dtrace.c revision 184698
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: head/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 184698 2008-11-05 19:39:11Z rodrigc $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * DTrace - Dynamic Tracing for Solaris
33 *
34 * This is the implementation of the Solaris Dynamic Tracing framework
35 * (DTrace).  The user-visible interface to DTrace is described at length in
36 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37 * library, the in-kernel DTrace framework, and the DTrace providers are
38 * described in the block comments in the <sys/dtrace.h> header file.  The
39 * internal architecture of DTrace is described in the block comments in the
40 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41 * implementation very much assume mastery of all of these sources; if one has
42 * an unanswered question about the implementation, one should consult them
43 * first.
44 *
45 * The functions here are ordered roughly as follows:
46 *
47 *   - Probe context functions
48 *   - Probe hashing functions
49 *   - Non-probe context utility functions
50 *   - Matching functions
51 *   - Provider-to-Framework API functions
52 *   - Probe management functions
53 *   - DIF object functions
54 *   - Format functions
55 *   - Predicate functions
56 *   - ECB functions
57 *   - Buffer functions
58 *   - Enabling functions
59 *   - DOF functions
60 *   - Anonymous enabling functions
61 *   - Consumer state functions
62 *   - Helper functions
63 *   - Hook functions
64 *   - Driver cookbook functions
65 *
66 * Each group of functions begins with a block comment labelled the "DTrace
67 * [Group] Functions", allowing one to find each block by searching forward
68 * on capital-f functions.
69 */
70#include <sys/errno.h>
71#if !defined(sun)
72#include <sys/time.h>
73#endif
74#include <sys/stat.h>
75#include <sys/modctl.h>
76#include <sys/conf.h>
77#include <sys/systm.h>
78#if defined(sun)
79#include <sys/ddi.h>
80#include <sys/sunddi.h>
81#endif
82#include <sys/cpuvar.h>
83#include <sys/kmem.h>
84#if defined(sun)
85#include <sys/strsubr.h>
86#endif
87#include <sys/sysmacros.h>
88#include <sys/dtrace_impl.h>
89#include <sys/atomic.h>
90#include <sys/cmn_err.h>
91#if defined(sun)
92#include <sys/mutex_impl.h>
93#include <sys/rwlock_impl.h>
94#endif
95#include <sys/ctf_api.h>
96#if defined(sun)
97#include <sys/panic.h>
98#include <sys/priv_impl.h>
99#endif
100#include <sys/policy.h>
101#if defined(sun)
102#include <sys/cred_impl.h>
103#include <sys/procfs_isa.h>
104#endif
105#include <sys/taskq.h>
106#if defined(sun)
107#include <sys/mkdev.h>
108#include <sys/kdi.h>
109#endif
110#include <sys/zone.h>
111#include <sys/socket.h>
112#include <netinet/in.h>
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/limits.h>
119#include <sys/kdb.h>
120#include <sys/kernel.h>
121#include <sys/malloc.h>
122#include <sys/sysctl.h>
123#include <sys/lock.h>
124#include <sys/mutex.h>
125#include <sys/sx.h>
126#include <sys/dtrace_bsd.h>
127#include <netinet/in.h>
128#include "dtrace_cddl.h"
129#include "dtrace_debug.c"
130#endif
131
132/*
133 * DTrace Tunable Variables
134 *
135 * The following variables may be tuned by adding a line to /etc/system that
136 * includes both the name of the DTrace module ("dtrace") and the name of the
137 * variable.  For example:
138 *
139 *   set dtrace:dtrace_destructive_disallow = 1
140 *
141 * In general, the only variables that one should be tuning this way are those
142 * that affect system-wide DTrace behavior, and for which the default behavior
143 * is undesirable.  Most of these variables are tunable on a per-consumer
144 * basis using DTrace options, and need not be tuned on a system-wide basis.
145 * When tuning these variables, avoid pathological values; while some attempt
146 * is made to verify the integrity of these variables, they are not considered
147 * part of the supported interface to DTrace, and they are therefore not
148 * checked comprehensively.  Further, these variables should not be tuned
149 * dynamically via "mdb -kw" or other means; they should only be tuned via
150 * /etc/system.
151 */
152int		dtrace_destructive_disallow = 0;
153dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
154size_t		dtrace_difo_maxsize = (256 * 1024);
155dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
156size_t		dtrace_global_maxsize = (16 * 1024);
157size_t		dtrace_actions_max = (16 * 1024);
158size_t		dtrace_retain_max = 1024;
159dtrace_optval_t	dtrace_helper_actions_max = 32;
160dtrace_optval_t	dtrace_helper_providers_max = 32;
161dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
162size_t		dtrace_strsize_default = 256;
163dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
164dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
165dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
166dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
167dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
168dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
169dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
170dtrace_optval_t	dtrace_nspec_default = 1;
171dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
172dtrace_optval_t dtrace_stackframes_default = 20;
173dtrace_optval_t dtrace_ustackframes_default = 20;
174dtrace_optval_t dtrace_jstackframes_default = 50;
175dtrace_optval_t dtrace_jstackstrsize_default = 512;
176int		dtrace_msgdsize_max = 128;
177hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
178hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
179int		dtrace_devdepth_max = 32;
180int		dtrace_err_verbose;
181hrtime_t	dtrace_deadman_interval = NANOSEC;
182hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
183hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
184
185/*
186 * DTrace External Variables
187 *
188 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
189 * available to DTrace consumers via the backtick (`) syntax.  One of these,
190 * dtrace_zero, is made deliberately so:  it is provided as a source of
191 * well-known, zero-filled memory.  While this variable is not documented,
192 * it is used by some translators as an implementation detail.
193 */
194const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
195
196/*
197 * DTrace Internal Variables
198 */
199#if defined(sun)
200static dev_info_t	*dtrace_devi;		/* device info */
201#endif
202#if defined(sun)
203static vmem_t		*dtrace_arena;		/* probe ID arena */
204static vmem_t		*dtrace_minor;		/* minor number arena */
205static taskq_t		*dtrace_taskq;		/* task queue */
206#else
207static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
208#endif
209static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
210static int		dtrace_nprobes;		/* number of probes */
211static dtrace_provider_t *dtrace_provider;	/* provider list */
212static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
213static int		dtrace_opens;		/* number of opens */
214static int		dtrace_helpers;		/* number of helpers */
215#if defined(sun)
216static void		*dtrace_softstate;	/* softstate pointer */
217#endif
218static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
219static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
220static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
221static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
222static int		dtrace_toxranges;	/* number of toxic ranges */
223static int		dtrace_toxranges_max;	/* size of toxic range array */
224static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
225static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
226static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
227static kthread_t	*dtrace_panicked;	/* panicking thread */
228static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
229static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
230static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
231static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
232static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
233#if !defined(sun)
234static struct mtx	dtrace_unr_mtx;
235MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
236int		dtrace_in_probe;	/* non-zero if executing a probe */
237#if defined(__i386__) || defined(__amd64__)
238uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
239#endif
240#endif
241
242/*
243 * DTrace Locking
244 * DTrace is protected by three (relatively coarse-grained) locks:
245 *
246 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
247 *     including enabling state, probes, ECBs, consumer state, helper state,
248 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
249 *     probe context is lock-free -- synchronization is handled via the
250 *     dtrace_sync() cross call mechanism.
251 *
252 * (2) dtrace_provider_lock is required when manipulating provider state, or
253 *     when provider state must be held constant.
254 *
255 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
256 *     when meta provider state must be held constant.
257 *
258 * The lock ordering between these three locks is dtrace_meta_lock before
259 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
260 * several places where dtrace_provider_lock is held by the framework as it
261 * calls into the providers -- which then call back into the framework,
262 * grabbing dtrace_lock.)
263 *
264 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
265 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
266 * role as a coarse-grained lock; it is acquired before both of these locks.
267 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
268 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
269 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
270 * acquired _between_ dtrace_provider_lock and dtrace_lock.
271 */
272static kmutex_t		dtrace_lock;		/* probe state lock */
273static kmutex_t		dtrace_provider_lock;	/* provider state lock */
274static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
275
276#if !defined(sun)
277/* XXX FreeBSD hacks. */
278static kmutex_t		mod_lock;
279
280#define cr_suid		cr_svuid
281#define cr_sgid		cr_svgid
282#define	ipaddr_t	in_addr_t
283#define mod_modname	pathname
284#define vuprintf	vprintf
285#define ttoproc(_a)	((_a)->td_proc)
286#define crgetzoneid(_a)	0
287#define	NCPU		MAXCPU
288#define SNOCD		0
289#define CPU_ON_INTR(_a)	0
290
291#define PRIV_EFFECTIVE		(1 << 0)
292#define PRIV_DTRACE_KERNEL	(1 << 1)
293#define PRIV_DTRACE_PROC	(1 << 2)
294#define PRIV_DTRACE_USER	(1 << 3)
295#define PRIV_PROC_OWNER		(1 << 4)
296#define PRIV_PROC_ZONE		(1 << 5)
297#define PRIV_ALL		~0
298
299SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
300#endif
301
302#if defined(sun)
303#define curcpu	CPU->cpu_id
304#endif
305
306
307/*
308 * DTrace Provider Variables
309 *
310 * These are the variables relating to DTrace as a provider (that is, the
311 * provider of the BEGIN, END, and ERROR probes).
312 */
313static dtrace_pattr_t	dtrace_provider_attr = {
314{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
315{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
316{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
318{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319};
320
321static void
322dtrace_nullop(void)
323{}
324
325static dtrace_pops_t	dtrace_provider_ops = {
326	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
327	(void (*)(void *, modctl_t *))dtrace_nullop,
328	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
329	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332	NULL,
333	NULL,
334	NULL,
335	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
336};
337
338static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
339static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
340dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
341
342/*
343 * DTrace Helper Tracing Variables
344 */
345uint32_t dtrace_helptrace_next = 0;
346uint32_t dtrace_helptrace_nlocals;
347char	*dtrace_helptrace_buffer;
348int	dtrace_helptrace_bufsize = 512 * 1024;
349
350#ifdef DEBUG
351int	dtrace_helptrace_enabled = 1;
352#else
353int	dtrace_helptrace_enabled = 0;
354#endif
355
356/*
357 * DTrace Error Hashing
358 *
359 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
360 * table.  This is very useful for checking coverage of tests that are
361 * expected to induce DIF or DOF processing errors, and may be useful for
362 * debugging problems in the DIF code generator or in DOF generation .  The
363 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
364 */
365#ifdef DEBUG
366static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
367static const char *dtrace_errlast;
368static kthread_t *dtrace_errthread;
369static kmutex_t dtrace_errlock;
370#endif
371
372/*
373 * DTrace Macros and Constants
374 *
375 * These are various macros that are useful in various spots in the
376 * implementation, along with a few random constants that have no meaning
377 * outside of the implementation.  There is no real structure to this cpp
378 * mishmash -- but is there ever?
379 */
380#define	DTRACE_HASHSTR(hash, probe)	\
381	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
382
383#define	DTRACE_HASHNEXT(hash, probe)	\
384	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
385
386#define	DTRACE_HASHPREV(hash, probe)	\
387	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
388
389#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
390	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
391	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
392
393#define	DTRACE_AGGHASHSIZE_SLEW		17
394
395#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
396
397/*
398 * The key for a thread-local variable consists of the lower 61 bits of the
399 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
400 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
401 * equal to a variable identifier.  This is necessary (but not sufficient) to
402 * assure that global associative arrays never collide with thread-local
403 * variables.  To guarantee that they cannot collide, we must also define the
404 * order for keying dynamic variables.  That order is:
405 *
406 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
407 *
408 * Because the variable-key and the tls-key are in orthogonal spaces, there is
409 * no way for a global variable key signature to match a thread-local key
410 * signature.
411 */
412#if defined(sun)
413#define	DTRACE_TLS_THRKEY(where) { \
414	uint_t intr = 0; \
415	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
416	for (; actv; actv >>= 1) \
417		intr++; \
418	ASSERT(intr < (1 << 3)); \
419	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
420	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
421}
422#else
423#define	DTRACE_TLS_THRKEY(where) { \
424	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
425	uint_t intr = 0; \
426	uint_t actv = _c->cpu_intr_actv; \
427	for (; actv; actv >>= 1) \
428		intr++; \
429	ASSERT(intr < (1 << 3)); \
430	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
431	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
432}
433#endif
434
435#define	DT_BSWAP_8(x)	((x) & 0xff)
436#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
437#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
438#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
439
440#define	DT_MASK_LO 0x00000000FFFFFFFFULL
441
442#define	DTRACE_STORE(type, tomax, offset, what) \
443	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
444
445#ifndef __i386
446#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
447	if (addr & (size - 1)) {					\
448		*flags |= CPU_DTRACE_BADALIGN;				\
449		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
450		return (0);						\
451	}
452#else
453#define	DTRACE_ALIGNCHECK(addr, size, flags)
454#endif
455
456/*
457 * Test whether a range of memory starting at testaddr of size testsz falls
458 * within the range of memory described by addr, sz.  We take care to avoid
459 * problems with overflow and underflow of the unsigned quantities, and
460 * disallow all negative sizes.  Ranges of size 0 are allowed.
461 */
462#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
463	((testaddr) - (baseaddr) < (basesz) && \
464	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
465	(testaddr) + (testsz) >= (testaddr))
466
467/*
468 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
469 * alloc_sz on the righthand side of the comparison in order to avoid overflow
470 * or underflow in the comparison with it.  This is simpler than the INRANGE
471 * check above, because we know that the dtms_scratch_ptr is valid in the
472 * range.  Allocations of size zero are allowed.
473 */
474#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
475	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
476	(mstate)->dtms_scratch_ptr >= (alloc_sz))
477
478#define	DTRACE_LOADFUNC(bits)						\
479/*CSTYLED*/								\
480uint##bits##_t								\
481dtrace_load##bits(uintptr_t addr)					\
482{									\
483	size_t size = bits / NBBY;					\
484	/*CSTYLED*/							\
485	uint##bits##_t rval;						\
486	int i;								\
487	volatile uint16_t *flags = (volatile uint16_t *)		\
488	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
489									\
490	DTRACE_ALIGNCHECK(addr, size, flags);				\
491									\
492	for (i = 0; i < dtrace_toxranges; i++) {			\
493		if (addr >= dtrace_toxrange[i].dtt_limit)		\
494			continue;					\
495									\
496		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
497			continue;					\
498									\
499		/*							\
500		 * This address falls within a toxic region; return 0.	\
501		 */							\
502		*flags |= CPU_DTRACE_BADADDR;				\
503		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
504		return (0);						\
505	}								\
506									\
507	*flags |= CPU_DTRACE_NOFAULT;					\
508	/*CSTYLED*/							\
509	rval = *((volatile uint##bits##_t *)addr);			\
510	*flags &= ~CPU_DTRACE_NOFAULT;					\
511									\
512	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
513}
514
515#ifdef _LP64
516#define	dtrace_loadptr	dtrace_load64
517#else
518#define	dtrace_loadptr	dtrace_load32
519#endif
520
521#define	DTRACE_DYNHASH_FREE	0
522#define	DTRACE_DYNHASH_SINK	1
523#define	DTRACE_DYNHASH_VALID	2
524
525#define	DTRACE_MATCH_NEXT	0
526#define	DTRACE_MATCH_DONE	1
527#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
528#define	DTRACE_STATE_ALIGN	64
529
530#define	DTRACE_FLAGS2FLT(flags)						\
531	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
532	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
533	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
534	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
535	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
536	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
537	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
538	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
539	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
540	DTRACEFLT_UNKNOWN)
541
542#define	DTRACEACT_ISSTRING(act)						\
543	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
544	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
545
546/* Function prototype definitions: */
547static size_t dtrace_strlen(const char *, size_t);
548static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
549static void dtrace_enabling_provide(dtrace_provider_t *);
550static int dtrace_enabling_match(dtrace_enabling_t *, int *);
551static void dtrace_enabling_matchall(void);
552static dtrace_state_t *dtrace_anon_grab(void);
553#if defined(sun)
554static uint64_t dtrace_helper(int, dtrace_mstate_t *,
555    dtrace_state_t *, uint64_t, uint64_t);
556static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
557#endif
558static void dtrace_buffer_drop(dtrace_buffer_t *);
559static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
560    dtrace_state_t *, dtrace_mstate_t *);
561static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
562    dtrace_optval_t);
563static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
564#if defined(sun)
565static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
566#endif
567uint16_t dtrace_load16(uintptr_t);
568uint32_t dtrace_load32(uintptr_t);
569uint64_t dtrace_load64(uintptr_t);
570uint8_t dtrace_load8(uintptr_t);
571void dtrace_dynvar_clean(dtrace_dstate_t *);
572dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
573    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
574uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
575
576/*
577 * DTrace Probe Context Functions
578 *
579 * These functions are called from probe context.  Because probe context is
580 * any context in which C may be called, arbitrarily locks may be held,
581 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
582 * As a result, functions called from probe context may only call other DTrace
583 * support functions -- they may not interact at all with the system at large.
584 * (Note that the ASSERT macro is made probe-context safe by redefining it in
585 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
586 * loads are to be performed from probe context, they _must_ be in terms of
587 * the safe dtrace_load*() variants.
588 *
589 * Some functions in this block are not actually called from probe context;
590 * for these functions, there will be a comment above the function reading
591 * "Note:  not called from probe context."
592 */
593void
594dtrace_panic(const char *format, ...)
595{
596	va_list alist;
597
598	va_start(alist, format);
599	dtrace_vpanic(format, alist);
600	va_end(alist);
601}
602
603int
604dtrace_assfail(const char *a, const char *f, int l)
605{
606	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
607
608	/*
609	 * We just need something here that even the most clever compiler
610	 * cannot optimize away.
611	 */
612	return (a[(uintptr_t)f]);
613}
614
615/*
616 * Atomically increment a specified error counter from probe context.
617 */
618static void
619dtrace_error(uint32_t *counter)
620{
621	/*
622	 * Most counters stored to in probe context are per-CPU counters.
623	 * However, there are some error conditions that are sufficiently
624	 * arcane that they don't merit per-CPU storage.  If these counters
625	 * are incremented concurrently on different CPUs, scalability will be
626	 * adversely affected -- but we don't expect them to be white-hot in a
627	 * correctly constructed enabling...
628	 */
629	uint32_t oval, nval;
630
631	do {
632		oval = *counter;
633
634		if ((nval = oval + 1) == 0) {
635			/*
636			 * If the counter would wrap, set it to 1 -- assuring
637			 * that the counter is never zero when we have seen
638			 * errors.  (The counter must be 32-bits because we
639			 * aren't guaranteed a 64-bit compare&swap operation.)
640			 * To save this code both the infamy of being fingered
641			 * by a priggish news story and the indignity of being
642			 * the target of a neo-puritan witch trial, we're
643			 * carefully avoiding any colorful description of the
644			 * likelihood of this condition -- but suffice it to
645			 * say that it is only slightly more likely than the
646			 * overflow of predicate cache IDs, as discussed in
647			 * dtrace_predicate_create().
648			 */
649			nval = 1;
650		}
651	} while (dtrace_cas32(counter, oval, nval) != oval);
652}
653
654/*
655 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
656 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
657 */
658DTRACE_LOADFUNC(8)
659DTRACE_LOADFUNC(16)
660DTRACE_LOADFUNC(32)
661DTRACE_LOADFUNC(64)
662
663static int
664dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
665{
666	if (dest < mstate->dtms_scratch_base)
667		return (0);
668
669	if (dest + size < dest)
670		return (0);
671
672	if (dest + size > mstate->dtms_scratch_ptr)
673		return (0);
674
675	return (1);
676}
677
678static int
679dtrace_canstore_statvar(uint64_t addr, size_t sz,
680    dtrace_statvar_t **svars, int nsvars)
681{
682	int i;
683
684	for (i = 0; i < nsvars; i++) {
685		dtrace_statvar_t *svar = svars[i];
686
687		if (svar == NULL || svar->dtsv_size == 0)
688			continue;
689
690		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
691			return (1);
692	}
693
694	return (0);
695}
696
697/*
698 * Check to see if the address is within a memory region to which a store may
699 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
700 * region.  The caller of dtrace_canstore() is responsible for performing any
701 * alignment checks that are needed before stores are actually executed.
702 */
703static int
704dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
705    dtrace_vstate_t *vstate)
706{
707	/*
708	 * First, check to see if the address is in scratch space...
709	 */
710	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
711	    mstate->dtms_scratch_size))
712		return (1);
713
714	/*
715	 * Now check to see if it's a dynamic variable.  This check will pick
716	 * up both thread-local variables and any global dynamically-allocated
717	 * variables.
718	 */
719	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
720	    vstate->dtvs_dynvars.dtds_size)) {
721		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
722		uintptr_t base = (uintptr_t)dstate->dtds_base +
723		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
724		uintptr_t chunkoffs;
725
726		/*
727		 * Before we assume that we can store here, we need to make
728		 * sure that it isn't in our metadata -- storing to our
729		 * dynamic variable metadata would corrupt our state.  For
730		 * the range to not include any dynamic variable metadata,
731		 * it must:
732		 *
733		 *	(1) Start above the hash table that is at the base of
734		 *	the dynamic variable space
735		 *
736		 *	(2) Have a starting chunk offset that is beyond the
737		 *	dtrace_dynvar_t that is at the base of every chunk
738		 *
739		 *	(3) Not span a chunk boundary
740		 *
741		 */
742		if (addr < base)
743			return (0);
744
745		chunkoffs = (addr - base) % dstate->dtds_chunksize;
746
747		if (chunkoffs < sizeof (dtrace_dynvar_t))
748			return (0);
749
750		if (chunkoffs + sz > dstate->dtds_chunksize)
751			return (0);
752
753		return (1);
754	}
755
756	/*
757	 * Finally, check the static local and global variables.  These checks
758	 * take the longest, so we perform them last.
759	 */
760	if (dtrace_canstore_statvar(addr, sz,
761	    vstate->dtvs_locals, vstate->dtvs_nlocals))
762		return (1);
763
764	if (dtrace_canstore_statvar(addr, sz,
765	    vstate->dtvs_globals, vstate->dtvs_nglobals))
766		return (1);
767
768	return (0);
769}
770
771
772/*
773 * Convenience routine to check to see if the address is within a memory
774 * region in which a load may be issued given the user's privilege level;
775 * if not, it sets the appropriate error flags and loads 'addr' into the
776 * illegal value slot.
777 *
778 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
779 * appropriate memory access protection.
780 */
781static int
782dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
783    dtrace_vstate_t *vstate)
784{
785	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
786
787	/*
788	 * If we hold the privilege to read from kernel memory, then
789	 * everything is readable.
790	 */
791	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
792		return (1);
793
794	/*
795	 * You can obviously read that which you can store.
796	 */
797	if (dtrace_canstore(addr, sz, mstate, vstate))
798		return (1);
799
800	/*
801	 * We're allowed to read from our own string table.
802	 */
803	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
804	    mstate->dtms_difo->dtdo_strlen))
805		return (1);
806
807	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
808	*illval = addr;
809	return (0);
810}
811
812/*
813 * Convenience routine to check to see if a given string is within a memory
814 * region in which a load may be issued given the user's privilege level;
815 * this exists so that we don't need to issue unnecessary dtrace_strlen()
816 * calls in the event that the user has all privileges.
817 */
818static int
819dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
820    dtrace_vstate_t *vstate)
821{
822	size_t strsz;
823
824	/*
825	 * If we hold the privilege to read from kernel memory, then
826	 * everything is readable.
827	 */
828	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
829		return (1);
830
831	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
832	if (dtrace_canload(addr, strsz, mstate, vstate))
833		return (1);
834
835	return (0);
836}
837
838/*
839 * Convenience routine to check to see if a given variable is within a memory
840 * region in which a load may be issued given the user's privilege level.
841 */
842static int
843dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
844    dtrace_vstate_t *vstate)
845{
846	size_t sz;
847	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
848
849	/*
850	 * If we hold the privilege to read from kernel memory, then
851	 * everything is readable.
852	 */
853	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
854		return (1);
855
856	if (type->dtdt_kind == DIF_TYPE_STRING)
857		sz = dtrace_strlen(src,
858		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
859	else
860		sz = type->dtdt_size;
861
862	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
863}
864
865/*
866 * Compare two strings using safe loads.
867 */
868static int
869dtrace_strncmp(char *s1, char *s2, size_t limit)
870{
871	uint8_t c1, c2;
872	volatile uint16_t *flags;
873
874	if (s1 == s2 || limit == 0)
875		return (0);
876
877	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
878
879	do {
880		if (s1 == NULL) {
881			c1 = '\0';
882		} else {
883			c1 = dtrace_load8((uintptr_t)s1++);
884		}
885
886		if (s2 == NULL) {
887			c2 = '\0';
888		} else {
889			c2 = dtrace_load8((uintptr_t)s2++);
890		}
891
892		if (c1 != c2)
893			return (c1 - c2);
894	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
895
896	return (0);
897}
898
899/*
900 * Compute strlen(s) for a string using safe memory accesses.  The additional
901 * len parameter is used to specify a maximum length to ensure completion.
902 */
903static size_t
904dtrace_strlen(const char *s, size_t lim)
905{
906	uint_t len;
907
908	for (len = 0; len != lim; len++) {
909		if (dtrace_load8((uintptr_t)s++) == '\0')
910			break;
911	}
912
913	return (len);
914}
915
916/*
917 * Check if an address falls within a toxic region.
918 */
919static int
920dtrace_istoxic(uintptr_t kaddr, size_t size)
921{
922	uintptr_t taddr, tsize;
923	int i;
924
925	for (i = 0; i < dtrace_toxranges; i++) {
926		taddr = dtrace_toxrange[i].dtt_base;
927		tsize = dtrace_toxrange[i].dtt_limit - taddr;
928
929		if (kaddr - taddr < tsize) {
930			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
931			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
932			return (1);
933		}
934
935		if (taddr - kaddr < size) {
936			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
937			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
938			return (1);
939		}
940	}
941
942	return (0);
943}
944
945/*
946 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
947 * memory specified by the DIF program.  The dst is assumed to be safe memory
948 * that we can store to directly because it is managed by DTrace.  As with
949 * standard bcopy, overlapping copies are handled properly.
950 */
951static void
952dtrace_bcopy(const void *src, void *dst, size_t len)
953{
954	if (len != 0) {
955		uint8_t *s1 = dst;
956		const uint8_t *s2 = src;
957
958		if (s1 <= s2) {
959			do {
960				*s1++ = dtrace_load8((uintptr_t)s2++);
961			} while (--len != 0);
962		} else {
963			s2 += len;
964			s1 += len;
965
966			do {
967				*--s1 = dtrace_load8((uintptr_t)--s2);
968			} while (--len != 0);
969		}
970	}
971}
972
973/*
974 * Copy src to dst using safe memory accesses, up to either the specified
975 * length, or the point that a nul byte is encountered.  The src is assumed to
976 * be unsafe memory specified by the DIF program.  The dst is assumed to be
977 * safe memory that we can store to directly because it is managed by DTrace.
978 * Unlike dtrace_bcopy(), overlapping regions are not handled.
979 */
980static void
981dtrace_strcpy(const void *src, void *dst, size_t len)
982{
983	if (len != 0) {
984		uint8_t *s1 = dst, c;
985		const uint8_t *s2 = src;
986
987		do {
988			*s1++ = c = dtrace_load8((uintptr_t)s2++);
989		} while (--len != 0 && c != '\0');
990	}
991}
992
993/*
994 * Copy src to dst, deriving the size and type from the specified (BYREF)
995 * variable type.  The src is assumed to be unsafe memory specified by the DIF
996 * program.  The dst is assumed to be DTrace variable memory that is of the
997 * specified type; we assume that we can store to directly.
998 */
999static void
1000dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1001{
1002	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1003
1004	if (type->dtdt_kind == DIF_TYPE_STRING) {
1005		dtrace_strcpy(src, dst, type->dtdt_size);
1006	} else {
1007		dtrace_bcopy(src, dst, type->dtdt_size);
1008	}
1009}
1010
1011/*
1012 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1013 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1014 * safe memory that we can access directly because it is managed by DTrace.
1015 */
1016static int
1017dtrace_bcmp(const void *s1, const void *s2, size_t len)
1018{
1019	volatile uint16_t *flags;
1020
1021	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1022
1023	if (s1 == s2)
1024		return (0);
1025
1026	if (s1 == NULL || s2 == NULL)
1027		return (1);
1028
1029	if (s1 != s2 && len != 0) {
1030		const uint8_t *ps1 = s1;
1031		const uint8_t *ps2 = s2;
1032
1033		do {
1034			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1035				return (1);
1036		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1037	}
1038	return (0);
1039}
1040
1041/*
1042 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1043 * is for safe DTrace-managed memory only.
1044 */
1045static void
1046dtrace_bzero(void *dst, size_t len)
1047{
1048	uchar_t *cp;
1049
1050	for (cp = dst; len != 0; len--)
1051		*cp++ = 0;
1052}
1053
1054static void
1055dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1056{
1057	uint64_t result[2];
1058
1059	result[0] = addend1[0] + addend2[0];
1060	result[1] = addend1[1] + addend2[1] +
1061	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1062
1063	sum[0] = result[0];
1064	sum[1] = result[1];
1065}
1066
1067/*
1068 * Shift the 128-bit value in a by b. If b is positive, shift left.
1069 * If b is negative, shift right.
1070 */
1071static void
1072dtrace_shift_128(uint64_t *a, int b)
1073{
1074	uint64_t mask;
1075
1076	if (b == 0)
1077		return;
1078
1079	if (b < 0) {
1080		b = -b;
1081		if (b >= 64) {
1082			a[0] = a[1] >> (b - 64);
1083			a[1] = 0;
1084		} else {
1085			a[0] >>= b;
1086			mask = 1LL << (64 - b);
1087			mask -= 1;
1088			a[0] |= ((a[1] & mask) << (64 - b));
1089			a[1] >>= b;
1090		}
1091	} else {
1092		if (b >= 64) {
1093			a[1] = a[0] << (b - 64);
1094			a[0] = 0;
1095		} else {
1096			a[1] <<= b;
1097			mask = a[0] >> (64 - b);
1098			a[1] |= mask;
1099			a[0] <<= b;
1100		}
1101	}
1102}
1103
1104/*
1105 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1106 * use native multiplication on those, and then re-combine into the
1107 * resulting 128-bit value.
1108 *
1109 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1110 *     hi1 * hi2 << 64 +
1111 *     hi1 * lo2 << 32 +
1112 *     hi2 * lo1 << 32 +
1113 *     lo1 * lo2
1114 */
1115static void
1116dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1117{
1118	uint64_t hi1, hi2, lo1, lo2;
1119	uint64_t tmp[2];
1120
1121	hi1 = factor1 >> 32;
1122	hi2 = factor2 >> 32;
1123
1124	lo1 = factor1 & DT_MASK_LO;
1125	lo2 = factor2 & DT_MASK_LO;
1126
1127	product[0] = lo1 * lo2;
1128	product[1] = hi1 * hi2;
1129
1130	tmp[0] = hi1 * lo2;
1131	tmp[1] = 0;
1132	dtrace_shift_128(tmp, 32);
1133	dtrace_add_128(product, tmp, product);
1134
1135	tmp[0] = hi2 * lo1;
1136	tmp[1] = 0;
1137	dtrace_shift_128(tmp, 32);
1138	dtrace_add_128(product, tmp, product);
1139}
1140
1141/*
1142 * This privilege check should be used by actions and subroutines to
1143 * verify that the user credentials of the process that enabled the
1144 * invoking ECB match the target credentials
1145 */
1146static int
1147dtrace_priv_proc_common_user(dtrace_state_t *state)
1148{
1149	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1150
1151	/*
1152	 * We should always have a non-NULL state cred here, since if cred
1153	 * is null (anonymous tracing), we fast-path bypass this routine.
1154	 */
1155	ASSERT(s_cr != NULL);
1156
1157	if ((cr = CRED()) != NULL &&
1158	    s_cr->cr_uid == cr->cr_uid &&
1159	    s_cr->cr_uid == cr->cr_ruid &&
1160	    s_cr->cr_uid == cr->cr_suid &&
1161	    s_cr->cr_gid == cr->cr_gid &&
1162	    s_cr->cr_gid == cr->cr_rgid &&
1163	    s_cr->cr_gid == cr->cr_sgid)
1164		return (1);
1165
1166	return (0);
1167}
1168
1169/*
1170 * This privilege check should be used by actions and subroutines to
1171 * verify that the zone of the process that enabled the invoking ECB
1172 * matches the target credentials
1173 */
1174static int
1175dtrace_priv_proc_common_zone(dtrace_state_t *state)
1176{
1177#if defined(sun)
1178	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1179
1180	/*
1181	 * We should always have a non-NULL state cred here, since if cred
1182	 * is null (anonymous tracing), we fast-path bypass this routine.
1183	 */
1184	ASSERT(s_cr != NULL);
1185
1186	if ((cr = CRED()) != NULL &&
1187	    s_cr->cr_zone == cr->cr_zone)
1188		return (1);
1189
1190	return (0);
1191#else
1192	return (1);
1193#endif
1194}
1195
1196/*
1197 * This privilege check should be used by actions and subroutines to
1198 * verify that the process has not setuid or changed credentials.
1199 */
1200static int
1201dtrace_priv_proc_common_nocd(void)
1202{
1203	proc_t *proc;
1204
1205	if ((proc = ttoproc(curthread)) != NULL &&
1206	    !(proc->p_flag & SNOCD))
1207		return (1);
1208
1209	return (0);
1210}
1211
1212static int
1213dtrace_priv_proc_destructive(dtrace_state_t *state)
1214{
1215	int action = state->dts_cred.dcr_action;
1216
1217	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1218	    dtrace_priv_proc_common_zone(state) == 0)
1219		goto bad;
1220
1221	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1222	    dtrace_priv_proc_common_user(state) == 0)
1223		goto bad;
1224
1225	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1226	    dtrace_priv_proc_common_nocd() == 0)
1227		goto bad;
1228
1229	return (1);
1230
1231bad:
1232	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1233
1234	return (0);
1235}
1236
1237static int
1238dtrace_priv_proc_control(dtrace_state_t *state)
1239{
1240	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1241		return (1);
1242
1243	if (dtrace_priv_proc_common_zone(state) &&
1244	    dtrace_priv_proc_common_user(state) &&
1245	    dtrace_priv_proc_common_nocd())
1246		return (1);
1247
1248	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1249
1250	return (0);
1251}
1252
1253static int
1254dtrace_priv_proc(dtrace_state_t *state)
1255{
1256	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1257		return (1);
1258
1259	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1260
1261	return (0);
1262}
1263
1264static int
1265dtrace_priv_kernel(dtrace_state_t *state)
1266{
1267	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1268		return (1);
1269
1270	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1271
1272	return (0);
1273}
1274
1275static int
1276dtrace_priv_kernel_destructive(dtrace_state_t *state)
1277{
1278	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1279		return (1);
1280
1281	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1282
1283	return (0);
1284}
1285
1286/*
1287 * Note:  not called from probe context.  This function is called
1288 * asynchronously (and at a regular interval) from outside of probe context to
1289 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1290 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1291 */
1292void
1293dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1294{
1295	dtrace_dynvar_t *dirty;
1296	dtrace_dstate_percpu_t *dcpu;
1297	int i, work = 0;
1298
1299	for (i = 0; i < NCPU; i++) {
1300		dcpu = &dstate->dtds_percpu[i];
1301
1302		ASSERT(dcpu->dtdsc_rinsing == NULL);
1303
1304		/*
1305		 * If the dirty list is NULL, there is no dirty work to do.
1306		 */
1307		if (dcpu->dtdsc_dirty == NULL)
1308			continue;
1309
1310		/*
1311		 * If the clean list is non-NULL, then we're not going to do
1312		 * any work for this CPU -- it means that there has not been
1313		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1314		 * since the last time we cleaned house.
1315		 */
1316		if (dcpu->dtdsc_clean != NULL)
1317			continue;
1318
1319		work = 1;
1320
1321		/*
1322		 * Atomically move the dirty list aside.
1323		 */
1324		do {
1325			dirty = dcpu->dtdsc_dirty;
1326
1327			/*
1328			 * Before we zap the dirty list, set the rinsing list.
1329			 * (This allows for a potential assertion in
1330			 * dtrace_dynvar():  if a free dynamic variable appears
1331			 * on a hash chain, either the dirty list or the
1332			 * rinsing list for some CPU must be non-NULL.)
1333			 */
1334			dcpu->dtdsc_rinsing = dirty;
1335			dtrace_membar_producer();
1336		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1337		    dirty, NULL) != dirty);
1338	}
1339
1340	if (!work) {
1341		/*
1342		 * We have no work to do; we can simply return.
1343		 */
1344		return;
1345	}
1346
1347	dtrace_sync();
1348
1349	for (i = 0; i < NCPU; i++) {
1350		dcpu = &dstate->dtds_percpu[i];
1351
1352		if (dcpu->dtdsc_rinsing == NULL)
1353			continue;
1354
1355		/*
1356		 * We are now guaranteed that no hash chain contains a pointer
1357		 * into this dirty list; we can make it clean.
1358		 */
1359		ASSERT(dcpu->dtdsc_clean == NULL);
1360		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1361		dcpu->dtdsc_rinsing = NULL;
1362	}
1363
1364	/*
1365	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1366	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1367	 * This prevents a race whereby a CPU incorrectly decides that
1368	 * the state should be something other than DTRACE_DSTATE_CLEAN
1369	 * after dtrace_dynvar_clean() has completed.
1370	 */
1371	dtrace_sync();
1372
1373	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1374}
1375
1376/*
1377 * Depending on the value of the op parameter, this function looks-up,
1378 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1379 * allocation is requested, this function will return a pointer to a
1380 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1381 * variable can be allocated.  If NULL is returned, the appropriate counter
1382 * will be incremented.
1383 */
1384dtrace_dynvar_t *
1385dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1386    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1387    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1388{
1389	uint64_t hashval = DTRACE_DYNHASH_VALID;
1390	dtrace_dynhash_t *hash = dstate->dtds_hash;
1391	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1392	processorid_t me = curcpu, cpu = me;
1393	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1394	size_t bucket, ksize;
1395	size_t chunksize = dstate->dtds_chunksize;
1396	uintptr_t kdata, lock, nstate;
1397	uint_t i;
1398
1399	ASSERT(nkeys != 0);
1400
1401	/*
1402	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1403	 * algorithm.  For the by-value portions, we perform the algorithm in
1404	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1405	 * bit, and seems to have only a minute effect on distribution.  For
1406	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1407	 * over each referenced byte.  It's painful to do this, but it's much
1408	 * better than pathological hash distribution.  The efficacy of the
1409	 * hashing algorithm (and a comparison with other algorithms) may be
1410	 * found by running the ::dtrace_dynstat MDB dcmd.
1411	 */
1412	for (i = 0; i < nkeys; i++) {
1413		if (key[i].dttk_size == 0) {
1414			uint64_t val = key[i].dttk_value;
1415
1416			hashval += (val >> 48) & 0xffff;
1417			hashval += (hashval << 10);
1418			hashval ^= (hashval >> 6);
1419
1420			hashval += (val >> 32) & 0xffff;
1421			hashval += (hashval << 10);
1422			hashval ^= (hashval >> 6);
1423
1424			hashval += (val >> 16) & 0xffff;
1425			hashval += (hashval << 10);
1426			hashval ^= (hashval >> 6);
1427
1428			hashval += val & 0xffff;
1429			hashval += (hashval << 10);
1430			hashval ^= (hashval >> 6);
1431		} else {
1432			/*
1433			 * This is incredibly painful, but it beats the hell
1434			 * out of the alternative.
1435			 */
1436			uint64_t j, size = key[i].dttk_size;
1437			uintptr_t base = (uintptr_t)key[i].dttk_value;
1438
1439			if (!dtrace_canload(base, size, mstate, vstate))
1440				break;
1441
1442			for (j = 0; j < size; j++) {
1443				hashval += dtrace_load8(base + j);
1444				hashval += (hashval << 10);
1445				hashval ^= (hashval >> 6);
1446			}
1447		}
1448	}
1449
1450	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1451		return (NULL);
1452
1453	hashval += (hashval << 3);
1454	hashval ^= (hashval >> 11);
1455	hashval += (hashval << 15);
1456
1457	/*
1458	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1459	 * comes out to be one of our two sentinel hash values.  If this
1460	 * actually happens, we set the hashval to be a value known to be a
1461	 * non-sentinel value.
1462	 */
1463	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1464		hashval = DTRACE_DYNHASH_VALID;
1465
1466	/*
1467	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1468	 * important here, tricks can be pulled to reduce it.  (However, it's
1469	 * critical that hash collisions be kept to an absolute minimum;
1470	 * they're much more painful than a divide.)  It's better to have a
1471	 * solution that generates few collisions and still keeps things
1472	 * relatively simple.
1473	 */
1474	bucket = hashval % dstate->dtds_hashsize;
1475
1476	if (op == DTRACE_DYNVAR_DEALLOC) {
1477		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1478
1479		for (;;) {
1480			while ((lock = *lockp) & 1)
1481				continue;
1482
1483			if (dtrace_casptr((volatile void *)lockp,
1484			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1485				break;
1486		}
1487
1488		dtrace_membar_producer();
1489	}
1490
1491top:
1492	prev = NULL;
1493	lock = hash[bucket].dtdh_lock;
1494
1495	dtrace_membar_consumer();
1496
1497	start = hash[bucket].dtdh_chain;
1498	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1499	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1500	    op != DTRACE_DYNVAR_DEALLOC));
1501
1502	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1503		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1504		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1505
1506		if (dvar->dtdv_hashval != hashval) {
1507			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1508				/*
1509				 * We've reached the sink, and therefore the
1510				 * end of the hash chain; we can kick out of
1511				 * the loop knowing that we have seen a valid
1512				 * snapshot of state.
1513				 */
1514				ASSERT(dvar->dtdv_next == NULL);
1515				ASSERT(dvar == &dtrace_dynhash_sink);
1516				break;
1517			}
1518
1519			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1520				/*
1521				 * We've gone off the rails:  somewhere along
1522				 * the line, one of the members of this hash
1523				 * chain was deleted.  Note that we could also
1524				 * detect this by simply letting this loop run
1525				 * to completion, as we would eventually hit
1526				 * the end of the dirty list.  However, we
1527				 * want to avoid running the length of the
1528				 * dirty list unnecessarily (it might be quite
1529				 * long), so we catch this as early as
1530				 * possible by detecting the hash marker.  In
1531				 * this case, we simply set dvar to NULL and
1532				 * break; the conditional after the loop will
1533				 * send us back to top.
1534				 */
1535				dvar = NULL;
1536				break;
1537			}
1538
1539			goto next;
1540		}
1541
1542		if (dtuple->dtt_nkeys != nkeys)
1543			goto next;
1544
1545		for (i = 0; i < nkeys; i++, dkey++) {
1546			if (dkey->dttk_size != key[i].dttk_size)
1547				goto next; /* size or type mismatch */
1548
1549			if (dkey->dttk_size != 0) {
1550				if (dtrace_bcmp(
1551				    (void *)(uintptr_t)key[i].dttk_value,
1552				    (void *)(uintptr_t)dkey->dttk_value,
1553				    dkey->dttk_size))
1554					goto next;
1555			} else {
1556				if (dkey->dttk_value != key[i].dttk_value)
1557					goto next;
1558			}
1559		}
1560
1561		if (op != DTRACE_DYNVAR_DEALLOC)
1562			return (dvar);
1563
1564		ASSERT(dvar->dtdv_next == NULL ||
1565		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1566
1567		if (prev != NULL) {
1568			ASSERT(hash[bucket].dtdh_chain != dvar);
1569			ASSERT(start != dvar);
1570			ASSERT(prev->dtdv_next == dvar);
1571			prev->dtdv_next = dvar->dtdv_next;
1572		} else {
1573			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1574			    start, dvar->dtdv_next) != start) {
1575				/*
1576				 * We have failed to atomically swing the
1577				 * hash table head pointer, presumably because
1578				 * of a conflicting allocation on another CPU.
1579				 * We need to reread the hash chain and try
1580				 * again.
1581				 */
1582				goto top;
1583			}
1584		}
1585
1586		dtrace_membar_producer();
1587
1588		/*
1589		 * Now set the hash value to indicate that it's free.
1590		 */
1591		ASSERT(hash[bucket].dtdh_chain != dvar);
1592		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1593
1594		dtrace_membar_producer();
1595
1596		/*
1597		 * Set the next pointer to point at the dirty list, and
1598		 * atomically swing the dirty pointer to the newly freed dvar.
1599		 */
1600		do {
1601			next = dcpu->dtdsc_dirty;
1602			dvar->dtdv_next = next;
1603		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1604
1605		/*
1606		 * Finally, unlock this hash bucket.
1607		 */
1608		ASSERT(hash[bucket].dtdh_lock == lock);
1609		ASSERT(lock & 1);
1610		hash[bucket].dtdh_lock++;
1611
1612		return (NULL);
1613next:
1614		prev = dvar;
1615		continue;
1616	}
1617
1618	if (dvar == NULL) {
1619		/*
1620		 * If dvar is NULL, it is because we went off the rails:
1621		 * one of the elements that we traversed in the hash chain
1622		 * was deleted while we were traversing it.  In this case,
1623		 * we assert that we aren't doing a dealloc (deallocs lock
1624		 * the hash bucket to prevent themselves from racing with
1625		 * one another), and retry the hash chain traversal.
1626		 */
1627		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1628		goto top;
1629	}
1630
1631	if (op != DTRACE_DYNVAR_ALLOC) {
1632		/*
1633		 * If we are not to allocate a new variable, we want to
1634		 * return NULL now.  Before we return, check that the value
1635		 * of the lock word hasn't changed.  If it has, we may have
1636		 * seen an inconsistent snapshot.
1637		 */
1638		if (op == DTRACE_DYNVAR_NOALLOC) {
1639			if (hash[bucket].dtdh_lock != lock)
1640				goto top;
1641		} else {
1642			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1643			ASSERT(hash[bucket].dtdh_lock == lock);
1644			ASSERT(lock & 1);
1645			hash[bucket].dtdh_lock++;
1646		}
1647
1648		return (NULL);
1649	}
1650
1651	/*
1652	 * We need to allocate a new dynamic variable.  The size we need is the
1653	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1654	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1655	 * the size of any referred-to data (dsize).  We then round the final
1656	 * size up to the chunksize for allocation.
1657	 */
1658	for (ksize = 0, i = 0; i < nkeys; i++)
1659		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1660
1661	/*
1662	 * This should be pretty much impossible, but could happen if, say,
1663	 * strange DIF specified the tuple.  Ideally, this should be an
1664	 * assertion and not an error condition -- but that requires that the
1665	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1666	 * bullet-proof.  (That is, it must not be able to be fooled by
1667	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1668	 * solving this would presumably not amount to solving the Halting
1669	 * Problem -- but it still seems awfully hard.
1670	 */
1671	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1672	    ksize + dsize > chunksize) {
1673		dcpu->dtdsc_drops++;
1674		return (NULL);
1675	}
1676
1677	nstate = DTRACE_DSTATE_EMPTY;
1678
1679	do {
1680retry:
1681		free = dcpu->dtdsc_free;
1682
1683		if (free == NULL) {
1684			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1685			void *rval;
1686
1687			if (clean == NULL) {
1688				/*
1689				 * We're out of dynamic variable space on
1690				 * this CPU.  Unless we have tried all CPUs,
1691				 * we'll try to allocate from a different
1692				 * CPU.
1693				 */
1694				switch (dstate->dtds_state) {
1695				case DTRACE_DSTATE_CLEAN: {
1696					void *sp = &dstate->dtds_state;
1697
1698					if (++cpu >= NCPU)
1699						cpu = 0;
1700
1701					if (dcpu->dtdsc_dirty != NULL &&
1702					    nstate == DTRACE_DSTATE_EMPTY)
1703						nstate = DTRACE_DSTATE_DIRTY;
1704
1705					if (dcpu->dtdsc_rinsing != NULL)
1706						nstate = DTRACE_DSTATE_RINSING;
1707
1708					dcpu = &dstate->dtds_percpu[cpu];
1709
1710					if (cpu != me)
1711						goto retry;
1712
1713					(void) dtrace_cas32(sp,
1714					    DTRACE_DSTATE_CLEAN, nstate);
1715
1716					/*
1717					 * To increment the correct bean
1718					 * counter, take another lap.
1719					 */
1720					goto retry;
1721				}
1722
1723				case DTRACE_DSTATE_DIRTY:
1724					dcpu->dtdsc_dirty_drops++;
1725					break;
1726
1727				case DTRACE_DSTATE_RINSING:
1728					dcpu->dtdsc_rinsing_drops++;
1729					break;
1730
1731				case DTRACE_DSTATE_EMPTY:
1732					dcpu->dtdsc_drops++;
1733					break;
1734				}
1735
1736				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1737				return (NULL);
1738			}
1739
1740			/*
1741			 * The clean list appears to be non-empty.  We want to
1742			 * move the clean list to the free list; we start by
1743			 * moving the clean pointer aside.
1744			 */
1745			if (dtrace_casptr(&dcpu->dtdsc_clean,
1746			    clean, NULL) != clean) {
1747				/*
1748				 * We are in one of two situations:
1749				 *
1750				 *  (a)	The clean list was switched to the
1751				 *	free list by another CPU.
1752				 *
1753				 *  (b)	The clean list was added to by the
1754				 *	cleansing cyclic.
1755				 *
1756				 * In either of these situations, we can
1757				 * just reattempt the free list allocation.
1758				 */
1759				goto retry;
1760			}
1761
1762			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1763
1764			/*
1765			 * Now we'll move the clean list to the free list.
1766			 * It's impossible for this to fail:  the only way
1767			 * the free list can be updated is through this
1768			 * code path, and only one CPU can own the clean list.
1769			 * Thus, it would only be possible for this to fail if
1770			 * this code were racing with dtrace_dynvar_clean().
1771			 * (That is, if dtrace_dynvar_clean() updated the clean
1772			 * list, and we ended up racing to update the free
1773			 * list.)  This race is prevented by the dtrace_sync()
1774			 * in dtrace_dynvar_clean() -- which flushes the
1775			 * owners of the clean lists out before resetting
1776			 * the clean lists.
1777			 */
1778			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1779			ASSERT(rval == NULL);
1780			goto retry;
1781		}
1782
1783		dvar = free;
1784		new_free = dvar->dtdv_next;
1785	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1786
1787	/*
1788	 * We have now allocated a new chunk.  We copy the tuple keys into the
1789	 * tuple array and copy any referenced key data into the data space
1790	 * following the tuple array.  As we do this, we relocate dttk_value
1791	 * in the final tuple to point to the key data address in the chunk.
1792	 */
1793	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1794	dvar->dtdv_data = (void *)(kdata + ksize);
1795	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1796
1797	for (i = 0; i < nkeys; i++) {
1798		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1799		size_t kesize = key[i].dttk_size;
1800
1801		if (kesize != 0) {
1802			dtrace_bcopy(
1803			    (const void *)(uintptr_t)key[i].dttk_value,
1804			    (void *)kdata, kesize);
1805			dkey->dttk_value = kdata;
1806			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1807		} else {
1808			dkey->dttk_value = key[i].dttk_value;
1809		}
1810
1811		dkey->dttk_size = kesize;
1812	}
1813
1814	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1815	dvar->dtdv_hashval = hashval;
1816	dvar->dtdv_next = start;
1817
1818	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1819		return (dvar);
1820
1821	/*
1822	 * The cas has failed.  Either another CPU is adding an element to
1823	 * this hash chain, or another CPU is deleting an element from this
1824	 * hash chain.  The simplest way to deal with both of these cases
1825	 * (though not necessarily the most efficient) is to free our
1826	 * allocated block and tail-call ourselves.  Note that the free is
1827	 * to the dirty list and _not_ to the free list.  This is to prevent
1828	 * races with allocators, above.
1829	 */
1830	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1831
1832	dtrace_membar_producer();
1833
1834	do {
1835		free = dcpu->dtdsc_dirty;
1836		dvar->dtdv_next = free;
1837	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1838
1839	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1840}
1841
1842/*ARGSUSED*/
1843static void
1844dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1845{
1846	if ((int64_t)nval < (int64_t)*oval)
1847		*oval = nval;
1848}
1849
1850/*ARGSUSED*/
1851static void
1852dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1853{
1854	if ((int64_t)nval > (int64_t)*oval)
1855		*oval = nval;
1856}
1857
1858static void
1859dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1860{
1861	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1862	int64_t val = (int64_t)nval;
1863
1864	if (val < 0) {
1865		for (i = 0; i < zero; i++) {
1866			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1867				quanta[i] += incr;
1868				return;
1869			}
1870		}
1871	} else {
1872		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1873			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1874				quanta[i - 1] += incr;
1875				return;
1876			}
1877		}
1878
1879		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1880		return;
1881	}
1882
1883	ASSERT(0);
1884}
1885
1886static void
1887dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1888{
1889	uint64_t arg = *lquanta++;
1890	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1891	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1892	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1893	int32_t val = (int32_t)nval, level;
1894
1895	ASSERT(step != 0);
1896	ASSERT(levels != 0);
1897
1898	if (val < base) {
1899		/*
1900		 * This is an underflow.
1901		 */
1902		lquanta[0] += incr;
1903		return;
1904	}
1905
1906	level = (val - base) / step;
1907
1908	if (level < levels) {
1909		lquanta[level + 1] += incr;
1910		return;
1911	}
1912
1913	/*
1914	 * This is an overflow.
1915	 */
1916	lquanta[levels + 1] += incr;
1917}
1918
1919/*ARGSUSED*/
1920static void
1921dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1922{
1923	data[0]++;
1924	data[1] += nval;
1925}
1926
1927/*ARGSUSED*/
1928static void
1929dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1930{
1931	int64_t snval = (int64_t)nval;
1932	uint64_t tmp[2];
1933
1934	data[0]++;
1935	data[1] += nval;
1936
1937	/*
1938	 * What we want to say here is:
1939	 *
1940	 * data[2] += nval * nval;
1941	 *
1942	 * But given that nval is 64-bit, we could easily overflow, so
1943	 * we do this as 128-bit arithmetic.
1944	 */
1945	if (snval < 0)
1946		snval = -snval;
1947
1948	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1949	dtrace_add_128(data + 2, tmp, data + 2);
1950}
1951
1952/*ARGSUSED*/
1953static void
1954dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1955{
1956	*oval = *oval + 1;
1957}
1958
1959/*ARGSUSED*/
1960static void
1961dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1962{
1963	*oval += nval;
1964}
1965
1966/*
1967 * Aggregate given the tuple in the principal data buffer, and the aggregating
1968 * action denoted by the specified dtrace_aggregation_t.  The aggregation
1969 * buffer is specified as the buf parameter.  This routine does not return
1970 * failure; if there is no space in the aggregation buffer, the data will be
1971 * dropped, and a corresponding counter incremented.
1972 */
1973static void
1974dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1975    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1976{
1977	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1978	uint32_t i, ndx, size, fsize;
1979	uint32_t align = sizeof (uint64_t) - 1;
1980	dtrace_aggbuffer_t *agb;
1981	dtrace_aggkey_t *key;
1982	uint32_t hashval = 0, limit, isstr;
1983	caddr_t tomax, data, kdata;
1984	dtrace_actkind_t action;
1985	dtrace_action_t *act;
1986	uintptr_t offs;
1987
1988	if (buf == NULL)
1989		return;
1990
1991	if (!agg->dtag_hasarg) {
1992		/*
1993		 * Currently, only quantize() and lquantize() take additional
1994		 * arguments, and they have the same semantics:  an increment
1995		 * value that defaults to 1 when not present.  If additional
1996		 * aggregating actions take arguments, the setting of the
1997		 * default argument value will presumably have to become more
1998		 * sophisticated...
1999		 */
2000		arg = 1;
2001	}
2002
2003	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2004	size = rec->dtrd_offset - agg->dtag_base;
2005	fsize = size + rec->dtrd_size;
2006
2007	ASSERT(dbuf->dtb_tomax != NULL);
2008	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2009
2010	if ((tomax = buf->dtb_tomax) == NULL) {
2011		dtrace_buffer_drop(buf);
2012		return;
2013	}
2014
2015	/*
2016	 * The metastructure is always at the bottom of the buffer.
2017	 */
2018	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2019	    sizeof (dtrace_aggbuffer_t));
2020
2021	if (buf->dtb_offset == 0) {
2022		/*
2023		 * We just kludge up approximately 1/8th of the size to be
2024		 * buckets.  If this guess ends up being routinely
2025		 * off-the-mark, we may need to dynamically readjust this
2026		 * based on past performance.
2027		 */
2028		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2029
2030		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2031		    (uintptr_t)tomax || hashsize == 0) {
2032			/*
2033			 * We've been given a ludicrously small buffer;
2034			 * increment our drop count and leave.
2035			 */
2036			dtrace_buffer_drop(buf);
2037			return;
2038		}
2039
2040		/*
2041		 * And now, a pathetic attempt to try to get a an odd (or
2042		 * perchance, a prime) hash size for better hash distribution.
