove_pid == NULL) {
8224		cmn_err(CE_WARN, "failed to register meta-register %s: "
8225		    "invalid ops", name);
8226		return (EINVAL);
8227	}
8228
8229	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8230	meta->dtm_mops = *mops;
8231	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8232	(void) strcpy(meta->dtm_name, name);
8233	meta->dtm_arg = arg;
8234
8235	mutex_enter(&dtrace_meta_lock);
8236	mutex_enter(&dtrace_lock);
8237
8238	if (dtrace_meta_pid != NULL) {
8239		mutex_exit(&dtrace_lock);
8240		mutex_exit(&dtrace_meta_lock);
8241		cmn_err(CE_WARN, "failed to register meta-register %s: "
8242		    "user-land meta-provider exists", name);
8243		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8244		kmem_free(meta, sizeof (dtrace_meta_t));
8245		return (EINVAL);
8246	}
8247
8248	dtrace_meta_pid = meta;
8249	*idp = (dtrace_meta_provider_id_t)meta;
8250
8251	/*
8252	 * If there are providers and probes ready to go, pass them
8253	 * off to the new meta provider now.
8254	 */
8255
8256	help = dtrace_deferred_pid;
8257	dtrace_deferred_pid = NULL;
8258
8259	mutex_exit(&dtrace_lock);
8260
8261	while (help != NULL) {
8262		for (i = 0; i < help->dthps_nprovs; i++) {
8263			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8264			    help->dthps_pid);
8265		}
8266
8267		next = help->dthps_next;
8268		help->dthps_next = NULL;
8269		help->dthps_prev = NULL;
8270		help->dthps_deferred = 0;
8271		help = next;
8272	}
8273
8274	mutex_exit(&dtrace_meta_lock);
8275
8276	return (0);
8277}
8278
8279int
8280dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8281{
8282	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8283
8284	mutex_enter(&dtrace_meta_lock);
8285	mutex_enter(&dtrace_lock);
8286
8287	if (old == dtrace_meta_pid) {
8288		pp = &dtrace_meta_pid;
8289	} else {
8290		panic("attempt to unregister non-existent "
8291		    "dtrace meta-provider %p\n", (void *)old);
8292	}
8293
8294	if (old->dtm_count != 0) {
8295		mutex_exit(&dtrace_lock);
8296		mutex_exit(&dtrace_meta_lock);
8297		return (EBUSY);
8298	}
8299
8300	*pp = NULL;
8301
8302	mutex_exit(&dtrace_lock);
8303	mutex_exit(&dtrace_meta_lock);
8304
8305	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8306	kmem_free(old, sizeof (dtrace_meta_t));
8307
8308	return (0);
8309}
8310
8311
8312/*
8313 * DTrace DIF Object Functions
8314 */
8315static int
8316dtrace_difo_err(uint_t pc, const char *format, ...)
8317{
8318	if (dtrace_err_verbose) {
8319		va_list alist;
8320
8321		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8322		va_start(alist, format);
8323		(void) vuprintf(format, alist);
8324		va_end(alist);
8325	}
8326
8327#ifdef DTRACE_ERRDEBUG
8328	dtrace_errdebug(format);
8329#endif
8330	return (1);
8331}
8332
8333/*
8334 * Validate a DTrace DIF object by checking the IR instructions.  The following
8335 * rules are currently enforced by dtrace_difo_validate():
8336 *
8337 * 1. Each instruction must have a valid opcode
8338 * 2. Each register, string, variable, or subroutine reference must be valid
8339 * 3. No instruction can modify register %r0 (must be zero)
8340 * 4. All instruction reserved bits must be set to zero
8341 * 5. The last instruction must be a "ret" instruction
8342 * 6. All branch targets must reference a valid instruction _after_ the branch
8343 */
8344static int
8345dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8346    cred_t *cr)
8347{
8348	int err = 0, i;
8349	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8350	int kcheckload;
8351	uint_t pc;
8352
8353	kcheckload = cr == NULL ||
8354	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8355
8356	dp->dtdo_destructive = 0;
8357
8358	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8359		dif_instr_t instr = dp->dtdo_buf[pc];
8360
8361		uint_t r1 = DIF_INSTR_R1(instr);
8362		uint_t r2 = DIF_INSTR_R2(instr);
8363		uint_t rd = DIF_INSTR_RD(instr);
8364		uint_t rs = DIF_INSTR_RS(instr);
8365		uint_t label = DIF_INSTR_LABEL(instr);
8366		uint_t v = DIF_INSTR_VAR(instr);
8367		uint_t subr = DIF_INSTR_SUBR(instr);
8368		uint_t type = DIF_INSTR_TYPE(instr);
8369		uint_t op = DIF_INSTR_OP(instr);
8370
8371		switch (op) {
8372		case DIF_OP_OR:
8373		case DIF_OP_XOR:
8374		case DIF_OP_AND:
8375		case DIF_OP_SLL:
8376		case DIF_OP_SRL:
8377		case DIF_OP_SRA:
8378		case DIF_OP_SUB:
8379		case DIF_OP_ADD:
8380		case DIF_OP_MUL:
8381		case DIF_OP_SDIV:
8382		case DIF_OP_UDIV:
8383		case DIF_OP_SREM:
8384		case DIF_OP_UREM:
8385		case DIF_OP_COPYS:
8386			if (r1 >= nregs)
8387				err += efunc(pc, "invalid register %u\n", r1);
8388			if (r2 >= nregs)
8389				err += efunc(pc, "invalid register %u\n", r2);
8390			if (rd >= nregs)
8391				err += efunc(pc, "invalid register %u\n", rd);
8392			if (rd == 0)
8393				err += efunc(pc, "cannot write to %r0\n");
8394			break;
8395		case DIF_OP_NOT:
8396		case DIF_OP_MOV:
8397		case DIF_OP_ALLOCS:
8398			if (r1 >= nregs)
8399				err += efunc(pc, "invalid register %u\n", r1);
8400			if (r2 != 0)
8401				err += efunc(pc, "non-zero reserved bits\n");
8402			if (rd >= nregs)
8403				err += efunc(pc, "invalid register %u\n", rd);
8404			if (rd == 0)
8405				err += efunc(pc, "cannot write to %r0\n");
8406			break;
8407		case DIF_OP_LDSB:
8408		case DIF_OP_LDSH:
8409		case DIF_OP_LDSW:
8410		case DIF_OP_LDUB:
8411		case DIF_OP_LDUH:
8412		case DIF_OP_LDUW:
8413		case DIF_OP_LDX:
8414			if (r1 >= nregs)
8415				err += efunc(pc, "invalid register %u\n", r1);
8416			if (r2 != 0)
8417				err += efunc(pc, "non-zero reserved bits\n");
8418			if (rd >= nregs)
8419				err += efunc(pc, "invalid register %u\n", rd);
8420			if (rd == 0)
8421				err += efunc(pc, "cannot write to %r0\n");
8422			if (kcheckload)
8423				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8424				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8425			break;
8426		case DIF_OP_RLDSB:
8427		case DIF_OP_RLDSH:
8428		case DIF_OP_RLDSW:
8429		case DIF_OP_RLDUB:
8430		case DIF_OP_RLDUH:
8431		case DIF_OP_RLDUW:
8432		case DIF_OP_RLDX:
8433			if (r1 >= nregs)
8434				err += efunc(pc, "invalid register %u\n", r1);
8435			if (r2 != 0)
8436				err += efunc(pc, "non-zero reserved bits\n");
8437			if (rd >= nregs)
8438				err += efunc(pc, "invalid register %u\n", rd);
8439			if (rd == 0)
8440				err += efunc(pc, "cannot write to %r0\n");
8441			break;
8442		case DIF_OP_ULDSB:
8443		case DIF_OP_ULDSH:
8444		case DIF_OP_ULDSW:
8445		case DIF_OP_ULDUB:
8446		case DIF_OP_ULDUH:
8447		case DIF_OP_ULDUW:
8448		case DIF_OP_ULDX:
8449			if (r1 >= nregs)
8450				err += efunc(pc, "invalid register %u\n", r1);
8451			if (r2 != 0)
8452				err += efunc(pc, "non-zero reserved bits\n");
8453			if (rd >= nregs)
8454				err += efunc(pc, "invalid register %u\n", rd);
8455			if (rd == 0)
8456				err += efunc(pc, "cannot write to %r0\n");
8457			break;
8458		case DIF_OP_STB:
8459		case DIF_OP_STH:
8460		case DIF_OP_STW:
8461		case DIF_OP_STX:
8462			if (r1 >= nregs)
8463				err += efunc(pc, "invalid register %u\n", r1);
8464			if (r2 != 0)
8465				err += efunc(pc, "non-zero reserved bits\n");
8466			if (rd >= nregs)
8467				err += efunc(pc, "invalid register %u\n", rd);
8468			if (rd == 0)
8469				err += efunc(pc, "cannot write to 0 address\n");
8470			break;
8471		case DIF_OP_CMP:
8472		case DIF_OP_SCMP:
8473			if (r1 >= nregs)
8474				err += efunc(pc, "invalid register %u\n", r1);
8475			if (r2 >= nregs)
8476				err += efunc(pc, "invalid register %u\n", r2);
8477			if (rd != 0)
8478				err += efunc(pc, "non-zero reserved bits\n");
8479			break;
8480		case DIF_OP_TST:
8481			if (r1 >= nregs)
8482				err += efunc(pc, "invalid register %u\n", r1);
8483			if (r2 != 0 || rd != 0)
8484				err += efunc(pc, "non-zero reserved bits\n");
8485			break;
8486		case DIF_OP_BA:
8487		case DIF_OP_BE:
8488		case DIF_OP_BNE:
8489		case DIF_OP_BG:
8490		case DIF_OP_BGU:
8491		case DIF_OP_BGE:
8492		case DIF_OP_BGEU:
8493		case DIF_OP_BL:
8494		case DIF_OP_BLU:
8495		case DIF_OP_BLE:
8496		case DIF_OP_BLEU:
8497			if (label >= dp->dtdo_len) {
8498				err += efunc(pc, "invalid branch target %u\n",
8499				    label);
8500			}
8501			if (label <= pc) {
8502				err += efunc(pc, "backward branch to %u\n",
8503				    label);
8504			}
8505			break;
8506		case DIF_OP_RET:
8507			if (r1 != 0 || r2 != 0)
8508				err += efunc(pc, "non-zero reserved bits\n");
8509			if (rd >= nregs)
8510				err += efunc(pc, "invalid register %u\n", rd);
8511			break;
8512		case DIF_OP_NOP:
8513		case DIF_OP_POPTS:
8514		case DIF_OP_FLUSHTS:
8515			if (r1 != 0 || r2 != 0 || rd != 0)
8516				err += efunc(pc, "non-zero reserved bits\n");
8517			break;
8518		case DIF_OP_SETX:
8519			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8520				err += efunc(pc, "invalid integer ref %u\n",
8521				    DIF_INSTR_INTEGER(instr));
8522			}
8523			if (rd >= nregs)
8524				err += efunc(pc, "invalid register %u\n", rd);
8525			if (rd == 0)
8526				err += efunc(pc, "cannot write to %r0\n");
8527			break;
8528		case DIF_OP_SETS:
8529			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8530				err += efunc(pc, "invalid string ref %u\n",
8531				    DIF_INSTR_STRING(instr));
8532			}
8533			if (rd >= nregs)
8534				err += efunc(pc, "invalid register %u\n", rd);
8535			if (rd == 0)
8536				err += efunc(pc, "cannot write to %r0\n");
8537			break;
8538		case DIF_OP_LDGA:
8539		case DIF_OP_LDTA:
8540			if (r1 > DIF_VAR_ARRAY_MAX)
8541				err += efunc(pc, "invalid array %u\n", r1);
8542			if (r2 >= nregs)
8543				err += efunc(pc, "invalid register %u\n", r2);
8544			if (rd >= nregs)
8545				err += efunc(pc, "invalid register %u\n", rd);
8546			if (rd == 0)
8547				err += efunc(pc, "cannot write to %r0\n");
8548			break;
8549		case DIF_OP_LDGS:
8550		case DIF_OP_LDTS:
8551		case DIF_OP_LDLS:
8552		case DIF_OP_LDGAA:
8553		case DIF_OP_LDTAA:
8554			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8555				err += efunc(pc, "invalid variable %u\n", v);
8556			if (rd >= nregs)
8557				err += efunc(pc, "invalid register %u\n", rd);
8558			if (rd == 0)
8559				err += efunc(pc, "cannot write to %r0\n");
8560			break;
8561		case DIF_OP_STGS:
8562		case DIF_OP_STTS:
8563		case DIF_OP_STLS:
8564		case DIF_OP_STGAA:
8565		case DIF_OP_STTAA:
8566			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8567				err += efunc(pc, "invalid variable %u\n", v);
8568			if (rs >= nregs)
8569				err += efunc(pc, "invalid register %u\n", rd);
8570			break;
8571		case DIF_OP_CALL:
8572			if (subr > DIF_SUBR_MAX)
8573				err += efunc(pc, "invalid subr %u\n", subr);
8574			if (rd >= nregs)
8575				err += efunc(pc, "invalid register %u\n", rd);
8576			if (rd == 0)
8577				err += efunc(pc, "cannot write to %r0\n");
8578
8579			if (subr == DIF_SUBR_COPYOUT ||
8580			    subr == DIF_SUBR_COPYOUTSTR) {
8581				dp->dtdo_destructive = 1;
8582			}
8583			break;
8584		case DIF_OP_PUSHTR:
8585			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8586				err += efunc(pc, "invalid ref type %u\n", type);
8587			if (r2 >= nregs)
8588				err += efunc(pc, "invalid register %u\n", r2);
8589			if (rs >= nregs)
8590				err += efunc(pc, "invalid register %u\n", rs);
8591			break;
8592		case DIF_OP_PUSHTV:
8593			if (type != DIF_TYPE_CTF)
8594				err += efunc(pc, "invalid val type %u\n", type);
8595			if (r2 >= nregs)
8596				err += efunc(pc, "invalid register %u\n", r2);
8597			if (rs >= nregs)
8598				err += efunc(pc, "invalid register %u\n", rs);
8599			break;
8600		default:
8601			err += efunc(pc, "invalid opcode %u\n",
8602			    DIF_INSTR_OP(instr));
8603		}
8604	}
8605
8606	if (dp->dtdo_len != 0 &&
8607	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8608		err += efunc(dp->dtdo_len - 1,
8609		    "expected 'ret' as last DIF instruction\n");
8610	}
8611
8612	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8613		/*
8614		 * If we're not returning by reference, the size must be either
8615		 * 0 or the size of one of the base types.
8616		 */
8617		switch (dp->dtdo_rtype.dtdt_size) {
8618		case 0:
8619		case sizeof (uint8_t):
8620		case sizeof (uint16_t):
8621		case sizeof (uint32_t):
8622		case sizeof (uint64_t):
8623			break;
8624
8625		default:
8626			err += efunc(dp->dtdo_len - 1, "bad return size");
8627		}
8628	}
8629
8630	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8631		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8632		dtrace_diftype_t *vt, *et;
8633		uint_t id, ndx;
8634
8635		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8636		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8637		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8638			err += efunc(i, "unrecognized variable scope %d\n",
8639			    v->dtdv_scope);
8640			break;
8641		}
8642
8643		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8644		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8645			err += efunc(i, "unrecognized variable type %d\n",
8646			    v->dtdv_kind);
8647			break;
8648		}
8649
8650		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8651			err += efunc(i, "%d exceeds variable id limit\n", id);
8652			break;
8653		}
8654
8655		if (id < DIF_VAR_OTHER_UBASE)
8656			continue;
8657
8658		/*
8659		 * For user-defined variables, we need to check that this
8660		 * definition is identical to any previous definition that we
8661		 * encountered.
8662		 */
8663		ndx = id - DIF_VAR_OTHER_UBASE;
8664
8665		switch (v->dtdv_scope) {
8666		case DIFV_SCOPE_GLOBAL:
8667			if (ndx < vstate->dtvs_nglobals) {
8668				dtrace_statvar_t *svar;
8669
8670				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8671					existing = &svar->dtsv_var;
8672			}
8673
8674			break;
8675
8676		case DIFV_SCOPE_THREAD:
8677			if (ndx < vstate->dtvs_ntlocals)
8678				existing = &vstate->dtvs_tlocals[ndx];
8679			break;
8680
8681		case DIFV_SCOPE_LOCAL:
8682			if (ndx < vstate->dtvs_nlocals) {
8683				dtrace_statvar_t *svar;
8684
8685				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8686					existing = &svar->dtsv_var;
8687			}
8688
8689			break;
8690		}
8691
8692		vt = &v->dtdv_type;
8693
8694		if (vt->dtdt_flags & DIF_TF_BYREF) {
8695			if (vt->dtdt_size == 0) {
8696				err += efunc(i, "zero-sized variable\n");
8697				break;
8698			}
8699
8700			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8701			    vt->dtdt_size > dtrace_global_maxsize) {
8702				err += efunc(i, "oversized by-ref global\n");
8703				break;
8704			}
8705		}
8706
8707		if (existing == NULL || existing->dtdv_id == 0)
8708			continue;
8709
8710		ASSERT(existing->dtdv_id == v->dtdv_id);
8711		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8712
8713		if (existing->dtdv_kind != v->dtdv_kind)
8714			err += efunc(i, "%d changed variable kind\n", id);
8715
8716		et = &existing->dtdv_type;
8717
8718		if (vt->dtdt_flags != et->dtdt_flags) {
8719			err += efunc(i, "%d changed variable type flags\n", id);
8720			break;
8721		}
8722
8723		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8724			err += efunc(i, "%d changed variable type size\n", id);
8725			break;
8726		}
8727	}
8728
8729	return (err);
8730}
8731
8732#if defined(sun)
8733/*
8734 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8735 * are much more constrained than normal DIFOs.  Specifically, they may
8736 * not:
8737 *
8738 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8739 *    miscellaneous string routines
8740 * 2. Access DTrace variables other than the args[] array, and the
8741 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8742 * 3. Have thread-local variables.
8743 * 4. Have dynamic variables.
8744 */
8745static int
8746dtrace_difo_validate_helper(dtrace_difo_t *dp)
8747{
8748	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8749	int err = 0;
8750	uint_t pc;
8751
8752	for (pc = 0; pc < dp->dtdo_len; pc++) {
8753		dif_instr_t instr = dp->dtdo_buf[pc];
8754
8755		uint_t v = DIF_INSTR_VAR(instr);
8756		uint_t subr = DIF_INSTR_SUBR(instr);
8757		uint_t op = DIF_INSTR_OP(instr);
8758
8759		switch (op) {
8760		case DIF_OP_OR:
8761		case DIF_OP_XOR:
8762		case DIF_OP_AND:
8763		case DIF_OP_SLL:
8764		case DIF_OP_SRL:
8765		case DIF_OP_SRA:
8766		case DIF_OP_SUB:
8767		case DIF_OP_ADD:
8768		case DIF_OP_MUL:
8769		case DIF_OP_SDIV:
8770		case DIF_OP_UDIV:
8771		case DIF_OP_SREM:
8772		case DIF_OP_UREM:
8773		case DIF_OP_COPYS:
8774		case DIF_OP_NOT:
8775		case DIF_OP_MOV:
8776		case DIF_OP_RLDSB:
8777		case DIF_OP_RLDSH:
8778		case DIF_OP_RLDSW:
8779		case DIF_OP_RLDUB:
8780		case DIF_OP_RLDUH:
8781		case DIF_OP_RLDUW:
8782		case DIF_OP_RLDX:
8783		case DIF_OP_ULDSB:
8784		case DIF_OP_ULDSH:
8785		case DIF_OP_ULDSW:
8786		case DIF_OP_ULDUB:
8787		case DIF_OP_ULDUH:
8788		case DIF_OP_ULDUW:
8789		case DIF_OP_ULDX:
8790		case DIF_OP_STB:
8791		case DIF_OP_STH:
8792		case DIF_OP_STW:
8793		case DIF_OP_STX:
8794		case DIF_OP_ALLOCS:
8795		case DIF_OP_CMP:
8796		case DIF_OP_SCMP:
8797		case DIF_OP_TST:
8798		case DIF_OP_BA:
8799		case DIF_OP_BE:
8800		case DIF_OP_BNE:
8801		case DIF_OP_BG:
8802		case DIF_OP_BGU:
8803		case DIF_OP_BGE:
8804		case DIF_OP_BGEU:
8805		case DIF_OP_BL:
8806		case DIF_OP_BLU:
8807		case DIF_OP_BLE:
8808		case DIF_OP_BLEU:
8809		case DIF_OP_RET:
8810		case DIF_OP_NOP:
8811		case DIF_OP_POPTS:
8812		case DIF_OP_FLUSHTS:
8813		case DIF_OP_SETX:
8814		case DIF_OP_SETS:
8815		case DIF_OP_LDGA:
8816		case DIF_OP_LDLS:
8817		case DIF_OP_STGS:
8818		case DIF_OP_STLS:
8819		case DIF_OP_PUSHTR:
8820		case DIF_OP_PUSHTV:
8821			break;
8822
8823		case DIF_OP_LDGS:
8824			if (v >= DIF_VAR_OTHER_UBASE)
8825				break;
8826
8827			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8828				break;
8829
8830			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8831			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8832			    v == DIF_VAR_EXECARGS ||
8833			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8834			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8835				break;
8836
8837			err += efunc(pc, "illegal variable %u\n", v);
8838			break;
8839
8840		case DIF_OP_LDTA:
8841		case DIF_OP_LDTS:
8842		case DIF_OP_LDGAA:
8843		case DIF_OP_LDTAA:
8844			err += efunc(pc, "illegal dynamic variable load\n");
8845			break;
8846
8847		case DIF_OP_STTS:
8848		case DIF_OP_STGAA:
8849		case DIF_OP_STTAA:
8850			err += efunc(pc, "illegal dynamic variable store\n");
8851			break;
8852
8853		case DIF_OP_CALL:
8854			if (subr == DIF_SUBR_ALLOCA ||
8855			    subr == DIF_SUBR_BCOPY ||
8856			    subr == DIF_SUBR_COPYIN ||
8857			    subr == DIF_SUBR_COPYINTO ||
8858			    subr == DIF_SUBR_COPYINSTR ||
8859			    subr == DIF_SUBR_INDEX ||
8860			    subr == DIF_SUBR_INET_NTOA ||
8861			    subr == DIF_SUBR_INET_NTOA6 ||
8862			    subr == DIF_SUBR_INET_NTOP ||
8863			    subr == DIF_SUBR_LLTOSTR ||
8864			    subr == DIF_SUBR_RINDEX ||
8865			    subr == DIF_SUBR_STRCHR ||
8866			    subr == DIF_SUBR_STRJOIN ||
8867			    subr == DIF_SUBR_STRRCHR ||
8868			    subr == DIF_SUBR_STRSTR ||
8869			    subr == DIF_SUBR_HTONS ||
8870			    subr == DIF_SUBR_HTONL ||
8871			    subr == DIF_SUBR_HTONLL ||
8872			    subr == DIF_SUBR_NTOHS ||
8873			    subr == DIF_SUBR_NTOHL ||
8874			    subr == DIF_SUBR_NTOHLL ||
8875			    subr == DIF_SUBR_MEMREF ||
8876			    subr == DIF_SUBR_TYPEREF)
8877				break;
8878
8879			err += efunc(pc, "invalid subr %u\n", subr);
8880			break;
8881
8882		default:
8883			err += efunc(pc, "invalid opcode %u\n",
8884			    DIF_INSTR_OP(instr));
8885		}
8886	}
8887
8888	return (err);
8889}
8890#endif
8891
8892/*
8893 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8894 * basis; 0 if not.
8895 */
8896static int
8897dtrace_difo_cacheable(dtrace_difo_t *dp)
8898{
8899	int i;
8900
8901	if (dp == NULL)
8902		return (0);
8903
8904	for (i = 0; i < dp->dtdo_varlen; i++) {
8905		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8906
8907		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8908			continue;
8909
8910		switch (v->dtdv_id) {
8911		case DIF_VAR_CURTHREAD:
8912		case DIF_VAR_PID:
8913		case DIF_VAR_TID:
8914		case DIF_VAR_EXECARGS:
8915		case DIF_VAR_EXECNAME:
8916		case DIF_VAR_ZONENAME:
8917			break;
8918
8919		default:
8920			return (0);
8921		}
8922	}
8923
8924	/*
8925	 * This DIF object may be cacheable.  Now we need to look for any
8926	 * array loading instructions, any memory loading instructions, or
8927	 * any stores to thread-local variables.
8928	 */
8929	for (i = 0; i < dp->dtdo_len; i++) {
8930		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8931
8932		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8933		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8934		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8935		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8936			return (0);
8937	}
8938
8939	return (1);
8940}
8941
8942static void
8943dtrace_difo_hold(dtrace_difo_t *dp)
8944{
8945	int i;
8946
8947	ASSERT(MUTEX_HELD(&dtrace_lock));
8948
8949	dp->dtdo_refcnt++;
8950	ASSERT(dp->dtdo_refcnt != 0);
8951
8952	/*
8953	 * We need to check this DIF object for references to the variable
8954	 * DIF_VAR_VTIMESTAMP.
8955	 */
8956	for (i = 0; i < dp->dtdo_varlen; i++) {
8957		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8958
8959		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8960			continue;
8961
8962		if (dtrace_vtime_references++ == 0)
8963			dtrace_vtime_enable();
8964	}
8965}
8966
8967/*
8968 * This routine calculates the dynamic variable chunksize for a given DIF
8969 * object.  The calculation is not fool-proof, and can probably be tricked by
8970 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8971 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8972 * if a dynamic variable size exceeds the chunksize.
8973 */
8974static void
8975dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8976{
8977	uint64_t sval = 0;
8978	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8979	const dif_instr_t *text = dp->dtdo_buf;
8980	uint_t pc, srd = 0;
8981	uint_t ttop = 0;
8982	size_t size, ksize;
8983	uint_t id, i;
8984
8985	for (pc = 0; pc < dp->dtdo_len; pc++) {
8986		dif_instr_t instr = text[pc];
8987		uint_t op = DIF_INSTR_OP(instr);
8988		uint_t rd = DIF_INSTR_RD(instr);
8989		uint_t r1 = DIF_INSTR_R1(instr);
8990		uint_t nkeys = 0;
8991		uchar_t scope = 0;
8992
8993		dtrace_key_t *key = tupregs;
8994
8995		switch (op) {
8996		case DIF_OP_SETX:
8997			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8998			srd = rd;
8999			continue;
9000
9001		case DIF_OP_STTS:
9002			key = &tupregs[DIF_DTR_NREGS];
9003			key[0].dttk_size = 0;
9004			key[1].dttk_size = 0;
9005			nkeys = 2;
9006			scope = DIFV_SCOPE_THREAD;
9007			break;
9008
9009		case DIF_OP_STGAA:
9010		case DIF_OP_STTAA:
9011			nkeys = ttop;
9012
9013			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9014				key[nkeys++].dttk_size = 0;
9015
9016			key[nkeys++].dttk_size = 0;
9017
9018			if (op == DIF_OP_STTAA) {
9019				scope = DIFV_SCOPE_THREAD;
9020			} else {
9021				scope = DIFV_SCOPE_GLOBAL;
9022			}
9023
9024			break;
9025
9026		case DIF_OP_PUSHTR:
9027			if (ttop == DIF_DTR_NREGS)
9028				return;
9029
9030			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9031				/*
9032				 * If the register for the size of the "pushtr"
9033				 * is %r0 (or the value is 0) and the type is
9034				 * a string, we'll use the system-wide default
9035				 * string size.
9036				 */
9037				tupregs[ttop++].dttk_size =
9038				    dtrace_strsize_default;
9039			} else {
9040				if (srd == 0)
9041					return;
9042
9043				tupregs[ttop++].dttk_size = sval;
9044			}
9045
9046			break;
9047
9048		case DIF_OP_PUSHTV:
9049			if (ttop == DIF_DTR_NREGS)
9050				return;
9051
9052			tupregs[ttop++].dttk_size = 0;
9053			break;
9054
9055		case DIF_OP_FLUSHTS:
9056			ttop = 0;
9057			break;
9058
9059		case DIF_OP_POPTS:
9060			if (ttop != 0)
9061				ttop--;
9062			break;
9063		}
9064
9065		sval = 0;
9066		srd = 0;
9067
9068		if (nkeys == 0)
9069			continue;
9070
9071		/*
9072		 * We have a dynamic variable allocation; calculate its size.
9073		 */
9074		for (ksize = 0, i = 0; i < nkeys; i++)
9075			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9076
9077		size = sizeof (dtrace_dynvar_t);
9078		size += sizeof (dtrace_key_t) * (nkeys - 1);
9079		size += ksize;
9080
9081		/*
9082		 * Now we need to determine the size of the stored data.
9083		 */
9084		id = DIF_INSTR_VAR(instr);
9085
9086		for (i = 0; i < dp->dtdo_varlen; i++) {
9087			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9088
9089			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9090				size += v->dtdv_type.dtdt_size;
9091				break;
9092			}
9093		}
9094
9095		if (i == dp->dtdo_varlen)
9096			return;
9097
9098		/*
9099		 * We have the size.  If this is larger than the chunk size
9100		 * for our dynamic variable state, reset the chunk size.
9101		 */
9102		size = P2ROUNDUP(size, sizeof (uint64_t));
9103
9104		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9105			vstate->dtvs_dynvars.dtds_chunksize = size;
9106	}
9107}
9108
9109static void
9110dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9111{
9112	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9113	uint_t id;
9114
9115	ASSERT(MUTEX_HELD(&dtrace_lock));
9116	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9117
9118	for (i = 0; i < dp->dtdo_varlen; i++) {
9119		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9120		dtrace_statvar_t *svar, ***svarp = NULL;
9121		size_t dsize = 0;
9122		uint8_t scope = v->dtdv_scope;
9123		int *np = NULL;
9124
9125		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9126			continue;
9127
9128		id -= DIF_VAR_OTHER_UBASE;
9129
9130		switch (scope) {
9131		case DIFV_SCOPE_THREAD:
9132			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9133				dtrace_difv_t *tlocals;
9134
9135				if ((ntlocals = (otlocals << 1)) == 0)
9136					ntlocals = 1;
9137
9138				osz = otlocals * sizeof (dtrace_difv_t);
9139				nsz = ntlocals * sizeof (dtrace_difv_t);
9140
9141				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9142
9143				if (osz != 0) {
9144					bcopy(vstate->dtvs_tlocals,
9145					    tlocals, osz);
9146					kmem_free(vstate->dtvs_tlocals, osz);
9147				}
9148
9149				vstate->dtvs_tlocals = tlocals;
9150				vstate->dtvs_ntlocals = ntlocals;
9151			}
9152
9153			vstate->dtvs_tlocals[id] = *v;
9154			continue;
9155
9156		case DIFV_SCOPE_LOCAL:
9157			np = &vstate->dtvs_nlocals;
9158			svarp = &vstate->dtvs_locals;
9159
9160			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9161				dsize = NCPU * (v->dtdv_type.dtdt_size +
9162				    sizeof (uint64_t));
9163			else
9164				dsize = NCPU * sizeof (uint64_t);
9165
9166			break;
9167
9168		case DIFV_SCOPE_GLOBAL:
9169			np = &vstate->dtvs_nglobals;
9170			svarp = &vstate->dtvs_globals;
9171
9172			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9173				dsize = v->dtdv_type.dtdt_size +
9174				    sizeof (uint64_t);
9175
9176			break;
9177
9178		default:
9179			ASSERT(0);
9180		}
9181
9182		while (id >= (oldsvars = *np)) {
9183			dtrace_statvar_t **statics;
9184			int newsvars, oldsize, newsize;
9185
9186			if ((newsvars = (oldsvars << 1)) == 0)
9187				newsvars = 1;
9188
9189			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9190			newsize = newsvars * sizeof (dtrace_statvar_t *);
9191
9192			statics = kmem_zalloc(newsize, KM_SLEEP);
9193
9194			if (oldsize != 0) {
9195				bcopy(*svarp, statics, oldsize);
9196				kmem_free(*svarp, oldsize);
9197			}
9198
9199			*svarp = statics;
9200			*np = newsvars;
9201		}
9202
9203		if ((svar = (*svarp)[id]) == NULL) {
9204			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9205			svar->dtsv_var = *v;
9206
9207			if ((svar->dtsv_size = dsize) != 0) {
9208				svar->dtsv_data = (uint64_t)(uintptr_t)
9209				    kmem_zalloc(dsize, KM_SLEEP);
9210			}
9211
9212			(*svarp)[id] = svar;
9213		}
9214
9215		svar->dtsv_refcnt++;
9216	}
9217
9218	dtrace_difo_chunksize(dp, vstate);
9219	dtrace_difo_hold(dp);
9220}
9221
9222#if defined(sun)
9223static dtrace_difo_t *
9224dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9225{
9226	dtrace_difo_t *new;
9227	size_t sz;
9228
9229	ASSERT(dp->dtdo_buf != NULL);
9230	ASSERT(dp->dtdo_refcnt != 0);
9231
9232	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9233
9234	ASSERT(dp->dtdo_buf != NULL);
9235	sz = dp->dtdo_len * sizeof (dif_instr_t);
9236	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9237	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9238	new->dtdo_len = dp->dtdo_len;
9239
9240	if (dp->dtdo_strtab != NULL) {
9241		ASSERT(dp->dtdo_strlen != 0);
9242		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9243		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9244		new->dtdo_strlen = dp->dtdo_strlen;
9245	}
9246
9247	if (dp->dtdo_inttab != NULL) {
9248		ASSERT(dp->dtdo_intlen != 0);
9249		sz = dp->dtdo_intlen * sizeof (uint64_t);
9250		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9251		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9252		new->dtdo_intlen = dp->dtdo_intlen;
9253	}
9254
9255	if (dp->dtdo_vartab != NULL) {
9256		ASSERT(dp->dtdo_varlen != 0);
9257		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9258		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9259		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9260		new->dtdo_varlen = dp->dtdo_varlen;
9261	}
9262
9263	dtrace_difo_init(new, vstate);
9264	return (new);
9265}
9266#endif
9267
9268static void
9269dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9270{
9271	int i;
9272
9273	ASSERT(dp->dtdo_refcnt == 0);
9274
9275	for (i = 0; i < dp->dtdo_varlen; i++) {
9276		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9277		dtrace_statvar_t *svar, **svarp = NULL;
9278		uint_t id;
9279		uint8_t scope = v->dtdv_scope;
9280		int *np = NULL;
9281
9282		switch (scope) {
9283		case DIFV_SCOPE_THREAD:
9284			continue;
9285
9286		case DIFV_SCOPE_LOCAL:
9287			np = &vstate->dtvs_nlocals;
9288			svarp = vstate->dtvs_locals;
9289			break;
9290
9291		case DIFV_SCOPE_GLOBAL:
9292			np = &vstate->dtvs_nglobals;
9293			svarp = vstate->dtvs_globals;
9294			break;
9295
9296		default:
9297			ASSERT(0);
9298		}
9299
9300		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9301			continue;
9302
9303		id -= DIF_VAR_OTHER_UBASE;
9304		ASSERT(id < *np);
9305
9306		svar = svarp[id];
9307		ASSERT(svar != NULL);
9308		ASSERT(svar->dtsv_refcnt > 0);
9309
9310		if (--svar->dtsv_refcnt > 0)
9311			continue;
9312
9313		if (svar->dtsv_size != 0) {
9314			ASSERT(svar->dtsv_data != 0);
9315			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9316			    svar->dtsv_size);
9317		}
9318
9319		kmem_free(svar, sizeof (dtrace_statvar_t));
9320		svarp[id] = NULL;
9321	}
9322
9323	if (dp->dtdo_buf != NULL)
9324		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9325	if (dp->dtdo_inttab != NULL)
9326		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9327	if (dp->dtdo_strtab != NULL)
9328		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9329	if (dp->dtdo_vartab != NULL)
9330		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9331
9332	kmem_free(dp, sizeof (dtrace_difo_t));
9333}
9334
9335static void
9336dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9337{
9338	int i;
9339
9340	ASSERT(MUTEX_HELD(&dtrace_lock));
9341	ASSERT(dp->dtdo_refcnt != 0);
9342
9343	for (i = 0; i < dp->dtdo_varlen; i++) {
9344		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9345
9346		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9347			continue;
9348
9349		ASSERT(dtrace_vtime_references > 0);
9350		if (--dtrace_vtime_references == 0)
9351			dtrace_vtime_disable();
9352	}
9353
9354	if (--dp->dtdo_refcnt == 0)
9355		dtrace_difo_destroy(dp, vstate);
9356}
9357
9358/*
9359 * DTrace Format Functions
9360 */
9361static uint16_t
9362dtrace_format_add(dtrace_state_t *state, char *str)
9363{
9364	char *fmt, **new;
9365	uint16_t ndx, len = strlen(str) + 1;
9366
9367	fmt = kmem_zalloc(len, KM_SLEEP);
9368	bcopy(str, fmt, len);
9369
9370	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9371		if (state->dts_formats[ndx] == NULL) {
9372			state->dts_formats[ndx] = fmt;
9373			return (ndx + 1);
9374		}
9375	}
9376
9377	if (state->dts_nformats == USHRT_MAX) {
9378		/*
9379		 * This is only likely if a denial-of-service attack is being
9380		 * attempted.  As such, it's okay to fail silently here.
9381		 */
9382		kmem_free(fmt, len);
9383		return (0);
9384	}
9385
9386	/*
9387	 * For simplicity, we always resize the formats array to be exactly the
9388	 * number of formats.
9389	 */
9390	ndx = state->dts_nformats++;
9391	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9392
9393	if (state->dts_formats != NULL) {
9394		ASSERT(ndx != 0);
9395		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9396		kmem_free(state->dts_formats, ndx * sizeof (char *));
9397	}
9398
9399	state->dts_formats = new;
9400	state->dts_formats[ndx] = fmt;
9401
9402	return (ndx + 1);
9403}
9404
9405static void
9406dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9407{
9408	char *fmt;
9409
9410	ASSERT(state->dts_formats != NULL);
9411	ASSERT(format <= state->dts_nformats);
9412	ASSERT(state->dts_formats[format - 1] != NULL);
9413
9414	fmt = state->dts_formats[format - 1];
9415	kmem_free(fmt, strlen(fmt) + 1);
9416	state->dts_formats[format - 1] = NULL;
9417}
9418
9419static void
9420dtrace_format_destroy(dtrace_state_t *state)
9421{
9422	int i;
9423
9424	if (state->dts_nformats == 0) {
9425		ASSERT(state->dts_formats == NULL);
9426		return;
9427	}
9428
9429	ASSERT(state->dts_formats != NULL);
9430
9431	for (i = 0; i < state->dts_nformats; i++) {
9432		char *fmt = state->dts_formats[i];
9433
9434		if (fmt == NULL)
9435			continue;
9436
9437		kmem_free(fmt, strlen(fmt) + 1);
9438	}
9439
9440	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9441	state->dts_nformats = 0;
9442	state->dts_formats = NULL;
9443}
9444
9445/*
9446 * DTrace Predicate Functions
9447 */
9448static dtrace_predicate_t *
9449dtrace_predicate_create(dtrace_difo_t *dp)
9450{
9451	dtrace_predicate_t *pred;
9452
9453	ASSERT(MUTEX_HELD(&dtrace_lock));
9454	ASSERT(dp->dtdo_refcnt != 0);
9455
9456	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9457	pred->dtp_difo = dp;
9458	pred->dtp_refcnt = 1;
9459
9460	if (!dtrace_difo_cacheable(dp))
9461		return (pred);
9462
9463	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9464		/*
9465		 * This is only theoretically possible -- we have had 2^32
9466		 * cacheable predicates on this machine.  We cannot allow any
9467		 * more predicates to become cacheable:  as unlikely as it is,
9468		 * there may be a thread caching a (now stale) predicate cache
9469		 * ID. (N.B.: the temptation is being successfully resisted to
9470		 * have this cmn_err() "Holy shit -- we executed this code!")
9471		 */
9472		return (pred);
9473	}
9474
9475	pred->dtp_cacheid = dtrace_predcache_id++;
9476
9477	return (pred);
9478}
9479
9480static void
9481dtrace_predicate_hold(dtrace_predicate_t *pred)
9482{
9483	ASSERT(MUTEX_HELD(&dtrace_lock));
9484	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9485	ASSERT(pred->dtp_refcnt > 0);
9486
9487	pred->dtp_refcnt++;
9488}
9489
9490static void
9491dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9492{
9493	dtrace_difo_t *dp = pred->dtp_difo;
9494
9495	ASSERT(MUTEX_HELD(&dtrace_lock));
9496	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9497	ASSERT(pred->dtp_refcnt > 0);
9498
9499	if (--pred->dtp_refcnt == 0) {
9500		dtrace_difo_release(pred->dtp_difo, vstate);
9501		kmem_free(pred, sizeof (dtrace_predicate_t));
9502	}
9503}
9504
9505/*
9506 * DTrace Action Description Functions
9507 */
9508static dtrace_actdesc_t *
9509dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9510    uint64_t uarg, uint64_t arg)
9511{
9512	dtrace_actdesc_t *act;
9513
9514#if defined(sun)
9515	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9516	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9517#endif
9518
9519	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9520	act->dtad_kind = kind;
9521	act->dtad_ntuple = ntuple;
9522	act->dtad_uarg = uarg;
9523	act->dtad_arg = arg;
9524	act->dtad_refcnt = 1;
9525
9526	return (act);
9527}
9528
9529static void
9530dtrace_actdesc_hold(dtrace_actdesc_t *act)
9531{
9532	ASSERT(act->dtad_refcnt >= 1);
9533	act->dtad_refcnt++;
9534}
9535
9536static void
9537dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9538{
9539	dtrace_actkind_t kind = act->dtad_kind;
9540	dtrace_difo_t *dp;
9541
9542	ASSERT(act->dtad_refcnt >= 1);
9543
9544	if (--act->dtad_refcnt != 0)
9545		return;
9546
9547	if ((dp = act->dtad_difo) != NULL)
9548		dtrace_difo_release(dp, vstate);
9549
9550	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9551		char *str = (char *)(uintptr_t)act->dtad_arg;
9552
9553#if defined(sun)
9554		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9555		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9556#endif
9557
9558		if (str != NULL)
9559			kmem_free(str, strlen(str) + 1);
9560	}
9561
9562	kmem_free(act, sizeof (dtrace_actdesc_t));
9563}
9564
9565/*
9566 * DTrace ECB Functions
9567 */
9568static dtrace_ecb_t *
9569dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9570{
9571	dtrace_ecb_t *ecb;
9572	dtrace_epid_t epid;
9573
9574	ASSERT(MUTEX_HELD(&dtrace_lock));
9575
9576	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9577	ecb->dte_predicate = NULL;
9578	ecb->dte_probe = probe;
9579
9580	/*
9581	 * The default size is the size of the default action: recording
9582	 * the epid.
9583	 */
9584	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9585	ecb->dte_alignment = sizeof (dtrace_epid_t);
9586
9587	epid = state->dts_epid++;
9588
9589	if (epid - 1 >= state->dts_necbs) {
9590		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9591		int necbs = state->dts_necbs << 1;
9592
9593		ASSERT(epid == state->dts_necbs + 1);
9594
9595		if (necbs == 0) {
9596			ASSERT(oecbs == NULL);
9597			necbs = 1;
9598		}
9599
9600		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9601
9602		if (oecbs != NULL)
9603			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9604
9605		dtrace_membar_producer();
9606		state->dts_ecbs = ecbs;
9607
9608		if (oecbs != NULL) {
9609			/*
9610			 * If this state is active, we must dtrace_sync()
9611			 * before we can free the old dts_ecbs array:  we're
9612			 * coming in hot, and there may be active ring
9613			 * buffer processing (which indexes into the dts_ecbs
9614			 * array) on another CPU.
9615			 */
9616			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9617				dtrace_sync();
9618
9619			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9620		}
9621
9622		dtrace_membar_producer();
9623		state->dts_necbs = necbs;
9624	}
9625
9626	ecb->dte_state = state;
9627
9628	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9629	dtrace_membar_producer();
9630	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9631
9632	return (ecb);
9633}
9634
9635static void
9636dtrace_ecb_enable(dtrace_ecb_t *ecb)
9637{
9638	dtrace_probe_t *probe = ecb->dte_probe;
9639
9640	ASSERT(MUTEX_HELD(&cpu_lock));
9641	ASSERT(MUTEX_HELD(&dtrace_lock));
9642	ASSERT(ecb->dte_next == NULL);
9643
9644	if (probe == NULL) {
9645		/*
9646		 * This is the NULL probe -- there's nothing to do.
9647		 */
9648		return;
9649	}
9650
9651	if (probe->dtpr_ecb == NULL) {
9652		dtrace_provider_t *prov = probe->dtpr_provider;
9653
9654		/*
9655		 * We're the first ECB on this probe.
9656		 */
9657		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9658
9659		if (ecb->dte_predicate != NULL)
9660			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9661
9662		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9663		    probe->dtpr_id, probe->dtpr_arg);
9664	} else {
9665		/*
9666		 * This probe is already active.  Swing the last pointer to
9667		 * point to the new ECB, and issue a dtrace_sync() to assure
9668		 * that all CPUs have seen the change.
9669		 */
9670		ASSERT(probe->dtpr_ecb_last != NULL);
9671		probe->dtpr_ecb_last->dte_next = ecb;
9672		probe->dtpr_ecb_last = ecb;
9673		probe->dtpr_predcache = 0;
9674
9675		dtrace_sync();
9676	}
9677}
9678
9679static void
9680dtrace_ecb_resize(dtrace_ecb_t *ecb)
9681{
9682	uint32_t maxalign = sizeof (dtrace_epid_t);
9683	uint32_t align = sizeof (uint8_t), offs, diff;
9684	dtrace_action_t *act;
9685	int wastuple = 0;
9686	uint32_t aggbase = UINT32_MAX;
9687	dtrace_state_t *state = ecb->dte_state;
9688
9689	/*
9690	 * If we record anything, we always record the epid.  (And we always
9691	 * record it first.)
9692	 */
9693	offs = sizeof (dtrace_epid_t);
9694	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9695
9696	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9697		dtrace_recdesc_t *rec = &act->dta_rec;
9698
9699		if ((align = rec->dtrd_alignment) > maxalign)
9700			maxalign = align;
9701
9702		if (!wastuple && act->dta_intuple) {
9703			/*
9704			 * This is the first record in a tuple.  Align the
9705			 * offset to be at offset 4 in an 8-byte aligned
9706			 * block.
9707			 */
9708			diff = offs + sizeof (dtrace_aggid_t);
9709
9710			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9711				offs += sizeof (uint64_t) - diff;
9712
9713			aggbase = offs - sizeof (dtrace_aggid_t);
9714			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9715		}
9716
9717		/*LINTED*/
9718		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9719			/*
9720			 * The current offset is not properly aligned; align it.
9721			 */
9722			offs += align - diff;
9723		}
9724
9725		rec->dtrd_offset = offs;
9726
9727		if (offs + rec->dtrd_size > ecb->dte_needed) {
9728			ecb->dte_needed = offs + rec->dtrd_size;
9729
9730			if (ecb->dte_needed > state->dts_needed)
9731				state->dts_needed = ecb->dte_needed;
9732		}
9733
9734		if (DTRACEACT_ISAGG(act->dta_kind)) {
9735			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9736			dtrace_action_t *first = agg->dtag_first, *prev;
9737
9738			ASSERT(rec->dtrd_size != 0 && first != NULL);
9739			ASSERT(wastuple);
9740			ASSERT(aggbase != UINT32_MAX);
9741
9742			agg->dtag_base = aggbase;
9743
9744			while ((prev = first->dta_prev) != NULL &&
9745			    DTRACEACT_ISAGG(prev->dta_kind)) {
9746				agg = (dtrace_aggregation_t *)prev;
9747				first = agg->dtag_first;
9748			}
9749
9750			if (prev != NULL) {
9751				offs = prev->dta_rec.dtrd_offset +
9752				    prev->dta_rec.dtrd_size;
9753			} else {
9754				offs = sizeof (dtrace_epid_t);
9755			}
9756			wastuple = 0;
9757		} else {
9758			if (!act->dta_intuple)
9759				ecb->dte_size = offs + rec->dtrd_size;
9760
9761			offs += rec->dtrd_size;
9762		}
9763
9764		wastuple = act->dta_intuple;
9765	}
9766
9767	if ((act = ecb->dte_action) != NULL &&
9768	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9769	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9770		/*
9771		 * If the size is still sizeof (dtrace_epid_t), then all
9772		 * actions store no data; set the size to 0.
9773		 */
9774		ecb->dte_alignment = maxalign;
9775		ecb->dte_size = 0;
9776
9777		/*
9778		 * If the needed space is still sizeof (dtrace_epid_t), then
9779		 * all actions need no additional space; set the needed
9780		 * size to 0.
9781		 */
9782		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9783			ecb->dte_needed = 0;
9784
9785		return;
9786	}
9787
9788	/*
9789	 * Set our alignment, and make sure that the dte_size and dte_needed
9790	 * are aligned to the size of an EPID.
9791	 */
9792	ecb->dte_alignment = maxalign;
9793	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9794	    ~(sizeof (dtrace_epid_t) - 1);
9795	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9796	    ~(sizeof (dtrace_epid_t) - 1);
9797	ASSERT(ecb->dte_size <= ecb->dte_needed);
9798}
9799
9800static dtrace_action_t *
9801dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9802{
9803	dtrace_aggregation_t *agg;
9804	size_t size = sizeof (uint64_t);
9805	int ntuple = desc->dtad_ntuple;
9806	dtrace_action_t *act;
9807	dtrace_recdesc_t *frec;
9808	dtrace_aggid_t aggid;
9809	dtrace_state_t *state = ecb->dte_state;
9810
9811	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9812	agg->dtag_ecb = ecb;
9813
9814	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9815
9816	switch (desc->dtad_kind) {
9817	case DTRACEAGG_MIN:
9818		agg->dtag_initial = INT64_MAX;
9819		agg->dtag_aggregate = dtrace_aggregate_min;
9820		break;
9821
9822	case DTRACEAGG_MAX:
9823		agg->dtag_initial = INT64_MIN;
9824		agg->dtag_aggregate = dtrace_aggregate_max;
9825		break;
9826
9827	case DTRACEAGG_COUNT:
9828		agg->dtag_aggregate = dtrace_aggregate_count;
9829		break;
9830
9831	case DTRACEAGG_QUANTIZE:
9832		agg->dtag_aggregate = dtrace_aggregate_quantize;
9833		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9834		    sizeof (uint64_t);
9835		break;
9836
9837	case DTRACEAGG_LQUANTIZE: {
9838		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9839		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9840
9841		agg->dtag_initial = desc->dtad_arg;
9842		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9843
9844		if (step == 0 || levels == 0)
9845			goto err;
9846
9847		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9848		break;
9849	}
9850
9851	case DTRACEAGG_AVG:
9852		agg->dtag_aggregate = dtrace_aggregate_avg;
9853		size = sizeof (uint64_t) * 2;
9854		break;
9855
9856	case DTRACEAGG_STDDEV:
9857		agg->dtag_aggregate = dtrace_aggregate_stddev;
9858		size = sizeof (uint64_t) * 4;
9859		break;
9860
9861	case DTRACEAGG_SUM:
9862		agg->dtag_aggregate = dtrace_aggregate_sum;
9863		break;
9864
9865	default:
9866		goto err;
9867	}
9868
9869	agg->dtag_action.dta_rec.dtrd_size = size;
9870
9871	if (ntuple == 0)
9872		goto err;
9873
9874	/*
9875	 * We must make sure that we have enough actions for the n-tuple.
9876	 */
9877	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9878		if (DTRACEACT_ISAGG(act->dta_kind))
9879			break;
9880
9881		if (--ntuple == 0) {
9882			/*
9883			 * This is the action with which our n-tuple begins.
9884			 */
9885			agg->dtag_first = act;
9886			goto success;
9887		}
9888	}
9889
9890	/*
9891	 * This n-tuple is short by ntuple elements.  Return failure.
9892	 */
9893	ASSERT(ntuple != 0);
9894err:
9895	kmem_free(agg, sizeof (dtrace_aggregation_t));
9896	return (NULL);
9897
9898success:
9899	/*
9900	 * If the last action in the tuple has a size of zero, it's actually
9901	 * an expression argument for the aggregating action.
9902	 */
9903	ASSERT(ecb->dte_action_last != NULL);
9904	act = ecb->dte_action_last;
9905
9906	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9907		ASSERT(act->dta_difo != NULL);
9908
9909		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9910			agg->dtag_hasarg = 1;
9911	}
9912
9913	/*
9914	 * We need to allocate an id for this aggregation.
9915	 */
9916#if defined(sun)
9917	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9918	    VM_BESTFIT | VM_SLEEP);
9919#else
9920	aggid = alloc_unr(state->dts_aggid_arena);
9921#endif
9922
9923	if (aggid - 1 >= state->dts_naggregations) {
9924		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9925		dtrace_aggregation_t **aggs;
9926		int naggs = state->dts_naggregations << 1;
9927		int onaggs = state->dts_naggregations;
9928
9929		ASSERT(aggid == state->dts_naggregations + 1);
9930
9931		if (naggs == 0) {
9932			ASSERT(oaggs == NULL);
9933			naggs = 1;
9934		}
9935
9936		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9937
9938		if (oaggs != NULL) {
9939			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9940			kmem_free(oaggs, onaggs * sizeof (*aggs));
9941		}
9942
9943		state->dts_aggregations = aggs;
9944		state->dts_naggregations = naggs;
9945	}
9946
9947	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9948	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9949
9950	frec = &agg->dtag_first->dta_rec;
9951	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9952		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9953
9954	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9955		ASSERT(!act->dta_intuple);
9956		act->dta_intuple = 1;
9957	}
9958
9959	return (&agg->dtag_action);
9960}
9961
9962static void
9963dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9964{
9965	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9966	dtrace_state_t *state = ecb->dte_state;
9967	dtrace_aggid_t aggid = agg->dtag_id;
9968
9969	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9970#if defined(sun)
9971	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9972#else
9973	free_unr(state->dts_aggid_arena, aggid);
9974#endif
9975
9976	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9977	state->dts_aggregations[aggid - 1] = NULL;
9978
9979	kmem_free(agg, sizeof (dtrace_aggregation_t));
9980}
9981
9982static int
9983dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9984{
9985	dtrace_action_t *action, *last;
9986	dtrace_difo_t *dp = desc->dtad_difo;
9987	uint32_t size = 0, align = sizeof (uint8_t), mask;
9988	uint16_t format = 0;
9989	dtrace_recdesc_t *rec;
9990	dtrace_state_t *state = ecb->dte_state;
9991	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
9992	uint64_t arg = desc->dtad_arg;
9993
9994	ASSERT(MUTEX_HELD(&dtrace_lock));
9995	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9996
9997	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9998		/*
9999		 * If this is an aggregating action, there must be neither
10000		 * a speculate nor a commit on the action chain.
10001		 */
10002		dtrace_action_t *act;
10003
10004		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10005			if (act->dta_kind == DTRACEACT_COMMIT)
10006				return (EINVAL);
10007
10008			if (act->dta_kind == DTRACEACT_SPECULATE)
10009				return (EINVAL);
10010		}
10011
10012		action = dtrace_ecb_aggregation_create(ecb, desc);
10013
10014		if (action == NULL)
10015			return (EINVAL);
10016	} else {
10017		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10018		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10019		    dp != NULL && dp->dtdo_destructive)) {
10020			state->dts_destructive = 1;
10021		}
10022
10023		switch (desc->dtad_kind) {
10024		case DTRACEACT_PRINTF:
10025		case DTRACEACT_PRINTA:
10026		case DTRACEACT_SYSTEM:
10027		case DTRACEACT_FREOPEN:
10028			/*
10029			 * We know that our arg is a string -- turn it into a
10030			 * format.
10031			 */
10032			if (arg == 0) {
10033				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10034				format = 0;
10035			} else {
10036				ASSERT(arg != 0);
10037#if defined(sun)
10038				ASSERT(arg > KERNELBASE);
10039#endif
10040				format = dtrace_format_add(state,
10041				    (char *)(uintptr_t)arg);
10042			}
10043
10044			/*FALLTHROUGH*/
10045		case DTRACEACT_LIBACT:
10046		case DTRACEACT_DIFEXPR:
10047			if (dp == NULL)
10048				return (EINVAL);
10049
10050			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10051				break;
10052
10053			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10054				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10055					return (EINVAL);
10056
10057				size = opt[DTRACEOPT_STRSIZE];
10058			}
10059
10060			break;
10061
10062		case DTRACEACT_STACK:
10063			if ((nframes = arg) == 0) {
10064				nframes = opt[DTRACEOPT_STACKFRAMES];
10065				ASSERT(nframes > 0);
10066				arg = nframes;
10067			}
10068
10069			size = nframes * sizeof (pc_t);
10070			break;
10071
10072		case DTRACEACT_JSTACK:
10073			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10074				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10075
10076			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10077				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10078
10079			arg = DTRACE_USTACK_ARG(nframes, strsize);
10080
10081			/*FALLTHROUGH*/
10082		case DTRACEACT_USTACK:
10083			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10084			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10085				strsize = DTRACE_USTACK_STRSIZE(arg);
10086				nframes = opt[DTRACEOPT_USTACKFRAMES];
10087				ASSERT(nframes > 0);
10088				arg = DTRACE_USTACK_ARG(nframes, strsize);
10089			}
10090
10091			/*
10092			 * Save a slot for the pid.
10093			 */
10094			size = (nframes + 1) * sizeof (uint64_t);
10095			size += DTRACE_USTACK_STRSIZE(arg);
10096			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10097
10098			break;
10099
10100		case DTRACEACT_SYM:
10101		case DTRACEACT_MOD:
10102			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10103			    sizeof (uint64_t)) ||
10104			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10105				return (EINVAL);
10106			break;
10107
10108		case DTRACEACT_USYM:
10109		case DTRACEACT_UMOD:
10110		case DTRACEACT_UADDR:
10111			if (dp == NULL ||
10112			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10113			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10114				return (EINVAL);
10115
10116			/*
10117			 * We have a slot for the pid, plus a slot for the
10118			 * argument.  To keep things simple (aligned with
10119			 * bitness-neutral sizing), we store each as a 64-bit
10120			 * quantity.
10121			 */
10122			size = 2 * sizeof (uint64_t);
10123			break;
10124
10125		case DTRACEACT_STOP:
10126		case DTRACEACT_BREAKPOINT:
10127		case DTRACEACT_PANIC:
10128			break;
10129
10130		case DTRACEACT_CHILL:
10131		case DTRACEACT_DISCARD:
10132		case DTRACEACT_RAISE:
10133			if (dp == NULL)
10134				return (EINVAL);
10135			break;
10136
10137		case DTRACEACT_EXIT:
10138			if (dp == NULL ||
10139			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10140			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10141				return (EINVAL);
10142			break;
10143
10144		case DTRACEACT_SPECULATE:
10145			if (ecb->dte_size > sizeof (dtrace_epid_t))
10146				return (EINVAL);
10147
10148			if (dp == NULL)
10149				return (EINVAL);
10150
10151			state->dts_speculates = 1;
10152			break;
10153
10154		case DTRACEACT_PRINTM:
10155		    	size = dp->dtdo_rtype.dtdt_size;
10156			break;
10157
10158		case DTRACEACT_PRINTT:
10159		    	size = dp->dtdo_rtype.dtdt_size;
10160			break;
10161
10162		case DTRACEACT_COMMIT: {
10163			dtrace_action_t *act = ecb->dte_action;
10164
10165			for (; act != NULL; act = act->dta_next) {
10166				if (act->dta_kind == DTRACEACT_COMMIT)
10167					return (EINVAL);
10168			}
10169
10170			if (dp == NULL)
10171				return (EINVAL);
10172			break;
10173		}
10174
10175		default:
10176			return (EINVAL);
10177		}
10178
10179		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10180			/*
10181			 * If this is a data-storing action or a speculate,
10182			 * we must be sure that there isn't a commit on the
10183			 * action chain.