2043		 */
2044		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2045			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2046
2047		agb->dtagb_hashsize = hashsize;
2048		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2049		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2050		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2051
2052		for (i = 0; i < agb->dtagb_hashsize; i++)
2053			agb->dtagb_hash[i] = NULL;
2054	}
2055
2056	ASSERT(agg->dtag_first != NULL);
2057	ASSERT(agg->dtag_first->dta_intuple);
2058
2059	/*
2060	 * Calculate the hash value based on the key.  Note that we _don't_
2061	 * include the aggid in the hashing (but we will store it as part of
2062	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2063	 * algorithm: a simple, quick algorithm that has no known funnels, and
2064	 * gets good distribution in practice.  The efficacy of the hashing
2065	 * algorithm (and a comparison with other algorithms) may be found by
2066	 * running the ::dtrace_aggstat MDB dcmd.
2067	 */
2068	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2069		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2070		limit = i + act->dta_rec.dtrd_size;
2071		ASSERT(limit <= size);
2072		isstr = DTRACEACT_ISSTRING(act);
2073
2074		for (; i < limit; i++) {
2075			hashval += data[i];
2076			hashval += (hashval << 10);
2077			hashval ^= (hashval >> 6);
2078
2079			if (isstr && data[i] == '\0')
2080				break;
2081		}
2082	}
2083
2084	hashval += (hashval << 3);
2085	hashval ^= (hashval >> 11);
2086	hashval += (hashval << 15);
2087
2088	/*
2089	 * Yes, the divide here is expensive -- but it's generally the least
2090	 * of the performance issues given the amount of data that we iterate
2091	 * over to compute hash values, compare data, etc.
2092	 */
2093	ndx = hashval % agb->dtagb_hashsize;
2094
2095	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2096		ASSERT((caddr_t)key >= tomax);
2097		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2098
2099		if (hashval != key->dtak_hashval || key->dtak_size != size)
2100			continue;
2101
2102		kdata = key->dtak_data;
2103		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2104
2105		for (act = agg->dtag_first; act->dta_intuple;
2106		    act = act->dta_next) {
2107			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2108			limit = i + act->dta_rec.dtrd_size;
2109			ASSERT(limit <= size);
2110			isstr = DTRACEACT_ISSTRING(act);
2111
2112			for (; i < limit; i++) {
2113				if (kdata[i] != data[i])
2114					goto next;
2115
2116				if (isstr && data[i] == '\0')
2117					break;
2118			}
2119		}
2120
2121		if (action != key->dtak_action) {
2122			/*
2123			 * We are aggregating on the same value in the same
2124			 * aggregation with two different aggregating actions.
2125			 * (This should have been picked up in the compiler,
2126			 * so we may be dealing with errant or devious DIF.)
2127			 * This is an error condition; we indicate as much,
2128			 * and return.
2129			 */
2130			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2131			return;
2132		}
2133
2134		/*
2135		 * This is a hit:  we need to apply the aggregator to
2136		 * the value at this key.
2137		 */
2138		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2139		return;
2140next:
2141		continue;
2142	}
2143
2144	/*
2145	 * We didn't find it.  We need to allocate some zero-filled space,
2146	 * link it into the hash table appropriately, and apply the aggregator
2147	 * to the (zero-filled) value.
2148	 */
2149	offs = buf->dtb_offset;
2150	while (offs & (align - 1))
2151		offs += sizeof (uint32_t);
2152
2153	/*
2154	 * If we don't have enough room to both allocate a new key _and_
2155	 * its associated data, increment the drop count and return.
2156	 */
2157	if ((uintptr_t)tomax + offs + fsize >
2158	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2159		dtrace_buffer_drop(buf);
2160		return;
2161	}
2162
2163	/*CONSTCOND*/
2164	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2165	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2166	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2167
2168	key->dtak_data = kdata = tomax + offs;
2169	buf->dtb_offset = offs + fsize;
2170
2171	/*
2172	 * Now copy the data across.
2173	 */
2174	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2175
2176	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2177		kdata[i] = data[i];
2178
2179	/*
2180	 * Because strings are not zeroed out by default, we need to iterate
2181	 * looking for actions that store strings, and we need to explicitly
2182	 * pad these strings out with zeroes.
2183	 */
2184	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2185		int nul;
2186
2187		if (!DTRACEACT_ISSTRING(act))
2188			continue;
2189
2190		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2191		limit = i + act->dta_rec.dtrd_size;
2192		ASSERT(limit <= size);
2193
2194		for (nul = 0; i < limit; i++) {
2195			if (nul) {
2196				kdata[i] = '\0';
2197				continue;
2198			}
2199
2200			if (data[i] != '\0')
2201				continue;
2202
2203			nul = 1;
2204		}
2205	}
2206
2207	for (i = size; i < fsize; i++)
2208		kdata[i] = 0;
2209
2210	key->dtak_hashval = hashval;
2211	key->dtak_size = size;
2212	key->dtak_action = action;
2213	key->dtak_next = agb->dtagb_hash[ndx];
2214	agb->dtagb_hash[ndx] = key;
2215
2216	/*
2217	 * Finally, apply the aggregator.
2218	 */
2219	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2220	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2221}
2222
2223/*
2224 * Given consumer state, this routine finds a speculation in the INACTIVE
2225 * state and transitions it into the ACTIVE state.  If there is no speculation
2226 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2227 * incremented -- it is up to the caller to take appropriate action.
2228 */
2229static int
2230dtrace_speculation(dtrace_state_t *state)
2231{
2232	int i = 0;
2233	dtrace_speculation_state_t current;
2234	uint32_t *stat = &state->dts_speculations_unavail, count;
2235
2236	while (i < state->dts_nspeculations) {
2237		dtrace_speculation_t *spec = &state->dts_speculations[i];
2238
2239		current = spec->dtsp_state;
2240
2241		if (current != DTRACESPEC_INACTIVE) {
2242			if (current == DTRACESPEC_COMMITTINGMANY ||
2243			    current == DTRACESPEC_COMMITTING ||
2244			    current == DTRACESPEC_DISCARDING)
2245				stat = &state->dts_speculations_busy;
2246			i++;
2247			continue;
2248		}
2249
2250		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2251		    current, DTRACESPEC_ACTIVE) == current)
2252			return (i + 1);
2253	}
2254
2255	/*
2256	 * We couldn't find a speculation.  If we found as much as a single
2257	 * busy speculation buffer, we'll attribute this failure as "busy"
2258	 * instead of "unavail".
2259	 */
2260	do {
2261		count = *stat;
2262	} while (dtrace_cas32(stat, count, count + 1) != count);
2263
2264	return (0);
2265}
2266
2267/*
2268 * This routine commits an active speculation.  If the specified speculation
2269 * is not in a valid state to perform a commit(), this routine will silently do
2270 * nothing.  The state of the specified speculation is transitioned according
2271 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2272 */
2273static void
2274dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2275    dtrace_specid_t which)
2276{
2277	dtrace_speculation_t *spec;
2278	dtrace_buffer_t *src, *dest;
2279	uintptr_t daddr, saddr, dlimit;
2280	dtrace_speculation_state_t current, new = 0;
2281	intptr_t offs;
2282
2283	if (which == 0)
2284		return;
2285
2286	if (which > state->dts_nspeculations) {
2287		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2288		return;
2289	}
2290
2291	spec = &state->dts_speculations[which - 1];
2292	src = &spec->dtsp_buffer[cpu];
2293	dest = &state->dts_buffer[cpu];
2294
2295	do {
2296		current = spec->dtsp_state;
2297
2298		if (current == DTRACESPEC_COMMITTINGMANY)
2299			break;
2300
2301		switch (current) {
2302		case DTRACESPEC_INACTIVE:
2303		case DTRACESPEC_DISCARDING:
2304			return;
2305
2306		case DTRACESPEC_COMMITTING:
2307			/*
2308			 * This is only possible if we are (a) commit()'ing
2309			 * without having done a prior speculate() on this CPU
2310			 * and (b) racing with another commit() on a different
2311			 * CPU.  There's nothing to do -- we just assert that
2312			 * our offset is 0.
2313			 */
2314			ASSERT(src->dtb_offset == 0);
2315			return;
2316
2317		case DTRACESPEC_ACTIVE:
2318			new = DTRACESPEC_COMMITTING;
2319			break;
2320
2321		case DTRACESPEC_ACTIVEONE:
2322			/*
2323			 * This speculation is active on one CPU.  If our
2324			 * buffer offset is non-zero, we know that the one CPU
2325			 * must be us.  Otherwise, we are committing on a
2326			 * different CPU from the speculate(), and we must
2327			 * rely on being asynchronously cleaned.
2328			 */
2329			if (src->dtb_offset != 0) {
2330				new = DTRACESPEC_COMMITTING;
2331				break;
2332			}
2333			/*FALLTHROUGH*/
2334
2335		case DTRACESPEC_ACTIVEMANY:
2336			new = DTRACESPEC_COMMITTINGMANY;
2337			break;
2338
2339		default:
2340			ASSERT(0);
2341		}
2342	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2343	    current, new) != current);
2344
2345	/*
2346	 * We have set the state to indicate that we are committing this
2347	 * speculation.  Now reserve the necessary space in the destination
2348	 * buffer.
2349	 */
2350	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2351	    sizeof (uint64_t), state, NULL)) < 0) {
2352		dtrace_buffer_drop(dest);
2353		goto out;
2354	}
2355
2356	/*
2357	 * We have the space; copy the buffer across.  (Note that this is a
2358	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2359	 * a serious performance issue, a high-performance DTrace-specific
2360	 * bcopy() should obviously be invented.)
2361	 */
2362	daddr = (uintptr_t)dest->dtb_tomax + offs;
2363	dlimit = daddr + src->dtb_offset;
2364	saddr = (uintptr_t)src->dtb_tomax;
2365
2366	/*
2367	 * First, the aligned portion.
2368	 */
2369	while (dlimit - daddr >= sizeof (uint64_t)) {
2370		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2371
2372		daddr += sizeof (uint64_t);
2373		saddr += sizeof (uint64_t);
2374	}
2375
2376	/*
2377	 * Now any left-over bit...
2378	 */
2379	while (dlimit - daddr)
2380		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2381
2382	/*
2383	 * Finally, commit the reserved space in the destination buffer.
2384	 */
2385	dest->dtb_offset = offs + src->dtb_offset;
2386
2387out:
2388	/*
2389	 * If we're lucky enough to be the only active CPU on this speculation
2390	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2391	 */
2392	if (current == DTRACESPEC_ACTIVE ||
2393	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2394		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2395		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2396
2397		ASSERT(rval == DTRACESPEC_COMMITTING);
2398	}
2399
2400	src->dtb_offset = 0;
2401	src->dtb_xamot_drops += src->dtb_drops;
2402	src->dtb_drops = 0;
2403}
2404
2405/*
2406 * This routine discards an active speculation.  If the specified speculation
2407 * is not in a valid state to perform a discard(), this routine will silently
2408 * do nothing.  The state of the specified speculation is transitioned
2409 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2410 */
2411static void
2412dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2413    dtrace_specid_t which)
2414{
2415	dtrace_speculation_t *spec;
2416	dtrace_speculation_state_t current, new = 0;
2417	dtrace_buffer_t *buf;
2418
2419	if (which == 0)
2420		return;
2421
2422	if (which > state->dts_nspeculations) {
2423		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2424		return;
2425	}
2426
2427	spec = &state->dts_speculations[which - 1];
2428	buf = &spec->dtsp_buffer[cpu];
2429
2430	do {
2431		current = spec->dtsp_state;
2432
2433		switch (current) {
2434		case DTRACESPEC_INACTIVE:
2435		case DTRACESPEC_COMMITTINGMANY:
2436		case DTRACESPEC_COMMITTING:
2437		case DTRACESPEC_DISCARDING:
2438			return;
2439
2440		case DTRACESPEC_ACTIVE:
2441		case DTRACESPEC_ACTIVEMANY:
2442			new = DTRACESPEC_DISCARDING;
2443			break;
2444
2445		case DTRACESPEC_ACTIVEONE:
2446			if (buf->dtb_offset != 0) {
2447				new = DTRACESPEC_INACTIVE;
2448			} else {
2449				new = DTRACESPEC_DISCARDING;
2450			}
2451			break;
2452
2453		default:
2454			ASSERT(0);
2455		}
2456	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2457	    current, new) != current);
2458
2459	buf->dtb_offset = 0;
2460	buf->dtb_drops = 0;
2461}
2462
2463/*
2464 * Note:  not called from probe context.  This function is called
2465 * asynchronously from cross call context to clean any speculations that are
2466 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2467 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2468 * speculation.
2469 */
2470static void
2471dtrace_speculation_clean_here(dtrace_state_t *state)
2472{
2473	dtrace_icookie_t cookie;
2474	processorid_t cpu = curcpu;
2475	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2476	dtrace_specid_t i;
2477
2478	cookie = dtrace_interrupt_disable();
2479
2480	if (dest->dtb_tomax == NULL) {
2481		dtrace_interrupt_enable(cookie);
2482		return;
2483	}
2484
2485	for (i = 0; i < state->dts_nspeculations; i++) {
2486		dtrace_speculation_t *spec = &state->dts_speculations[i];
2487		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2488
2489		if (src->dtb_tomax == NULL)
2490			continue;
2491
2492		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2493			src->dtb_offset = 0;
2494			continue;
2495		}
2496
2497		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2498			continue;
2499
2500		if (src->dtb_offset == 0)
2501			continue;
2502
2503		dtrace_speculation_commit(state, cpu, i + 1);
2504	}
2505
2506	dtrace_interrupt_enable(cookie);
2507}
2508
2509/*
2510 * Note:  not called from probe context.  This function is called
2511 * asynchronously (and at a regular interval) to clean any speculations that
2512 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2513 * is work to be done, it cross calls all CPUs to perform that work;
2514 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2515 * INACTIVE state until they have been cleaned by all CPUs.
2516 */
2517static void
2518dtrace_speculation_clean(dtrace_state_t *state)
2519{
2520	int work = 0, rv;
2521	dtrace_specid_t i;
2522
2523	for (i = 0; i < state->dts_nspeculations; i++) {
2524		dtrace_speculation_t *spec = &state->dts_speculations[i];
2525
2526		ASSERT(!spec->dtsp_cleaning);
2527
2528		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2529		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2530			continue;
2531
2532		work++;
2533		spec->dtsp_cleaning = 1;
2534	}
2535
2536	if (!work)
2537		return;
2538
2539	dtrace_xcall(DTRACE_CPUALL,
2540	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2541
2542	/*
2543	 * We now know that all CPUs have committed or discarded their
2544	 * speculation buffers, as appropriate.  We can now set the state
2545	 * to inactive.
2546	 */
2547	for (i = 0; i < state->dts_nspeculations; i++) {
2548		dtrace_speculation_t *spec = &state->dts_speculations[i];
2549		dtrace_speculation_state_t current, new;
2550
2551		if (!spec->dtsp_cleaning)
2552			continue;
2553
2554		current = spec->dtsp_state;
2555		ASSERT(current == DTRACESPEC_DISCARDING ||
2556		    current == DTRACESPEC_COMMITTINGMANY);
2557
2558		new = DTRACESPEC_INACTIVE;
2559
2560		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2561		ASSERT(rv == current);
2562		spec->dtsp_cleaning = 0;
2563	}
2564}
2565
2566/*
2567 * Called as part of a speculate() to get the speculative buffer associated
2568 * with a given speculation.  Returns NULL if the specified speculation is not
2569 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2570 * the active CPU is not the specified CPU -- the speculation will be
2571 * atomically transitioned into the ACTIVEMANY state.
2572 */
2573static dtrace_buffer_t *
2574dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2575    dtrace_specid_t which)
2576{
2577	dtrace_speculation_t *spec;
2578	dtrace_speculation_state_t current, new = 0;
2579	dtrace_buffer_t *buf;
2580
2581	if (which == 0)
2582		return (NULL);
2583
2584	if (which > state->dts_nspeculations) {
2585		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2586		return (NULL);
2587	}
2588
2589	spec = &state->dts_speculations[which - 1];
2590	buf = &spec->dtsp_buffer[cpuid];
2591
2592	do {
2593		current = spec->dtsp_state;
2594
2595		switch (current) {
2596		case DTRACESPEC_INACTIVE:
2597		case DTRACESPEC_COMMITTINGMANY:
2598		case DTRACESPEC_DISCARDING:
2599			return (NULL);
2600
2601		case DTRACESPEC_COMMITTING:
2602			ASSERT(buf->dtb_offset == 0);
2603			return (NULL);
2604
2605		case DTRACESPEC_ACTIVEONE:
2606			/*
2607			 * This speculation is currently active on one CPU.
2608			 * Check the offset in the buffer; if it's non-zero,
2609			 * that CPU must be us (and we leave the state alone).
2610			 * If it's zero, assume that we're starting on a new
2611			 * CPU -- and change the state to indicate that the
2612			 * speculation is active on more than one CPU.
2613			 */
2614			if (buf->dtb_offset != 0)
2615				return (buf);
2616
2617			new = DTRACESPEC_ACTIVEMANY;
2618			break;
2619
2620		case DTRACESPEC_ACTIVEMANY:
2621			return (buf);
2622
2623		case DTRACESPEC_ACTIVE:
2624			new = DTRACESPEC_ACTIVEONE;
2625			break;
2626
2627		default:
2628			ASSERT(0);
2629		}
2630	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2631	    current, new) != current);
2632
2633	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2634	return (buf);
2635}
2636
2637/*
2638 * Return a string.  In the event that the user lacks the privilege to access
2639 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2640 * don't fail access checking.
2641 *
2642 * dtrace_dif_variable() uses this routine as a helper for various
2643 * builtin values such as 'execname' and 'probefunc.'
2644 */
2645uintptr_t
2646dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2647    dtrace_mstate_t *mstate)
2648{
2649	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2650	uintptr_t ret;
2651	size_t strsz;
2652
2653	/*
2654	 * The easy case: this probe is allowed to read all of memory, so
2655	 * we can just return this as a vanilla pointer.
2656	 */
2657	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2658		return (addr);
2659
2660	/*
2661	 * This is the tougher case: we copy the string in question from
2662	 * kernel memory into scratch memory and return it that way: this
2663	 * ensures that we won't trip up when access checking tests the
2664	 * BYREF return value.
2665	 */
2666	strsz = dtrace_strlen((char *)addr, size) + 1;
2667
2668	if (mstate->dtms_scratch_ptr + strsz >
2669	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2670		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2671		return (0);
2672	}
2673
2674	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2675	    strsz);
2676	ret = mstate->dtms_scratch_ptr;
2677	mstate->dtms_scratch_ptr += strsz;
2678	return (ret);
2679}
2680
2681/*
2682 * Return a string from a memoy address which is known to have one or
2683 * more concatenated, individually zero terminated, sub-strings.
2684 * In the event that the user lacks the privilege to access
2685 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2686 * don't fail access checking.
2687 *
2688 * dtrace_dif_variable() uses this routine as a helper for various
2689 * builtin values such as 'execargs'.
2690 */
2691static uintptr_t
2692dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2693    dtrace_mstate_t *mstate)
2694{
2695	char *p;
2696	size_t i;
2697	uintptr_t ret;
2698
2699	if (mstate->dtms_scratch_ptr + strsz >
2700	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2701		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2702		return (0);
2703	}
2704
2705	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2706	    strsz);
2707
2708	/* Replace sub-string termination characters with a space. */
2709	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2710	    p++, i++)
2711		if (*p == '\0')
2712			*p = ' ';
2713
2714	ret = mstate->dtms_scratch_ptr;
2715	mstate->dtms_scratch_ptr += strsz;
2716	return (ret);
2717}
2718
2719/*
2720 * This function implements the DIF emulator's variable lookups.  The emulator
2721 * passes a reserved variable identifier and optional built-in array index.
2722 */
2723static uint64_t
2724dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2725    uint64_t ndx)
2726{
2727	/*
2728	 * If we're accessing one of the uncached arguments, we'll turn this
2729	 * into a reference in the args array.
2730	 */
2731	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2732		ndx = v - DIF_VAR_ARG0;
2733		v = DIF_VAR_ARGS;
2734	}
2735
2736	switch (v) {
2737	case DIF_VAR_ARGS:
2738		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2739		if (ndx >= sizeof (mstate->dtms_arg) /
2740		    sizeof (mstate->dtms_arg[0])) {
2741			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2742			dtrace_provider_t *pv;
2743			uint64_t val;
2744
2745			pv = mstate->dtms_probe->dtpr_provider;
2746			if (pv->dtpv_pops.dtps_getargval != NULL)
2747				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2748				    mstate->dtms_probe->dtpr_id,
2749				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2750			else
2751				val = dtrace_getarg(ndx, aframes);
2752
2753			/*
2754			 * This is regrettably required to keep the compiler
2755			 * from tail-optimizing the call to dtrace_getarg().
2756			 * The condition always evaluates to true, but the
2757			 * compiler has no way of figuring that out a priori.
2758			 * (None of this would be necessary if the compiler
2759			 * could be relied upon to _always_ tail-optimize
2760			 * the call to dtrace_getarg() -- but it can't.)
2761			 */
2762			if (mstate->dtms_probe != NULL)
2763				return (val);
2764
2765			ASSERT(0);
2766		}
2767
2768		return (mstate->dtms_arg[ndx]);
2769
2770#if defined(sun)
2771	case DIF_VAR_UREGS: {
2772		klwp_t *lwp;
2773
2774		if (!dtrace_priv_proc(state))
2775			return (0);
2776
2777		if ((lwp = curthread->t_lwp) == NULL) {
2778			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2779			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2780			return (0);
2781		}
2782
2783		return (dtrace_getreg(lwp->lwp_regs, ndx));
2784		return (0);
2785	}
2786#endif
2787
2788	case DIF_VAR_CURTHREAD:
2789		if (!dtrace_priv_kernel(state))
2790			return (0);
2791		return ((uint64_t)(uintptr_t)curthread);
2792
2793	case DIF_VAR_TIMESTAMP:
2794		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2795			mstate->dtms_timestamp = dtrace_gethrtime();
2796			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2797		}
2798		return (mstate->dtms_timestamp);
2799
2800	case DIF_VAR_VTIMESTAMP:
2801		ASSERT(dtrace_vtime_references != 0);
2802		return (curthread->t_dtrace_vtime);
2803
2804	case DIF_VAR_WALLTIMESTAMP:
2805		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2806			mstate->dtms_walltimestamp = dtrace_gethrestime();
2807			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2808		}
2809		return (mstate->dtms_walltimestamp);
2810
2811#if defined(sun)
2812	case DIF_VAR_IPL:
2813		if (!dtrace_priv_kernel(state))
2814			return (0);
2815		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2816			mstate->dtms_ipl = dtrace_getipl();
2817			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2818		}
2819		return (mstate->dtms_ipl);
2820#endif
2821
2822	case DIF_VAR_EPID:
2823		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2824		return (mstate->dtms_epid);
2825
2826	case DIF_VAR_ID:
2827		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2828		return (mstate->dtms_probe->dtpr_id);
2829
2830	case DIF_VAR_STACKDEPTH:
2831		if (!dtrace_priv_kernel(state))
2832			return (0);
2833		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2834			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2835
2836			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2837			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2838		}
2839		return (mstate->dtms_stackdepth);
2840
2841#if defined(sun)
2842	case DIF_VAR_USTACKDEPTH:
2843		if (!dtrace_priv_proc(state))
2844			return (0);
2845		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2846			/*
2847			 * See comment in DIF_VAR_PID.
2848			 */
2849			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2850			    CPU_ON_INTR(CPU)) {
2851				mstate->dtms_ustackdepth = 0;
2852			} else {
2853				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2854				mstate->dtms_ustackdepth =
2855				    dtrace_getustackdepth();
2856				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2857			}
2858			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2859		}
2860		return (mstate->dtms_ustackdepth);
2861#endif
2862
2863	case DIF_VAR_CALLER:
2864		if (!dtrace_priv_kernel(state))
2865			return (0);
2866		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2867			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2868
2869			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2870				/*
2871				 * If this is an unanchored probe, we are
2872				 * required to go through the slow path:
2873				 * dtrace_caller() only guarantees correct
2874				 * results for anchored probes.
2875				 */
2876				pc_t caller[2] = {0, 0};
2877
2878				dtrace_getpcstack(caller, 2, aframes,
2879				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2880				mstate->dtms_caller = caller[1];
2881			} else if ((mstate->dtms_caller =
2882			    dtrace_caller(aframes)) == -1) {
2883				/*
2884				 * We have failed to do this the quick way;
2885				 * we must resort to the slower approach of
2886				 * calling dtrace_getpcstack().
2887				 */
2888				pc_t caller = 0;
2889
2890				dtrace_getpcstack(&caller, 1, aframes, NULL);
2891				mstate->dtms_caller = caller;
2892			}
2893
2894			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2895		}
2896		return (mstate->dtms_caller);
2897
2898#if defined(sun)
2899	case DIF_VAR_UCALLER:
2900		if (!dtrace_priv_proc(state))
2901			return (0);
2902
2903		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2904			uint64_t ustack[3];
2905
2906			/*
2907			 * dtrace_getupcstack() fills in the first uint64_t
2908			 * with the current PID.  The second uint64_t will
2909			 * be the program counter at user-level.  The third
2910			 * uint64_t will contain the caller, which is what
2911			 * we're after.
2912			 */
2913			ustack[2] = 0;
2914			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2915			dtrace_getupcstack(ustack, 3);
2916			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2917			mstate->dtms_ucaller = ustack[2];
2918			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2919		}
2920
2921		return (mstate->dtms_ucaller);
2922#endif
2923
2924	case DIF_VAR_PROBEPROV:
2925		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2926		return (dtrace_dif_varstr(
2927		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2928		    state, mstate));
2929
2930	case DIF_VAR_PROBEMOD:
2931		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2932		return (dtrace_dif_varstr(
2933		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2934		    state, mstate));
2935
2936	case DIF_VAR_PROBEFUNC:
2937		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2938		return (dtrace_dif_varstr(
2939		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2940		    state, mstate));
2941
2942	case DIF_VAR_PROBENAME:
2943		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2944		return (dtrace_dif_varstr(
2945		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2946		    state, mstate));
2947
2948	case DIF_VAR_PID:
2949		if (!dtrace_priv_proc(state))
2950			return (0);
2951
2952#if defined(sun)
2953		/*
2954		 * Note that we are assuming that an unanchored probe is
2955		 * always due to a high-level interrupt.  (And we're assuming
2956		 * that there is only a single high level interrupt.)
2957		 */
2958		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2959			return (pid0.pid_id);
2960
2961		/*
2962		 * It is always safe to dereference one's own t_procp pointer:
2963		 * it always points to a valid, allocated proc structure.
2964		 * Further, it is always safe to dereference the p_pidp member
2965		 * of one's own proc structure.  (These are truisms becuase
2966		 * threads and processes don't clean up their own state --
2967		 * they leave that task to whomever reaps them.)
2968		 */
2969		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2970#else
2971		return ((uint64_t)curproc->p_pid);
2972#endif
2973
2974	case DIF_VAR_PPID:
2975		if (!dtrace_priv_proc(state))
2976			return (0);
2977
2978#if defined(sun)
2979		/*
2980		 * See comment in DIF_VAR_PID.
2981		 */
2982		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2983			return (pid0.pid_id);
2984
2985		/*
2986		 * It is always safe to dereference one's own t_procp pointer:
2987		 * it always points to a valid, allocated proc structure.
2988		 * (This is true because threads don't clean up their own
2989		 * state -- they leave that task to whomever reaps them.)
2990		 */
2991		return ((uint64_t)curthread->t_procp->p_ppid);
2992#else
2993		return ((uint64_t)curproc->p_pptr->p_pid);
2994#endif
2995
2996	case DIF_VAR_TID:
2997#if defined(sun)
2998		/*
2999		 * See comment in DIF_VAR_PID.
3000		 */
3001		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3002			return (0);
3003#endif
3004
3005		return ((uint64_t)curthread->t_tid);
3006
3007	case DIF_VAR_EXECARGS: {
3008		struct pargs *p_args = curthread->td_proc->p_args;
3009
3010		if (p_args == NULL)
3011			return(0);
3012
3013		return (dtrace_dif_varstrz(
3014		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3015	}
3016
3017	case DIF_VAR_EXECNAME:
3018#if defined(sun)
3019		if (!dtrace_priv_proc(state))
3020			return (0);
3021
3022		/*
3023		 * See comment in DIF_VAR_PID.
3024		 */
3025		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3026			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3027
3028		/*
3029		 * It is always safe to dereference one's own t_procp pointer:
3030		 * it always points to a valid, allocated proc structure.
3031		 * (This is true because threads don't clean up their own
3032		 * state -- they leave that task to whomever reaps them.)
3033		 */
3034		return (dtrace_dif_varstr(
3035		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3036		    state, mstate));
3037#else
3038		return (dtrace_dif_varstr(
3039		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3040#endif
3041
3042	case DIF_VAR_ZONENAME:
3043#if defined(sun)
3044		if (!dtrace_priv_proc(state))
3045			return (0);
3046
3047		/*
3048		 * See comment in DIF_VAR_PID.
3049		 */
3050		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3051			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3052
3053		/*
3054		 * It is always safe to dereference one's own t_procp pointer:
3055		 * it always points to a valid, allocated proc structure.
3056		 * (This is true because threads don't clean up their own
3057		 * state -- they leave that task to whomever reaps them.)
3058		 */
3059		return (dtrace_dif_varstr(
3060		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3061		    state, mstate));
3062#else
3063		return (0);
3064#endif
3065
3066	case DIF_VAR_UID:
3067		if (!dtrace_priv_proc(state))
3068			return (0);
3069
3070#if defined(sun)
3071		/*
3072		 * See comment in DIF_VAR_PID.
3073		 */
3074		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3075			return ((uint64_t)p0.p_cred->cr_uid);
3076#endif
3077
3078		/*
3079		 * It is always safe to dereference one's own t_procp pointer:
3080		 * it always points to a valid, allocated proc structure.
3081		 * (This is true because threads don't clean up their own
3082		 * state -- they leave that task to whomever reaps them.)
3083		 *
3084		 * Additionally, it is safe to dereference one's own process
3085		 * credential, since this is never NULL after process birth.
3086		 */
3087		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3088
3089	case DIF_VAR_GID:
3090		if (!dtrace_priv_proc(state))
3091			return (0);
3092
3093#if defined(sun)
3094		/*
3095		 * See comment in DIF_VAR_PID.
3096		 */
3097		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3098			return ((uint64_t)p0.p_cred->cr_gid);
3099#endif
3100
3101		/*
3102		 * It is always safe to dereference one's own t_procp pointer:
3103		 * it always points to a valid, allocated proc structure.
3104		 * (This is true because threads don't clean up their own
3105		 * state -- they leave that task to whomever reaps them.)
3106		 *
3107		 * Additionally, it is safe to dereference one's own process
3108		 * credential, since this is never NULL after process birth.
3109		 */
3110		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3111
3112	case DIF_VAR_ERRNO: {
3113#if defined(sun)
3114		klwp_t *lwp;
3115		if (!dtrace_priv_proc(state))
3116			return (0);
3117
3118		/*
3119		 * See comment in DIF_VAR_PID.
3120		 */
3121		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3122			return (0);
3123
3124		/*
3125		 * It is always safe to dereference one's own t_lwp pointer in
3126		 * the event that this pointer is non-NULL.  (This is true
3127		 * because threads and lwps don't clean up their own state --
3128		 * they leave that task to whomever reaps them.)
3129		 */
3130		if ((lwp = curthread->t_lwp) == NULL)
3131			return (0);
3132
3133		return ((uint64_t)lwp->lwp_errno);
3134#else
3135		return (curthread->td_errno);
3136#endif
3137	}
3138	default:
3139		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3140		return (0);
3141	}
3142}
3143
3144/*
3145 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3146 * Notice that we don't bother validating the proper number of arguments or
3147 * their types in the tuple stack.  This isn't needed because all argument
3148 * interpretation is safe because of our load safety -- the worst that can
3149 * happen is that a bogus program can obtain bogus results.
3150 */
3151static void
3152dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3153    dtrace_key_t *tupregs, int nargs,
3154    dtrace_mstate_t *mstate, dtrace_state_t *state)
3155{
3156	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3157	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3158	dtrace_vstate_t *vstate = &state->dts_vstate;
3159
3160#if defined(sun)
3161	union {
3162		mutex_impl_t mi;
3163		uint64_t mx;
3164	} m;
3165
3166	union {
3167		krwlock_t ri;
3168		uintptr_t rw;
3169	} r;
3170#else
3171	union {
3172		struct mtx *mi;
3173		uintptr_t mx;
3174	} m;
3175	union {
3176		struct sx *si;
3177		uintptr_t sx;
3178	} s;
3179#endif
3180
3181	switch (subr) {
3182	case DIF_SUBR_RAND:
3183		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3184		break;
3185
3186#if defined(sun)
3187	case DIF_SUBR_MUTEX_OWNED:
3188		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3189		    mstate, vstate)) {
3190			regs[rd] = 0;
3191			break;
3192		}
3193
3194		m.mx = dtrace_load64(tupregs[0].dttk_value);
3195		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3196			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3197		else
3198			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3199		break;
3200
3201	case DIF_SUBR_MUTEX_OWNER:
3202		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3203		    mstate, vstate)) {
3204			regs[rd] = 0;
3205			break;
3206		}
3207
3208		m.mx = dtrace_load64(tupregs[0].dttk_value);
3209		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3210		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3211			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3212		else
3213			regs[rd] = 0;
3214		break;
3215
3216	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3217		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3218		    mstate, vstate)) {
3219			regs[rd] = 0;
3220			break;
3221		}
3222
3223		m.mx = dtrace_load64(tupregs[0].dttk_value);
3224		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3225		break;
3226
3227	case DIF_SUBR_MUTEX_TYPE_SPIN:
3228		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3229		    mstate, vstate)) {
3230			regs[rd] = 0;
3231			break;
3232		}
3233
3234		m.mx = dtrace_load64(tupregs[0].dttk_value);
3235		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3236		break;
3237
3238	case DIF_SUBR_RW_READ_HELD: {
3239		uintptr_t tmp;
3240
3241		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3242		    mstate, vstate)) {
3243			regs[rd] = 0;
3244			break;
3245		}
3246
3247		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3248		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3249		break;
3250	}
3251
3252	case DIF_SUBR_RW_WRITE_HELD:
3253		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3254		    mstate, vstate)) {
3255			regs[rd] = 0;
3256			break;
3257		}
3258
3259		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3260		regs[rd] = _RW_WRITE_HELD(&r.ri);
3261		break;
3262
3263	case DIF_SUBR_RW_ISWRITER:
3264		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3265		    mstate, vstate)) {
3266			regs[rd] = 0;
3267			break;
3268		}
3269
3270		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3271		regs[rd] = _RW_ISWRITER(&r.ri);
3272		break;
3273
3274#else
3275	/*
3276         * XXX - The following code works because mutex, rwlocks, & sxlocks
3277         *       all have similar data structures in FreeBSD.  This may not be
3278         *	 good if someone changes one of the lock data structures.
3279	 * 	 Ideally, it would be nice if all these shared a common lock
3280	 * 	 object.
3281         */
3282	case DIF_SUBR_MUTEX_OWNED:
3283		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3284		m.mx = tupregs[0].dttk_value;
3285
3286#ifdef DOODAD
3287		if (LO_CLASSINDEX(&(m.mi->lock_object)) < 2) {
3288			regs[rd] = !(m.mi->mtx_lock & MTX_UNOWNED);
3289		} else {
3290			regs[rd] = !(m.mi->mtx_lock & SX_UNLOCKED);
3291		}
3292#endif
3293		break;
3294
3295	case DIF_SUBR_MUTEX_OWNER:
3296		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3297		m.mx = tupregs[0].dttk_value;
3298
3299		if (LO_CLASSINDEX(&(m.mi->lock_object)) < 2) {
3300			regs[rd] = m.mi->mtx_lock & ~MTX_FLAGMASK;
3301		} else {
3302			if (!(m.mi->mtx_lock & SX_LOCK_SHARED))
3303				regs[rd] = SX_OWNER(m.mi->mtx_lock);
3304			else
3305				regs[rd] = 0;
3306		}
3307		break;
3308
3309	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3310		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3311		m.mx = tupregs[0].dttk_value;
3312
3313		regs[rd] = (LO_CLASSINDEX(&(m.mi->lock_object)) != 0);
3314		break;
3315
3316	case DIF_SUBR_MUTEX_TYPE_SPIN:
3317		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3318		m.mx = tupregs[0].dttk_value;
3319
3320		regs[rd] = (LO_CLASSINDEX(&(m.mi->lock_object)) == 0);
3321		break;
3322
3323	case DIF_SUBR_RW_READ_HELD:
3324	case DIF_SUBR_SX_SHARED_HELD:
3325		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3326		s.sx = tupregs[0].dttk_value;
3327		regs[rd] = ((s.si->sx_lock & SX_LOCK_SHARED)  &&
3328			    (SX_OWNER(s.si->sx_lock) >> SX_SHARERS_SHIFT) != 0);
3329		break;
3330
3331	case DIF_SUBR_RW_WRITE_HELD:
3332	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3333		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3334		s.sx = tupregs[0].dttk_value;
3335		regs[rd] = (SX_OWNER(s.si->sx_lock) == (uintptr_t) curthread);
3336		break;
3337
3338	case DIF_SUBR_RW_ISWRITER:
3339	case DIF_SUBR_SX_ISEXCLUSIVE:
3340		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3341		s.sx = tupregs[0].dttk_value;
3342		regs[rd] = ((s.si->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS) ||
3343		            !(s.si->sx_lock & SX_LOCK_SHARED));
3344		break;
3345#endif /* ! defined(sun) */
3346
3347	case DIF_SUBR_BCOPY: {
3348		/*
3349		 * We need to be sure that the destination is in the scratch
3350		 * region -- no other region is allowed.
3351		 */
3352		uintptr_t src = tupregs[0].dttk_value;
3353		uintptr_t dest = tupregs[1].dttk_value;
3354		size_t size = tupregs[2].dttk_value;
3355
3356		if (!dtrace_inscratch(dest, size, mstate)) {
3357			*flags |= CPU_DTRACE_BADADDR;
3358			*illval = regs[rd];
3359			break;
3360		}
3361
3362		if (!dtrace_canload(src, size, mstate, vstate)) {
3363			regs[rd] = 0;
3364			break;
3365		}
3366
3367		dtrace_bcopy((void *)src, (void *)dest, size);
3368		break;
3369	}
3370
3371	case DIF_SUBR_ALLOCA:
3372	case DIF_SUBR_COPYIN: {
3373		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3374		uint64_t size =
3375		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3376		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3377
3378		/*
3379		 * This action doesn't require any credential checks since
3380		 * probes will not activate in user contexts to which the
3381		 * enabling user does not have permissions.
3382		 */
3383
3384		/*
3385		 * Rounding up the user allocation size could have overflowed
3386		 * a large, bogus allocation (like -1ULL) to 0.
3387		 */
3388		if (scratch_size < size ||
3389		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3390			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3391			regs[rd] = 0;
3392			break;
3393		}
3394
3395		if (subr == DIF_SUBR_COPYIN) {
3396			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3397			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3398			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3399		}
3400
3401		mstate->dtms_scratch_ptr += scratch_size;
3402		regs[rd] = dest;
3403		break;
3404	}
3405
3406	case DIF_SUBR_COPYINTO: {
3407		uint64_t size = tupregs[1].dttk_value;
3408		uintptr_t dest = tupregs[2].dttk_value;
3409
3410		/*
3411		 * This action doesn't require any credential checks since
3412		 * probes will not activate in user contexts to which the
3413		 * enabling user does not have permissions.
3414		 */
3415		if (!dtrace_inscratch(dest, size, mstate)) {
3416			*flags |= CPU_DTRACE_BADADDR;
3417			*illval = regs[rd];
3418			break;
3419		}
3420
3421		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3422		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3423		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3424		break;
3425	}
3426
3427	case DIF_SUBR_COPYINSTR: {
3428		uintptr_t dest = mstate->dtms_scratch_ptr;
3429		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3430
3431		if (nargs > 1 && tupregs[1].dttk_value < size)
3432			size = tupregs[1].dttk_value + 1;
3433
3434		/*
3435		 * This action doesn't require any credential checks since
3436		 * probes will not activate in user contexts to which the
3437		 * enabling user does not have permissions.
3438		 */
3439		if (!DTRACE_INSCRATCH(mstate, size)) {
3440			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3441			regs[rd] = 0;
3442			break;
3443		}
3444
3445		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3446		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3447		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3448
3449		((char *)dest)[size - 1] = '\0';
3450		mstate->dtms_scratch_ptr += size;
3451		regs[rd] = dest;
3452		break;
3453	}
3454
3455#if defined(sun)
3456	case DIF_SUBR_MSGSIZE:
3457	case DIF_SUBR_MSGDSIZE: {
3458		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3459		uintptr_t wptr, rptr;
3460		size_t count = 0;
3461		int cont = 0;
3462
3463		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3464
3465			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3466			    vstate)) {
3467				regs[rd] = 0;
3468				break;
3469			}
3470
3471			wptr = dtrace_loadptr(baddr +
3472			    offsetof(mblk_t, b_wptr));
3473
3474			rptr = dtrace_loadptr(baddr +
3475			    offsetof(mblk_t, b_rptr));
3476
3477			if (wptr < rptr) {
3478				*flags |= CPU_DTRACE_BADADDR;
3479				*illval = tupregs[0].dttk_value;
3480				break;
3481			}
3482
3483			daddr = dtrace_loadptr(baddr +
3484			    offsetof(mblk_t, b_datap));
3485
3486			baddr = dtrace_loadptr(baddr +
3487			    offsetof(mblk_t, b_cont));
3488
3489			/*
3490			 * We want to prevent against denial-of-service here,
3491			 * so we're only going to search the list for
3492			 * dtrace_msgdsize_max mblks.
3493			 */
3494			if (cont++ > dtrace_msgdsize_max) {
3495				*flags |= CPU_DTRACE_ILLOP;
3496				break;
3497			}
3498
3499			if (subr == DIF_SUBR_MSGDSIZE) {
3500				if (dtrace_load8(daddr +
3501				    offsetof(dblk_t, db_type)) != M_DATA)
3502					continue;
3503			}
3504
3505			count += wptr - rptr;
3506		}
3507
3508		if (!(*flags & CPU_DTRACE_FAULT))
3509			regs[rd] = count;
3510
3511		break;
3512	}
3513#endif
3514
3515	case DIF_SUBR_PROGENYOF: {
3516		pid_t pid = tupregs[0].dttk_value;
3517		proc_t *p;
3518		int rval = 0;
3519
3520		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3521
3522		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3523#if defined(sun)
3524			if (p->p_pidp->pid_id == pid) {
3525#else
3526			if (p->p_pid == pid) {
3527#endif
3528				rval = 1;
3529				break;
3530			}
3531		}
3532
3533		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3534
3535		regs[rd] = rval;
3536		break;
3537	}
3538
3539	case DIF_SUBR_SPECULATION:
3540		regs[rd] = dtrace_speculation(state);
3541		break;
3542
3543	case DIF_SUBR_COPYOUT: {
3544		uintptr_t kaddr = tupregs[0].dttk_value;
3545		uintptr_t uaddr = tupregs[1].dttk_value;
3546		uint64_t size = tupregs[2].dttk_value;
3547
3548		if (!dtrace_destructive_disallow &&
3549		    dtrace_priv_proc_control(state) &&
3550		    !dtrace_istoxic(kaddr, size)) {
3551			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3552			dtrace_copyout(kaddr, uaddr, size, flags);
3553			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3554		}
3555		break;
3556	}
3557
3558	case DIF_SUBR_COPYOUTSTR: {
3559		uintptr_t kaddr = tupregs[0].dttk_value;
3560		uintptr_t uaddr = tupregs[1].dttk_value;
3561		uint64_t size = tupregs[2].dttk_value;
3562
3563		if (!dtrace_destructive_disallow &&
3564		    dtrace_priv_proc_control(state) &&
3565		    !dtrace_istoxic(kaddr, size)) {
3566			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3567			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3568			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3569		}
3570		break;
3571	}
3572
3573	case DIF_SUBR_STRLEN: {
3574		size_t sz;
3575		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3576		sz = dtrace_strlen((char *)addr,
3577		    state->dts_options[DTRACEOPT_STRSIZE]);
3578
3579		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3580			regs[rd] = 0;
3581			break;
3582		}
3583
3584		regs[rd] = sz;
3585
3586		break;
3587	}
3588
3589	case DIF_SUBR_STRCHR:
3590	case DIF_SUBR_STRRCHR: {
3591		/*
3592		 * We're going to iterate over the string looking for the
3593		 * specified character.  We will iterate until we have reached
3594		 * the string length or we have found the character.  If this
3595		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3596		 * of the specified character instead of the first.
3597		 */
3598		uintptr_t saddr = tupregs[0].dttk_value;
3599		uintptr_t addr = tupregs[0].dttk_value;
3600		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3601		char c, target = (char)tupregs[1].dttk_value;
3602
3603		for (regs[rd] = 0; addr < limit; addr++) {
3604			if ((c = dtrace_load8(addr)) == target) {
3605				regs[rd] = addr;
3606
3607				if (subr == DIF_SUBR_STRCHR)
3608					break;
3609			}
3610
3611			if (c == '\0')
3612				break;
3613		}
3614
3615		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3616			regs[rd] = 0;
3617			break;
3618		}
3619
3620		break;
3621	}
3622
3623	case DIF_SUBR_STRSTR:
3624	case DIF_SUBR_INDEX:
3625	case DIF_SUBR_RINDEX: {
3626		/*
3627		 * We're going to iterate over the string looking for the
3628		 * specified string.  We will iterate until we have reached
3629		 * the string length or we have found the string.  (Yes, this
3630		 * is done in the most naive way possible -- but considering
3631		 * that the string we're searching for is likely to be
3632		 * relatively short, the complexity of Rabin-Karp or similar
3633		 * hardly seems merited.)
3634		 */
3635		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3636		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3637		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3638		size_t len = dtrace_strlen(addr, size);
3639		size_t sublen = dtrace_strlen(substr, size);
3640		char *limit = addr + len, *orig = addr;
3641		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3642		int inc = 1;
3643
3644		regs[rd] = notfound;
3645
3646		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3647			regs[rd] = 0;
3648			break;
3649		}
3650
3651		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3652		    vstate)) {
3653			regs[rd] = 0;
3654			break;
3655		}
3656
3657		/*
3658		 * strstr() and index()/rindex() have similar semantics if
3659		 * both strings are the empty string: strstr() returns a
3660		 * pointer to the (empty) string, and index() and rindex()
3661		 * both return index 0 (regardless of any position argument).
3662		 */
3663		if (sublen == 0 && len == 0) {
3664			if (subr == DIF_SUBR_STRSTR)
3665				regs[rd] = (uintptr_t)addr;
3666			else
3667				regs[rd] = 0;
3668			break;
3669		}
3670
3671		if (subr != DIF_SUBR_STRSTR) {
3672			if (subr == DIF_SUBR_RINDEX) {
3673				limit = orig - 1;
3674				addr += len;
3675				inc = -1;
3676			}
3677
3678			/*
3679			 * Both index() and rindex() take an optional position
3680			 * argument that denotes the starting position.
3681			 */
3682			if (nargs == 3) {
3683				int64_t pos = (int64_t)tupregs[2].dttk_value;
3684
3685				/*
3686				 * If the position argument to index() is
3687				 * negative, Perl implicitly clamps it at
3688				 * zero.  This semantic is a little surprising
3689				 * given the special meaning of negative
3690				 * positions to similar Perl functions like
3691				 * substr(), but it appears to reflect a
3692				 * notion that index() can start from a
3693				 * negative index and increment its way up to
3694				 * the string.  Given this notion, Perl's
3695				 * rindex() is at least self-consistent in
3696				 * that it implicitly clamps positions greater
3697				 * than the string length to be the string
3698				 * length.  Where Perl completely loses
3699				 * coherence, however, is when the specified
3700				 * substring is the empty string ("").  In
3701				 * this case, even if the position is
3702				 * negative, rindex() returns 0 -- and even if
3703				 * the position is greater than the length,
3704				 * index() returns the string length.  These
3705				 * semantics violate the notion that index()
3706				 * should never return a value less than the
3707				 * specified position and that rindex() should
3708				 * never return a value greater than the
3709				 * specified position.  (One assumes that
3710				 * these semantics are artifacts of Perl's
3711				 * implementation and not the results of
3712				 * deliberate design -- it beggars belief that
3713				 * even Larry Wall could desire such oddness.)
3714				 * While in the abstract one would wish for
3715				 * consistent position semantics across
3716				 * substr(), index() and rindex() -- or at the
3717				 * very least self-consistent position
3718				 * semantics for index() and rindex() -- we
3719				 * instead opt to keep with the extant Perl
3720				 * semantics, in all their broken glory.  (Do
3721				 * we have more desire to maintain Perl's
3722				 * semantics than Perl does?  Probably.)
3723				 */
3724				if (subr == DIF_SUBR_RINDEX) {
3725					if (pos < 0) {
3726						if (sublen == 0)
3727							regs[rd] = 0;
3728						break;
3729					}
3730
3731					if (pos > len)
3732						pos = len;
3733				} else {
3734					if (pos < 0)
3735						pos = 0;
3736
3737					if (pos >= len) {
3738						if (sublen == 0)
3739							regs[rd] = len;
3740						break;
3741					}
3742				}
3743
3744				addr = orig + pos;
3745			}
3746		}
3747
3748		for (regs[rd] = notfound; addr != limit; addr += inc) {
3749			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3750				if (subr != DIF_SUBR_STRSTR) {
3751					/*
3752					 * As D index() and rindex() are
3753					 * modeled on Perl (and not on awk),
3754					 * we return a zero-based (and not a
3755					 * one-based) index.  (For you Perl
3756					 * weenies: no, we're not going to add
3757					 * $[ -- and shouldn't you be at a con
3758					 * or something?)
3759					 */
3760					regs[rd] = (uintptr_t)(addr - orig);
3761					break;
3762				}
3763
3764				ASSERT(subr == DIF_SUBR_STRSTR);
3765				regs[rd] = (uintptr_t)addr;
3766				break;
3767			}
3768		}
3769
3770		break;
3771	}
3772
3773	case DIF_SUBR_STRTOK: {
3774		uintptr_t addr = tupregs[0].dttk_value;
3775		uintptr_t tokaddr = tupregs[1].dttk_value;
3776		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3777		uintptr_t limit, toklimit = tokaddr + size;
3778		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3779		char *dest = (char *)mstate->dtms_scratch_ptr;
3780		int i;
3781
3782		/*
3783		 * Check both the token buffer and (later) the input buffer,
3784		 * since both could be non-scratch addresses.
3785		 */
3786		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3787			regs[rd] = 0;
3788			break;
3789		}
3790
3791		if (!DTRACE_INSCRATCH(mstate, size)) {
3792			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3793			regs[rd] = 0;
3794			break;
3795		}
3796
3797		if (addr == 0) {
3798			/*
3799			 * If the address specified is NULL, we use our saved
3800			 * strtok pointer from the mstate.  Note that this
3801			 * means that the saved strtok pointer is _only_
3802			 * valid within multiple enablings of the same probe --
3803			 * it behaves like an implicit clause-local variable.
3804			 */
3805			addr = mstate->dtms_strtok;
3806		} else {
3807			/*
3808			 * If the user-specified address is non-NULL we must
3809			 * access check it.  This is the only time we have
3810			 * a chance to do so, since this address may reside
3811			 * in the string table of this clause-- future calls
3812			 * (when we fetch addr from mstate->dtms_strtok)
3813			 * would fail this access check.
3814			 */
3815			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3816				regs[rd] = 0;
3817				break;
3818			}
3819		}
3820
3821		/*
3822		 * First, zero the token map, and then process the token
3823		 * string -- setting a bit in the map for every character
3824		 * found in the token string.
3825		 */
3826		for (i = 0; i < sizeof (tokmap); i++)
3827			tokmap[i] = 0;
3828
3829		for (; tokaddr < toklimit; tokaddr++) {
3830			if ((c = dtrace_load8(tokaddr)) == '\0')
3831				break;
3832
3833			ASSERT((c >> 3) < sizeof (tokmap));
3834			tokmap[c >> 3] |= (1 << (c & 0x7));
3835		}
3836
3837		for (limit = addr + size; addr < limit; addr++) {
3838			/*
3839			 * We're looking for a character that is _not_ contained
3840			 * in the token string.
3841			 */
3842			if ((c = dtrace_load8(addr)) == '\0')
3843				break;
3844
3845			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3846				break;
3847		}
3848
3849		if (c == '\0') {
3850			/*
3851			 * We reached the end of the string without finding
3852			 * any character that was not in the token string.
3853			 * We return NULL in this case, and we set the saved
3854			 * address to NULL as well.
3855			 */
3856			regs[rd] = 0;
3857			mstate->dtms_strtok = 0;
3858			break;
3859		}
3860
3861		/*
3862		 * From here on, we're copying into the destination string.
3863		 */
3864		for (i = 0; addr < limit && i < size - 1; addr++) {
3865			if ((c = dtrace_load8(addr)) == '\0')
3866				break;
3867
3868			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3869				break;
3870
3871			ASSERT(i < size);
3872			dest[i++] = c;
3873		}
3874
3875		ASSERT(i < size);
3876		dest[i] = '\0';
3877		regs[rd] = (uintptr_t)dest;
3878		mstate->dtms_scratch_ptr += size;
3879		mstate->dtms_strtok = addr;
3880		break;
3881	}
3882
3883	case DIF_SUBR_SUBSTR: {
3884		uintptr_t s = tupregs[0].dttk_value;
3885		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3886		char *d = (char *)mstate->dtms_scratch_ptr;
3887		int64_t index = (int64_t)tupregs[1].dttk_value;
3888		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3889		size_t len = dtrace_strlen((char *)s, size);
3890		int64_t i = 0;
3891
3892		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3893			regs[rd] = 0;
3894			break;
3895		}
3896
3897		if (!DTRACE_INSCRATCH(mstate, size)) {
3898			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3899			regs[rd] = 0;
3900			break;
3901		}
3902
3903		if (nargs <= 2)
3904			remaining = (int64_t)size;
3905
3906		if (index < 0) {
3907			index += len;
3908
3909			if (index < 0 && index + remaining > 0) {
3910				remaining += index;
3911				index = 0;
3912			}
3913		}
3914
3915		if (index >= len || index < 0) {
3916			remaining = 0;
3917		} else if (remaining < 0) {
3918			remaining += len - index;
3919		} else if (index + remaining > size) {
3920			remaining = size - index;
3921		}
3922
3923		for (i = 0; i < remaining; i++) {
3924			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3925				break;
3926		}
3927
3928		d[i] = '\0';
3929
3930		mstate->dtms_scratch_ptr += size;
3931		regs[rd] = (uintptr_t)d;
3932		break;
3933	}
3934
3935#if defined(sun)
3936	case DIF_SUBR_GETMAJOR:
3937#ifdef _LP64
3938		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3939#else
3940		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3941#endif
3942		break;
3943
3944	case DIF_SUBR_GETMINOR:
3945#ifdef _LP64
3946		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3947#else
3948		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3949#endif
3950		break;
3951
3952	case DIF_SUBR_DDI_PATHNAME: {
3953		/*
3954		 * This one is a galactic mess.  We are going to roughly
3955		 * emulate ddi_pathname(), but it's made more complicated
3956		 * by the fact that we (a) want to include the minor name and
3957		 * (b) must proceed iteratively instead of recursively.
3958		 */
3959		uintptr_t dest = mstate->dtms_scratch_ptr;
3960		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3961		char *start = (char *)dest, *end = start + size - 1;
3962		uintptr_t daddr = tupregs[0].dttk_value;
3963		int64_t minor = (int64_t)tupregs[1].dttk_value;
3964		char *s;
3965		int i, len, depth = 0;
3966
3967		/*
3968		 * Due to all the pointer jumping we do and context we must
3969		 * rely upon, we just mandate that the user must have kernel
3970		 * read privileges to use this routine.
3971		 */
3972		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3973			*flags |= CPU_DTRACE_KPRIV;
3974			*illval = daddr;
3975			regs[rd] = 0;
3976		}
3977
3978		if (!DTRACE_INSCRATCH(mstate, size)) {
3979			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3980			regs[rd] = 0;
3981			break;
3982		}
3983
3984		*end = '\0';
3985
3986		/*
3987		 * We want to have a name for the minor.  In order to do this,
3988		 * we need to walk the minor list from the devinfo.  We want
3989		 * to be sure that we don't infinitely walk a circular list,
3990		 * so we check for circularity by sending a scout pointer
3991		 * ahead two elements for every element that we iterate over;
3992		 * if the list is circular, these will ultimately point to the
3993		 * same element.  You may recognize this little trick as the
3994		 * answer to a stupid interview question -- one that always
3995		 * seems to be asked by those who had to have it laboriously
3996		 * explained to them, and who can't even concisely describe
3997		 * the conditions under which one would be forced to resort to
3998		 * this technique.  Needless to say, those conditions are
3999		 * found here -- and probably only here.  Is this the only use
4000		 * of this infamous trick in shipping, production code?  If it
4001		 * isn't, it probably should be...