10184			 */
10185			dtrace_action_t *act = ecb->dte_action;
10186
10187			for (; act != NULL; act = act->dta_next) {
10188				if (act->dta_kind == DTRACEACT_COMMIT)
10189					return (EINVAL);
10190			}
10191		}
10192
10193		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10194		action->dta_rec.dtrd_size = size;
10195	}
10196
10197	action->dta_refcnt = 1;
10198	rec = &action->dta_rec;
10199	size = rec->dtrd_size;
10200
10201	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10202		if (!(size & mask)) {
10203			align = mask + 1;
10204			break;
10205		}
10206	}
10207
10208	action->dta_kind = desc->dtad_kind;
10209
10210	if ((action->dta_difo = dp) != NULL)
10211		dtrace_difo_hold(dp);
10212
10213	rec->dtrd_action = action->dta_kind;
10214	rec->dtrd_arg = arg;
10215	rec->dtrd_uarg = desc->dtad_uarg;
10216	rec->dtrd_alignment = (uint16_t)align;
10217	rec->dtrd_format = format;
10218
10219	if ((last = ecb->dte_action_last) != NULL) {
10220		ASSERT(ecb->dte_action != NULL);
10221		action->dta_prev = last;
10222		last->dta_next = action;
10223	} else {
10224		ASSERT(ecb->dte_action == NULL);
10225		ecb->dte_action = action;
10226	}
10227
10228	ecb->dte_action_last = action;
10229
10230	return (0);
10231}
10232
10233static void
10234dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10235{
10236	dtrace_action_t *act = ecb->dte_action, *next;
10237	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10238	dtrace_difo_t *dp;
10239	uint16_t format;
10240
10241	if (act != NULL && act->dta_refcnt > 1) {
10242		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10243		act->dta_refcnt--;
10244	} else {
10245		for (; act != NULL; act = next) {
10246			next = act->dta_next;
10247			ASSERT(next != NULL || act == ecb->dte_action_last);
10248			ASSERT(act->dta_refcnt == 1);
10249
10250			if ((format = act->dta_rec.dtrd_format) != 0)
10251				dtrace_format_remove(ecb->dte_state, format);
10252
10253			if ((dp = act->dta_difo) != NULL)
10254				dtrace_difo_release(dp, vstate);
10255
10256			if (DTRACEACT_ISAGG(act->dta_kind)) {
10257				dtrace_ecb_aggregation_destroy(ecb, act);
10258			} else {
10259				kmem_free(act, sizeof (dtrace_action_t));
10260			}
10261		}
10262	}
10263
10264	ecb->dte_action = NULL;
10265	ecb->dte_action_last = NULL;
10266	ecb->dte_size = sizeof (dtrace_epid_t);
10267}
10268
10269static void
10270dtrace_ecb_disable(dtrace_ecb_t *ecb)
10271{
10272	/*
10273	 * We disable the ECB by removing it from its probe.
10274	 */
10275	dtrace_ecb_t *pecb, *prev = NULL;
10276	dtrace_probe_t *probe = ecb->dte_probe;
10277
10278	ASSERT(MUTEX_HELD(&dtrace_lock));
10279
10280	if (probe == NULL) {
10281		/*
10282		 * This is the NULL probe; there is nothing to disable.
10283		 */
10284		return;
10285	}
10286
10287	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10288		if (pecb == ecb)
10289			break;
10290		prev = pecb;
10291	}
10292
10293	ASSERT(pecb != NULL);
10294
10295	if (prev == NULL) {
10296		probe->dtpr_ecb = ecb->dte_next;
10297	} else {
10298		prev->dte_next = ecb->dte_next;
10299	}
10300
10301	if (ecb == probe->dtpr_ecb_last) {
10302		ASSERT(ecb->dte_next == NULL);
10303		probe->dtpr_ecb_last = prev;
10304	}
10305
10306	/*
10307	 * The ECB has been disconnected from the probe; now sync to assure
10308	 * that all CPUs have seen the change before returning.
10309	 */
10310	dtrace_sync();
10311
10312	if (probe->dtpr_ecb == NULL) {
10313		/*
10314		 * That was the last ECB on the probe; clear the predicate
10315		 * cache ID for the probe, disable it and sync one more time
10316		 * to assure that we'll never hit it again.
10317		 */
10318		dtrace_provider_t *prov = probe->dtpr_provider;
10319
10320		ASSERT(ecb->dte_next == NULL);
10321		ASSERT(probe->dtpr_ecb_last == NULL);
10322		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10323		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10324		    probe->dtpr_id, probe->dtpr_arg);
10325		dtrace_sync();
10326	} else {
10327		/*
10328		 * There is at least one ECB remaining on the probe.  If there
10329		 * is _exactly_ one, set the probe's predicate cache ID to be
10330		 * the predicate cache ID of the remaining ECB.
10331		 */
10332		ASSERT(probe->dtpr_ecb_last != NULL);
10333		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10334
10335		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10336			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10337
10338			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10339
10340			if (p != NULL)
10341				probe->dtpr_predcache = p->dtp_cacheid;
10342		}
10343
10344		ecb->dte_next = NULL;
10345	}
10346}
10347
10348static void
10349dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10350{
10351	dtrace_state_t *state = ecb->dte_state;
10352	dtrace_vstate_t *vstate = &state->dts_vstate;
10353	dtrace_predicate_t *pred;
10354	dtrace_epid_t epid = ecb->dte_epid;
10355
10356	ASSERT(MUTEX_HELD(&dtrace_lock));
10357	ASSERT(ecb->dte_next == NULL);
10358	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10359
10360	if ((pred = ecb->dte_predicate) != NULL)
10361		dtrace_predicate_release(pred, vstate);
10362
10363	dtrace_ecb_action_remove(ecb);
10364
10365	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10366	state->dts_ecbs[epid - 1] = NULL;
10367
10368	kmem_free(ecb, sizeof (dtrace_ecb_t));
10369}
10370
10371static dtrace_ecb_t *
10372dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10373    dtrace_enabling_t *enab)
10374{
10375	dtrace_ecb_t *ecb;
10376	dtrace_predicate_t *pred;
10377	dtrace_actdesc_t *act;
10378	dtrace_provider_t *prov;
10379	dtrace_ecbdesc_t *desc = enab->dten_current;
10380
10381	ASSERT(MUTEX_HELD(&dtrace_lock));
10382	ASSERT(state != NULL);
10383
10384	ecb = dtrace_ecb_add(state, probe);
10385	ecb->dte_uarg = desc->dted_uarg;
10386
10387	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10388		dtrace_predicate_hold(pred);
10389		ecb->dte_predicate = pred;
10390	}
10391
10392	if (probe != NULL) {
10393		/*
10394		 * If the provider shows more leg than the consumer is old
10395		 * enough to see, we need to enable the appropriate implicit
10396		 * predicate bits to prevent the ecb from activating at
10397		 * revealing times.
10398		 *
10399		 * Providers specifying DTRACE_PRIV_USER at register time
10400		 * are stating that they need the /proc-style privilege
10401		 * model to be enforced, and this is what DTRACE_COND_OWNER
10402		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10403		 */
10404		prov = probe->dtpr_provider;
10405		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10406		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10407			ecb->dte_cond |= DTRACE_COND_OWNER;
10408
10409		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10410		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10411			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10412
10413		/*
10414		 * If the provider shows us kernel innards and the user
10415		 * is lacking sufficient privilege, enable the
10416		 * DTRACE_COND_USERMODE implicit predicate.
10417		 */
10418		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10419		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10420			ecb->dte_cond |= DTRACE_COND_USERMODE;
10421	}
10422
10423	if (dtrace_ecb_create_cache != NULL) {
10424		/*
10425		 * If we have a cached ecb, we'll use its action list instead
10426		 * of creating our own (saving both time and space).
10427		 */
10428		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10429		dtrace_action_t *act = cached->dte_action;
10430
10431		if (act != NULL) {
10432			ASSERT(act->dta_refcnt > 0);
10433			act->dta_refcnt++;
10434			ecb->dte_action = act;
10435			ecb->dte_action_last = cached->dte_action_last;
10436			ecb->dte_needed = cached->dte_needed;
10437			ecb->dte_size = cached->dte_size;
10438			ecb->dte_alignment = cached->dte_alignment;
10439		}
10440
10441		return (ecb);
10442	}
10443
10444	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10445		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10446			dtrace_ecb_destroy(ecb);
10447			return (NULL);
10448		}
10449	}
10450
10451	dtrace_ecb_resize(ecb);
10452
10453	return (dtrace_ecb_create_cache = ecb);
10454}
10455
10456static int
10457dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10458{
10459	dtrace_ecb_t *ecb;
10460	dtrace_enabling_t *enab = arg;
10461	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10462
10463	ASSERT(state != NULL);
10464
10465	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10466		/*
10467		 * This probe was created in a generation for which this
10468		 * enabling has previously created ECBs; we don't want to
10469		 * enable it again, so just kick out.
10470		 */
10471		return (DTRACE_MATCH_NEXT);
10472	}
10473
10474	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10475		return (DTRACE_MATCH_DONE);
10476
10477	dtrace_ecb_enable(ecb);
10478	return (DTRACE_MATCH_NEXT);
10479}
10480
10481static dtrace_ecb_t *
10482dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10483{
10484	dtrace_ecb_t *ecb;
10485
10486	ASSERT(MUTEX_HELD(&dtrace_lock));
10487
10488	if (id == 0 || id > state->dts_necbs)
10489		return (NULL);
10490
10491	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10492	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10493
10494	return (state->dts_ecbs[id - 1]);
10495}
10496
10497static dtrace_aggregation_t *
10498dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10499{
10500	dtrace_aggregation_t *agg;
10501
10502	ASSERT(MUTEX_HELD(&dtrace_lock));
10503
10504	if (id == 0 || id > state->dts_naggregations)
10505		return (NULL);
10506
10507	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10508	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10509	    agg->dtag_id == id);
10510
10511	return (state->dts_aggregations[id - 1]);
10512}
10513
10514/*
10515 * DTrace Buffer Functions
10516 *
10517 * The following functions manipulate DTrace buffers.  Most of these functions
10518 * are called in the context of establishing or processing consumer state;
10519 * exceptions are explicitly noted.
10520 */
10521
10522/*
10523 * Note:  called from cross call context.  This function switches the two
10524 * buffers on a given CPU.  The atomicity of this operation is assured by
10525 * disabling interrupts while the actual switch takes place; the disabling of
10526 * interrupts serializes the execution with any execution of dtrace_probe() on
10527 * the same CPU.
10528 */
10529static void
10530dtrace_buffer_switch(dtrace_buffer_t *buf)
10531{
10532	caddr_t tomax = buf->dtb_tomax;
10533	caddr_t xamot = buf->dtb_xamot;
10534	dtrace_icookie_t cookie;
10535
10536	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10537	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10538
10539	cookie = dtrace_interrupt_disable();
10540	buf->dtb_tomax = xamot;
10541	buf->dtb_xamot = tomax;
10542	buf->dtb_xamot_drops = buf->dtb_drops;
10543	buf->dtb_xamot_offset = buf->dtb_offset;
10544	buf->dtb_xamot_errors = buf->dtb_errors;
10545	buf->dtb_xamot_flags = buf->dtb_flags;
10546	buf->dtb_offset = 0;
10547	buf->dtb_drops = 0;
10548	buf->dtb_errors = 0;
10549	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10550	dtrace_interrupt_enable(cookie);
10551}
10552
10553/*
10554 * Note:  called from cross call context.  This function activates a buffer
10555 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10556 * is guaranteed by the disabling of interrupts.
10557 */
10558static void
10559dtrace_buffer_activate(dtrace_state_t *state)
10560{
10561	dtrace_buffer_t *buf;
10562	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10563
10564	buf = &state->dts_buffer[curcpu];
10565
10566	if (buf->dtb_tomax != NULL) {
10567		/*
10568		 * We might like to assert that the buffer is marked inactive,
10569		 * but this isn't necessarily true:  the buffer for the CPU
10570		 * that processes the BEGIN probe has its buffer activated
10571		 * manually.  In this case, we take the (harmless) action
10572		 * re-clearing the bit INACTIVE bit.
10573		 */
10574		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10575	}
10576
10577	dtrace_interrupt_enable(cookie);
10578}
10579
10580static int
10581dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10582    processorid_t cpu)
10583{
10584#if defined(sun)
10585	cpu_t *cp;
10586#else
10587	struct pcpu *cp;
10588#endif
10589	dtrace_buffer_t *buf;
10590
10591#if defined(sun)
10592	ASSERT(MUTEX_HELD(&cpu_lock));
10593	ASSERT(MUTEX_HELD(&dtrace_lock));
10594
10595	if (size > dtrace_nonroot_maxsize &&
10596	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10597		return (EFBIG);
10598
10599	cp = cpu_list;
10600
10601	do {
10602		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10603			continue;
10604
10605		buf = &bufs[cp->cpu_id];
10606
10607		/*
10608		 * If there is already a buffer allocated for this CPU, it
10609		 * is only possible that this is a DR event.  In this case,
10610		 */
10611		if (buf->dtb_tomax != NULL) {
10612			ASSERT(buf->dtb_size == size);
10613			continue;
10614		}
10615
10616		ASSERT(buf->dtb_xamot == NULL);
10617
10618		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10619			goto err;
10620
10621		buf->dtb_size = size;
10622		buf->dtb_flags = flags;
10623		buf->dtb_offset = 0;
10624		buf->dtb_drops = 0;
10625
10626		if (flags & DTRACEBUF_NOSWITCH)
10627			continue;
10628
10629		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10630			goto err;
10631	} while ((cp = cp->cpu_next) != cpu_list);
10632
10633	return (0);
10634
10635err:
10636	cp = cpu_list;
10637
10638	do {
10639		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10640			continue;
10641
10642		buf = &bufs[cp->cpu_id];
10643
10644		if (buf->dtb_xamot != NULL) {
10645			ASSERT(buf->dtb_tomax != NULL);
10646			ASSERT(buf->dtb_size == size);
10647			kmem_free(buf->dtb_xamot, size);
10648		}
10649
10650		if (buf->dtb_tomax != NULL) {
10651			ASSERT(buf->dtb_size == size);
10652			kmem_free(buf->dtb_tomax, size);
10653		}
10654
10655		buf->dtb_tomax = NULL;
10656		buf->dtb_xamot = NULL;
10657		buf->dtb_size = 0;
10658	} while ((cp = cp->cpu_next) != cpu_list);
10659
10660	return (ENOMEM);
10661#else
10662	int i;
10663
10664#if defined(__amd64__)
10665	/*
10666	 * FreeBSD isn't good at limiting the amount of memory we
10667	 * ask to malloc, so let's place a limit here before trying
10668	 * to do something that might well end in tears at bedtime.
10669	 */
10670	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10671		return(ENOMEM);
10672#endif
10673
10674	ASSERT(MUTEX_HELD(&dtrace_lock));
10675	for (i = 0; i <= mp_maxid; i++) {
10676		if ((cp = pcpu_find(i)) == NULL)
10677			continue;
10678
10679		if (cpu != DTRACE_CPUALL && cpu != i)
10680			continue;
10681
10682		buf = &bufs[i];
10683
10684		/*
10685		 * If there is already a buffer allocated for this CPU, it
10686		 * is only possible that this is a DR event.  In this case,
10687		 * the buffer size must match our specified size.
10688		 */
10689		if (buf->dtb_tomax != NULL) {
10690			ASSERT(buf->dtb_size == size);
10691			continue;
10692		}
10693
10694		ASSERT(buf->dtb_xamot == NULL);
10695
10696		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10697			goto err;
10698
10699		buf->dtb_size = size;
10700		buf->dtb_flags = flags;
10701		buf->dtb_offset = 0;
10702		buf->dtb_drops = 0;
10703
10704		if (flags & DTRACEBUF_NOSWITCH)
10705			continue;
10706
10707		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10708			goto err;
10709	}
10710
10711	return (0);
10712
10713err:
10714	/*
10715	 * Error allocating memory, so free the buffers that were
10716	 * allocated before the failed allocation.
10717	 */
10718	for (i = 0; i <= mp_maxid; i++) {
10719		if ((cp = pcpu_find(i)) == NULL)
10720			continue;
10721
10722		if (cpu != DTRACE_CPUALL && cpu != i)
10723			continue;
10724
10725		buf = &bufs[i];
10726
10727		if (buf->dtb_xamot != NULL) {
10728			ASSERT(buf->dtb_tomax != NULL);
10729			ASSERT(buf->dtb_size == size);
10730			kmem_free(buf->dtb_xamot, size);
10731		}
10732
10733		if (buf->dtb_tomax != NULL) {
10734			ASSERT(buf->dtb_size == size);
10735			kmem_free(buf->dtb_tomax, size);
10736		}
10737
10738		buf->dtb_tomax = NULL;
10739		buf->dtb_xamot = NULL;
10740		buf->dtb_size = 0;
10741
10742	}
10743
10744	return (ENOMEM);
10745#endif
10746}
10747
10748/*
10749 * Note:  called from probe context.  This function just increments the drop
10750 * count on a buffer.  It has been made a function to allow for the
10751 * possibility of understanding the source of mysterious drop counts.  (A
10752 * problem for which one may be particularly disappointed that DTrace cannot
10753 * be used to understand DTrace.)
10754 */
10755static void
10756dtrace_buffer_drop(dtrace_buffer_t *buf)
10757{
10758	buf->dtb_drops++;
10759}
10760
10761/*
10762 * Note:  called from probe context.  This function is called to reserve space
10763 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10764 * mstate.  Returns the new offset in the buffer, or a negative value if an
10765 * error has occurred.
10766 */
10767static intptr_t
10768dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10769    dtrace_state_t *state, dtrace_mstate_t *mstate)
10770{
10771	intptr_t offs = buf->dtb_offset, soffs;
10772	intptr_t woffs;
10773	caddr_t tomax;
10774	size_t total;
10775
10776	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10777		return (-1);
10778
10779	if ((tomax = buf->dtb_tomax) == NULL) {
10780		dtrace_buffer_drop(buf);
10781		return (-1);
10782	}
10783
10784	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10785		while (offs & (align - 1)) {
10786			/*
10787			 * Assert that our alignment is off by a number which
10788			 * is itself sizeof (uint32_t) aligned.
10789			 */
10790			ASSERT(!((align - (offs & (align - 1))) &
10791			    (sizeof (uint32_t) - 1)));
10792			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10793			offs += sizeof (uint32_t);
10794		}
10795
10796		if ((soffs = offs + needed) > buf->dtb_size) {
10797			dtrace_buffer_drop(buf);
10798			return (-1);
10799		}
10800
10801		if (mstate == NULL)
10802			return (offs);
10803
10804		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10805		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10806		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10807
10808		return (offs);
10809	}
10810
10811	if (buf->dtb_flags & DTRACEBUF_FILL) {
10812		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10813		    (buf->dtb_flags & DTRACEBUF_FULL))
10814			return (-1);
10815		goto out;
10816	}
10817
10818	total = needed + (offs & (align - 1));
10819
10820	/*
10821	 * For a ring buffer, life is quite a bit more complicated.  Before
10822	 * we can store any padding, we need to adjust our wrapping offset.
10823	 * (If we've never before wrapped or we're not about to, no adjustment
10824	 * is required.)
10825	 */
10826	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10827	    offs + total > buf->dtb_size) {
10828		woffs = buf->dtb_xamot_offset;
10829
10830		if (offs + total > buf->dtb_size) {
10831			/*
10832			 * We can't fit in the end of the buffer.  First, a
10833			 * sanity check that we can fit in the buffer at all.
10834			 */
10835			if (total > buf->dtb_size) {
10836				dtrace_buffer_drop(buf);
10837				return (-1);
10838			}
10839
10840			/*
10841			 * We're going to be storing at the top of the buffer,
10842			 * so now we need to deal with the wrapped offset.  We
10843			 * only reset our wrapped offset to 0 if it is
10844			 * currently greater than the current offset.  If it
10845			 * is less than the current offset, it is because a
10846			 * previous allocation induced a wrap -- but the
10847			 * allocation didn't subsequently take the space due
10848			 * to an error or false predicate evaluation.  In this
10849			 * case, we'll just leave the wrapped offset alone: if
10850			 * the wrapped offset hasn't been advanced far enough
10851			 * for this allocation, it will be adjusted in the
10852			 * lower loop.
10853			 */
10854			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10855				if (woffs >= offs)
10856					woffs = 0;
10857			} else {
10858				woffs = 0;
10859			}
10860
10861			/*
10862			 * Now we know that we're going to be storing to the
10863			 * top of the buffer and that there is room for us
10864			 * there.  We need to clear the buffer from the current
10865			 * offset to the end (there may be old gunk there).
10866			 */
10867			while (offs < buf->dtb_size)
10868				tomax[offs++] = 0;
10869
10870			/*
10871			 * We need to set our offset to zero.  And because we
10872			 * are wrapping, we need to set the bit indicating as
10873			 * much.  We can also adjust our needed space back
10874			 * down to the space required by the ECB -- we know
10875			 * that the top of the buffer is aligned.
10876			 */
10877			offs = 0;
10878			total = needed;
10879			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10880		} else {
10881			/*
10882			 * There is room for us in the buffer, so we simply
10883			 * need to check the wrapped offset.
10884			 */
10885			if (woffs < offs) {
10886				/*
10887				 * The wrapped offset is less than the offset.
10888				 * This can happen if we allocated buffer space
10889				 * that induced a wrap, but then we didn't
10890				 * subsequently take the space due to an error
10891				 * or false predicate evaluation.  This is
10892				 * okay; we know that _this_ allocation isn't
10893				 * going to induce a wrap.  We still can't
10894				 * reset the wrapped offset to be zero,
10895				 * however: the space may have been trashed in
10896				 * the previous failed probe attempt.  But at
10897				 * least the wrapped offset doesn't need to
10898				 * be adjusted at all...
10899				 */
10900				goto out;
10901			}
10902		}
10903
10904		while (offs + total > woffs) {
10905			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10906			size_t size;
10907
10908			if (epid == DTRACE_EPIDNONE) {
10909				size = sizeof (uint32_t);
10910			} else {
10911				ASSERT(epid <= state->dts_necbs);
10912				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10913
10914				size = state->dts_ecbs[epid - 1]->dte_size;
10915			}
10916
10917			ASSERT(woffs + size <= buf->dtb_size);
10918			ASSERT(size != 0);
10919
10920			if (woffs + size == buf->dtb_size) {
10921				/*
10922				 * We've reached the end of the buffer; we want
10923				 * to set the wrapped offset to 0 and break
10924				 * out.  However, if the offs is 0, then we're
10925				 * in a strange edge-condition:  the amount of
10926				 * space that we want to reserve plus the size
10927				 * of the record that we're overwriting is
10928				 * greater than the size of the buffer.  This
10929				 * is problematic because if we reserve the
10930				 * space but subsequently don't consume it (due
10931				 * to a failed predicate or error) the wrapped
10932				 * offset will be 0 -- yet the EPID at offset 0
10933				 * will not be committed.  This situation is
10934				 * relatively easy to deal with:  if we're in
10935				 * this case, the buffer is indistinguishable
10936				 * from one that hasn't wrapped; we need only
10937				 * finish the job by clearing the wrapped bit,
10938				 * explicitly setting the offset to be 0, and
10939				 * zero'ing out the old data in the buffer.
10940				 */
10941				if (offs == 0) {
10942					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10943					buf->dtb_offset = 0;
10944					woffs = total;
10945
10946					while (woffs < buf->dtb_size)
10947						tomax[woffs++] = 0;
10948				}
10949
10950				woffs = 0;
10951				break;
10952			}
10953
10954			woffs += size;
10955		}
10956
10957		/*
10958		 * We have a wrapped offset.  It may be that the wrapped offset
10959		 * has become zero -- that's okay.
10960		 */
10961		buf->dtb_xamot_offset = woffs;
10962	}
10963
10964out:
10965	/*
10966	 * Now we can plow the buffer with any necessary padding.
10967	 */
10968	while (offs & (align - 1)) {
10969		/*
10970		 * Assert that our alignment is off by a number which
10971		 * is itself sizeof (uint32_t) aligned.
10972		 */
10973		ASSERT(!((align - (offs & (align - 1))) &
10974		    (sizeof (uint32_t) - 1)));
10975		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10976		offs += sizeof (uint32_t);
10977	}
10978
10979	if (buf->dtb_flags & DTRACEBUF_FILL) {
10980		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10981			buf->dtb_flags |= DTRACEBUF_FULL;
10982			return (-1);
10983		}
10984	}
10985
10986	if (mstate == NULL)
10987		return (offs);
10988
10989	/*
10990	 * For ring buffers and fill buffers, the scratch space is always
10991	 * the inactive buffer.
10992	 */
10993	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10994	mstate->dtms_scratch_size = buf->dtb_size;
10995	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10996
10997	return (offs);
10998}
10999
11000static void
11001dtrace_buffer_polish(dtrace_buffer_t *buf)
11002{
11003	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11004	ASSERT(MUTEX_HELD(&dtrace_lock));
11005
11006	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11007		return;
11008
11009	/*
11010	 * We need to polish the ring buffer.  There are three cases:
11011	 *
11012	 * - The first (and presumably most common) is that there is no gap
11013	 *   between the buffer offset and the wrapped offset.  In this case,
11014	 *   there is nothing in the buffer that isn't valid data; we can
11015	 *   mark the buffer as polished and return.
11016	 *
11017	 * - The second (less common than the first but still more common
11018	 *   than the third) is that there is a gap between the buffer offset
11019	 *   and the wrapped offset, and the wrapped offset is larger than the
11020	 *   buffer offset.  This can happen because of an alignment issue, or
11021	 *   can happen because of a call to dtrace_buffer_reserve() that
11022	 *   didn't subsequently consume the buffer space.  In this case,
11023	 *   we need to zero the data from the buffer offset to the wrapped
11024	 *   offset.
11025	 *
11026	 * - The third (and least common) is that there is a gap between the
11027	 *   buffer offset and the wrapped offset, but the wrapped offset is
11028	 *   _less_ than the buffer offset.  This can only happen because a
11029	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11030	 *   was not subsequently consumed.  In this case, we need to zero the
11031	 *   space from the offset to the end of the buffer _and_ from the
11032	 *   top of the buffer to the wrapped offset.
11033	 */
11034	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11035		bzero(buf->dtb_tomax + buf->dtb_offset,
11036		    buf->dtb_xamot_offset - buf->dtb_offset);
11037	}
11038
11039	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11040		bzero(buf->dtb_tomax + buf->dtb_offset,
11041		    buf->dtb_size - buf->dtb_offset);
11042		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11043	}
11044}
11045
11046static void
11047dtrace_buffer_free(dtrace_buffer_t *bufs)
11048{
11049	int i;
11050
11051	for (i = 0; i < NCPU; i++) {
11052		dtrace_buffer_t *buf = &bufs[i];
11053
11054		if (buf->dtb_tomax == NULL) {
11055			ASSERT(buf->dtb_xamot == NULL);
11056			ASSERT(buf->dtb_size == 0);
11057			continue;
11058		}
11059
11060		if (buf->dtb_xamot != NULL) {
11061			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11062			kmem_free(buf->dtb_xamot, buf->dtb_size);
11063		}
11064
11065		kmem_free(buf->dtb_tomax, buf->dtb_size);
11066		buf->dtb_size = 0;
11067		buf->dtb_tomax = NULL;
11068		buf->dtb_xamot = NULL;
11069	}
11070}
11071
11072/*
11073 * DTrace Enabling Functions
11074 */
11075static dtrace_enabling_t *
11076dtrace_enabling_create(dtrace_vstate_t *vstate)
11077{
11078	dtrace_enabling_t *enab;
11079
11080	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11081	enab->dten_vstate = vstate;
11082
11083	return (enab);
11084}
11085
11086static void
11087dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11088{
11089	dtrace_ecbdesc_t **ndesc;
11090	size_t osize, nsize;
11091
11092	/*
11093	 * We can't add to enablings after we've enabled them, or after we've
11094	 * retained them.
11095	 */
11096	ASSERT(enab->dten_probegen == 0);
11097	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11098
11099	if (enab->dten_ndesc < enab->dten_maxdesc) {
11100		enab->dten_desc[enab->dten_ndesc++] = ecb;
11101		return;
11102	}
11103
11104	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11105
11106	if (enab->dten_maxdesc == 0) {
11107		enab->dten_maxdesc = 1;
11108	} else {
11109		enab->dten_maxdesc <<= 1;
11110	}
11111
11112	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11113
11114	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11115	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11116	bcopy(enab->dten_desc, ndesc, osize);
11117	if (enab->dten_desc != NULL)
11118		kmem_free(enab->dten_desc, osize);
11119
11120	enab->dten_desc = ndesc;
11121	enab->dten_desc[enab->dten_ndesc++] = ecb;
11122}
11123
11124static void
11125dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11126    dtrace_probedesc_t *pd)
11127{
11128	dtrace_ecbdesc_t *new;
11129	dtrace_predicate_t *pred;
11130	dtrace_actdesc_t *act;
11131
11132	/*
11133	 * We're going to create a new ECB description that matches the
11134	 * specified ECB in every way, but has the specified probe description.
11135	 */
11136	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11137
11138	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11139		dtrace_predicate_hold(pred);
11140
11141	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11142		dtrace_actdesc_hold(act);
11143
11144	new->dted_action = ecb->dted_action;
11145	new->dted_pred = ecb->dted_pred;
11146	new->dted_probe = *pd;
11147	new->dted_uarg = ecb->dted_uarg;
11148
11149	dtrace_enabling_add(enab, new);
11150}
11151
11152static void
11153dtrace_enabling_dump(dtrace_enabling_t *enab)
11154{
11155	int i;
11156
11157	for (i = 0; i < enab->dten_ndesc; i++) {
11158		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11159
11160		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11161		    desc->dtpd_provider, desc->dtpd_mod,
11162		    desc->dtpd_func, desc->dtpd_name);
11163	}
11164}
11165
11166static void
11167dtrace_enabling_destroy(dtrace_enabling_t *enab)
11168{
11169	int i;
11170	dtrace_ecbdesc_t *ep;
11171	dtrace_vstate_t *vstate = enab->dten_vstate;
11172
11173	ASSERT(MUTEX_HELD(&dtrace_lock));
11174
11175	for (i = 0; i < enab->dten_ndesc; i++) {
11176		dtrace_actdesc_t *act, *next;
11177		dtrace_predicate_t *pred;
11178
11179		ep = enab->dten_desc[i];
11180
11181		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11182			dtrace_predicate_release(pred, vstate);
11183
11184		for (act = ep->dted_action; act != NULL; act = next) {
11185			next = act->dtad_next;
11186			dtrace_actdesc_release(act, vstate);
11187		}
11188
11189		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11190	}
11191
11192	if (enab->dten_desc != NULL)
11193		kmem_free(enab->dten_desc,
11194		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11195
11196	/*
11197	 * If this was a retained enabling, decrement the dts_nretained count
11198	 * and take it off of the dtrace_retained list.
11199	 */
11200	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11201	    dtrace_retained == enab) {
11202		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11203		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11204		enab->dten_vstate->dtvs_state->dts_nretained--;
11205	}
11206
11207	if (enab->dten_prev == NULL) {
11208		if (dtrace_retained == enab) {
11209			dtrace_retained = enab->dten_next;
11210
11211			if (dtrace_retained != NULL)
11212				dtrace_retained->dten_prev = NULL;
11213		}
11214	} else {
11215		ASSERT(enab != dtrace_retained);
11216		ASSERT(dtrace_retained != NULL);
11217		enab->dten_prev->dten_next = enab->dten_next;
11218	}
11219
11220	if (enab->dten_next != NULL) {
11221		ASSERT(dtrace_retained != NULL);
11222		enab->dten_next->dten_prev = enab->dten_prev;
11223	}
11224
11225	kmem_free(enab, sizeof (dtrace_enabling_t));
11226}
11227
11228static int
11229dtrace_enabling_retain(dtrace_enabling_t *enab)
11230{
11231	dtrace_state_t *state;
11232
11233	ASSERT(MUTEX_HELD(&dtrace_lock));
11234	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11235	ASSERT(enab->dten_vstate != NULL);
11236
11237	state = enab->dten_vstate->dtvs_state;
11238	ASSERT(state != NULL);
11239
11240	/*
11241	 * We only allow each state to retain dtrace_retain_max enablings.
11242	 */
11243	if (state->dts_nretained >= dtrace_retain_max)
11244		return (ENOSPC);
11245
11246	state->dts_nretained++;
11247
11248	if (dtrace_retained == NULL) {
11249		dtrace_retained = enab;
11250		return (0);
11251	}
11252
11253	enab->dten_next = dtrace_retained;
11254	dtrace_retained->dten_prev = enab;
11255	dtrace_retained = enab;
11256
11257	return (0);
11258}
11259
11260static int
11261dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11262    dtrace_probedesc_t *create)
11263{
11264	dtrace_enabling_t *new, *enab;
11265	int found = 0, err = ENOENT;
11266
11267	ASSERT(MUTEX_HELD(&dtrace_lock));
11268	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11269	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11270	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11271	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11272
11273	new = dtrace_enabling_create(&state->dts_vstate);
11274
11275	/*
11276	 * Iterate over all retained enablings, looking for enablings that
11277	 * match the specified state.
11278	 */
11279	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11280		int i;
11281
11282		/*
11283		 * dtvs_state can only be NULL for helper enablings -- and
11284		 * helper enablings can't be retained.
11285		 */
11286		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11287
11288		if (enab->dten_vstate->dtvs_state != state)
11289			continue;
11290
11291		/*
11292		 * Now iterate over each probe description; we're looking for
11293		 * an exact match to the specified probe description.
11294		 */
11295		for (i = 0; i < enab->dten_ndesc; i++) {
11296			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11297			dtrace_probedesc_t *pd = &ep->dted_probe;
11298
11299			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11300				continue;
11301
11302			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11303				continue;
11304
11305			if (strcmp(pd->dtpd_func, match->dtpd_func))
11306				continue;
11307
11308			if (strcmp(pd->dtpd_name, match->dtpd_name))
11309				continue;
11310
11311			/*
11312			 * We have a winning probe!  Add it to our growing
11313			 * enabling.
11314			 */
11315			found = 1;
11316			dtrace_enabling_addlike(new, ep, create);
11317		}
11318	}
11319
11320	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11321		dtrace_enabling_destroy(new);
11322		return (err);
11323	}
11324
11325	return (0);
11326}
11327
11328static void
11329dtrace_enabling_retract(dtrace_state_t *state)
11330{
11331	dtrace_enabling_t *enab, *next;
11332
11333	ASSERT(MUTEX_HELD(&dtrace_lock));
11334
11335	/*
11336	 * Iterate over all retained enablings, destroy the enablings retained
11337	 * for the specified state.
11338	 */
11339	for (enab = dtrace_retained; enab != NULL; enab = next) {
11340		next = enab->dten_next;
11341
11342		/*
11343		 * dtvs_state can only be NULL for helper enablings -- and
11344		 * helper enablings can't be retained.
11345		 */
11346		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11347
11348		if (enab->dten_vstate->dtvs_state == state) {
11349			ASSERT(state->dts_nretained > 0);
11350			dtrace_enabling_destroy(enab);
11351		}
11352	}
11353
11354	ASSERT(state->dts_nretained == 0);
11355}
11356
11357static int
11358dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11359{
11360	int i = 0;
11361	int matched = 0;
11362
11363	ASSERT(MUTEX_HELD(&cpu_lock));
11364	ASSERT(MUTEX_HELD(&dtrace_lock));
11365
11366	for (i = 0; i < enab->dten_ndesc; i++) {
11367		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11368
11369		enab->dten_current = ep;
11370		enab->dten_error = 0;
11371
11372		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11373
11374		if (enab->dten_error != 0) {
11375			/*
11376			 * If we get an error half-way through enabling the
11377			 * probes, we kick out -- perhaps with some number of
11378			 * them enabled.  Leaving enabled probes enabled may
11379			 * be slightly confusing for user-level, but we expect
11380			 * that no one will attempt to actually drive on in
11381			 * the face of such errors.  If this is an anonymous
11382			 * enabling (indicated with a NULL nmatched pointer),
11383			 * we cmn_err() a message.  We aren't expecting to
11384			 * get such an error -- such as it can exist at all,
11385			 * it would be a result of corrupted DOF in the driver
11386			 * properties.
11387			 */
11388			if (nmatched == NULL) {
11389				cmn_err(CE_WARN, "dtrace_enabling_match() "
11390				    "error on %p: %d", (void *)ep,
11391				    enab->dten_error);
11392			}
11393
11394			return (enab->dten_error);
11395		}
11396	}
11397
11398	enab->dten_probegen = dtrace_probegen;
11399	if (nmatched != NULL)
11400		*nmatched = matched;
11401
11402	return (0);
11403}
11404
11405static void
11406dtrace_enabling_matchall(void)
11407{
11408	dtrace_enabling_t *enab;
11409
11410	mutex_enter(&cpu_lock);
11411	mutex_enter(&dtrace_lock);
11412
11413	/*
11414	 * Iterate over all retained enablings to see if any probes match
11415	 * against them.  We only perform this operation on enablings for which
11416	 * we have sufficient permissions by virtue of being in the global zone
11417	 * or in the same zone as the DTrace client.  Because we can be called
11418	 * after dtrace_detach() has been called, we cannot assert that there
11419	 * are retained enablings.  We can safely load from dtrace_retained,
11420	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11421	 * block pending our completion.
11422	 */
11423	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11424#if defined(sun)
11425		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11426
11427		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11428#endif
11429			(void) dtrace_enabling_match(enab, NULL);
11430	}
11431
11432	mutex_exit(&dtrace_lock);
11433	mutex_exit(&cpu_lock);
11434}
11435
11436/*
11437 * If an enabling is to be enabled without having matched probes (that is, if
11438 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11439 * enabling must be _primed_ by creating an ECB for every ECB description.
11440 * This must be done to assure that we know the number of speculations, the
11441 * number of aggregations, the minimum buffer size needed, etc. before we
11442 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11443 * enabling any probes, we create ECBs for every ECB decription, but with a
11444 * NULL probe -- which is exactly what this function does.
11445 */
11446static void
11447dtrace_enabling_prime(dtrace_state_t *state)
11448{
11449	dtrace_enabling_t *enab;
11450	int i;
11451
11452	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11453		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11454
11455		if (enab->dten_vstate->dtvs_state != state)
11456			continue;
11457
11458		/*
11459		 * We don't want to prime an enabling more than once, lest
11460		 * we allow a malicious user to induce resource exhaustion.
11461		 * (The ECBs that result from priming an enabling aren't
11462		 * leaked -- but they also aren't deallocated until the
11463		 * consumer state is destroyed.)
11464		 */
11465		if (enab->dten_primed)
11466			continue;
11467
11468		for (i = 0; i < enab->dten_ndesc; i++) {
11469			enab->dten_current = enab->dten_desc[i];
11470			(void) dtrace_probe_enable(NULL, enab);
11471		}
11472
11473		enab->dten_primed = 1;
11474	}
11475}
11476
11477/*
11478 * Called to indicate that probes should be provided due to retained
11479 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11480 * must take an initial lap through the enabling calling the dtps_provide()
11481 * entry point explicitly to allow for autocreated probes.
11482 */
11483static void
11484dtrace_enabling_provide(dtrace_provider_t *prv)
11485{
11486	int i, all = 0;
11487	dtrace_probedesc_t desc;
11488
11489	ASSERT(MUTEX_HELD(&dtrace_lock));
11490	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11491
11492	if (prv == NULL) {
11493		all = 1;
11494		prv = dtrace_provider;
11495	}
11496
11497	do {
11498		dtrace_enabling_t *enab = dtrace_retained;
11499		void *parg = prv->dtpv_arg;
11500
11501		for (; enab != NULL; enab = enab->dten_next) {
11502			for (i = 0; i < enab->dten_ndesc; i++) {
11503				desc = enab->dten_desc[i]->dted_probe;
11504				mutex_exit(&dtrace_lock);
11505				prv->dtpv_pops.dtps_provide(parg, &desc);
11506				mutex_enter(&dtrace_lock);
11507			}
11508		}
11509	} while (all && (prv = prv->dtpv_next) != NULL);
11510
11511	mutex_exit(&dtrace_lock);
11512	dtrace_probe_provide(NULL, all ? NULL : prv);
11513	mutex_enter(&dtrace_lock);
11514}
11515
11516/*
11517 * DTrace DOF Functions
11518 */
11519/*ARGSUSED*/
11520static void
11521dtrace_dof_error(dof_hdr_t *dof, const char *str)
11522{
11523	if (dtrace_err_verbose)
11524		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11525
11526#ifdef DTRACE_ERRDEBUG
11527	dtrace_errdebug(str);
11528#endif
11529}
11530
11531/*
11532 * Create DOF out of a currently enabled state.  Right now, we only create
11533 * DOF containing the run-time options -- but this could be expanded to create
11534 * complete DOF representing the enabled state.
11535 */
11536static dof_hdr_t *
11537dtrace_dof_create(dtrace_state_t *state)
11538{
11539	dof_hdr_t *dof;
11540	dof_sec_t *sec;
11541	dof_optdesc_t *opt;
11542	int i, len = sizeof (dof_hdr_t) +
11543	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11544	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11545
11546	ASSERT(MUTEX_HELD(&dtrace_lock));
11547
11548	dof = kmem_zalloc(len, KM_SLEEP);
11549	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11550	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11551	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11552	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11553
11554	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11555	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11556	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11557	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11558	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11559	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11560
11561	dof->dofh_flags = 0;
11562	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11563	dof->dofh_secsize = sizeof (dof_sec_t);
11564	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11565	dof->dofh_secoff = sizeof (dof_hdr_t);
11566	dof->dofh_loadsz = len;
11567	dof->dofh_filesz = len;
11568	dof->dofh_pad = 0;
11569
11570	/*
11571	 * Fill in the option section header...
11572	 */
11573	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11574	sec->dofs_type = DOF_SECT_OPTDESC;
11575	sec->dofs_align = sizeof (uint64_t);
11576	sec->dofs_flags = DOF_SECF_LOAD;
11577	sec->dofs_entsize = sizeof (dof_optdesc_t);
11578
11579	opt = (dof_optdesc_t *)((uintptr_t)sec +
11580	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11581
11582	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11583	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11584
11585	for (i = 0; i < DTRACEOPT_MAX; i++) {
11586		opt[i].dofo_option = i;
11587		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11588		opt[i].dofo_value = state->dts_options[i];
11589	}
11590
11591	return (dof);
11592}
11593
11594static dof_hdr_t *
11595dtrace_dof_copyin(uintptr_t uarg, int *errp)
11596{
11597	dof_hdr_t hdr, *dof;
11598
11599	ASSERT(!MUTEX_HELD(&dtrace_lock));
11600
11601	/*
11602	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11603	 */
11604	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11605		dtrace_dof_error(NULL, "failed to copyin DOF header");
11606		*errp = EFAULT;
11607		return (NULL);
11608	}
11609
11610	/*
11611	 * Now we'll allocate the entire DOF and copy it in -- provided
11612	 * that the length isn't outrageous.
11613	 */
11614	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11615		dtrace_dof_error(&hdr, "load size exceeds maximum");
11616		*errp = E2BIG;
11617		return (NULL);
11618	}
11619
11620	if (hdr.dofh_loadsz < sizeof (hdr)) {
11621		dtrace_dof_error(&hdr, "invalid load size");
11622		*errp = EINVAL;
11623		return (NULL);
11624	}
11625
11626	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11627
11628	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11629		kmem_free(dof, hdr.dofh_loadsz);
11630		*errp = EFAULT;
11631		return (NULL);
11632	}
11633
11634	return (dof);
11635}
11636
11637#if !defined(sun)
11638static __inline uchar_t
11639dtrace_dof_char(char c) {
11640	switch (c) {
11641	case '0':
11642	case '1':
11643	case '2':
11644	case '3':
11645	case '4':
11646	case '5':
11647	case '6':
11648	case '7':
11649	case '8':
11650	case '9':
11651		return (c - '0');
11652	case 'A':
11653	case 'B':
11654	case 'C':
11655	case 'D':
11656	case 'E':
11657	case 'F':
11658		return (c - 'A' + 10);
11659	case 'a':
11660	case 'b':
11661	case 'c':
11662	case 'd':
11663	case 'e':
11664	case 'f':
11665		return (c - 'a' + 10);
11666	}
11667	/* Should not reach here. */
11668	return (0);
11669}
11670#endif
11671
11672static dof_hdr_t *
11673dtrace_dof_property(const char *name)
11674{
11675	uchar_t *buf;
11676	uint64_t loadsz;
11677	unsigned int len, i;
11678	dof_hdr_t *dof;
11679
11680#if defined(sun)
11681	/*
11682	 * Unfortunately, array of values in .conf files are always (and
11683	 * only) interpreted to be integer arrays.  We must read our DOF
11684	 * as an integer array, and then squeeze it into a byte array.
11685	 */
11686	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11687	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11688		return (NULL);
11689
11690	for (i = 0; i < len; i++)
11691		buf[i] = (uchar_t)(((int *)buf)[i]);
11692
11693	if (len < sizeof (dof_hdr_t)) {
11694		ddi_prop_free(buf);
11695		dtrace_dof_error(NULL, "truncated header");
11696		return (NULL);
11697	}
11698
11699	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11700		ddi_prop_free(buf);
11701		dtrace_dof_error(NULL, "truncated DOF");
11702		return (NULL);
11703	}
11704
11705	if (loadsz >= dtrace_dof_maxsize) {
11706		ddi_prop_free(buf);
11707		dtrace_dof_error(NULL, "oversized DOF");
11708		return (NULL);
11709	}
11710
11711	dof = kmem_alloc(loadsz, KM_SLEEP);
11712	bcopy(buf, dof, loadsz);
11713	ddi_prop_free(buf);
11714#else
11715	char *p;
11716	char *p_env;
11717
11718	if ((p_env = getenv(name)) == NULL)
11719		return (NULL);
11720
11721	len = strlen(p_env) / 2;
11722
11723	buf = kmem_alloc(len, KM_SLEEP);
11724
11725	dof = (dof_hdr_t *) buf;
11726
11727	p = p_env;
11728
11729	for (i = 0; i < len; i++) {
11730		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11731		     dtrace_dof_char(p[1]);
11732		p += 2;
11733	}
11734
11735	freeenv(p_env);
11736
11737	if (len < sizeof (dof_hdr_t)) {
11738		kmem_free(buf, 0);
11739		dtrace_dof_error(NULL, "truncated header");
11740		return (NULL);
11741	}
11742
11743	if (len < (loadsz = dof->dofh_loadsz)) {
11744		kmem_free(buf, 0);
11745		dtrace_dof_error(NULL, "truncated DOF");
11746		return (NULL);
11747	}
11748
11749	if (loadsz >= dtrace_dof_maxsize) {
11750		kmem_free(buf, 0);
11751		dtrace_dof_error(NULL, "oversized DOF");
11752		return (NULL);
11753	}
11754#endif
11755
11756	return (dof);
11757}
11758
11759static void
11760dtrace_dof_destroy(dof_hdr_t *dof)
11761{
11762	kmem_free(dof, dof->dofh_loadsz);
11763}
11764
11765/*
11766 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11767 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11768 * a type other than DOF_SECT_NONE is specified, the header is checked against
11769 * this type and NULL is returned if the types do not match.
11770 */
11771static dof_sec_t *
11772dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11773{
11774	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11775	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11776
11777	if (i >= dof->dofh_secnum) {
11778		dtrace_dof_error(dof, "referenced section index is invalid");
11779		return (NULL);
11780	}
11781
11782	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11783		dtrace_dof_error(dof, "referenced section is not loadable");
11784		return (NULL);
11785	}
11786
11787	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11788		dtrace_dof_error(dof, "referenced section is the wrong type");
11789		return (NULL);
11790	}
11791
11792	return (sec);
11793}
11794
11795static dtrace_probedesc_t *
11796dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11797{
11798	dof_probedesc_t *probe;
11799	dof_sec_t *strtab;
11800	uintptr_t daddr = (uintptr_t)dof;
11801	uintptr_t str;
11802	size_t size;
11803
11804	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11805		dtrace_dof_error(dof, "invalid probe section");
11806		return (NULL);
11807	}
11808
11809	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11810		dtrace_dof_error(dof, "bad alignment in probe description");
11811		return (NULL);
11812	}
11813
11814	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11815		dtrace_dof_error(dof, "truncated probe description");
11816		return (NULL);
11817	}
11818
11819	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11820	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11821
11822	if (strtab == NULL)
11823		return (NULL);
11824
11825	str = daddr + strtab->dofs_offset;
11826	size = strtab->dofs_size;
11827
11828	if (probe->dofp_provider >= strtab->dofs_size) {
11829		dtrace_dof_error(dof, "corrupt probe provider");
11830		return (NULL);
11831	}
11832
11833	(void) strncpy(desc->dtpd_provider,
11834	    (char *)(str + probe->dofp_provider),
11835	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11836
11837	if (probe->dofp_mod >= strtab->dofs_size) {
11838		dtrace_dof_error(dof, "corrupt probe module");
11839		return (NULL);
11840	}
11841
11842	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11843	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11844
11845	if (probe->dofp_func >= strtab->dofs_size) {
11846		dtrace_dof_error(dof, "corrupt probe function");
11847		return (NULL);
11848	}
11849
11850	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11851	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11852
11853	if (probe->dofp_name >= strtab->dofs_size) {
11854		dtrace_dof_error(dof, "corrupt probe name");
11855		return (NULL);
11856	}
11857
11858	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11859	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11860
11861	return (desc);
11862}
11863
11864static dtrace_difo_t *
11865dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11866    cred_t *cr)
11867{
11868	dtrace_difo_t *dp;
11869	size_t ttl = 0;
11870	dof_difohdr_t *dofd;
11871	uintptr_t daddr = (uintptr_t)dof;
11872	size_t max = dtrace_difo_maxsize;
11873	int i, l, n;
11874
11875	static const struct {
11876		int section;
11877		int bufoffs;
11878		int lenoffs;
11879		int entsize;
11880		int align;
11881		const char *msg;
11882	} difo[] = {
11883		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11884		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11885		sizeof (dif_instr_t), "multiple DIF sections" },
11886
11887		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11888		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11889		sizeof (uint64_t), "multiple integer tables" },
11890
11891		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11892		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11893		sizeof (char), "multiple string tables" },
11894
11895		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11896		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11897		sizeof (uint_t), "multiple variable tables" },
11898
11899		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11900	};
11901
11902	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11903		dtrace_dof_error(dof, "invalid DIFO header section");
11904		return (NULL);
11905	}
11906
11907	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11908		dtrace_dof_error(dof, "bad alignment in DIFO header");
11909		return (NULL);
11910	}
11911
11912	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11913	    sec->dofs_size % sizeof (dof_secidx_t)) {
11914		dtrace_dof_error(dof, "bad size in DIFO header");
11915		return (NULL);
11916	}
11917
11918	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11919	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11920
11921	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11922	dp->dtdo_rtype = dofd->dofd_rtype;
11923
11924	for (l = 0; l < n; l++) {
11925		dof_sec_t *subsec;
11926		void **bufp;
11927		uint32_t *lenp;
11928
11929		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11930		    dofd->dofd_links[l])) == NULL)
11931			goto err; /* invalid section link */
11932
11933		if (ttl + subsec->dofs_size > max) {
11934			dtrace_dof_error(dof, "exceeds maximum size");
11935			goto err;
11936		}
11937
11938		ttl += subsec->dofs_size;
11939
11940		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11941			if (subsec->dofs_type != difo[i].section)
11942				continue;
11943
11944			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11945				dtrace_dof_error(dof, "section not loaded");
11946				goto err;
11947			}
11948
11949			if (subsec->dofs_align != difo[i].align) {
11950				dtrace_dof_error(dof, "bad alignment");
11951				goto err;
11952			}
11953
11954			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11955			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11956
11957			if (*bufp != NULL) {
11958				dtrace_dof_error(dof, difo[i].msg);
11959				goto err;
11960			}
11961
11962			if (difo[i].entsize != subsec->dofs_entsize) {
11963				dtrace_dof_error(dof, "entry size mismatch");
11964				goto err;
11965			}
11966
11967			if (subsec->dofs_entsize != 0 &&
11968			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11969				dtrace_dof_error(dof, "corrupt entry size");
11970				goto err;
11971			}
11972
11973			*lenp = subsec->dofs_size;
11974			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11975			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11976			    *bufp, subsec->dofs_size);
11977
11978			if (subsec->dofs_entsize != 0)
11979				*lenp /= subsec->dofs_entsize;
11980
11981			break;
11982		}
11983
11984		/*
11985		 * If we encounter a loadable DIFO sub-section that is not
11986		 * known to us, assume this is a broken program and fail.
11987		 */
11988		if (difo[i].section == DOF_SECT_NONE &&
11989		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11990			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11991			goto err;
11992		}
11993	}
11994
11995	if (dp->dtdo_buf == NULL) {
11996		/*
11997		 * We can't have a DIF object without DIF text.
11998		 */
11999		dtrace_dof_error(dof, "missing DIF text");
12000		goto err;
12001	}
12002
12003	/*
12004	 * Before we validate the DIF object, run through the variable table
12005	 * looking for the strings -- if any of their size are under, we'll set
12006	 * their size to be the system-wide default string size.  Note that
12007	 * this should _not_ happen if the "strsize" option has been set --
12008	 * in this case, the compiler should have set the size to reflect the
12009	 * setting of the option.
12010	 */
12011	for (i = 0; i < dp->dtdo_varlen; i++) {
12012		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12013		dtrace_diftype_t *t = &v->dtdv_type;
12014
12015		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12016			continue;
12017
12018		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12019			t->dtdt_size = dtrace_strsize_default;
12020	}
12021
12022	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12023		goto err;
12024
12025	dtrace_difo_init(dp, vstate);
12026	return (dp);
12027
12028err:
12029	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12030	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12031	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12032	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12033
12034	kmem_free(dp, sizeof (dtrace_difo_t));
12035	return (NULL);
12036}
12037
12038static dtrace_predicate_t *
12039dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12040    cred_t *cr)
12041{
12042	dtrace_difo_t *dp;
12043
12044	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12045		return (NULL);
12046
12047	return (dtrace_predicate_create(dp));
12048}
12049
12050static dtrace_actdesc_t *
12051dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12052    cred_t *cr)
12053{
12054	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12055	dof_actdesc_t *desc;
12056	dof_sec_t *difosec;
12057	size_t offs;
12058	uintptr_t daddr = (uintptr_t)dof;
12059	uint64_t arg;
12060	dtrace_actkind_t kind;
12061
12062	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12063		dtrace_dof_error(dof, "invalid action section");
12064		return (NULL);
12065	}
12066
12067	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12068		dtrace_dof_error(dof, "truncated action description");
12069		return (NULL);
12070	}
12071
12072	if (sec->dofs_align != sizeof (uint64_t)) {
12073		dtrace_dof_error(dof, "bad alignment in action description");
12074		return (NULL);
12075	}
12076
12077	if (sec->dofs_size < sec->dofs_entsize) {
12078		dtrace_dof_error(dof, "section entry size exceeds total size");
12079		return (NULL);
12080	}
12081
12082	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12083		dtrace_dof_error(dof, "bad entry size in action description");
12084		return (NULL);
12085	}
12086
12087	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12088		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12089		return (NULL);
12090	}
12091
12092	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12093		desc = (dof_actdesc_t *)(daddr +
12094		    (uintptr_t)sec->dofs_offset + offs);
12095		kind = (dtrace_actkind_t)desc->dofa_kind;
12096
12097		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12098		    (kind != DTRACEACT_PRINTA ||
12099		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12100			dof_sec_t *strtab;
12101			char *str, *fmt;
12102			uint64_t i;
12103
12104			/*
12105			 * printf()-like actions must have a format string.
12106			 */
12107			if ((strtab = dtrace_dof_sect(dof,
12108			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12109				goto err;
12110
12111			str = (char *)((uintptr_t)dof +
12112			    (uintptr_t)strtab->dofs_offset);
12113
12114			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12115				if (str[i] == '\0')
12116					break;
12117			}
12118
12119			if (i >= strtab->dofs_size) {
12120				dtrace_dof_error(dof, "bogus format string");
12121				goto err;
12122			}
12123
12124			if (i == desc->dofa_arg) {
12125				dtrace_dof_error(dof, "empty format string");
12126				goto err;
12127			}
12128
12129			i -= desc->dofa_arg;
12130			fmt = kmem_alloc(i + 1, KM_SLEEP);
12131			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12132			arg = (uint64_t)(uintptr_t)fmt;
12133		} else {
12134			if (kind == DTRACEACT_PRINTA) {
12135				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12136				arg = 0;
12137			} else {
12138				arg = desc->dofa_arg;
12139			}
12140		}
12141
12142		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12143		    desc->dofa_uarg, arg);
12144
12145		if (last != NULL) {
12146			last->dtad_next = act;
12147		} else {
12148			first = act;
12149		}
12150
12151		last = act;
12152
12153		if (desc->dofa_difo == DOF_SECIDX_NONE)
12154			continue;
12155
12156		if ((difosec = dtrace_dof_sect(dof,
12157		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12158			goto err;
12159
12160		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12161
12162		if (act->dtad_difo == NULL)
12163			goto err;
12164	}
12165
12166	ASSERT(first != NULL);
12167	return (first);
12168
12169err:
12170	for (act = first; act != NULL; act = next) {
12171		next = act->dtad_next;
12172		dtrace_actdesc_release(act, vstate);
12173	}
12174
12175	return (NULL);
12176}
12177
12178static dtrace_ecbdesc_t *
12179dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12180    cred_t *cr)
12181{
12182	dtrace_ecbdesc_t *ep;
12183	dof_ecbdesc_t *ecb;
12184	dtrace_probedesc_t *desc;
12185	dtrace_predicate_t *pred = NULL;
12186
12187	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12188		dtrace_dof_error(dof, "truncated ECB description");
12189		return (NULL);
12190	}
12191
12192	if (sec->dofs_align != sizeof (uint64_t)) {
12193		dtrace_dof_error(dof, "bad alignment in ECB description");
12194		return (NULL);
12195	}
12196
12197	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12198	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12199
12200	if (sec == NULL)
12201		return (NULL);
12202
12203	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12204	ep->dted_uarg = ecb->dofe_uarg;
12205	desc = &ep->dted_probe;
12206
12207	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12208		goto err;
12209
12210	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12211		if ((sec = dtrace_dof_sect(dof,
12212		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12213			goto err;
12214
12215		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12216			goto err;
12217
12218		ep->dted_pred.dtpdd_predicate = pred;
12219	}
12220
12221	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12222		if ((sec = dtrace_dof_sect(dof,
12223		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12224			goto err;
12225
12226		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12227
12228		if (ep->dted_action == NULL)
12229			goto err;
12230	}
12231
12232	return (ep);
12233
12234err:
12235	if (pred != NULL)
12236		dtrace_predicate_release(pred, vstate);
12237	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12238	return (NULL);
12239}
12240
12241/*
12242 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12243 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12244 * site of any user SETX relocations to account for load object base address.
12245 * In the future, if we need other relocations, this function can be extended.