4002		 */
4003		if (minor != -1) {
4004			uintptr_t maddr = dtrace_loadptr(daddr +
4005			    offsetof(struct dev_info, devi_minor));
4006
4007			uintptr_t next = offsetof(struct ddi_minor_data, next);
4008			uintptr_t name = offsetof(struct ddi_minor_data,
4009			    d_minor) + offsetof(struct ddi_minor, name);
4010			uintptr_t dev = offsetof(struct ddi_minor_data,
4011			    d_minor) + offsetof(struct ddi_minor, dev);
4012			uintptr_t scout;
4013
4014			if (maddr != NULL)
4015				scout = dtrace_loadptr(maddr + next);
4016
4017			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4018				uint64_t m;
4019#ifdef _LP64
4020				m = dtrace_load64(maddr + dev) & MAXMIN64;
4021#else
4022				m = dtrace_load32(maddr + dev) & MAXMIN;
4023#endif
4024				if (m != minor) {
4025					maddr = dtrace_loadptr(maddr + next);
4026
4027					if (scout == NULL)
4028						continue;
4029
4030					scout = dtrace_loadptr(scout + next);
4031
4032					if (scout == NULL)
4033						continue;
4034
4035					scout = dtrace_loadptr(scout + next);
4036
4037					if (scout == NULL)
4038						continue;
4039
4040					if (scout == maddr) {
4041						*flags |= CPU_DTRACE_ILLOP;
4042						break;
4043					}
4044
4045					continue;
4046				}
4047
4048				/*
4049				 * We have the minor data.  Now we need to
4050				 * copy the minor's name into the end of the
4051				 * pathname.
4052				 */
4053				s = (char *)dtrace_loadptr(maddr + name);
4054				len = dtrace_strlen(s, size);
4055
4056				if (*flags & CPU_DTRACE_FAULT)
4057					break;
4058
4059				if (len != 0) {
4060					if ((end -= (len + 1)) < start)
4061						break;
4062
4063					*end = ':';
4064				}
4065
4066				for (i = 1; i <= len; i++)
4067					end[i] = dtrace_load8((uintptr_t)s++);
4068				break;
4069			}
4070		}
4071
4072		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4073			ddi_node_state_t devi_state;
4074
4075			devi_state = dtrace_load32(daddr +
4076			    offsetof(struct dev_info, devi_node_state));
4077
4078			if (*flags & CPU_DTRACE_FAULT)
4079				break;
4080
4081			if (devi_state >= DS_INITIALIZED) {
4082				s = (char *)dtrace_loadptr(daddr +
4083				    offsetof(struct dev_info, devi_addr));
4084				len = dtrace_strlen(s, size);
4085
4086				if (*flags & CPU_DTRACE_FAULT)
4087					break;
4088
4089				if (len != 0) {
4090					if ((end -= (len + 1)) < start)
4091						break;
4092
4093					*end = '@';
4094				}
4095
4096				for (i = 1; i <= len; i++)
4097					end[i] = dtrace_load8((uintptr_t)s++);
4098			}
4099
4100			/*
4101			 * Now for the node name...
4102			 */
4103			s = (char *)dtrace_loadptr(daddr +
4104			    offsetof(struct dev_info, devi_node_name));
4105
4106			daddr = dtrace_loadptr(daddr +
4107			    offsetof(struct dev_info, devi_parent));
4108
4109			/*
4110			 * If our parent is NULL (that is, if we're the root
4111			 * node), we're going to use the special path
4112			 * "devices".
4113			 */
4114			if (daddr == 0)
4115				s = "devices";
4116
4117			len = dtrace_strlen(s, size);
4118			if (*flags & CPU_DTRACE_FAULT)
4119				break;
4120
4121			if ((end -= (len + 1)) < start)
4122				break;
4123
4124			for (i = 1; i <= len; i++)
4125				end[i] = dtrace_load8((uintptr_t)s++);
4126			*end = '/';
4127
4128			if (depth++ > dtrace_devdepth_max) {
4129				*flags |= CPU_DTRACE_ILLOP;
4130				break;
4131			}
4132		}
4133
4134		if (end < start)
4135			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4136
4137		if (daddr == 0) {
4138			regs[rd] = (uintptr_t)end;
4139			mstate->dtms_scratch_ptr += size;
4140		}
4141
4142		break;
4143	}
4144#endif
4145
4146	case DIF_SUBR_STRJOIN: {
4147		char *d = (char *)mstate->dtms_scratch_ptr;
4148		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4149		uintptr_t s1 = tupregs[0].dttk_value;
4150		uintptr_t s2 = tupregs[1].dttk_value;
4151		int i = 0;
4152
4153		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4154		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4155			regs[rd] = 0;
4156			break;
4157		}
4158
4159		if (!DTRACE_INSCRATCH(mstate, size)) {
4160			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4161			regs[rd] = 0;
4162			break;
4163		}
4164
4165		for (;;) {
4166			if (i >= size) {
4167				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4168				regs[rd] = 0;
4169				break;
4170			}
4171
4172			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4173				i--;
4174				break;
4175			}
4176		}
4177
4178		for (;;) {
4179			if (i >= size) {
4180				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4181				regs[rd] = 0;
4182				break;
4183			}
4184
4185			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4186				break;
4187		}
4188
4189		if (i < size) {
4190			mstate->dtms_scratch_ptr += i;
4191			regs[rd] = (uintptr_t)d;
4192		}
4193
4194		break;
4195	}
4196
4197	case DIF_SUBR_LLTOSTR: {
4198		int64_t i = (int64_t)tupregs[0].dttk_value;
4199		int64_t val = i < 0 ? i * -1 : i;
4200		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4201		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4202
4203		if (!DTRACE_INSCRATCH(mstate, size)) {
4204			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4205			regs[rd] = 0;
4206			break;
4207		}
4208
4209		for (*end-- = '\0'; val; val /= 10)
4210			*end-- = '0' + (val % 10);
4211
4212		if (i == 0)
4213			*end-- = '0';
4214
4215		if (i < 0)
4216			*end-- = '-';
4217
4218		regs[rd] = (uintptr_t)end + 1;
4219		mstate->dtms_scratch_ptr += size;
4220		break;
4221	}
4222
4223	case DIF_SUBR_HTONS:
4224	case DIF_SUBR_NTOHS:
4225#if BYTE_ORDER == BIG_ENDIAN
4226		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4227#else
4228		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4229#endif
4230		break;
4231
4232
4233	case DIF_SUBR_HTONL:
4234	case DIF_SUBR_NTOHL:
4235#if BYTE_ORDER == BIG_ENDIAN
4236		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4237#else
4238		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4239#endif
4240		break;
4241
4242
4243	case DIF_SUBR_HTONLL:
4244	case DIF_SUBR_NTOHLL:
4245#if BYTE_ORDER == BIG_ENDIAN
4246		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4247#else
4248		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4249#endif
4250		break;
4251
4252
4253	case DIF_SUBR_DIRNAME:
4254	case DIF_SUBR_BASENAME: {
4255		char *dest = (char *)mstate->dtms_scratch_ptr;
4256		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4257		uintptr_t src = tupregs[0].dttk_value;
4258		int i, j, len = dtrace_strlen((char *)src, size);
4259		int lastbase = -1, firstbase = -1, lastdir = -1;
4260		int start, end;
4261
4262		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4263			regs[rd] = 0;
4264			break;
4265		}
4266
4267		if (!DTRACE_INSCRATCH(mstate, size)) {
4268			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4269			regs[rd] = 0;
4270			break;
4271		}
4272
4273		/*
4274		 * The basename and dirname for a zero-length string is
4275		 * defined to be "."
4276		 */
4277		if (len == 0) {
4278			len = 1;
4279			src = (uintptr_t)".";
4280		}
4281
4282		/*
4283		 * Start from the back of the string, moving back toward the
4284		 * front until we see a character that isn't a slash.  That
4285		 * character is the last character in the basename.
4286		 */
4287		for (i = len - 1; i >= 0; i--) {
4288			if (dtrace_load8(src + i) != '/')
4289				break;
4290		}
4291
4292		if (i >= 0)
4293			lastbase = i;
4294
4295		/*
4296		 * Starting from the last character in the basename, move
4297		 * towards the front until we find a slash.  The character
4298		 * that we processed immediately before that is the first
4299		 * character in the basename.
4300		 */
4301		for (; i >= 0; i--) {
4302			if (dtrace_load8(src + i) == '/')
4303				break;
4304		}
4305
4306		if (i >= 0)
4307			firstbase = i + 1;
4308
4309		/*
4310		 * Now keep going until we find a non-slash character.  That
4311		 * character is the last character in the dirname.
4312		 */
4313		for (; i >= 0; i--) {
4314			if (dtrace_load8(src + i) != '/')
4315				break;
4316		}
4317
4318		if (i >= 0)
4319			lastdir = i;
4320
4321		ASSERT(!(lastbase == -1 && firstbase != -1));
4322		ASSERT(!(firstbase == -1 && lastdir != -1));
4323
4324		if (lastbase == -1) {
4325			/*
4326			 * We didn't find a non-slash character.  We know that
4327			 * the length is non-zero, so the whole string must be
4328			 * slashes.  In either the dirname or the basename
4329			 * case, we return '/'.
4330			 */
4331			ASSERT(firstbase == -1);
4332			firstbase = lastbase = lastdir = 0;
4333		}
4334
4335		if (firstbase == -1) {
4336			/*
4337			 * The entire string consists only of a basename
4338			 * component.  If we're looking for dirname, we need
4339			 * to change our string to be just "."; if we're
4340			 * looking for a basename, we'll just set the first
4341			 * character of the basename to be 0.
4342			 */
4343			if (subr == DIF_SUBR_DIRNAME) {
4344				ASSERT(lastdir == -1);
4345				src = (uintptr_t)".";
4346				lastdir = 0;
4347			} else {
4348				firstbase = 0;
4349			}
4350		}
4351
4352		if (subr == DIF_SUBR_DIRNAME) {
4353			if (lastdir == -1) {
4354				/*
4355				 * We know that we have a slash in the name --
4356				 * or lastdir would be set to 0, above.  And
4357				 * because lastdir is -1, we know that this
4358				 * slash must be the first character.  (That
4359				 * is, the full string must be of the form
4360				 * "/basename".)  In this case, the last
4361				 * character of the directory name is 0.
4362				 */
4363				lastdir = 0;
4364			}
4365
4366			start = 0;
4367			end = lastdir;
4368		} else {
4369			ASSERT(subr == DIF_SUBR_BASENAME);
4370			ASSERT(firstbase != -1 && lastbase != -1);
4371			start = firstbase;
4372			end = lastbase;
4373		}
4374
4375		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4376			dest[j] = dtrace_load8(src + i);
4377
4378		dest[j] = '\0';
4379		regs[rd] = (uintptr_t)dest;
4380		mstate->dtms_scratch_ptr += size;
4381		break;
4382	}
4383
4384	case DIF_SUBR_CLEANPATH: {
4385		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4386		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4387		uintptr_t src = tupregs[0].dttk_value;
4388		int i = 0, j = 0;
4389
4390		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4391			regs[rd] = 0;
4392			break;
4393		}
4394
4395		if (!DTRACE_INSCRATCH(mstate, size)) {
4396			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4397			regs[rd] = 0;
4398			break;
4399		}
4400
4401		/*
4402		 * Move forward, loading each character.
4403		 */
4404		do {
4405			c = dtrace_load8(src + i++);
4406next:
4407			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4408				break;
4409
4410			if (c != '/') {
4411				dest[j++] = c;
4412				continue;
4413			}
4414
4415			c = dtrace_load8(src + i++);
4416
4417			if (c == '/') {
4418				/*
4419				 * We have two slashes -- we can just advance
4420				 * to the next character.
4421				 */
4422				goto next;
4423			}
4424
4425			if (c != '.') {
4426				/*
4427				 * This is not "." and it's not ".." -- we can
4428				 * just store the "/" and this character and
4429				 * drive on.
4430				 */
4431				dest[j++] = '/';
4432				dest[j++] = c;
4433				continue;
4434			}
4435
4436			c = dtrace_load8(src + i++);
4437
4438			if (c == '/') {
4439				/*
4440				 * This is a "/./" component.  We're not going
4441				 * to store anything in the destination buffer;
4442				 * we're just going to go to the next component.
4443				 */
4444				goto next;
4445			}
4446
4447			if (c != '.') {
4448				/*
4449				 * This is not ".." -- we can just store the
4450				 * "/." and this character and continue
4451				 * processing.
4452				 */
4453				dest[j++] = '/';
4454				dest[j++] = '.';
4455				dest[j++] = c;
4456				continue;
4457			}
4458
4459			c = dtrace_load8(src + i++);
4460
4461			if (c != '/' && c != '\0') {
4462				/*
4463				 * This is not ".." -- it's "..[mumble]".
4464				 * We'll store the "/.." and this character
4465				 * and continue processing.
4466				 */
4467				dest[j++] = '/';
4468				dest[j++] = '.';
4469				dest[j++] = '.';
4470				dest[j++] = c;
4471				continue;
4472			}
4473
4474			/*
4475			 * This is "/../" or "/..\0".  We need to back up
4476			 * our destination pointer until we find a "/".
4477			 */
4478			i--;
4479			while (j != 0 && dest[--j] != '/')
4480				continue;
4481
4482			if (c == '\0')
4483				dest[++j] = '/';
4484		} while (c != '\0');
4485
4486		dest[j] = '\0';
4487		regs[rd] = (uintptr_t)dest;
4488		mstate->dtms_scratch_ptr += size;
4489		break;
4490	}
4491
4492	case DIF_SUBR_INET_NTOA:
4493	case DIF_SUBR_INET_NTOA6:
4494	case DIF_SUBR_INET_NTOP: {
4495		size_t size;
4496		int af, argi, i;
4497		char *base, *end;
4498
4499		if (subr == DIF_SUBR_INET_NTOP) {
4500			af = (int)tupregs[0].dttk_value;
4501			argi = 1;
4502		} else {
4503			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4504			argi = 0;
4505		}
4506
4507		if (af == AF_INET) {
4508			ipaddr_t ip4;
4509			uint8_t *ptr8, val;
4510
4511			/*
4512			 * Safely load the IPv4 address.
4513			 */
4514			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4515
4516			/*
4517			 * Check an IPv4 string will fit in scratch.
4518			 */
4519			size = INET_ADDRSTRLEN;
4520			if (!DTRACE_INSCRATCH(mstate, size)) {
4521				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4522				regs[rd] = 0;
4523				break;
4524			}
4525			base = (char *)mstate->dtms_scratch_ptr;
4526			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4527
4528			/*
4529			 * Stringify as a dotted decimal quad.
4530			 */
4531			*end-- = '\0';
4532			ptr8 = (uint8_t *)&ip4;
4533			for (i = 3; i >= 0; i--) {
4534				val = ptr8[i];
4535
4536				if (val == 0) {
4537					*end-- = '0';
4538				} else {
4539					for (; val; val /= 10) {
4540						*end-- = '0' + (val % 10);
4541					}
4542				}
4543
4544				if (i > 0)
4545					*end-- = '.';
4546			}
4547			ASSERT(end + 1 >= base);
4548
4549		} else if (af == AF_INET6) {
4550			struct in6_addr ip6;
4551			int firstzero, tryzero, numzero, v6end;
4552			uint16_t val;
4553			const char digits[] = "0123456789abcdef";
4554
4555			/*
4556			 * Stringify using RFC 1884 convention 2 - 16 bit
4557			 * hexadecimal values with a zero-run compression.
4558			 * Lower case hexadecimal digits are used.
4559			 * 	eg, fe80::214:4fff:fe0b:76c8.
4560			 * The IPv4 embedded form is returned for inet_ntop,
4561			 * just the IPv4 string is returned for inet_ntoa6.
4562			 */
4563
4564			/*
4565			 * Safely load the IPv6 address.
4566			 */
4567			dtrace_bcopy(
4568			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4569			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4570
4571			/*
4572			 * Check an IPv6 string will fit in scratch.
4573			 */
4574			size = INET6_ADDRSTRLEN;
4575			if (!DTRACE_INSCRATCH(mstate, size)) {
4576				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4577				regs[rd] = 0;
4578				break;
4579			}
4580			base = (char *)mstate->dtms_scratch_ptr;
4581			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4582			*end-- = '\0';
4583
4584			/*
4585			 * Find the longest run of 16 bit zero values
4586			 * for the single allowed zero compression - "::".
4587			 */
4588			firstzero = -1;
4589			tryzero = -1;
4590			numzero = 1;
4591			for (i = 0; i < sizeof (struct in6_addr); i++) {
4592#if defined(sun)
4593				if (ip6._S6_un._S6_u8[i] == 0 &&
4594#else
4595				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4596#endif
4597				    tryzero == -1 && i % 2 == 0) {
4598					tryzero = i;
4599					continue;
4600				}
4601
4602				if (tryzero != -1 &&
4603#if defined(sun)
4604				    (ip6._S6_un._S6_u8[i] != 0 ||
4605#else
4606				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4607#endif
4608				    i == sizeof (struct in6_addr) - 1)) {
4609
4610					if (i - tryzero <= numzero) {
4611						tryzero = -1;
4612						continue;
4613					}
4614
4615					firstzero = tryzero;
4616					numzero = i - i % 2 - tryzero;
4617					tryzero = -1;
4618
4619#if defined(sun)
4620					if (ip6._S6_un._S6_u8[i] == 0 &&
4621#else
4622					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4623#endif
4624					    i == sizeof (struct in6_addr) - 1)
4625						numzero += 2;
4626				}
4627			}
4628			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4629
4630			/*
4631			 * Check for an IPv4 embedded address.
4632			 */
4633			v6end = sizeof (struct in6_addr) - 2;
4634			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4635			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4636				for (i = sizeof (struct in6_addr) - 1;
4637				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4638					ASSERT(end >= base);
4639
4640#if defined(sun)
4641					val = ip6._S6_un._S6_u8[i];
4642#else
4643					val = ip6.__u6_addr.__u6_addr8[i];
4644#endif
4645
4646					if (val == 0) {
4647						*end-- = '0';
4648					} else {
4649						for (; val; val /= 10) {
4650							*end-- = '0' + val % 10;
4651						}
4652					}
4653
4654					if (i > DTRACE_V4MAPPED_OFFSET)
4655						*end-- = '.';
4656				}
4657
4658				if (subr == DIF_SUBR_INET_NTOA6)
4659					goto inetout;
4660
4661				/*
4662				 * Set v6end to skip the IPv4 address that
4663				 * we have already stringified.
4664				 */
4665				v6end = 10;
4666			}
4667
4668			/*
4669			 * Build the IPv6 string by working through the
4670			 * address in reverse.
4671			 */
4672			for (i = v6end; i >= 0; i -= 2) {
4673				ASSERT(end >= base);
4674
4675				if (i == firstzero + numzero - 2) {
4676					*end-- = ':';
4677					*end-- = ':';
4678					i -= numzero - 2;
4679					continue;
4680				}
4681
4682				if (i < 14 && i != firstzero - 2)
4683					*end-- = ':';
4684
4685#if defined(sun)
4686				val = (ip6._S6_un._S6_u8[i] << 8) +
4687				    ip6._S6_un._S6_u8[i + 1];
4688#else
4689				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4690				    ip6.__u6_addr.__u6_addr8[i + 1];
4691#endif
4692
4693				if (val == 0) {
4694					*end-- = '0';
4695				} else {
4696					for (; val; val /= 16) {
4697						*end-- = digits[val % 16];
4698					}
4699				}
4700			}
4701			ASSERT(end + 1 >= base);
4702
4703		} else {
4704			/*
4705			 * The user didn't use AH_INET or AH_INET6.
4706			 */
4707			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4708			regs[rd] = 0;
4709			break;
4710		}
4711
4712inetout:	regs[rd] = (uintptr_t)end + 1;
4713		mstate->dtms_scratch_ptr += size;
4714		break;
4715	}
4716
4717	case DIF_SUBR_MEMREF: {
4718		uintptr_t size = 2 * sizeof(uintptr_t);
4719		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4720		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4721
4722		/* address and length */
4723		memref[0] = tupregs[0].dttk_value;
4724		memref[1] = tupregs[1].dttk_value;
4725
4726		regs[rd] = (uintptr_t) memref;
4727		mstate->dtms_scratch_ptr += scratch_size;
4728		break;
4729	}
4730
4731	case DIF_SUBR_TYPEREF: {
4732		uintptr_t size = 4 * sizeof(uintptr_t);
4733		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4734		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4735
4736		/* address, num_elements, type_str, type_len */
4737		typeref[0] = tupregs[0].dttk_value;
4738		typeref[1] = tupregs[1].dttk_value;
4739		typeref[2] = tupregs[2].dttk_value;
4740		typeref[3] = tupregs[3].dttk_value;
4741
4742		regs[rd] = (uintptr_t) typeref;
4743		mstate->dtms_scratch_ptr += scratch_size;
4744		break;
4745	}
4746	}
4747}
4748
4749/*
4750 * Emulate the execution of DTrace IR instructions specified by the given
4751 * DIF object.  This function is deliberately void of assertions as all of
4752 * the necessary checks are handled by a call to dtrace_difo_validate().
4753 */
4754static uint64_t
4755dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4756    dtrace_vstate_t *vstate, dtrace_state_t *state)
4757{
4758	const dif_instr_t *text = difo->dtdo_buf;
4759	const uint_t textlen = difo->dtdo_len;
4760	const char *strtab = difo->dtdo_strtab;
4761	const uint64_t *inttab = difo->dtdo_inttab;
4762
4763	uint64_t rval = 0;
4764	dtrace_statvar_t *svar;
4765	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4766	dtrace_difv_t *v;
4767	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4768	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4769
4770	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4771	uint64_t regs[DIF_DIR_NREGS];
4772	uint64_t *tmp;
4773
4774	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4775	int64_t cc_r;
4776	uint_t pc = 0, id, opc = 0;
4777	uint8_t ttop = 0;
4778	dif_instr_t instr;
4779	uint_t r1, r2, rd;
4780
4781	/*
4782	 * We stash the current DIF object into the machine state: we need it
4783	 * for subsequent access checking.
4784	 */
4785	mstate->dtms_difo = difo;
4786
4787	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4788
4789	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4790		opc = pc;
4791
4792		instr = text[pc++];
4793		r1 = DIF_INSTR_R1(instr);
4794		r2 = DIF_INSTR_R2(instr);
4795		rd = DIF_INSTR_RD(instr);
4796
4797		switch (DIF_INSTR_OP(instr)) {
4798		case DIF_OP_OR:
4799			regs[rd] = regs[r1] | regs[r2];
4800			break;
4801		case DIF_OP_XOR:
4802			regs[rd] = regs[r1] ^ regs[r2];
4803			break;
4804		case DIF_OP_AND:
4805			regs[rd] = regs[r1] & regs[r2];
4806			break;
4807		case DIF_OP_SLL:
4808			regs[rd] = regs[r1] << regs[r2];
4809			break;
4810		case DIF_OP_SRL:
4811			regs[rd] = regs[r1] >> regs[r2];
4812			break;
4813		case DIF_OP_SUB:
4814			regs[rd] = regs[r1] - regs[r2];
4815			break;
4816		case DIF_OP_ADD:
4817			regs[rd] = regs[r1] + regs[r2];
4818			break;
4819		case DIF_OP_MUL:
4820			regs[rd] = regs[r1] * regs[r2];
4821			break;
4822		case DIF_OP_SDIV:
4823			if (regs[r2] == 0) {
4824				regs[rd] = 0;
4825				*flags |= CPU_DTRACE_DIVZERO;
4826			} else {
4827				regs[rd] = (int64_t)regs[r1] /
4828				    (int64_t)regs[r2];
4829			}
4830			break;
4831
4832		case DIF_OP_UDIV:
4833			if (regs[r2] == 0) {
4834				regs[rd] = 0;
4835				*flags |= CPU_DTRACE_DIVZERO;
4836			} else {
4837				regs[rd] = regs[r1] / regs[r2];
4838			}
4839			break;
4840
4841		case DIF_OP_SREM:
4842			if (regs[r2] == 0) {
4843				regs[rd] = 0;
4844				*flags |= CPU_DTRACE_DIVZERO;
4845			} else {
4846				regs[rd] = (int64_t)regs[r1] %
4847				    (int64_t)regs[r2];
4848			}
4849			break;
4850
4851		case DIF_OP_UREM:
4852			if (regs[r2] == 0) {
4853				regs[rd] = 0;
4854				*flags |= CPU_DTRACE_DIVZERO;
4855			} else {
4856				regs[rd] = regs[r1] % regs[r2];
4857			}
4858			break;
4859
4860		case DIF_OP_NOT:
4861			regs[rd] = ~regs[r1];
4862			break;
4863		case DIF_OP_MOV:
4864			regs[rd] = regs[r1];
4865			break;
4866		case DIF_OP_CMP:
4867			cc_r = regs[r1] - regs[r2];
4868			cc_n = cc_r < 0;
4869			cc_z = cc_r == 0;
4870			cc_v = 0;
4871			cc_c = regs[r1] < regs[r2];
4872			break;
4873		case DIF_OP_TST:
4874			cc_n = cc_v = cc_c = 0;
4875			cc_z = regs[r1] == 0;
4876			break;
4877		case DIF_OP_BA:
4878			pc = DIF_INSTR_LABEL(instr);
4879			break;
4880		case DIF_OP_BE:
4881			if (cc_z)
4882				pc = DIF_INSTR_LABEL(instr);
4883			break;
4884		case DIF_OP_BNE:
4885			if (cc_z == 0)
4886				pc = DIF_INSTR_LABEL(instr);
4887			break;
4888		case DIF_OP_BG:
4889			if ((cc_z | (cc_n ^ cc_v)) == 0)
4890				pc = DIF_INSTR_LABEL(instr);
4891			break;
4892		case DIF_OP_BGU:
4893			if ((cc_c | cc_z) == 0)
4894				pc = DIF_INSTR_LABEL(instr);
4895			break;
4896		case DIF_OP_BGE:
4897			if ((cc_n ^ cc_v) == 0)
4898				pc = DIF_INSTR_LABEL(instr);
4899			break;
4900		case DIF_OP_BGEU:
4901			if (cc_c == 0)
4902				pc = DIF_INSTR_LABEL(instr);
4903			break;
4904		case DIF_OP_BL:
4905			if (cc_n ^ cc_v)
4906				pc = DIF_INSTR_LABEL(instr);
4907			break;
4908		case DIF_OP_BLU:
4909			if (cc_c)
4910				pc = DIF_INSTR_LABEL(instr);
4911			break;
4912		case DIF_OP_BLE:
4913			if (cc_z | (cc_n ^ cc_v))
4914				pc = DIF_INSTR_LABEL(instr);
4915			break;
4916		case DIF_OP_BLEU:
4917			if (cc_c | cc_z)
4918				pc = DIF_INSTR_LABEL(instr);
4919			break;
4920		case DIF_OP_RLDSB:
4921			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4922				*flags |= CPU_DTRACE_KPRIV;
4923				*illval = regs[r1];
4924				break;
4925			}
4926			/*FALLTHROUGH*/
4927		case DIF_OP_LDSB:
4928			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4929			break;
4930		case DIF_OP_RLDSH:
4931			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4932				*flags |= CPU_DTRACE_KPRIV;
4933				*illval = regs[r1];
4934				break;
4935			}
4936			/*FALLTHROUGH*/
4937		case DIF_OP_LDSH:
4938			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4939			break;
4940		case DIF_OP_RLDSW:
4941			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4942				*flags |= CPU_DTRACE_KPRIV;
4943				*illval = regs[r1];
4944				break;
4945			}
4946			/*FALLTHROUGH*/
4947		case DIF_OP_LDSW:
4948			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4949			break;
4950		case DIF_OP_RLDUB:
4951			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4952				*flags |= CPU_DTRACE_KPRIV;
4953				*illval = regs[r1];
4954				break;
4955			}
4956			/*FALLTHROUGH*/
4957		case DIF_OP_LDUB:
4958			regs[rd] = dtrace_load8(regs[r1]);
4959			break;
4960		case DIF_OP_RLDUH:
4961			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4962				*flags |= CPU_DTRACE_KPRIV;
4963				*illval = regs[r1];
4964				break;
4965			}
4966			/*FALLTHROUGH*/
4967		case DIF_OP_LDUH:
4968			regs[rd] = dtrace_load16(regs[r1]);
4969			break;
4970		case DIF_OP_RLDUW:
4971			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4972				*flags |= CPU_DTRACE_KPRIV;
4973				*illval = regs[r1];
4974				break;
4975			}
4976			/*FALLTHROUGH*/
4977		case DIF_OP_LDUW:
4978			regs[rd] = dtrace_load32(regs[r1]);
4979			break;
4980		case DIF_OP_RLDX:
4981			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4982				*flags |= CPU_DTRACE_KPRIV;
4983				*illval = regs[r1];
4984				break;
4985			}
4986			/*FALLTHROUGH*/
4987		case DIF_OP_LDX:
4988			regs[rd] = dtrace_load64(regs[r1]);
4989			break;
4990		case DIF_OP_ULDSB:
4991			regs[rd] = (int8_t)
4992			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4993			break;
4994		case DIF_OP_ULDSH:
4995			regs[rd] = (int16_t)
4996			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4997			break;
4998		case DIF_OP_ULDSW:
4999			regs[rd] = (int32_t)
5000			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5001			break;
5002		case DIF_OP_ULDUB:
5003			regs[rd] =
5004			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5005			break;
5006		case DIF_OP_ULDUH:
5007			regs[rd] =
5008			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5009			break;
5010		case DIF_OP_ULDUW:
5011			regs[rd] =
5012			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5013			break;
5014		case DIF_OP_ULDX:
5015			regs[rd] =
5016			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5017			break;
5018		case DIF_OP_RET:
5019			rval = regs[rd];
5020			pc = textlen;
5021			break;
5022		case DIF_OP_NOP:
5023			break;
5024		case DIF_OP_SETX:
5025			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5026			break;
5027		case DIF_OP_SETS:
5028			regs[rd] = (uint64_t)(uintptr_t)
5029			    (strtab + DIF_INSTR_STRING(instr));
5030			break;
5031		case DIF_OP_SCMP: {
5032			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5033			uintptr_t s1 = regs[r1];
5034			uintptr_t s2 = regs[r2];
5035
5036			if (s1 != 0 &&
5037			    !dtrace_strcanload(s1, sz, mstate, vstate))
5038				break;
5039			if (s2 != 0 &&
5040			    !dtrace_strcanload(s2, sz, mstate, vstate))
5041				break;
5042
5043			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5044
5045			cc_n = cc_r < 0;
5046			cc_z = cc_r == 0;
5047			cc_v = cc_c = 0;
5048			break;
5049		}
5050		case DIF_OP_LDGA:
5051			regs[rd] = dtrace_dif_variable(mstate, state,
5052			    r1, regs[r2]);
5053			break;
5054		case DIF_OP_LDGS:
5055			id = DIF_INSTR_VAR(instr);
5056
5057			if (id >= DIF_VAR_OTHER_UBASE) {
5058				uintptr_t a;
5059
5060				id -= DIF_VAR_OTHER_UBASE;
5061				svar = vstate->dtvs_globals[id];
5062				ASSERT(svar != NULL);
5063				v = &svar->dtsv_var;
5064
5065				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5066					regs[rd] = svar->dtsv_data;
5067					break;
5068				}
5069
5070				a = (uintptr_t)svar->dtsv_data;
5071
5072				if (*(uint8_t *)a == UINT8_MAX) {
5073					/*
5074					 * If the 0th byte is set to UINT8_MAX
5075					 * then this is to be treated as a
5076					 * reference to a NULL variable.
5077					 */
5078					regs[rd] = 0;
5079				} else {
5080					regs[rd] = a + sizeof (uint64_t);
5081				}
5082
5083				break;
5084			}
5085
5086			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5087			break;
5088
5089		case DIF_OP_STGS:
5090			id = DIF_INSTR_VAR(instr);
5091
5092			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5093			id -= DIF_VAR_OTHER_UBASE;
5094
5095			svar = vstate->dtvs_globals[id];
5096			ASSERT(svar != NULL);
5097			v = &svar->dtsv_var;
5098
5099			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5100				uintptr_t a = (uintptr_t)svar->dtsv_data;
5101
5102				ASSERT(a != 0);
5103				ASSERT(svar->dtsv_size != 0);
5104
5105				if (regs[rd] == 0) {
5106					*(uint8_t *)a = UINT8_MAX;
5107					break;
5108				} else {
5109					*(uint8_t *)a = 0;
5110					a += sizeof (uint64_t);
5111				}
5112				if (!dtrace_vcanload(
5113				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5114				    mstate, vstate))
5115					break;
5116
5117				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5118				    (void *)a, &v->dtdv_type);
5119				break;
5120			}
5121
5122			svar->dtsv_data = regs[rd];
5123			break;
5124
5125		case DIF_OP_LDTA:
5126			/*
5127			 * There are no DTrace built-in thread-local arrays at
5128			 * present.  This opcode is saved for future work.
5129			 */
5130			*flags |= CPU_DTRACE_ILLOP;
5131			regs[rd] = 0;
5132			break;
5133
5134		case DIF_OP_LDLS:
5135			id = DIF_INSTR_VAR(instr);
5136
5137			if (id < DIF_VAR_OTHER_UBASE) {
5138				/*
5139				 * For now, this has no meaning.
5140				 */
5141				regs[rd] = 0;
5142				break;
5143			}
5144
5145			id -= DIF_VAR_OTHER_UBASE;
5146
5147			ASSERT(id < vstate->dtvs_nlocals);
5148			ASSERT(vstate->dtvs_locals != NULL);
5149
5150			svar = vstate->dtvs_locals[id];
5151			ASSERT(svar != NULL);
5152			v = &svar->dtsv_var;
5153
5154			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5155				uintptr_t a = (uintptr_t)svar->dtsv_data;
5156				size_t sz = v->dtdv_type.dtdt_size;
5157
5158				sz += sizeof (uint64_t);
5159				ASSERT(svar->dtsv_size == NCPU * sz);
5160				a += curcpu * sz;
5161
5162				if (*(uint8_t *)a == UINT8_MAX) {
5163					/*
5164					 * If the 0th byte is set to UINT8_MAX
5165					 * then this is to be treated as a
5166					 * reference to a NULL variable.
5167					 */
5168					regs[rd] = 0;
5169				} else {
5170					regs[rd] = a + sizeof (uint64_t);
5171				}
5172
5173				break;
5174			}
5175
5176			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5177			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5178			regs[rd] = tmp[curcpu];
5179			break;
5180
5181		case DIF_OP_STLS:
5182			id = DIF_INSTR_VAR(instr);
5183
5184			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5185			id -= DIF_VAR_OTHER_UBASE;
5186			ASSERT(id < vstate->dtvs_nlocals);
5187
5188			ASSERT(vstate->dtvs_locals != NULL);
5189			svar = vstate->dtvs_locals[id];
5190			ASSERT(svar != NULL);
5191			v = &svar->dtsv_var;
5192
5193			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5194				uintptr_t a = (uintptr_t)svar->dtsv_data;
5195				size_t sz = v->dtdv_type.dtdt_size;
5196
5197				sz += sizeof (uint64_t);
5198				ASSERT(svar->dtsv_size == NCPU * sz);
5199				a += curcpu * sz;
5200
5201				if (regs[rd] == 0) {
5202					*(uint8_t *)a = UINT8_MAX;
5203					break;
5204				} else {
5205					*(uint8_t *)a = 0;
5206					a += sizeof (uint64_t);
5207				}
5208
5209				if (!dtrace_vcanload(
5210				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5211				    mstate, vstate))
5212					break;
5213
5214				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5215				    (void *)a, &v->dtdv_type);
5216				break;
5217			}
5218
5219			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5220			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5221			tmp[curcpu] = regs[rd];
5222			break;
5223
5224		case DIF_OP_LDTS: {
5225			dtrace_dynvar_t *dvar;
5226			dtrace_key_t *key;
5227
5228			id = DIF_INSTR_VAR(instr);
5229			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5230			id -= DIF_VAR_OTHER_UBASE;
5231			v = &vstate->dtvs_tlocals[id];
5232
5233			key = &tupregs[DIF_DTR_NREGS];
5234			key[0].dttk_value = (uint64_t)id;
5235			key[0].dttk_size = 0;
5236			DTRACE_TLS_THRKEY(key[1].dttk_value);
5237			key[1].dttk_size = 0;
5238
5239			dvar = dtrace_dynvar(dstate, 2, key,
5240			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5241			    mstate, vstate);
5242
5243			if (dvar == NULL) {
5244				regs[rd] = 0;
5245				break;
5246			}
5247
5248			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5249				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5250			} else {
5251				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5252			}
5253
5254			break;
5255		}
5256
5257		case DIF_OP_STTS: {
5258			dtrace_dynvar_t *dvar;
5259			dtrace_key_t *key;
5260
5261			id = DIF_INSTR_VAR(instr);
5262			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5263			id -= DIF_VAR_OTHER_UBASE;
5264
5265			key = &tupregs[DIF_DTR_NREGS];
5266			key[0].dttk_value = (uint64_t)id;
5267			key[0].dttk_size = 0;
5268			DTRACE_TLS_THRKEY(key[1].dttk_value);
5269			key[1].dttk_size = 0;
5270			v = &vstate->dtvs_tlocals[id];
5271
5272			dvar = dtrace_dynvar(dstate, 2, key,
5273			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5274			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5275			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5276			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5277
5278			/*
5279			 * Given that we're storing to thread-local data,
5280			 * we need to flush our predicate cache.
5281			 */
5282			curthread->t_predcache = 0;
5283
5284			if (dvar == NULL)
5285				break;
5286
5287			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5288				if (!dtrace_vcanload(
5289				    (void *)(uintptr_t)regs[rd],
5290				    &v->dtdv_type, mstate, vstate))
5291					break;
5292
5293				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5294				    dvar->dtdv_data, &v->dtdv_type);
5295			} else {
5296				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5297			}
5298
5299			break;
5300		}
5301
5302		case DIF_OP_SRA:
5303			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5304			break;
5305
5306		case DIF_OP_CALL:
5307			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5308			    regs, tupregs, ttop, mstate, state);
5309			break;
5310
5311		case DIF_OP_PUSHTR:
5312			if (ttop == DIF_DTR_NREGS) {
5313				*flags |= CPU_DTRACE_TUPOFLOW;
5314				break;
5315			}
5316
5317			if (r1 == DIF_TYPE_STRING) {
5318				/*
5319				 * If this is a string type and the size is 0,
5320				 * we'll use the system-wide default string
5321				 * size.  Note that we are _not_ looking at
5322				 * the value of the DTRACEOPT_STRSIZE option;
5323				 * had this been set, we would expect to have
5324				 * a non-zero size value in the "pushtr".
5325				 */
5326				tupregs[ttop].dttk_size =
5327				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5328				    regs[r2] ? regs[r2] :
5329				    dtrace_strsize_default) + 1;
5330			} else {
5331				tupregs[ttop].dttk_size = regs[r2];
5332			}
5333
5334			tupregs[ttop++].dttk_value = regs[rd];
5335			break;
5336
5337		case DIF_OP_PUSHTV:
5338			if (ttop == DIF_DTR_NREGS) {
5339				*flags |= CPU_DTRACE_TUPOFLOW;
5340				break;
5341			}
5342
5343			tupregs[ttop].dttk_value = regs[rd];
5344			tupregs[ttop++].dttk_size = 0;
5345			break;
5346
5347		case DIF_OP_POPTS:
5348			if (ttop != 0)
5349				ttop--;
5350			break;
5351
5352		case DIF_OP_FLUSHTS:
5353			ttop = 0;
5354			break;
5355
5356		case DIF_OP_LDGAA:
5357		case DIF_OP_LDTAA: {
5358			dtrace_dynvar_t *dvar;
5359			dtrace_key_t *key = tupregs;
5360			uint_t nkeys = ttop;
5361
5362			id = DIF_INSTR_VAR(instr);
5363			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5364			id -= DIF_VAR_OTHER_UBASE;
5365
5366			key[nkeys].dttk_value = (uint64_t)id;
5367			key[nkeys++].dttk_size = 0;
5368
5369			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5370				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5371				key[nkeys++].dttk_size = 0;
5372				v = &vstate->dtvs_tlocals[id];
5373			} else {
5374				v = &vstate->dtvs_globals[id]->dtsv_var;
5375			}
5376
5377			dvar = dtrace_dynvar(dstate, nkeys, key,
5378			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5379			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5380			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5381
5382			if (dvar == NULL) {
5383				regs[rd] = 0;
5384				break;
5385			}
5386
5387			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5388				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5389			} else {
5390				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5391			}
5392
5393			break;
5394		}
5395
5396		case DIF_OP_STGAA:
5397		case DIF_OP_STTAA: {
5398			dtrace_dynvar_t *dvar;
5399			dtrace_key_t *key = tupregs;
5400			uint_t nkeys = ttop;
5401
5402			id = DIF_INSTR_VAR(instr);
5403			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5404			id -= DIF_VAR_OTHER_UBASE;
5405
5406			key[nkeys].dttk_value = (uint64_t)id;
5407			key[nkeys++].dttk_size = 0;
5408
5409			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5410				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5411				key[nkeys++].dttk_size = 0;
5412				v = &vstate->dtvs_tlocals[id];
5413			} else {
5414				v = &vstate->dtvs_globals[id]->dtsv_var;
5415			}
5416
5417			dvar = dtrace_dynvar(dstate, nkeys, key,
5418			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5419			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5420			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5421			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5422
5423			if (dvar == NULL)
5424				break;
5425
5426			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5427				if (!dtrace_vcanload(
5428				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5429				    mstate, vstate))
5430					break;
5431
5432				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5433				    dvar->dtdv_data, &v->dtdv_type);
5434			} else {
5435				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5436			}
5437
5438			break;
5439		}
5440
5441		case DIF_OP_ALLOCS: {
5442			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5443			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5444
5445			/*
5446			 * Rounding up the user allocation size could have
5447			 * overflowed large, bogus allocations (like -1ULL) to
5448			 * 0.
5449			 */
5450			if (size < regs[r1] ||
5451			    !DTRACE_INSCRATCH(mstate, size)) {
5452				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5453				regs[rd] = 0;
5454				break;
5455			}
5456
5457			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5458			mstate->dtms_scratch_ptr += size;
5459			regs[rd] = ptr;
5460			break;
5461		}
5462
5463		case DIF_OP_COPYS:
5464			if (!dtrace_canstore(regs[rd], regs[r2],
5465			    mstate, vstate)) {
5466				*flags |= CPU_DTRACE_BADADDR;
5467				*illval = regs[rd];
5468				break;
5469			}
5470
5471			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5472				break;
5473
5474			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5475			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5476			break;
5477
5478		case DIF_OP_STB:
5479			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5480				*flags |= CPU_DTRACE_BADADDR;
5481				*illval = regs[rd];
5482				break;
5483			}
5484			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5485			break;
5486
5487		case DIF_OP_STH:
5488			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5489				*flags |= CPU_DTRACE_BADADDR;
5490				*illval = regs[rd];
5491				break;
5492			}
5493			if (regs[rd] & 1) {
5494				*flags |= CPU_DTRACE_BADALIGN;
5495				*illval = regs[rd];
5496				break;
5497			}
5498			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5499			break;
5500
5501		case DIF_OP_STW:
5502			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5503				*flags |= CPU_DTRACE_BADADDR;
5504				*illval = regs[rd];
5505				break;
5506			}
5507			if (regs[rd] & 3) {
5508				*flags |= CPU_DTRACE_BADALIGN;
5509				*illval = regs[rd];
5510				break;
5511			}
5512			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5513			break;
5514
5515		case DIF_OP_STX:
5516			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5517				*flags |= CPU_DTRACE_BADADDR;
5518				*illval = regs[rd];
5519				break;
5520			}
5521			if (regs[rd] & 7) {
5522				*flags |= CPU_DTRACE_BADALIGN;
5523				*illval = regs[rd];
5524				break;
5525			}
5526			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5527			break;
5528		}
5529	}
5530
5531	if (!(*flags & CPU_DTRACE_FAULT))
5532		return (rval);
5533
5534	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5535	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5536
5537	return (0);
5538}
5539
5540static void
5541dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5542{
5543	dtrace_probe_t *probe = ecb->dte_probe;
5544	dtrace_provider_t *prov = probe->dtpr_provider;
5545	char c[DTRACE_FULLNAMELEN + 80], *str;
5546	char *msg = "dtrace: breakpoint action at probe ";
5547	char *ecbmsg = " (ecb ";
5548	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5549	uintptr_t val = (uintptr_t)ecb;
5550	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5551
5552	if (dtrace_destructive_disallow)
5553		return;
5554
5555	/*
5556	 * It's impossible to be taking action on the NULL probe.
5557	 */
5558	ASSERT(probe != NULL);
5559
5560	/*
5561	 * This is a poor man's (destitute man's?) sprintf():  we want to
5562	 * print the provider name, module name, function name and name of
5563	 * the probe, along with the hex address of the ECB with the breakpoint
5564	 * action -- all of which we must place in the character buffer by
5565	 * hand.
5566	 */
5567	while (*msg != '\0')
5568		c[i++] = *msg++;
5569
5570	for (str = prov->dtpv_name; *str != '\0'; str++)
5571		c[i++] = *str;
5572	c[i++] = ':';
5573
5574	for (str = probe->dtpr_mod; *str != '\0'; str++)
5575		c[i++] = *str;
5576	c[i++] = ':';
5577
5578	for (str = probe->dtpr_func; *str != '\0'; str++)
5579		c[i++] = *str;
5580	c[i++] = ':';
5581
5582	for (str = probe->dtpr_name; *str != '\0'; str++)
5583		c[i++] = *str;
5584
5585	while (*ecbmsg != '\0')
5586		c[i++] = *ecbmsg++;
5587
5588	while (shift >= 0) {
5589		mask = (uintptr_t)0xf << shift;
5590
5591		if (val >= ((uintptr_t)1 << shift))
5592			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5593		shift -= 4;
5594	}
5595
5596	c[i++] = ')';
5597	c[i] = '\0';
5598
5599#if defined(sun)
5600	debug_enter(c);
5601#else
5602	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5603#endif
5604}
5605
5606static void
5607dtrace_action_panic(dtrace_ecb_t *ecb)
5608{
5609	dtrace_probe_t *probe = ecb->dte_probe;
5610
5611	/*
5612	 * It's impossible to be taking action on the NULL probe.
5613	 */
5614	ASSERT(probe != NULL);
5615
5616	if (dtrace_destructive_disallow)
5617		return;
5618
5619	if (dtrace_panicked != NULL)
5620		return;
5621
5622	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5623		return;
5624
5625	/*
5626	 * We won the right to panic.  (We want to be sure that only one
5627	 * thread calls panic() from dtrace_probe(), and that panic() is
5628	 * called exactly once.)
5629	 */
5630	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5631	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5632	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5633}
5634
5635static void
5636dtrace_action_raise(uint64_t sig)
5637{
5638	if (dtrace_destructive_disallow)
5639		return;
5640
5641	if (sig >= NSIG) {
5642		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5643		return;
5644	}
5645
5646#if defined(sun)
5647	/*
5648	 * raise() has a queue depth of 1 -- we ignore all subsequent
5649	 * invocations of the raise() action.
5650	 */
5651	if (curthread->t_dtrace_sig == 0)
5652		curthread->t_dtrace_sig = (uint8_t)sig;
5653
5654	curthread->t_sig_check = 1;
5655	aston(curthread);
5656#else
5657	struct proc *p = curproc;
5658	PROC_LOCK(p);
5659	psignal(p, sig);
5660	PROC_UNLOCK(p);
5661#endif
5662}
5663
5664static void
5665dtrace_action_stop(void)
5666{
5667	if (dtrace_destructive_disallow)
5668		return;
5669
5670#if defined(sun)
5671	if (!curthread->t_dtrace_stop) {
5672		curthread->t_dtrace_stop = 1;
5673		curthread->t_sig_check = 1;
5674		aston(curthread);
5675	}
5676#else
5677	struct proc *p = curproc;
5678	PROC_LOCK(p);
5679	psignal(p, SIGSTOP);
5680	PROC_UNLOCK(p);
5681#endif
5682}
5683
5684static void
5685dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5686{
5687	hrtime_t now;
5688	volatile uint16_t *flags;
5689#if defined(sun)
5690	cpu_t *cpu = CPU;
5691#else
5692	cpu_t *cpu = &solaris_cpu[curcpu];
5693#endif
5694
5695	if (dtrace_destructive_disallow)
5696		return;
5697
5698	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5699
5700	now = dtrace_gethrtime();
5701
5702	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5703		/*
5704		 * We need to advance the mark to the current time.
5705		 */
5706		cpu->cpu_dtrace_chillmark = now;
5707		cpu->cpu_dtrace_chilled = 0;
5708	}
5709
5710	/*
5711	 * Now check to see if the requested chill time would take us over
5712	 * the maximum amount of time allowed in the chill interval.  (Or
5713	 * worse, if the calculation itself induces overflow.)
5714	 */
5715	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5716	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5717		*flags |= CPU_DTRACE_ILLOP;
5718		return;
5719	}
5720
5721	while (dtrace_gethrtime() - now < val)
5722		continue;
5723
5724	/*
5725	 * Normally, we assure that the value of the variable "timestamp" does
5726	 * not change within an ECB.  The presence of chill() represents an
5727	 * exception to this rule, however.
5728	 */
5729	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5730	cpu->cpu_dtrace_chilled += val;
5731}
5732
5733#if defined(sun)
5734static void
5735dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5736    uint64_t *buf, uint64_t arg)
5737{
5738	int nframes = DTRACE_USTACK_NFRAMES(arg);
5739	int strsize = DTRACE_USTACK_STRSIZE(arg);
5740	uint64_t *pcs = &buf[1], *fps;
5741	char *str = (char *)&pcs[nframes];
5742	int size, offs = 0, i, j;
5743	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5744	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5745	char *sym;
5746
5747	/*
5748	 * Should be taking a faster path if string space has not been
5749	 * allocated.
5750	 */
5751	ASSERT(strsize != 0);
5752
5753	/*
5754	 * We will first allocate some temporary space for the frame pointers.
5755	 */
5756	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5757	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5758	    (nframes * sizeof (uint64_t));
5759
5760	if (!DTRACE_INSCRATCH(mstate, size)) {
5761		/*
5762		 * Not enough room for our frame pointers -- need to indicate
5763		 * that we ran out of scratch space.
5764		 */
5765		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5766		return;
5767	}
5768
5769	mstate->dtms_scratch_ptr += size;
5770	saved = mstate->dtms_scratch_ptr;
5771
5772	/*
5773	 * Now get a stack with both program counters and frame pointers.
5774	 */
5775	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5776	dtrace_getufpstack(buf, fps, nframes + 1);
5777	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5778
5779	/*
5780	 * If that faulted, we're cooked.
5781	 */
5782	if (*flags & CPU_DTRACE_FAULT)
5783		goto out;
5784
5785	/*
5786	 * Now we want to walk up the stack, calling the USTACK helper.  For
5787	 * each iteration, we restore the scratch pointer.
5788	 */
5789	for (i = 0; i < nframes; i++) {
5790		mstate->dtms_scratch_ptr = saved;
5791
5792		if (offs >= strsize)
5793			break;
5794
5795		sym = (char *)(uintptr_t)dtrace_helper(
5796		    DTRACE_HELPER_ACTION_USTACK,
5797		    mstate, state, pcs[i], fps[i]);
5798
5799		/*
5800		 * If we faulted while running the helper, we're going to
5801		 * clear the fault and null out the corresponding string.
5802		 */
5803		if (*flags & CPU_DTRACE_FAULT) {
5804			*flags &= ~CPU_DTRACE_FAULT;
5805			str[offs++] = '\0';
5806			continue;
5807		}
5808
5809		if (sym == NULL) {
5810			str[offs++] = '\0';
5811			continue;
5812		}
5813
5814		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5815
5816		/*
5817		 * Now copy in the string that the helper returned to us.
5818		 */
5819		for (j = 0; offs + j < strsize; j++) {
5820			if ((str[offs + j] = sym[j]) == '\0')
5821				break;
5822		}
5823
5824		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5825
5826		offs += j + 1;
5827	}
5828
5829	if (offs >= strsize) {
5830		/*
5831		 * If we didn't have room for all of the strings, we don't
5832		 * abort processing -- this needn't be a fatal error -- but we
5833		 * still want to increment a counter (dts_stkstroverflows) to
5834		 * allow this condition to be warned about.  (If this is from
5835		 * a jstack() action, it is easily tuned via jstackstrsize.)
5836		 */
5837		dtrace_error(&state->dts_stkstroverflows);
5838	}
5839
5840	while (offs < strsize)
5841		str[offs++] = '\0';
5842
5843out:
5844	mstate->dtms_scratch_ptr = old;
5845}
5846#endif
5847
5848/*
5849 * If you're looking for the epicenter of DTrace, you just found it.  This
5850 * is the function called by the provider to fire a probe -- from which all
5851 * subsequent probe-context DTrace activity emanates.
5852 */
5853void
5854dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5855    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5856{
5857	processorid_t cpuid;
5858	dtrace_icookie_t cookie;
5859	dtrace_probe_t *probe;
5860	dtrace_mstate_t mstate;
5861	dtrace_ecb_t *ecb;
5862	dtrace_action_t *act;
5863	intptr_t offs;
5864	size_t size;
5865	int vtime, onintr;
5866	volatile uint16_t *flags;
5867	hrtime_t now;
5868
5869#if defined(sun)
5870	/*
5871	 * Kick out immediately if this CPU is still being born (in which case
5872	 * curthread will be set to -1) or the current thread can't allow
5873	 * probes in its current context.
5874	 */
5875	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5876		return;
5877#endif
5878
5879	cookie = dtrace_interrupt_disable();
5880	probe = dtrace_probes[id - 1];
5881	cpuid = curcpu;
5882	onintr = CPU_ON_INTR(CPU);
5883
5884	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5885	    probe->dtpr_predcache == curthread->t_predcache) {
5886		/*
5887		 * We have hit in the predicate cache; we know that
5888		 * this predicate would evaluate to be false.
5889		 */
5890		dtrace_interrupt_enable(cookie);
5891		return;
5892	}
5893
5894#if defined(sun)
5895	if (panic_quiesce) {
5896#else
5897	if (panicstr != NULL) {
5898#endif
5899		/*
5900		 * We don't trace anything if we're panicking.
5901		 */
5902		dtrace_interrupt_enable(cookie);
5903		return;
5904	}
5905
5906	now = dtrace_gethrtime();
5907	vtime = dtrace_vtime_references != 0;
5908
5909	if (vtime && curthread->t_dtrace_start)
5910		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5911
5912	mstate.dtms_difo = NULL;
5913	mstate.dtms_probe = probe;
5914	mstate.dtms_strtok = 0;
5915	mstate.dtms_arg[0] = arg0;
5916	mstate.dtms_arg[1] = arg1;
5917	mstate.dtms_arg[2] = arg2;
5918	mstate.dtms_arg[3] = arg3;
5919	mstate.dtms_arg[4] = arg4;
5920
5921	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5922
5923	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5924		dtrace_predicate_t *pred = ecb->dte_predicate;
5925		dtrace_state_t *state = ecb->dte_state;
5926		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5927		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5928		dtrace_vstate_t *vstate = &state->dts_vstate;
5929		dtrace_provider_t *prov = probe->dtpr_provider;
5930		int committed = 0;
5931		caddr_t tomax;
5932
5933		/*
5934		 * A little subtlety with the following (seemingly innocuous)
5935		 * declaration of the automatic 'val':  by looking at the
5936		 * code, you might think that it could be declared in the
5937		 * action processing loop, below.  (That is, it's only used in
5938		 * the action processing loop.)  However, it must be declared
5939		 * out of that scope because in the case of DIF expression
5940		 * arguments to aggregating actions, one iteration of the
5941		 * action loop will use the last iteration's value.
5942		 */
5943		uint64_t val = 0;
5944
5945		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5946		*flags &= ~CPU_DTRACE_ERROR;
5947
5948		if (prov == dtrace_provider) {
5949			/*
5950			 * If dtrace itself is the provider of this probe,
5951			 * we're only going to continue processing the ECB if
5952			 * arg0 (the dtrace_state_t) is equal to the ECB's
5953			 * creating state.  (This prevents disjoint consumers
5954			 * from seeing one another's metaprobes.)
5955			 */
5956			if (arg0 != (uint64_t)(uintptr_t)state)
5957				continue;
5958		}
5959
5960		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5961			/*
5962			 * We're not currently active.  If our provider isn't
5963			 * the dtrace pseudo provider, we're not interested.
5964			 */
5965			if (prov != dtrace_provider)
5966				continue;
5967
5968			/*
5969			 * Now we must further check if we are in the BEGIN
5970			 * probe.  If we are, we will only continue processing
5971			 * if we're still in WARMUP -- if one BEGIN enabling
5972			 * has invoked the exit() action, we don't want to
5973			 * evaluate subsequent BEGIN enablings.
5974			 */
5975			if (probe->dtpr_id == dtrace_probeid_begin &&
5976			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5977				ASSERT(state->dts_activity ==
5978				    DTRACE_ACTIVITY_DRAINING);
5979				continue;
5980			}
5981		}
5982
5983		if (ecb->dte_cond) {
5984			/*
5985			 * If the dte_cond bits indicate that this
5986			 * consumer is only allowed to see user-mode firings
5987			 * of this probe, call the provider's dtps_usermode()
5988			 * entry point to check that the probe was fired
5989			 * while in a user context. Skip this ECB if that's
5990			 * not the case.