12246 */
12247static int
12248dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12249{
12250	uintptr_t daddr = (uintptr_t)dof;
12251	dof_relohdr_t *dofr =
12252	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12253	dof_sec_t *ss, *rs, *ts;
12254	dof_relodesc_t *r;
12255	uint_t i, n;
12256
12257	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12258	    sec->dofs_align != sizeof (dof_secidx_t)) {
12259		dtrace_dof_error(dof, "invalid relocation header");
12260		return (-1);
12261	}
12262
12263	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12264	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12265	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12266
12267	if (ss == NULL || rs == NULL || ts == NULL)
12268		return (-1); /* dtrace_dof_error() has been called already */
12269
12270	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12271	    rs->dofs_align != sizeof (uint64_t)) {
12272		dtrace_dof_error(dof, "invalid relocation section");
12273		return (-1);
12274	}
12275
12276	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12277	n = rs->dofs_size / rs->dofs_entsize;
12278
12279	for (i = 0; i < n; i++) {
12280		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12281
12282		switch (r->dofr_type) {
12283		case DOF_RELO_NONE:
12284			break;
12285		case DOF_RELO_SETX:
12286			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12287			    sizeof (uint64_t) > ts->dofs_size) {
12288				dtrace_dof_error(dof, "bad relocation offset");
12289				return (-1);
12290			}
12291
12292			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12293				dtrace_dof_error(dof, "misaligned setx relo");
12294				return (-1);
12295			}
12296
12297			*(uint64_t *)taddr += ubase;
12298			break;
12299		default:
12300			dtrace_dof_error(dof, "invalid relocation type");
12301			return (-1);
12302		}
12303
12304		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12305	}
12306
12307	return (0);
12308}
12309
12310/*
12311 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12312 * header:  it should be at the front of a memory region that is at least
12313 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12314 * size.  It need not be validated in any other way.
12315 */
12316static int
12317dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12318    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12319{
12320	uint64_t len = dof->dofh_loadsz, seclen;
12321	uintptr_t daddr = (uintptr_t)dof;
12322	dtrace_ecbdesc_t *ep;
12323	dtrace_enabling_t *enab;
12324	uint_t i;
12325
12326	ASSERT(MUTEX_HELD(&dtrace_lock));
12327	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12328
12329	/*
12330	 * Check the DOF header identification bytes.  In addition to checking
12331	 * valid settings, we also verify that unused bits/bytes are zeroed so
12332	 * we can use them later without fear of regressing existing binaries.
12333	 */
12334	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12335	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12336		dtrace_dof_error(dof, "DOF magic string mismatch");
12337		return (-1);
12338	}
12339
12340	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12341	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12342		dtrace_dof_error(dof, "DOF has invalid data model");
12343		return (-1);
12344	}
12345
12346	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12347		dtrace_dof_error(dof, "DOF encoding mismatch");
12348		return (-1);
12349	}
12350
12351	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12352	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12353		dtrace_dof_error(dof, "DOF version mismatch");
12354		return (-1);
12355	}
12356
12357	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12358		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12359		return (-1);
12360	}
12361
12362	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12363		dtrace_dof_error(dof, "DOF uses too many integer registers");
12364		return (-1);
12365	}
12366
12367	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12368		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12369		return (-1);
12370	}
12371
12372	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12373		if (dof->dofh_ident[i] != 0) {
12374			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12375			return (-1);
12376		}
12377	}
12378
12379	if (dof->dofh_flags & ~DOF_FL_VALID) {
12380		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12381		return (-1);
12382	}
12383
12384	if (dof->dofh_secsize == 0) {
12385		dtrace_dof_error(dof, "zero section header size");
12386		return (-1);
12387	}
12388
12389	/*
12390	 * Check that the section headers don't exceed the amount of DOF
12391	 * data.  Note that we cast the section size and number of sections
12392	 * to uint64_t's to prevent possible overflow in the multiplication.
12393	 */
12394	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12395
12396	if (dof->dofh_secoff > len || seclen > len ||
12397	    dof->dofh_secoff + seclen > len) {
12398		dtrace_dof_error(dof, "truncated section headers");
12399		return (-1);
12400	}
12401
12402	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12403		dtrace_dof_error(dof, "misaligned section headers");
12404		return (-1);
12405	}
12406
12407	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12408		dtrace_dof_error(dof, "misaligned section size");
12409		return (-1);
12410	}
12411
12412	/*
12413	 * Take an initial pass through the section headers to be sure that
12414	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12415	 * set, do not permit sections relating to providers, probes, or args.
12416	 */
12417	for (i = 0; i < dof->dofh_secnum; i++) {
12418		dof_sec_t *sec = (dof_sec_t *)(daddr +
12419		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12420
12421		if (noprobes) {
12422			switch (sec->dofs_type) {
12423			case DOF_SECT_PROVIDER:
12424			case DOF_SECT_PROBES:
12425			case DOF_SECT_PRARGS:
12426			case DOF_SECT_PROFFS:
12427				dtrace_dof_error(dof, "illegal sections "
12428				    "for enabling");
12429				return (-1);
12430			}
12431		}
12432
12433		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12434			continue; /* just ignore non-loadable sections */
12435
12436		if (sec->dofs_align & (sec->dofs_align - 1)) {
12437			dtrace_dof_error(dof, "bad section alignment");
12438			return (-1);
12439		}
12440
12441		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12442			dtrace_dof_error(dof, "misaligned section");
12443			return (-1);
12444		}
12445
12446		if (sec->dofs_offset > len || sec->dofs_size > len ||
12447		    sec->dofs_offset + sec->dofs_size > len) {
12448			dtrace_dof_error(dof, "corrupt section header");
12449			return (-1);
12450		}
12451
12452		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12453		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12454			dtrace_dof_error(dof, "non-terminating string table");
12455			return (-1);
12456		}
12457	}
12458
12459	/*
12460	 * Take a second pass through the sections and locate and perform any
12461	 * relocations that are present.  We do this after the first pass to
12462	 * be sure that all sections have had their headers validated.
12463	 */
12464	for (i = 0; i < dof->dofh_secnum; i++) {
12465		dof_sec_t *sec = (dof_sec_t *)(daddr +
12466		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12467
12468		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12469			continue; /* skip sections that are not loadable */
12470
12471		switch (sec->dofs_type) {
12472		case DOF_SECT_URELHDR:
12473			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12474				return (-1);
12475			break;
12476		}
12477	}
12478
12479	if ((enab = *enabp) == NULL)
12480		enab = *enabp = dtrace_enabling_create(vstate);
12481
12482	for (i = 0; i < dof->dofh_secnum; i++) {
12483		dof_sec_t *sec = (dof_sec_t *)(daddr +
12484		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12485
12486		if (sec->dofs_type != DOF_SECT_ECBDESC)
12487			continue;
12488
12489		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12490			dtrace_enabling_destroy(enab);
12491			*enabp = NULL;
12492			return (-1);
12493		}
12494
12495		dtrace_enabling_add(enab, ep);
12496	}
12497
12498	return (0);
12499}
12500
12501/*
12502 * Process DOF for any options.  This routine assumes that the DOF has been
12503 * at least processed by dtrace_dof_slurp().
12504 */
12505static int
12506dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12507{
12508	int i, rval;
12509	uint32_t entsize;
12510	size_t offs;
12511	dof_optdesc_t *desc;
12512
12513	for (i = 0; i < dof->dofh_secnum; i++) {
12514		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12515		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12516
12517		if (sec->dofs_type != DOF_SECT_OPTDESC)
12518			continue;
12519
12520		if (sec->dofs_align != sizeof (uint64_t)) {
12521			dtrace_dof_error(dof, "bad alignment in "
12522			    "option description");
12523			return (EINVAL);
12524		}
12525
12526		if ((entsize = sec->dofs_entsize) == 0) {
12527			dtrace_dof_error(dof, "zeroed option entry size");
12528			return (EINVAL);
12529		}
12530
12531		if (entsize < sizeof (dof_optdesc_t)) {
12532			dtrace_dof_error(dof, "bad option entry size");
12533			return (EINVAL);
12534		}
12535
12536		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12537			desc = (dof_optdesc_t *)((uintptr_t)dof +
12538			    (uintptr_t)sec->dofs_offset + offs);
12539
12540			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12541				dtrace_dof_error(dof, "non-zero option string");
12542				return (EINVAL);
12543			}
12544
12545			if (desc->dofo_value == DTRACEOPT_UNSET) {
12546				dtrace_dof_error(dof, "unset option");
12547				return (EINVAL);
12548			}
12549
12550			if ((rval = dtrace_state_option(state,
12551			    desc->dofo_option, desc->dofo_value)) != 0) {
12552				dtrace_dof_error(dof, "rejected option");
12553				return (rval);
12554			}
12555		}
12556	}
12557
12558	return (0);
12559}
12560
12561/*
12562 * DTrace Consumer State Functions
12563 */
12564static int
12565dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12566{
12567	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12568	void *base;
12569	uintptr_t limit;
12570	dtrace_dynvar_t *dvar, *next, *start;
12571	int i;
12572
12573	ASSERT(MUTEX_HELD(&dtrace_lock));
12574	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12575
12576	bzero(dstate, sizeof (dtrace_dstate_t));
12577
12578	if ((dstate->dtds_chunksize = chunksize) == 0)
12579		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12580
12581	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12582		size = min;
12583
12584	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12585		return (ENOMEM);
12586
12587	dstate->dtds_size = size;
12588	dstate->dtds_base = base;
12589	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12590	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12591
12592	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12593
12594	if (hashsize != 1 && (hashsize & 1))
12595		hashsize--;
12596
12597	dstate->dtds_hashsize = hashsize;
12598	dstate->dtds_hash = dstate->dtds_base;
12599
12600	/*
12601	 * Set all of our hash buckets to point to the single sink, and (if
12602	 * it hasn't already been set), set the sink's hash value to be the
12603	 * sink sentinel value.  The sink is needed for dynamic variable
12604	 * lookups to know that they have iterated over an entire, valid hash
12605	 * chain.
12606	 */
12607	for (i = 0; i < hashsize; i++)
12608		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12609
12610	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12611		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12612
12613	/*
12614	 * Determine number of active CPUs.  Divide free list evenly among
12615	 * active CPUs.
12616	 */
12617	start = (dtrace_dynvar_t *)
12618	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12619	limit = (uintptr_t)base + size;
12620
12621	maxper = (limit - (uintptr_t)start) / NCPU;
12622	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12623
12624	for (i = 0; i < NCPU; i++) {
12625#if !defined(sun)
12626		if (CPU_ABSENT(i))
12627			continue;
12628#endif
12629		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12630
12631		/*
12632		 * If we don't even have enough chunks to make it once through
12633		 * NCPUs, we're just going to allocate everything to the first
12634		 * CPU.  And if we're on the last CPU, we're going to allocate
12635		 * whatever is left over.  In either case, we set the limit to
12636		 * be the limit of the dynamic variable space.
12637		 */
12638		if (maxper == 0 || i == NCPU - 1) {
12639			limit = (uintptr_t)base + size;
12640			start = NULL;
12641		} else {
12642			limit = (uintptr_t)start + maxper;
12643			start = (dtrace_dynvar_t *)limit;
12644		}
12645
12646		ASSERT(limit <= (uintptr_t)base + size);
12647
12648		for (;;) {
12649			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12650			    dstate->dtds_chunksize);
12651
12652			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12653				break;
12654
12655			dvar->dtdv_next = next;
12656			dvar = next;
12657		}
12658
12659		if (maxper == 0)
12660			break;
12661	}
12662
12663	return (0);
12664}
12665
12666static void
12667dtrace_dstate_fini(dtrace_dstate_t *dstate)
12668{
12669	ASSERT(MUTEX_HELD(&cpu_lock));
12670
12671	if (dstate->dtds_base == NULL)
12672		return;
12673
12674	kmem_free(dstate->dtds_base, dstate->dtds_size);
12675	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12676}
12677
12678static void
12679dtrace_vstate_fini(dtrace_vstate_t *vstate)
12680{
12681	/*
12682	 * Logical XOR, where are you?
12683	 */
12684	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12685
12686	if (vstate->dtvs_nglobals > 0) {
12687		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12688		    sizeof (dtrace_statvar_t *));
12689	}
12690
12691	if (vstate->dtvs_ntlocals > 0) {
12692		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12693		    sizeof (dtrace_difv_t));
12694	}
12695
12696	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12697
12698	if (vstate->dtvs_nlocals > 0) {
12699		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12700		    sizeof (dtrace_statvar_t *));
12701	}
12702}
12703
12704#if defined(sun)
12705static void
12706dtrace_state_clean(dtrace_state_t *state)
12707{
12708	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12709		return;
12710
12711	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12712	dtrace_speculation_clean(state);
12713}
12714
12715static void
12716dtrace_state_deadman(dtrace_state_t *state)
12717{
12718	hrtime_t now;
12719
12720	dtrace_sync();
12721
12722	now = dtrace_gethrtime();
12723
12724	if (state != dtrace_anon.dta_state &&
12725	    now - state->dts_laststatus >= dtrace_deadman_user)
12726		return;
12727
12728	/*
12729	 * We must be sure that dts_alive never appears to be less than the
12730	 * value upon entry to dtrace_state_deadman(), and because we lack a
12731	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12732	 * store INT64_MAX to it, followed by a memory barrier, followed by
12733	 * the new value.  This assures that dts_alive never appears to be
12734	 * less than its true value, regardless of the order in which the
12735	 * stores to the underlying storage are issued.
12736	 */
12737	state->dts_alive = INT64_MAX;
12738	dtrace_membar_producer();
12739	state->dts_alive = now;
12740}
12741#else
12742static void
12743dtrace_state_clean(void *arg)
12744{
12745	dtrace_state_t *state = arg;
12746	dtrace_optval_t *opt = state->dts_options;
12747
12748	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12749		return;
12750
12751	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12752	dtrace_speculation_clean(state);
12753
12754	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12755	    dtrace_state_clean, state);
12756}
12757
12758static void
12759dtrace_state_deadman(void *arg)
12760{
12761	dtrace_state_t *state = arg;
12762	hrtime_t now;
12763
12764	dtrace_sync();
12765
12766	dtrace_debug_output();
12767
12768	now = dtrace_gethrtime();
12769
12770	if (state != dtrace_anon.dta_state &&
12771	    now - state->dts_laststatus >= dtrace_deadman_user)
12772		return;
12773
12774	/*
12775	 * We must be sure that dts_alive never appears to be less than the
12776	 * value upon entry to dtrace_state_deadman(), and because we lack a
12777	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12778	 * store INT64_MAX to it, followed by a memory barrier, followed by
12779	 * the new value.  This assures that dts_alive never appears to be
12780	 * less than its true value, regardless of the order in which the
12781	 * stores to the underlying storage are issued.
12782	 */
12783	state->dts_alive = INT64_MAX;
12784	dtrace_membar_producer();
12785	state->dts_alive = now;
12786
12787	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12788	    dtrace_state_deadman, state);
12789}
12790#endif
12791
12792static dtrace_state_t *
12793#if defined(sun)
12794dtrace_state_create(dev_t *devp, cred_t *cr)
12795#else
12796dtrace_state_create(struct cdev *dev)
12797#endif
12798{
12799#if defined(sun)
12800	minor_t minor;
12801	major_t major;
12802#else
12803	cred_t *cr = NULL;
12804	int m = 0;
12805#endif
12806	char c[30];
12807	dtrace_state_t *state;
12808	dtrace_optval_t *opt;
12809	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12810
12811	ASSERT(MUTEX_HELD(&dtrace_lock));
12812	ASSERT(MUTEX_HELD(&cpu_lock));
12813
12814#if defined(sun)
12815	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12816	    VM_BESTFIT | VM_SLEEP);
12817
12818	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12819		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12820		return (NULL);
12821	}
12822
12823	state = ddi_get_soft_state(dtrace_softstate, minor);
12824#else
12825	if (dev != NULL) {
12826		cr = dev->si_cred;
12827		m = dev2unit(dev);
12828		}
12829
12830	/* Allocate memory for the state. */
12831	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12832#endif
12833
12834	state->dts_epid = DTRACE_EPIDNONE + 1;
12835
12836	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12837#if defined(sun)
12838	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12839	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12840
12841	if (devp != NULL) {
12842		major = getemajor(*devp);
12843	} else {
12844		major = ddi_driver_major(dtrace_devi);
12845	}
12846
12847	state->dts_dev = makedevice(major, minor);
12848
12849	if (devp != NULL)
12850		*devp = state->dts_dev;
12851#else
12852	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12853	state->dts_dev = dev;
12854#endif
12855
12856	/*
12857	 * We allocate NCPU buffers.  On the one hand, this can be quite
12858	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12859	 * other hand, it saves an additional memory reference in the probe
12860	 * path.
12861	 */
12862	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12863	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12864
12865#if defined(sun)
12866	state->dts_cleaner = CYCLIC_NONE;
12867	state->dts_deadman = CYCLIC_NONE;
12868#else
12869	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
12870	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
12871#endif
12872	state->dts_vstate.dtvs_state = state;
12873
12874	for (i = 0; i < DTRACEOPT_MAX; i++)
12875		state->dts_options[i] = DTRACEOPT_UNSET;
12876
12877	/*
12878	 * Set the default options.
12879	 */
12880	opt = state->dts_options;
12881	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12882	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12883	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12884	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12885	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12886	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12887	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12888	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12889	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12890	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12891	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12892	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12893	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12894	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12895
12896	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12897
12898	/*
12899	 * Depending on the user credentials, we set flag bits which alter probe
12900	 * visibility or the amount of destructiveness allowed.  In the case of
12901	 * actual anonymous tracing, or the possession of all privileges, all of
12902	 * the normal checks are bypassed.
12903	 */
12904	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12905		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12906		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12907	} else {
12908		/*
12909		 * Set up the credentials for this instantiation.  We take a
12910		 * hold on the credential to prevent it from disappearing on
12911		 * us; this in turn prevents the zone_t referenced by this
12912		 * credential from disappearing.  This means that we can
12913		 * examine the credential and the zone from probe context.
12914		 */
12915		crhold(cr);
12916		state->dts_cred.dcr_cred = cr;
12917
12918		/*
12919		 * CRA_PROC means "we have *some* privilege for dtrace" and
12920		 * unlocks the use of variables like pid, zonename, etc.
12921		 */
12922		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12923		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12924			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12925		}
12926
12927		/*
12928		 * dtrace_user allows use of syscall and profile providers.
12929		 * If the user also has proc_owner and/or proc_zone, we
12930		 * extend the scope to include additional visibility and
12931		 * destructive power.
12932		 */
12933		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12934			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12935				state->dts_cred.dcr_visible |=
12936				    DTRACE_CRV_ALLPROC;
12937
12938				state->dts_cred.dcr_action |=
12939				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12940			}
12941
12942			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12943				state->dts_cred.dcr_visible |=
12944				    DTRACE_CRV_ALLZONE;
12945
12946				state->dts_cred.dcr_action |=
12947				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12948			}
12949
12950			/*
12951			 * If we have all privs in whatever zone this is,
12952			 * we can do destructive things to processes which
12953			 * have altered credentials.
12954			 */
12955#if defined(sun)
12956			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12957			    cr->cr_zone->zone_privset)) {
12958				state->dts_cred.dcr_action |=
12959				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12960			}
12961#endif
12962		}
12963
12964		/*
12965		 * Holding the dtrace_kernel privilege also implies that
12966		 * the user has the dtrace_user privilege from a visibility
12967		 * perspective.  But without further privileges, some
12968		 * destructive actions are not available.
12969		 */
12970		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12971			/*
12972			 * Make all probes in all zones visible.  However,
12973			 * this doesn't mean that all actions become available
12974			 * to all zones.
12975			 */
12976			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12977			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12978
12979			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12980			    DTRACE_CRA_PROC;
12981			/*
12982			 * Holding proc_owner means that destructive actions
12983			 * for *this* zone are allowed.
12984			 */
12985			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12986				state->dts_cred.dcr_action |=
12987				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12988
12989			/*
12990			 * Holding proc_zone means that destructive actions
12991			 * for this user/group ID in all zones is allowed.
12992			 */
12993			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12994				state->dts_cred.dcr_action |=
12995				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12996
12997#if defined(sun)
12998			/*
12999			 * If we have all privs in whatever zone this is,
13000			 * we can do destructive things to processes which
13001			 * have altered credentials.
13002			 */
13003			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13004			    cr->cr_zone->zone_privset)) {
13005				state->dts_cred.dcr_action |=
13006				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13007			}
13008#endif
13009		}
13010
13011		/*
13012		 * Holding the dtrace_proc privilege gives control over fasttrap
13013		 * and pid providers.  We need to grant wider destructive
13014		 * privileges in the event that the user has proc_owner and/or
13015		 * proc_zone.
13016		 */
13017		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13018			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13019				state->dts_cred.dcr_action |=
13020				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13021
13022			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13023				state->dts_cred.dcr_action |=
13024				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13025		}
13026	}
13027
13028	return (state);
13029}
13030
13031static int
13032dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13033{
13034	dtrace_optval_t *opt = state->dts_options, size;
13035	processorid_t cpu = 0;;
13036	int flags = 0, rval;
13037
13038	ASSERT(MUTEX_HELD(&dtrace_lock));
13039	ASSERT(MUTEX_HELD(&cpu_lock));
13040	ASSERT(which < DTRACEOPT_MAX);
13041	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13042	    (state == dtrace_anon.dta_state &&
13043	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13044
13045	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13046		return (0);
13047
13048	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13049		cpu = opt[DTRACEOPT_CPU];
13050
13051	if (which == DTRACEOPT_SPECSIZE)
13052		flags |= DTRACEBUF_NOSWITCH;
13053
13054	if (which == DTRACEOPT_BUFSIZE) {
13055		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13056			flags |= DTRACEBUF_RING;
13057
13058		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13059			flags |= DTRACEBUF_FILL;
13060
13061		if (state != dtrace_anon.dta_state ||
13062		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13063			flags |= DTRACEBUF_INACTIVE;
13064	}
13065
13066	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13067		/*
13068		 * The size must be 8-byte aligned.  If the size is not 8-byte
13069		 * aligned, drop it down by the difference.
13070		 */
13071		if (size & (sizeof (uint64_t) - 1))
13072			size -= size & (sizeof (uint64_t) - 1);
13073
13074		if (size < state->dts_reserve) {
13075			/*
13076			 * Buffers always must be large enough to accommodate
13077			 * their prereserved space.  We return E2BIG instead
13078			 * of ENOMEM in this case to allow for user-level
13079			 * software to differentiate the cases.
13080			 */
13081			return (E2BIG);
13082		}
13083
13084		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13085
13086		if (rval != ENOMEM) {
13087			opt[which] = size;
13088			return (rval);
13089		}
13090
13091		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13092			return (rval);
13093	}
13094
13095	return (ENOMEM);
13096}
13097
13098static int
13099dtrace_state_buffers(dtrace_state_t *state)
13100{
13101	dtrace_speculation_t *spec = state->dts_speculations;
13102	int rval, i;
13103
13104	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13105	    DTRACEOPT_BUFSIZE)) != 0)
13106		return (rval);
13107
13108	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13109	    DTRACEOPT_AGGSIZE)) != 0)
13110		return (rval);
13111
13112	for (i = 0; i < state->dts_nspeculations; i++) {
13113		if ((rval = dtrace_state_buffer(state,
13114		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13115			return (rval);
13116	}
13117
13118	return (0);
13119}
13120
13121static void
13122dtrace_state_prereserve(dtrace_state_t *state)
13123{
13124	dtrace_ecb_t *ecb;
13125	dtrace_probe_t *probe;
13126
13127	state->dts_reserve = 0;
13128
13129	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13130		return;
13131
13132	/*
13133	 * If our buffer policy is a "fill" buffer policy, we need to set the
13134	 * prereserved space to be the space required by the END probes.
13135	 */
13136	probe = dtrace_probes[dtrace_probeid_end - 1];
13137	ASSERT(probe != NULL);
13138
13139	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13140		if (ecb->dte_state != state)
13141			continue;
13142
13143		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13144	}
13145}
13146
13147static int
13148dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13149{
13150	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13151	dtrace_speculation_t *spec;
13152	dtrace_buffer_t *buf;
13153#if defined(sun)
13154	cyc_handler_t hdlr;
13155	cyc_time_t when;
13156#endif
13157	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13158	dtrace_icookie_t cookie;
13159
13160	mutex_enter(&cpu_lock);
13161	mutex_enter(&dtrace_lock);
13162
13163	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13164		rval = EBUSY;
13165		goto out;
13166	}
13167
13168	/*
13169	 * Before we can perform any checks, we must prime all of the
13170	 * retained enablings that correspond to this state.
13171	 */
13172	dtrace_enabling_prime(state);
13173
13174	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13175		rval = EACCES;
13176		goto out;
13177	}
13178
13179	dtrace_state_prereserve(state);
13180
13181	/*
13182	 * Now we want to do is try to allocate our speculations.
13183	 * We do not automatically resize the number of speculations; if
13184	 * this fails, we will fail the operation.
13185	 */
13186	nspec = opt[DTRACEOPT_NSPEC];
13187	ASSERT(nspec != DTRACEOPT_UNSET);
13188
13189	if (nspec > INT_MAX) {
13190		rval = ENOMEM;
13191		goto out;
13192	}
13193
13194	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13195
13196	if (spec == NULL) {
13197		rval = ENOMEM;
13198		goto out;
13199	}
13200
13201	state->dts_speculations = spec;
13202	state->dts_nspeculations = (int)nspec;
13203
13204	for (i = 0; i < nspec; i++) {
13205		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13206			rval = ENOMEM;
13207			goto err;
13208		}
13209
13210		spec[i].dtsp_buffer = buf;
13211	}
13212
13213	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13214		if (dtrace_anon.dta_state == NULL) {
13215			rval = ENOENT;
13216			goto out;
13217		}
13218
13219		if (state->dts_necbs != 0) {
13220			rval = EALREADY;
13221			goto out;
13222		}
13223
13224		state->dts_anon = dtrace_anon_grab();
13225		ASSERT(state->dts_anon != NULL);
13226		state = state->dts_anon;
13227
13228		/*
13229		 * We want "grabanon" to be set in the grabbed state, so we'll
13230		 * copy that option value from the grabbing state into the
13231		 * grabbed state.
13232		 */
13233		state->dts_options[DTRACEOPT_GRABANON] =
13234		    opt[DTRACEOPT_GRABANON];
13235
13236		*cpu = dtrace_anon.dta_beganon;
13237
13238		/*
13239		 * If the anonymous state is active (as it almost certainly
13240		 * is if the anonymous enabling ultimately matched anything),
13241		 * we don't allow any further option processing -- but we
13242		 * don't return failure.
13243		 */
13244		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13245			goto out;
13246	}
13247
13248	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13249	    opt[DTRACEOPT_AGGSIZE] != 0) {
13250		if (state->dts_aggregations == NULL) {
13251			/*
13252			 * We're not going to create an aggregation buffer
13253			 * because we don't have any ECBs that contain
13254			 * aggregations -- set this option to 0.
13255			 */
13256			opt[DTRACEOPT_AGGSIZE] = 0;
13257		} else {
13258			/*
13259			 * If we have an aggregation buffer, we must also have
13260			 * a buffer to use as scratch.
13261			 */
13262			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13263			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13264				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13265			}
13266		}
13267	}
13268
13269	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13270	    opt[DTRACEOPT_SPECSIZE] != 0) {
13271		if (!state->dts_speculates) {
13272			/*
13273			 * We're not going to create speculation buffers
13274			 * because we don't have any ECBs that actually
13275			 * speculate -- set the speculation size to 0.
13276			 */
13277			opt[DTRACEOPT_SPECSIZE] = 0;
13278		}
13279	}
13280
13281	/*
13282	 * The bare minimum size for any buffer that we're actually going to
13283	 * do anything to is sizeof (uint64_t).
13284	 */
13285	sz = sizeof (uint64_t);
13286
13287	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13288	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13289	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13290		/*
13291		 * A buffer size has been explicitly set to 0 (or to a size
13292		 * that will be adjusted to 0) and we need the space -- we
13293		 * need to return failure.  We return ENOSPC to differentiate
13294		 * it from failing to allocate a buffer due to failure to meet
13295		 * the reserve (for which we return E2BIG).
13296		 */
13297		rval = ENOSPC;
13298		goto out;
13299	}
13300
13301	if ((rval = dtrace_state_buffers(state)) != 0)
13302		goto err;
13303
13304	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13305		sz = dtrace_dstate_defsize;
13306
13307	do {
13308		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13309
13310		if (rval == 0)
13311			break;
13312
13313		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13314			goto err;
13315	} while (sz >>= 1);
13316
13317	opt[DTRACEOPT_DYNVARSIZE] = sz;
13318
13319	if (rval != 0)
13320		goto err;
13321
13322	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13323		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13324
13325	if (opt[DTRACEOPT_CLEANRATE] == 0)
13326		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13327
13328	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13329		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13330
13331	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13332		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13333
13334	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13335#if defined(sun)
13336	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13337	hdlr.cyh_arg = state;
13338	hdlr.cyh_level = CY_LOW_LEVEL;
13339
13340	when.cyt_when = 0;
13341	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13342
13343	state->dts_cleaner = cyclic_add(&hdlr, &when);
13344
13345	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13346	hdlr.cyh_arg = state;
13347	hdlr.cyh_level = CY_LOW_LEVEL;
13348
13349	when.cyt_when = 0;
13350	when.cyt_interval = dtrace_deadman_interval;
13351
13352	state->dts_deadman = cyclic_add(&hdlr, &when);
13353#else
13354	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13355	    dtrace_state_clean, state);
13356	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13357	    dtrace_state_deadman, state);
13358#endif
13359
13360	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13361
13362	/*
13363	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13364	 * interrupts here both to record the CPU on which we fired the BEGIN
13365	 * probe (the data from this CPU will be processed first at user
13366	 * level) and to manually activate the buffer for this CPU.
13367	 */
13368	cookie = dtrace_interrupt_disable();
13369	*cpu = curcpu;
13370	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13371	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13372
13373	dtrace_probe(dtrace_probeid_begin,
13374	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13375	dtrace_interrupt_enable(cookie);
13376	/*
13377	 * We may have had an exit action from a BEGIN probe; only change our
13378	 * state to ACTIVE if we're still in WARMUP.
13379	 */
13380	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13381	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13382
13383	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13384		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13385
13386	/*
13387	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13388	 * want each CPU to transition its principal buffer out of the
13389	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13390	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13391	 * atomically transition from processing none of a state's ECBs to
13392	 * processing all of them.