5991			 */
5992			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5993			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5994			    probe->dtpr_id, probe->dtpr_arg) == 0)
5995				continue;
5996
5997#if defined(sun)
5998			/*
5999			 * This is more subtle than it looks. We have to be
6000			 * absolutely certain that CRED() isn't going to
6001			 * change out from under us so it's only legit to
6002			 * examine that structure if we're in constrained
6003			 * situations. Currently, the only times we'll this
6004			 * check is if a non-super-user has enabled the
6005			 * profile or syscall providers -- providers that
6006			 * allow visibility of all processes. For the
6007			 * profile case, the check above will ensure that
6008			 * we're examining a user context.
6009			 */
6010			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6011				cred_t *cr;
6012				cred_t *s_cr =
6013				    ecb->dte_state->dts_cred.dcr_cred;
6014				proc_t *proc;
6015
6016				ASSERT(s_cr != NULL);
6017
6018				if ((cr = CRED()) == NULL ||
6019				    s_cr->cr_uid != cr->cr_uid ||
6020				    s_cr->cr_uid != cr->cr_ruid ||
6021				    s_cr->cr_uid != cr->cr_suid ||
6022				    s_cr->cr_gid != cr->cr_gid ||
6023				    s_cr->cr_gid != cr->cr_rgid ||
6024				    s_cr->cr_gid != cr->cr_sgid ||
6025				    (proc = ttoproc(curthread)) == NULL ||
6026				    (proc->p_flag & SNOCD))
6027					continue;
6028			}
6029
6030			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6031				cred_t *cr;
6032				cred_t *s_cr =
6033				    ecb->dte_state->dts_cred.dcr_cred;
6034
6035				ASSERT(s_cr != NULL);
6036
6037				if ((cr = CRED()) == NULL ||
6038				    s_cr->cr_zone->zone_id !=
6039				    cr->cr_zone->zone_id)
6040					continue;
6041			}
6042#endif
6043		}
6044
6045		if (now - state->dts_alive > dtrace_deadman_timeout) {
6046			/*
6047			 * We seem to be dead.  Unless we (a) have kernel
6048			 * destructive permissions (b) have expicitly enabled
6049			 * destructive actions and (c) destructive actions have
6050			 * not been disabled, we're going to transition into
6051			 * the KILLED state, from which no further processing
6052			 * on this state will be performed.
6053			 */
6054			if (!dtrace_priv_kernel_destructive(state) ||
6055			    !state->dts_cred.dcr_destructive ||
6056			    dtrace_destructive_disallow) {
6057				void *activity = &state->dts_activity;
6058				dtrace_activity_t current;
6059
6060				do {
6061					current = state->dts_activity;
6062				} while (dtrace_cas32(activity, current,
6063				    DTRACE_ACTIVITY_KILLED) != current);
6064
6065				continue;
6066			}
6067		}
6068
6069		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6070		    ecb->dte_alignment, state, &mstate)) < 0)
6071			continue;
6072
6073		tomax = buf->dtb_tomax;
6074		ASSERT(tomax != NULL);
6075
6076		if (ecb->dte_size != 0)
6077			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6078
6079		mstate.dtms_epid = ecb->dte_epid;
6080		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6081
6082		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6083			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6084		else
6085			mstate.dtms_access = 0;
6086
6087		if (pred != NULL) {
6088			dtrace_difo_t *dp = pred->dtp_difo;
6089			int rval;
6090
6091			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6092
6093			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6094				dtrace_cacheid_t cid = probe->dtpr_predcache;
6095
6096				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6097					/*
6098					 * Update the predicate cache...
6099					 */
6100					ASSERT(cid == pred->dtp_cacheid);
6101					curthread->t_predcache = cid;
6102				}
6103
6104				continue;
6105			}
6106		}
6107
6108		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6109		    act != NULL; act = act->dta_next) {
6110			size_t valoffs;
6111			dtrace_difo_t *dp;
6112			dtrace_recdesc_t *rec = &act->dta_rec;
6113
6114			size = rec->dtrd_size;
6115			valoffs = offs + rec->dtrd_offset;
6116
6117			if (DTRACEACT_ISAGG(act->dta_kind)) {
6118				uint64_t v = 0xbad;
6119				dtrace_aggregation_t *agg;
6120
6121				agg = (dtrace_aggregation_t *)act;
6122
6123				if ((dp = act->dta_difo) != NULL)
6124					v = dtrace_dif_emulate(dp,
6125					    &mstate, vstate, state);
6126
6127				if (*flags & CPU_DTRACE_ERROR)
6128					continue;
6129
6130				/*
6131				 * Note that we always pass the expression
6132				 * value from the previous iteration of the
6133				 * action loop.  This value will only be used
6134				 * if there is an expression argument to the
6135				 * aggregating action, denoted by the
6136				 * dtag_hasarg field.
6137				 */
6138				dtrace_aggregate(agg, buf,
6139				    offs, aggbuf, v, val);
6140				continue;
6141			}
6142
6143			switch (act->dta_kind) {
6144			case DTRACEACT_STOP:
6145				if (dtrace_priv_proc_destructive(state))
6146					dtrace_action_stop();
6147				continue;
6148
6149			case DTRACEACT_BREAKPOINT:
6150				if (dtrace_priv_kernel_destructive(state))
6151					dtrace_action_breakpoint(ecb);
6152				continue;
6153
6154			case DTRACEACT_PANIC:
6155				if (dtrace_priv_kernel_destructive(state))
6156					dtrace_action_panic(ecb);
6157				continue;
6158
6159			case DTRACEACT_STACK:
6160				if (!dtrace_priv_kernel(state))
6161					continue;
6162
6163				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6164				    size / sizeof (pc_t), probe->dtpr_aframes,
6165				    DTRACE_ANCHORED(probe) ? NULL :
6166				    (uint32_t *)arg0);
6167				continue;
6168
6169#if defined(sun)
6170			case DTRACEACT_JSTACK:
6171			case DTRACEACT_USTACK:
6172				if (!dtrace_priv_proc(state))
6173					continue;
6174
6175				/*
6176				 * See comment in DIF_VAR_PID.
6177				 */
6178				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6179				    CPU_ON_INTR(CPU)) {
6180					int depth = DTRACE_USTACK_NFRAMES(
6181					    rec->dtrd_arg) + 1;
6182
6183					dtrace_bzero((void *)(tomax + valoffs),
6184					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6185					    + depth * sizeof (uint64_t));
6186
6187					continue;
6188				}
6189
6190				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6191				    curproc->p_dtrace_helpers != NULL) {
6192					/*
6193					 * This is the slow path -- we have
6194					 * allocated string space, and we're
6195					 * getting the stack of a process that
6196					 * has helpers.  Call into a separate
6197					 * routine to perform this processing.
6198					 */
6199					dtrace_action_ustack(&mstate, state,
6200					    (uint64_t *)(tomax + valoffs),
6201					    rec->dtrd_arg);
6202					continue;
6203				}
6204
6205				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6206				dtrace_getupcstack((uint64_t *)
6207				    (tomax + valoffs),
6208				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6209				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6210				continue;
6211#endif
6212
6213			default:
6214				break;
6215			}
6216
6217			dp = act->dta_difo;
6218			ASSERT(dp != NULL);
6219
6220			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6221
6222			if (*flags & CPU_DTRACE_ERROR)
6223				continue;
6224
6225			switch (act->dta_kind) {
6226			case DTRACEACT_SPECULATE:
6227				ASSERT(buf == &state->dts_buffer[cpuid]);
6228				buf = dtrace_speculation_buffer(state,
6229				    cpuid, val);
6230
6231				if (buf == NULL) {
6232					*flags |= CPU_DTRACE_DROP;
6233					continue;
6234				}
6235
6236				offs = dtrace_buffer_reserve(buf,
6237				    ecb->dte_needed, ecb->dte_alignment,
6238				    state, NULL);
6239
6240				if (offs < 0) {
6241					*flags |= CPU_DTRACE_DROP;
6242					continue;
6243				}
6244
6245				tomax = buf->dtb_tomax;
6246				ASSERT(tomax != NULL);
6247
6248				if (ecb->dte_size != 0)
6249					DTRACE_STORE(uint32_t, tomax, offs,
6250					    ecb->dte_epid);
6251				continue;
6252
6253			case DTRACEACT_PRINTM: {
6254				/* The DIF returns a 'memref'. */
6255				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6256
6257				/* Get the size from the memref. */
6258				size = memref[1];
6259
6260				/*
6261				 * Check if the size exceeds the allocated
6262				 * buffer size.
6263				 */
6264				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6265					/* Flag a drop! */
6266					*flags |= CPU_DTRACE_DROP;
6267					continue;
6268				}
6269
6270				/* Store the size in the buffer first. */
6271				DTRACE_STORE(uintptr_t, tomax,
6272				    valoffs, size);
6273
6274				/*
6275				 * Offset the buffer address to the start
6276				 * of the data.
6277				 */
6278				valoffs += sizeof(uintptr_t);
6279
6280				/*
6281				 * Reset to the memory address rather than
6282				 * the memref array, then let the BYREF
6283				 * code below do the work to store the
6284				 * memory data in the buffer.
6285				 */
6286				val = memref[0];
6287				break;
6288			}
6289
6290			case DTRACEACT_PRINTT: {
6291				/* The DIF returns a 'typeref'. */
6292				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6293				char c = '\0' + 1;
6294				size_t s;
6295
6296				/*
6297				 * Get the type string length and round it
6298				 * up so that the data that follows is
6299				 * aligned for easy access.
6300				 */
6301				size_t typs = strlen((char *) typeref[2]) + 1;
6302				typs = roundup(typs,  sizeof(uintptr_t));
6303
6304				/*
6305				 *Get the size from the typeref using the
6306				 * number of elements and the type size.
6307				 */
6308				size = typeref[1] * typeref[3];
6309
6310				/*
6311				 * Check if the size exceeds the allocated
6312				 * buffer size.
6313				 */
6314				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6315					/* Flag a drop! */
6316					*flags |= CPU_DTRACE_DROP;
6317
6318				}
6319
6320				/* Store the size in the buffer first. */
6321				DTRACE_STORE(uintptr_t, tomax,
6322				    valoffs, size);
6323				valoffs += sizeof(uintptr_t);
6324
6325				/* Store the type size in the buffer. */
6326				DTRACE_STORE(uintptr_t, tomax,
6327				    valoffs, typeref[3]);
6328				valoffs += sizeof(uintptr_t);
6329
6330				val = typeref[2];
6331
6332				for (s = 0; s < typs; s++) {
6333					if (c != '\0')
6334						c = dtrace_load8(val++);
6335
6336					DTRACE_STORE(uint8_t, tomax,
6337					    valoffs++, c);
6338				}
6339
6340				/*
6341				 * Reset to the memory address rather than
6342				 * the typeref array, then let the BYREF
6343				 * code below do the work to store the
6344				 * memory data in the buffer.
6345				 */
6346				val = typeref[0];
6347				break;
6348			}
6349
6350			case DTRACEACT_CHILL:
6351				if (dtrace_priv_kernel_destructive(state))
6352					dtrace_action_chill(&mstate, val);
6353				continue;
6354
6355			case DTRACEACT_RAISE:
6356				if (dtrace_priv_proc_destructive(state))
6357					dtrace_action_raise(val);
6358				continue;
6359
6360			case DTRACEACT_COMMIT:
6361				ASSERT(!committed);
6362
6363				/*
6364				 * We need to commit our buffer state.
6365				 */
6366				if (ecb->dte_size)
6367					buf->dtb_offset = offs + ecb->dte_size;
6368				buf = &state->dts_buffer[cpuid];
6369				dtrace_speculation_commit(state, cpuid, val);
6370				committed = 1;
6371				continue;
6372
6373			case DTRACEACT_DISCARD:
6374				dtrace_speculation_discard(state, cpuid, val);
6375				continue;
6376
6377			case DTRACEACT_DIFEXPR:
6378			case DTRACEACT_LIBACT:
6379			case DTRACEACT_PRINTF:
6380			case DTRACEACT_PRINTA:
6381			case DTRACEACT_SYSTEM:
6382			case DTRACEACT_FREOPEN:
6383				break;
6384
6385			case DTRACEACT_SYM:
6386			case DTRACEACT_MOD:
6387				if (!dtrace_priv_kernel(state))
6388					continue;
6389				break;
6390
6391			case DTRACEACT_USYM:
6392			case DTRACEACT_UMOD:
6393			case DTRACEACT_UADDR: {
6394#if defined(sun)
6395				struct pid *pid = curthread->t_procp->p_pidp;
6396#endif
6397
6398				if (!dtrace_priv_proc(state))
6399					continue;
6400
6401				DTRACE_STORE(uint64_t, tomax,
6402#if defined(sun)
6403				    valoffs, (uint64_t)pid->pid_id);
6404#else
6405				    valoffs, (uint64_t) curproc->p_pid);
6406#endif
6407				DTRACE_STORE(uint64_t, tomax,
6408				    valoffs + sizeof (uint64_t), val);
6409
6410				continue;
6411			}
6412
6413			case DTRACEACT_EXIT: {
6414				/*
6415				 * For the exit action, we are going to attempt
6416				 * to atomically set our activity to be
6417				 * draining.  If this fails (either because
6418				 * another CPU has beat us to the exit action,
6419				 * or because our current activity is something
6420				 * other than ACTIVE or WARMUP), we will
6421				 * continue.  This assures that the exit action
6422				 * can be successfully recorded at most once
6423				 * when we're in the ACTIVE state.  If we're
6424				 * encountering the exit() action while in
6425				 * COOLDOWN, however, we want to honor the new
6426				 * status code.  (We know that we're the only
6427				 * thread in COOLDOWN, so there is no race.)
6428				 */
6429				void *activity = &state->dts_activity;
6430				dtrace_activity_t current = state->dts_activity;
6431
6432				if (current == DTRACE_ACTIVITY_COOLDOWN)
6433					break;
6434
6435				if (current != DTRACE_ACTIVITY_WARMUP)
6436					current = DTRACE_ACTIVITY_ACTIVE;
6437
6438				if (dtrace_cas32(activity, current,
6439				    DTRACE_ACTIVITY_DRAINING) != current) {
6440					*flags |= CPU_DTRACE_DROP;
6441					continue;
6442				}
6443
6444				break;
6445			}
6446
6447			default:
6448				ASSERT(0);
6449			}
6450
6451			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6452				uintptr_t end = valoffs + size;
6453
6454				if (!dtrace_vcanload((void *)(uintptr_t)val,
6455				    &dp->dtdo_rtype, &mstate, vstate))
6456					continue;
6457
6458				/*
6459				 * If this is a string, we're going to only
6460				 * load until we find the zero byte -- after
6461				 * which we'll store zero bytes.
6462				 */
6463				if (dp->dtdo_rtype.dtdt_kind ==
6464				    DIF_TYPE_STRING) {
6465					char c = '\0' + 1;
6466					int intuple = act->dta_intuple;
6467					size_t s;
6468
6469					for (s = 0; s < size; s++) {
6470						if (c != '\0')
6471							c = dtrace_load8(val++);
6472
6473						DTRACE_STORE(uint8_t, tomax,
6474						    valoffs++, c);
6475
6476						if (c == '\0' && intuple)
6477							break;
6478					}
6479
6480					continue;
6481				}
6482
6483				while (valoffs < end) {
6484					DTRACE_STORE(uint8_t, tomax, valoffs++,
6485					    dtrace_load8(val++));
6486				}
6487
6488				continue;
6489			}
6490
6491			switch (size) {
6492			case 0:
6493				break;
6494
6495			case sizeof (uint8_t):
6496				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6497				break;
6498			case sizeof (uint16_t):
6499				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6500				break;
6501			case sizeof (uint32_t):
6502				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6503				break;
6504			case sizeof (uint64_t):
6505				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6506				break;
6507			default:
6508				/*
6509				 * Any other size should have been returned by
6510				 * reference, not by value.
6511				 */
6512				ASSERT(0);
6513				break;
6514			}
6515		}
6516
6517		if (*flags & CPU_DTRACE_DROP)
6518			continue;
6519
6520		if (*flags & CPU_DTRACE_FAULT) {
6521			int ndx;
6522			dtrace_action_t *err;
6523
6524			buf->dtb_errors++;
6525
6526			if (probe->dtpr_id == dtrace_probeid_error) {
6527				/*
6528				 * There's nothing we can do -- we had an
6529				 * error on the error probe.  We bump an
6530				 * error counter to at least indicate that
6531				 * this condition happened.
6532				 */
6533				dtrace_error(&state->dts_dblerrors);
6534				continue;
6535			}
6536
6537			if (vtime) {
6538				/*
6539				 * Before recursing on dtrace_probe(), we
6540				 * need to explicitly clear out our start
6541				 * time to prevent it from being accumulated
6542				 * into t_dtrace_vtime.
6543				 */
6544				curthread->t_dtrace_start = 0;
6545			}
6546
6547			/*
6548			 * Iterate over the actions to figure out which action
6549			 * we were processing when we experienced the error.
6550			 * Note that act points _past_ the faulting action; if
6551			 * act is ecb->dte_action, the fault was in the
6552			 * predicate, if it's ecb->dte_action->dta_next it's
6553			 * in action #1, and so on.
6554			 */
6555			for (err = ecb->dte_action, ndx = 0;
6556			    err != act; err = err->dta_next, ndx++)
6557				continue;
6558
6559			dtrace_probe_error(state, ecb->dte_epid, ndx,
6560			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6561			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6562			    cpu_core[cpuid].cpuc_dtrace_illval);
6563
6564			continue;
6565		}
6566
6567		if (!committed)
6568			buf->dtb_offset = offs + ecb->dte_size;
6569	}
6570
6571	if (vtime)
6572		curthread->t_dtrace_start = dtrace_gethrtime();
6573
6574	dtrace_interrupt_enable(cookie);
6575}
6576
6577/*
6578 * DTrace Probe Hashing Functions
6579 *
6580 * The functions in this section (and indeed, the functions in remaining
6581 * sections) are not _called_ from probe context.  (Any exceptions to this are
6582 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6583 * DTrace framework to look-up probes in, add probes to and remove probes from
6584 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6585 * probe tuple -- allowing for fast lookups, regardless of what was
6586 * specified.)
6587 */
6588static uint_t
6589dtrace_hash_str(const char *p)
6590{
6591	unsigned int g;
6592	uint_t hval = 0;
6593
6594	while (*p) {
6595		hval = (hval << 4) + *p++;
6596		if ((g = (hval & 0xf0000000)) != 0)
6597			hval ^= g >> 24;
6598		hval &= ~g;
6599	}
6600	return (hval);
6601}
6602
6603static dtrace_hash_t *
6604dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6605{
6606	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6607
6608	hash->dth_stroffs = stroffs;
6609	hash->dth_nextoffs = nextoffs;
6610	hash->dth_prevoffs = prevoffs;
6611
6612	hash->dth_size = 1;
6613	hash->dth_mask = hash->dth_size - 1;
6614
6615	hash->dth_tab = kmem_zalloc(hash->dth_size *
6616	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6617
6618	return (hash);
6619}
6620
6621static void
6622dtrace_hash_destroy(dtrace_hash_t *hash)
6623{
6624#ifdef DEBUG
6625	int i;
6626
6627	for (i = 0; i < hash->dth_size; i++)
6628		ASSERT(hash->dth_tab[i] == NULL);
6629#endif
6630
6631	kmem_free(hash->dth_tab,
6632	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6633	kmem_free(hash, sizeof (dtrace_hash_t));
6634}
6635
6636static void
6637dtrace_hash_resize(dtrace_hash_t *hash)
6638{
6639	int size = hash->dth_size, i, ndx;
6640	int new_size = hash->dth_size << 1;
6641	int new_mask = new_size - 1;
6642	dtrace_hashbucket_t **new_tab, *bucket, *next;
6643
6644	ASSERT((new_size & new_mask) == 0);
6645
6646	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6647
6648	for (i = 0; i < size; i++) {
6649		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6650			dtrace_probe_t *probe = bucket->dthb_chain;
6651
6652			ASSERT(probe != NULL);
6653			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6654
6655			next = bucket->dthb_next;
6656			bucket->dthb_next = new_tab[ndx];
6657			new_tab[ndx] = bucket;
6658		}
6659	}
6660
6661	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6662	hash->dth_tab = new_tab;
6663	hash->dth_size = new_size;
6664	hash->dth_mask = new_mask;
6665}
6666
6667static void
6668dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6669{
6670	int hashval = DTRACE_HASHSTR(hash, new);
6671	int ndx = hashval & hash->dth_mask;
6672	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6673	dtrace_probe_t **nextp, **prevp;
6674
6675	for (; bucket != NULL; bucket = bucket->dthb_next) {
6676		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6677			goto add;
6678	}
6679
6680	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6681		dtrace_hash_resize(hash);
6682		dtrace_hash_add(hash, new);
6683		return;
6684	}
6685
6686	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6687	bucket->dthb_next = hash->dth_tab[ndx];
6688	hash->dth_tab[ndx] = bucket;
6689	hash->dth_nbuckets++;
6690
6691add:
6692	nextp = DTRACE_HASHNEXT(hash, new);
6693	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6694	*nextp = bucket->dthb_chain;
6695
6696	if (bucket->dthb_chain != NULL) {
6697		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6698		ASSERT(*prevp == NULL);
6699		*prevp = new;
6700	}
6701
6702	bucket->dthb_chain = new;
6703	bucket->dthb_len++;
6704}
6705
6706static dtrace_probe_t *
6707dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6708{
6709	int hashval = DTRACE_HASHSTR(hash, template);
6710	int ndx = hashval & hash->dth_mask;
6711	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6712
6713	for (; bucket != NULL; bucket = bucket->dthb_next) {
6714		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6715			return (bucket->dthb_chain);
6716	}
6717
6718	return (NULL);
6719}
6720
6721static int
6722dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6723{
6724	int hashval = DTRACE_HASHSTR(hash, template);
6725	int ndx = hashval & hash->dth_mask;
6726	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6727
6728	for (; bucket != NULL; bucket = bucket->dthb_next) {
6729		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6730			return (bucket->dthb_len);
6731	}
6732
6733	return (0);
6734}
6735
6736static void
6737dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6738{
6739	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6740	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6741
6742	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6743	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6744
6745	/*
6746	 * Find the bucket that we're removing this probe from.
6747	 */
6748	for (; bucket != NULL; bucket = bucket->dthb_next) {
6749		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6750			break;
6751	}
6752
6753	ASSERT(bucket != NULL);
6754
6755	if (*prevp == NULL) {
6756		if (*nextp == NULL) {
6757			/*
6758			 * The removed probe was the only probe on this
6759			 * bucket; we need to remove the bucket.
6760			 */
6761			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6762
6763			ASSERT(bucket->dthb_chain == probe);
6764			ASSERT(b != NULL);
6765
6766			if (b == bucket) {
6767				hash->dth_tab[ndx] = bucket->dthb_next;
6768			} else {
6769				while (b->dthb_next != bucket)
6770					b = b->dthb_next;
6771				b->dthb_next = bucket->dthb_next;
6772			}
6773
6774			ASSERT(hash->dth_nbuckets > 0);
6775			hash->dth_nbuckets--;
6776			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6777			return;
6778		}
6779
6780		bucket->dthb_chain = *nextp;
6781	} else {
6782		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6783	}
6784
6785	if (*nextp != NULL)
6786		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6787}
6788
6789/*
6790 * DTrace Utility Functions
6791 *
6792 * These are random utility functions that are _not_ called from probe context.
6793 */
6794static int
6795dtrace_badattr(const dtrace_attribute_t *a)
6796{
6797	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6798	    a->dtat_data > DTRACE_STABILITY_MAX ||
6799	    a->dtat_class > DTRACE_CLASS_MAX);
6800}
6801
6802/*
6803 * Return a duplicate copy of a string.  If the specified string is NULL,
6804 * this function returns a zero-length string.
6805 */
6806static char *
6807dtrace_strdup(const char *str)
6808{
6809	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6810
6811	if (str != NULL)
6812		(void) strcpy(new, str);
6813
6814	return (new);
6815}
6816
6817#define	DTRACE_ISALPHA(c)	\
6818	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6819
6820static int
6821dtrace_badname(const char *s)
6822{
6823	char c;
6824
6825	if (s == NULL || (c = *s++) == '\0')
6826		return (0);
6827
6828	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6829		return (1);
6830
6831	while ((c = *s++) != '\0') {
6832		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6833		    c != '-' && c != '_' && c != '.' && c != '`')
6834			return (1);
6835	}
6836
6837	return (0);
6838}
6839
6840static void
6841dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6842{
6843	uint32_t priv;
6844
6845#if defined(sun)
6846	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6847		/*
6848		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6849		 */
6850		priv = DTRACE_PRIV_ALL;
6851	} else {
6852		*uidp = crgetuid(cr);
6853		*zoneidp = crgetzoneid(cr);
6854
6855		priv = 0;
6856		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6857			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6858		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6859			priv |= DTRACE_PRIV_USER;
6860		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6861			priv |= DTRACE_PRIV_PROC;
6862		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6863			priv |= DTRACE_PRIV_OWNER;
6864		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6865			priv |= DTRACE_PRIV_ZONEOWNER;
6866	}
6867#else
6868	priv = DTRACE_PRIV_ALL;
6869#endif
6870
6871	*privp = priv;
6872}
6873
6874#ifdef DTRACE_ERRDEBUG
6875static void
6876dtrace_errdebug(const char *str)
6877{
6878	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6879	int occupied = 0;
6880
6881	mutex_enter(&dtrace_errlock);
6882	dtrace_errlast = str;
6883	dtrace_errthread = curthread;
6884
6885	while (occupied++ < DTRACE_ERRHASHSZ) {
6886		if (dtrace_errhash[hval].dter_msg == str) {
6887			dtrace_errhash[hval].dter_count++;
6888			goto out;
6889		}
6890
6891		if (dtrace_errhash[hval].dter_msg != NULL) {
6892			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6893			continue;
6894		}
6895
6896		dtrace_errhash[hval].dter_msg = str;
6897		dtrace_errhash[hval].dter_count = 1;
6898		goto out;
6899	}
6900
6901	panic("dtrace: undersized error hash");
6902out:
6903	mutex_exit(&dtrace_errlock);
6904}
6905#endif
6906
6907/*
6908 * DTrace Matching Functions
6909 *
6910 * These functions are used to match groups of probes, given some elements of
6911 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6912 */
6913static int
6914dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6915    zoneid_t zoneid)
6916{
6917	if (priv != DTRACE_PRIV_ALL) {
6918		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6919		uint32_t match = priv & ppriv;
6920
6921		/*
6922		 * No PRIV_DTRACE_* privileges...
6923		 */
6924		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6925		    DTRACE_PRIV_KERNEL)) == 0)
6926			return (0);
6927
6928		/*
6929		 * No matching bits, but there were bits to match...
6930		 */
6931		if (match == 0 && ppriv != 0)
6932			return (0);
6933
6934		/*
6935		 * Need to have permissions to the process, but don't...
6936		 */
6937		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6938		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6939			return (0);
6940		}
6941
6942		/*
6943		 * Need to be in the same zone unless we possess the
6944		 * privilege to examine all zones.
6945		 */
6946		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6947		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6948			return (0);
6949		}
6950	}
6951
6952	return (1);
6953}
6954
6955/*
6956 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6957 * consists of input pattern strings and an ops-vector to evaluate them.
6958 * This function returns >0 for match, 0 for no match, and <0 for error.
6959 */
6960static int
6961dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6962    uint32_t priv, uid_t uid, zoneid_t zoneid)
6963{
6964	dtrace_provider_t *pvp = prp->dtpr_provider;
6965	int rv;
6966
6967	if (pvp->dtpv_defunct)
6968		return (0);
6969
6970	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6971		return (rv);
6972
6973	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6974		return (rv);
6975
6976	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6977		return (rv);
6978
6979	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6980		return (rv);
6981
6982	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6983		return (0);
6984
6985	return (rv);
6986}
6987
6988/*
6989 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6990 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6991 * libc's version, the kernel version only applies to 8-bit ASCII strings.
6992 * In addition, all of the recursion cases except for '*' matching have been
6993 * unwound.  For '*', we still implement recursive evaluation, but a depth
6994 * counter is maintained and matching is aborted if we recurse too deep.
6995 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6996 */
6997static int
6998dtrace_match_glob(const char *s, const char *p, int depth)
6999{
7000	const char *olds;
7001	char s1, c;
7002	int gs;
7003
7004	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7005		return (-1);
7006
7007	if (s == NULL)
7008		s = ""; /* treat NULL as empty string */
7009
7010top:
7011	olds = s;
7012	s1 = *s++;
7013
7014	if (p == NULL)
7015		return (0);
7016
7017	if ((c = *p++) == '\0')
7018		return (s1 == '\0');
7019
7020	switch (c) {
7021	case '[': {
7022		int ok = 0, notflag = 0;
7023		char lc = '\0';
7024
7025		if (s1 == '\0')
7026			return (0);
7027
7028		if (*p == '!') {
7029			notflag = 1;
7030			p++;
7031		}
7032
7033		if ((c = *p++) == '\0')
7034			return (0);
7035
7036		do {
7037			if (c == '-' && lc != '\0' && *p != ']') {
7038				if ((c = *p++) == '\0')
7039					return (0);
7040				if (c == '\\' && (c = *p++) == '\0')
7041					return (0);
7042
7043				if (notflag) {
7044					if (s1 < lc || s1 > c)
7045						ok++;
7046					else
7047						return (0);
7048				} else if (lc <= s1 && s1 <= c)
7049					ok++;
7050
7051			} else if (c == '\\' && (c = *p++) == '\0')
7052				return (0);
7053
7054			lc = c; /* save left-hand 'c' for next iteration */
7055
7056			if (notflag) {
7057				if (s1 != c)
7058					ok++;
7059				else
7060					return (0);
7061			} else if (s1 == c)
7062				ok++;
7063
7064			if ((c = *p++) == '\0')
7065				return (0);
7066
7067		} while (c != ']');
7068
7069		if (ok)
7070			goto top;
7071
7072		return (0);
7073	}
7074
7075	case '\\':
7076		if ((c = *p++) == '\0')
7077			return (0);
7078		/*FALLTHRU*/
7079
7080	default:
7081		if (c != s1)
7082			return (0);
7083		/*FALLTHRU*/
7084
7085	case '?':
7086		if (s1 != '\0')
7087			goto top;
7088		return (0);
7089
7090	case '*':
7091		while (*p == '*')
7092			p++; /* consecutive *'s are identical to a single one */
7093
7094		if (*p == '\0')
7095			return (1);
7096
7097		for (s = olds; *s != '\0'; s++) {
7098			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7099				return (gs);
7100		}
7101
7102		return (0);
7103	}
7104}
7105
7106/*ARGSUSED*/
7107static int
7108dtrace_match_string(const char *s, const char *p, int depth)
7109{
7110	return (s != NULL && strcmp(s, p) == 0);
7111}
7112
7113/*ARGSUSED*/
7114static int
7115dtrace_match_nul(const char *s, const char *p, int depth)
7116{
7117	return (1); /* always match the empty pattern */
7118}
7119
7120/*ARGSUSED*/
7121static int
7122dtrace_match_nonzero(const char *s, const char *p, int depth)
7123{
7124	return (s != NULL && s[0] != '\0');
7125}
7126
7127static int
7128dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7129    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7130{
7131	dtrace_probe_t template, *probe;
7132	dtrace_hash_t *hash = NULL;
7133	int len, best = INT_MAX, nmatched = 0;
7134	dtrace_id_t i;
7135
7136	ASSERT(MUTEX_HELD(&dtrace_lock));
7137
7138	/*
7139	 * If the probe ID is specified in the key, just lookup by ID and
7140	 * invoke the match callback once if a matching probe is found.
7141	 */
7142	if (pkp->dtpk_id != DTRACE_IDNONE) {
7143		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7144		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7145			(void) (*matched)(probe, arg);
7146			nmatched++;
7147		}
7148		return (nmatched);
7149	}
7150
7151	template.dtpr_mod = (char *)pkp->dtpk_mod;
7152	template.dtpr_func = (char *)pkp->dtpk_func;
7153	template.dtpr_name = (char *)pkp->dtpk_name;
7154
7155	/*
7156	 * We want to find the most distinct of the module name, function
7157	 * name, and name.  So for each one that is not a glob pattern or
7158	 * empty string, we perform a lookup in the corresponding hash and
7159	 * use the hash table with the fewest collisions to do our search.
7160	 */
7161	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7162	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7163		best = len;
7164		hash = dtrace_bymod;
7165	}
7166
7167	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7168	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7169		best = len;
7170		hash = dtrace_byfunc;
7171	}
7172
7173	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7174	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7175		best = len;
7176		hash = dtrace_byname;
7177	}
7178
7179	/*
7180	 * If we did not select a hash table, iterate over every probe and
7181	 * invoke our callback for each one that matches our input probe key.
7182	 */
7183	if (hash == NULL) {
7184		for (i = 0; i < dtrace_nprobes; i++) {
7185			if ((probe = dtrace_probes[i]) == NULL ||
7186			    dtrace_match_probe(probe, pkp, priv, uid,
7187			    zoneid) <= 0)
7188				continue;
7189
7190			nmatched++;
7191
7192			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7193				break;
7194		}
7195
7196		return (nmatched);
7197	}
7198
7199	/*
7200	 * If we selected a hash table, iterate over each probe of the same key
7201	 * name and invoke the callback for every probe that matches the other
7202	 * attributes of our input probe key.
7203	 */
7204	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7205	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7206
7207		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7208			continue;
7209
7210		nmatched++;
7211
7212		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7213			break;
7214	}
7215
7216	return (nmatched);
7217}
7218
7219/*
7220 * Return the function pointer dtrace_probecmp() should use to compare the
7221 * specified pattern with a string.  For NULL or empty patterns, we select
7222 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7223 * For non-empty non-glob strings, we use dtrace_match_string().
7224 */
7225static dtrace_probekey_f *
7226dtrace_probekey_func(const char *p)
7227{
7228	char c;
7229
7230	if (p == NULL || *p == '\0')
7231		return (&dtrace_match_nul);
7232
7233	while ((c = *p++) != '\0') {
7234		if (c == '[' || c == '?' || c == '*' || c == '\\')
7235			return (&dtrace_match_glob);
7236	}
7237
7238	return (&dtrace_match_string);
7239}
7240
7241/*
7242 * Build a probe comparison key for use with dtrace_match_probe() from the
7243 * given probe description.  By convention, a null key only matches anchored
7244 * probes: if each field is the empty string, reset dtpk_fmatch to
7245 * dtrace_match_nonzero().
7246 */
7247static void
7248dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7249{
7250	pkp->dtpk_prov = pdp->dtpd_provider;
7251	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7252
7253	pkp->dtpk_mod = pdp->dtpd_mod;
7254	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7255
7256	pkp->dtpk_func = pdp->dtpd_func;
7257	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7258
7259	pkp->dtpk_name = pdp->dtpd_name;
7260	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7261
7262	pkp->dtpk_id = pdp->dtpd_id;
7263
7264	if (pkp->dtpk_id == DTRACE_IDNONE &&
7265	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7266	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7267	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7268	    pkp->dtpk_nmatch == &dtrace_match_nul)
7269		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7270}
7271
7272/*
7273 * DTrace Provider-to-Framework API Functions
7274 *
7275 * These functions implement much of the Provider-to-Framework API, as
7276 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7277 * the functions in the API for probe management (found below), and
7278 * dtrace_probe() itself (found above).
7279 */
7280
7281/*
7282 * Register the calling provider with the DTrace framework.  This should
7283 * generally be called by DTrace providers in their attach(9E) entry point.
7284 */
7285int
7286dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7287    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7288{
7289	dtrace_provider_t *provider;
7290
7291	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7292		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7293		    "arguments", name ? name : "<NULL>");
7294		return (EINVAL);
7295	}
7296
7297	if (name[0] == '\0' || dtrace_badname(name)) {
7298		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7299		    "provider name", name);
7300		return (EINVAL);
7301	}
7302
7303	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7304	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7305	    pops->dtps_destroy == NULL ||
7306	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7307		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7308		    "provider ops", name);
7309		return (EINVAL);
7310	}
7311
7312	if (dtrace_badattr(&pap->dtpa_provider) ||
7313	    dtrace_badattr(&pap->dtpa_mod) ||
7314	    dtrace_badattr(&pap->dtpa_func) ||
7315	    dtrace_badattr(&pap->dtpa_name) ||
7316	    dtrace_badattr(&pap->dtpa_args)) {
7317		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7318		    "provider attributes", name);
7319		return (EINVAL);
7320	}
7321
7322	if (priv & ~DTRACE_PRIV_ALL) {
7323		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7324		    "privilege attributes", name);
7325		return (EINVAL);
7326	}
7327
7328	if ((priv & DTRACE_PRIV_KERNEL) &&
7329	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7330	    pops->dtps_usermode == NULL) {
7331		cmn_err(CE_WARN, "failed to register provider '%s': need "
7332		    "dtps_usermode() op for given privilege attributes", name);
7333		return (EINVAL);
7334	}
7335
7336	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7337	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7338	(void) strcpy(provider->dtpv_name, name);
7339
7340	provider->dtpv_attr = *pap;
7341	provider->dtpv_priv.dtpp_flags = priv;
7342	if (cr != NULL) {
7343		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7344		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7345	}
7346	provider->dtpv_pops = *pops;
7347
7348	if (pops->dtps_provide == NULL) {
7349		ASSERT(pops->dtps_provide_module != NULL);
7350		provider->dtpv_pops.dtps_provide =
7351		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7352	}
7353
7354	if (pops->dtps_provide_module == NULL) {
7355		ASSERT(pops->dtps_provide != NULL);
7356		provider->dtpv_pops.dtps_provide_module =
7357		    (void (*)(void *, modctl_t *))dtrace_nullop;
7358	}
7359
7360	if (pops->dtps_suspend == NULL) {
7361		ASSERT(pops->dtps_resume == NULL);
7362		provider->dtpv_pops.dtps_suspend =
7363		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7364		provider->dtpv_pops.dtps_resume =
7365		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7366	}
7367
7368	provider->dtpv_arg = arg;
7369	*idp = (dtrace_provider_id_t)provider;
7370
7371	if (pops == &dtrace_provider_ops) {
7372		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7373		ASSERT(MUTEX_HELD(&dtrace_lock));
7374		ASSERT(dtrace_anon.dta_enabling == NULL);
7375
7376		/*
7377		 * We make sure that the DTrace provider is at the head of
7378		 * the provider chain.
7379		 */
7380		provider->dtpv_next = dtrace_provider;
7381		dtrace_provider = provider;
7382		return (0);
7383	}
7384
7385	mutex_enter(&dtrace_provider_lock);
7386	mutex_enter(&dtrace_lock);
7387
7388	/*
7389	 * If there is at least one provider registered, we'll add this
7390	 * provider after the first provider.
7391	 */
7392	if (dtrace_provider != NULL) {
7393		provider->dtpv_next = dtrace_provider->dtpv_next;
7394		dtrace_provider->dtpv_next = provider;
7395	} else {
7396		dtrace_provider = provider;
7397	}
7398
7399	if (dtrace_retained != NULL) {
7400		dtrace_enabling_provide(provider);
7401
7402		/*
7403		 * Now we need to call dtrace_enabling_matchall() -- which
7404		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7405		 * to drop all of our locks before calling into it...
7406		 */
7407		mutex_exit(&dtrace_lock);
7408		mutex_exit(&dtrace_provider_lock);
7409		dtrace_enabling_matchall();
7410
7411		return (0);
7412	}
7413
7414	mutex_exit(&dtrace_lock);
7415	mutex_exit(&dtrace_provider_lock);
7416
7417	return (0);
7418}
7419
7420/*
7421 * Unregister the specified provider from the DTrace framework.  This should
7422 * generally be called by DTrace providers in their detach(9E) entry point.
7423 */
7424int
7425dtrace_unregister(dtrace_provider_id_t id)
7426{
7427	dtrace_provider_t *old = (dtrace_provider_t *)id;
7428	dtrace_provider_t *prev = NULL;
7429	int i, self = 0;
7430	dtrace_probe_t *probe, *first = NULL;
7431
7432	if (old->dtpv_pops.dtps_enable ==
7433	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7434		/*
7435		 * If DTrace itself is the provider, we're called with locks
7436		 * already held.
7437		 */
7438		ASSERT(old == dtrace_provider);
7439#if defined(sun)
7440		ASSERT(dtrace_devi != NULL);
7441#endif
7442		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7443		ASSERT(MUTEX_HELD(&dtrace_lock));
7444		self = 1;
7445
7446		if (dtrace_provider->dtpv_next != NULL) {
7447			/*
7448			 * There's another provider here; return failure.
7449			 */
7450			return (EBUSY);
7451		}
7452	} else {
7453		mutex_enter(&dtrace_provider_lock);
7454		mutex_enter(&mod_lock);
7455		mutex_enter(&dtrace_lock);
7456	}
7457
7458	/*
7459	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7460	 * probes, we refuse to let providers slither away, unless this
7461	 * provider has already been explicitly invalidated.
7462	 */
7463	if (!old->dtpv_defunct &&
7464	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7465	    dtrace_anon.dta_state->dts_necbs > 0))) {
7466		if (!self) {
7467			mutex_exit(&dtrace_lock);
7468			mutex_exit(&mod_lock);
7469			mutex_exit(&dtrace_provider_lock);
7470		}
7471		return (EBUSY);
7472	}
7473
7474	/*
7475	 * Attempt to destroy the probes associated with this provider.
7476	 */
7477	for (i = 0; i < dtrace_nprobes; i++) {
7478		if ((probe = dtrace_probes[i]) == NULL)
7479			continue;
7480
7481		if (probe->dtpr_provider != old)
7482			continue;
7483
7484		if (probe->dtpr_ecb == NULL)
7485			continue;
7486
7487		/*
7488		 * We have at least one ECB; we can't remove this provider.
7489		 */
7490		if (!self) {
7491			mutex_exit(&dtrace_lock);
7492			mutex_exit(&mod_lock);
7493			mutex_exit(&dtrace_provider_lock);
7494		}
7495		return (EBUSY);
7496	}
7497
7498	/*
7499	 * All of the probes for this provider are disabled; we can safely
7500	 * remove all of them from their hash chains and from the probe array.
7501	 */
7502	for (i = 0; i < dtrace_nprobes; i++) {
7503		if ((probe = dtrace_probes[i]) == NULL)
7504			continue;
7505
7506		if (probe->dtpr_provider != old)
7507			continue;
7508
7509		dtrace_probes[i] = NULL;
7510
7511		dtrace_hash_remove(dtrace_bymod, probe);
7512		dtrace_hash_remove(dtrace_byfunc, probe);
7513		dtrace_hash_remove(dtrace_byname, probe);
7514
7515		if (first == NULL) {
7516			first = probe;
7517			probe->dtpr_nextmod = NULL;
7518		} else {
7519			probe->dtpr_nextmod = first;
7520			first = probe;
7521		}
7522	}
7523
7524	/*
7525	 * The provider's probes have been removed from the hash chains and
7526	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7527	 * everyone has cleared out from any probe array processing.
7528	 */
7529	dtrace_sync();
7530
7531	for (probe = first; probe != NULL; probe = first) {
7532		first = probe->dtpr_nextmod;
7533
7534		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7535		    probe->dtpr_arg);
7536		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7537		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7538		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7539#if defined(sun)
7540		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7541#else
7542		free_unr(dtrace_arena, probe->dtpr_id);
7543#endif
7544		kmem_free(probe, sizeof (dtrace_probe_t));
7545	}
7546
7547	if ((prev = dtrace_provider) == old) {
7548#if defined(sun)
7549		ASSERT(self || dtrace_devi == NULL);
7550		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7551#endif
7552		dtrace_provider = old->dtpv_next;
7553	} else {
7554		while (prev != NULL && prev->dtpv_next != old)
7555			prev = prev->dtpv_next;
7556
7557		if (prev == NULL) {
7558			panic("attempt to unregister non-existent "
7559			    "dtrace provider %p\n", (void *)id);
7560		}
7561
7562		prev->dtpv_next = old->dtpv_next;
7563	}
7564
7565	if (!self) {
7566		mutex_exit(&dtrace_lock);
7567		mutex_exit(&mod_lock);
7568		mutex_exit(&dtrace_provider_lock);
7569	}
7570
7571	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7572	kmem_free(old, sizeof (dtrace_provider_t));
7573
7574	return (0);
7575}
7576
7577/*
7578 * Invalidate the specified provider.  All subsequent probe lookups for the
7579 * specified provider will fail, but its probes will not be removed.
7580 */
7581void
7582dtrace_invalidate(dtrace_provider_id_t id)
7583{
7584	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7585
7586	ASSERT(pvp->dtpv_pops.dtps_enable !=
7587	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7588
7589	mutex_enter(&dtrace_provider_lock);
7590	mutex_enter(&dtrace_lock);
7591
7592	pvp->dtpv_defunct = 1;
7593
7594	mutex_exit(&dtrace_lock);
7595	mutex_exit(&dtrace_provider_lock);
7596}
7597
7598/*
7599 * Indicate whether or not DTrace has attached.
7600 */
7601int
7602dtrace_attached(void)
7603{
7604	/*
7605	 * dtrace_provider will be non-NULL iff the DTrace driver has
7606	 * attached.  (It's non-NULL because DTrace is always itself a
7607	 * provider.)
7608	 */
7609	return (dtrace_provider != NULL);
7610}
7611
7612/*
7613 * Remove all the unenabled probes for the given provider.  This function is
7614 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7615 * -- just as many of its associated probes as it can.
7616 */
7617int
7618dtrace_condense(dtrace_provider_id_t id)
7619{
7620	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7621	int i;
7622	dtrace_probe_t *probe;
7623
7624	/*
7625	 * Make sure this isn't the dtrace provider itself.
7626	 */
7627	ASSERT(prov->dtpv_pops.dtps_enable !=
7628	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7629
7630	mutex_enter(&dtrace_provider_lock);
7631	mutex_enter(&dtrace_lock);
7632
7633	/*
7634	 * Attempt to destroy the probes associated with this provider.
7635	 */
7636	for (i = 0; i < dtrace_nprobes; i++) {
7637		if ((probe = dtrace_probes[i]) == NULL)
7638			continue;
7639
7640		if (probe->dtpr_provider != prov)
7641			continue;
7642
7643		if (probe->dtpr_ecb != NULL)
7644			continue;
7645
7646		dtrace_probes[i] = NULL;
7647
7648		dtrace_hash_remove(dtrace_bymod, probe);
7649		dtrace_hash_remove(dtrace_byfunc, probe);
7650		dtrace_hash_remove(dtrace_byname, probe);
7651
7652		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7653		    probe->dtpr_arg);
7654		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7655		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7656		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7657		kmem_free(probe, sizeof (dtrace_probe_t));
7658#if defined(sun)
7659		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7660#else
7661		free_unr(dtrace_arena, i + 1);
7662#endif
7663	}
7664
7665	mutex_exit(&dtrace_lock);
7666	mutex_exit(&dtrace_provider_lock);
7667
7668	return (0);
7669}
7670
7671/*
7672 * DTrace Probe Management Functions
7673 *
7674 * The functions in this section perform the DTrace probe management,
7675 * including functions to create probes, look-up probes, and call into the
7676 * providers to request that probes be provided.  Some of these functions are
7677 * in the Provider-to-Framework API; these functions can be identified by the
7678 * fact that they are not declared "static".
7679 */
7680
7681/*
7682 * Create a probe with the specified module name, function name, and name.
7683 */
7684dtrace_id_t
7685dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7686    const char *func, const char *name, int aframes, void *arg)
7687{
7688	dtrace_probe_t *probe, **probes;
7689	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7690	dtrace_id_t id;
7691
7692	if (provider == dtrace_provider) {
7693		ASSERT(MUTEX_HELD(&dtrace_lock));
7694	} else {
7695		mutex_enter(&dtrace_lock);
7696	}
7697
7698#if defined(sun)
7699	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7700	    VM_BESTFIT | VM_SLEEP);
7701#else
7702	id = alloc_unr(dtrace_arena);
7703#endif
7704	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7705
7706	probe->dtpr_id = id;
7707	probe->dtpr_gen = dtrace_probegen++;
7708	probe->dtpr_mod = dtrace_strdup(mod);
7709	probe->dtpr_func = dtrace_strdup(func);
7710	probe->dtpr_name = dtrace_strdup(name);
7711	probe->dtpr_arg = arg;
7712	probe->dtpr_aframes = aframes;
7713	probe->dtpr_provider = provider;
7714
7715	dtrace_hash_add(dtrace_bymod, probe);
7716	dtrace_hash_add(dtrace_byfunc, probe);
7717	dtrace_hash_add(dtrace_byname, probe);
7718
7719	if (id - 1 >= dtrace_nprobes) {
7720		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7721		size_t nsize = osize << 1;
7722
7723		if (nsize == 0) {
7724			ASSERT(osize == 0);
7725			ASSERT(dtrace_probes == NULL);
7726			nsize = sizeof (dtrace_probe_t *);
7727		}
7728
7729		probes = kmem_zalloc(nsize, KM_SLEEP);
7730
7731		if (dtrace_probes == NULL) {
7732			ASSERT(osize == 0);
7733			dtrace_probes = probes;
7734			dtrace_nprobes = 1;
7735		} else {
7736			dtrace_probe_t **oprobes = dtrace_probes;
7737
7738			bcopy(oprobes, probes, osize);
7739			dtrace_membar_producer();
7740			dtrace_probes = probes;
7741
7742			dtrace_sync();
7743
7744			/*
7745			 * All CPUs are now seeing the new probes array; we can
7746			 * safely free the old array.
7747			 */
7748			kmem_free(oprobes, osize);
7749			dtrace_nprobes <<= 1;
7750		}
7751
7752		ASSERT(id - 1 < dtrace_nprobes);
7753	}
7754
7755	ASSERT(dtrace_probes[id - 1] == NULL);
7756	dtrace_probes[id - 1] = probe;
7757
7758	if (provider != dtrace_provider)
7759		mutex_exit(&dtrace_lock);
7760
7761	return (id);
7762}
7763
7764static dtrace_probe_t *
7765dtrace_probe_lookup_id(dtrace_id_t id)
7766{
7767	ASSERT(MUTEX_HELD(&dtrace_lock));
7768
7769	if (id == 0 || id > dtrace_nprobes)
7770		return (NULL);
7771
7772	return (dtrace_probes[id - 1]);
7773}
7774
7775static int
7776dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7777{
7778	*((dtrace_id_t *)arg) = probe->dtpr_id;
7779
7780	return (DTRACE_MATCH_DONE);
7781}
7782
7783/*
7784 * Look up a probe based on provider and one or more of module name, function
7785 * name and probe name.
7786 */
7787dtrace_id_t
7788dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7789    char *func, char *name)
7790{
7791	dtrace_probekey_t pkey;
7792	dtrace_id_t id;
7793	int match;
7794
7795	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7796	pkey.dtpk_pmatch = &dtrace_match_string;
7797	pkey.dtpk_mod = mod;
7798	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7799	pkey.dtpk_func = func;
7800	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7801	pkey.dtpk_name = name;
7802	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7803	pkey.dtpk_id = DTRACE_IDNONE;
7804
7805	mutex_enter(&dtrace_lock);
7806	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7807	    dtrace_probe_lookup_match, &id);
7808	mutex_exit(&dtrace_lock);
7809
7810	ASSERT(match == 1 || match == 0);
7811	return (match ? id : 0);
7812}
7813
7814/*
7815 * Returns the probe argument associated with the specified probe.
7816 */
7817void *
7818dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7819{
7820	dtrace_probe_t *probe;
7821	void *rval = NULL;
7822
7823	mutex_enter(&dtrace_lock);
7824
7825	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7826	    probe->dtpr_provider == (dtrace_provider_t *)id)
7827		rval = probe->dtpr_arg;
7828
7829	mutex_exit(&dtrace_lock);
7830
7831	return (rval);
7832}
7833
7834/*
7835 * Copy a probe into a probe description.
7836 */
7837static void
7838dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7839{
7840	bzero(pdp, sizeof (dtrace_probedesc_t));
7841	pdp->dtpd_id = prp->dtpr_id;
7842
7843	(void) strncpy(pdp->dtpd_provider,
7844	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7845
7846	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7847	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7848	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7849}
7850
7851#if !defined(sun)
7852static int
7853dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7854{
7855	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7856
7857	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7858
7859	return(0);
7860}
7861#endif
7862
7863
7864/*
7865 * Called to indicate that a probe -- or probes -- should be provided by a
7866 * specfied provider.  If the specified description is NULL, the provider will
7867 * be told to provide all of its probes.  (This is done whenever a new
7868 * consumer comes along, or whenever a retained enabling is to be matched.) If
7869 * the specified description is non-NULL, the provider is given the
7870 * opportunity to dynamically provide the specified probe, allowing providers
7871 * to support the creation of probes on-the-fly.  (So-called _autocreated_
7872 * probes.)  If the provider is NULL, the operations will be applied to all
7873 * providers; if the provider is non-NULL the operations will only be applied
7874 * to the specified provider.  The dtrace_provider_lock must be held, and the
7875 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7876 * will need to grab the dtrace_lock when it reenters the framework through
7877 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7878 */
7879static void
7880dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7881{
7882#if defined(sun)
7883	modctl_t *ctl;
7884#endif
7885	int all = 0;
7886
7887	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7888
7889	if (prv == NULL) {
7890		all = 1;
7891		prv = dtrace_provider;
7892	}
7893
7894	do {
7895		/*
7896		 * First, call the blanket provide operation.
7897		 */
7898		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7899
7900		/*
7901		 * Now call the per-module provide operation.  We will grab
7902		 * mod_lock to prevent the list from being modified.  Note
7903		 * that this also prevents the mod_busy bits from changing.
7904		 * (mod_busy can only be changed with mod_lock held.)
7905		 */
7906		mutex_enter(&mod_lock);
7907
7908#if defined(sun)
7909		ctl = &modules;
7910		do {
7911			if (ctl->mod_busy || ctl->mod_mp == NULL)
7912				continue;
7913
7914			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7915
7916		} while ((ctl = ctl->mod_next) != &modules);
7917#else
7918		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
7919#endif
7920
7921		mutex_exit(&mod_lock);
7922	} while (all && (prv = prv->dtpv_next) != NULL);
7923}
7924
7925#if defined(sun)
7926/*
7927 * Iterate over each probe, and call the Framework-to-Provider API function
7928 * denoted by offs.
7929 */
7930static void
7931dtrace_probe_foreach(uintptr_t offs)
7932{
7933	dtrace_provider_t *prov;
7934	void (*func)(void *, dtrace_id_t, void *);
7935	dtrace_probe_t *probe;
7936	dtrace_icookie_t cookie;
7937	int i;
7938
7939	/*
7940	 * We disable interrupts to walk through the probe array.  This is
7941	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7942	 * won't see stale data.
7943	 */
7944	cookie = dtrace_interrupt_disable();
7945
7946	for (i = 0; i < dtrace_nprobes; i++) {
7947		if ((probe = dtrace_probes[i]) == NULL)
7948			continue;
7949
7950		if (probe->dtpr_ecb == NULL) {
7951			/*
7952			 * This probe isn't enabled -- don't call the function.
7953			 */
7954			continue;
7955		}
7956
7957		prov = probe->dtpr_provider;
7958		func = *((void(**)(void *, dtrace_id_t, void *))
7959		    ((uintptr_t)&prov->dtpv_pops + offs));
7960
7961		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7962	}
7963
7964	dtrace_interrupt_enable(cookie);
7965}
7966#endif
7967
7968static int
7969dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7970{
7971	dtrace_probekey_t pkey;
7972	uint32_t priv;
7973	uid_t uid;
7974	zoneid_t zoneid;
7975
7976	ASSERT(MUTEX_HELD(&dtrace_lock));
7977	dtrace_ecb_create_cache = NULL;
7978
7979	if (desc == NULL) {
7980		/*
7981		 * If we're passed a NULL description, we're being asked to
7982		 * create an ECB with a NULL probe.
7983		 */
7984		(void) dtrace_ecb_create_enable(NULL, enab);
7985		return (0);
7986	}
7987
7988	dtrace_probekey(desc, &pkey);
7989	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7990	    &priv, &uid, &zoneid);
7991
7992	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7993	    enab));
7994}
7995
7996/*
7997 * DTrace Helper Provider Functions
7998 */
7999static void
8000dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8001{
8002	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8003	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8004	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8005}
8006
8007static void
8008dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8009    const dof_provider_t *dofprov, char *strtab)
8010{
8011	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8012	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8013	    dofprov->dofpv_provattr);
8014	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8015	    dofprov->dofpv_modattr);
8016	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8017	    dofprov->dofpv_funcattr);
8018	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8019	    dofprov->dofpv_nameattr);
8020	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8021	    dofprov->dofpv_argsattr);
8022}
8023
8024static void
8025dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8026{
8027	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8028	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8029	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8030	dof_provider_t *provider;
8031	dof_probe_t *probe;
8032	uint32_t *off, *enoff;
8033	uint8_t *arg;
8034	char *strtab;
8035	uint_t i, nprobes;
8036	dtrace_helper_provdesc_t dhpv;
8037	dtrace_helper_probedesc_t dhpb;
8038	dtrace_meta_t *meta = dtrace_meta_pid;
8039	dtrace_mops_t *mops = &meta->dtm_mops;
8040	void *parg;
8041
8042	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8043	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8044	    provider->dofpv_strtab * dof->dofh_secsize);
8045	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8046	    provider->dofpv_probes * dof->dofh_secsize);
8047	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8048	    provider->dofpv_prargs * dof->dofh_secsize);
8049	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8050	    provider->dofpv_proffs * dof->dofh_secsize);
8051
8052	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8053	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8054	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8055	enoff = NULL;
8056
8057	/*
8058	 * See dtrace_helper_provider_validate().