13393	 */
13394	dtrace_xcall(DTRACE_CPUALL,
13395	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13396	goto out;
13397
13398err:
13399	dtrace_buffer_free(state->dts_buffer);
13400	dtrace_buffer_free(state->dts_aggbuffer);
13401
13402	if ((nspec = state->dts_nspeculations) == 0) {
13403		ASSERT(state->dts_speculations == NULL);
13404		goto out;
13405	}
13406
13407	spec = state->dts_speculations;
13408	ASSERT(spec != NULL);
13409
13410	for (i = 0; i < state->dts_nspeculations; i++) {
13411		if ((buf = spec[i].dtsp_buffer) == NULL)
13412			break;
13413
13414		dtrace_buffer_free(buf);
13415		kmem_free(buf, bufsize);
13416	}
13417
13418	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13419	state->dts_nspeculations = 0;
13420	state->dts_speculations = NULL;
13421
13422out:
13423	mutex_exit(&dtrace_lock);
13424	mutex_exit(&cpu_lock);
13425
13426	return (rval);
13427}
13428
13429static int
13430dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13431{
13432	dtrace_icookie_t cookie;
13433
13434	ASSERT(MUTEX_HELD(&dtrace_lock));
13435
13436	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13437	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13438		return (EINVAL);
13439
13440	/*
13441	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13442	 * to be sure that every CPU has seen it.  See below for the details
13443	 * on why this is done.
13444	 */
13445	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13446	dtrace_sync();
13447
13448	/*
13449	 * By this point, it is impossible for any CPU to be still processing
13450	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13451	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13452	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13453	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13454	 * iff we're in the END probe.
13455	 */
13456	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13457	dtrace_sync();
13458	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13459
13460	/*
13461	 * Finally, we can release the reserve and call the END probe.  We
13462	 * disable interrupts across calling the END probe to allow us to
13463	 * return the CPU on which we actually called the END probe.  This
13464	 * allows user-land to be sure that this CPU's principal buffer is
13465	 * processed last.
13466	 */
13467	state->dts_reserve = 0;
13468
13469	cookie = dtrace_interrupt_disable();
13470	*cpu = curcpu;
13471	dtrace_probe(dtrace_probeid_end,
13472	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13473	dtrace_interrupt_enable(cookie);
13474
13475	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13476	dtrace_sync();
13477
13478	return (0);
13479}
13480
13481static int
13482dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13483    dtrace_optval_t val)
13484{
13485	ASSERT(MUTEX_HELD(&dtrace_lock));
13486
13487	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13488		return (EBUSY);
13489
13490	if (option >= DTRACEOPT_MAX)
13491		return (EINVAL);
13492
13493	if (option != DTRACEOPT_CPU && val < 0)
13494		return (EINVAL);
13495
13496	switch (option) {
13497	case DTRACEOPT_DESTRUCTIVE:
13498		if (dtrace_destructive_disallow)
13499			return (EACCES);
13500
13501		state->dts_cred.dcr_destructive = 1;
13502		break;
13503
13504	case DTRACEOPT_BUFSIZE:
13505	case DTRACEOPT_DYNVARSIZE:
13506	case DTRACEOPT_AGGSIZE:
13507	case DTRACEOPT_SPECSIZE:
13508	case DTRACEOPT_STRSIZE:
13509		if (val < 0)
13510			return (EINVAL);
13511
13512		if (val >= LONG_MAX) {
13513			/*
13514			 * If this is an otherwise negative value, set it to
13515			 * the highest multiple of 128m less than LONG_MAX.
13516			 * Technically, we're adjusting the size without
13517			 * regard to the buffer resizing policy, but in fact,
13518			 * this has no effect -- if we set the buffer size to
13519			 * ~LONG_MAX and the buffer policy is ultimately set to
13520			 * be "manual", the buffer allocation is guaranteed to
13521			 * fail, if only because the allocation requires two
13522			 * buffers.  (We set the the size to the highest
13523			 * multiple of 128m because it ensures that the size
13524			 * will remain a multiple of a megabyte when
13525			 * repeatedly halved -- all the way down to 15m.)
13526			 */
13527			val = LONG_MAX - (1 << 27) + 1;
13528		}
13529	}
13530
13531	state->dts_options[option] = val;
13532
13533	return (0);
13534}
13535
13536static void
13537dtrace_state_destroy(dtrace_state_t *state)
13538{
13539	dtrace_ecb_t *ecb;
13540	dtrace_vstate_t *vstate = &state->dts_vstate;
13541#if defined(sun)
13542	minor_t minor = getminor(state->dts_dev);
13543#endif
13544	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13545	dtrace_speculation_t *spec = state->dts_speculations;
13546	int nspec = state->dts_nspeculations;
13547	uint32_t match;
13548
13549	ASSERT(MUTEX_HELD(&dtrace_lock));
13550	ASSERT(MUTEX_HELD(&cpu_lock));
13551
13552	/*
13553	 * First, retract any retained enablings for this state.
13554	 */
13555	dtrace_enabling_retract(state);
13556	ASSERT(state->dts_nretained == 0);
13557
13558	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13559	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13560		/*
13561		 * We have managed to come into dtrace_state_destroy() on a
13562		 * hot enabling -- almost certainly because of a disorderly
13563		 * shutdown of a consumer.  (That is, a consumer that is
13564		 * exiting without having called dtrace_stop().) In this case,
13565		 * we're going to set our activity to be KILLED, and then
13566		 * issue a sync to be sure that everyone is out of probe
13567		 * context before we start blowing away ECBs.
13568		 */
13569		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13570		dtrace_sync();
13571	}
13572
13573	/*
13574	 * Release the credential hold we took in dtrace_state_create().
13575	 */
13576	if (state->dts_cred.dcr_cred != NULL)
13577		crfree(state->dts_cred.dcr_cred);
13578
13579	/*
13580	 * Now we can safely disable and destroy any enabled probes.  Because
13581	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13582	 * (especially if they're all enabled), we take two passes through the
13583	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13584	 * in the second we disable whatever is left over.
13585	 */
13586	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13587		for (i = 0; i < state->dts_necbs; i++) {
13588			if ((ecb = state->dts_ecbs[i]) == NULL)
13589				continue;
13590
13591			if (match && ecb->dte_probe != NULL) {
13592				dtrace_probe_t *probe = ecb->dte_probe;
13593				dtrace_provider_t *prov = probe->dtpr_provider;
13594
13595				if (!(prov->dtpv_priv.dtpp_flags & match))
13596					continue;
13597			}
13598
13599			dtrace_ecb_disable(ecb);
13600			dtrace_ecb_destroy(ecb);
13601		}
13602
13603		if (!match)
13604			break;
13605	}
13606
13607	/*
13608	 * Before we free the buffers, perform one more sync to assure that
13609	 * every CPU is out of probe context.
13610	 */
13611	dtrace_sync();
13612
13613	dtrace_buffer_free(state->dts_buffer);
13614	dtrace_buffer_free(state->dts_aggbuffer);
13615
13616	for (i = 0; i < nspec; i++)
13617		dtrace_buffer_free(spec[i].dtsp_buffer);
13618
13619#if defined(sun)
13620	if (state->dts_cleaner != CYCLIC_NONE)
13621		cyclic_remove(state->dts_cleaner);
13622
13623	if (state->dts_deadman != CYCLIC_NONE)
13624		cyclic_remove(state->dts_deadman);
13625#else
13626	callout_stop(&state->dts_cleaner);
13627	callout_drain(&state->dts_cleaner);
13628	callout_stop(&state->dts_deadman);
13629	callout_drain(&state->dts_deadman);
13630#endif
13631
13632	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13633	dtrace_vstate_fini(vstate);
13634	if (state->dts_ecbs != NULL)
13635		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13636
13637	if (state->dts_aggregations != NULL) {
13638#ifdef DEBUG
13639		for (i = 0; i < state->dts_naggregations; i++)
13640			ASSERT(state->dts_aggregations[i] == NULL);
13641#endif
13642		ASSERT(state->dts_naggregations > 0);
13643		kmem_free(state->dts_aggregations,
13644		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13645	}
13646
13647	kmem_free(state->dts_buffer, bufsize);
13648	kmem_free(state->dts_aggbuffer, bufsize);
13649
13650	for (i = 0; i < nspec; i++)
13651		kmem_free(spec[i].dtsp_buffer, bufsize);
13652
13653	if (spec != NULL)
13654		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13655
13656	dtrace_format_destroy(state);
13657
13658	if (state->dts_aggid_arena != NULL) {
13659#if defined(sun)
13660		vmem_destroy(state->dts_aggid_arena);
13661#else
13662		delete_unrhdr(state->dts_aggid_arena);
13663#endif
13664		state->dts_aggid_arena = NULL;
13665	}
13666#if defined(sun)
13667	ddi_soft_state_free(dtrace_softstate, minor);
13668	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13669#endif
13670}
13671
13672/*
13673 * DTrace Anonymous Enabling Functions
13674 */
13675static dtrace_state_t *
13676dtrace_anon_grab(void)
13677{
13678	dtrace_state_t *state;
13679
13680	ASSERT(MUTEX_HELD(&dtrace_lock));
13681
13682	if ((state = dtrace_anon.dta_state) == NULL) {
13683		ASSERT(dtrace_anon.dta_enabling == NULL);
13684		return (NULL);
13685	}
13686
13687	ASSERT(dtrace_anon.dta_enabling != NULL);
13688	ASSERT(dtrace_retained != NULL);
13689
13690	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13691	dtrace_anon.dta_enabling = NULL;
13692	dtrace_anon.dta_state = NULL;
13693
13694	return (state);
13695}
13696
13697static void
13698dtrace_anon_property(void)
13699{
13700	int i, rv;
13701	dtrace_state_t *state;
13702	dof_hdr_t *dof;
13703	char c[32];		/* enough for "dof-data-" + digits */
13704
13705	ASSERT(MUTEX_HELD(&dtrace_lock));
13706	ASSERT(MUTEX_HELD(&cpu_lock));
13707
13708	for (i = 0; ; i++) {
13709		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13710
13711		dtrace_err_verbose = 1;
13712
13713		if ((dof = dtrace_dof_property(c)) == NULL) {
13714			dtrace_err_verbose = 0;
13715			break;
13716		}
13717
13718#if defined(sun)
13719		/*
13720		 * We want to create anonymous state, so we need to transition
13721		 * the kernel debugger to indicate that DTrace is active.  If
13722		 * this fails (e.g. because the debugger has modified text in
13723		 * some way), we won't continue with the processing.
13724		 */
13725		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13726			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13727			    "enabling ignored.");
13728			dtrace_dof_destroy(dof);
13729			break;
13730		}
13731#endif
13732
13733		/*
13734		 * If we haven't allocated an anonymous state, we'll do so now.
13735		 */
13736		if ((state = dtrace_anon.dta_state) == NULL) {
13737#if defined(sun)
13738			state = dtrace_state_create(NULL, NULL);
13739#else
13740			state = dtrace_state_create(NULL);
13741#endif
13742			dtrace_anon.dta_state = state;
13743
13744			if (state == NULL) {
13745				/*
13746				 * This basically shouldn't happen:  the only
13747				 * failure mode from dtrace_state_create() is a
13748				 * failure of ddi_soft_state_zalloc() that
13749				 * itself should never happen.  Still, the
13750				 * interface allows for a failure mode, and
13751				 * we want to fail as gracefully as possible:
13752				 * we'll emit an error message and cease
13753				 * processing anonymous state in this case.
13754				 */
13755				cmn_err(CE_WARN, "failed to create "
13756				    "anonymous state");
13757				dtrace_dof_destroy(dof);
13758				break;
13759			}
13760		}
13761
13762		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13763		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13764
13765		if (rv == 0)
13766			rv = dtrace_dof_options(dof, state);
13767
13768		dtrace_err_verbose = 0;
13769		dtrace_dof_destroy(dof);
13770
13771		if (rv != 0) {
13772			/*
13773			 * This is malformed DOF; chuck any anonymous state
13774			 * that we created.
13775			 */
13776			ASSERT(dtrace_anon.dta_enabling == NULL);
13777			dtrace_state_destroy(state);
13778			dtrace_anon.dta_state = NULL;
13779			break;
13780		}
13781
13782		ASSERT(dtrace_anon.dta_enabling != NULL);
13783	}
13784
13785	if (dtrace_anon.dta_enabling != NULL) {
13786		int rval;
13787
13788		/*
13789		 * dtrace_enabling_retain() can only fail because we are
13790		 * trying to retain more enablings than are allowed -- but
13791		 * we only have one anonymous enabling, and we are guaranteed
13792		 * to be allowed at least one retained enabling; we assert
13793		 * that dtrace_enabling_retain() returns success.
13794		 */
13795		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13796		ASSERT(rval == 0);
13797
13798		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13799	}
13800}
13801
13802#if defined(sun)
13803/*
13804 * DTrace Helper Functions
13805 */
13806static void
13807dtrace_helper_trace(dtrace_helper_action_t *helper,
13808    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13809{
13810	uint32_t size, next, nnext, i;
13811	dtrace_helptrace_t *ent;
13812	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13813
13814	if (!dtrace_helptrace_enabled)
13815		return;
13816
13817	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13818
13819	/*
13820	 * What would a tracing framework be without its own tracing
13821	 * framework?  (Well, a hell of a lot simpler, for starters...)
13822	 */
13823	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13824	    sizeof (uint64_t) - sizeof (uint64_t);
13825
13826	/*
13827	 * Iterate until we can allocate a slot in the trace buffer.
13828	 */
13829	do {
13830		next = dtrace_helptrace_next;
13831
13832		if (next + size < dtrace_helptrace_bufsize) {
13833			nnext = next + size;
13834		} else {
13835			nnext = size;
13836		}
13837	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13838
13839	/*
13840	 * We have our slot; fill it in.
13841	 */
13842	if (nnext == size)
13843		next = 0;
13844
13845	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13846	ent->dtht_helper = helper;
13847	ent->dtht_where = where;
13848	ent->dtht_nlocals = vstate->dtvs_nlocals;
13849
13850	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13851	    mstate->dtms_fltoffs : -1;
13852	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13853	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13854
13855	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13856		dtrace_statvar_t *svar;
13857
13858		if ((svar = vstate->dtvs_locals[i]) == NULL)
13859			continue;
13860
13861		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13862		ent->dtht_locals[i] =
13863		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13864	}
13865}
13866#endif
13867
13868#if defined(sun)
13869static uint64_t
13870dtrace_helper(int which, dtrace_mstate_t *mstate,
13871    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13872{
13873	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13874	uint64_t sarg0 = mstate->dtms_arg[0];
13875	uint64_t sarg1 = mstate->dtms_arg[1];
13876	uint64_t rval;
13877	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13878	dtrace_helper_action_t *helper;
13879	dtrace_vstate_t *vstate;
13880	dtrace_difo_t *pred;
13881	int i, trace = dtrace_helptrace_enabled;
13882
13883	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13884
13885	if (helpers == NULL)
13886		return (0);
13887
13888	if ((helper = helpers->dthps_actions[which]) == NULL)
13889		return (0);
13890
13891	vstate = &helpers->dthps_vstate;
13892	mstate->dtms_arg[0] = arg0;
13893	mstate->dtms_arg[1] = arg1;
13894
13895	/*
13896	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13897	 * we'll call the corresponding actions.  Note that the below calls
13898	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13899	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13900	 * the stored DIF offset with its own (which is the desired behavior).
13901	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13902	 * from machine state; this is okay, too.
13903	 */
13904	for (; helper != NULL; helper = helper->dtha_next) {
13905		if ((pred = helper->dtha_predicate) != NULL) {
13906			if (trace)
13907				dtrace_helper_trace(helper, mstate, vstate, 0);
13908
13909			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13910				goto next;
13911
13912			if (*flags & CPU_DTRACE_FAULT)
13913				goto err;
13914		}
13915
13916		for (i = 0; i < helper->dtha_nactions; i++) {
13917			if (trace)
13918				dtrace_helper_trace(helper,
13919				    mstate, vstate, i + 1);
13920
13921			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13922			    mstate, vstate, state);
13923
13924			if (*flags & CPU_DTRACE_FAULT)
13925				goto err;
13926		}
13927
13928next:
13929		if (trace)
13930			dtrace_helper_trace(helper, mstate, vstate,
13931			    DTRACE_HELPTRACE_NEXT);
13932	}
13933
13934	if (trace)
13935		dtrace_helper_trace(helper, mstate, vstate,
13936		    DTRACE_HELPTRACE_DONE);
13937
13938	/*
13939	 * Restore the arg0 that we saved upon entry.
13940	 */
13941	mstate->dtms_arg[0] = sarg0;
13942	mstate->dtms_arg[1] = sarg1;
13943
13944	return (rval);
13945
13946err:
13947	if (trace)
13948		dtrace_helper_trace(helper, mstate, vstate,
13949		    DTRACE_HELPTRACE_ERR);
13950
13951	/*
13952	 * Restore the arg0 that we saved upon entry.
13953	 */
13954	mstate->dtms_arg[0] = sarg0;
13955	mstate->dtms_arg[1] = sarg1;
13956
13957	return (0);
13958}
13959
13960static void
13961dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13962    dtrace_vstate_t *vstate)
13963{
13964	int i;
13965
13966	if (helper->dtha_predicate != NULL)
13967		dtrace_difo_release(helper->dtha_predicate, vstate);
13968
13969	for (i = 0; i < helper->dtha_nactions; i++) {
13970		ASSERT(helper->dtha_actions[i] != NULL);
13971		dtrace_difo_release(helper->dtha_actions[i], vstate);
13972	}
13973
13974	kmem_free(helper->dtha_actions,
13975	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13976	kmem_free(helper, sizeof (dtrace_helper_action_t));
13977}
13978
13979static int
13980dtrace_helper_destroygen(int gen)
13981{
13982	proc_t *p = curproc;
13983	dtrace_helpers_t *help = p->p_dtrace_helpers;
13984	dtrace_vstate_t *vstate;
13985	int i;
13986
13987	ASSERT(MUTEX_HELD(&dtrace_lock));
13988
13989	if (help == NULL || gen > help->dthps_generation)
13990		return (EINVAL);
13991
13992	vstate = &help->dthps_vstate;
13993
13994	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13995		dtrace_helper_action_t *last = NULL, *h, *next;
13996
13997		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13998			next = h->dtha_next;
13999
14000			if (h->dtha_generation == gen) {
14001				if (last != NULL) {
14002					last->dtha_next = next;
14003				} else {
14004					help->dthps_actions[i] = next;
14005				}
14006
14007				dtrace_helper_action_destroy(h, vstate);
14008			} else {
14009				last = h;
14010			}
14011		}
14012	}
14013
14014	/*
14015	 * Interate until we've cleared out all helper providers with the
14016	 * given generation number.
14017	 */
14018	for (;;) {
14019		dtrace_helper_provider_t *prov;
14020
14021		/*
14022		 * Look for a helper provider with the right generation. We
14023		 * have to start back at the beginning of the list each time
14024		 * because we drop dtrace_lock. It's unlikely that we'll make
14025		 * more than two passes.
14026		 */
14027		for (i = 0; i < help->dthps_nprovs; i++) {
14028			prov = help->dthps_provs[i];
14029
14030			if (prov->dthp_generation == gen)
14031				break;
14032		}
14033
14034		/*
14035		 * If there were no matches, we're done.
14036		 */
14037		if (i == help->dthps_nprovs)
14038			break;
14039
14040		/*
14041		 * Move the last helper provider into this slot.
14042		 */
14043		help->dthps_nprovs--;
14044		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14045		help->dthps_provs[help->dthps_nprovs] = NULL;
14046
14047		mutex_exit(&dtrace_lock);
14048
14049		/*
14050		 * If we have a meta provider, remove this helper provider.
14051		 */
14052		mutex_enter(&dtrace_meta_lock);
14053		if (dtrace_meta_pid != NULL) {
14054			ASSERT(dtrace_deferred_pid == NULL);
14055			dtrace_helper_provider_remove(&prov->dthp_prov,
14056			    p->p_pid);
14057		}
14058		mutex_exit(&dtrace_meta_lock);
14059
14060		dtrace_helper_provider_destroy(prov);
14061
14062		mutex_enter(&dtrace_lock);
14063	}
14064
14065	return (0);
14066}
14067#endif
14068
14069#if defined(sun)
14070static int
14071dtrace_helper_validate(dtrace_helper_action_t *helper)
14072{
14073	int err = 0, i;
14074	dtrace_difo_t *dp;
14075
14076	if ((dp = helper->dtha_predicate) != NULL)
14077		err += dtrace_difo_validate_helper(dp);
14078
14079	for (i = 0; i < helper->dtha_nactions; i++)
14080		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14081
14082	return (err == 0);
14083}
14084#endif
14085
14086#if defined(sun)
14087static int
14088dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14089{
14090	dtrace_helpers_t *help;
14091	dtrace_helper_action_t *helper, *last;
14092	dtrace_actdesc_t *act;
14093	dtrace_vstate_t *vstate;
14094	dtrace_predicate_t *pred;
14095	int count = 0, nactions = 0, i;
14096
14097	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14098		return (EINVAL);
14099
14100	help = curproc->p_dtrace_helpers;
14101	last = help->dthps_actions[which];
14102	vstate = &help->dthps_vstate;
14103
14104	for (count = 0; last != NULL; last = last->dtha_next) {
14105		count++;
14106		if (last->dtha_next == NULL)
14107			break;
14108	}
14109
14110	/*
14111	 * If we already have dtrace_helper_actions_max helper actions for this
14112	 * helper action type, we'll refuse to add a new one.
14113	 */
14114	if (count >= dtrace_helper_actions_max)
14115		return (ENOSPC);
14116
14117	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14118	helper->dtha_generation = help->dthps_generation;
14119
14120	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14121		ASSERT(pred->dtp_difo != NULL);
14122		dtrace_difo_hold(pred->dtp_difo);
14123		helper->dtha_predicate = pred->dtp_difo;
14124	}
14125
14126	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14127		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14128			goto err;
14129
14130		if (act->dtad_difo == NULL)
14131			goto err;
14132
14133		nactions++;
14134	}
14135
14136	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14137	    (helper->dtha_nactions = nactions), KM_SLEEP);
14138
14139	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14140		dtrace_difo_hold(act->dtad_difo);
14141		helper->dtha_actions[i++] = act->dtad_difo;
14142	}
14143
14144	if (!dtrace_helper_validate(helper))
14145		goto err;
14146
14147	if (last == NULL) {
14148		help->dthps_actions[which] = helper;
14149	} else {
14150		last->dtha_next = helper;
14151	}
14152
14153	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14154		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14155		dtrace_helptrace_next = 0;
14156	}
14157
14158	return (0);
14159err:
14160	dtrace_helper_action_destroy(helper, vstate);
14161	return (EINVAL);
14162}
14163
14164static void
14165dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14166    dof_helper_t *dofhp)
14167{
14168	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14169
14170	mutex_enter(&dtrace_meta_lock);
14171	mutex_enter(&dtrace_lock);
14172
14173	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14174		/*
14175		 * If the dtrace module is loaded but not attached, or if
14176		 * there aren't isn't a meta provider registered to deal with
14177		 * these provider descriptions, we need to postpone creating
14178		 * the actual providers until later.
14179		 */
14180
14181		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14182		    dtrace_deferred_pid != help) {
14183			help->dthps_deferred = 1;
14184			help->dthps_pid = p->p_pid;
14185			help->dthps_next = dtrace_deferred_pid;
14186			help->dthps_prev = NULL;
14187			if (dtrace_deferred_pid != NULL)
14188				dtrace_deferred_pid->dthps_prev = help;
14189			dtrace_deferred_pid = help;
14190		}
14191
14192		mutex_exit(&dtrace_lock);
14193
14194	} else if (dofhp != NULL) {
14195		/*
14196		 * If the dtrace module is loaded and we have a particular
14197		 * helper provider description, pass that off to the
14198		 * meta provider.
14199		 */
14200
14201		mutex_exit(&dtrace_lock);
14202
14203		dtrace_helper_provide(dofhp, p->p_pid);
14204
14205	} else {
14206		/*
14207		 * Otherwise, just pass all the helper provider descriptions
14208		 * off to the meta provider.
14209		 */
14210
14211		int i;
14212		mutex_exit(&dtrace_lock);
14213
14214		for (i = 0; i < help->dthps_nprovs; i++) {
14215			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14216			    p->p_pid);
14217		}
14218	}
14219
14220	mutex_exit(&dtrace_meta_lock);
14221}
14222
14223static int
14224dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14225{
14226	dtrace_helpers_t *help;
14227	dtrace_helper_provider_t *hprov, **tmp_provs;
14228	uint_t tmp_maxprovs, i;
14229
14230	ASSERT(MUTEX_HELD(&dtrace_lock));
14231
14232	help = curproc->p_dtrace_helpers;
14233	ASSERT(help != NULL);
14234
14235	/*
14236	 * If we already have dtrace_helper_providers_max helper providers,
14237	 * we're refuse to add a new one.
14238	 */
14239	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14240		return (ENOSPC);
14241
14242	/*
14243	 * Check to make sure this isn't a duplicate.
14244	 */
14245	for (i = 0; i < help->dthps_nprovs; i++) {
14246		if (dofhp->dofhp_addr ==
14247		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14248			return (EALREADY);
14249	}
14250
14251	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14252	hprov->dthp_prov = *dofhp;
14253	hprov->dthp_ref = 1;
14254	hprov->dthp_generation = gen;
14255
14256	/*
14257	 * Allocate a bigger table for helper providers if it's already full.
14258	 */
14259	if (help->dthps_maxprovs == help->dthps_nprovs) {
14260		tmp_maxprovs = help->dthps_maxprovs;
14261		tmp_provs = help->dthps_provs;
14262
14263		if (help->dthps_maxprovs == 0)
14264			help->dthps_maxprovs = 2;
14265		else
14266			help->dthps_maxprovs *= 2;
14267		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14268			help->dthps_maxprovs = dtrace_helper_providers_max;
14269
14270		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14271
14272		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14273		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14274
14275		if (tmp_provs != NULL) {
14276			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14277			    sizeof (dtrace_helper_provider_t *));
14278			kmem_free(tmp_provs, tmp_maxprovs *
14279			    sizeof (dtrace_helper_provider_t *));
14280		}
14281	}
14282
14283	help->dthps_provs[help->dthps_nprovs] = hprov;
14284	help->dthps_nprovs++;
14285
14286	return (0);
14287}
14288
14289static void
14290dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14291{
14292	mutex_enter(&dtrace_lock);
14293
14294	if (--hprov->dthp_ref == 0) {
14295		dof_hdr_t *dof;
14296		mutex_exit(&dtrace_lock);
14297		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14298		dtrace_dof_destroy(dof);
14299		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14300	} else {
14301		mutex_exit(&dtrace_lock);
14302	}
14303}
14304
14305static int
14306dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14307{
14308	uintptr_t daddr = (uintptr_t)dof;
14309	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14310	dof_provider_t *provider;
14311	dof_probe_t *probe;
14312	uint8_t *arg;
14313	char *strtab, *typestr;
14314	dof_stridx_t typeidx;
14315	size_t typesz;
14316	uint_t nprobes, j, k;
14317
14318	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14319
14320	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14321		dtrace_dof_error(dof, "misaligned section offset");
14322		return (-1);
14323	}
14324
14325	/*
14326	 * The section needs to be large enough to contain the DOF provider
14327	 * structure appropriate for the given version.
14328	 */
14329	if (sec->dofs_size <
14330	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14331	    offsetof(dof_provider_t, dofpv_prenoffs) :
14332	    sizeof (dof_provider_t))) {
14333		dtrace_dof_error(dof, "provider section too small");
14334		return (-1);
14335	}
14336
14337	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14338	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14339	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14340	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14341	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14342
14343	if (str_sec == NULL || prb_sec == NULL ||
14344	    arg_sec == NULL || off_sec == NULL)
14345		return (-1);
14346
14347	enoff_sec = NULL;
14348
14349	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14350	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14351	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14352	    provider->dofpv_prenoffs)) == NULL)
14353		return (-1);
14354
14355	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14356
14357	if (provider->dofpv_name >= str_sec->dofs_size ||
14358	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14359		dtrace_dof_error(dof, "invalid provider name");
14360		return (-1);
14361	}
14362
14363	if (prb_sec->dofs_entsize == 0 ||
14364	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14365		dtrace_dof_error(dof, "invalid entry size");
14366		return (-1);
14367	}
14368
14369	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14370		dtrace_dof_error(dof, "misaligned entry size");
14371		return (-1);
14372	}
14373
14374	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14375		dtrace_dof_error(dof, "invalid entry size");
14376		return (-1);
14377	}
14378
14379	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14380		dtrace_dof_error(dof, "misaligned section offset");
14381		return (-1);
14382	}
14383
14384	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14385		dtrace_dof_error(dof, "invalid entry size");
14386		return (-1);
14387	}
14388
14389	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14390
14391	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14392
14393	/*
14394	 * Take a pass through the probes to check for errors.
14395	 */
14396	for (j = 0; j < nprobes; j++) {
14397		probe = (dof_probe_t *)(uintptr_t)(daddr +
14398		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14399
14400		if (probe->dofpr_func >= str_sec->dofs_size) {
14401			dtrace_dof_error(dof, "invalid function name");
14402			return (-1);
14403		}
14404
14405		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14406			dtrace_dof_error(dof, "function name too long");
14407			return (-1);
14408		}
14409
14410		if (probe->dofpr_name >= str_sec->dofs_size ||
14411		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14412			dtrace_dof_error(dof, "invalid probe name");
14413			return (-1);
14414		}
14415
14416		/*
14417		 * The offset count must not wrap the index, and the offsets
14418		 * must also not overflow the section's data.
14419		 */
14420		if (probe->dofpr_offidx + probe->dofpr_noffs <
14421		    probe->dofpr_offidx ||
14422		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14423		    off_sec->dofs_entsize > off_sec->dofs_size) {
14424			dtrace_dof_error(dof, "invalid probe offset");
14425			return (-1);
14426		}
14427
14428		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14429			/*
14430			 * If there's no is-enabled offset section, make sure
14431			 * there aren't any is-enabled offsets. Otherwise
14432			 * perform the same checks as for probe offsets
14433			 * (immediately above).