8059	 */
8060	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8061	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8062		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8063		    provider->dofpv_prenoffs * dof->dofh_secsize);
8064		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8065	}
8066
8067	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8068
8069	/*
8070	 * Create the provider.
8071	 */
8072	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8073
8074	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8075		return;
8076
8077	meta->dtm_count++;
8078
8079	/*
8080	 * Create the probes.
8081	 */
8082	for (i = 0; i < nprobes; i++) {
8083		probe = (dof_probe_t *)(uintptr_t)(daddr +
8084		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8085
8086		dhpb.dthpb_mod = dhp->dofhp_mod;
8087		dhpb.dthpb_func = strtab + probe->dofpr_func;
8088		dhpb.dthpb_name = strtab + probe->dofpr_name;
8089		dhpb.dthpb_base = probe->dofpr_addr;
8090		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8091		dhpb.dthpb_noffs = probe->dofpr_noffs;
8092		if (enoff != NULL) {
8093			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8094			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8095		} else {
8096			dhpb.dthpb_enoffs = NULL;
8097			dhpb.dthpb_nenoffs = 0;
8098		}
8099		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8100		dhpb.dthpb_nargc = probe->dofpr_nargc;
8101		dhpb.dthpb_xargc = probe->dofpr_xargc;
8102		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8103		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8104
8105		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8106	}
8107}
8108
8109static void
8110dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8111{
8112	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8113	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8114	int i;
8115
8116	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8117
8118	for (i = 0; i < dof->dofh_secnum; i++) {
8119		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8120		    dof->dofh_secoff + i * dof->dofh_secsize);
8121
8122		if (sec->dofs_type != DOF_SECT_PROVIDER)
8123			continue;
8124
8125		dtrace_helper_provide_one(dhp, sec, pid);
8126	}
8127
8128	/*
8129	 * We may have just created probes, so we must now rematch against
8130	 * any retained enablings.  Note that this call will acquire both
8131	 * cpu_lock and dtrace_lock; the fact that we are holding
8132	 * dtrace_meta_lock now is what defines the ordering with respect to
8133	 * these three locks.
8134	 */
8135	dtrace_enabling_matchall();
8136}
8137
8138#if defined(sun)
8139static void
8140dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8141{
8142	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8143	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8144	dof_sec_t *str_sec;
8145	dof_provider_t *provider;
8146	char *strtab;
8147	dtrace_helper_provdesc_t dhpv;
8148	dtrace_meta_t *meta = dtrace_meta_pid;
8149	dtrace_mops_t *mops = &meta->dtm_mops;
8150
8151	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8152	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8153	    provider->dofpv_strtab * dof->dofh_secsize);
8154
8155	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8156
8157	/*
8158	 * Create the provider.
8159	 */
8160	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8161
8162	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8163
8164	meta->dtm_count--;
8165}
8166
8167static void
8168dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8169{
8170	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8171	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8172	int i;
8173
8174	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8175
8176	for (i = 0; i < dof->dofh_secnum; i++) {
8177		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8178		    dof->dofh_secoff + i * dof->dofh_secsize);
8179
8180		if (sec->dofs_type != DOF_SECT_PROVIDER)
8181			continue;
8182
8183		dtrace_helper_provider_remove_one(dhp, sec, pid);
8184	}
8185}
8186#endif
8187
8188/*
8189 * DTrace Meta Provider-to-Framework API Functions
8190 *
8191 * These functions implement the Meta Provider-to-Framework API, as described
8192 * in <sys/dtrace.h>.
8193 */
8194int
8195dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8196    dtrace_meta_provider_id_t *idp)
8197{
8198	dtrace_meta_t *meta;
8199	dtrace_helpers_t *help, *next;
8200	int i;
8201
8202	*idp = DTRACE_METAPROVNONE;
8203
8204	/*
8205	 * We strictly don't need the name, but we hold onto it for
8206	 * debuggability. All hail error queues!
8207	 */
8208	if (name == NULL) {
8209		cmn_err(CE_WARN, "failed to register meta-provider: "
8210		    "invalid name");
8211		return (EINVAL);
8212	}
8213
8214	if (mops == NULL ||
8215	    mops->dtms_create_probe == NULL ||
8216	    mops->dtms_provide_pid == NULL ||
8217	    mops->dtms_remove_pid == NULL) {
8218		cmn_err(CE_WARN, "failed to register meta-register %s: "
8219		    "invalid ops", name);
8220		return (EINVAL);
8221	}
8222
8223	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8224	meta->dtm_mops = *mops;
8225	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8226	(void) strcpy(meta->dtm_name, name);
8227	meta->dtm_arg = arg;
8228
8229	mutex_enter(&dtrace_meta_lock);
8230	mutex_enter(&dtrace_lock);
8231
8232	if (dtrace_meta_pid != NULL) {
8233		mutex_exit(&dtrace_lock);
8234		mutex_exit(&dtrace_meta_lock);
8235		cmn_err(CE_WARN, "failed to register meta-register %s: "
8236		    "user-land meta-provider exists", name);
8237		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8238		kmem_free(meta, sizeof (dtrace_meta_t));
8239		return (EINVAL);
8240	}
8241
8242	dtrace_meta_pid = meta;
8243	*idp = (dtrace_meta_provider_id_t)meta;
8244
8245	/*
8246	 * If there are providers and probes ready to go, pass them
8247	 * off to the new meta provider now.
8248	 */
8249
8250	help = dtrace_deferred_pid;
8251	dtrace_deferred_pid = NULL;
8252
8253	mutex_exit(&dtrace_lock);
8254
8255	while (help != NULL) {
8256		for (i = 0; i < help->dthps_nprovs; i++) {
8257			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8258			    help->dthps_pid);
8259		}
8260
8261		next = help->dthps_next;
8262		help->dthps_next = NULL;
8263		help->dthps_prev = NULL;
8264		help->dthps_deferred = 0;
8265		help = next;
8266	}
8267
8268	mutex_exit(&dtrace_meta_lock);
8269
8270	return (0);
8271}
8272
8273int
8274dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8275{
8276	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8277
8278	mutex_enter(&dtrace_meta_lock);
8279	mutex_enter(&dtrace_lock);
8280
8281	if (old == dtrace_meta_pid) {
8282		pp = &dtrace_meta_pid;
8283	} else {
8284		panic("attempt to unregister non-existent "
8285		    "dtrace meta-provider %p\n", (void *)old);
8286	}
8287
8288	if (old->dtm_count != 0) {
8289		mutex_exit(&dtrace_lock);
8290		mutex_exit(&dtrace_meta_lock);
8291		return (EBUSY);
8292	}
8293
8294	*pp = NULL;
8295
8296	mutex_exit(&dtrace_lock);
8297	mutex_exit(&dtrace_meta_lock);
8298
8299	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8300	kmem_free(old, sizeof (dtrace_meta_t));
8301
8302	return (0);
8303}
8304
8305
8306/*
8307 * DTrace DIF Object Functions
8308 */
8309static int
8310dtrace_difo_err(uint_t pc, const char *format, ...)
8311{
8312	if (dtrace_err_verbose) {
8313		va_list alist;
8314
8315		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8316		va_start(alist, format);
8317		(void) vuprintf(format, alist);
8318		va_end(alist);
8319	}
8320
8321#ifdef DTRACE_ERRDEBUG
8322	dtrace_errdebug(format);
8323#endif
8324	return (1);
8325}
8326
8327/*
8328 * Validate a DTrace DIF object by checking the IR instructions.  The following
8329 * rules are currently enforced by dtrace_difo_validate():
8330 *
8331 * 1. Each instruction must have a valid opcode
8332 * 2. Each register, string, variable, or subroutine reference must be valid
8333 * 3. No instruction can modify register %r0 (must be zero)
8334 * 4. All instruction reserved bits must be set to zero
8335 * 5. The last instruction must be a "ret" instruction
8336 * 6. All branch targets must reference a valid instruction _after_ the branch
8337 */
8338static int
8339dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8340    cred_t *cr)
8341{
8342	int err = 0, i;
8343	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8344	int kcheckload;
8345	uint_t pc;
8346
8347	kcheckload = cr == NULL ||
8348	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8349
8350	dp->dtdo_destructive = 0;
8351
8352	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8353		dif_instr_t instr = dp->dtdo_buf[pc];
8354
8355		uint_t r1 = DIF_INSTR_R1(instr);
8356		uint_t r2 = DIF_INSTR_R2(instr);
8357		uint_t rd = DIF_INSTR_RD(instr);
8358		uint_t rs = DIF_INSTR_RS(instr);
8359		uint_t label = DIF_INSTR_LABEL(instr);
8360		uint_t v = DIF_INSTR_VAR(instr);
8361		uint_t subr = DIF_INSTR_SUBR(instr);
8362		uint_t type = DIF_INSTR_TYPE(instr);
8363		uint_t op = DIF_INSTR_OP(instr);
8364
8365		switch (op) {
8366		case DIF_OP_OR:
8367		case DIF_OP_XOR:
8368		case DIF_OP_AND:
8369		case DIF_OP_SLL:
8370		case DIF_OP_SRL:
8371		case DIF_OP_SRA:
8372		case DIF_OP_SUB:
8373		case DIF_OP_ADD:
8374		case DIF_OP_MUL:
8375		case DIF_OP_SDIV:
8376		case DIF_OP_UDIV:
8377		case DIF_OP_SREM:
8378		case DIF_OP_UREM:
8379		case DIF_OP_COPYS:
8380			if (r1 >= nregs)
8381				err += efunc(pc, "invalid register %u\n", r1);
8382			if (r2 >= nregs)
8383				err += efunc(pc, "invalid register %u\n", r2);
8384			if (rd >= nregs)
8385				err += efunc(pc, "invalid register %u\n", rd);
8386			if (rd == 0)
8387				err += efunc(pc, "cannot write to %r0\n");
8388			break;
8389		case DIF_OP_NOT:
8390		case DIF_OP_MOV:
8391		case DIF_OP_ALLOCS:
8392			if (r1 >= nregs)
8393				err += efunc(pc, "invalid register %u\n", r1);
8394			if (r2 != 0)
8395				err += efunc(pc, "non-zero reserved bits\n");
8396			if (rd >= nregs)
8397				err += efunc(pc, "invalid register %u\n", rd);
8398			if (rd == 0)
8399				err += efunc(pc, "cannot write to %r0\n");
8400			break;
8401		case DIF_OP_LDSB:
8402		case DIF_OP_LDSH:
8403		case DIF_OP_LDSW:
8404		case DIF_OP_LDUB:
8405		case DIF_OP_LDUH:
8406		case DIF_OP_LDUW:
8407		case DIF_OP_LDX:
8408			if (r1 >= nregs)
8409				err += efunc(pc, "invalid register %u\n", r1);
8410			if (r2 != 0)
8411				err += efunc(pc, "non-zero reserved bits\n");
8412			if (rd >= nregs)
8413				err += efunc(pc, "invalid register %u\n", rd);
8414			if (rd == 0)
8415				err += efunc(pc, "cannot write to %r0\n");
8416			if (kcheckload)
8417				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8418				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8419			break;
8420		case DIF_OP_RLDSB:
8421		case DIF_OP_RLDSH:
8422		case DIF_OP_RLDSW:
8423		case DIF_OP_RLDUB:
8424		case DIF_OP_RLDUH:
8425		case DIF_OP_RLDUW:
8426		case DIF_OP_RLDX:
8427			if (r1 >= nregs)
8428				err += efunc(pc, "invalid register %u\n", r1);
8429			if (r2 != 0)
8430				err += efunc(pc, "non-zero reserved bits\n");
8431			if (rd >= nregs)
8432				err += efunc(pc, "invalid register %u\n", rd);
8433			if (rd == 0)
8434				err += efunc(pc, "cannot write to %r0\n");
8435			break;
8436		case DIF_OP_ULDSB:
8437		case DIF_OP_ULDSH:
8438		case DIF_OP_ULDSW:
8439		case DIF_OP_ULDUB:
8440		case DIF_OP_ULDUH:
8441		case DIF_OP_ULDUW:
8442		case DIF_OP_ULDX:
8443			if (r1 >= nregs)
8444				err += efunc(pc, "invalid register %u\n", r1);
8445			if (r2 != 0)
8446				err += efunc(pc, "non-zero reserved bits\n");
8447			if (rd >= nregs)
8448				err += efunc(pc, "invalid register %u\n", rd);
8449			if (rd == 0)
8450				err += efunc(pc, "cannot write to %r0\n");
8451			break;
8452		case DIF_OP_STB:
8453		case DIF_OP_STH:
8454		case DIF_OP_STW:
8455		case DIF_OP_STX:
8456			if (r1 >= nregs)
8457				err += efunc(pc, "invalid register %u\n", r1);
8458			if (r2 != 0)
8459				err += efunc(pc, "non-zero reserved bits\n");
8460			if (rd >= nregs)
8461				err += efunc(pc, "invalid register %u\n", rd);
8462			if (rd == 0)
8463				err += efunc(pc, "cannot write to 0 address\n");
8464			break;
8465		case DIF_OP_CMP:
8466		case DIF_OP_SCMP:
8467			if (r1 >= nregs)
8468				err += efunc(pc, "invalid register %u\n", r1);
8469			if (r2 >= nregs)
8470				err += efunc(pc, "invalid register %u\n", r2);
8471			if (rd != 0)
8472				err += efunc(pc, "non-zero reserved bits\n");
8473			break;
8474		case DIF_OP_TST:
8475			if (r1 >= nregs)
8476				err += efunc(pc, "invalid register %u\n", r1);
8477			if (r2 != 0 || rd != 0)
8478				err += efunc(pc, "non-zero reserved bits\n");
8479			break;
8480		case DIF_OP_BA:
8481		case DIF_OP_BE:
8482		case DIF_OP_BNE:
8483		case DIF_OP_BG:
8484		case DIF_OP_BGU:
8485		case DIF_OP_BGE:
8486		case DIF_OP_BGEU:
8487		case DIF_OP_BL:
8488		case DIF_OP_BLU:
8489		case DIF_OP_BLE:
8490		case DIF_OP_BLEU:
8491			if (label >= dp->dtdo_len) {
8492				err += efunc(pc, "invalid branch target %u\n",
8493				    label);
8494			}
8495			if (label <= pc) {
8496				err += efunc(pc, "backward branch to %u\n",
8497				    label);
8498			}
8499			break;
8500		case DIF_OP_RET:
8501			if (r1 != 0 || r2 != 0)
8502				err += efunc(pc, "non-zero reserved bits\n");
8503			if (rd >= nregs)
8504				err += efunc(pc, "invalid register %u\n", rd);
8505			break;
8506		case DIF_OP_NOP:
8507		case DIF_OP_POPTS:
8508		case DIF_OP_FLUSHTS:
8509			if (r1 != 0 || r2 != 0 || rd != 0)
8510				err += efunc(pc, "non-zero reserved bits\n");
8511			break;
8512		case DIF_OP_SETX:
8513			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8514				err += efunc(pc, "invalid integer ref %u\n",
8515				    DIF_INSTR_INTEGER(instr));
8516			}
8517			if (rd >= nregs)
8518				err += efunc(pc, "invalid register %u\n", rd);
8519			if (rd == 0)
8520				err += efunc(pc, "cannot write to %r0\n");
8521			break;
8522		case DIF_OP_SETS:
8523			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8524				err += efunc(pc, "invalid string ref %u\n",
8525				    DIF_INSTR_STRING(instr));
8526			}
8527			if (rd >= nregs)
8528				err += efunc(pc, "invalid register %u\n", rd);
8529			if (rd == 0)
8530				err += efunc(pc, "cannot write to %r0\n");
8531			break;
8532		case DIF_OP_LDGA:
8533		case DIF_OP_LDTA:
8534			if (r1 > DIF_VAR_ARRAY_MAX)
8535				err += efunc(pc, "invalid array %u\n", r1);
8536			if (r2 >= nregs)
8537				err += efunc(pc, "invalid register %u\n", r2);
8538			if (rd >= nregs)
8539				err += efunc(pc, "invalid register %u\n", rd);
8540			if (rd == 0)
8541				err += efunc(pc, "cannot write to %r0\n");
8542			break;
8543		case DIF_OP_LDGS:
8544		case DIF_OP_LDTS:
8545		case DIF_OP_LDLS:
8546		case DIF_OP_LDGAA:
8547		case DIF_OP_LDTAA:
8548			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8549				err += efunc(pc, "invalid variable %u\n", v);
8550			if (rd >= nregs)
8551				err += efunc(pc, "invalid register %u\n", rd);
8552			if (rd == 0)
8553				err += efunc(pc, "cannot write to %r0\n");
8554			break;
8555		case DIF_OP_STGS:
8556		case DIF_OP_STTS:
8557		case DIF_OP_STLS:
8558		case DIF_OP_STGAA:
8559		case DIF_OP_STTAA:
8560			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8561				err += efunc(pc, "invalid variable %u\n", v);
8562			if (rs >= nregs)
8563				err += efunc(pc, "invalid register %u\n", rd);
8564			break;
8565		case DIF_OP_CALL:
8566			if (subr > DIF_SUBR_MAX)
8567				err += efunc(pc, "invalid subr %u\n", subr);
8568			if (rd >= nregs)
8569				err += efunc(pc, "invalid register %u\n", rd);
8570			if (rd == 0)
8571				err += efunc(pc, "cannot write to %r0\n");
8572
8573			if (subr == DIF_SUBR_COPYOUT ||
8574			    subr == DIF_SUBR_COPYOUTSTR) {
8575				dp->dtdo_destructive = 1;
8576			}
8577			break;
8578		case DIF_OP_PUSHTR:
8579			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8580				err += efunc(pc, "invalid ref type %u\n", type);
8581			if (r2 >= nregs)
8582				err += efunc(pc, "invalid register %u\n", r2);
8583			if (rs >= nregs)
8584				err += efunc(pc, "invalid register %u\n", rs);
8585			break;
8586		case DIF_OP_PUSHTV:
8587			if (type != DIF_TYPE_CTF)
8588				err += efunc(pc, "invalid val type %u\n", type);
8589			if (r2 >= nregs)
8590				err += efunc(pc, "invalid register %u\n", r2);
8591			if (rs >= nregs)
8592				err += efunc(pc, "invalid register %u\n", rs);
8593			break;
8594		default:
8595			err += efunc(pc, "invalid opcode %u\n",
8596			    DIF_INSTR_OP(instr));
8597		}
8598	}
8599
8600	if (dp->dtdo_len != 0 &&
8601	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8602		err += efunc(dp->dtdo_len - 1,
8603		    "expected 'ret' as last DIF instruction\n");
8604	}
8605
8606	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8607		/*
8608		 * If we're not returning by reference, the size must be either
8609		 * 0 or the size of one of the base types.
8610		 */
8611		switch (dp->dtdo_rtype.dtdt_size) {
8612		case 0:
8613		case sizeof (uint8_t):
8614		case sizeof (uint16_t):
8615		case sizeof (uint32_t):
8616		case sizeof (uint64_t):
8617			break;
8618
8619		default:
8620			err += efunc(dp->dtdo_len - 1, "bad return size");
8621		}
8622	}
8623
8624	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8625		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8626		dtrace_diftype_t *vt, *et;
8627		uint_t id, ndx;
8628
8629		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8630		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8631		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8632			err += efunc(i, "unrecognized variable scope %d\n",
8633			    v->dtdv_scope);
8634			break;
8635		}
8636
8637		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8638		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8639			err += efunc(i, "unrecognized variable type %d\n",
8640			    v->dtdv_kind);
8641			break;
8642		}
8643
8644		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8645			err += efunc(i, "%d exceeds variable id limit\n", id);
8646			break;
8647		}
8648
8649		if (id < DIF_VAR_OTHER_UBASE)
8650			continue;
8651
8652		/*
8653		 * For user-defined variables, we need to check that this
8654		 * definition is identical to any previous definition that we
8655		 * encountered.
8656		 */
8657		ndx = id - DIF_VAR_OTHER_UBASE;
8658
8659		switch (v->dtdv_scope) {
8660		case DIFV_SCOPE_GLOBAL:
8661			if (ndx < vstate->dtvs_nglobals) {
8662				dtrace_statvar_t *svar;
8663
8664				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8665					existing = &svar->dtsv_var;
8666			}
8667
8668			break;
8669
8670		case DIFV_SCOPE_THREAD:
8671			if (ndx < vstate->dtvs_ntlocals)
8672				existing = &vstate->dtvs_tlocals[ndx];
8673			break;
8674
8675		case DIFV_SCOPE_LOCAL:
8676			if (ndx < vstate->dtvs_nlocals) {
8677				dtrace_statvar_t *svar;
8678
8679				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8680					existing = &svar->dtsv_var;
8681			}
8682
8683			break;
8684		}
8685
8686		vt = &v->dtdv_type;
8687
8688		if (vt->dtdt_flags & DIF_TF_BYREF) {
8689			if (vt->dtdt_size == 0) {
8690				err += efunc(i, "zero-sized variable\n");
8691				break;
8692			}
8693
8694			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8695			    vt->dtdt_size > dtrace_global_maxsize) {
8696				err += efunc(i, "oversized by-ref global\n");
8697				break;
8698			}
8699		}
8700
8701		if (existing == NULL || existing->dtdv_id == 0)
8702			continue;
8703
8704		ASSERT(existing->dtdv_id == v->dtdv_id);
8705		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8706
8707		if (existing->dtdv_kind != v->dtdv_kind)
8708			err += efunc(i, "%d changed variable kind\n", id);
8709
8710		et = &existing->dtdv_type;
8711
8712		if (vt->dtdt_flags != et->dtdt_flags) {
8713			err += efunc(i, "%d changed variable type flags\n", id);
8714			break;
8715		}
8716
8717		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8718			err += efunc(i, "%d changed variable type size\n", id);
8719			break;
8720		}
8721	}
8722
8723	return (err);
8724}
8725
8726#if defined(sun)
8727/*
8728 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8729 * are much more constrained than normal DIFOs.  Specifically, they may
8730 * not:
8731 *
8732 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8733 *    miscellaneous string routines
8734 * 2. Access DTrace variables other than the args[] array, and the
8735 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8736 * 3. Have thread-local variables.
8737 * 4. Have dynamic variables.
8738 */
8739static int
8740dtrace_difo_validate_helper(dtrace_difo_t *dp)
8741{
8742	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8743	int err = 0;
8744	uint_t pc;
8745
8746	for (pc = 0; pc < dp->dtdo_len; pc++) {
8747		dif_instr_t instr = dp->dtdo_buf[pc];
8748
8749		uint_t v = DIF_INSTR_VAR(instr);
8750		uint_t subr = DIF_INSTR_SUBR(instr);
8751		uint_t op = DIF_INSTR_OP(instr);
8752
8753		switch (op) {
8754		case DIF_OP_OR:
8755		case DIF_OP_XOR:
8756		case DIF_OP_AND:
8757		case DIF_OP_SLL:
8758		case DIF_OP_SRL:
8759		case DIF_OP_SRA:
8760		case DIF_OP_SUB:
8761		case DIF_OP_ADD:
8762		case DIF_OP_MUL:
8763		case DIF_OP_SDIV:
8764		case DIF_OP_UDIV:
8765		case DIF_OP_SREM:
8766		case DIF_OP_UREM:
8767		case DIF_OP_COPYS:
8768		case DIF_OP_NOT:
8769		case DIF_OP_MOV:
8770		case DIF_OP_RLDSB:
8771		case DIF_OP_RLDSH:
8772		case DIF_OP_RLDSW:
8773		case DIF_OP_RLDUB:
8774		case DIF_OP_RLDUH:
8775		case DIF_OP_RLDUW:
8776		case DIF_OP_RLDX:
8777		case DIF_OP_ULDSB:
8778		case DIF_OP_ULDSH:
8779		case DIF_OP_ULDSW:
8780		case DIF_OP_ULDUB:
8781		case DIF_OP_ULDUH:
8782		case DIF_OP_ULDUW:
8783		case DIF_OP_ULDX:
8784		case DIF_OP_STB:
8785		case DIF_OP_STH:
8786		case DIF_OP_STW:
8787		case DIF_OP_STX:
8788		case DIF_OP_ALLOCS:
8789		case DIF_OP_CMP:
8790		case DIF_OP_SCMP:
8791		case DIF_OP_TST:
8792		case DIF_OP_BA:
8793		case DIF_OP_BE:
8794		case DIF_OP_BNE:
8795		case DIF_OP_BG:
8796		case DIF_OP_BGU:
8797		case DIF_OP_BGE:
8798		case DIF_OP_BGEU:
8799		case DIF_OP_BL:
8800		case DIF_OP_BLU:
8801		case DIF_OP_BLE:
8802		case DIF_OP_BLEU:
8803		case DIF_OP_RET:
8804		case DIF_OP_NOP:
8805		case DIF_OP_POPTS:
8806		case DIF_OP_FLUSHTS:
8807		case DIF_OP_SETX:
8808		case DIF_OP_SETS:
8809		case DIF_OP_LDGA:
8810		case DIF_OP_LDLS:
8811		case DIF_OP_STGS:
8812		case DIF_OP_STLS:
8813		case DIF_OP_PUSHTR:
8814		case DIF_OP_PUSHTV:
8815			break;
8816
8817		case DIF_OP_LDGS:
8818			if (v >= DIF_VAR_OTHER_UBASE)
8819				break;
8820
8821			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8822				break;
8823
8824			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8825			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8826			    v == DIF_VAR_EXECARGS ||
8827			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8828			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8829				break;
8830
8831			err += efunc(pc, "illegal variable %u\n", v);
8832			break;
8833
8834		case DIF_OP_LDTA:
8835		case DIF_OP_LDTS:
8836		case DIF_OP_LDGAA:
8837		case DIF_OP_LDTAA:
8838			err += efunc(pc, "illegal dynamic variable load\n");
8839			break;
8840
8841		case DIF_OP_STTS:
8842		case DIF_OP_STGAA:
8843		case DIF_OP_STTAA:
8844			err += efunc(pc, "illegal dynamic variable store\n");
8845			break;
8846
8847		case DIF_OP_CALL:
8848			if (subr == DIF_SUBR_ALLOCA ||
8849			    subr == DIF_SUBR_BCOPY ||
8850			    subr == DIF_SUBR_COPYIN ||
8851			    subr == DIF_SUBR_COPYINTO ||
8852			    subr == DIF_SUBR_COPYINSTR ||
8853			    subr == DIF_SUBR_INDEX ||
8854			    subr == DIF_SUBR_INET_NTOA ||
8855			    subr == DIF_SUBR_INET_NTOA6 ||
8856			    subr == DIF_SUBR_INET_NTOP ||
8857			    subr == DIF_SUBR_LLTOSTR ||
8858			    subr == DIF_SUBR_RINDEX ||
8859			    subr == DIF_SUBR_STRCHR ||
8860			    subr == DIF_SUBR_STRJOIN ||
8861			    subr == DIF_SUBR_STRRCHR ||
8862			    subr == DIF_SUBR_STRSTR ||
8863			    subr == DIF_SUBR_HTONS ||
8864			    subr == DIF_SUBR_HTONL ||
8865			    subr == DIF_SUBR_HTONLL ||
8866			    subr == DIF_SUBR_NTOHS ||
8867			    subr == DIF_SUBR_NTOHL ||
8868			    subr == DIF_SUBR_NTOHLL ||
8869			    subr == DIF_SUBR_MEMREF ||
8870			    subr == DIF_SUBR_TYPEREF)
8871				break;
8872
8873			err += efunc(pc, "invalid subr %u\n", subr);
8874			break;
8875
8876		default:
8877			err += efunc(pc, "invalid opcode %u\n",
8878			    DIF_INSTR_OP(instr));
8879		}
8880	}
8881
8882	return (err);
8883}
8884#endif
8885
8886/*
8887 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8888 * basis; 0 if not.
8889 */
8890static int
8891dtrace_difo_cacheable(dtrace_difo_t *dp)
8892{
8893	int i;
8894
8895	if (dp == NULL)
8896		return (0);
8897
8898	for (i = 0; i < dp->dtdo_varlen; i++) {
8899		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8900
8901		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8902			continue;
8903
8904		switch (v->dtdv_id) {
8905		case DIF_VAR_CURTHREAD:
8906		case DIF_VAR_PID:
8907		case DIF_VAR_TID:
8908		case DIF_VAR_EXECARGS:
8909		case DIF_VAR_EXECNAME:
8910		case DIF_VAR_ZONENAME:
8911			break;
8912
8913		default:
8914			return (0);
8915		}
8916	}
8917
8918	/*
8919	 * This DIF object may be cacheable.  Now we need to look for any
8920	 * array loading instructions, any memory loading instructions, or
8921	 * any stores to thread-local variables.
8922	 */
8923	for (i = 0; i < dp->dtdo_len; i++) {
8924		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8925
8926		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8927		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8928		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8929		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8930			return (0);
8931	}
8932
8933	return (1);
8934}
8935
8936static void
8937dtrace_difo_hold(dtrace_difo_t *dp)
8938{
8939	int i;
8940
8941	ASSERT(MUTEX_HELD(&dtrace_lock));
8942
8943	dp->dtdo_refcnt++;
8944	ASSERT(dp->dtdo_refcnt != 0);
8945
8946	/*
8947	 * We need to check this DIF object for references to the variable
8948	 * DIF_VAR_VTIMESTAMP.
8949	 */
8950	for (i = 0; i < dp->dtdo_varlen; i++) {
8951		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8952
8953		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8954			continue;
8955
8956		if (dtrace_vtime_references++ == 0)
8957			dtrace_vtime_enable();
8958	}
8959}
8960
8961/*
8962 * This routine calculates the dynamic variable chunksize for a given DIF
8963 * object.  The calculation is not fool-proof, and can probably be tricked by
8964 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8965 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8966 * if a dynamic variable size exceeds the chunksize.
8967 */
8968static void
8969dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8970{
8971	uint64_t sval = 0;
8972	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8973	const dif_instr_t *text = dp->dtdo_buf;
8974	uint_t pc, srd = 0;
8975	uint_t ttop = 0;
8976	size_t size, ksize;
8977	uint_t id, i;
8978
8979	for (pc = 0; pc < dp->dtdo_len; pc++) {
8980		dif_instr_t instr = text[pc];
8981		uint_t op = DIF_INSTR_OP(instr);
8982		uint_t rd = DIF_INSTR_RD(instr);
8983		uint_t r1 = DIF_INSTR_R1(instr);
8984		uint_t nkeys = 0;
8985		uchar_t scope = 0;
8986
8987		dtrace_key_t *key = tupregs;
8988
8989		switch (op) {
8990		case DIF_OP_SETX:
8991			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8992			srd = rd;
8993			continue;
8994
8995		case DIF_OP_STTS:
8996			key = &tupregs[DIF_DTR_NREGS];
8997			key[0].dttk_size = 0;
8998			key[1].dttk_size = 0;
8999			nkeys = 2;
9000			scope = DIFV_SCOPE_THREAD;
9001			break;
9002
9003		case DIF_OP_STGAA:
9004		case DIF_OP_STTAA:
9005			nkeys = ttop;
9006
9007			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9008				key[nkeys++].dttk_size = 0;
9009
9010			key[nkeys++].dttk_size = 0;
9011
9012			if (op == DIF_OP_STTAA) {
9013				scope = DIFV_SCOPE_THREAD;
9014			} else {
9015				scope = DIFV_SCOPE_GLOBAL;
9016			}
9017
9018			break;
9019
9020		case DIF_OP_PUSHTR:
9021			if (ttop == DIF_DTR_NREGS)
9022				return;
9023
9024			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9025				/*
9026				 * If the register for the size of the "pushtr"
9027				 * is %r0 (or the value is 0) and the type is
9028				 * a string, we'll use the system-wide default
9029				 * string size.
9030				 */
9031				tupregs[ttop++].dttk_size =
9032				    dtrace_strsize_default;
9033			} else {
9034				if (srd == 0)
9035					return;
9036
9037				tupregs[ttop++].dttk_size = sval;
9038			}
9039
9040			break;
9041
9042		case DIF_OP_PUSHTV:
9043			if (ttop == DIF_DTR_NREGS)
9044				return;
9045
9046			tupregs[ttop++].dttk_size = 0;
9047			break;
9048
9049		case DIF_OP_FLUSHTS:
9050			ttop = 0;
9051			break;
9052
9053		case DIF_OP_POPTS:
9054			if (ttop != 0)
9055				ttop--;
9056			break;
9057		}
9058
9059		sval = 0;
9060		srd = 0;
9061
9062		if (nkeys == 0)
9063			continue;
9064
9065		/*
9066		 * We have a dynamic variable allocation; calculate its size.
9067		 */
9068		for (ksize = 0, i = 0; i < nkeys; i++)
9069			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9070
9071		size = sizeof (dtrace_dynvar_t);
9072		size += sizeof (dtrace_key_t) * (nkeys - 1);
9073		size += ksize;
9074
9075		/*
9076		 * Now we need to determine the size of the stored data.
9077		 */
9078		id = DIF_INSTR_VAR(instr);
9079
9080		for (i = 0; i < dp->dtdo_varlen; i++) {
9081			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9082
9083			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9084				size += v->dtdv_type.dtdt_size;
9085				break;
9086			}
9087		}
9088
9089		if (i == dp->dtdo_varlen)
9090			return;
9091
9092		/*
9093		 * We have the size.  If this is larger than the chunk size
9094		 * for our dynamic variable state, reset the chunk size.
9095		 */
9096		size = P2ROUNDUP(size, sizeof (uint64_t));
9097
9098		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9099			vstate->dtvs_dynvars.dtds_chunksize = size;
9100	}
9101}
9102
9103static void
9104dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9105{
9106	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9107	uint_t id;
9108
9109	ASSERT(MUTEX_HELD(&dtrace_lock));
9110	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9111
9112	for (i = 0; i < dp->dtdo_varlen; i++) {
9113		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9114		dtrace_statvar_t *svar, ***svarp = NULL;
9115		size_t dsize = 0;
9116		uint8_t scope = v->dtdv_scope;
9117		int *np = NULL;
9118
9119		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9120			continue;
9121
9122		id -= DIF_VAR_OTHER_UBASE;
9123
9124		switch (scope) {
9125		case DIFV_SCOPE_THREAD:
9126			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9127				dtrace_difv_t *tlocals;
9128
9129				if ((ntlocals = (otlocals << 1)) == 0)
9130					ntlocals = 1;
9131
9132				osz = otlocals * sizeof (dtrace_difv_t);
9133				nsz = ntlocals * sizeof (dtrace_difv_t);
9134
9135				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9136
9137				if (osz != 0) {
9138					bcopy(vstate->dtvs_tlocals,
9139					    tlocals, osz);
9140					kmem_free(vstate->dtvs_tlocals, osz);
9141				}
9142
9143				vstate->dtvs_tlocals = tlocals;
9144				vstate->dtvs_ntlocals = ntlocals;
9145			}
9146
9147			vstate->dtvs_tlocals[id] = *v;
9148			continue;
9149
9150		case DIFV_SCOPE_LOCAL:
9151			np = &vstate->dtvs_nlocals;
9152			svarp = &vstate->dtvs_locals;
9153
9154			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9155				dsize = NCPU * (v->dtdv_type.dtdt_size +
9156				    sizeof (uint64_t));
9157			else
9158				dsize = NCPU * sizeof (uint64_t);
9159
9160			break;
9161
9162		case DIFV_SCOPE_GLOBAL:
9163			np = &vstate->dtvs_nglobals;
9164			svarp = &vstate->dtvs_globals;
9165
9166			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9167				dsize = v->dtdv_type.dtdt_size +
9168				    sizeof (uint64_t);
9169
9170			break;
9171
9172		default:
9173			ASSERT(0);
9174		}
9175
9176		while (id >= (oldsvars = *np)) {
9177			dtrace_statvar_t **statics;
9178			int newsvars, oldsize, newsize;
9179
9180			if ((newsvars = (oldsvars << 1)) == 0)
9181				newsvars = 1;
9182
9183			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9184			newsize = newsvars * sizeof (dtrace_statvar_t *);
9185
9186			statics = kmem_zalloc(newsize, KM_SLEEP);
9187
9188			if (oldsize != 0) {
9189				bcopy(*svarp, statics, oldsize);
9190				kmem_free(*svarp, oldsize);
9191			}
9192
9193			*svarp = statics;
9194			*np = newsvars;
9195		}
9196
9197		if ((svar = (*svarp)[id]) == NULL) {
9198			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9199			svar->dtsv_var = *v;
9200
9201			if ((svar->dtsv_size = dsize) != 0) {
9202				svar->dtsv_data = (uint64_t)(uintptr_t)
9203				    kmem_zalloc(dsize, KM_SLEEP);
9204			}
9205
9206			(*svarp)[id] = svar;
9207		}
9208
9209		svar->dtsv_refcnt++;
9210	}
9211
9212	dtrace_difo_chunksize(dp, vstate);
9213	dtrace_difo_hold(dp);
9214}
9215
9216#if defined(sun)
9217static dtrace_difo_t *
9218dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9219{
9220	dtrace_difo_t *new;
9221	size_t sz;
9222
9223	ASSERT(dp->dtdo_buf != NULL);
9224	ASSERT(dp->dtdo_refcnt != 0);
9225
9226	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9227
9228	ASSERT(dp->dtdo_buf != NULL);
9229	sz = dp->dtdo_len * sizeof (dif_instr_t);
9230	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9231	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9232	new->dtdo_len = dp->dtdo_len;
9233
9234	if (dp->dtdo_strtab != NULL) {
9235		ASSERT(dp->dtdo_strlen != 0);
9236		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9237		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9238		new->dtdo_strlen = dp->dtdo_strlen;
9239	}
9240
9241	if (dp->dtdo_inttab != NULL) {
9242		ASSERT(dp->dtdo_intlen != 0);
9243		sz = dp->dtdo_intlen * sizeof (uint64_t);
9244		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9245		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9246		new->dtdo_intlen = dp->dtdo_intlen;
9247	}
9248
9249	if (dp->dtdo_vartab != NULL) {
9250		ASSERT(dp->dtdo_varlen != 0);
9251		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9252		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9253		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9254		new->dtdo_varlen = dp->dtdo_varlen;
9255	}
9256
9257	dtrace_difo_init(new, vstate);
9258	return (new);
9259}
9260#endif
9261
9262static void
9263dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9264{
9265	int i;
9266
9267	ASSERT(dp->dtdo_refcnt == 0);
9268
9269	for (i = 0; i < dp->dtdo_varlen; i++) {
9270		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9271		dtrace_statvar_t *svar, **svarp = NULL;
9272		uint_t id;
9273		uint8_t scope = v->dtdv_scope;
9274		int *np = NULL;
9275
9276		switch (scope) {
9277		case DIFV_SCOPE_THREAD:
9278			continue;
9279
9280		case DIFV_SCOPE_LOCAL:
9281			np = &vstate->dtvs_nlocals;
9282			svarp = vstate->dtvs_locals;
9283			break;
9284
9285		case DIFV_SCOPE_GLOBAL:
9286			np = &vstate->dtvs_nglobals;
9287			svarp = vstate->dtvs_globals;
9288			break;
9289
9290		default:
9291			ASSERT(0);
9292		}
9293
9294		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9295			continue;
9296
9297		id -= DIF_VAR_OTHER_UBASE;
9298		ASSERT(id < *np);
9299
9300		svar = svarp[id];
9301		ASSERT(svar != NULL);
9302		ASSERT(svar->dtsv_refcnt > 0);
9303
9304		if (--svar->dtsv_refcnt > 0)
9305			continue;
9306
9307		if (svar->dtsv_size != 0) {
9308			ASSERT(svar->dtsv_data != 0);
9309			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9310			    svar->dtsv_size);
9311		}
9312
9313		kmem_free(svar, sizeof (dtrace_statvar_t));
9314		svarp[id] = NULL;
9315	}
9316
9317	if (dp->dtdo_buf != NULL)
9318		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9319	if (dp->dtdo_inttab != NULL)
9320		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9321	if (dp->dtdo_strtab != NULL)
9322		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9323	if (dp->dtdo_vartab != NULL)
9324		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9325
9326	kmem_free(dp, sizeof (dtrace_difo_t));
9327}
9328
9329static void
9330dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9331{
9332	int i;
9333
9334	ASSERT(MUTEX_HELD(&dtrace_lock));
9335	ASSERT(dp->dtdo_refcnt != 0);
9336
9337	for (i = 0; i < dp->dtdo_varlen; i++) {
9338		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9339
9340		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9341			continue;
9342
9343		ASSERT(dtrace_vtime_references > 0);
9344		if (--dtrace_vtime_references == 0)
9345			dtrace_vtime_disable();
9346	}
9347
9348	if (--dp->dtdo_refcnt == 0)
9349		dtrace_difo_destroy(dp, vstate);
9350}
9351
9352/*
9353 * DTrace Format Functions
9354 */
9355static uint16_t
9356dtrace_format_add(dtrace_state_t *state, char *str)
9357{
9358	char *fmt, **new;
9359	uint16_t ndx, len = strlen(str) + 1;
9360
9361	fmt = kmem_zalloc(len, KM_SLEEP);
9362	bcopy(str, fmt, len);
9363
9364	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9365		if (state->dts_formats[ndx] == NULL) {
9366			state->dts_formats[ndx] = fmt;
9367			return (ndx + 1);
9368		}
9369	}
9370
9371	if (state->dts_nformats == USHRT_MAX) {
9372		/*
9373		 * This is only likely if a denial-of-service attack is being
9374		 * attempted.  As such, it's okay to fail silently here.
9375		 */
9376		kmem_free(fmt, len);
9377		return (0);
9378	}
9379
9380	/*
9381	 * For simplicity, we always resize the formats array to be exactly the
9382	 * number of formats.
9383	 */
9384	ndx = state->dts_nformats++;
9385	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9386
9387	if (state->dts_formats != NULL) {
9388		ASSERT(ndx != 0);
9389		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9390		kmem_free(state->dts_formats, ndx * sizeof (char *));
9391	}
9392
9393	state->dts_formats = new;
9394	state->dts_formats[ndx] = fmt;
9395
9396	return (ndx + 1);
9397}
9398
9399static void
9400dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9401{
9402	char *fmt;
9403
9404	ASSERT(state->dts_formats != NULL);
9405	ASSERT(format <= state->dts_nformats);
9406	ASSERT(state->dts_formats[format - 1] != NULL);
9407
9408	fmt = state->dts_formats[format - 1];
9409	kmem_free(fmt, strlen(fmt) + 1);
9410	state->dts_formats[format - 1] = NULL;
9411}
9412
9413static void
9414dtrace_format_destroy(dtrace_state_t *state)
9415{
9416	int i;
9417
9418	if (state->dts_nformats == 0) {
9419		ASSERT(state->dts_formats == NULL);
9420		return;
9421	}
9422
9423	ASSERT(state->dts_formats != NULL);
9424
9425	for (i = 0; i < state->dts_nformats; i++) {
9426		char *fmt = state->dts_formats[i];
9427
9428		if (fmt == NULL)
9429			continue;
9430
9431		kmem_free(fmt, strlen(fmt) + 1);
9432	}
9433
9434	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9435	state->dts_nformats = 0;
9436	state->dts_formats = NULL;
9437}
9438
9439/*
9440 * DTrace Predicate Functions
9441 */
9442static dtrace_predicate_t *
9443dtrace_predicate_create(dtrace_difo_t *dp)
9444{
9445	dtrace_predicate_t *pred;
9446
9447	ASSERT(MUTEX_HELD(&dtrace_lock));
9448	ASSERT(dp->dtdo_refcnt != 0);
9449
9450	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9451	pred->dtp_difo = dp;
9452	pred->dtp_refcnt = 1;
9453
9454	if (!dtrace_difo_cacheable(dp))
9455		return (pred);
9456
9457	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9458		/*
9459		 * This is only theoretically possible -- we have had 2^32
9460		 * cacheable predicates on this machine.  We cannot allow any
9461		 * more predicates to become cacheable:  as unlikely as it is,
9462		 * there may be a thread caching a (now stale) predicate cache
9463		 * ID. (N.B.: the temptation is being successfully resisted to
9464		 * have this cmn_err() "Holy shit -- we executed this code!")
9465		 */
9466		return (pred);
9467	}
9468
9469	pred->dtp_cacheid = dtrace_predcache_id++;
9470
9471	return (pred);
9472}
9473
9474static void
9475dtrace_predicate_hold(dtrace_predicate_t *pred)
9476{
9477	ASSERT(MUTEX_HELD(&dtrace_lock));
9478	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9479	ASSERT(pred->dtp_refcnt > 0);
9480
9481	pred->dtp_refcnt++;
9482}
9483
9484static void
9485dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9486{
9487	dtrace_difo_t *dp = pred->dtp_difo;
9488
9489	ASSERT(MUTEX_HELD(&dtrace_lock));
9490	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9491	ASSERT(pred->dtp_refcnt > 0);
9492
9493	if (--pred->dtp_refcnt == 0) {
9494		dtrace_difo_release(pred->dtp_difo, vstate);
9495		kmem_free(pred, sizeof (dtrace_predicate_t));
9496	}
9497}
9498
9499/*
9500 * DTrace Action Description Functions
9501 */
9502static dtrace_actdesc_t *
9503dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9504    uint64_t uarg, uint64_t arg)
9505{
9506	dtrace_actdesc_t *act;
9507
9508#if defined(sun)
9509	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9510	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9511#endif
9512
9513	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9514	act->dtad_kind = kind;
9515	act->dtad_ntuple = ntuple;
9516	act->dtad_uarg = uarg;
9517	act->dtad_arg = arg;
9518	act->dtad_refcnt = 1;
9519
9520	return (act);
9521}
9522
9523static void
9524dtrace_actdesc_hold(dtrace_actdesc_t *act)
9525{
9526	ASSERT(act->dtad_refcnt >= 1);
9527	act->dtad_refcnt++;
9528}
9529
9530static void
9531dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9532{
9533	dtrace_actkind_t kind = act->dtad_kind;
9534	dtrace_difo_t *dp;
9535
9536	ASSERT(act->dtad_refcnt >= 1);
9537
9538	if (--act->dtad_refcnt != 0)
9539		return;
9540
9541	if ((dp = act->dtad_difo) != NULL)
9542		dtrace_difo_release(dp, vstate);
9543
9544	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9545		char *str = (char *)(uintptr_t)act->dtad_arg;
9546
9547#if defined(sun)
9548		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9549		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9550#endif
9551
9552		if (str != NULL)
9553			kmem_free(str, strlen(str) + 1);
9554	}
9555
9556	kmem_free(act, sizeof (dtrace_actdesc_t));
9557}
9558
9559/*
9560 * DTrace ECB Functions
9561 */
9562static dtrace_ecb_t *
9563dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9564{
9565	dtrace_ecb_t *ecb;
9566	dtrace_epid_t epid;
9567
9568	ASSERT(MUTEX_HELD(&dtrace_lock));
9569
9570	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9571	ecb->dte_predicate = NULL;
9572	ecb->dte_probe = probe;
9573
9574	/*
9575	 * The default size is the size of the default action: recording
9576	 * the epid.
9577	 */
9578	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9579	ecb->dte_alignment = sizeof (dtrace_epid_t);
9580
9581	epid = state->dts_epid++;
9582
9583	if (epid - 1 >= state->dts_necbs) {
9584		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9585		int necbs = state->dts_necbs << 1;
9586
9587		ASSERT(epid == state->dts_necbs + 1);
9588
9589		if (necbs == 0) {
9590			ASSERT(oecbs == NULL);
9591			necbs = 1;
9592		}
9593
9594		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9595
9596		if (oecbs != NULL)
9597			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9598
9599		dtrace_membar_producer();
9600		state->dts_ecbs = ecbs;
9601
9602		if (oecbs != NULL) {
9603			/*
9604			 * If this state is active, we must dtrace_sync()
9605			 * before we can free the old dts_ecbs array:  we're
9606			 * coming in hot, and there may be active ring
9607			 * buffer processing (which indexes into the dts_ecbs
9608			 * array) on another CPU.
9609			 */
9610			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9611				dtrace_sync();
9612
9613			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9614		}
9615
9616		dtrace_membar_producer();
9617		state->dts_necbs = necbs;
9618	}
9619
9620	ecb->dte_state = state;
9621
9622	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9623	dtrace_membar_producer();
9624	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9625
9626	return (ecb);
9627}
9628
9629static void
9630dtrace_ecb_enable(dtrace_ecb_t *ecb)
9631{
9632	dtrace_probe_t *probe = ecb->dte_probe;
9633
9634	ASSERT(MUTEX_HELD(&cpu_lock));
9635	ASSERT(MUTEX_HELD(&dtrace_lock));
9636	ASSERT(ecb->dte_next == NULL);
9637
9638	if (probe == NULL) {
9639		/*
9640		 * This is the NULL probe -- there's nothing to do.
9641		 */
9642		return;
9643	}
9644
9645	if (probe->dtpr_ecb == NULL) {
9646		dtrace_provider_t *prov = probe->dtpr_provider;
9647
9648		/*
9649		 * We're the first ECB on this probe.
9650		 */
9651		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9652
9653		if (ecb->dte_predicate != NULL)
9654			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9655
9656		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9657		    probe->dtpr_id, probe->dtpr_arg);
9658	} else {
9659		/*
9660		 * This probe is already active.  Swing the last pointer to
9661		 * point to the new ECB, and issue a dtrace_sync() to assure
9662		 * that all CPUs have seen the change.
9663		 */
9664		ASSERT(probe->dtpr_ecb_last != NULL);
9665		probe->dtpr_ecb_last->dte_next = ecb;
9666		probe->dtpr_ecb_last = ecb;
9667		probe->dtpr_predcache = 0;
9668
9669		dtrace_sync();
9670	}
9671}
9672
9673static void
9674dtrace_ecb_resize(dtrace_ecb_t *ecb)
9675{
9676	uint32_t maxalign = sizeof (dtrace_epid_t);
9677	uint32_t align = sizeof (uint8_t), offs, diff;
9678	dtrace_action_t *act;
9679	int wastuple = 0;
9680	uint32_t aggbase = UINT32_MAX;
9681	dtrace_state_t *state = ecb->dte_state;
9682
9683	/*
9684	 * If we record anything, we always record the epid.  (And we always
9685	 * record it first.)
9686	 */
9687	offs = sizeof (dtrace_epid_t);
9688	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9689
9690	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9691		dtrace_recdesc_t *rec = &act->dta_rec;
9692
9693		if ((align = rec->dtrd_alignment) > maxalign)
9694			maxalign = align;
9695
9696		if (!wastuple && act->dta_intuple) {
9697			/*
9698			 * This is the first record in a tuple.  Align the
9699			 * offset to be at offset 4 in an 8-byte aligned
9700			 * block.
9701			 */
9702			diff = offs + sizeof (dtrace_aggid_t);
9703
9704			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9705				offs += sizeof (uint64_t) - diff;
9706
9707			aggbase = offs - sizeof (dtrace_aggid_t);
9708			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9709		}
9710
9711		/*LINTED*/
9712		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9713			/*
9714			 * The current offset is not properly aligned; align it.
9715			 */
9716			offs += align - diff;
9717		}
9718
9719		rec->dtrd_offset = offs;
9720
9721		if (offs + rec->dtrd_size > ecb->dte_needed) {
9722			ecb->dte_needed = offs + rec->dtrd_size;
9723
9724			if (ecb->dte_needed > state->dts_needed)
9725				state->dts_needed = ecb->dte_needed;
9726		}
9727
9728		if (DTRACEACT_ISAGG(act->dta_kind)) {
9729			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9730			dtrace_action_t *first = agg->dtag_first, *prev;
9731
9732			ASSERT(rec->dtrd_size != 0 && first != NULL);
9733			ASSERT(wastuple);
9734			ASSERT(aggbase != UINT32_MAX);
9735
9736			agg->dtag_base = aggbase;
9737
9738			while ((prev = first->dta_prev) != NULL &&
9739			    DTRACEACT_ISAGG(prev->dta_kind)) {
9740				agg = (dtrace_aggregation_t *)prev;
9741				first = agg->dtag_first;
9742			}
9743
9744			if (prev != NULL) {
9745				offs = prev->dta_rec.dtrd_offset +
9746				    prev->dta_rec.dtrd_size;
9747			} else {
9748				offs = sizeof (dtrace_epid_t);
9749			}
9750			wastuple = 0;
9751		} else {
9752			if (!act->dta_intuple)
9753				ecb->dte_size = offs + rec->dtrd_size;
9754
9755			offs += rec->dtrd_size;
9756		}
9757
9758		wastuple = act->dta_intuple;
9759	}
9760
9761	if ((act = ecb->dte_action) != NULL &&
9762	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9763	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9764		/*
9765		 * If the size is still sizeof (dtrace_epid_t), then all
9766		 * actions store no data; set the size to 0.
9767		 */
9768		ecb->dte_alignment = maxalign;
9769		ecb->dte_size = 0;
9770
9771		/*
9772		 * If the needed space is still sizeof (dtrace_epid_t), then
9773		 * all actions need no additional space; set the needed
9774		 * size to 0.
9775		 */
9776		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9777			ecb->dte_needed = 0;
9778
9779		return;
9780	}
9781
9782	/*
9783	 * Set our alignment, and make sure that the dte_size and dte_needed
9784	 * are aligned to the size of an EPID.
9785	 */
9786	ecb->dte_alignment = maxalign;
9787	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9788	    ~(sizeof (dtrace_epid_t) - 1);
9789	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9790	    ~(sizeof (dtrace_epid_t) - 1);
9791	ASSERT(ecb->dte_size <= ecb->dte_needed);
9792}
9793
9794static dtrace_action_t *
9795dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9796{
9797	dtrace_aggregation_t *agg;
9798	size_t size = sizeof (uint64_t);
9799	int ntuple = desc->dtad_ntuple;
9800	dtrace_action_t *act;
9801	dtrace_recdesc_t *frec;
9802	dtrace_aggid_t aggid;
9803	dtrace_state_t *state = ecb->dte_state;
9804
9805	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9806	agg->dtag_ecb = ecb;
9807
9808	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9809
9810	switch (desc->dtad_kind) {
9811	case DTRACEAGG_MIN:
9812		agg->dtag_initial = INT64_MAX;
9813		agg->dtag_aggregate = dtrace_aggregate_min;
9814		break;
9815
9816	case DTRACEAGG_MAX:
9817		agg->dtag_initial = INT64_MIN;
9818		agg->dtag_aggregate = dtrace_aggregate_max;
9819		break;
9820
9821	case DTRACEAGG_COUNT:
9822		agg->dtag_aggregate = dtrace_aggregate_count;
9823		break;
9824
9825	case DTRACEAGG_QUANTIZE:
9826		agg->dtag_aggregate = dtrace_aggregate_quantize;
9827		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9828		    sizeof (uint64_t);
9829		break;
9830
9831	case DTRACEAGG_LQUANTIZE: {
9832		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9833		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9834
9835		agg->dtag_initial = desc->dtad_arg;
9836		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9837
9838		if (step == 0 || levels == 0)
9839			goto err;
9840
9841		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9842		break;
9843	}
9844
9845	case DTRACEAGG_AVG:
9846		agg->dtag_aggregate = dtrace_aggregate_avg;
9847		size = sizeof (uint64_t) * 2;
9848		break;
9849
9850	case DTRACEAGG_STDDEV:
9851		agg->dtag_aggregate = dtrace_aggregate_stddev;
9852		size = sizeof (uint64_t) * 4;
9853		break;
9854
9855	case DTRACEAGG_SUM:
9856		agg->dtag_aggregate = dtrace_aggregate_sum;
9857		break;
9858
9859	default:
9860		goto err;
9861	}
9862
9863	agg->dtag_action.dta_rec.dtrd_size = size;
9864
9865	if (ntuple == 0)
9866		goto err;
9867
9868	/*
9869	 * We must make sure that we have enough actions for the n-tuple.
9870	 */
9871	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9872		if (DTRACEACT_ISAGG(act->dta_kind))
9873			break;
9874
9875		if (--ntuple == 0) {
9876			/*
9877			 * This is the action with which our n-tuple begins.
9878			 */
9879			agg->dtag_first = act;
9880			goto success;
9881		}
9882	}
9883
9884	/*
9885	 * This n-tuple is short by ntuple elements.  Return failure.
9886	 */
9887	ASSERT(ntuple != 0);
9888err:
9889	kmem_free(agg, sizeof (dtrace_aggregation_t));
9890	return (NULL);
9891
9892success:
9893	/*
9894	 * If the last action in the tuple has a size of zero, it's actually
9895	 * an expression argument for the aggregating action.
9896	 */
9897	ASSERT(ecb->dte_action_last != NULL);
9898	act = ecb->dte_action_last;
9899
9900	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9901		ASSERT(act->dta_difo != NULL);
9902
9903		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9904			agg->dtag_hasarg = 1;
9905	}
9906
9907	/*
9908	 * We need to allocate an id for this aggregation.
9909	 */
9910#if defined(sun)
9911	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9912	    VM_BESTFIT | VM_SLEEP);
9913#else
9914	aggid = alloc_unr(state->dts_aggid_arena);
9915#endif
9916
9917	if (aggid - 1 >= state->dts_naggregations) {
9918		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9919		dtrace_aggregation_t **aggs;
9920		int naggs = state->dts_naggregations << 1;
9921		int onaggs = state->dts_naggregations;
9922
9923		ASSERT(aggid == state->dts_naggregations + 1);
9924
9925		if (naggs == 0) {
9926			ASSERT(oaggs == NULL);
9927			naggs = 1;
9928		}
9929
9930		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9931
9932		if (oaggs != NULL) {
9933			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9934			kmem_free(oaggs, onaggs * sizeof (*aggs));
9935		}
9936
9937		state->dts_aggregations = aggs;
9938		state->dts_naggregations = naggs;
9939	}
9940
9941	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9942	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9943
9944	frec = &agg->dtag_first->dta_rec;
9945	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9946		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9947
9948	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9949		ASSERT(!act->dta_intuple);
9950		act->dta_intuple = 1;
9951	}
9952
9953	return (&agg->dtag_action);
9954}
9955
9956static void
9957dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9958{
9959	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9960	dtrace_state_t *state = ecb->dte_state;
9961	dtrace_aggid_t aggid = agg->dtag_id;
9962
9963	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9964#if defined(sun)
9965	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9966#else
9967	free_unr(state->dts_aggid_arena, aggid);
9968#endif
9969
9970	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9971	state->dts_aggregations[aggid - 1] = NULL;
9972
9973	kmem_free(agg, sizeof (dtrace_aggregation_t));
9974}
9975
9976static int
9977dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9978{
9979	dtrace_action_t *action, *last;
9980	dtrace_difo_t *dp = desc->dtad_difo;
9981	uint32_t size = 0, align = sizeof (uint8_t), mask;
9982	uint16_t format = 0;
9983	dtrace_recdesc_t *rec;
9984	dtrace_state_t *state = ecb->dte_state;
9985	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
9986	uint64_t arg = desc->dtad_arg;
9987
9988	ASSERT(MUTEX_HELD(&dtrace_lock));
9989	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9990
9991	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9992		/*
9993		 * If this is an aggregating action, there must be neither
9994		 * a speculate nor a commit on the action chain.
9995		 */
9996		dtrace_action_t *act;
9997
9998		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9999			if (act->dta_kind == DTRACEACT_COMMIT)
10000				return (EINVAL);
10001
10002			if (act->dta_kind == DTRACEACT_SPECULATE)
10003				return (EINVAL);
10004		}
10005
10006		action = dtrace_ecb_aggregation_create(ecb, desc);
10007
10008		if (action == NULL)
10009			return (EINVAL);
10010	} else {
10011		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10012		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10013		    dp != NULL && dp->dtdo_destructive)) {
10014			state->dts_destructive = 1;
10015		}
10016
10017		switch (desc->dtad_kind) {
10018		case DTRACEACT_PRINTF:
10019		case DTRACEACT_PRINTA:
10020		case DTRACEACT_SYSTEM:
10021		case DTRACEACT_FREOPEN:
10022			/*
10023			 * We know that our arg is a string -- turn it into a
10024			 * format.
10025			 */
10026			if (arg == 0) {
10027				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10028				format = 0;
10029			} else {
10030				ASSERT(arg != 0);
10031#if defined(sun)
10032				ASSERT(arg > KERNELBASE);
10033#endif
10034				format = dtrace_format_add(state,
10035				    (char *)(uintptr_t)arg);
10036			}
10037
10038			/*FALLTHROUGH*/
10039		case DTRACEACT_LIBACT:
10040		case DTRACEACT_DIFEXPR:
10041			if (dp == NULL)
10042				return (EINVAL);
10043
10044			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10045				break;
10046
10047			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10048				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10049					return (EINVAL);
10050
10051				size = opt[DTRACEOPT_STRSIZE];
10052			}
10053
10054			break;
10055
10056		case DTRACEACT_STACK:
10057			if ((nframes = arg) == 0) {
10058				nframes = opt[DTRACEOPT_STACKFRAMES];
10059				ASSERT(nframes > 0);
10060				arg = nframes;
10061			}
10062
10063			size = nframes * sizeof (pc_t);
10064			break;
10065
10066		case DTRACEACT_JSTACK:
10067			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10068				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10069
10070			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10071				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10072
10073			arg = DTRACE_USTACK_ARG(nframes, strsize);
10074
10075			/*FALLTHROUGH*/
10076		case DTRACEACT_USTACK:
10077			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10078			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10079				strsize = DTRACE_USTACK_STRSIZE(arg);
10080				nframes = opt[DTRACEOPT_USTACKFRAMES];
10081				ASSERT(nframes > 0);
10082				arg = DTRACE_USTACK_ARG(nframes, strsize);
10083			}
10084
10085			/*
10086			 * Save a slot for the pid.
10087			 */
10088			size = (nframes + 1) * sizeof (uint64_t);
10089			size += DTRACE_USTACK_STRSIZE(arg);
10090			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10091
10092			break;
10093
10094		case DTRACEACT_SYM:
10095		case DTRACEACT_MOD:
10096			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10097			    sizeof (uint64_t)) ||
10098			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10099				return (EINVAL);
10100			break;
10101
10102		case DTRACEACT_USYM:
10103		case DTRACEACT_UMOD:
10104		case DTRACEACT_UADDR:
10105			if (dp == NULL ||
10106			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10107			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10108				return (EINVAL);
10109
10110			/*
10111			 * We have a slot for the pid, plus a slot for the
10112			 * argument.  To keep things simple (aligned with
10113			 * bitness-neutral sizing), we store each as a 64-bit
10114			 * quantity.
10115			 */
10116			size = 2 * sizeof (uint64_t);
10117			break;
10118
10119		case DTRACEACT_STOP:
10120		case DTRACEACT_BREAKPOINT:
10121		case DTRACEACT_PANIC:
10122			break;
10123
10124		case DTRACEACT_CHILL:
10125		case DTRACEACT_DISCARD:
10126		case DTRACEACT_RAISE:
10127			if (dp == NULL)
10128				return (EINVAL);
10129			break;
10130
10131		case DTRACEACT_EXIT:
10132			if (dp == NULL ||
10133			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10134			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10135				return (EINVAL);
10136			break;
10137
10138		case DTRACEACT_SPECULATE:
10139			if (ecb->dte_size > sizeof (dtrace_epid_t))
10140				return (EINVAL);
10141
10142			if (dp == NULL)
10143				return (EINVAL);
10144
10145			state->dts_speculates = 1;
10146			break;
10147
10148		case DTRACEACT_PRINTM:
10149		    	size = dp->dtdo_rtype.dtdt_size;
10150			break;
10151
10152		case DTRACEACT_PRINTT:
10153		    	size = dp->dtdo_rtype.dtdt_size;
10154			break;
10155
10156		case DTRACEACT_COMMIT: {
10157			dtrace_action_t *act = ecb->dte_action;
10158
10159			for (; act != NULL; act = act->dta_next) {
10160				if (act->dta_kind == DTRACEACT_COMMIT)
10161					return (EINVAL);
10162			}
10163
10164			if (dp == NULL)
10165				return (EINVAL);
10166			break;
10167		}
10168
10169		default:
10170			return (EINVAL);
10171		}
10172
10173		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10174			/*
10175			 * If this is a data-storing action or a speculate,
10176			 * we must be sure that there isn't a commit on the
10177			 * action chain.
10178			 */
10179			dtrace_action_t *act = ecb->dte_action;
10180
10181			for (; act != NULL; act = act->dta_next) {
10182				if (act->dta_kind == DTRACEACT_COMMIT)
10183					return (EINVAL);
10184			}
10185		}
10186
10187		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10188		action->dta_rec.dtrd_size = size;
10189	}
10190
10191	action->dta_refcnt = 1;
10192	rec = &action->dta_rec;
10193	size = rec->dtrd_size;
10194
10195	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10196		if (!(size & mask)) {
10197			align = mask + 1;
10198			break;
10199		}
10200	}
10201
10202	action->dta_kind = desc->dtad_kind;
10203
10204	if ((action->dta_difo = dp) != NULL)
10205		dtrace_difo_hold(dp);
10206
10207	rec->dtrd_action = action->dta_kind;
10208	rec->dtrd_arg = arg;
10209	rec->dtrd_uarg = desc->dtad_uarg;
10210	rec->dtrd_alignment = (uint16_t)align;
10211	rec->dtrd_format = format;
10212
10213	if ((last = ecb->dte_action_last) != NULL) {
10214		ASSERT(ecb->dte_action != NULL);
10215		action->dta_prev = last;
10216		last->dta_next = action;
10217	} else {
10218		ASSERT(ecb->dte_action == NULL);
10219		ecb->dte_action = action;
10220	}
10221
10222	ecb->dte_action_last = action;
10223
10224	return (0);
10225}
10226
10227static void
10228dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10229{
10230	dtrace_action_t *act = ecb->dte_action, *next;
10231	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10232	dtrace_difo_t *dp;
10233	uint16_t format;
10234
10235	if (act != NULL && act->dta_refcnt > 1) {
10236		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10237		act->dta_refcnt--;
10238	} else {
10239		for (; act != NULL; act = next) {
10240			next = act->dta_next;
10241			ASSERT(next != NULL || act == ecb->dte_action_last);
10242			ASSERT(act->dta_refcnt == 1);
10243
10244			if ((format = act->dta_rec.dtrd_format) != 0)
10245				dtrace_format_remove(ecb->dte_state, format);
10246
10247			if ((dp = act->dta_difo) != NULL)
10248				dtrace_difo_release(dp, vstate);
10249
10250			if (DTRACEACT_ISAGG(act->dta_kind)) {
10251				dtrace_ecb_aggregation_destroy(ecb, act);
10252			} else {
10253				kmem_free(act, sizeof (dtrace_action_t));
10254			}
10255		}
10256	}
10257
10258	ecb->dte_action = NULL;
10259	ecb->dte_action_last = NULL;
10260	ecb->dte_size = sizeof (dtrace_epid_t);
10261}
10262
10263static void
10264dtrace_ecb_disable(dtrace_ecb_t *ecb)
10265{
10266	/*
10267	 * We disable the ECB by removing it from its probe.
10268	 */
10269	dtrace_ecb_t *pecb, *prev = NULL;
10270	dtrace_probe_t *probe = ecb->dte_probe;
10271
10272	ASSERT(MUTEX_HELD(&dtrace_lock));
10273
10274	if (probe == NULL) {
10275		/*
10276		 * This is the NULL probe; there is nothing to disable.
10277		 */
10278		return;
10279	}
10280
10281	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10282		if (pecb == ecb)
10283			break;
10284		prev = pecb;
10285	}
10286
10287	ASSERT(pecb != NULL);
10288
10289	if (prev == NULL) {
10290		probe->dtpr_ecb = ecb->dte_next;
10291	} else {
10292		prev->dte_next = ecb->dte_next;
10293	}
10294
10295	if (ecb == probe->dtpr_ecb_last) {
10296		ASSERT(ecb->dte_next == NULL);
10297		probe->dtpr_ecb_last = prev;
10298	}
10299
10300	/*
10301	 * The ECB has been disconnected from the probe; now sync to assure
10302	 * that all CPUs have seen the change before returning.
10303	 */
10304	dtrace_sync();
10305
10306	if (probe->dtpr_ecb == NULL) {
10307		/*
10308		 * That was the last ECB on the probe; clear the predicate
10309		 * cache ID for the probe, disable it and sync one more time
10310		 * to assure that we'll never hit it again.
10311		 */
10312		dtrace_provider_t *prov = probe->dtpr_provider;
10313
10314		ASSERT(ecb->dte_next == NULL);
10315		ASSERT(probe->dtpr_ecb_last == NULL);
10316		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10317		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10318		    probe->dtpr_id, probe->dtpr_arg);
10319		dtrace_sync();
10320	} else {
10321		/*
10322		 * There is at least one ECB remaining on the probe.  If there
10323		 * is _exactly_ one, set the probe's predicate cache ID to be
10324		 * the predicate cache ID of the remaining ECB.
10325		 */
10326		ASSERT(probe->dtpr_ecb_last != NULL);
10327		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10328
10329		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10330			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10331
10332			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10333
10334			if (p != NULL)
10335				probe->dtpr_predcache = p->dtp_cacheid;
10336		}
10337
10338		ecb->dte_next = NULL;
10339	}
10340}
10341
10342static void
10343dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10344{
10345	dtrace_state_t *state = ecb->dte_state;
10346	dtrace_vstate_t *vstate = &state->dts_vstate;
10347	dtrace_predicate_t *pred;
10348	dtrace_epid_t epid = ecb->dte_epid;
10349
10350	ASSERT(MUTEX_HELD(&dtrace_lock));
10351	ASSERT(ecb->dte_next == NULL);
10352	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10353
10354	if ((pred = ecb->dte_predicate) != NULL)
10355		dtrace_predicate_release(pred, vstate);
10356
10357	dtrace_ecb_action_remove(ecb);
10358
10359	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10360	state->dts_ecbs[epid - 1] = NULL;
10361
10362	kmem_free(ecb, sizeof (dtrace_ecb_t));
10363}
10364
10365static dtrace_ecb_t *
10366dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10367    dtrace_enabling_t *enab)
10368{
10369	dtrace_ecb_t *ecb;
10370	dtrace_predicate_t *pred;
10371	dtrace_actdesc_t *act;
10372	dtrace_provider_t *prov;
10373	dtrace_ecbdesc_t *desc = enab->dten_current;
10374
10375	ASSERT(MUTEX_HELD(&dtrace_lock));
10376	ASSERT(state != NULL);
10377
10378	ecb = dtrace_ecb_add(state, probe);
10379	ecb->dte_uarg = desc->dted_uarg;
10380
10381	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10382		dtrace_predicate_hold(pred);
10383		ecb->dte_predicate = pred;
10384	}
10385
10386	if (probe != NULL) {
10387		/*
10388		 * If the provider shows more leg than the consumer is old
10389		 * enough to see, we need to enable the appropriate implicit
10390		 * predicate bits to prevent the ecb from activating at
10391		 * revealing times.
10392		 *
10393		 * Providers specifying DTRACE_PRIV_USER at register time
10394		 * are stating that they need the /proc-style privilege
10395		 * model to be enforced, and this is what DTRACE_COND_OWNER
10396		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10397		 */
10398		prov = probe->dtpr_provider;
10399		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10400		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10401			ecb->dte_cond |= DTRACE_COND_OWNER;
10402
10403		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10404		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10405			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10406
10407		/*
10408		 * If the provider shows us kernel innards and the user
10409		 * is lacking sufficient privilege, enable the
10410		 * DTRACE_COND_USERMODE implicit predicate.
10411		 */
10412		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10413		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10414			ecb->dte_cond |= DTRACE_COND_USERMODE;
10415	}
10416
10417	if (dtrace_ecb_create_cache != NULL) {
10418		/*
10419		 * If we have a cached ecb, we'll use its action list instead
10420		 * of creating our own (saving both time and space).
10421		 */
10422		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10423		dtrace_action_t *act = cached->dte_action;
10424
10425		if (act != NULL) {
10426			ASSERT(act->dta_refcnt > 0);
10427			act->dta_refcnt++;
10428			ecb->dte_action = act;
10429			ecb->dte_action_last = cached->dte_action_last;
10430			ecb->dte_needed = cached->dte_needed;
10431			ecb->dte_size = cached->dte_size;
10432			ecb->dte_alignment = cached->dte_alignment;
10433		}
10434
10435		return (ecb);
10436	}
10437
10438	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10439		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10440			dtrace_ecb_destroy(ecb);
10441			return (NULL);
10442		}
10443	}
10444
10445	dtrace_ecb_resize(ecb);
10446
10447	return (dtrace_ecb_create_cache = ecb);
10448}
10449
10450static int
10451dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10452{
10453	dtrace_ecb_t *ecb;
10454	dtrace_enabling_t *enab = arg;
10455	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10456
10457	ASSERT(state != NULL);
10458
10459	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10460		/*
10461		 * This probe was created in a generation for which this
10462		 * enabling has previously created ECBs; we don't want to
10463		 * enable it again, so just kick out.
10464		 */
10465		return (DTRACE_MATCH_NEXT);
10466	}
10467
10468	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10469		return (DTRACE_MATCH_DONE);
10470
10471	dtrace_ecb_enable(ecb);
10472	return (DTRACE_MATCH_NEXT);
10473}
10474
10475static dtrace_ecb_t *
10476dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10477{
10478	dtrace_ecb_t *ecb;
10479
10480	ASSERT(MUTEX_HELD(&dtrace_lock));
10481
10482	if (id == 0 || id > state->dts_necbs)
10483		return (NULL);
10484
10485	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10486	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10487
10488	return (state->dts_ecbs[id - 1]);
10489}
10490
10491static dtrace_aggregation_t *
10492dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10493{
10494	dtrace_aggregation_t *agg;
10495
10496	ASSERT(MUTEX_HELD(&dtrace_lock));
10497
10498	if (id == 0 || id > state->dts_naggregations)
10499		return (NULL);
10500
10501	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10502	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10503	    agg->dtag_id == id);
10504
10505	return (state->dts_aggregations[id - 1]);
10506}
10507
10508/*
10509 * DTrace Buffer Functions
10510 *
10511 * The following functions manipulate DTrace buffers.  Most of these functions
10512 * are called in the context of establishing or processing consumer state;
10513 * exceptions are explicitly noted.
10514 */
10515
10516/*
10517 * Note:  called from cross call context.  This function switches the two
10518 * buffers on a given CPU.  The atomicity of this operation is assured by
10519 * disabling interrupts while the actual switch takes place; the disabling of
10520 * interrupts serializes the execution with any execution of dtrace_probe() on
10521 * the same CPU.
10522 */
10523static void
10524dtrace_buffer_switch(dtrace_buffer_t *buf)
10525{
10526	caddr_t tomax = buf->dtb_tomax;
10527	caddr_t xamot = buf->dtb_xamot;
10528	dtrace_icookie_t cookie;
10529
10530	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10531	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10532
10533	cookie = dtrace_interrupt_disable();
10534	buf->dtb_tomax = xamot;
10535	buf->dtb_xamot = tomax;
10536	buf->dtb_xamot_drops = buf->dtb_drops;
10537	buf->dtb_xamot_offset = buf->dtb_offset;
10538	buf->dtb_xamot_errors = buf->dtb_errors;
10539	buf->dtb_xamot_flags = buf->dtb_flags;
10540	buf->dtb_offset = 0;
10541	buf->dtb_drops = 0;
10542	buf->dtb_errors = 0;
10543	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10544	dtrace_interrupt_enable(cookie);
10545}
10546
10547/*
10548 * Note:  called from cross call context.  This function activates a buffer
10549 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10550 * is guaranteed by the disabling of interrupts.
10551 */
10552static void
10553dtrace_buffer_activate(dtrace_state_t *state)
10554{
10555	dtrace_buffer_t *buf;
10556	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10557
10558	buf = &state->dts_buffer[curcpu];
10559
10560	if (buf->dtb_tomax != NULL) {
10561		/*
10562		 * We might like to assert that the buffer is marked inactive,
10563		 * but this isn't necessarily true:  the buffer for the CPU
10564		 * that processes the BEGIN probe has its buffer activated
10565		 * manually.  In this case, we take the (harmless) action
10566		 * re-clearing the bit INACTIVE bit.
10567		 */
10568		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10569	}
10570
10571	dtrace_interrupt_enable(cookie);
10572}
10573
10574static int
10575dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10576    processorid_t cpu)
10577{
10578#if defined(sun)
10579	cpu_t *cp;
10580#else
10581	struct pcpu *cp;
10582#endif
10583	dtrace_buffer_t *buf;
10584
10585#if defined(sun)
10586	ASSERT(MUTEX_HELD(&cpu_lock));
10587	ASSERT(MUTEX_HELD(&dtrace_lock));
10588
10589	if (size > dtrace_nonroot_maxsize &&
10590	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10591		return (EFBIG);
10592
10593	cp = cpu_list;
10594
10595	do {
10596		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10597			continue;
10598
10599		buf = &bufs[cp->cpu_id];
10600
10601		/*
10602		 * If there is already a buffer allocated for this CPU, it
10603		 * is only possible that this is a DR event.  In this case,
10604		 */
10605		if (buf->dtb_tomax != NULL) {
10606			ASSERT(buf->dtb_size == size);
10607			continue;
10608		}
10609
10610		ASSERT(buf->dtb_xamot == NULL);
10611
10612		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10613			goto err;
10614
10615		buf->dtb_size = size;
10616		buf->dtb_flags = flags;
10617		buf->dtb_offset = 0;
10618		buf->dtb_drops = 0;
10619
10620		if (flags & DTRACEBUF_NOSWITCH)
10621			continue;
10622
10623		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10624			goto err;
10625	} while ((cp = cp->cpu_next) != cpu_list);
10626
10627	return (0);
10628
10629err:
10630	cp = cpu_list;
10631
10632	do {
10633		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10634			continue;
10635
10636		buf = &bufs[cp->cpu_id];
10637
10638		if (buf->dtb_xamot != NULL) {
10639			ASSERT(buf->dtb_tomax != NULL);
10640			ASSERT(buf->dtb_size == size);
10641			kmem_free(buf->dtb_xamot, size);
10642		}
10643
10644		if (buf->dtb_tomax != NULL) {
10645			ASSERT(buf->dtb_size == size);
10646			kmem_free(buf->dtb_tomax, size);
10647		}
10648
10649		buf->dtb_tomax = NULL;
10650		buf->dtb_xamot = NULL;
10651		buf->dtb_size = 0;
10652	} while ((cp = cp->cpu_next) != cpu_list);
10653
10654	return (ENOMEM);
10655#else
10656	int i;
10657
10658#if defined(__amd64__)
10659	/*
10660	 * FreeBSD isn't good at limiting the amount of memory we
10661	 * ask to malloc, so let's place a limit here before trying
10662	 * to do something that might well end in tears at bedtime.
10663	 */
10664	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10665		return(ENOMEM);
10666#endif
10667
10668	ASSERT(MUTEX_HELD(&dtrace_lock));
10669	for (i = 0; i <= mp_maxid; i++) {
10670		if ((cp = pcpu_find(i)) == NULL)
10671			continue;
10672
10673		if (cpu != DTRACE_CPUALL && cpu != i)
10674			continue;
10675
10676		buf = &bufs[i];
10677
10678		/*
10679		 * If there is already a buffer allocated for this CPU, it
10680		 * is only possible that this is a DR event.  In this case,
10681		 * the buffer size must match our specified size.
10682		 */
10683		if (buf->dtb_tomax != NULL) {
10684			ASSERT(buf->dtb_size == size);
10685			continue;
10686		}
10687
10688		ASSERT(buf->dtb_xamot == NULL);
10689
10690		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10691			goto err;
10692
10693		buf->dtb_size = size;
10694		buf->dtb_flags = flags;
10695		buf->dtb_offset = 0;
10696		buf->dtb_drops = 0;
10697
10698		if (flags & DTRACEBUF_NOSWITCH)
10699			continue;
10700
10701		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10702			goto err;
10703	}
10704
10705	return (0);
10706
10707err:
10708	/*
10709	 * Error allocating memory, so free the buffers that were
10710	 * allocated before the failed allocation.
10711	 */
10712	for (i = 0; i <= mp_maxid; i++) {
10713		if ((cp = pcpu_find(i)) == NULL)
10714			continue;
10715
10716		if (cpu != DTRACE_CPUALL && cpu != i)
10717			continue;
10718
10719		buf = &bufs[i];
10720
10721		if (buf->dtb_xamot != NULL) {
10722			ASSERT(buf->dtb_tomax != NULL);
10723			ASSERT(buf->dtb_size == size);
10724			kmem_free(buf->dtb_xamot, size);
10725		}
10726
10727		if (buf->dtb_tomax != NULL) {
10728			ASSERT(buf->dtb_size == size);
10729			kmem_free(buf->dtb_tomax, size);
10730		}
10731
10732		buf->dtb_tomax = NULL;
10733		buf->dtb_xamot = NULL;
10734		buf->dtb_size = 0;
10735
10736	}
10737
10738	return (ENOMEM);
10739#endif
10740}
10741
10742/*
10743 * Note:  called from probe context.  This function just increments the drop
10744 * count on a buffer.  It has been made a function to allow for the
10745 * possibility of understanding the source of mysterious drop counts.  (A
10746 * problem for which one may be particularly disappointed that DTrace cannot
10747 * be used to understand DTrace.)
10748 */
10749static void
10750dtrace_buffer_drop(dtrace_buffer_t *buf)
10751{
10752	buf->dtb_drops++;
10753}
10754
10755/*
10756 * Note:  called from probe context.  This function is called to reserve space
10757 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10758 * mstate.  Returns the new offset in the buffer, or a negative value if an
10759 * error has occurred.
10760 */
10761static intptr_t
10762dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10763    dtrace_state_t *state, dtrace_mstate_t *mstate)
10764{
10765	intptr_t offs = buf->dtb_offset, soffs;
10766	intptr_t woffs;
10767	caddr_t tomax;
10768	size_t total;
10769
10770	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10771		return (-1);
10772
10773	if ((tomax = buf->dtb_tomax) == NULL) {
10774		dtrace_buffer_drop(buf);
10775		return (-1);
10776	}
10777
10778	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10779		while (offs & (align - 1)) {
10780			/*
10781			 * Assert that our alignment is off by a number which
10782			 * is itself sizeof (uint32_t) aligned.
10783			 */
10784			ASSERT(!((align - (offs & (align - 1))) &
10785			    (sizeof (uint32_t) - 1)));
10786			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10787			offs += sizeof (uint32_t);
10788		}
10789
10790		if ((soffs = offs + needed) > buf->dtb_size) {
10791			dtrace_buffer_drop(buf);
10792			return (-1);
10793		}
10794
10795		if (mstate == NULL)
10796			return (offs);
10797
10798		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10799		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10800		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10801
10802		return (offs);
10803	}
10804
10805	if (buf->dtb_flags & DTRACEBUF_FILL) {
10806		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10807		    (buf->dtb_flags & DTRACEBUF_FULL))
10808			return (-1);
10809		goto out;
10810	}
10811
10812	total = needed + (offs & (align - 1));
10813
10814	/*
10815	 * For a ring buffer, life is quite a bit more complicated.  Before
10816	 * we can store any padding, we need to adjust our wrapping offset.
10817	 * (If we've never before wrapped or we're not about to, no adjustment
10818	 * is required.)
10819	 */
10820	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10821	    offs + total > buf->dtb_size) {
10822		woffs = buf->dtb_xamot_offset;
10823
10824		if (offs + total > buf->dtb_size) {
10825			/*
10826			 * We can't fit in the end of the buffer.  First, a
10827			 * sanity check that we can fit in the buffer at all.
10828			 */
10829			if (total > buf->dtb_size) {
10830				dtrace_buffer_drop(buf);
10831				return (-1);
10832			}
10833
10834			/*
10835			 * We're going to be storing at the top of the buffer,
10836			 * so now we need to deal with the wrapped offset.  We
10837			 * only reset our wrapped offset to 0 if it is
10838			 * currently greater than the current offset.  If it
10839			 * is less than the current offset, it is because a
10840			 * previous allocation induced a wrap -- but the
10841			 * allocation didn't subsequently take the space due
10842			 * to an error or false predicate evaluation.  In this
10843			 * case, we'll just leave the wrapped offset alone: if
10844			 * the wrapped offset hasn't been advanced far enough
10845			 * for this allocation, it will be adjusted in the
10846			 * lower loop.
10847			 */
10848			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10849				if (woffs >= offs)
10850					woffs = 0;
10851			} else {
10852				woffs = 0;
10853			}
10854
10855			/*
10856			 * Now we know that we're going to be storing to the
10857			 * top of the buffer and that there is room for us
10858			 * there.  We need to clear the buffer from the current
10859			 * offset to the end (there may be old gunk there).
10860			 */
10861			while (offs < buf->dtb_size)
10862				tomax[offs++] = 0;
10863
10864			/*
10865			 * We need to set our offset to zero.  And because we
10866			 * are wrapping, we need to set the bit indicating as
10867			 * much.  We can also adjust our needed space back
10868			 * down to the space required by the ECB -- we know
10869			 * that the top of the buffer is aligned.
10870			 */
10871			offs = 0;
10872			total = needed;
10873			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10874		} else {
10875			/*
10876			 * There is room for us in the buffer, so we simply
10877			 * need to check the wrapped offset.
10878			 */
10879			if (woffs < offs) {
10880				/*
10881				 * The wrapped offset is less than the offset.
10882				 * This can happen if we allocated buffer space
10883				 * that induced a wrap, but then we didn't
10884				 * subsequently take the space due to an error
10885				 * or false predicate evaluation.  This is
10886				 * okay; we know that _this_ allocation isn't
10887				 * going to induce a wrap.  We still can't
10888				 * reset the wrapped offset to be zero,
10889				 * however: the space may have been trashed in
10890				 * the previous failed probe attempt.  But at
10891				 * least the wrapped offset doesn't need to
10892				 * be adjusted at all...
10893				 */
10894				goto out;
10895			}
10896		}
10897
10898		while (offs + total > woffs) {
10899			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10900			size_t size;
10901
10902			if (epid == DTRACE_EPIDNONE) {
10903				size = sizeof (uint32_t);
10904			} else {
10905				ASSERT(epid <= state->dts_necbs);
10906				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10907
10908				size = state->dts_ecbs[epid - 1]->dte_size;
10909			}
10910
10911			ASSERT(woffs + size <= buf->dtb_size);
10912			ASSERT(size != 0);
10913
10914			if (woffs + size == buf->dtb_size) {
10915				/*
10916				 * We've reached the end of the buffer; we want
10917				 * to set the wrapped offset to 0 and break
10918				 * out.  However, if the offs is 0, then we're
10919				 * in a strange edge-condition:  the amount of
10920				 * space that we want to reserve plus the size
10921				 * of the record that we're overwriting is
10922				 * greater than the size of the buffer.  This
10923				 * is problematic because if we reserve the
10924				 * space but subsequently don't consume it (due
10925				 * to a failed predicate or error) the wrapped
10926				 * offset will be 0 -- yet the EPID at offset 0
10927				 * will not be committed.  This situation is
10928				 * relatively easy to deal with:  if we're in
10929				 * this case, the buffer is indistinguishable
10930				 * from one that hasn't wrapped; we need only
10931				 * finish the job by clearing the wrapped bit,
10932				 * explicitly setting the offset to be 0, and
10933				 * zero'ing out the old data in the buffer.
10934				 */
10935				if (offs == 0) {
10936					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10937					buf->dtb_offset = 0;
10938					woffs = total;
10939
10940					while (woffs < buf->dtb_size)
10941						tomax[woffs++] = 0;
10942				}
10943
10944				woffs = 0;
10945				break;
10946			}
10947
10948			woffs += size;
10949		}
10950
10951		/*
10952		 * We have a wrapped offset.  It may be that the wrapped offset
10953		 * has become zero -- that's okay.
10954		 */
10955		buf->dtb_xamot_offset = woffs;
10956	}
10957
10958out:
10959	/*
10960	 * Now we can plow the buffer with any necessary padding.
10961	 */
10962	while (offs & (align - 1)) {
10963		/*
10964		 * Assert that our alignment is off by a number which
10965		 * is itself sizeof (uint32_t) aligned.
10966		 */
10967		ASSERT(!((align - (offs & (align - 1))) &
10968		    (sizeof (uint32_t) - 1)));
10969		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10970		offs += sizeof (uint32_t);
10971	}
10972
10973	if (buf->dtb_flags & DTRACEBUF_FILL) {
10974		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10975			buf->dtb_flags |= DTRACEBUF_FULL;
10976			return (-1);
10977		}
10978	}
10979
10980	if (mstate == NULL)
10981		return (offs);
10982
10983	/*
10984	 * For ring buffers and fill buffers, the scratch space is always
10985	 * the inactive buffer.
10986	 */
10987	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10988	mstate->dtms_scratch_size = buf->dtb_size;
10989	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10990
10991	return (offs);
10992}
10993
10994static void
10995dtrace_buffer_polish(dtrace_buffer_t *buf)
10996{
10997	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10998	ASSERT(MUTEX_HELD(&dtrace_lock));
10999
11000	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11001		return;
11002
11003	/*
11004	 * We need to polish the ring buffer.  There are three cases:
11005	 *
11006	 * - The first (and presumably most common) is that there is no gap
11007	 *   between the buffer offset and the wrapped offset.  In this case,
11008	 *   there is nothing in the buffer that isn't valid data; we can
11009	 *   mark the buffer as polished and return.
11010	 *
11011	 * - The second (less common than the first but still more common
11012	 *   than the third) is that there is a gap between the buffer offset
11013	 *   and the wrapped offset, and the wrapped offset is larger than the
11014	 *   buffer offset.  This can happen because of an alignment issue, or
11015	 *   can happen because of a call to dtrace_buffer_reserve() that
11016	 *   didn't subsequently consume the buffer space.  In this case,
11017	 *   we need to zero the data from the buffer offset to the wrapped
11018	 *   offset.
11019	 *
11020	 * - The third (and least common) is that there is a gap between the
11021	 *   buffer offset and the wrapped offset, but the wrapped offset is
11022	 *   _less_ than the buffer offset.  This can only happen because a
11023	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11024	 *   was not subsequently consumed.  In this case, we need to zero the
11025	 *   space from the offset to the end of the buffer _and_ from the
11026	 *   top of the buffer to the wrapped offset.
11027	 */
11028	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11029		bzero(buf->dtb_tomax + buf->dtb_offset,
11030		    buf->dtb_xamot_offset - buf->dtb_offset);
11031	}
11032
11033	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11034		bzero(buf->dtb_tomax + buf->dtb_offset,
11035		    buf->dtb_size - buf->dtb_offset);
11036		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11037	}
11038}
11039
11040static void
11041dtrace_buffer_free(dtrace_buffer_t *bufs)
11042{
11043	int i;
11044
11045	for (i = 0; i < NCPU; i++) {
11046		dtrace_buffer_t *buf = &bufs[i];
11047
11048		if (buf->dtb_tomax == NULL) {
11049			ASSERT(buf->dtb_xamot == NULL);
11050			ASSERT(buf->dtb_size == 0);
11051			continue;
11052		}
11053
11054		if (buf->dtb_xamot != NULL) {
11055			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11056			kmem_free(buf->dtb_xamot, buf->dtb_size);
11057		}
11058
11059		kmem_free(buf->dtb_tomax, buf->dtb_size);
11060		buf->dtb_size = 0;
11061		buf->dtb_tomax = NULL;
11062		buf->dtb_xamot = NULL;
11063	}
11064}
11065
11066/*
11067 * DTrace Enabling Functions
11068 */
11069static dtrace_enabling_t *
11070dtrace_enabling_create(dtrace_vstate_t *vstate)
11071{
11072	dtrace_enabling_t *enab;
11073
11074	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11075	enab->dten_vstate = vstate;
11076
11077	return (enab);
11078}
11079
11080static void
11081dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11082{
11083	dtrace_ecbdesc_t **ndesc;
11084	size_t osize, nsize;
11085
11086	/*
11087	 * We can't add to enablings after we've enabled them, or after we've
11088	 * retained them.
11089	 */
11090	ASSERT(enab->dten_probegen == 0);
11091	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11092
11093	if (enab->dten_ndesc < enab->dten_maxdesc) {
11094		enab->dten_desc[enab->dten_ndesc++] = ecb;
11095		return;
11096	}
11097
11098	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11099
11100	if (enab->dten_maxdesc == 0) {
11101		enab->dten_maxdesc = 1;
11102	} else {
11103		enab->dten_maxdesc <<= 1;
11104	}
11105
11106	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11107
11108	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11109	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11110	bcopy(enab->dten_desc, ndesc, osize);
11111	if (enab->dten_desc != NULL)
11112		kmem_free(enab->dten_desc, osize);
11113
11114	enab->dten_desc = ndesc;
11115	enab->dten_desc[enab->dten_ndesc++] = ecb;
11116}
11117
11118static void
11119dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11120    dtrace_probedesc_t *pd)
11121{
11122	dtrace_ecbdesc_t *new;
11123	dtrace_predicate_t *pred;
11124	dtrace_actdesc_t *act;
11125
11126	/*
11127	 * We're going to create a new ECB description that matches the
11128	 * specified ECB in every way, but has the specified probe description.
11129	 */
11130	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11131
11132	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11133		dtrace_predicate_hold(pred);
11134
11135	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11136		dtrace_actdesc_hold(act);
11137
11138	new->dted_action = ecb->dted_action;
11139	new->dted_pred = ecb->dted_pred;
11140	new->dted_probe = *pd;
11141	new->dted_uarg = ecb->dted_uarg;
11142
11143	dtrace_enabling_add(enab, new);
11144}
11145
11146static void
11147dtrace_enabling_dump(dtrace_enabling_t *enab)
11148{
11149	int i;
11150
11151	for (i = 0; i < enab->dten_ndesc; i++) {
11152		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11153
11154		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11155		    desc->dtpd_provider, desc->dtpd_mod,
11156		    desc->dtpd_func, desc->dtpd_name);
11157	}
11158}
11159
11160static void
11161dtrace_enabling_destroy(dtrace_enabling_t *enab)
11162{
11163	int i;
11164	dtrace_ecbdesc_t *ep;
11165	dtrace_vstate_t *vstate = enab->dten_vstate;
11166
11167	ASSERT(MUTEX_HELD(&dtrace_lock));
11168
11169	for (i = 0; i < enab->dten_ndesc; i++) {
11170		dtrace_actdesc_t *act, *next;
11171		dtrace_predicate_t *pred;
11172
11173		ep = enab->dten_desc[i];
11174
11175		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11176			dtrace_predicate_release(pred, vstate);
11177
11178		for (act = ep->dted_action; act != NULL; act = next) {
11179			next = act->dtad_next;
11180			dtrace_actdesc_release(act, vstate);
11181		}
11182
11183		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11184	}
11185
11186	if (enab->dten_desc != NULL)
11187		kmem_free(enab->dten_desc,
11188		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11189
11190	/*
11191	 * If this was a retained enabling, decrement the dts_nretained count
11192	 * and take it off of the dtrace_retained list.
11193	 */
11194	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11195	    dtrace_retained == enab) {
11196		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11197		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11198		enab->dten_vstate->dtvs_state->dts_nretained--;
11199	}
11200
11201	if (enab->dten_prev == NULL) {
11202		if (dtrace_retained == enab) {
11203			dtrace_retained = enab->dten_next;
11204
11205			if (dtrace_retained != NULL)
11206				dtrace_retained->dten_prev = NULL;
11207		}
11208	} else {
11209		ASSERT(enab != dtrace_retained);
11210		ASSERT(dtrace_retained != NULL);
11211		enab->dten_prev->dten_next = enab->dten_next;
11212	}
11213
11214	if (enab->dten_next != NULL) {
11215		ASSERT(dtrace_retained != NULL);
11216		enab->dten_next->dten_prev = enab->dten_prev;
11217	}
11218
11219	kmem_free(enab, sizeof (dtrace_enabling_t));
11220}
11221
11222static int
11223dtrace_enabling_retain(dtrace_enabling_t *enab)
11224{
11225	dtrace_state_t *state;
11226
11227	ASSERT(MUTEX_HELD(&dtrace_lock));
11228	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11229	ASSERT(enab->dten_vstate != NULL);
11230
11231	state = enab->dten_vstate->dtvs_state;
11232	ASSERT(state != NULL);
11233
11234	/*
11235	 * We only allow each state to retain dtrace_retain_max enablings.
11236	 */
11237	if (state->dts_nretained >= dtrace_retain_max)
11238		return (ENOSPC);
11239
11240	state->dts_nretained++;
11241
11242	if (dtrace_retained == NULL) {
11243		dtrace_retained = enab;
11244		return (0);
11245	}
11246
11247	enab->dten_next = dtrace_retained;
11248	dtrace_retained->dten_prev = enab;
11249	dtrace_retained = enab;
11250
11251	return (0);
11252}
11253
11254static int
11255dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11256    dtrace_probedesc_t *create)
11257{
11258	dtrace_enabling_t *new, *enab;
11259	int found = 0, err = ENOENT;
11260
11261	ASSERT(MUTEX_HELD(&dtrace_lock));
11262	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11263	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11264	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11265	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11266
11267	new = dtrace_enabling_create(&state->dts_vstate);
11268
11269	/*
11270	 * Iterate over all retained enablings, looking for enablings that
11271	 * match the specified state.
11272	 */
11273	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11274		int i;
11275
11276		/*
11277		 * dtvs_state can only be NULL for helper enablings -- and
11278		 * helper enablings can't be retained.
11279		 */
11280		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11281
11282		if (enab->dten_vstate->dtvs_state != state)
11283			continue;
11284
11285		/*
11286		 * Now iterate over each probe description; we're looking for
11287		 * an exact match to the specified probe description.
11288		 */
11289		for (i = 0; i < enab->dten_ndesc; i++) {
11290			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11291			dtrace_probedesc_t *pd = &ep->dted_probe;
11292
11293			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11294				continue;
11295
11296			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11297				continue;
11298
11299			if (strcmp(pd->dtpd_func, match->dtpd_func))
11300				continue;
11301
11302			if (strcmp(pd->dtpd_name, match->dtpd_name))
11303				continue;
11304
11305			/*
11306			 * We have a winning probe!  Add it to our growing
11307			 * enabling.
11308			 */
11309			found = 1;
11310			dtrace_enabling_addlike(new, ep, create);
11311		}
11312	}
11313
11314	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11315		dtrace_enabling_destroy(new);
11316		return (err);
11317	}
11318
11319	return (0);
11320}
11321
11322static void
11323dtrace_enabling_retract(dtrace_state_t *state)
11324{
11325	dtrace_enabling_t *enab, *next;
11326
11327	ASSERT(MUTEX_HELD(&dtrace_lock));
11328
11329	/*
11330	 * Iterate over all retained enablings, destroy the enablings retained
11331	 * for the specified state.
11332	 */
11333	for (enab = dtrace_retained; enab != NULL; enab = next) {
11334		next = enab->dten_next;
11335
11336		/*
11337		 * dtvs_state can only be NULL for helper enablings -- and
11338		 * helper enablings can't be retained.
11339		 */
11340		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11341
11342		if (enab->dten_vstate->dtvs_state == state) {
11343			ASSERT(state->dts_nretained > 0);
11344			dtrace_enabling_destroy(enab);
11345		}
11346	}
11347
11348	ASSERT(state->dts_nretained == 0);
11349}
11350
11351static int
11352dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11353{
11354	int i = 0;
11355	int matched = 0;
11356
11357	ASSERT(MUTEX_HELD(&cpu_lock));
11358	ASSERT(MUTEX_HELD(&dtrace_lock));
11359
11360	for (i = 0; i < enab->dten_ndesc; i++) {
11361		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11362
11363		enab->dten_current = ep;
11364		enab->dten_error = 0;
11365
11366		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11367
11368		if (enab->dten_error != 0) {
11369			/*
11370			 * If we get an error half-way through enabling the
11371			 * probes, we kick out -- perhaps with some number of
11372			 * them enabled.  Leaving enabled probes enabled may
11373			 * be slightly confusing for user-level, but we expect
11374			 * that no one will attempt to actually drive on in
11375			 * the face of such errors.  If this is an anonymous
11376			 * enabling (indicated with a NULL nmatched pointer),
11377			 * we cmn_err() a message.  We aren't expecting to
11378			 * get such an error -- such as it can exist at all,
11379			 * it would be a result of corrupted DOF in the driver
11380			 * properties.
11381			 */
11382			if (nmatched == NULL) {
11383				cmn_err(CE_WARN, "dtrace_enabling_match() "
11384				    "error on %p: %d", (void *)ep,
11385				    enab->dten_error);
11386			}
11387
11388			return (enab->dten_error);
11389		}
11390	}
11391
11392	enab->dten_probegen = dtrace_probegen;
11393	if (nmatched != NULL)
11394		*nmatched = matched;
11395
11396	return (0);
11397}
11398
11399static void
11400dtrace_enabling_matchall(void)
11401{
11402	dtrace_enabling_t *enab;
11403
11404	mutex_enter(&cpu_lock);
11405	mutex_enter(&dtrace_lock);
11406
11407	/*
11408	 * Iterate over all retained enablings to see if any probes match
11409	 * against them.  We only perform this operation on enablings for which
11410	 * we have sufficient permissions by virtue of being in the global zone
11411	 * or in the same zone as the DTrace client.  Because we can be called
11412	 * after dtrace_detach() has been called, we cannot assert that there
11413	 * are retained enablings.  We can safely load from dtrace_retained,
11414	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11415	 * block pending our completion.
11416	 */
11417	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11418#if defined(sun)
11419		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11420
11421		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11422#endif
11423			(void) dtrace_enabling_match(enab, NULL);
11424	}
11425
11426	mutex_exit(&dtrace_lock);
11427	mutex_exit(&cpu_lock);
11428}
11429
11430/*
11431 * If an enabling is to be enabled without having matched probes (that is, if
11432 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11433 * enabling must be _primed_ by creating an ECB for every ECB description.
11434 * This must be done to assure that we know the number of speculations, the
11435 * number of aggregations, the minimum buffer size needed, etc. before we
11436 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11437 * enabling any probes, we create ECBs for every ECB decription, but with a
11438 * NULL probe -- which is exactly what this function does.
11439 */
11440static void
11441dtrace_enabling_prime(dtrace_state_t *state)
11442{
11443	dtrace_enabling_t *enab;
11444	int i;
11445
11446	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11447		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11448
11449		if (enab->dten_vstate->dtvs_state != state)
11450			continue;
11451
11452		/*
11453		 * We don't want to prime an enabling more than once, lest
11454		 * we allow a malicious user to induce resource exhaustion.
11455		 * (The ECBs that result from priming an enabling aren't
11456		 * leaked -- but they also aren't deallocated until the
11457		 * consumer state is destroyed.)
11458		 */
11459		if (enab->dten_primed)
11460			continue;
11461
11462		for (i = 0; i < enab->dten_ndesc; i++) {
11463			enab->dten_current = enab->dten_desc[i];
11464			(void) dtrace_probe_enable(NULL, enab);
11465		}
11466
11467		enab->dten_primed = 1;
11468	}
11469}
11470
11471/*
11472 * Called to indicate that probes should be provided due to retained
11473 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11474 * must take an initial lap through the enabling calling the dtps_provide()
11475 * entry point explicitly to allow for autocreated probes.
11476 */
11477static void
11478dtrace_enabling_provide(dtrace_provider_t *prv)
11479{
11480	int i, all = 0;
11481	dtrace_probedesc_t desc;
11482
11483	ASSERT(MUTEX_HELD(&dtrace_lock));
11484	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11485
11486	if (prv == NULL) {
11487		all = 1;
11488		prv = dtrace_provider;
11489	}
11490
11491	do {
11492		dtrace_enabling_t *enab = dtrace_retained;
11493		void *parg = prv->dtpv_arg;
11494
11495		for (; enab != NULL; enab = enab->dten_next) {
11496			for (i = 0; i < enab->dten_ndesc; i++) {
11497				desc = enab->dten_desc[i]->dted_probe;
11498				mutex_exit(&dtrace_lock);
11499				prv->dtpv_pops.dtps_provide(parg, &desc);
11500				mutex_enter(&dtrace_lock);
11501			}
11502		}
11503	} while (all && (prv = prv->dtpv_next) != NULL);
11504
11505	mutex_exit(&dtrace_lock);
11506	dtrace_probe_provide(NULL, all ? NULL : prv);
11507	mutex_enter(&dtrace_lock);
11508}
11509
11510/*
11511 * DTrace DOF Functions
11512 */
11513/*ARGSUSED*/
11514static void
11515dtrace_dof_error(dof_hdr_t *dof, const char *str)
11516{
11517	if (dtrace_err_verbose)
11518		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11519
11520#ifdef DTRACE_ERRDEBUG
11521	dtrace_errdebug(str);
11522#endif
11523}
11524
11525/*
11526 * Create DOF out of a currently enabled state.  Right now, we only create
11527 * DOF containing the run-time options -- but this could be expanded to create
11528 * complete DOF representing the enabled state.
11529 */
11530static dof_hdr_t *
11531dtrace_dof_create(dtrace_state_t *state)
11532{
11533	dof_hdr_t *dof;
11534	dof_sec_t *sec;
11535	dof_optdesc_t *opt;
11536	int i, len = sizeof (dof_hdr_t) +
11537	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11538	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11539
11540	ASSERT(MUTEX_HELD(&dtrace_lock));
11541
11542	dof = kmem_zalloc(len, KM_SLEEP);
11543	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11544	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11545	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11546	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11547
11548	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11549	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11550	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11551	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11552	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11553	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11554
11555	dof->dofh_flags = 0;
11556	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11557	dof->dofh_secsize = sizeof (dof_sec_t);
11558	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11559	dof->dofh_secoff = sizeof (dof_hdr_t);
11560	dof->dofh_loadsz = len;
11561	dof->dofh_filesz = len;
11562	dof->dofh_pad = 0;
11563
11564	/*
11565	 * Fill in the option section header...
11566	 */
11567	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11568	sec->dofs_type = DOF_SECT_OPTDESC;
11569	sec->dofs_align = sizeof (uint64_t);
11570	sec->dofs_flags = DOF_SECF_LOAD;
11571	sec->dofs_entsize = sizeof (dof_optdesc_t);
11572
11573	opt = (dof_optdesc_t *)((uintptr_t)sec +
11574	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11575
11576	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11577	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11578
11579	for (i = 0; i < DTRACEOPT_MAX; i++) {
11580		opt[i].dofo_option = i;
11581		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11582		opt[i].dofo_value = state->dts_options[i];
11583	}
11584
11585	return (dof);
11586}
11587
11588static dof_hdr_t *
11589dtrace_dof_copyin(uintptr_t uarg, int *errp)
11590{
11591	dof_hdr_t hdr, *dof;
11592
11593	ASSERT(!MUTEX_HELD(&dtrace_lock));
11594
11595	/*
11596	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11597	 */
11598	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11599		dtrace_dof_error(NULL, "failed to copyin DOF header");
11600		*errp = EFAULT;
11601		return (NULL);
11602	}
11603
11604	/*
11605	 * Now we'll allocate the entire DOF and copy it in -- provided
11606	 * that the length isn't outrageous.
11607	 */
11608	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11609		dtrace_dof_error(&hdr, "load size exceeds maximum");
11610		*errp = E2BIG;
11611		return (NULL);
11612	}
11613
11614	if (hdr.dofh_loadsz < sizeof (hdr)) {
11615		dtrace_dof_error(&hdr, "invalid load size");
11616		*errp = EINVAL;
11617		return (NULL);
11618	}
11619
11620	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11621
11622	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11623		kmem_free(dof, hdr.dofh_loadsz);
11624		*errp = EFAULT;
11625		return (NULL);
11626	}
11627
11628	return (dof);
11629}
11630
11631#if !defined(sun)
11632static __inline uchar_t
11633dtrace_dof_char(char c) {
11634	switch (c) {
11635	case '0':
11636	case '1':
11637	case '2':
11638	case '3':
11639	case '4':
11640	case '5':
11641	case '6':
11642	case '7':
11643	case '8':
11644	case '9':
11645		return (c - '0');
11646	case 'A':
11647	case 'B':
11648	case 'C':
11649	case 'D':
11650	case 'E':
11651	case 'F':
11652		return (c - 'A' + 10);
11653	case 'a':
11654	case 'b':
11655	case 'c':
11656	case 'd':
11657	case 'e':
11658	case 'f':
11659		return (c - 'a' + 10);
11660	}
11661	/* Should not reach here. */
11662	return (0);
11663}
11664#endif
11665
11666static dof_hdr_t *
11667dtrace_dof_property(const char *name)
11668{
11669	uchar_t *buf;
11670	uint64_t loadsz;
11671	unsigned int len, i;
11672	dof_hdr_t *dof;
11673
11674#if defined(sun)
11675	/*
11676	 * Unfortunately, array of values in .conf files are always (and
11677	 * only) interpreted to be integer arrays.  We must read our DOF
11678	 * as an integer array, and then squeeze it into a byte array.
11679	 */
11680	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11681	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11682		return (NULL);
11683
11684	for (i = 0; i < len; i++)
11685		buf[i] = (uchar_t)(((int *)buf)[i]);
11686
11687	if (len < sizeof (dof_hdr_t)) {
11688		ddi_prop_free(buf);
11689		dtrace_dof_error(NULL, "truncated header");
11690		return (NULL);
11691	}
11692
11693	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11694		ddi_prop_free(buf);
11695		dtrace_dof_error(NULL, "truncated DOF");
11696		return (NULL);
11697	}
11698
11699	if (loadsz >= dtrace_dof_maxsize) {
11700		ddi_prop_free(buf);
11701		dtrace_dof_error(NULL, "oversized DOF");
11702		return (NULL);
11703	}
11704
11705	dof = kmem_alloc(loadsz, KM_SLEEP);
11706	bcopy(buf, dof, loadsz);
11707	ddi_prop_free(buf);
11708#else
11709	char *p;
11710	char *p_env;
11711
11712	if ((p_env = getenv(name)) == NULL)
11713		return (NULL);
11714
11715	len = strlen(p_env) / 2;
11716
11717	buf = kmem_alloc(len, KM_SLEEP);
11718
11719	dof = (dof_hdr_t *) buf;
11720
11721	p = p_env;
11722
11723	for (i = 0; i < len; i++) {
11724		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11725		     dtrace_dof_char(p[1]);
11726		p += 2;
11727	}
11728
11729	freeenv(p_env);
11730
11731	if (len < sizeof (dof_hdr_t)) {
11732		kmem_free(buf, 0);
11733		dtrace_dof_error(NULL, "truncated header");
11734		return (NULL);
11735	}
11736
11737	if (len < (loadsz = dof->dofh_loadsz)) {
11738		kmem_free(buf, 0);
11739		dtrace_dof_error(NULL, "truncated DOF");
11740		return (NULL);
11741	}
11742
11743	if (loadsz >= dtrace_dof_maxsize) {
11744		kmem_free(buf, 0);
11745		dtrace_dof_error(NULL, "oversized DOF");
11746		return (NULL);
11747	}
11748#endif
11749
11750	return (dof);
11751}
11752
11753static void
11754dtrace_dof_destroy(dof_hdr_t *dof)
11755{
11756	kmem_free(dof, dof->dofh_loadsz);
11757}
11758
11759/*
11760 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11761 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11762 * a type other than DOF_SECT_NONE is specified, the header is checked against
11763 * this type and NULL is returned if the types do not match.
11764 */
11765static dof_sec_t *
11766dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11767{
11768	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11769	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11770
11771	if (i >= dof->dofh_secnum) {
11772		dtrace_dof_error(dof, "referenced section index is invalid");
11773		return (NULL);
11774	}
11775
11776	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11777		dtrace_dof_error(dof, "referenced section is not loadable");
11778		return (NULL);
11779	}
11780
11781	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11782		dtrace_dof_error(dof, "referenced section is the wrong type");
11783		return (NULL);
11784	}
11785
11786	return (sec);
11787}
11788
11789static dtrace_probedesc_t *
11790dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11791{
11792	dof_probedesc_t *probe;
11793	dof_sec_t *strtab;
11794	uintptr_t daddr = (uintptr_t)dof;
11795	uintptr_t str;
11796	size_t size;
11797
11798	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11799		dtrace_dof_error(dof, "invalid probe section");
11800		return (NULL);
11801	}
11802
11803	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11804		dtrace_dof_error(dof, "bad alignment in probe description");
11805		return (NULL);
11806	}
11807
11808	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11809		dtrace_dof_error(dof, "truncated probe description");
11810		return (NULL);
11811	}
11812
11813	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11814	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11815
11816	if (strtab == NULL)
11817		return (NULL);
11818
11819	str = daddr + strtab->dofs_offset;
11820	size = strtab->dofs_size;
11821
11822	if (probe->dofp_provider >= strtab->dofs_size) {
11823		dtrace_dof_error(dof, "corrupt probe provider");
11824		return (NULL);
11825	}
11826
11827	(void) strncpy(desc->dtpd_provider,
11828	    (char *)(str + probe->dofp_provider),
11829	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11830
11831	if (probe->dofp_mod >= strtab->dofs_size) {
11832		dtrace_dof_error(dof, "corrupt probe module");
11833		return (NULL);
11834	}
11835
11836	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11837	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11838
11839	if (probe->dofp_func >= strtab->dofs_size) {
11840		dtrace_dof_error(dof, "corrupt probe function");
11841		return (NULL);
11842	}
11843
11844	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11845	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11846
11847	if (probe->dofp_name >= strtab->dofs_size) {
11848		dtrace_dof_error(dof, "corrupt probe name");
11849		return (NULL);
11850	}
11851
11852	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11853	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11854
11855	return (desc);
11856}
11857
11858static dtrace_difo_t *
11859dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11860    cred_t *cr)
11861{
11862	dtrace_difo_t *dp;
11863	size_t ttl = 0;
11864	dof_difohdr_t *dofd;
11865	uintptr_t daddr = (uintptr_t)dof;
11866	size_t max = dtrace_difo_maxsize;
11867	int i, l, n;
11868
11869	static const struct {
11870		int section;
11871		int bufoffs;
11872		int lenoffs;
11873		int entsize;
11874		int align;
11875		const char *msg;
11876	} difo[] = {
11877		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11878		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11879		sizeof (dif_instr_t), "multiple DIF sections" },
11880
11881		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11882		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11883		sizeof (uint64_t), "multiple integer tables" },
11884
11885		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11886		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11887		sizeof (char), "multiple string tables" },
11888
11889		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11890		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11891		sizeof (uint_t), "multiple variable tables" },
11892
11893		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11894	};
11895
11896	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11897		dtrace_dof_error(dof, "invalid DIFO header section");
11898		return (NULL);
11899	}
11900
11901	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11902		dtrace_dof_error(dof, "bad alignment in DIFO header");
11903		return (NULL);
11904	}
11905
11906	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11907	    sec->dofs_size % sizeof (dof_secidx_t)) {
11908		dtrace_dof_error(dof, "bad size in DIFO header");
11909		return (NULL);
11910	}
11911
11912	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11913	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11914
11915	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11916	dp->dtdo_rtype = dofd->dofd_rtype;
11917
11918	for (l = 0; l < n; l++) {
11919		dof_sec_t *subsec;
11920		void **bufp;
11921		uint32_t *lenp;
11922
11923		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11924		    dofd->dofd_links[l])) == NULL)
11925			goto err; /* invalid section link */
11926
11927		if (ttl + subsec->dofs_size > max) {
11928			dtrace_dof_error(dof, "exceeds maximum size");
11929			goto err;
11930		}
11931
11932		ttl += subsec->dofs_size;
11933
11934		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11935			if (subsec->dofs_type != difo[i].section)
11936				continue;
11937
11938			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11939				dtrace_dof_error(dof, "section not loaded");
11940				goto err;
11941			}
11942
11943			if (subsec->dofs_align != difo[i].align) {
11944				dtrace_dof_error(dof, "bad alignment");
11945				goto err;
11946			}
11947
11948			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11949			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11950
11951			if (*bufp != NULL) {
11952				dtrace_dof_error(dof, difo[i].msg);
11953				goto err;
11954			}
11955
11956			if (difo[i].entsize != subsec->dofs_entsize) {
11957				dtrace_dof_error(dof, "entry size mismatch");
11958				goto err;
11959			}
11960
11961			if (subsec->dofs_entsize != 0 &&
11962			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11963				dtrace_dof_error(dof, "corrupt entry size");
11964				goto err;
11965			}
11966
11967			*lenp = subsec->dofs_size;
11968			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11969			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11970			    *bufp, subsec->dofs_size);
11971
11972			if (subsec->dofs_entsize != 0)
11973				*lenp /= subsec->dofs_entsize;
11974
11975			break;
11976		}
11977
11978		/*
11979		 * If we encounter a loadable DIFO sub-section that is not
11980		 * known to us, assume this is a broken program and fail.