14434			 */
14435			if (enoff_sec == NULL) {
14436				if (probe->dofpr_enoffidx != 0 ||
14437				    probe->dofpr_nenoffs != 0) {
14438					dtrace_dof_error(dof, "is-enabled "
14439					    "offsets with null section");
14440					return (-1);
14441				}
14442			} else if (probe->dofpr_enoffidx +
14443			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14444			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14445			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14446				dtrace_dof_error(dof, "invalid is-enabled "
14447				    "offset");
14448				return (-1);
14449			}
14450
14451			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14452				dtrace_dof_error(dof, "zero probe and "
14453				    "is-enabled offsets");
14454				return (-1);
14455			}
14456		} else if (probe->dofpr_noffs == 0) {
14457			dtrace_dof_error(dof, "zero probe offsets");
14458			return (-1);
14459		}
14460
14461		if (probe->dofpr_argidx + probe->dofpr_xargc <
14462		    probe->dofpr_argidx ||
14463		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14464		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14465			dtrace_dof_error(dof, "invalid args");
14466			return (-1);
14467		}
14468
14469		typeidx = probe->dofpr_nargv;
14470		typestr = strtab + probe->dofpr_nargv;
14471		for (k = 0; k < probe->dofpr_nargc; k++) {
14472			if (typeidx >= str_sec->dofs_size) {
14473				dtrace_dof_error(dof, "bad "
14474				    "native argument type");
14475				return (-1);
14476			}
14477
14478			typesz = strlen(typestr) + 1;
14479			if (typesz > DTRACE_ARGTYPELEN) {
14480				dtrace_dof_error(dof, "native "
14481				    "argument type too long");
14482				return (-1);
14483			}
14484			typeidx += typesz;
14485			typestr += typesz;
14486		}
14487
14488		typeidx = probe->dofpr_xargv;
14489		typestr = strtab + probe->dofpr_xargv;
14490		for (k = 0; k < probe->dofpr_xargc; k++) {
14491			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14492				dtrace_dof_error(dof, "bad "
14493				    "native argument index");
14494				return (-1);
14495			}
14496
14497			if (typeidx >= str_sec->dofs_size) {
14498				dtrace_dof_error(dof, "bad "
14499				    "translated argument type");
14500				return (-1);
14501			}
14502
14503			typesz = strlen(typestr) + 1;
14504			if (typesz > DTRACE_ARGTYPELEN) {
14505				dtrace_dof_error(dof, "translated argument "
14506				    "type too long");
14507				return (-1);
14508			}
14509
14510			typeidx += typesz;
14511			typestr += typesz;
14512		}
14513	}
14514
14515	return (0);
14516}
14517
14518static int
14519dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14520{
14521	dtrace_helpers_t *help;
14522	dtrace_vstate_t *vstate;
14523	dtrace_enabling_t *enab = NULL;
14524	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14525	uintptr_t daddr = (uintptr_t)dof;
14526
14527	ASSERT(MUTEX_HELD(&dtrace_lock));
14528
14529	if ((help = curproc->p_dtrace_helpers) == NULL)
14530		help = dtrace_helpers_create(curproc);
14531
14532	vstate = &help->dthps_vstate;
14533
14534	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14535	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14536		dtrace_dof_destroy(dof);
14537		return (rv);
14538	}
14539
14540	/*
14541	 * Look for helper providers and validate their descriptions.
14542	 */
14543	if (dhp != NULL) {
14544		for (i = 0; i < dof->dofh_secnum; i++) {
14545			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14546			    dof->dofh_secoff + i * dof->dofh_secsize);
14547
14548			if (sec->dofs_type != DOF_SECT_PROVIDER)
14549				continue;
14550
14551			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14552				dtrace_enabling_destroy(enab);
14553				dtrace_dof_destroy(dof);
14554				return (-1);
14555			}
14556
14557			nprovs++;
14558		}
14559	}
14560
14561	/*
14562	 * Now we need to walk through the ECB descriptions in the enabling.
14563	 */
14564	for (i = 0; i < enab->dten_ndesc; i++) {
14565		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14566		dtrace_probedesc_t *desc = &ep->dted_probe;
14567
14568		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14569			continue;
14570
14571		if (strcmp(desc->dtpd_mod, "helper") != 0)
14572			continue;
14573
14574		if (strcmp(desc->dtpd_func, "ustack") != 0)
14575			continue;
14576
14577		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14578		    ep)) != 0) {
14579			/*
14580			 * Adding this helper action failed -- we are now going
14581			 * to rip out the entire generation and return failure.
14582			 */
14583			(void) dtrace_helper_destroygen(help->dthps_generation);
14584			dtrace_enabling_destroy(enab);
14585			dtrace_dof_destroy(dof);
14586			return (-1);
14587		}
14588
14589		nhelpers++;
14590	}
14591
14592	if (nhelpers < enab->dten_ndesc)
14593		dtrace_dof_error(dof, "unmatched helpers");
14594
14595	gen = help->dthps_generation++;
14596	dtrace_enabling_destroy(enab);
14597
14598	if (dhp != NULL && nprovs > 0) {
14599		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14600		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14601			mutex_exit(&dtrace_lock);
14602			dtrace_helper_provider_register(curproc, help, dhp);
14603			mutex_enter(&dtrace_lock);
14604
14605			destroy = 0;
14606		}
14607	}
14608
14609	if (destroy)
14610		dtrace_dof_destroy(dof);
14611
14612	return (gen);
14613}
14614
14615static dtrace_helpers_t *
14616dtrace_helpers_create(proc_t *p)
14617{
14618	dtrace_helpers_t *help;
14619
14620	ASSERT(MUTEX_HELD(&dtrace_lock));
14621	ASSERT(p->p_dtrace_helpers == NULL);
14622
14623	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14624	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14625	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14626
14627	p->p_dtrace_helpers = help;
14628	dtrace_helpers++;
14629
14630	return (help);
14631}
14632
14633static void
14634dtrace_helpers_destroy(void)
14635{
14636	dtrace_helpers_t *help;
14637	dtrace_vstate_t *vstate;
14638	proc_t *p = curproc;
14639	int i;
14640
14641	mutex_enter(&dtrace_lock);
14642
14643	ASSERT(p->p_dtrace_helpers != NULL);
14644	ASSERT(dtrace_helpers > 0);
14645
14646	help = p->p_dtrace_helpers;
14647	vstate = &help->dthps_vstate;
14648
14649	/*
14650	 * We're now going to lose the help from this process.
14651	 */
14652	p->p_dtrace_helpers = NULL;
14653	dtrace_sync();
14654
14655	/*
14656	 * Destory the helper actions.
14657	 */
14658	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14659		dtrace_helper_action_t *h, *next;
14660
14661		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14662			next = h->dtha_next;
14663			dtrace_helper_action_destroy(h, vstate);
14664			h = next;
14665		}
14666	}
14667
14668	mutex_exit(&dtrace_lock);
14669
14670	/*
14671	 * Destroy the helper providers.
14672	 */
14673	if (help->dthps_maxprovs > 0) {
14674		mutex_enter(&dtrace_meta_lock);
14675		if (dtrace_meta_pid != NULL) {
14676			ASSERT(dtrace_deferred_pid == NULL);
14677
14678			for (i = 0; i < help->dthps_nprovs; i++) {
14679				dtrace_helper_provider_remove(
14680				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14681			}
14682		} else {
14683			mutex_enter(&dtrace_lock);
14684			ASSERT(help->dthps_deferred == 0 ||
14685			    help->dthps_next != NULL ||
14686			    help->dthps_prev != NULL ||
14687			    help == dtrace_deferred_pid);
14688
14689			/*
14690			 * Remove the helper from the deferred list.
14691			 */
14692			if (help->dthps_next != NULL)
14693				help->dthps_next->dthps_prev = help->dthps_prev;
14694			if (help->dthps_prev != NULL)
14695				help->dthps_prev->dthps_next = help->dthps_next;
14696			if (dtrace_deferred_pid == help) {
14697				dtrace_deferred_pid = help->dthps_next;
14698				ASSERT(help->dthps_prev == NULL);
14699			}
14700
14701			mutex_exit(&dtrace_lock);
14702		}
14703
14704		mutex_exit(&dtrace_meta_lock);
14705
14706		for (i = 0; i < help->dthps_nprovs; i++) {
14707			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14708		}
14709
14710		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14711		    sizeof (dtrace_helper_provider_t *));
14712	}
14713
14714	mutex_enter(&dtrace_lock);
14715
14716	dtrace_vstate_fini(&help->dthps_vstate);
14717	kmem_free(help->dthps_actions,
14718	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14719	kmem_free(help, sizeof (dtrace_helpers_t));
14720
14721	--dtrace_helpers;
14722	mutex_exit(&dtrace_lock);
14723}
14724
14725static void
14726dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14727{
14728	dtrace_helpers_t *help, *newhelp;
14729	dtrace_helper_action_t *helper, *new, *last;
14730	dtrace_difo_t *dp;
14731	dtrace_vstate_t *vstate;
14732	int i, j, sz, hasprovs = 0;
14733
14734	mutex_enter(&dtrace_lock);
14735	ASSERT(from->p_dtrace_helpers != NULL);
14736	ASSERT(dtrace_helpers > 0);
14737
14738	help = from->p_dtrace_helpers;
14739	newhelp = dtrace_helpers_create(to);
14740	ASSERT(to->p_dtrace_helpers != NULL);
14741
14742	newhelp->dthps_generation = help->dthps_generation;
14743	vstate = &newhelp->dthps_vstate;
14744
14745	/*
14746	 * Duplicate the helper actions.
14747	 */
14748	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14749		if ((helper = help->dthps_actions[i]) == NULL)
14750			continue;
14751
14752		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14753			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14754			    KM_SLEEP);
14755			new->dtha_generation = helper->dtha_generation;
14756
14757			if ((dp = helper->dtha_predicate) != NULL) {
14758				dp = dtrace_difo_duplicate(dp, vstate);
14759				new->dtha_predicate = dp;
14760			}
14761
14762			new->dtha_nactions = helper->dtha_nactions;
14763			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14764			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14765
14766			for (j = 0; j < new->dtha_nactions; j++) {
14767				dtrace_difo_t *dp = helper->dtha_actions[j];
14768
14769				ASSERT(dp != NULL);
14770				dp = dtrace_difo_duplicate(dp, vstate);
14771				new->dtha_actions[j] = dp;
14772			}
14773
14774			if (last != NULL) {
14775				last->dtha_next = new;
14776			} else {
14777				newhelp->dthps_actions[i] = new;
14778			}
14779
14780			last = new;
14781		}
14782	}
14783
14784	/*
14785	 * Duplicate the helper providers and register them with the
14786	 * DTrace framework.
14787	 */
14788	if (help->dthps_nprovs > 0) {
14789		newhelp->dthps_nprovs = help->dthps_nprovs;
14790		newhelp->dthps_maxprovs = help->dthps_nprovs;
14791		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14792		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14793		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14794			newhelp->dthps_provs[i] = help->dthps_provs[i];
14795			newhelp->dthps_provs[i]->dthp_ref++;
14796		}
14797
14798		hasprovs = 1;
14799	}
14800
14801	mutex_exit(&dtrace_lock);
14802
14803	if (hasprovs)
14804		dtrace_helper_provider_register(to, newhelp, NULL);
14805}
14806#endif
14807
14808#if defined(sun)
14809/*
14810 * DTrace Hook Functions
14811 */
14812static void
14813dtrace_module_loaded(modctl_t *ctl)
14814{
14815	dtrace_provider_t *prv;
14816
14817	mutex_enter(&dtrace_provider_lock);
14818	mutex_enter(&mod_lock);
14819
14820	ASSERT(ctl->mod_busy);
14821
14822	/*
14823	 * We're going to call each providers per-module provide operation
14824	 * specifying only this module.
14825	 */
14826	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14827		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14828
14829	mutex_exit(&mod_lock);
14830	mutex_exit(&dtrace_provider_lock);
14831
14832	/*
14833	 * If we have any retained enablings, we need to match against them.
14834	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14835	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14836	 * module.  (In particular, this happens when loading scheduling
14837	 * classes.)  So if we have any retained enablings, we need to dispatch
14838	 * our task queue to do the match for us.
14839	 */
14840	mutex_enter(&dtrace_lock);
14841
14842	if (dtrace_retained == NULL) {
14843		mutex_exit(&dtrace_lock);
14844		return;
14845	}
14846
14847	(void) taskq_dispatch(dtrace_taskq,
14848	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14849
14850	mutex_exit(&dtrace_lock);
14851
14852	/*
14853	 * And now, for a little heuristic sleaze:  in general, we want to
14854	 * match modules as soon as they load.  However, we cannot guarantee
14855	 * this, because it would lead us to the lock ordering violation
14856	 * outlined above.  The common case, of course, is that cpu_lock is
14857	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14858	 * long enough for the task queue to do its work.  If it's not, it's
14859	 * not a serious problem -- it just means that the module that we
14860	 * just loaded may not be immediately instrumentable.
14861	 */
14862	delay(1);
14863}
14864
14865static void
14866dtrace_module_unloaded(modctl_t *ctl)
14867{
14868	dtrace_probe_t template, *probe, *first, *next;
14869	dtrace_provider_t *prov;
14870
14871	template.dtpr_mod = ctl->mod_modname;
14872
14873	mutex_enter(&dtrace_provider_lock);
14874	mutex_enter(&mod_lock);
14875	mutex_enter(&dtrace_lock);
14876
14877	if (dtrace_bymod == NULL) {
14878		/*
14879		 * The DTrace module is loaded (obviously) but not attached;
14880		 * we don't have any work to do.
14881		 */
14882		mutex_exit(&dtrace_provider_lock);
14883		mutex_exit(&mod_lock);
14884		mutex_exit(&dtrace_lock);
14885		return;
14886	}
14887
14888	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14889	    probe != NULL; probe = probe->dtpr_nextmod) {
14890		if (probe->dtpr_ecb != NULL) {
14891			mutex_exit(&dtrace_provider_lock);
14892			mutex_exit(&mod_lock);
14893			mutex_exit(&dtrace_lock);
14894
14895			/*
14896			 * This shouldn't _actually_ be possible -- we're
14897			 * unloading a module that has an enabled probe in it.
14898			 * (It's normally up to the provider to make sure that
14899			 * this can't happen.)  However, because dtps_enable()
14900			 * doesn't have a failure mode, there can be an
14901			 * enable/unload race.  Upshot:  we don't want to
14902			 * assert, but we're not going to disable the
14903			 * probe, either.
14904			 */
14905			if (dtrace_err_verbose) {
14906				cmn_err(CE_WARN, "unloaded module '%s' had "
14907				    "enabled probes", ctl->mod_modname);
14908			}
14909
14910			return;
14911		}
14912	}
14913
14914	probe = first;
14915
14916	for (first = NULL; probe != NULL; probe = next) {
14917		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14918
14919		dtrace_probes[probe->dtpr_id - 1] = NULL;
14920
14921		next = probe->dtpr_nextmod;
14922		dtrace_hash_remove(dtrace_bymod, probe);
14923		dtrace_hash_remove(dtrace_byfunc, probe);
14924		dtrace_hash_remove(dtrace_byname, probe);
14925
14926		if (first == NULL) {
14927			first = probe;
14928			probe->dtpr_nextmod = NULL;
14929		} else {
14930			probe->dtpr_nextmod = first;
14931			first = probe;
14932		}
14933	}
14934
14935	/*
14936	 * We've removed all of the module's probes from the hash chains and
14937	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14938	 * everyone has cleared out from any probe array processing.
14939	 */
14940	dtrace_sync();
14941
14942	for (probe = first; probe != NULL; probe = first) {
14943		first = probe->dtpr_nextmod;
14944		prov = probe->dtpr_provider;
14945		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14946		    probe->dtpr_arg);
14947		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14948		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14949		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14950		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14951		kmem_free(probe, sizeof (dtrace_probe_t));
14952	}
14953
14954	mutex_exit(&dtrace_lock);
14955	mutex_exit(&mod_lock);
14956	mutex_exit(&dtrace_provider_lock);
14957}
14958
14959static void
14960dtrace_suspend(void)
14961{
14962	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14963}
14964
14965static void
14966dtrace_resume(void)
14967{
14968	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14969}
14970#endif
14971
14972static int
14973dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14974{
14975	ASSERT(MUTEX_HELD(&cpu_lock));
14976	mutex_enter(&dtrace_lock);
14977
14978	switch (what) {
14979	case CPU_CONFIG: {
14980		dtrace_state_t *state;
14981		dtrace_optval_t *opt, rs, c;
14982
14983		/*
14984		 * For now, we only allocate a new buffer for anonymous state.
14985		 */
14986		if ((state = dtrace_anon.dta_state) == NULL)
14987			break;
14988
14989		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14990			break;
14991
14992		opt = state->dts_options;
14993		c = opt[DTRACEOPT_CPU];
14994
14995		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14996			break;
14997
14998		/*
14999		 * Regardless of what the actual policy is, we're going to
15000		 * temporarily set our resize policy to be manual.  We're
15001		 * also going to temporarily set our CPU option to denote
15002		 * the newly configured CPU.
15003		 */
15004		rs = opt[DTRACEOPT_BUFRESIZE];
15005		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15006		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15007
15008		(void) dtrace_state_buffers(state);
15009
15010		opt[DTRACEOPT_BUFRESIZE] = rs;
15011		opt[DTRACEOPT_CPU] = c;
15012
15013		break;
15014	}
15015
15016	case CPU_UNCONFIG:
15017		/*
15018		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15019		 * buffer will be freed when the consumer exits.)
15020		 */
15021		break;
15022
15023	default:
15024		break;
15025	}
15026
15027	mutex_exit(&dtrace_lock);
15028	return (0);
15029}
15030
15031#if defined(sun)
15032static void
15033dtrace_cpu_setup_initial(processorid_t cpu)
15034{
15035	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15036}
15037#endif
15038
15039static void
15040dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15041{
15042	if (dtrace_toxranges >= dtrace_toxranges_max) {
15043		int osize, nsize;
15044		dtrace_toxrange_t *range;
15045
15046		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15047
15048		if (osize == 0) {
15049			ASSERT(dtrace_toxrange == NULL);
15050			ASSERT(dtrace_toxranges_max == 0);
15051			dtrace_toxranges_max = 1;
15052		} else {
15053			dtrace_toxranges_max <<= 1;
15054		}
15055
15056		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15057		range = kmem_zalloc(nsize, KM_SLEEP);
15058
15059		if (dtrace_toxrange != NULL) {
15060			ASSERT(osize != 0);
15061			bcopy(dtrace_toxrange, range, osize);
15062			kmem_free(dtrace_toxrange, osize);
15063		}
15064
15065		dtrace_toxrange = range;
15066	}
15067
15068	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15069	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15070
15071	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15072	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15073	dtrace_toxranges++;
15074}
15075
15076/*
15077 * DTrace Driver Cookbook Functions
15078 */
15079#if defined(sun)
15080/*ARGSUSED*/
15081static int
15082dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15083{
15084	dtrace_provider_id_t id;
15085	dtrace_state_t *state = NULL;
15086	dtrace_enabling_t *enab;
15087
15088	mutex_enter(&cpu_lock);
15089	mutex_enter(&dtrace_provider_lock);
15090	mutex_enter(&dtrace_lock);
15091
15092	if (ddi_soft_state_init(&dtrace_softstate,
15093	    sizeof (dtrace_state_t), 0) != 0) {
15094		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15095		mutex_exit(&cpu_lock);
15096		mutex_exit(&dtrace_provider_lock);
15097		mutex_exit(&dtrace_lock);
15098		return (DDI_FAILURE);
15099	}
15100
15101	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15102	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15103	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15104	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15105		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15106		ddi_remove_minor_node(devi, NULL);
15107		ddi_soft_state_fini(&dtrace_softstate);
15108		mutex_exit(&cpu_lock);
15109		mutex_exit(&dtrace_provider_lock);
15110		mutex_exit(&dtrace_lock);
15111		return (DDI_FAILURE);
15112	}
15113
15114	ddi_report_dev(devi);
15115	dtrace_devi = devi;
15116
15117	dtrace_modload = dtrace_module_loaded;
15118	dtrace_modunload = dtrace_module_unloaded;
15119	dtrace_cpu_init = dtrace_cpu_setup_initial;
15120	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15121	dtrace_helpers_fork = dtrace_helpers_duplicate;
15122	dtrace_cpustart_init = dtrace_suspend;
15123	dtrace_cpustart_fini = dtrace_resume;
15124	dtrace_debugger_init = dtrace_suspend;
15125	dtrace_debugger_fini = dtrace_resume;
15126
15127	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15128
15129	ASSERT(MUTEX_HELD(&cpu_lock));
15130
15131	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15132	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15133	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15134	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15135	    VM_SLEEP | VMC_IDENTIFIER);
15136	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15137	    1, INT_MAX, 0);
15138
15139	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15140	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15141	    NULL, NULL, NULL, NULL, NULL, 0);
15142
15143	ASSERT(MUTEX_HELD(&cpu_lock));
15144	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15145	    offsetof(dtrace_probe_t, dtpr_nextmod),
15146	    offsetof(dtrace_probe_t, dtpr_prevmod));
15147
15148	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15149	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15150	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15151
15152	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15153	    offsetof(dtrace_probe_t, dtpr_nextname),
15154	    offsetof(dtrace_probe_t, dtpr_prevname));
15155
15156	if (dtrace_retain_max < 1) {
15157		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15158		    "setting to 1", dtrace_retain_max);
15159		dtrace_retain_max = 1;
15160	}
15161
15162	/*
15163	 * Now discover our toxic ranges.
15164	 */
15165	dtrace_toxic_ranges(dtrace_toxrange_add);
15166
15167	/*
15168	 * Before we register ourselves as a provider to our own framework,
15169	 * we would like to assert that dtrace_provider is NULL -- but that's
15170	 * not true if we were loaded as a dependency of a DTrace provider.
15171	 * Once we've registered, we can assert that dtrace_provider is our
15172	 * pseudo provider.
15173	 */
15174	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15175	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15176
15177	ASSERT(dtrace_provider != NULL);
15178	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15179
15180	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15181	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15182	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15183	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15184	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15185	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15186
15187	dtrace_anon_property();
15188	mutex_exit(&cpu_lock);
15189
15190	/*
15191	 * If DTrace helper tracing is enabled, we need to allocate the
15192	 * trace buffer and initialize the values.
15193	 */
15194	if (dtrace_helptrace_enabled) {
15195		ASSERT(dtrace_helptrace_buffer == NULL);
15196		dtrace_helptrace_buffer =
15197		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15198		dtrace_helptrace_next = 0;
15199	}
15200
15201	/*
15202	 * If there are already providers, we must ask them to provide their
15203	 * probes, and then match any anonymous enabling against them.  Note
15204	 * that there should be no other retained enablings at this time:
15205	 * the only retained enablings at this time should be the anonymous
15206	 * enabling.
15207	 */
15208	if (dtrace_anon.dta_enabling != NULL) {
15209		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15210
15211		dtrace_enabling_provide(NULL);
15212		state = dtrace_anon.dta_state;
15213
15214		/*
15215		 * We couldn't hold cpu_lock across the above call to
15216		 * dtrace_enabling_provide(), but we must hold it to actually
15217		 * enable the probes.  We have to drop all of our locks, pick
15218		 * up cpu_lock, and regain our locks before matching the
15219		 * retained anonymous enabling.
15220		 */
15221		mutex_exit(&dtrace_lock);
15222		mutex_exit(&dtrace_provider_lock);
15223
15224		mutex_enter(&cpu_lock);
15225		mutex_enter(&dtrace_provider_lock);
15226		mutex_enter(&dtrace_lock);
15227
15228		if ((enab = dtrace_anon.dta_enabling) != NULL)
15229			(void) dtrace_enabling_match(enab, NULL);
15230
15231		mutex_exit(&cpu_lock);
15232	}
15233
15234	mutex_exit(&dtrace_lock);
15235	mutex_exit(&dtrace_provider_lock);
15236
15237	if (state != NULL) {
15238		/*
15239		 * If we created any anonymous state, set it going now.
15240		 */
15241		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15242	}
15243
15244	return (DDI_SUCCESS);
15245}
15246#endif
15247
15248#if !defined(sun)
15249#if __FreeBSD_version >= 800039
15250static void
15251dtrace_dtr(void *data __unused)
15252{
15253}
15254#endif
15255#endif
15256
15257/*ARGSUSED*/
15258static int
15259#if defined(sun)
15260dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15261#else
15262dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15263#endif
15264{
15265	dtrace_state_t *state;
15266	uint32_t priv;
15267	uid_t uid;
15268	zoneid_t zoneid;
15269
15270#if defined(sun)
15271	if (getminor(*devp) == DTRACEMNRN_HELPER)
15272		return (0);
15273
15274	/*
15275	 * If this wasn't an open with the "helper" minor, then it must be
15276	 * the "dtrace" minor.
15277	 */
15278	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15279#else
15280	cred_t *cred_p = NULL;
15281
15282#if __FreeBSD_version < 800039
15283	/*
15284	 * The first minor device is the one that is cloned so there is
15285	 * nothing more to do here.
15286	 */
15287	if (dev2unit(dev) == 0)
15288		return 0;
15289
15290	/*
15291	 * Devices are cloned, so if the DTrace state has already
15292	 * been allocated, that means this device belongs to a
15293	 * different client. Each client should open '/dev/dtrace'
15294	 * to get a cloned device.
15295	 */
15296	if (dev->si_drv1 != NULL)
15297		return (EBUSY);
15298#endif
15299
15300	cred_p = dev->si_cred;
15301#endif
15302
15303	/*
15304	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15305	 * caller lacks sufficient permission to do anything with DTrace.
15306	 */
15307	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15308	if (priv == DTRACE_PRIV_NONE) {
15309#if !defined(sun)
15310#if __FreeBSD_version < 800039
15311		/* Destroy the cloned device. */
15312                destroy_dev(dev);
15313#endif
15314#endif
15315
15316		return (EACCES);
15317	}
15318
15319	/*
15320	 * Ask all providers to provide all their probes.
15321	 */
15322	mutex_enter(&dtrace_provider_lock);
15323	dtrace_probe_provide(NULL, NULL);
15324	mutex_exit(&dtrace_provider_lock);
15325
15326	mutex_enter(&cpu_lock);
15327	mutex_enter(&dtrace_lock);
15328	dtrace_opens++;
15329	dtrace_membar_producer();
15330
15331#if defined(sun)
15332	/*
15333	 * If the kernel debugger is active (that is, if the kernel debugger
15334	 * modified text in some way), we won't allow the open.
15335	 */
15336	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15337		dtrace_opens--;
15338		mutex_exit(&cpu_lock);
15339		mutex_exit(&dtrace_lock);
15340		return (EBUSY);
15341	}
15342
15343	state = dtrace_state_create(devp, cred_p);
15344#else
15345	state = dtrace_state_create(dev);
15346#if __FreeBSD_version < 800039
15347	dev->si_drv1 = state;
15348#else
15349	devfs_set_cdevpriv(state, dtrace_dtr);
15350#endif
15351#endif
15352
15353	mutex_exit(&cpu_lock);
15354
15355	if (state == NULL) {
15356#if defined(sun)
15357		if (--dtrace_opens == 0)
15358			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15359#else
15360		--dtrace_opens;
15361#endif
15362		mutex_exit(&dtrace_lock);
15363#if !defined(sun)
15364#if __FreeBSD_version < 800039
15365		/* Destroy the cloned device. */
15366                destroy_dev(dev);
15367#endif
15368#endif
15369		return (EAGAIN);
15370	}
15371
15372	mutex_exit(&dtrace_lock);
15373
15374	return (0);
15375}
15376
15377/*ARGSUSED*/
15378static int
15379#if defined(sun)
15380dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15381#else
15382dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15383#endif
15384{
15385#if defined(sun)
15386	minor_t minor = getminor(dev);
15387	dtrace_state_t *state;
15388
15389	if (minor == DTRACEMNRN_HELPER)
15390		return (0);
15391
15392	state = ddi_get_soft_state(dtrace_softstate, minor);
15393#else
15394#if __FreeBSD_version < 800039
15395	dtrace_state_t *state = dev->si_drv1;
15396
15397	/* Check if this is not a cloned device. */
15398	if (dev2unit(dev) == 0)
15399		return (0);
15400#else
15401	dtrace_state_t *state;
15402	devfs_get_cdevpriv((void **) &state);
15403#endif
15404
15405#endif
15406
15407	mutex_enter(&cpu_lock);
15408	mutex_enter(&dtrace_lock);
15409
15410	if (state != NULL) {
15411		if (state->dts_anon) {
15412			/*
15413			 * There is anonymous state. Destroy that first.
15414			 */
15415			ASSERT(dtrace_anon.dta_state == NULL);
15416			dtrace_state_destroy(state->dts_anon);
15417		}
15418
15419		dtrace_state_destroy(state);
15420
15421#if !defined(sun)
15422		kmem_free(state, 0);
15423#if __FreeBSD_version < 800039
15424		dev->si_drv1 = NULL;
15425#else
15426		devfs_clear_cdevpriv();
15427#endif
15428#endif
15429	}
15430
15431	ASSERT(dtrace_opens > 0);
15432#if defined(sun)
15433	if (--dtrace_opens == 0)
15434		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15435#else
15436	--dtrace_opens;
15437#endif
15438
15439	mutex_exit(&dtrace_lock);
15440	mutex_exit(&cpu_lock);
15441
15442#if __FreeBSD_version < 800039
15443	/* Schedule this cloned device to be destroyed. */
15444	destroy_dev_sched(dev);
15445#endif
15446
15447	return (0);
15448}
15449
15450#if defined(sun)
15451/*ARGSUSED*/
15452static int
15453dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15454{
15455	int rval;
15456	dof_helper_t help, *dhp = NULL;
15457
15458	switch (cmd) {
15459	case DTRACEHIOC_ADDDOF:
15460		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15461			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15462			return (EFAULT);
15463		}
15464
15465		dhp = &help;
15466		arg = (intptr_t)help.dofhp_dof;
15467		/*FALLTHROUGH*/
15468
15469	case DTRACEHIOC_ADD: {
15470		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15471
15472		if (dof == NULL)
15473			return (rval);
15474
15475		mutex_enter(&dtrace_lock);
15476
15477		/*
15478		 * dtrace_helper_slurp() takes responsibility for the dof --
15479		 * it may free it now or it may save it and free it later.