11981		 */
11982		if (difo[i].section == DOF_SECT_NONE &&
11983		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11984			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11985			goto err;
11986		}
11987	}
11988
11989	if (dp->dtdo_buf == NULL) {
11990		/*
11991		 * We can't have a DIF object without DIF text.
11992		 */
11993		dtrace_dof_error(dof, "missing DIF text");
11994		goto err;
11995	}
11996
11997	/*
11998	 * Before we validate the DIF object, run through the variable table
11999	 * looking for the strings -- if any of their size are under, we'll set
12000	 * their size to be the system-wide default string size.  Note that
12001	 * this should _not_ happen if the "strsize" option has been set --
12002	 * in this case, the compiler should have set the size to reflect the
12003	 * setting of the option.
12004	 */
12005	for (i = 0; i < dp->dtdo_varlen; i++) {
12006		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12007		dtrace_diftype_t *t = &v->dtdv_type;
12008
12009		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12010			continue;
12011
12012		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12013			t->dtdt_size = dtrace_strsize_default;
12014	}
12015
12016	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12017		goto err;
12018
12019	dtrace_difo_init(dp, vstate);
12020	return (dp);
12021
12022err:
12023	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12024	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12025	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12026	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12027
12028	kmem_free(dp, sizeof (dtrace_difo_t));
12029	return (NULL);
12030}
12031
12032static dtrace_predicate_t *
12033dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12034    cred_t *cr)
12035{
12036	dtrace_difo_t *dp;
12037
12038	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12039		return (NULL);
12040
12041	return (dtrace_predicate_create(dp));
12042}
12043
12044static dtrace_actdesc_t *
12045dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12046    cred_t *cr)
12047{
12048	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12049	dof_actdesc_t *desc;
12050	dof_sec_t *difosec;
12051	size_t offs;
12052	uintptr_t daddr = (uintptr_t)dof;
12053	uint64_t arg;
12054	dtrace_actkind_t kind;
12055
12056	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12057		dtrace_dof_error(dof, "invalid action section");
12058		return (NULL);
12059	}
12060
12061	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12062		dtrace_dof_error(dof, "truncated action description");
12063		return (NULL);
12064	}
12065
12066	if (sec->dofs_align != sizeof (uint64_t)) {
12067		dtrace_dof_error(dof, "bad alignment in action description");
12068		return (NULL);
12069	}
12070
12071	if (sec->dofs_size < sec->dofs_entsize) {
12072		dtrace_dof_error(dof, "section entry size exceeds total size");
12073		return (NULL);
12074	}
12075
12076	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12077		dtrace_dof_error(dof, "bad entry size in action description");
12078		return (NULL);
12079	}
12080
12081	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12082		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12083		return (NULL);
12084	}
12085
12086	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12087		desc = (dof_actdesc_t *)(daddr +
12088		    (uintptr_t)sec->dofs_offset + offs);
12089		kind = (dtrace_actkind_t)desc->dofa_kind;
12090
12091		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12092		    (kind != DTRACEACT_PRINTA ||
12093		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12094			dof_sec_t *strtab;
12095			char *str, *fmt;
12096			uint64_t i;
12097
12098			/*
12099			 * printf()-like actions must have a format string.
12100			 */
12101			if ((strtab = dtrace_dof_sect(dof,
12102			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12103				goto err;
12104
12105			str = (char *)((uintptr_t)dof +
12106			    (uintptr_t)strtab->dofs_offset);
12107
12108			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12109				if (str[i] == '\0')
12110					break;
12111			}
12112
12113			if (i >= strtab->dofs_size) {
12114				dtrace_dof_error(dof, "bogus format string");
12115				goto err;
12116			}
12117
12118			if (i == desc->dofa_arg) {
12119				dtrace_dof_error(dof, "empty format string");
12120				goto err;
12121			}
12122
12123			i -= desc->dofa_arg;
12124			fmt = kmem_alloc(i + 1, KM_SLEEP);
12125			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12126			arg = (uint64_t)(uintptr_t)fmt;
12127		} else {
12128			if (kind == DTRACEACT_PRINTA) {
12129				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12130				arg = 0;
12131			} else {
12132				arg = desc->dofa_arg;
12133			}
12134		}
12135
12136		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12137		    desc->dofa_uarg, arg);
12138
12139		if (last != NULL) {
12140			last->dtad_next = act;
12141		} else {
12142			first = act;
12143		}
12144
12145		last = act;
12146
12147		if (desc->dofa_difo == DOF_SECIDX_NONE)
12148			continue;
12149
12150		if ((difosec = dtrace_dof_sect(dof,
12151		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12152			goto err;
12153
12154		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12155
12156		if (act->dtad_difo == NULL)
12157			goto err;
12158	}
12159
12160	ASSERT(first != NULL);
12161	return (first);
12162
12163err:
12164	for (act = first; act != NULL; act = next) {
12165		next = act->dtad_next;
12166		dtrace_actdesc_release(act, vstate);
12167	}
12168
12169	return (NULL);
12170}
12171
12172static dtrace_ecbdesc_t *
12173dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12174    cred_t *cr)
12175{
12176	dtrace_ecbdesc_t *ep;
12177	dof_ecbdesc_t *ecb;
12178	dtrace_probedesc_t *desc;
12179	dtrace_predicate_t *pred = NULL;
12180
12181	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12182		dtrace_dof_error(dof, "truncated ECB description");
12183		return (NULL);
12184	}
12185
12186	if (sec->dofs_align != sizeof (uint64_t)) {
12187		dtrace_dof_error(dof, "bad alignment in ECB description");
12188		return (NULL);
12189	}
12190
12191	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12192	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12193
12194	if (sec == NULL)
12195		return (NULL);
12196
12197	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12198	ep->dted_uarg = ecb->dofe_uarg;
12199	desc = &ep->dted_probe;
12200
12201	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12202		goto err;
12203
12204	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12205		if ((sec = dtrace_dof_sect(dof,
12206		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12207			goto err;
12208
12209		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12210			goto err;
12211
12212		ep->dted_pred.dtpdd_predicate = pred;
12213	}
12214
12215	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12216		if ((sec = dtrace_dof_sect(dof,
12217		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12218			goto err;
12219
12220		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12221
12222		if (ep->dted_action == NULL)
12223			goto err;
12224	}
12225
12226	return (ep);
12227
12228err:
12229	if (pred != NULL)
12230		dtrace_predicate_release(pred, vstate);
12231	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12232	return (NULL);
12233}
12234
12235/*
12236 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12237 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12238 * site of any user SETX relocations to account for load object base address.
12239 * In the future, if we need other relocations, this function can be extended.
12240 */
12241static int
12242dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12243{
12244	uintptr_t daddr = (uintptr_t)dof;
12245	dof_relohdr_t *dofr =
12246	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12247	dof_sec_t *ss, *rs, *ts;
12248	dof_relodesc_t *r;
12249	uint_t i, n;
12250
12251	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12252	    sec->dofs_align != sizeof (dof_secidx_t)) {
12253		dtrace_dof_error(dof, "invalid relocation header");
12254		return (-1);
12255	}
12256
12257	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12258	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12259	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12260
12261	if (ss == NULL || rs == NULL || ts == NULL)
12262		return (-1); /* dtrace_dof_error() has been called already */
12263
12264	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12265	    rs->dofs_align != sizeof (uint64_t)) {
12266		dtrace_dof_error(dof, "invalid relocation section");
12267		return (-1);
12268	}
12269
12270	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12271	n = rs->dofs_size / rs->dofs_entsize;
12272
12273	for (i = 0; i < n; i++) {
12274		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12275
12276		switch (r->dofr_type) {
12277		case DOF_RELO_NONE:
12278			break;
12279		case DOF_RELO_SETX:
12280			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12281			    sizeof (uint64_t) > ts->dofs_size) {
12282				dtrace_dof_error(dof, "bad relocation offset");
12283				return (-1);
12284			}
12285
12286			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12287				dtrace_dof_error(dof, "misaligned setx relo");
12288				return (-1);
12289			}
12290
12291			*(uint64_t *)taddr += ubase;
12292			break;
12293		default:
12294			dtrace_dof_error(dof, "invalid relocation type");
12295			return (-1);
12296		}
12297
12298		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12299	}
12300
12301	return (0);
12302}
12303
12304/*
12305 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12306 * header:  it should be at the front of a memory region that is at least
12307 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12308 * size.  It need not be validated in any other way.
12309 */
12310static int
12311dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12312    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12313{
12314	uint64_t len = dof->dofh_loadsz, seclen;
12315	uintptr_t daddr = (uintptr_t)dof;
12316	dtrace_ecbdesc_t *ep;
12317	dtrace_enabling_t *enab;
12318	uint_t i;
12319
12320	ASSERT(MUTEX_HELD(&dtrace_lock));
12321	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12322
12323	/*
12324	 * Check the DOF header identification bytes.  In addition to checking
12325	 * valid settings, we also verify that unused bits/bytes are zeroed so
12326	 * we can use them later without fear of regressing existing binaries.
12327	 */
12328	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12329	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12330		dtrace_dof_error(dof, "DOF magic string mismatch");
12331		return (-1);
12332	}
12333
12334	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12335	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12336		dtrace_dof_error(dof, "DOF has invalid data model");
12337		return (-1);
12338	}
12339
12340	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12341		dtrace_dof_error(dof, "DOF encoding mismatch");
12342		return (-1);
12343	}
12344
12345	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12346	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12347		dtrace_dof_error(dof, "DOF version mismatch");
12348		return (-1);
12349	}
12350
12351	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12352		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12353		return (-1);
12354	}
12355
12356	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12357		dtrace_dof_error(dof, "DOF uses too many integer registers");
12358		return (-1);
12359	}
12360
12361	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12362		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12363		return (-1);
12364	}
12365
12366	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12367		if (dof->dofh_ident[i] != 0) {
12368			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12369			return (-1);
12370		}
12371	}
12372
12373	if (dof->dofh_flags & ~DOF_FL_VALID) {
12374		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12375		return (-1);
12376	}
12377
12378	if (dof->dofh_secsize == 0) {
12379		dtrace_dof_error(dof, "zero section header size");
12380		return (-1);
12381	}
12382
12383	/*
12384	 * Check that the section headers don't exceed the amount of DOF
12385	 * data.  Note that we cast the section size and number of sections
12386	 * to uint64_t's to prevent possible overflow in the multiplication.
12387	 */
12388	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12389
12390	if (dof->dofh_secoff > len || seclen > len ||
12391	    dof->dofh_secoff + seclen > len) {
12392		dtrace_dof_error(dof, "truncated section headers");
12393		return (-1);
12394	}
12395
12396	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12397		dtrace_dof_error(dof, "misaligned section headers");
12398		return (-1);
12399	}
12400
12401	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12402		dtrace_dof_error(dof, "misaligned section size");
12403		return (-1);
12404	}
12405
12406	/*
12407	 * Take an initial pass through the section headers to be sure that
12408	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12409	 * set, do not permit sections relating to providers, probes, or args.
12410	 */
12411	for (i = 0; i < dof->dofh_secnum; i++) {
12412		dof_sec_t *sec = (dof_sec_t *)(daddr +
12413		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12414
12415		if (noprobes) {
12416			switch (sec->dofs_type) {
12417			case DOF_SECT_PROVIDER:
12418			case DOF_SECT_PROBES:
12419			case DOF_SECT_PRARGS:
12420			case DOF_SECT_PROFFS:
12421				dtrace_dof_error(dof, "illegal sections "
12422				    "for enabling");
12423				return (-1);
12424			}
12425		}
12426
12427		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12428			continue; /* just ignore non-loadable sections */
12429
12430		if (sec->dofs_align & (sec->dofs_align - 1)) {
12431			dtrace_dof_error(dof, "bad section alignment");
12432			return (-1);
12433		}
12434
12435		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12436			dtrace_dof_error(dof, "misaligned section");
12437			return (-1);
12438		}
12439
12440		if (sec->dofs_offset > len || sec->dofs_size > len ||
12441		    sec->dofs_offset + sec->dofs_size > len) {
12442			dtrace_dof_error(dof, "corrupt section header");
12443			return (-1);
12444		}
12445
12446		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12447		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12448			dtrace_dof_error(dof, "non-terminating string table");
12449			return (-1);
12450		}
12451	}
12452
12453	/*
12454	 * Take a second pass through the sections and locate and perform any
12455	 * relocations that are present.  We do this after the first pass to
12456	 * be sure that all sections have had their headers validated.
12457	 */
12458	for (i = 0; i < dof->dofh_secnum; i++) {
12459		dof_sec_t *sec = (dof_sec_t *)(daddr +
12460		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12461
12462		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12463			continue; /* skip sections that are not loadable */
12464
12465		switch (sec->dofs_type) {
12466		case DOF_SECT_URELHDR:
12467			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12468				return (-1);
12469			break;
12470		}
12471	}
12472
12473	if ((enab = *enabp) == NULL)
12474		enab = *enabp = dtrace_enabling_create(vstate);
12475
12476	for (i = 0; i < dof->dofh_secnum; i++) {
12477		dof_sec_t *sec = (dof_sec_t *)(daddr +
12478		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12479
12480		if (sec->dofs_type != DOF_SECT_ECBDESC)
12481			continue;
12482
12483		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12484			dtrace_enabling_destroy(enab);
12485			*enabp = NULL;
12486			return (-1);
12487		}
12488
12489		dtrace_enabling_add(enab, ep);
12490	}
12491
12492	return (0);
12493}
12494
12495/*
12496 * Process DOF for any options.  This routine assumes that the DOF has been
12497 * at least processed by dtrace_dof_slurp().
12498 */
12499static int
12500dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12501{
12502	int i, rval;
12503	uint32_t entsize;
12504	size_t offs;
12505	dof_optdesc_t *desc;
12506
12507	for (i = 0; i < dof->dofh_secnum; i++) {
12508		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12509		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12510
12511		if (sec->dofs_type != DOF_SECT_OPTDESC)
12512			continue;
12513
12514		if (sec->dofs_align != sizeof (uint64_t)) {
12515			dtrace_dof_error(dof, "bad alignment in "
12516			    "option description");
12517			return (EINVAL);
12518		}
12519
12520		if ((entsize = sec->dofs_entsize) == 0) {
12521			dtrace_dof_error(dof, "zeroed option entry size");
12522			return (EINVAL);
12523		}
12524
12525		if (entsize < sizeof (dof_optdesc_t)) {
12526			dtrace_dof_error(dof, "bad option entry size");
12527			return (EINVAL);
12528		}
12529
12530		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12531			desc = (dof_optdesc_t *)((uintptr_t)dof +
12532			    (uintptr_t)sec->dofs_offset + offs);
12533
12534			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12535				dtrace_dof_error(dof, "non-zero option string");
12536				return (EINVAL);
12537			}
12538
12539			if (desc->dofo_value == DTRACEOPT_UNSET) {
12540				dtrace_dof_error(dof, "unset option");
12541				return (EINVAL);
12542			}
12543
12544			if ((rval = dtrace_state_option(state,
12545			    desc->dofo_option, desc->dofo_value)) != 0) {
12546				dtrace_dof_error(dof, "rejected option");
12547				return (rval);
12548			}
12549		}
12550	}
12551
12552	return (0);
12553}
12554
12555/*
12556 * DTrace Consumer State Functions
12557 */
12558static int
12559dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12560{
12561	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12562	void *base;
12563	uintptr_t limit;
12564	dtrace_dynvar_t *dvar, *next, *start;
12565	int i;
12566
12567	ASSERT(MUTEX_HELD(&dtrace_lock));
12568	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12569
12570	bzero(dstate, sizeof (dtrace_dstate_t));
12571
12572	if ((dstate->dtds_chunksize = chunksize) == 0)
12573		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12574
12575	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12576		size = min;
12577
12578	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12579		return (ENOMEM);
12580
12581	dstate->dtds_size = size;
12582	dstate->dtds_base = base;
12583	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12584	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12585
12586	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12587
12588	if (hashsize != 1 && (hashsize & 1))
12589		hashsize--;
12590
12591	dstate->dtds_hashsize = hashsize;
12592	dstate->dtds_hash = dstate->dtds_base;
12593
12594	/*
12595	 * Set all of our hash buckets to point to the single sink, and (if
12596	 * it hasn't already been set), set the sink's hash value to be the
12597	 * sink sentinel value.  The sink is needed for dynamic variable
12598	 * lookups to know that they have iterated over an entire, valid hash
12599	 * chain.
12600	 */
12601	for (i = 0; i < hashsize; i++)
12602		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12603
12604	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12605		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12606
12607	/*
12608	 * Determine number of active CPUs.  Divide free list evenly among
12609	 * active CPUs.
12610	 */
12611	start = (dtrace_dynvar_t *)
12612	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12613	limit = (uintptr_t)base + size;
12614
12615	maxper = (limit - (uintptr_t)start) / NCPU;
12616	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12617
12618	for (i = 0; i < NCPU; i++) {
12619#if !defined(sun)
12620		if (CPU_ABSENT(i))
12621			continue;
12622#endif
12623		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12624
12625		/*
12626		 * If we don't even have enough chunks to make it once through
12627		 * NCPUs, we're just going to allocate everything to the first
12628		 * CPU.  And if we're on the last CPU, we're going to allocate
12629		 * whatever is left over.  In either case, we set the limit to
12630		 * be the limit of the dynamic variable space.
12631		 */
12632		if (maxper == 0 || i == NCPU - 1) {
12633			limit = (uintptr_t)base + size;
12634			start = NULL;
12635		} else {
12636			limit = (uintptr_t)start + maxper;
12637			start = (dtrace_dynvar_t *)limit;
12638		}
12639
12640		ASSERT(limit <= (uintptr_t)base + size);
12641
12642		for (;;) {
12643			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12644			    dstate->dtds_chunksize);
12645
12646			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12647				break;
12648
12649			dvar->dtdv_next = next;
12650			dvar = next;
12651		}
12652
12653		if (maxper == 0)
12654			break;
12655	}
12656
12657	return (0);
12658}
12659
12660static void
12661dtrace_dstate_fini(dtrace_dstate_t *dstate)
12662{
12663	ASSERT(MUTEX_HELD(&cpu_lock));
12664
12665	if (dstate->dtds_base == NULL)
12666		return;
12667
12668	kmem_free(dstate->dtds_base, dstate->dtds_size);
12669	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12670}
12671
12672static void
12673dtrace_vstate_fini(dtrace_vstate_t *vstate)
12674{
12675	/*
12676	 * Logical XOR, where are you?
12677	 */
12678	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12679
12680	if (vstate->dtvs_nglobals > 0) {
12681		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12682		    sizeof (dtrace_statvar_t *));
12683	}
12684
12685	if (vstate->dtvs_ntlocals > 0) {
12686		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12687		    sizeof (dtrace_difv_t));
12688	}
12689
12690	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12691
12692	if (vstate->dtvs_nlocals > 0) {
12693		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12694		    sizeof (dtrace_statvar_t *));
12695	}
12696}
12697
12698#if defined(sun)
12699static void
12700dtrace_state_clean(dtrace_state_t *state)
12701{
12702	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12703		return;
12704
12705	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12706	dtrace_speculation_clean(state);
12707}
12708
12709static void
12710dtrace_state_deadman(dtrace_state_t *state)
12711{
12712	hrtime_t now;
12713
12714	dtrace_sync();
12715
12716	now = dtrace_gethrtime();
12717
12718	if (state != dtrace_anon.dta_state &&
12719	    now - state->dts_laststatus >= dtrace_deadman_user)
12720		return;
12721
12722	/*
12723	 * We must be sure that dts_alive never appears to be less than the
12724	 * value upon entry to dtrace_state_deadman(), and because we lack a
12725	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12726	 * store INT64_MAX to it, followed by a memory barrier, followed by
12727	 * the new value.  This assures that dts_alive never appears to be
12728	 * less than its true value, regardless of the order in which the
12729	 * stores to the underlying storage are issued.
12730	 */
12731	state->dts_alive = INT64_MAX;
12732	dtrace_membar_producer();
12733	state->dts_alive = now;
12734}
12735#else
12736static void
12737dtrace_state_clean(void *arg)
12738{
12739	dtrace_state_t *state = arg;
12740	dtrace_optval_t *opt = state->dts_options;
12741
12742	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12743		return;
12744
12745	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12746	dtrace_speculation_clean(state);
12747
12748	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12749	    dtrace_state_clean, state);
12750}
12751
12752static void
12753dtrace_state_deadman(void *arg)
12754{
12755	dtrace_state_t *state = arg;
12756	hrtime_t now;
12757
12758	dtrace_sync();
12759
12760	dtrace_debug_output();
12761
12762	now = dtrace_gethrtime();
12763
12764	if (state != dtrace_anon.dta_state &&
12765	    now - state->dts_laststatus >= dtrace_deadman_user)
12766		return;
12767
12768	/*
12769	 * We must be sure that dts_alive never appears to be less than the
12770	 * value upon entry to dtrace_state_deadman(), and because we lack a
12771	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12772	 * store INT64_MAX to it, followed by a memory barrier, followed by
12773	 * the new value.  This assures that dts_alive never appears to be
12774	 * less than its true value, regardless of the order in which the
12775	 * stores to the underlying storage are issued.
12776	 */
12777	state->dts_alive = INT64_MAX;
12778	dtrace_membar_producer();
12779	state->dts_alive = now;
12780
12781	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12782	    dtrace_state_deadman, state);
12783}
12784#endif
12785
12786static dtrace_state_t *
12787#if defined(sun)
12788dtrace_state_create(dev_t *devp, cred_t *cr)
12789#else
12790dtrace_state_create(struct cdev *dev)
12791#endif
12792{
12793#if defined(sun)
12794	minor_t minor;
12795	major_t major;
12796#else
12797	cred_t *cr = NULL;
12798	int m = 0;
12799#endif
12800	char c[30];
12801	dtrace_state_t *state;
12802	dtrace_optval_t *opt;
12803	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12804
12805	ASSERT(MUTEX_HELD(&dtrace_lock));
12806	ASSERT(MUTEX_HELD(&cpu_lock));
12807
12808#if defined(sun)
12809	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12810	    VM_BESTFIT | VM_SLEEP);
12811
12812	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12813		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12814		return (NULL);
12815	}
12816
12817	state = ddi_get_soft_state(dtrace_softstate, minor);
12818#else
12819	if (dev != NULL) {
12820		cr = dev->si_cred;
12821		m = dev2unit(dev);
12822		}
12823
12824	/* Allocate memory for the state. */
12825	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12826#endif
12827
12828	state->dts_epid = DTRACE_EPIDNONE + 1;
12829
12830	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12831#if defined(sun)
12832	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12833	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12834
12835	if (devp != NULL) {
12836		major = getemajor(*devp);
12837	} else {
12838		major = ddi_driver_major(dtrace_devi);
12839	}
12840
12841	state->dts_dev = makedevice(major, minor);
12842
12843	if (devp != NULL)
12844		*devp = state->dts_dev;
12845#else
12846	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12847	state->dts_dev = dev;
12848#endif
12849
12850	/*
12851	 * We allocate NCPU buffers.  On the one hand, this can be quite
12852	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12853	 * other hand, it saves an additional memory reference in the probe
12854	 * path.
12855	 */
12856	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12857	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12858
12859#if defined(sun)
12860	state->dts_cleaner = CYCLIC_NONE;
12861	state->dts_deadman = CYCLIC_NONE;
12862#else
12863	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
12864	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
12865#endif
12866	state->dts_vstate.dtvs_state = state;
12867
12868	for (i = 0; i < DTRACEOPT_MAX; i++)
12869		state->dts_options[i] = DTRACEOPT_UNSET;
12870
12871	/*
12872	 * Set the default options.
12873	 */
12874	opt = state->dts_options;
12875	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12876	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12877	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12878	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12879	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12880	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12881	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12882	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12883	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12884	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12885	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12886	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12887	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12888	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12889
12890	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12891
12892	/*
12893	 * Depending on the user credentials, we set flag bits which alter probe
12894	 * visibility or the amount of destructiveness allowed.  In the case of
12895	 * actual anonymous tracing, or the possession of all privileges, all of
12896	 * the normal checks are bypassed.
12897	 */
12898	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12899		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12900		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12901	} else {
12902		/*
12903		 * Set up the credentials for this instantiation.  We take a
12904		 * hold on the credential to prevent it from disappearing on
12905		 * us; this in turn prevents the zone_t referenced by this
12906		 * credential from disappearing.  This means that we can
12907		 * examine the credential and the zone from probe context.
12908		 */
12909		crhold(cr);
12910		state->dts_cred.dcr_cred = cr;
12911
12912		/*
12913		 * CRA_PROC means "we have *some* privilege for dtrace" and
12914		 * unlocks the use of variables like pid, zonename, etc.
12915		 */
12916		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12917		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12918			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12919		}
12920
12921		/*
12922		 * dtrace_user allows use of syscall and profile providers.
12923		 * If the user also has proc_owner and/or proc_zone, we
12924		 * extend the scope to include additional visibility and
12925		 * destructive power.
12926		 */
12927		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12928			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12929				state->dts_cred.dcr_visible |=
12930				    DTRACE_CRV_ALLPROC;
12931
12932				state->dts_cred.dcr_action |=
12933				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12934			}
12935
12936			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12937				state->dts_cred.dcr_visible |=
12938				    DTRACE_CRV_ALLZONE;
12939
12940				state->dts_cred.dcr_action |=
12941				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12942			}
12943
12944			/*
12945			 * If we have all privs in whatever zone this is,
12946			 * we can do destructive things to processes which
12947			 * have altered credentials.
12948			 */
12949#if defined(sun)
12950			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12951			    cr->cr_zone->zone_privset)) {
12952				state->dts_cred.dcr_action |=
12953				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12954			}
12955#endif
12956		}
12957
12958		/*
12959		 * Holding the dtrace_kernel privilege also implies that
12960		 * the user has the dtrace_user privilege from a visibility
12961		 * perspective.  But without further privileges, some
12962		 * destructive actions are not available.
12963		 */
12964		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12965			/*
12966			 * Make all probes in all zones visible.  However,
12967			 * this doesn't mean that all actions become available
12968			 * to all zones.
12969			 */
12970			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12971			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12972
12973			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12974			    DTRACE_CRA_PROC;
12975			/*
12976			 * Holding proc_owner means that destructive actions
12977			 * for *this* zone are allowed.
12978			 */
12979			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12980				state->dts_cred.dcr_action |=
12981				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12982
12983			/*
12984			 * Holding proc_zone means that destructive actions
12985			 * for this user/group ID in all zones is allowed.
12986			 */
12987			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12988				state->dts_cred.dcr_action |=
12989				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12990
12991#if defined(sun)
12992			/*
12993			 * If we have all privs in whatever zone this is,
12994			 * we can do destructive things to processes which
12995			 * have altered credentials.
12996			 */
12997			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12998			    cr->cr_zone->zone_privset)) {
12999				state->dts_cred.dcr_action |=
13000				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13001			}
13002#endif
13003		}
13004
13005		/*
13006		 * Holding the dtrace_proc privilege gives control over fasttrap
13007		 * and pid providers.  We need to grant wider destructive
13008		 * privileges in the event that the user has proc_owner and/or
13009		 * proc_zone.
13010		 */
13011		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13012			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13013				state->dts_cred.dcr_action |=
13014				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13015
13016			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13017				state->dts_cred.dcr_action |=
13018				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13019		}
13020	}
13021
13022	return (state);
13023}
13024
13025static int
13026dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13027{
13028	dtrace_optval_t *opt = state->dts_options, size;
13029	processorid_t cpu = 0;;
13030	int flags = 0, rval;
13031
13032	ASSERT(MUTEX_HELD(&dtrace_lock));
13033	ASSERT(MUTEX_HELD(&cpu_lock));
13034	ASSERT(which < DTRACEOPT_MAX);
13035	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13036	    (state == dtrace_anon.dta_state &&
13037	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13038
13039	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13040		return (0);
13041
13042	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13043		cpu = opt[DTRACEOPT_CPU];
13044
13045	if (which == DTRACEOPT_SPECSIZE)
13046		flags |= DTRACEBUF_NOSWITCH;
13047
13048	if (which == DTRACEOPT_BUFSIZE) {
13049		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13050			flags |= DTRACEBUF_RING;
13051
13052		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13053			flags |= DTRACEBUF_FILL;
13054
13055		if (state != dtrace_anon.dta_state ||
13056		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13057			flags |= DTRACEBUF_INACTIVE;
13058	}
13059
13060	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13061		/*
13062		 * The size must be 8-byte aligned.  If the size is not 8-byte
13063		 * aligned, drop it down by the difference.
13064		 */
13065		if (size & (sizeof (uint64_t) - 1))
13066			size -= size & (sizeof (uint64_t) - 1);
13067
13068		if (size < state->dts_reserve) {
13069			/*
13070			 * Buffers always must be large enough to accommodate
13071			 * their prereserved space.  We return E2BIG instead
13072			 * of ENOMEM in this case to allow for user-level
13073			 * software to differentiate the cases.
13074			 */
13075			return (E2BIG);
13076		}
13077
13078		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13079
13080		if (rval != ENOMEM) {
13081			opt[which] = size;
13082			return (rval);
13083		}
13084
13085		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13086			return (rval);
13087	}
13088
13089	return (ENOMEM);
13090}
13091
13092static int
13093dtrace_state_buffers(dtrace_state_t *state)
13094{
13095	dtrace_speculation_t *spec = state->dts_speculations;
13096	int rval, i;
13097
13098	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13099	    DTRACEOPT_BUFSIZE)) != 0)
13100		return (rval);
13101
13102	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13103	    DTRACEOPT_AGGSIZE)) != 0)
13104		return (rval);
13105
13106	for (i = 0; i < state->dts_nspeculations; i++) {
13107		if ((rval = dtrace_state_buffer(state,
13108		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13109			return (rval);
13110	}
13111
13112	return (0);
13113}
13114
13115static void
13116dtrace_state_prereserve(dtrace_state_t *state)
13117{
13118	dtrace_ecb_t *ecb;
13119	dtrace_probe_t *probe;
13120
13121	state->dts_reserve = 0;
13122
13123	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13124		return;
13125
13126	/*
13127	 * If our buffer policy is a "fill" buffer policy, we need to set the
13128	 * prereserved space to be the space required by the END probes.
13129	 */
13130	probe = dtrace_probes[dtrace_probeid_end - 1];
13131	ASSERT(probe != NULL);
13132
13133	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13134		if (ecb->dte_state != state)
13135			continue;
13136
13137		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13138	}
13139}
13140
13141static int
13142dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13143{
13144	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13145	dtrace_speculation_t *spec;
13146	dtrace_buffer_t *buf;
13147#if defined(sun)
13148	cyc_handler_t hdlr;
13149	cyc_time_t when;
13150#endif
13151	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13152	dtrace_icookie_t cookie;
13153
13154	mutex_enter(&cpu_lock);
13155	mutex_enter(&dtrace_lock);
13156
13157	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13158		rval = EBUSY;
13159		goto out;
13160	}
13161
13162	/*
13163	 * Before we can perform any checks, we must prime all of the
13164	 * retained enablings that correspond to this state.
13165	 */
13166	dtrace_enabling_prime(state);
13167
13168	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13169		rval = EACCES;
13170		goto out;
13171	}
13172
13173	dtrace_state_prereserve(state);
13174
13175	/*
13176	 * Now we want to do is try to allocate our speculations.
13177	 * We do not automatically resize the number of speculations; if
13178	 * this fails, we will fail the operation.
13179	 */
13180	nspec = opt[DTRACEOPT_NSPEC];
13181	ASSERT(nspec != DTRACEOPT_UNSET);
13182
13183	if (nspec > INT_MAX) {
13184		rval = ENOMEM;
13185		goto out;
13186	}
13187
13188	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13189
13190	if (spec == NULL) {
13191		rval = ENOMEM;
13192		goto out;
13193	}
13194
13195	state->dts_speculations = spec;
13196	state->dts_nspeculations = (int)nspec;
13197
13198	for (i = 0; i < nspec; i++) {
13199		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13200			rval = ENOMEM;
13201			goto err;
13202		}
13203
13204		spec[i].dtsp_buffer = buf;
13205	}
13206
13207	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13208		if (dtrace_anon.dta_state == NULL) {
13209			rval = ENOENT;
13210			goto out;
13211		}
13212
13213		if (state->dts_necbs != 0) {
13214			rval = EALREADY;
13215			goto out;
13216		}
13217
13218		state->dts_anon = dtrace_anon_grab();
13219		ASSERT(state->dts_anon != NULL);
13220		state = state->dts_anon;
13221
13222		/*
13223		 * We want "grabanon" to be set in the grabbed state, so we'll
13224		 * copy that option value from the grabbing state into the
13225		 * grabbed state.
13226		 */
13227		state->dts_options[DTRACEOPT_GRABANON] =
13228		    opt[DTRACEOPT_GRABANON];
13229
13230		*cpu = dtrace_anon.dta_beganon;
13231
13232		/*
13233		 * If the anonymous state is active (as it almost certainly
13234		 * is if the anonymous enabling ultimately matched anything),
13235		 * we don't allow any further option processing -- but we
13236		 * don't return failure.
13237		 */
13238		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13239			goto out;
13240	}
13241
13242	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13243	    opt[DTRACEOPT_AGGSIZE] != 0) {
13244		if (state->dts_aggregations == NULL) {
13245			/*
13246			 * We're not going to create an aggregation buffer
13247			 * because we don't have any ECBs that contain
13248			 * aggregations -- set this option to 0.
13249			 */
13250			opt[DTRACEOPT_AGGSIZE] = 0;
13251		} else {
13252			/*
13253			 * If we have an aggregation buffer, we must also have
13254			 * a buffer to use as scratch.
13255			 */
13256			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13257			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13258				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13259			}
13260		}
13261	}
13262
13263	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13264	    opt[DTRACEOPT_SPECSIZE] != 0) {
13265		if (!state->dts_speculates) {
13266			/*
13267			 * We're not going to create speculation buffers
13268			 * because we don't have any ECBs that actually
13269			 * speculate -- set the speculation size to 0.
13270			 */
13271			opt[DTRACEOPT_SPECSIZE] = 0;
13272		}
13273	}
13274
13275	/*
13276	 * The bare minimum size for any buffer that we're actually going to
13277	 * do anything to is sizeof (uint64_t).
13278	 */
13279	sz = sizeof (uint64_t);
13280
13281	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13282	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13283	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13284		/*
13285		 * A buffer size has been explicitly set to 0 (or to a size
13286		 * that will be adjusted to 0) and we need the space -- we
13287		 * need to return failure.  We return ENOSPC to differentiate
13288		 * it from failing to allocate a buffer due to failure to meet
13289		 * the reserve (for which we return E2BIG).
13290		 */
13291		rval = ENOSPC;
13292		goto out;
13293	}
13294
13295	if ((rval = dtrace_state_buffers(state)) != 0)
13296		goto err;
13297
13298	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13299		sz = dtrace_dstate_defsize;
13300
13301	do {
13302		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13303
13304		if (rval == 0)
13305			break;
13306
13307		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13308			goto err;
13309	} while (sz >>= 1);
13310
13311	opt[DTRACEOPT_DYNVARSIZE] = sz;
13312
13313	if (rval != 0)
13314		goto err;
13315
13316	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13317		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13318
13319	if (opt[DTRACEOPT_CLEANRATE] == 0)
13320		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13321
13322	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13323		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13324
13325	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13326		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13327
13328	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13329#if defined(sun)
13330	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13331	hdlr.cyh_arg = state;
13332	hdlr.cyh_level = CY_LOW_LEVEL;
13333
13334	when.cyt_when = 0;
13335	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13336
13337	state->dts_cleaner = cyclic_add(&hdlr, &when);
13338
13339	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13340	hdlr.cyh_arg = state;
13341	hdlr.cyh_level = CY_LOW_LEVEL;
13342
13343	when.cyt_when = 0;
13344	when.cyt_interval = dtrace_deadman_interval;
13345
13346	state->dts_deadman = cyclic_add(&hdlr, &when);
13347#else
13348	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13349	    dtrace_state_clean, state);
13350	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13351	    dtrace_state_deadman, state);
13352#endif
13353
13354	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13355
13356	/*
13357	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13358	 * interrupts here both to record the CPU on which we fired the BEGIN
13359	 * probe (the data from this CPU will be processed first at user
13360	 * level) and to manually activate the buffer for this CPU.
13361	 */
13362	cookie = dtrace_interrupt_disable();
13363	*cpu = curcpu;
13364	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13365	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13366
13367	dtrace_probe(dtrace_probeid_begin,
13368	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13369	dtrace_interrupt_enable(cookie);
13370	/*
13371	 * We may have had an exit action from a BEGIN probe; only change our
13372	 * state to ACTIVE if we're still in WARMUP.
13373	 */
13374	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13375	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13376
13377	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13378		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13379
13380	/*
13381	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13382	 * want each CPU to transition its principal buffer out of the
13383	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13384	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13385	 * atomically transition from processing none of a state's ECBs to
13386	 * processing all of them.
13387	 */
13388	dtrace_xcall(DTRACE_CPUALL,
13389	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13390	goto out;
13391
13392err:
13393	dtrace_buffer_free(state->dts_buffer);
13394	dtrace_buffer_free(state->dts_aggbuffer);
13395
13396	if ((nspec = state->dts_nspeculations) == 0) {
13397		ASSERT(state->dts_speculations == NULL);
13398		goto out;
13399	}
13400
13401	spec = state->dts_speculations;
13402	ASSERT(spec != NULL);
13403
13404	for (i = 0; i < state->dts_nspeculations; i++) {
13405		if ((buf = spec[i].dtsp_buffer) == NULL)
13406			break;
13407
13408		dtrace_buffer_free(buf);
13409		kmem_free(buf, bufsize);
13410	}
13411
13412	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13413	state->dts_nspeculations = 0;
13414	state->dts_speculations = NULL;
13415
13416out:
13417	mutex_exit(&dtrace_lock);
13418	mutex_exit(&cpu_lock);
13419
13420	return (rval);
13421}
13422
13423static int
13424dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13425{
13426	dtrace_icookie_t cookie;
13427
13428	ASSERT(MUTEX_HELD(&dtrace_lock));
13429
13430	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13431	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13432		return (EINVAL);
13433
13434	/*
13435	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13436	 * to be sure that every CPU has seen it.  See below for the details
13437	 * on why this is done.
13438	 */
13439	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13440	dtrace_sync();
13441
13442	/*
13443	 * By this point, it is impossible for any CPU to be still processing
13444	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13445	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13446	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13447	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13448	 * iff we're in the END probe.
13449	 */
13450	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13451	dtrace_sync();
13452	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13453
13454	/*
13455	 * Finally, we can release the reserve and call the END probe.  We
13456	 * disable interrupts across calling the END probe to allow us to
13457	 * return the CPU on which we actually called the END probe.  This
13458	 * allows user-land to be sure that this CPU's principal buffer is
13459	 * processed last.
13460	 */
13461	state->dts_reserve = 0;
13462
13463	cookie = dtrace_interrupt_disable();
13464	*cpu = curcpu;
13465	dtrace_probe(dtrace_probeid_end,
13466	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13467	dtrace_interrupt_enable(cookie);
13468
13469	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13470	dtrace_sync();
13471
13472	return (0);
13473}
13474
13475static int
13476dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13477    dtrace_optval_t val)
13478{
13479	ASSERT(MUTEX_HELD(&dtrace_lock));
13480
13481	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13482		return (EBUSY);
13483
13484	if (option >= DTRACEOPT_MAX)
13485		return (EINVAL);
13486
13487	if (option != DTRACEOPT_CPU && val < 0)
13488		return (EINVAL);
13489
13490	switch (option) {
13491	case DTRACEOPT_DESTRUCTIVE:
13492		if (dtrace_destructive_disallow)
13493			return (EACCES);
13494
13495		state->dts_cred.dcr_destructive = 1;
13496		break;
13497
13498	case DTRACEOPT_BUFSIZE:
13499	case DTRACEOPT_DYNVARSIZE:
13500	case DTRACEOPT_AGGSIZE:
13501	case DTRACEOPT_SPECSIZE:
13502	case DTRACEOPT_STRSIZE:
13503		if (val < 0)
13504			return (EINVAL);
13505
13506		if (val >= LONG_MAX) {
13507			/*
13508			 * If this is an otherwise negative value, set it to
13509			 * the highest multiple of 128m less than LONG_MAX.
13510			 * Technically, we're adjusting the size without
13511			 * regard to the buffer resizing policy, but in fact,
13512			 * this has no effect -- if we set the buffer size to
13513			 * ~LONG_MAX and the buffer policy is ultimately set to
13514			 * be "manual", the buffer allocation is guaranteed to
13515			 * fail, if only because the allocation requires two
13516			 * buffers.  (We set the the size to the highest
13517			 * multiple of 128m because it ensures that the size
13518			 * will remain a multiple of a megabyte when
13519			 * repeatedly halved -- all the way down to 15m.)
13520			 */
13521			val = LONG_MAX - (1 << 27) + 1;
13522		}
13523	}
13524
13525	state->dts_options[option] = val;
13526
13527	return (0);
13528}
13529
13530static void
13531dtrace_state_destroy(dtrace_state_t *state)
13532{
13533	dtrace_ecb_t *ecb;
13534	dtrace_vstate_t *vstate = &state->dts_vstate;
13535#if defined(sun)
13536	minor_t minor = getminor(state->dts_dev);
13537#endif
13538	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13539	dtrace_speculation_t *spec = state->dts_speculations;
13540	int nspec = state->dts_nspeculations;
13541	uint32_t match;
13542
13543	ASSERT(MUTEX_HELD(&dtrace_lock));
13544	ASSERT(MUTEX_HELD(&cpu_lock));
13545
13546	/*
13547	 * First, retract any retained enablings for this state.
13548	 */
13549	dtrace_enabling_retract(state);
13550	ASSERT(state->dts_nretained == 0);
13551
13552	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13553	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13554		/*
13555		 * We have managed to come into dtrace_state_destroy() on a
13556		 * hot enabling -- almost certainly because of a disorderly
13557		 * shutdown of a consumer.  (That is, a consumer that is
13558		 * exiting without having called dtrace_stop().) In this case,
13559		 * we're going to set our activity to be KILLED, and then
13560		 * issue a sync to be sure that everyone is out of probe
13561		 * context before we start blowing away ECBs.
13562		 */
13563		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13564		dtrace_sync();
13565	}
13566
13567	/*
13568	 * Release the credential hold we took in dtrace_state_create().
13569	 */
13570	if (state->dts_cred.dcr_cred != NULL)
13571		crfree(state->dts_cred.dcr_cred);
13572
13573	/*
13574	 * Now we can safely disable and destroy any enabled probes.  Because
13575	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13576	 * (especially if they're all enabled), we take two passes through the
13577	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13578	 * in the second we disable whatever is left over.
13579	 */
13580	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13581		for (i = 0; i < state->dts_necbs; i++) {
13582			if ((ecb = state->dts_ecbs[i]) == NULL)
13583				continue;
13584
13585			if (match && ecb->dte_probe != NULL) {
13586				dtrace_probe_t *probe = ecb->dte_probe;
13587				dtrace_provider_t *prov = probe->dtpr_provider;
13588
13589				if (!(prov->dtpv_priv.dtpp_flags & match))
13590					continue;
13591			}
13592
13593			dtrace_ecb_disable(ecb);
13594			dtrace_ecb_destroy(ecb);
13595		}
13596
13597		if (!match)
13598			break;
13599	}
13600
13601	/*
13602	 * Before we free the buffers, perform one more sync to assure that
13603	 * every CPU is out of probe context.
13604	 */
13605	dtrace_sync();
13606
13607	dtrace_buffer_free(state->dts_buffer);
13608	dtrace_buffer_free(state->dts_aggbuffer);
13609
13610	for (i = 0; i < nspec; i++)
13611		dtrace_buffer_free(spec[i].dtsp_buffer);
13612
13613#if defined(sun)
13614	if (state->dts_cleaner != CYCLIC_NONE)
13615		cyclic_remove(state->dts_cleaner);
13616
13617	if (state->dts_deadman != CYCLIC_NONE)
13618		cyclic_remove(state->dts_deadman);
13619#else
13620	callout_stop(&state->dts_cleaner);
13621	callout_drain(&state->dts_cleaner);
13622	callout_stop(&state->dts_deadman);
13623	callout_drain(&state->dts_deadman);
13624#endif
13625
13626	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13627	dtrace_vstate_fini(vstate);
13628	if (state->dts_ecbs != NULL)
13629		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13630
13631	if (state->dts_aggregations != NULL) {
13632#ifdef DEBUG
13633		for (i = 0; i < state->dts_naggregations; i++)
13634			ASSERT(state->dts_aggregations[i] == NULL);
13635#endif
13636		ASSERT(state->dts_naggregations > 0);
13637		kmem_free(state->dts_aggregations,
13638		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13639	}
13640
13641	kmem_free(state->dts_buffer, bufsize);
13642	kmem_free(state->dts_aggbuffer, bufsize);
13643
13644	for (i = 0; i < nspec; i++)
13645		kmem_free(spec[i].dtsp_buffer, bufsize);
13646
13647	if (spec != NULL)
13648		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13649
13650	dtrace_format_destroy(state);
13651
13652	if (state->dts_aggid_arena != NULL) {
13653#if defined(sun)
13654		vmem_destroy(state->dts_aggid_arena);
13655#else
13656		delete_unrhdr(state->dts_aggid_arena);
13657#endif
13658		state->dts_aggid_arena = NULL;
13659	}
13660#if defined(sun)
13661	ddi_soft_state_free(dtrace_softstate, minor);
13662	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13663#endif
13664}
13665
13666/*
13667 * DTrace Anonymous Enabling Functions
13668 */
13669static dtrace_state_t *
13670dtrace_anon_grab(void)
13671{
13672	dtrace_state_t *state;
13673
13674	ASSERT(MUTEX_HELD(&dtrace_lock));
13675
13676	if ((state = dtrace_anon.dta_state) == NULL) {
13677		ASSERT(dtrace_anon.dta_enabling == NULL);
13678		return (NULL);
13679	}
13680
13681	ASSERT(dtrace_anon.dta_enabling != NULL);
13682	ASSERT(dtrace_retained != NULL);
13683
13684	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13685	dtrace_anon.dta_enabling = NULL;
13686	dtrace_anon.dta_state = NULL;
13687
13688	return (state);
13689}
13690
13691static void
13692dtrace_anon_property(void)
13693{
13694	int i, rv;
13695	dtrace_state_t *state;
13696	dof_hdr_t *dof;
13697	char c[32];		/* enough for "dof-data-" + digits */
13698
13699	ASSERT(MUTEX_HELD(&dtrace_lock));
13700	ASSERT(MUTEX_HELD(&cpu_lock));
13701
13702	for (i = 0; ; i++) {
13703		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13704
13705		dtrace_err_verbose = 1;
13706
13707		if ((dof = dtrace_dof_property(c)) == NULL) {
13708			dtrace_err_verbose = 0;
13709			break;
13710		}
13711
13712#if defined(sun)
13713		/*
13714		 * We want to create anonymous state, so we need to transition
13715		 * the kernel debugger to indicate that DTrace is active.  If
13716		 * this fails (e.g. because the debugger has modified text in
13717		 * some way), we won't continue with the processing.
13718		 */
13719		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13720			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13721			    "enabling ignored.");
13722			dtrace_dof_destroy(dof);
13723			break;
13724		}
13725#endif
13726
13727		/*
13728		 * If we haven't allocated an anonymous state, we'll do so now.
13729		 */
13730		if ((state = dtrace_anon.dta_state) == NULL) {
13731#if defined(sun)
13732			state = dtrace_state_create(NULL, NULL);
13733#else
13734			state = dtrace_state_create(NULL);
13735#endif
13736			dtrace_anon.dta_state = state;
13737
13738			if (state == NULL) {
13739				/*
13740				 * This basically shouldn't happen:  the only
13741				 * failure mode from dtrace_state_create() is a
13742				 * failure of ddi_soft_state_zalloc() that
13743				 * itself should never happen.  Still, the
13744				 * interface allows for a failure mode, and
13745				 * we want to fail as gracefully as possible:
13746				 * we'll emit an error message and cease
13747				 * processing anonymous state in this case.
13748				 */
13749				cmn_err(CE_WARN, "failed to create "
13750				    "anonymous state");
13751				dtrace_dof_destroy(dof);
13752				break;
13753			}
13754		}
13755
13756		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13757		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13758
13759		if (rv == 0)
13760			rv = dtrace_dof_options(dof, state);
13761
13762		dtrace_err_verbose = 0;
13763		dtrace_dof_destroy(dof);
13764
13765		if (rv != 0) {
13766			/*
13767			 * This is malformed DOF; chuck any anonymous state
13768			 * that we created.
13769			 */
13770			ASSERT(dtrace_anon.dta_enabling == NULL);
13771			dtrace_state_destroy(state);
13772			dtrace_anon.dta_state = NULL;
13773			break;
13774		}
13775
13776		ASSERT(dtrace_anon.dta_enabling != NULL);
13777	}
13778
13779	if (dtrace_anon.dta_enabling != NULL) {
13780		int rval;
13781
13782		/*
13783		 * dtrace_enabling_retain() can only fail because we are
13784		 * trying to retain more enablings than are allowed -- but
13785		 * we only have one anonymous enabling, and we are guaranteed
13786		 * to be allowed at least one retained enabling; we assert
13787		 * that dtrace_enabling_retain() returns success.
13788		 */
13789		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13790		ASSERT(rval == 0);
13791
13792		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13793	}
13794}
13795
13796#if defined(sun)
13797/*
13798 * DTrace Helper Functions
13799 */
13800static void
13801dtrace_helper_trace(dtrace_helper_action_t *helper,
13802    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13803{
13804	uint32_t size, next, nnext, i;
13805	dtrace_helptrace_t *ent;
13806	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13807
13808	if (!dtrace_helptrace_enabled)
13809		return;
13810
13811	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13812
13813	/*
13814	 * What would a tracing framework be without its own tracing
13815	 * framework?  (Well, a hell of a lot simpler, for starters...)
13816	 */
13817	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13818	    sizeof (uint64_t) - sizeof (uint64_t);
13819
13820	/*
13821	 * Iterate until we can allocate a slot in the trace buffer.
13822	 */
13823	do {
13824		next = dtrace_helptrace_next;
13825
13826		if (next + size < dtrace_helptrace_bufsize) {
13827			nnext = next + size;
13828		} else {
13829			nnext = size;
13830		}
13831	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13832
13833	/*
13834	 * We have our slot; fill it in.
13835	 */
13836	if (nnext == size)
13837		next = 0;
13838
13839	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13840	ent->dtht_helper = helper;
13841	ent->dtht_where = where;
13842	ent->dtht_nlocals = vstate->dtvs_nlocals;
13843
13844	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13845	    mstate->dtms_fltoffs : -1;
13846	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13847	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13848
13849	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13850		dtrace_statvar_t *svar;
13851
13852		if ((svar = vstate->dtvs_locals[i]) == NULL)
13853			continue;
13854
13855		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13856		ent->dtht_locals[i] =
13857		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13858	}
13859}
13860#endif
13861
13862#if defined(sun)
13863static uint64_t
13864dtrace_helper(int which, dtrace_mstate_t *mstate,
13865    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13866{
13867	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13868	uint64_t sarg0 = mstate->dtms_arg[0];
13869	uint64_t sarg1 = mstate->dtms_arg[1];
13870	uint64_t rval;
13871	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13872	dtrace_helper_action_t *helper;
13873	dtrace_vstate_t *vstate;
13874	dtrace_difo_t *pred;
13875	int i, trace = dtrace_helptrace_enabled;
13876
13877	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13878
13879	if (helpers == NULL)
13880		return (0);
13881
13882	if ((helper = helpers->dthps_actions[which]) == NULL)
13883		return (0);
13884
13885	vstate = &helpers->dthps_vstate;
13886	mstate->dtms_arg[0] = arg0;
13887	mstate->dtms_arg[1] = arg1;
13888
13889	/*
13890	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13891	 * we'll call the corresponding actions.  Note that the below calls
13892	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13893	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13894	 * the stored DIF offset with its own (which is the desired behavior).
13895	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13896	 * from machine state; this is okay, too.
13897	 */
13898	for (; helper != NULL; helper = helper->dtha_next) {
13899		if ((pred = helper->dtha_predicate) != NULL) {
13900			if (trace)
13901				dtrace_helper_trace(helper, mstate, vstate, 0);
13902
13903			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13904				goto next;
13905
13906			if (*flags & CPU_DTRACE_FAULT)
13907				goto err;
13908		}
13909
13910		for (i = 0; i < helper->dtha_nactions; i++) {
13911			if (trace)
13912				dtrace_helper_trace(helper,
13913				    mstate, vstate, i + 1);
13914
13915			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13916			    mstate, vstate, state);
13917
13918			if (*flags & CPU_DTRACE_FAULT)
13919				goto err;
13920		}
13921
13922next:
13923		if (trace)
13924			dtrace_helper_trace(helper, mstate, vstate,
13925			    DTRACE_HELPTRACE_NEXT);
13926	}
13927
13928	if (trace)
13929		dtrace_helper_trace(helper, mstate, vstate,
13930		    DTRACE_HELPTRACE_DONE);
13931
13932	/*
13933	 * Restore the arg0 that we saved upon entry.
13934	 */
13935	mstate->dtms_arg[0] = sarg0;
13936	mstate->dtms_arg[1] = sarg1;
13937
13938	return (rval);
13939
13940err:
13941	if (trace)
13942		dtrace_helper_trace(helper, mstate, vstate,
13943		    DTRACE_HELPTRACE_ERR);
13944
13945	/*
13946	 * Restore the arg0 that we saved upon entry.
13947	 */
13948	mstate->dtms_arg[0] = sarg0;
13949	mstate->dtms_arg[1] = sarg1;
13950
13951	return (0);
13952}
13953
13954static void
13955dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13956    dtrace_vstate_t *vstate)
13957{
13958	int i;
13959
13960	if (helper->dtha_predicate != NULL)
13961		dtrace_difo_release(helper->dtha_predicate, vstate);
13962
13963	for (i = 0; i < helper->dtha_nactions; i++) {
13964		ASSERT(helper->dtha_actions[i] != NULL);
13965		dtrace_difo_release(helper->dtha_actions[i], vstate);
13966	}
13967
13968	kmem_free(helper->dtha_actions,
13969	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13970	kmem_free(helper, sizeof (dtrace_helper_action_t));
13971}
13972
13973static int
13974dtrace_helper_destroygen(int gen)
13975{
13976	proc_t *p = curproc;
13977	dtrace_helpers_t *help = p->p_dtrace_helpers;
13978	dtrace_vstate_t *vstate;
13979	int i;
13980
13981	ASSERT(MUTEX_HELD(&dtrace_lock));
13982
13983	if (help == NULL || gen > help->dthps_generation)
13984		return (EINVAL);
13985
13986	vstate = &help->dthps_vstate;
13987
13988	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13989		dtrace_helper_action_t *last = NULL, *h, *next;
13990
13991		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13992			next = h->dtha_next;
13993
13994			if (h->dtha_generation == gen) {
13995				if (last != NULL) {
13996					last->dtha_next = next;
13997				} else {
13998					help->dthps_actions[i] = next;
13999				}
14000
14001				dtrace_helper_action_destroy(h, vstate);
14002			} else {
14003				last = h;
14004			}
14005		}
14006	}
14007
14008	/*
14009	 * Interate until we've cleared out all helper providers with the
14010	 * given generation number.