15480		 */
15481		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15482			*rv = rval;
15483			rval = 0;
15484		} else {
15485			rval = EINVAL;
15486		}
15487
15488		mutex_exit(&dtrace_lock);
15489		return (rval);
15490	}
15491
15492	case DTRACEHIOC_REMOVE: {
15493		mutex_enter(&dtrace_lock);
15494		rval = dtrace_helper_destroygen(arg);
15495		mutex_exit(&dtrace_lock);
15496
15497		return (rval);
15498	}
15499
15500	default:
15501		break;
15502	}
15503
15504	return (ENOTTY);
15505}
15506
15507/*ARGSUSED*/
15508static int
15509dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15510{
15511	minor_t minor = getminor(dev);
15512	dtrace_state_t *state;
15513	int rval;
15514
15515	if (minor == DTRACEMNRN_HELPER)
15516		return (dtrace_ioctl_helper(cmd, arg, rv));
15517
15518	state = ddi_get_soft_state(dtrace_softstate, minor);
15519
15520	if (state->dts_anon) {
15521		ASSERT(dtrace_anon.dta_state == NULL);
15522		state = state->dts_anon;
15523	}
15524
15525	switch (cmd) {
15526	case DTRACEIOC_PROVIDER: {
15527		dtrace_providerdesc_t pvd;
15528		dtrace_provider_t *pvp;
15529
15530		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15531			return (EFAULT);
15532
15533		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15534		mutex_enter(&dtrace_provider_lock);
15535
15536		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15537			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15538				break;
15539		}
15540
15541		mutex_exit(&dtrace_provider_lock);
15542
15543		if (pvp == NULL)
15544			return (ESRCH);
15545
15546		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15547		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15548
15549		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15550			return (EFAULT);
15551
15552		return (0);
15553	}
15554
15555	case DTRACEIOC_EPROBE: {
15556		dtrace_eprobedesc_t epdesc;
15557		dtrace_ecb_t *ecb;
15558		dtrace_action_t *act;
15559		void *buf;
15560		size_t size;
15561		uintptr_t dest;
15562		int nrecs;
15563
15564		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15565			return (EFAULT);
15566
15567		mutex_enter(&dtrace_lock);
15568
15569		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15570			mutex_exit(&dtrace_lock);
15571			return (EINVAL);
15572		}
15573
15574		if (ecb->dte_probe == NULL) {
15575			mutex_exit(&dtrace_lock);
15576			return (EINVAL);
15577		}
15578
15579		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15580		epdesc.dtepd_uarg = ecb->dte_uarg;
15581		epdesc.dtepd_size = ecb->dte_size;
15582
15583		nrecs = epdesc.dtepd_nrecs;
15584		epdesc.dtepd_nrecs = 0;
15585		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15586			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15587				continue;
15588
15589			epdesc.dtepd_nrecs++;
15590		}
15591
15592		/*
15593		 * Now that we have the size, we need to allocate a temporary
15594		 * buffer in which to store the complete description.  We need
15595		 * the temporary buffer to be able to drop dtrace_lock()
15596		 * across the copyout(), below.
15597		 */
15598		size = sizeof (dtrace_eprobedesc_t) +
15599		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15600
15601		buf = kmem_alloc(size, KM_SLEEP);
15602		dest = (uintptr_t)buf;
15603
15604		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15605		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15606
15607		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15608			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15609				continue;
15610
15611			if (nrecs-- == 0)
15612				break;
15613
15614			bcopy(&act->dta_rec, (void *)dest,
15615			    sizeof (dtrace_recdesc_t));
15616			dest += sizeof (dtrace_recdesc_t);
15617		}
15618
15619		mutex_exit(&dtrace_lock);
15620
15621		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15622			kmem_free(buf, size);
15623			return (EFAULT);
15624		}
15625
15626		kmem_free(buf, size);
15627		return (0);
15628	}
15629
15630	case DTRACEIOC_AGGDESC: {
15631		dtrace_aggdesc_t aggdesc;
15632		dtrace_action_t *act;
15633		dtrace_aggregation_t *agg;
15634		int nrecs;
15635		uint32_t offs;
15636		dtrace_recdesc_t *lrec;
15637		void *buf;
15638		size_t size;
15639		uintptr_t dest;
15640
15641		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15642			return (EFAULT);
15643
15644		mutex_enter(&dtrace_lock);
15645
15646		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15647			mutex_exit(&dtrace_lock);
15648			return (EINVAL);
15649		}
15650
15651		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15652
15653		nrecs = aggdesc.dtagd_nrecs;
15654		aggdesc.dtagd_nrecs = 0;
15655
15656		offs = agg->dtag_base;
15657		lrec = &agg->dtag_action.dta_rec;
15658		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15659
15660		for (act = agg->dtag_first; ; act = act->dta_next) {
15661			ASSERT(act->dta_intuple ||
15662			    DTRACEACT_ISAGG(act->dta_kind));
15663
15664			/*
15665			 * If this action has a record size of zero, it
15666			 * denotes an argument to the aggregating action.
15667			 * Because the presence of this record doesn't (or
15668			 * shouldn't) affect the way the data is interpreted,
15669			 * we don't copy it out to save user-level the
15670			 * confusion of dealing with a zero-length record.
15671			 */
15672			if (act->dta_rec.dtrd_size == 0) {
15673				ASSERT(agg->dtag_hasarg);
15674				continue;
15675			}
15676
15677			aggdesc.dtagd_nrecs++;
15678
15679			if (act == &agg->dtag_action)
15680				break;
15681		}
15682
15683		/*
15684		 * Now that we have the size, we need to allocate a temporary
15685		 * buffer in which to store the complete description.  We need
15686		 * the temporary buffer to be able to drop dtrace_lock()
15687		 * across the copyout(), below.
15688		 */
15689		size = sizeof (dtrace_aggdesc_t) +
15690		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15691
15692		buf = kmem_alloc(size, KM_SLEEP);
15693		dest = (uintptr_t)buf;
15694
15695		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15696		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15697
15698		for (act = agg->dtag_first; ; act = act->dta_next) {
15699			dtrace_recdesc_t rec = act->dta_rec;
15700
15701			/*
15702			 * See the comment in the above loop for why we pass
15703			 * over zero-length records.
15704			 */
15705			if (rec.dtrd_size == 0) {
15706				ASSERT(agg->dtag_hasarg);
15707				continue;
15708			}
15709
15710			if (nrecs-- == 0)
15711				break;
15712
15713			rec.dtrd_offset -= offs;
15714			bcopy(&rec, (void *)dest, sizeof (rec));
15715			dest += sizeof (dtrace_recdesc_t);
15716
15717			if (act == &agg->dtag_action)
15718				break;
15719		}
15720
15721		mutex_exit(&dtrace_lock);
15722
15723		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15724			kmem_free(buf, size);
15725			return (EFAULT);
15726		}
15727
15728		kmem_free(buf, size);
15729		return (0);
15730	}
15731
15732	case DTRACEIOC_ENABLE: {
15733		dof_hdr_t *dof;
15734		dtrace_enabling_t *enab = NULL;
15735		dtrace_vstate_t *vstate;
15736		int err = 0;
15737
15738		*rv = 0;
15739
15740		/*
15741		 * If a NULL argument has been passed, we take this as our
15742		 * cue to reevaluate our enablings.
15743		 */
15744		if (arg == NULL) {
15745			dtrace_enabling_matchall();
15746
15747			return (0);
15748		}
15749
15750		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15751			return (rval);
15752
15753		mutex_enter(&cpu_lock);
15754		mutex_enter(&dtrace_lock);
15755		vstate = &state->dts_vstate;
15756
15757		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15758			mutex_exit(&dtrace_lock);
15759			mutex_exit(&cpu_lock);
15760			dtrace_dof_destroy(dof);
15761			return (EBUSY);
15762		}
15763
15764		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15765			mutex_exit(&dtrace_lock);
15766			mutex_exit(&cpu_lock);
15767			dtrace_dof_destroy(dof);
15768			return (EINVAL);
15769		}
15770
15771		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15772			dtrace_enabling_destroy(enab);
15773			mutex_exit(&dtrace_lock);
15774			mutex_exit(&cpu_lock);
15775			dtrace_dof_destroy(dof);
15776			return (rval);
15777		}
15778
15779		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15780			err = dtrace_enabling_retain(enab);
15781		} else {
15782			dtrace_enabling_destroy(enab);
15783		}
15784
15785		mutex_exit(&cpu_lock);
15786		mutex_exit(&dtrace_lock);
15787		dtrace_dof_destroy(dof);
15788
15789		return (err);
15790	}
15791
15792	case DTRACEIOC_REPLICATE: {
15793		dtrace_repldesc_t desc;
15794		dtrace_probedesc_t *match = &desc.dtrpd_match;
15795		dtrace_probedesc_t *create = &desc.dtrpd_create;
15796		int err;
15797
15798		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15799			return (EFAULT);
15800
15801		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15802		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15803		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15804		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15805
15806		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15807		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15808		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15809		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15810
15811		mutex_enter(&dtrace_lock);
15812		err = dtrace_enabling_replicate(state, match, create);
15813		mutex_exit(&dtrace_lock);
15814
15815		return (err);
15816	}
15817
15818	case DTRACEIOC_PROBEMATCH:
15819	case DTRACEIOC_PROBES: {
15820		dtrace_probe_t *probe = NULL;
15821		dtrace_probedesc_t desc;
15822		dtrace_probekey_t pkey;
15823		dtrace_id_t i;
15824		int m = 0;
15825		uint32_t priv;
15826		uid_t uid;
15827		zoneid_t zoneid;
15828
15829		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15830			return (EFAULT);
15831
15832		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15833		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15834		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15835		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15836
15837		/*
15838		 * Before we attempt to match this probe, we want to give
15839		 * all providers the opportunity to provide it.
15840		 */
15841		if (desc.dtpd_id == DTRACE_IDNONE) {
15842			mutex_enter(&dtrace_provider_lock);
15843			dtrace_probe_provide(&desc, NULL);
15844			mutex_exit(&dtrace_provider_lock);
15845			desc.dtpd_id++;
15846		}
15847
15848		if (cmd == DTRACEIOC_PROBEMATCH)  {
15849			dtrace_probekey(&desc, &pkey);
15850			pkey.dtpk_id = DTRACE_IDNONE;
15851		}
15852
15853		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15854
15855		mutex_enter(&dtrace_lock);
15856
15857		if (cmd == DTRACEIOC_PROBEMATCH) {
15858			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15859				if ((probe = dtrace_probes[i - 1]) != NULL &&
15860				    (m = dtrace_match_probe(probe, &pkey,
15861				    priv, uid, zoneid)) != 0)
15862					break;
15863			}
15864
15865			if (m < 0) {
15866				mutex_exit(&dtrace_lock);
15867				return (EINVAL);
15868			}
15869
15870		} else {
15871			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15872				if ((probe = dtrace_probes[i - 1]) != NULL &&
15873				    dtrace_match_priv(probe, priv, uid, zoneid))
15874					break;
15875			}
15876		}
15877
15878		if (probe == NULL) {
15879			mutex_exit(&dtrace_lock);
15880			return (ESRCH);
15881		}
15882
15883		dtrace_probe_description(probe, &desc);
15884		mutex_exit(&dtrace_lock);
15885
15886		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15887			return (EFAULT);
15888
15889		return (0);
15890	}
15891
15892	case DTRACEIOC_PROBEARG: {
15893		dtrace_argdesc_t desc;
15894		dtrace_probe_t *probe;
15895		dtrace_provider_t *prov;
15896
15897		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15898			return (EFAULT);
15899
15900		if (desc.dtargd_id == DTRACE_IDNONE)
15901			return (EINVAL);
15902
15903		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15904			return (EINVAL);
15905
15906		mutex_enter(&dtrace_provider_lock);
15907		mutex_enter(&mod_lock);
15908		mutex_enter(&dtrace_lock);
15909
15910		if (desc.dtargd_id > dtrace_nprobes) {
15911			mutex_exit(&dtrace_lock);
15912			mutex_exit(&mod_lock);
15913			mutex_exit(&dtrace_provider_lock);
15914			return (EINVAL);
15915		}
15916
15917		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15918			mutex_exit(&dtrace_lock);
15919			mutex_exit(&mod_lock);
15920			mutex_exit(&dtrace_provider_lock);
15921			return (EINVAL);
15922		}
15923
15924		mutex_exit(&dtrace_lock);
15925
15926		prov = probe->dtpr_provider;
15927
15928		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15929			/*
15930			 * There isn't any typed information for this probe.
15931			 * Set the argument number to DTRACE_ARGNONE.
15932			 */
15933			desc.dtargd_ndx = DTRACE_ARGNONE;
15934		} else {
15935			desc.dtargd_native[0] = '\0';
15936			desc.dtargd_xlate[0] = '\0';
15937			desc.dtargd_mapping = desc.dtargd_ndx;
15938
15939			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15940			    probe->dtpr_id, probe->dtpr_arg, &desc);
15941		}
15942
15943		mutex_exit(&mod_lock);
15944		mutex_exit(&dtrace_provider_lock);
15945
15946		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15947			return (EFAULT);
15948
15949		return (0);
15950	}
15951
15952	case DTRACEIOC_GO: {
15953		processorid_t cpuid;
15954		rval = dtrace_state_go(state, &cpuid);
15955
15956		if (rval != 0)
15957			return (rval);
15958
15959		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15960			return (EFAULT);
15961
15962		return (0);
15963	}
15964
15965	case DTRACEIOC_STOP: {
15966		processorid_t cpuid;
15967
15968		mutex_enter(&dtrace_lock);
15969		rval = dtrace_state_stop(state, &cpuid);
15970		mutex_exit(&dtrace_lock);
15971
15972		if (rval != 0)
15973			return (rval);
15974
15975		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15976			return (EFAULT);
15977
15978		return (0);
15979	}
15980
15981	case DTRACEIOC_DOFGET: {
15982		dof_hdr_t hdr, *dof;
15983		uint64_t len;
15984
15985		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15986			return (EFAULT);
15987
15988		mutex_enter(&dtrace_lock);
15989		dof = dtrace_dof_create(state);
15990		mutex_exit(&dtrace_lock);
15991
15992		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15993		rval = copyout(dof, (void *)arg, len);
15994		dtrace_dof_destroy(dof);
15995
15996		return (rval == 0 ? 0 : EFAULT);
15997	}
15998
15999	case DTRACEIOC_AGGSNAP:
16000	case DTRACEIOC_BUFSNAP: {
16001		dtrace_bufdesc_t desc;
16002		caddr_t cached;
16003		dtrace_buffer_t *buf;
16004
16005		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16006			return (EFAULT);
16007
16008		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16009			return (EINVAL);
16010
16011		mutex_enter(&dtrace_lock);
16012
16013		if (cmd == DTRACEIOC_BUFSNAP) {
16014			buf = &state->dts_buffer[desc.dtbd_cpu];
16015		} else {
16016			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16017		}
16018
16019		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16020			size_t sz = buf->dtb_offset;
16021
16022			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16023				mutex_exit(&dtrace_lock);
16024				return (EBUSY);
16025			}
16026
16027			/*
16028			 * If this buffer has already been consumed, we're
16029			 * going to indicate that there's nothing left here
16030			 * to consume.
16031			 */
16032			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16033				mutex_exit(&dtrace_lock);
16034
16035				desc.dtbd_size = 0;
16036				desc.dtbd_drops = 0;
16037				desc.dtbd_errors = 0;
16038				desc.dtbd_oldest = 0;
16039				sz = sizeof (desc);
16040
16041				if (copyout(&desc, (void *)arg, sz) != 0)
16042					return (EFAULT);
16043
16044				return (0);
16045			}
16046
16047			/*
16048			 * If this is a ring buffer that has wrapped, we want
16049			 * to copy the whole thing out.
16050			 */
16051			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16052				dtrace_buffer_polish(buf);
16053				sz = buf->dtb_size;
16054			}
16055
16056			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16057				mutex_exit(&dtrace_lock);
16058				return (EFAULT);
16059			}
16060
16061			desc.dtbd_size = sz;
16062			desc.dtbd_drops = buf->dtb_drops;
16063			desc.dtbd_errors = buf->dtb_errors;
16064			desc.dtbd_oldest = buf->dtb_xamot_offset;
16065
16066			mutex_exit(&dtrace_lock);
16067
16068			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16069				return (EFAULT);
16070
16071			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16072
16073			return (0);
16074		}
16075
16076		if (buf->dtb_tomax == NULL) {
16077			ASSERT(buf->dtb_xamot == NULL);
16078			mutex_exit(&dtrace_lock);
16079			return (ENOENT);
16080		}
16081
16082		cached = buf->dtb_tomax;
16083		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16084
16085		dtrace_xcall(desc.dtbd_cpu,
16086		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16087
16088		state->dts_errors += buf->dtb_xamot_errors;
16089
16090		/*
16091		 * If the buffers did not actually switch, then the cross call
16092		 * did not take place -- presumably because the given CPU is
16093		 * not in the ready set.  If this is the case, we'll return
16094		 * ENOENT.
16095		 */
16096		if (buf->dtb_tomax == cached) {
16097			ASSERT(buf->dtb_xamot != cached);
16098			mutex_exit(&dtrace_lock);
16099			return (ENOENT);
16100		}
16101
16102		ASSERT(cached == buf->dtb_xamot);
16103
16104		/*
16105		 * We have our snapshot; now copy it out.
16106		 */
16107		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16108		    buf->dtb_xamot_offset) != 0) {
16109			mutex_exit(&dtrace_lock);
16110			return (EFAULT);
16111		}
16112
16113		desc.dtbd_size = buf->dtb_xamot_offset;
16114		desc.dtbd_drops = buf->dtb_xamot_drops;
16115		desc.dtbd_errors = buf->dtb_xamot_errors;
16116		desc.dtbd_oldest = 0;
16117
16118		mutex_exit(&dtrace_lock);
16119
16120		/*
16121		 * Finally, copy out the buffer description.
16122		 */
16123		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16124			return (EFAULT);
16125
16126		return (0);
16127	}
16128
16129	case DTRACEIOC_CONF: {
16130		dtrace_conf_t conf;
16131
16132		bzero(&conf, sizeof (conf));
16133		conf.dtc_difversion = DIF_VERSION;
16134		conf.dtc_difintregs = DIF_DIR_NREGS;
16135		conf.dtc_diftupregs = DIF_DTR_NREGS;
16136		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16137
16138		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16139			return (EFAULT);
16140
16141		return (0);
16142	}
16143
16144	case DTRACEIOC_STATUS: {
16145		dtrace_status_t stat;
16146		dtrace_dstate_t *dstate;
16147		int i, j;
16148		uint64_t nerrs;
16149
16150		/*
16151		 * See the comment in dtrace_state_deadman() for the reason
16152		 * for setting dts_laststatus to INT64_MAX before setting
16153		 * it to the correct value.
16154		 */
16155		state->dts_laststatus = INT64_MAX;
16156		dtrace_membar_producer();
16157		state->dts_laststatus = dtrace_gethrtime();
16158
16159		bzero(&stat, sizeof (stat));
16160
16161		mutex_enter(&dtrace_lock);
16162
16163		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16164			mutex_exit(&dtrace_lock);
16165			return (ENOENT);
16166		}
16167
16168		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16169			stat.dtst_exiting = 1;
16170
16171		nerrs = state->dts_errors;
16172		dstate = &state->dts_vstate.dtvs_dynvars;
16173
16174		for (i = 0; i < NCPU; i++) {
16175			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16176
16177			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16178			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16179			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16180
16181			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16182				stat.dtst_filled++;
16183
16184			nerrs += state->dts_buffer[i].dtb_errors;
16185
16186			for (j = 0; j < state->dts_nspeculations; j++) {
16187				dtrace_speculation_t *spec;
16188				dtrace_buffer_t *buf;
16189
16190				spec = &state->dts_speculations[j];
16191				buf = &spec->dtsp_buffer[i];
16192				stat.dtst_specdrops += buf->dtb_xamot_drops;
16193			}
16194		}
16195
16196		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16197		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16198		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16199		stat.dtst_dblerrors = state->dts_dblerrors;
16200		stat.dtst_killed =
16201		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16202		stat.dtst_errors = nerrs;
16203
16204		mutex_exit(&dtrace_lock);
16205
16206		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16207			return (EFAULT);
16208
16209		return (0);
16210	}
16211
16212	case DTRACEIOC_FORMAT: {
16213		dtrace_fmtdesc_t fmt;
16214		char *str;
16215		int len;
16216
16217		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16218			return (EFAULT);
16219
16220		mutex_enter(&dtrace_lock);
16221
16222		if (fmt.dtfd_format == 0 ||
16223		    fmt.dtfd_format > state->dts_nformats) {
16224			mutex_exit(&dtrace_lock);
16225			return (EINVAL);
16226		}
16227
16228		/*
16229		 * Format strings are allocated contiguously and they are
16230		 * never freed; if a format index is less than the number
16231		 * of formats, we can assert that the format map is non-NULL
16232		 * and that the format for the specified index is non-NULL.
16233		 */
16234		ASSERT(state->dts_formats != NULL);
16235		str = state->dts_formats[fmt.dtfd_format - 1];
16236		ASSERT(str != NULL);
16237
16238		len = strlen(str) + 1;
16239
16240		if (len > fmt.dtfd_length) {
16241			fmt.dtfd_length = len;
16242
16243			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16244				mutex_exit(&dtrace_lock);
16245				return (EINVAL);
16246			}
16247		} else {
16248			if (copyout(str, fmt.dtfd_string, len) != 0) {
16249				mutex_exit(&dtrace_lock);
16250				return (EINVAL);
16251			}
16252		}
16253
16254		mutex_exit(&dtrace_lock);
16255		return (0);
16256	}
16257
16258	default:
16259		break;
16260	}
16261
16262	return (ENOTTY);
16263}
16264
16265/*ARGSUSED*/
16266static int
16267dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16268{
16269	dtrace_state_t *state;
16270
16271	switch (cmd) {
16272	case DDI_DETACH:
16273		break;
16274
16275	case DDI_SUSPEND:
16276		return (DDI_SUCCESS);
16277
16278	default:
16279		return (DDI_FAILURE);
16280	}
16281
16282	mutex_enter(&cpu_lock);
16283	mutex_enter(&dtrace_provider_lock);
16284	mutex_enter(&dtrace_lock);
16285
16286	ASSERT(dtrace_opens == 0);
16287
16288	if (dtrace_helpers > 0) {
16289		mutex_exit(&dtrace_provider_lock);
16290		mutex_exit(&dtrace_lock);
16291		mutex_exit(&cpu_lock);
16292		return (DDI_FAILURE);
16293	}
16294
16295	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16296		mutex_exit(&dtrace_provider_lock);
16297		mutex_exit(&dtrace_lock);
16298		mutex_exit(&cpu_lock);
16299		return (DDI_FAILURE);
16300	}
16301
16302	dtrace_provider = NULL;
16303
16304	if ((state = dtrace_anon_grab()) != NULL) {
16305		/*
16306		 * If there were ECBs on this state, the provider should
16307		 * have not been allowed to detach; assert that there is
16308		 * none.
16309		 */
16310		ASSERT(state->dts_necbs == 0);
16311		dtrace_state_destroy(state);
16312
16313		/*
16314		 * If we're being detached with anonymous state, we need to
16315		 * indicate to the kernel debugger that DTrace is now inactive.
16316		 */
16317		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16318	}
16319
16320	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16321	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16322	dtrace_cpu_init = NULL;
16323	dtrace_helpers_cleanup = NULL;
16324	dtrace_helpers_fork = NULL;
16325	dtrace_cpustart_init = NULL;
16326	dtrace_cpustart_fini = NULL;
16327	dtrace_debugger_init = NULL;
16328	dtrace_debugger_fini = NULL;
16329	dtrace_modload = NULL;
16330	dtrace_modunload = NULL;
16331
16332	mutex_exit(&cpu_lock);
16333
16334	if (dtrace_helptrace_enabled) {
16335		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16336		dtrace_helptrace_buffer = NULL;
16337	}
16338
16339	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16340	dtrace_probes = NULL;
16341	dtrace_nprobes = 0;
16342
16343	dtrace_hash_destroy(dtrace_bymod);
16344	dtrace_hash_destroy(dtrace_byfunc);
16345	dtrace_hash_destroy(dtrace_byname);
16346	dtrace_bymod = NULL;
16347	dtrace_byfunc = NULL;
16348	dtrace_byname = NULL;
16349
16350	kmem_cache_destroy(dtrace_state_cache);
16351	vmem_destroy(dtrace_minor);
16352	vmem_destroy(dtrace_arena);
16353
16354	if (dtrace_toxrange != NULL) {
16355		kmem_free(dtrace_toxrange,
16356		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16357		dtrace_toxrange = NULL;
16358		dtrace_toxranges = 0;
16359		dtrace_toxranges_max = 0;
16360	}
16361
16362	ddi_remove_minor_node(dtrace_devi, NULL);
16363	dtrace_devi = NULL;
16364
16365	ddi_soft_state_fini(&dtrace_softstate);
16366
16367	ASSERT(dtrace_vtime_references == 0);
16368	ASSERT(dtrace_opens == 0);
16369	ASSERT(dtrace_retained == NULL);
16370
16371	mutex_exit(&dtrace_lock);
16372	mutex_exit(&dtrace_provider_lock);
16373
16374	/*
16375	 * We don't destroy the task queue until after we have dropped our
16376	 * locks (taskq_destroy() may block on running tasks).  To prevent
16377	 * attempting to do work after we have effectively detached but before
16378	 * the task queue has been destroyed, all tasks dispatched via the
16379	 * task queue must check that DTrace is still attached before
16380	 * performing any operation.
16381	 */
16382	taskq_destroy(dtrace_taskq);
16383	dtrace_taskq = NULL;
16384
16385	return (DDI_SUCCESS);
16386}
16387#endif
16388
16389#if defined(sun)
16390/*ARGSUSED*/
16391static int
16392dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16393{
16394	int error;
16395
16396	switch (infocmd) {
16397	case DDI_INFO_DEVT2DEVINFO:
16398		*result = (void *)dtrace_devi;
16399		error = DDI_SUCCESS;
16400		break;
16401	case DDI_INFO_DEVT2INSTANCE:
16402		*result = (void *)0;
16403		error = DDI_SUCCESS;
16404		break;
16405	default:
16406		error = DDI_FAILURE;
16407	}
16408	return (error);
16409}
16410#endif
16411
16412#if defined(sun)
16413static struct cb_ops dtrace_cb_ops = {
16414	dtrace_open,		/* open */
16415	dtrace_close,		/* close */
16416	nulldev,		/* strategy */
16417	nulldev,		/* print */
16418	nodev,			/* dump */
16419	nodev,			/* read */
16420	nodev,			/* write */
16421	dtrace_ioctl,		/* ioctl */
16422	nodev,			/* devmap */
16423	nodev,			/* mmap */
16424	nodev,			/* segmap */
16425	nochpoll,		/* poll */
16426	ddi_prop_op,		/* cb_prop_op */
16427	0,			/* streamtab  */
16428	D_NEW | D_MP		/* Driver compatibility flag */
16429};
16430
16431static struct dev_ops dtrace_ops = {
16432	DEVO_REV,		/* devo_rev */
16433	0,			/* refcnt */
16434	dtrace_info,		/* get_dev_info */
16435	nulldev,		/* identify */
16436	nulldev,		/* probe */
16437	dtrace_attach,		/* attach */
16438	dtrace_detach,		/* detach */
16439	nodev,			/* reset */
16440	&dtrace_cb_ops,		/* driver operations */
16441	NULL,			/* bus operations */
16442	nodev			/* dev power */
16443};
16444
16445static struct modldrv modldrv = {
16446	&mod_driverops,		/* module type (this is a pseudo driver) */
16447	"Dynamic Tracing",	/* name of module */
16448	&dtrace_ops,		/* driver ops */
16449};
16450
16451static struct modlinkage modlinkage = {
16452	MODREV_1,
16453	(void *)&modldrv,
16454	NULL
16455};
16456
16457int
16458_init(void)
16459{
16460	return (mod_install(&modlinkage));
16461}
16462
16463int
16464_info(struct modinfo *modinfop)
16465{
16466	return (mod_info(&modlinkage, modinfop));
16467}
16468
16469int
16470_fini(void)
16471{
16472	return (mod_remove(&modlinkage));
16473}
16474#else
16475
16476static d_ioctl_t	dtrace_ioctl;
16477static void		dtrace_load(void *);
16478static int		dtrace_unload(void);
16479#if __FreeBSD_version < 800039
16480static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16481static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16482static eventhandler_tag	eh_tag;			/* Event handler tag. */
16483#else
16484static struct cdev	*dtrace_dev;
16485#endif
16486
16487void dtrace_invop_init(void);
16488void dtrace_invop_uninit(void);
16489
16490static struct cdevsw dtrace_cdevsw = {
16491	.d_version	= D_VERSION,
16492	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16493	.d_close	= dtrace_close,
16494	.d_ioctl	= dtrace_ioctl,
16495	.d_open		= dtrace_open,
16496	.d_name		= "dtrace",
16497};
16498
16499#include <dtrace_anon.c>
16500#if __FreeBSD_version < 800039
16501#include <dtrace_clone.c>
16502#endif
16503#include <dtrace_ioctl.c>
16504#include <dtrace_load.c>
16505#include <dtrace_modevent.c>
16506#include <dtrace_sysctl.c>
16507#include <dtrace_unload.c>
16508#include <dtrace_vtime.c>
16509#include <dtrace_hacks.c>
16510#include <dtrace_isa.c>
16511
16512SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16513SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16514SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16515
16516DEV_MODULE(dtrace, dtrace_modevent, NULL);
16517MODULE_VERSION(dtrace, 1);
16518MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16519MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16520#endif
16521