14011	 */
14012	for (;;) {
14013		dtrace_helper_provider_t *prov;
14014
14015		/*
14016		 * Look for a helper provider with the right generation. We
14017		 * have to start back at the beginning of the list each time
14018		 * because we drop dtrace_lock. It's unlikely that we'll make
14019		 * more than two passes.
14020		 */
14021		for (i = 0; i < help->dthps_nprovs; i++) {
14022			prov = help->dthps_provs[i];
14023
14024			if (prov->dthp_generation == gen)
14025				break;
14026		}
14027
14028		/*
14029		 * If there were no matches, we're done.
14030		 */
14031		if (i == help->dthps_nprovs)
14032			break;
14033
14034		/*
14035		 * Move the last helper provider into this slot.
14036		 */
14037		help->dthps_nprovs--;
14038		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14039		help->dthps_provs[help->dthps_nprovs] = NULL;
14040
14041		mutex_exit(&dtrace_lock);
14042
14043		/*
14044		 * If we have a meta provider, remove this helper provider.
14045		 */
14046		mutex_enter(&dtrace_meta_lock);
14047		if (dtrace_meta_pid != NULL) {
14048			ASSERT(dtrace_deferred_pid == NULL);
14049			dtrace_helper_provider_remove(&prov->dthp_prov,
14050			    p->p_pid);
14051		}
14052		mutex_exit(&dtrace_meta_lock);
14053
14054		dtrace_helper_provider_destroy(prov);
14055
14056		mutex_enter(&dtrace_lock);
14057	}
14058
14059	return (0);
14060}
14061#endif
14062
14063#if defined(sun)
14064static int
14065dtrace_helper_validate(dtrace_helper_action_t *helper)
14066{
14067	int err = 0, i;
14068	dtrace_difo_t *dp;
14069
14070	if ((dp = helper->dtha_predicate) != NULL)
14071		err += dtrace_difo_validate_helper(dp);
14072
14073	for (i = 0; i < helper->dtha_nactions; i++)
14074		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14075
14076	return (err == 0);
14077}
14078#endif
14079
14080#if defined(sun)
14081static int
14082dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14083{
14084	dtrace_helpers_t *help;
14085	dtrace_helper_action_t *helper, *last;
14086	dtrace_actdesc_t *act;
14087	dtrace_vstate_t *vstate;
14088	dtrace_predicate_t *pred;
14089	int count = 0, nactions = 0, i;
14090
14091	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14092		return (EINVAL);
14093
14094	help = curproc->p_dtrace_helpers;
14095	last = help->dthps_actions[which];
14096	vstate = &help->dthps_vstate;
14097
14098	for (count = 0; last != NULL; last = last->dtha_next) {
14099		count++;
14100		if (last->dtha_next == NULL)
14101			break;
14102	}
14103
14104	/*
14105	 * If we already have dtrace_helper_actions_max helper actions for this
14106	 * helper action type, we'll refuse to add a new one.
14107	 */
14108	if (count >= dtrace_helper_actions_max)
14109		return (ENOSPC);
14110
14111	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14112	helper->dtha_generation = help->dthps_generation;
14113
14114	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14115		ASSERT(pred->dtp_difo != NULL);
14116		dtrace_difo_hold(pred->dtp_difo);
14117		helper->dtha_predicate = pred->dtp_difo;
14118	}
14119
14120	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14121		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14122			goto err;
14123
14124		if (act->dtad_difo == NULL)
14125			goto err;
14126
14127		nactions++;
14128	}
14129
14130	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14131	    (helper->dtha_nactions = nactions), KM_SLEEP);
14132
14133	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14134		dtrace_difo_hold(act->dtad_difo);
14135		helper->dtha_actions[i++] = act->dtad_difo;
14136	}
14137
14138	if (!dtrace_helper_validate(helper))
14139		goto err;
14140
14141	if (last == NULL) {
14142		help->dthps_actions[which] = helper;
14143	} else {
14144		last->dtha_next = helper;
14145	}
14146
14147	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14148		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14149		dtrace_helptrace_next = 0;
14150	}
14151
14152	return (0);
14153err:
14154	dtrace_helper_action_destroy(helper, vstate);
14155	return (EINVAL);
14156}
14157
14158static void
14159dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14160    dof_helper_t *dofhp)
14161{
14162	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14163
14164	mutex_enter(&dtrace_meta_lock);
14165	mutex_enter(&dtrace_lock);
14166
14167	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14168		/*
14169		 * If the dtrace module is loaded but not attached, or if
14170		 * there aren't isn't a meta provider registered to deal with
14171		 * these provider descriptions, we need to postpone creating
14172		 * the actual providers until later.
14173		 */
14174
14175		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14176		    dtrace_deferred_pid != help) {
14177			help->dthps_deferred = 1;
14178			help->dthps_pid = p->p_pid;
14179			help->dthps_next = dtrace_deferred_pid;
14180			help->dthps_prev = NULL;
14181			if (dtrace_deferred_pid != NULL)
14182				dtrace_deferred_pid->dthps_prev = help;
14183			dtrace_deferred_pid = help;
14184		}
14185
14186		mutex_exit(&dtrace_lock);
14187
14188	} else if (dofhp != NULL) {
14189		/*
14190		 * If the dtrace module is loaded and we have a particular
14191		 * helper provider description, pass that off to the
14192		 * meta provider.
14193		 */
14194
14195		mutex_exit(&dtrace_lock);
14196
14197		dtrace_helper_provide(dofhp, p->p_pid);
14198
14199	} else {
14200		/*
14201		 * Otherwise, just pass all the helper provider descriptions
14202		 * off to the meta provider.
14203		 */
14204
14205		int i;
14206		mutex_exit(&dtrace_lock);
14207
14208		for (i = 0; i < help->dthps_nprovs; i++) {
14209			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14210			    p->p_pid);
14211		}
14212	}
14213
14214	mutex_exit(&dtrace_meta_lock);
14215}
14216
14217static int
14218dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14219{
14220	dtrace_helpers_t *help;
14221	dtrace_helper_provider_t *hprov, **tmp_provs;
14222	uint_t tmp_maxprovs, i;
14223
14224	ASSERT(MUTEX_HELD(&dtrace_lock));
14225
14226	help = curproc->p_dtrace_helpers;
14227	ASSERT(help != NULL);
14228
14229	/*
14230	 * If we already have dtrace_helper_providers_max helper providers,
14231	 * we're refuse to add a new one.
14232	 */
14233	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14234		return (ENOSPC);
14235
14236	/*
14237	 * Check to make sure this isn't a duplicate.
14238	 */
14239	for (i = 0; i < help->dthps_nprovs; i++) {
14240		if (dofhp->dofhp_addr ==
14241		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14242			return (EALREADY);
14243	}
14244
14245	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14246	hprov->dthp_prov = *dofhp;
14247	hprov->dthp_ref = 1;
14248	hprov->dthp_generation = gen;
14249
14250	/*
14251	 * Allocate a bigger table for helper providers if it's already full.
14252	 */
14253	if (help->dthps_maxprovs == help->dthps_nprovs) {
14254		tmp_maxprovs = help->dthps_maxprovs;
14255		tmp_provs = help->dthps_provs;
14256
14257		if (help->dthps_maxprovs == 0)
14258			help->dthps_maxprovs = 2;
14259		else
14260			help->dthps_maxprovs *= 2;
14261		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14262			help->dthps_maxprovs = dtrace_helper_providers_max;
14263
14264		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14265
14266		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14267		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14268
14269		if (tmp_provs != NULL) {
14270			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14271			    sizeof (dtrace_helper_provider_t *));
14272			kmem_free(tmp_provs, tmp_maxprovs *
14273			    sizeof (dtrace_helper_provider_t *));
14274		}
14275	}
14276
14277	help->dthps_provs[help->dthps_nprovs] = hprov;
14278	help->dthps_nprovs++;
14279
14280	return (0);
14281}
14282
14283static void
14284dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14285{
14286	mutex_enter(&dtrace_lock);
14287
14288	if (--hprov->dthp_ref == 0) {
14289		dof_hdr_t *dof;
14290		mutex_exit(&dtrace_lock);
14291		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14292		dtrace_dof_destroy(dof);
14293		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14294	} else {
14295		mutex_exit(&dtrace_lock);
14296	}
14297}
14298
14299static int
14300dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14301{
14302	uintptr_t daddr = (uintptr_t)dof;
14303	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14304	dof_provider_t *provider;
14305	dof_probe_t *probe;
14306	uint8_t *arg;
14307	char *strtab, *typestr;
14308	dof_stridx_t typeidx;
14309	size_t typesz;
14310	uint_t nprobes, j, k;
14311
14312	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14313
14314	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14315		dtrace_dof_error(dof, "misaligned section offset");
14316		return (-1);
14317	}
14318
14319	/*
14320	 * The section needs to be large enough to contain the DOF provider
14321	 * structure appropriate for the given version.
14322	 */
14323	if (sec->dofs_size <
14324	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14325	    offsetof(dof_provider_t, dofpv_prenoffs) :
14326	    sizeof (dof_provider_t))) {
14327		dtrace_dof_error(dof, "provider section too small");
14328		return (-1);
14329	}
14330
14331	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14332	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14333	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14334	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14335	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14336
14337	if (str_sec == NULL || prb_sec == NULL ||
14338	    arg_sec == NULL || off_sec == NULL)
14339		return (-1);
14340
14341	enoff_sec = NULL;
14342
14343	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14344	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14345	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14346	    provider->dofpv_prenoffs)) == NULL)
14347		return (-1);
14348
14349	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14350
14351	if (provider->dofpv_name >= str_sec->dofs_size ||
14352	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14353		dtrace_dof_error(dof, "invalid provider name");
14354		return (-1);
14355	}
14356
14357	if (prb_sec->dofs_entsize == 0 ||
14358	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14359		dtrace_dof_error(dof, "invalid entry size");
14360		return (-1);
14361	}
14362
14363	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14364		dtrace_dof_error(dof, "misaligned entry size");
14365		return (-1);
14366	}
14367
14368	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14369		dtrace_dof_error(dof, "invalid entry size");
14370		return (-1);
14371	}
14372
14373	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14374		dtrace_dof_error(dof, "misaligned section offset");
14375		return (-1);
14376	}
14377
14378	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14379		dtrace_dof_error(dof, "invalid entry size");
14380		return (-1);
14381	}
14382
14383	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14384
14385	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14386
14387	/*
14388	 * Take a pass through the probes to check for errors.
14389	 */
14390	for (j = 0; j < nprobes; j++) {
14391		probe = (dof_probe_t *)(uintptr_t)(daddr +
14392		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14393
14394		if (probe->dofpr_func >= str_sec->dofs_size) {
14395			dtrace_dof_error(dof, "invalid function name");
14396			return (-1);
14397		}
14398
14399		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14400			dtrace_dof_error(dof, "function name too long");
14401			return (-1);
14402		}
14403
14404		if (probe->dofpr_name >= str_sec->dofs_size ||
14405		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14406			dtrace_dof_error(dof, "invalid probe name");
14407			return (-1);
14408		}
14409
14410		/*
14411		 * The offset count must not wrap the index, and the offsets
14412		 * must also not overflow the section's data.
14413		 */
14414		if (probe->dofpr_offidx + probe->dofpr_noffs <
14415		    probe->dofpr_offidx ||
14416		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14417		    off_sec->dofs_entsize > off_sec->dofs_size) {
14418			dtrace_dof_error(dof, "invalid probe offset");
14419			return (-1);
14420		}
14421
14422		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14423			/*
14424			 * If there's no is-enabled offset section, make sure
14425			 * there aren't any is-enabled offsets. Otherwise
14426			 * perform the same checks as for probe offsets
14427			 * (immediately above).
14428			 */
14429			if (enoff_sec == NULL) {
14430				if (probe->dofpr_enoffidx != 0 ||
14431				    probe->dofpr_nenoffs != 0) {
14432					dtrace_dof_error(dof, "is-enabled "
14433					    "offsets with null section");
14434					return (-1);
14435				}
14436			} else if (probe->dofpr_enoffidx +
14437			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14438			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14439			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14440				dtrace_dof_error(dof, "invalid is-enabled "
14441				    "offset");
14442				return (-1);
14443			}
14444
14445			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14446				dtrace_dof_error(dof, "zero probe and "
14447				    "is-enabled offsets");
14448				return (-1);
14449			}
14450		} else if (probe->dofpr_noffs == 0) {
14451			dtrace_dof_error(dof, "zero probe offsets");
14452			return (-1);
14453		}
14454
14455		if (probe->dofpr_argidx + probe->dofpr_xargc <
14456		    probe->dofpr_argidx ||
14457		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14458		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14459			dtrace_dof_error(dof, "invalid args");
14460			return (-1);
14461		}
14462
14463		typeidx = probe->dofpr_nargv;
14464		typestr = strtab + probe->dofpr_nargv;
14465		for (k = 0; k < probe->dofpr_nargc; k++) {
14466			if (typeidx >= str_sec->dofs_size) {
14467				dtrace_dof_error(dof, "bad "
14468				    "native argument type");
14469				return (-1);
14470			}
14471
14472			typesz = strlen(typestr) + 1;
14473			if (typesz > DTRACE_ARGTYPELEN) {
14474				dtrace_dof_error(dof, "native "
14475				    "argument type too long");
14476				return (-1);
14477			}
14478			typeidx += typesz;
14479			typestr += typesz;
14480		}
14481
14482		typeidx = probe->dofpr_xargv;
14483		typestr = strtab + probe->dofpr_xargv;
14484		for (k = 0; k < probe->dofpr_xargc; k++) {
14485			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14486				dtrace_dof_error(dof, "bad "
14487				    "native argument index");
14488				return (-1);
14489			}
14490
14491			if (typeidx >= str_sec->dofs_size) {
14492				dtrace_dof_error(dof, "bad "
14493				    "translated argument type");
14494				return (-1);
14495			}
14496
14497			typesz = strlen(typestr) + 1;
14498			if (typesz > DTRACE_ARGTYPELEN) {
14499				dtrace_dof_error(dof, "translated argument "
14500				    "type too long");
14501				return (-1);
14502			}
14503
14504			typeidx += typesz;
14505			typestr += typesz;
14506		}
14507	}
14508
14509	return (0);
14510}
14511
14512static int
14513dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14514{
14515	dtrace_helpers_t *help;
14516	dtrace_vstate_t *vstate;
14517	dtrace_enabling_t *enab = NULL;
14518	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14519	uintptr_t daddr = (uintptr_t)dof;
14520
14521	ASSERT(MUTEX_HELD(&dtrace_lock));
14522
14523	if ((help = curproc->p_dtrace_helpers) == NULL)
14524		help = dtrace_helpers_create(curproc);
14525
14526	vstate = &help->dthps_vstate;
14527
14528	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14529	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14530		dtrace_dof_destroy(dof);
14531		return (rv);
14532	}
14533
14534	/*
14535	 * Look for helper providers and validate their descriptions.
14536	 */
14537	if (dhp != NULL) {
14538		for (i = 0; i < dof->dofh_secnum; i++) {
14539			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14540			    dof->dofh_secoff + i * dof->dofh_secsize);
14541
14542			if (sec->dofs_type != DOF_SECT_PROVIDER)
14543				continue;
14544
14545			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14546				dtrace_enabling_destroy(enab);
14547				dtrace_dof_destroy(dof);
14548				return (-1);
14549			}
14550
14551			nprovs++;
14552		}
14553	}
14554
14555	/*
14556	 * Now we need to walk through the ECB descriptions in the enabling.
14557	 */
14558	for (i = 0; i < enab->dten_ndesc; i++) {
14559		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14560		dtrace_probedesc_t *desc = &ep->dted_probe;
14561
14562		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14563			continue;
14564
14565		if (strcmp(desc->dtpd_mod, "helper") != 0)
14566			continue;
14567
14568		if (strcmp(desc->dtpd_func, "ustack") != 0)
14569			continue;
14570
14571		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14572		    ep)) != 0) {
14573			/*
14574			 * Adding this helper action failed -- we are now going
14575			 * to rip out the entire generation and return failure.
14576			 */
14577			(void) dtrace_helper_destroygen(help->dthps_generation);
14578			dtrace_enabling_destroy(enab);
14579			dtrace_dof_destroy(dof);
14580			return (-1);
14581		}
14582
14583		nhelpers++;
14584	}
14585
14586	if (nhelpers < enab->dten_ndesc)
14587		dtrace_dof_error(dof, "unmatched helpers");
14588
14589	gen = help->dthps_generation++;
14590	dtrace_enabling_destroy(enab);
14591
14592	if (dhp != NULL && nprovs > 0) {
14593		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14594		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14595			mutex_exit(&dtrace_lock);
14596			dtrace_helper_provider_register(curproc, help, dhp);
14597			mutex_enter(&dtrace_lock);
14598
14599			destroy = 0;
14600		}
14601	}
14602
14603	if (destroy)
14604		dtrace_dof_destroy(dof);
14605
14606	return (gen);
14607}
14608
14609static dtrace_helpers_t *
14610dtrace_helpers_create(proc_t *p)
14611{
14612	dtrace_helpers_t *help;
14613
14614	ASSERT(MUTEX_HELD(&dtrace_lock));
14615	ASSERT(p->p_dtrace_helpers == NULL);
14616
14617	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14618	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14619	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14620
14621	p->p_dtrace_helpers = help;
14622	dtrace_helpers++;
14623
14624	return (help);
14625}
14626
14627static void
14628dtrace_helpers_destroy(void)
14629{
14630	dtrace_helpers_t *help;
14631	dtrace_vstate_t *vstate;
14632	proc_t *p = curproc;
14633	int i;
14634
14635	mutex_enter(&dtrace_lock);
14636
14637	ASSERT(p->p_dtrace_helpers != NULL);
14638	ASSERT(dtrace_helpers > 0);
14639
14640	help = p->p_dtrace_helpers;
14641	vstate = &help->dthps_vstate;
14642
14643	/*
14644	 * We're now going to lose the help from this process.
14645	 */
14646	p->p_dtrace_helpers = NULL;
14647	dtrace_sync();
14648
14649	/*
14650	 * Destory the helper actions.
14651	 */
14652	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14653		dtrace_helper_action_t *h, *next;
14654
14655		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14656			next = h->dtha_next;
14657			dtrace_helper_action_destroy(h, vstate);
14658			h = next;
14659		}
14660	}
14661
14662	mutex_exit(&dtrace_lock);
14663
14664	/*
14665	 * Destroy the helper providers.
14666	 */
14667	if (help->dthps_maxprovs > 0) {
14668		mutex_enter(&dtrace_meta_lock);
14669		if (dtrace_meta_pid != NULL) {
14670			ASSERT(dtrace_deferred_pid == NULL);
14671
14672			for (i = 0; i < help->dthps_nprovs; i++) {
14673				dtrace_helper_provider_remove(
14674				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14675			}
14676		} else {
14677			mutex_enter(&dtrace_lock);
14678			ASSERT(help->dthps_deferred == 0 ||
14679			    help->dthps_next != NULL ||
14680			    help->dthps_prev != NULL ||
14681			    help == dtrace_deferred_pid);
14682
14683			/*
14684			 * Remove the helper from the deferred list.
14685			 */
14686			if (help->dthps_next != NULL)
14687				help->dthps_next->dthps_prev = help->dthps_prev;
14688			if (help->dthps_prev != NULL)
14689				help->dthps_prev->dthps_next = help->dthps_next;
14690			if (dtrace_deferred_pid == help) {
14691				dtrace_deferred_pid = help->dthps_next;
14692				ASSERT(help->dthps_prev == NULL);
14693			}
14694
14695			mutex_exit(&dtrace_lock);
14696		}
14697
14698		mutex_exit(&dtrace_meta_lock);
14699
14700		for (i = 0; i < help->dthps_nprovs; i++) {
14701			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14702		}
14703
14704		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14705		    sizeof (dtrace_helper_provider_t *));
14706	}
14707
14708	mutex_enter(&dtrace_lock);
14709
14710	dtrace_vstate_fini(&help->dthps_vstate);
14711	kmem_free(help->dthps_actions,
14712	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14713	kmem_free(help, sizeof (dtrace_helpers_t));
14714
14715	--dtrace_helpers;
14716	mutex_exit(&dtrace_lock);
14717}
14718
14719static void
14720dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14721{
14722	dtrace_helpers_t *help, *newhelp;
14723	dtrace_helper_action_t *helper, *new, *last;
14724	dtrace_difo_t *dp;
14725	dtrace_vstate_t *vstate;
14726	int i, j, sz, hasprovs = 0;
14727
14728	mutex_enter(&dtrace_lock);
14729	ASSERT(from->p_dtrace_helpers != NULL);
14730	ASSERT(dtrace_helpers > 0);
14731
14732	help = from->p_dtrace_helpers;
14733	newhelp = dtrace_helpers_create(to);
14734	ASSERT(to->p_dtrace_helpers != NULL);
14735
14736	newhelp->dthps_generation = help->dthps_generation;
14737	vstate = &newhelp->dthps_vstate;
14738
14739	/*
14740	 * Duplicate the helper actions.
14741	 */
14742	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14743		if ((helper = help->dthps_actions[i]) == NULL)
14744			continue;
14745
14746		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14747			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14748			    KM_SLEEP);
14749			new->dtha_generation = helper->dtha_generation;
14750
14751			if ((dp = helper->dtha_predicate) != NULL) {
14752				dp = dtrace_difo_duplicate(dp, vstate);
14753				new->dtha_predicate = dp;
14754			}
14755
14756			new->dtha_nactions = helper->dtha_nactions;
14757			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14758			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14759
14760			for (j = 0; j < new->dtha_nactions; j++) {
14761				dtrace_difo_t *dp = helper->dtha_actions[j];
14762
14763				ASSERT(dp != NULL);
14764				dp = dtrace_difo_duplicate(dp, vstate);
14765				new->dtha_actions[j] = dp;
14766			}
14767
14768			if (last != NULL) {
14769				last->dtha_next = new;
14770			} else {
14771				newhelp->dthps_actions[i] = new;
14772			}
14773
14774			last = new;
14775		}
14776	}
14777
14778	/*
14779	 * Duplicate the helper providers and register them with the
14780	 * DTrace framework.
14781	 */
14782	if (help->dthps_nprovs > 0) {
14783		newhelp->dthps_nprovs = help->dthps_nprovs;
14784		newhelp->dthps_maxprovs = help->dthps_nprovs;
14785		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14786		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14787		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14788			newhelp->dthps_provs[i] = help->dthps_provs[i];
14789			newhelp->dthps_provs[i]->dthp_ref++;
14790		}
14791
14792		hasprovs = 1;
14793	}
14794
14795	mutex_exit(&dtrace_lock);
14796
14797	if (hasprovs)
14798		dtrace_helper_provider_register(to, newhelp, NULL);
14799}
14800#endif
14801
14802#if defined(sun)
14803/*
14804 * DTrace Hook Functions
14805 */
14806static void
14807dtrace_module_loaded(modctl_t *ctl)
14808{
14809	dtrace_provider_t *prv;
14810
14811	mutex_enter(&dtrace_provider_lock);
14812	mutex_enter(&mod_lock);
14813
14814	ASSERT(ctl->mod_busy);
14815
14816	/*
14817	 * We're going to call each providers per-module provide operation
14818	 * specifying only this module.
14819	 */
14820	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14821		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14822
14823	mutex_exit(&mod_lock);
14824	mutex_exit(&dtrace_provider_lock);
14825
14826	/*
14827	 * If we have any retained enablings, we need to match against them.
14828	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14829	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14830	 * module.  (In particular, this happens when loading scheduling
14831	 * classes.)  So if we have any retained enablings, we need to dispatch
14832	 * our task queue to do the match for us.
14833	 */
14834	mutex_enter(&dtrace_lock);
14835
14836	if (dtrace_retained == NULL) {
14837		mutex_exit(&dtrace_lock);
14838		return;
14839	}
14840
14841	(void) taskq_dispatch(dtrace_taskq,
14842	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14843
14844	mutex_exit(&dtrace_lock);
14845
14846	/*
14847	 * And now, for a little heuristic sleaze:  in general, we want to
14848	 * match modules as soon as they load.  However, we cannot guarantee
14849	 * this, because it would lead us to the lock ordering violation
14850	 * outlined above.  The common case, of course, is that cpu_lock is
14851	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14852	 * long enough for the task queue to do its work.  If it's not, it's
14853	 * not a serious problem -- it just means that the module that we
14854	 * just loaded may not be immediately instrumentable.
14855	 */
14856	delay(1);
14857}
14858
14859static void
14860dtrace_module_unloaded(modctl_t *ctl)
14861{
14862	dtrace_probe_t template, *probe, *first, *next;
14863	dtrace_provider_t *prov;
14864
14865	template.dtpr_mod = ctl->mod_modname;
14866
14867	mutex_enter(&dtrace_provider_lock);
14868	mutex_enter(&mod_lock);
14869	mutex_enter(&dtrace_lock);
14870
14871	if (dtrace_bymod == NULL) {
14872		/*
14873		 * The DTrace module is loaded (obviously) but not attached;
14874		 * we don't have any work to do.
14875		 */
14876		mutex_exit(&dtrace_provider_lock);
14877		mutex_exit(&mod_lock);
14878		mutex_exit(&dtrace_lock);
14879		return;
14880	}
14881
14882	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14883	    probe != NULL; probe = probe->dtpr_nextmod) {
14884		if (probe->dtpr_ecb != NULL) {
14885			mutex_exit(&dtrace_provider_lock);
14886			mutex_exit(&mod_lock);
14887			mutex_exit(&dtrace_lock);
14888
14889			/*
14890			 * This shouldn't _actually_ be possible -- we're
14891			 * unloading a module that has an enabled probe in it.
14892			 * (It's normally up to the provider to make sure that
14893			 * this can't happen.)  However, because dtps_enable()
14894			 * doesn't have a failure mode, there can be an
14895			 * enable/unload race.  Upshot:  we don't want to
14896			 * assert, but we're not going to disable the
14897			 * probe, either.
14898			 */
14899			if (dtrace_err_verbose) {
14900				cmn_err(CE_WARN, "unloaded module '%s' had "
14901				    "enabled probes", ctl->mod_modname);
14902			}
14903
14904			return;
14905		}
14906	}
14907
14908	probe = first;
14909
14910	for (first = NULL; probe != NULL; probe = next) {
14911		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14912
14913		dtrace_probes[probe->dtpr_id - 1] = NULL;
14914
14915		next = probe->dtpr_nextmod;
14916		dtrace_hash_remove(dtrace_bymod, probe);
14917		dtrace_hash_remove(dtrace_byfunc, probe);
14918		dtrace_hash_remove(dtrace_byname, probe);
14919
14920		if (first == NULL) {
14921			first = probe;
14922			probe->dtpr_nextmod = NULL;
14923		} else {
14924			probe->dtpr_nextmod = first;
14925			first = probe;
14926		}
14927	}
14928
14929	/*
14930	 * We've removed all of the module's probes from the hash chains and
14931	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14932	 * everyone has cleared out from any probe array processing.
14933	 */
14934	dtrace_sync();
14935
14936	for (probe = first; probe != NULL; probe = first) {
14937		first = probe->dtpr_nextmod;
14938		prov = probe->dtpr_provider;
14939		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14940		    probe->dtpr_arg);
14941		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14942		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14943		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14944		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14945		kmem_free(probe, sizeof (dtrace_probe_t));
14946	}
14947
14948	mutex_exit(&dtrace_lock);
14949	mutex_exit(&mod_lock);
14950	mutex_exit(&dtrace_provider_lock);
14951}
14952
14953static void
14954dtrace_suspend(void)
14955{
14956	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14957}
14958
14959static void
14960dtrace_resume(void)
14961{
14962	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14963}
14964#endif
14965
14966static int
14967dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14968{
14969	ASSERT(MUTEX_HELD(&cpu_lock));
14970	mutex_enter(&dtrace_lock);
14971
14972	switch (what) {
14973	case CPU_CONFIG: {
14974		dtrace_state_t *state;
14975		dtrace_optval_t *opt, rs, c;
14976
14977		/*
14978		 * For now, we only allocate a new buffer for anonymous state.
14979		 */
14980		if ((state = dtrace_anon.dta_state) == NULL)
14981			break;
14982
14983		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14984			break;
14985
14986		opt = state->dts_options;
14987		c = opt[DTRACEOPT_CPU];
14988
14989		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14990			break;
14991
14992		/*
14993		 * Regardless of what the actual policy is, we're going to
14994		 * temporarily set our resize policy to be manual.  We're
14995		 * also going to temporarily set our CPU option to denote
14996		 * the newly configured CPU.
14997		 */
14998		rs = opt[DTRACEOPT_BUFRESIZE];
14999		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15000		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15001
15002		(void) dtrace_state_buffers(state);
15003
15004		opt[DTRACEOPT_BUFRESIZE] = rs;
15005		opt[DTRACEOPT_CPU] = c;
15006
15007		break;
15008	}
15009
15010	case CPU_UNCONFIG:
15011		/*
15012		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15013		 * buffer will be freed when the consumer exits.)
15014		 */
15015		break;
15016
15017	default:
15018		break;
15019	}
15020
15021	mutex_exit(&dtrace_lock);
15022	return (0);
15023}
15024
15025#if defined(sun)
15026static void
15027dtrace_cpu_setup_initial(processorid_t cpu)
15028{
15029	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15030}
15031#endif
15032
15033static void
15034dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15035{
15036	if (dtrace_toxranges >= dtrace_toxranges_max) {
15037		int osize, nsize;
15038		dtrace_toxrange_t *range;
15039
15040		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15041
15042		if (osize == 0) {
15043			ASSERT(dtrace_toxrange == NULL);
15044			ASSERT(dtrace_toxranges_max == 0);
15045			dtrace_toxranges_max = 1;
15046		} else {
15047			dtrace_toxranges_max <<= 1;
15048		}
15049
15050		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15051		range = kmem_zalloc(nsize, KM_SLEEP);
15052
15053		if (dtrace_toxrange != NULL) {
15054			ASSERT(osize != 0);
15055			bcopy(dtrace_toxrange, range, osize);
15056			kmem_free(dtrace_toxrange, osize);
15057		}
15058
15059		dtrace_toxrange = range;
15060	}
15061
15062	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15063	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15064
15065	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15066	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15067	dtrace_toxranges++;
15068}
15069
15070/*
15071 * DTrace Driver Cookbook Functions
15072 */
15073#if defined(sun)
15074/*ARGSUSED*/
15075static int
15076dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15077{
15078	dtrace_provider_id_t id;
15079	dtrace_state_t *state = NULL;
15080	dtrace_enabling_t *enab;
15081
15082	mutex_enter(&cpu_lock);
15083	mutex_enter(&dtrace_provider_lock);
15084	mutex_enter(&dtrace_lock);
15085
15086	if (ddi_soft_state_init(&dtrace_softstate,
15087	    sizeof (dtrace_state_t), 0) != 0) {
15088		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15089		mutex_exit(&cpu_lock);
15090		mutex_exit(&dtrace_provider_lock);
15091		mutex_exit(&dtrace_lock);
15092		return (DDI_FAILURE);
15093	}
15094
15095	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15096	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15097	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15098	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15099		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15100		ddi_remove_minor_node(devi, NULL);
15101		ddi_soft_state_fini(&dtrace_softstate);
15102		mutex_exit(&cpu_lock);
15103		mutex_exit(&dtrace_provider_lock);
15104		mutex_exit(&dtrace_lock);
15105		return (DDI_FAILURE);
15106	}
15107
15108	ddi_report_dev(devi);
15109	dtrace_devi = devi;
15110
15111	dtrace_modload = dtrace_module_loaded;
15112	dtrace_modunload = dtrace_module_unloaded;
15113	dtrace_cpu_init = dtrace_cpu_setup_initial;
15114	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15115	dtrace_helpers_fork = dtrace_helpers_duplicate;
15116	dtrace_cpustart_init = dtrace_suspend;
15117	dtrace_cpustart_fini = dtrace_resume;
15118	dtrace_debugger_init = dtrace_suspend;
15119	dtrace_debugger_fini = dtrace_resume;
15120
15121	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15122
15123	ASSERT(MUTEX_HELD(&cpu_lock));
15124
15125	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15126	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15127	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15128	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15129	    VM_SLEEP | VMC_IDENTIFIER);
15130	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15131	    1, INT_MAX, 0);
15132
15133	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15134	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15135	    NULL, NULL, NULL, NULL, NULL, 0);
15136
15137	ASSERT(MUTEX_HELD(&cpu_lock));
15138	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15139	    offsetof(dtrace_probe_t, dtpr_nextmod),
15140	    offsetof(dtrace_probe_t, dtpr_prevmod));
15141
15142	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15143	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15144	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15145
15146	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15147	    offsetof(dtrace_probe_t, dtpr_nextname),
15148	    offsetof(dtrace_probe_t, dtpr_prevname));
15149
15150	if (dtrace_retain_max < 1) {
15151		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15152		    "setting to 1", dtrace_retain_max);
15153		dtrace_retain_max = 1;
15154	}
15155
15156	/*
15157	 * Now discover our toxic ranges.
15158	 */
15159	dtrace_toxic_ranges(dtrace_toxrange_add);
15160
15161	/*
15162	 * Before we register ourselves as a provider to our own framework,
15163	 * we would like to assert that dtrace_provider is NULL -- but that's
15164	 * not true if we were loaded as a dependency of a DTrace provider.
15165	 * Once we've registered, we can assert that dtrace_provider is our
15166	 * pseudo provider.
15167	 */
15168	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15169	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15170
15171	ASSERT(dtrace_provider != NULL);
15172	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15173
15174	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15175	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15176	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15177	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15178	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15179	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15180
15181	dtrace_anon_property();
15182	mutex_exit(&cpu_lock);
15183
15184	/*
15185	 * If DTrace helper tracing is enabled, we need to allocate the
15186	 * trace buffer and initialize the values.
15187	 */
15188	if (dtrace_helptrace_enabled) {
15189		ASSERT(dtrace_helptrace_buffer == NULL);
15190		dtrace_helptrace_buffer =
15191		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15192		dtrace_helptrace_next = 0;
15193	}
15194
15195	/*
15196	 * If there are already providers, we must ask them to provide their
15197	 * probes, and then match any anonymous enabling against them.  Note
15198	 * that there should be no other retained enablings at this time:
15199	 * the only retained enablings at this time should be the anonymous
15200	 * enabling.
15201	 */
15202	if (dtrace_anon.dta_enabling != NULL) {
15203		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15204
15205		dtrace_enabling_provide(NULL);
15206		state = dtrace_anon.dta_state;
15207
15208		/*
15209		 * We couldn't hold cpu_lock across the above call to
15210		 * dtrace_enabling_provide(), but we must hold it to actually
15211		 * enable the probes.  We have to drop all of our locks, pick
15212		 * up cpu_lock, and regain our locks before matching the
15213		 * retained anonymous enabling.
15214		 */
15215		mutex_exit(&dtrace_lock);
15216		mutex_exit(&dtrace_provider_lock);
15217
15218		mutex_enter(&cpu_lock);
15219		mutex_enter(&dtrace_provider_lock);
15220		mutex_enter(&dtrace_lock);
15221
15222		if ((enab = dtrace_anon.dta_enabling) != NULL)
15223			(void) dtrace_enabling_match(enab, NULL);
15224
15225		mutex_exit(&cpu_lock);
15226	}
15227
15228	mutex_exit(&dtrace_lock);
15229	mutex_exit(&dtrace_provider_lock);
15230
15231	if (state != NULL) {
15232		/*
15233		 * If we created any anonymous state, set it going now.
15234		 */
15235		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15236	}
15237
15238	return (DDI_SUCCESS);
15239}
15240#endif
15241
15242#if !defined(sun)
15243#if __FreeBSD_version >= 800039
15244static void
15245dtrace_dtr(void *data __unused)
15246{
15247}
15248#endif
15249#endif
15250
15251/*ARGSUSED*/
15252static int
15253#if defined(sun)
15254dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15255#else
15256dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15257#endif
15258{
15259	dtrace_state_t *state;
15260	uint32_t priv;
15261	uid_t uid;
15262	zoneid_t zoneid;
15263
15264#if defined(sun)
15265	if (getminor(*devp) == DTRACEMNRN_HELPER)
15266		return (0);
15267
15268	/*
15269	 * If this wasn't an open with the "helper" minor, then it must be
15270	 * the "dtrace" minor.
15271	 */
15272	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15273#else
15274	cred_t *cred_p = NULL;
15275
15276#if __FreeBSD_version < 800039
15277	/*
15278	 * The first minor device is the one that is cloned so there is
15279	 * nothing more to do here.
15280	 */
15281	if (dev2unit(dev) == 0)
15282		return 0;
15283
15284	/*
15285	 * Devices are cloned, so if the DTrace state has already
15286	 * been allocated, that means this device belongs to a
15287	 * different client. Each client should open '/dev/dtrace'
15288	 * to get a cloned device.
15289	 */
15290	if (dev->si_drv1 != NULL)
15291		return (EBUSY);
15292#endif
15293
15294	cred_p = dev->si_cred;
15295#endif
15296
15297	/*
15298	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15299	 * caller lacks sufficient permission to do anything with DTrace.
15300	 */
15301	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15302	if (priv == DTRACE_PRIV_NONE) {
15303#if !defined(sun)
15304#if __FreeBSD_version < 800039
15305		/* Destroy the cloned device. */
15306                destroy_dev(dev);
15307#endif
15308#endif
15309
15310		return (EACCES);
15311	}
15312
15313	/*
15314	 * Ask all providers to provide all their probes.
15315	 */
15316	mutex_enter(&dtrace_provider_lock);
15317	dtrace_probe_provide(NULL, NULL);
15318	mutex_exit(&dtrace_provider_lock);
15319
15320	mutex_enter(&cpu_lock);
15321	mutex_enter(&dtrace_lock);
15322	dtrace_opens++;
15323	dtrace_membar_producer();
15324
15325#if defined(sun)
15326	/*
15327	 * If the kernel debugger is active (that is, if the kernel debugger
15328	 * modified text in some way), we won't allow the open.
15329	 */
15330	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15331		dtrace_opens--;
15332		mutex_exit(&cpu_lock);
15333		mutex_exit(&dtrace_lock);
15334		return (EBUSY);
15335	}
15336
15337	state = dtrace_state_create(devp, cred_p);
15338#else
15339	state = dtrace_state_create(dev);
15340#if __FreeBSD_version < 800039
15341	dev->si_drv1 = state;
15342#else
15343	devfs_set_cdevpriv(state, dtrace_dtr);
15344#endif
15345#endif
15346
15347	mutex_exit(&cpu_lock);
15348
15349	if (state == NULL) {
15350#if defined(sun)
15351		if (--dtrace_opens == 0)
15352			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15353#else
15354		--dtrace_opens;
15355#endif
15356		mutex_exit(&dtrace_lock);
15357#if !defined(sun)
15358#if __FreeBSD_version < 800039
15359		/* Destroy the cloned device. */
15360                destroy_dev(dev);
15361#endif
15362#endif
15363		return (EAGAIN);
15364	}
15365
15366	mutex_exit(&dtrace_lock);
15367
15368	return (0);
15369}
15370
15371/*ARGSUSED*/
15372static int
15373#if defined(sun)
15374dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15375#else
15376dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15377#endif
15378{
15379#if defined(sun)
15380	minor_t minor = getminor(dev);
15381	dtrace_state_t *state;
15382
15383	if (minor == DTRACEMNRN_HELPER)
15384		return (0);
15385
15386	state = ddi_get_soft_state(dtrace_softstate, minor);
15387#else
15388#if __FreeBSD_version < 800039
15389	dtrace_state_t *state = dev->si_drv1;
15390
15391	/* Check if this is not a cloned device. */
15392	if (dev2unit(dev) == 0)
15393		return (0);
15394#else
15395	dtrace_state_t *state;
15396	devfs_get_cdevpriv((void **) &state);
15397#endif
15398
15399#endif
15400
15401	mutex_enter(&cpu_lock);
15402	mutex_enter(&dtrace_lock);
15403
15404	if (state != NULL) {
15405		if (state->dts_anon) {
15406			/*
15407			 * There is anonymous state. Destroy that first.
15408			 */
15409			ASSERT(dtrace_anon.dta_state == NULL);
15410			dtrace_state_destroy(state->dts_anon);
15411		}
15412
15413		dtrace_state_destroy(state);
15414
15415#if !defined(sun)
15416		kmem_free(state, 0);
15417#if __FreeBSD_version < 800039
15418		dev->si_drv1 = NULL;
15419#else
15420		devfs_clear_cdevpriv();
15421#endif
15422#endif
15423	}
15424
15425	ASSERT(dtrace_opens > 0);
15426#if defined(sun)
15427	if (--dtrace_opens == 0)
15428		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15429#else
15430	--dtrace_opens;
15431#endif
15432
15433	mutex_exit(&dtrace_lock);
15434	mutex_exit(&cpu_lock);
15435
15436#if __FreeBSD_version < 800039
15437	/* Schedule this cloned device to be destroyed. */
15438	destroy_dev_sched(dev);
15439#endif
15440
15441	return (0);
15442}
15443
15444#if defined(sun)
15445/*ARGSUSED*/
15446static int
15447dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15448{
15449	int rval;
15450	dof_helper_t help, *dhp = NULL;
15451
15452	switch (cmd) {
15453	case DTRACEHIOC_ADDDOF:
15454		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15455			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15456			return (EFAULT);
15457		}
15458
15459		dhp = &help;
15460		arg = (intptr_t)help.dofhp_dof;
15461		/*FALLTHROUGH*/
15462
15463	case DTRACEHIOC_ADD: {
15464		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15465
15466		if (dof == NULL)
15467			return (rval);
15468
15469		mutex_enter(&dtrace_lock);
15470
15471		/*
15472		 * dtrace_helper_slurp() takes responsibility for the dof --
15473		 * it may free it now or it may save it and free it later.
15474		 */
15475		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15476			*rv = rval;
15477			rval = 0;
15478		} else {
15479			rval = EINVAL;
15480		}
15481
15482		mutex_exit(&dtrace_lock);
15483		return (rval);
15484	}
15485
15486	case DTRACEHIOC_REMOVE: {
15487		mutex_enter(&dtrace_lock);
15488		rval = dtrace_helper_destroygen(arg);
15489		mutex_exit(&dtrace_lock);
15490
15491		return (rval);
15492	}
15493
15494	default:
15495		break;
15496	}
15497
15498	return (ENOTTY);
15499}
15500
15501/*ARGSUSED*/
15502static int
15503dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15504{
15505	minor_t minor = getminor(dev);
15506	dtrace_state_t *state;
15507	int rval;
15508
15509	if (minor == DTRACEMNRN_HELPER)
15510		return (dtrace_ioctl_helper(cmd, arg, rv));
15511
15512	state = ddi_get_soft_state(dtrace_softstate, minor);
15513
15514	if (state->dts_anon) {
15515		ASSERT(dtrace_anon.dta_state == NULL);
15516		state = state->dts_anon;
15517	}
15518
15519	switch (cmd) {
15520	case DTRACEIOC_PROVIDER: {
15521		dtrace_providerdesc_t pvd;
15522		dtrace_provider_t *pvp;
15523
15524		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15525			return (EFAULT);
15526
15527		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15528		mutex_enter(&dtrace_provider_lock);
15529
15530		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15531			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15532				break;
15533		}
15534
15535		mutex_exit(&dtrace_provider_lock);
15536
15537		if (pvp == NULL)
15538			return (ESRCH);
15539
15540		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15541		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15542
15543		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15544			return (EFAULT);
15545
15546		return (0);
15547	}
15548
15549	case DTRACEIOC_EPROBE: {
15550		dtrace_eprobedesc_t epdesc;
15551		dtrace_ecb_t *ecb;
15552		dtrace_action_t *act;
15553		void *buf;
15554		size_t size;
15555		uintptr_t dest;
15556		int nrecs;
15557
15558		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15559			return (EFAULT);
15560
15561		mutex_enter(&dtrace_lock);
15562
15563		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15564			mutex_exit(&dtrace_lock);
15565			return (EINVAL);
15566		}
15567
15568		if (ecb->dte_probe == NULL) {
15569			mutex_exit(&dtrace_lock);
15570			return (EINVAL);
15571		}
15572
15573		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15574		epdesc.dtepd_uarg = ecb->dte_uarg;
15575		epdesc.dtepd_size = ecb->dte_size;
15576
15577		nrecs = epdesc.dtepd_nrecs;
15578		epdesc.dtepd_nrecs = 0;
15579		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15580			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15581				continue;
15582
15583			epdesc.dtepd_nrecs++;
15584		}
15585
15586		/*
15587		 * Now that we have the size, we need to allocate a temporary
15588		 * buffer in which to store the complete description.  We need
15589		 * the temporary buffer to be able to drop dtrace_lock()
15590		 * across the copyout(), below.
15591		 */
15592		size = sizeof (dtrace_eprobedesc_t) +
15593		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15594
15595		buf = kmem_alloc(size, KM_SLEEP);
15596		dest = (uintptr_t)buf;
15597
15598		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15599		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15600
15601		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15602			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15603				continue;
15604
15605			if (nrecs-- == 0)
15606				break;
15607
15608			bcopy(&act->dta_rec, (void *)dest,
15609			    sizeof (dtrace_recdesc_t));
15610			dest += sizeof (dtrace_recdesc_t);
15611		}
15612
15613		mutex_exit(&dtrace_lock);
15614
15615		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15616			kmem_free(buf, size);
15617			return (EFAULT);
15618		}
15619
15620		kmem_free(buf, size);
15621		return (0);
15622	}
15623
15624	case DTRACEIOC_AGGDESC: {
15625		dtrace_aggdesc_t aggdesc;
15626		dtrace_action_t *act;
15627		dtrace_aggregation_t *agg;
15628		int nrecs;
15629		uint32_t offs;
15630		dtrace_recdesc_t *lrec;
15631		void *buf;
15632		size_t size;
15633		uintptr_t dest;
15634
15635		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15636			return (EFAULT);
15637
15638		mutex_enter(&dtrace_lock);
15639
15640		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15641			mutex_exit(&dtrace_lock);
15642			return (EINVAL);
15643		}
15644
15645		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15646
15647		nrecs = aggdesc.dtagd_nrecs;
15648		aggdesc.dtagd_nrecs = 0;
15649
15650		offs = agg->dtag_base;
15651		lrec = &agg->dtag_action.dta_rec;
15652		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15653
15654		for (act = agg->dtag_first; ; act = act->dta_next) {
15655			ASSERT(act->dta_intuple ||
15656			    DTRACEACT_ISAGG(act->dta_kind));
15657
15658			/*
15659			 * If this action has a record size of zero, it
15660			 * denotes an argument to the aggregating action.
15661			 * Because the presence of this record doesn't (or
15662			 * shouldn't) affect the way the data is interpreted,
15663			 * we don't copy it out to save user-level the
15664			 * confusion of dealing with a zero-length record.
15665			 */
15666			if (act->dta_rec.dtrd_size == 0) {
15667				ASSERT(agg->dtag_hasarg);
15668				continue;
15669			}
15670
15671			aggdesc.dtagd_nrecs++;
15672
15673			if (act == &agg->dtag_action)
15674				break;
15675		}
15676
15677		/*
15678		 * Now that we have the size, we need to allocate a temporary
15679		 * buffer in which to store the complete description.  We need
15680		 * the temporary buffer to be able to drop dtrace_lock()
15681		 * across the copyout(), below.
15682		 */
15683		size = sizeof (dtrace_aggdesc_t) +
15684		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15685
15686		buf = kmem_alloc(size, KM_SLEEP);
15687		dest = (uintptr_t)buf;
15688
15689		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15690		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15691
15692		for (act = agg->dtag_first; ; act = act->dta_next) {
15693			dtrace_recdesc_t rec = act->dta_rec;
15694
15695			/*
15696			 * See the comment in the above loop for why we pass
15697			 * over zero-length records.
15698			 */
15699			if (rec.dtrd_size == 0) {
15700				ASSERT(agg->dtag_hasarg);
15701				continue;
15702			}
15703
15704			if (nrecs-- == 0)
15705				break;
15706
15707			rec.dtrd_offset -= offs;
15708			bcopy(&rec, (void *)dest, sizeof (rec));
15709			dest += sizeof (dtrace_recdesc_t);
15710
15711			if (act == &agg->dtag_action)
15712				break;
15713		}
15714
15715		mutex_exit(&dtrace_lock);
15716
15717		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15718			kmem_free(buf, size);
15719			return (EFAULT);
15720		}
15721
15722		kmem_free(buf, size);
15723		return (0);
15724	}
15725
15726	case DTRACEIOC_ENABLE: {
15727		dof_hdr_t *dof;
15728		dtrace_enabling_t *enab = NULL;
15729		dtrace_vstate_t *vstate;
15730		int err = 0;
15731
15732		*rv = 0;
15733
15734		/*
15735		 * If a NULL argument has been passed, we take this as our
15736		 * cue to reevaluate our enablings.
15737		 */
15738		if (arg == NULL) {
15739			dtrace_enabling_matchall();
15740
15741			return (0);
15742		}
15743
15744		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15745			return (rval);
15746
15747		mutex_enter(&cpu_lock);
15748		mutex_enter(&dtrace_lock);
15749		vstate = &state->dts_vstate;
15750
15751		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15752			mutex_exit(&dtrace_lock);
15753			mutex_exit(&cpu_lock);
15754			dtrace_dof_destroy(dof);
15755			return (EBUSY);
15756		}
15757
15758		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15759			mutex_exit(&dtrace_lock);
15760			mutex_exit(&cpu_lock);
15761			dtrace_dof_destroy(dof);
15762			return (EINVAL);
15763		}
15764
15765		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15766			dtrace_enabling_destroy(enab);
15767			mutex_exit(&dtrace_lock);
15768			mutex_exit(&cpu_lock);
15769			dtrace_dof_destroy(dof);
15770			return (rval);
15771		}
15772
15773		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15774			err = dtrace_enabling_retain(enab);
15775		} else {
15776			dtrace_enabling_destroy(enab);
15777		}
15778
15779		mutex_exit(&cpu_lock);
15780		mutex_exit(&dtrace_lock);
15781		dtrace_dof_destroy(dof);
15782
15783		return (err);
15784	}
15785
15786	case DTRACEIOC_REPLICATE: {
15787		dtrace_repldesc_t desc;
15788		dtrace_probedesc_t *match = &desc.dtrpd_match;
15789		dtrace_probedesc_t *create = &desc.dtrpd_create;
15790		int err;
15791
15792		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15793			return (EFAULT);
15794
15795		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15796		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15797		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15798		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15799
15800		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15801		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15802		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15803		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15804
15805		mutex_enter(&dtrace_lock);
15806		err = dtrace_enabling_replicate(state, match, create);
15807		mutex_exit(&dtrace_lock);
15808
15809		return (err);
15810	}
15811
15812	case DTRACEIOC_PROBEMATCH:
15813	case DTRACEIOC_PROBES: {
15814		dtrace_probe_t *probe = NULL;
15815		dtrace_probedesc_t desc;
15816		dtrace_probekey_t pkey;
15817		dtrace_id_t i;
15818		int m = 0;
15819		uint32_t priv;
15820		uid_t uid;
15821		zoneid_t zoneid;
15822
15823		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15824			return (EFAULT);
15825
15826		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15827		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15828		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15829		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15830
15831		/*
15832		 * Before we attempt to match this probe, we want to give
15833		 * all providers the opportunity to provide it.
15834		 */
15835		if (desc.dtpd_id == DTRACE_IDNONE) {
15836			mutex_enter(&dtrace_provider_lock);
15837			dtrace_probe_provide(&desc, NULL);
15838			mutex_exit(&dtrace_provider_lock);
15839			desc.dtpd_id++;
15840		}
15841
15842		if (cmd == DTRACEIOC_PROBEMATCH)  {
15843			dtrace_probekey(&desc, &pkey);
15844			pkey.dtpk_id = DTRACE_IDNONE;
15845		}
15846
15847		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15848
15849		mutex_enter(&dtrace_lock);
15850
15851		if (cmd == DTRACEIOC_PROBEMATCH) {
15852			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15853				if ((probe = dtrace_probes[i - 1]) != NULL &&
15854				    (m = dtrace_match_probe(probe, &pkey,
15855				    priv, uid, zoneid)) != 0)
15856					break;
15857			}
15858
15859			if (m < 0) {
15860				mutex_exit(&dtrace_lock);
15861				return (EINVAL);
15862			}
15863
15864		} else {
15865			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15866				if ((probe = dtrace_probes[i - 1]) != NULL &&
15867				    dtrace_match_priv(probe, priv, uid, zoneid))
15868					break;
15869			}
15870		}
15871
15872		if (probe == NULL) {
15873			mutex_exit(&dtrace_lock);
15874			return (ESRCH);
15875		}
15876
15877		dtrace_probe_description(probe, &desc);
15878		mutex_exit(&dtrace_lock);
15879
15880		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15881			return (EFAULT);
15882
15883		return (0);
15884	}
15885
15886	case DTRACEIOC_PROBEARG: {
15887		dtrace_argdesc_t desc;
15888		dtrace_probe_t *probe;
15889		dtrace_provider_t *prov;
15890
15891		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15892			return (EFAULT);
15893
15894		if (desc.dtargd_id == DTRACE_IDNONE)
15895			return (EINVAL);
15896
15897		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15898			return (EINVAL);
15899
15900		mutex_enter(&dtrace_provider_lock);
15901		mutex_enter(&mod_lock);
15902		mutex_enter(&dtrace_lock);
15903
15904		if (desc.dtargd_id > dtrace_nprobes) {
15905			mutex_exit(&dtrace_lock);
15906			mutex_exit(&mod_lock);
15907			mutex_exit(&dtrace_provider_lock);
15908			return (EINVAL);
15909		}
15910
15911		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15912			mutex_exit(&dtrace_lock);
15913			mutex_exit(&mod_lock);
15914			mutex_exit(&dtrace_provider_lock);
15915			return (EINVAL);
15916		}
15917
15918		mutex_exit(&dtrace_lock);
15919
15920		prov = probe->dtpr_provider;
15921
15922		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15923			/*
15924			 * There isn't any typed information for this probe.
15925			 * Set the argument number to DTRACE_ARGNONE.
15926			 */
15927			desc.dtargd_ndx = DTRACE_ARGNONE;
15928		} else {
15929			desc.dtargd_native[0] = '\0';
15930			desc.dtargd_xlate[0] = '\0';
15931			desc.dtargd_mapping = desc.dtargd_ndx;
15932
15933			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15934			    probe->dtpr_id, probe->dtpr_arg, &desc);
15935		}
15936
15937		mutex_exit(&mod_lock);
15938		mutex_exit(&dtrace_provider_lock);
15939
15940		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15941			return (EFAULT);
15942
15943		return (0);
15944	}
15945
15946	case DTRACEIOC_GO: {
15947		processorid_t cpuid;
15948		rval = dtrace_state_go(state, &cpuid);
15949
15950		if (rval != 0)
15951			return (rval);
15952
15953		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15954			return (EFAULT);
15955
15956		return (0);
15957	}
15958
15959	case DTRACEIOC_STOP: {
15960		processorid_t cpuid;
15961
15962		mutex_enter(&dtrace_lock);
15963		rval = dtrace_state_stop(state, &cpuid);
15964		mutex_exit(&dtrace_lock);
15965
15966		if (rval != 0)
15967			return (rval);
15968
15969		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15970			return (EFAULT);
15971
15972		return (0);
15973	}
15974
15975	case DTRACEIOC_DOFGET: {
15976		dof_hdr_t hdr, *dof;
15977		uint64_t len;
15978
15979		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15980			return (EFAULT);
15981
15982		mutex_enter(&dtrace_lock);
15983		dof = dtrace_dof_create(state);
15984		mutex_exit(&dtrace_lock);
15985
15986		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15987		rval = copyout(dof, (void *)arg, len);
15988		dtrace_dof_destroy(dof);
15989
15990		return (rval == 0 ? 0 : EFAULT);
15991	}
15992
15993	case DTRACEIOC_AGGSNAP:
15994	case DTRACEIOC_BUFSNAP: {
15995		dtrace_bufdesc_t desc;
15996		caddr_t cached;
15997		dtrace_buffer_t *buf;
15998
15999		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16000			return (EFAULT);
16001
16002		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16003			return (EINVAL);
16004
16005		mutex_enter(&dtrace_lock);
16006
16007		if (cmd == DTRACEIOC_BUFSNAP) {
16008			buf = &state->dts_buffer[desc.dtbd_cpu];
16009		} else {
16010			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16011		}
16012
16013		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16014			size_t sz = buf->dtb_offset;
16015
16016			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16017				mutex_exit(&dtrace_lock);
16018				return (EBUSY);
16019			}
16020
16021			/*
16022			 * If this buffer has already been consumed, we're
16023			 * going to indicate that there's nothing left here
16024			 * to consume.
16025			 */
16026			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16027				mutex_exit(&dtrace_lock);
16028
16029				desc.dtbd_size = 0;
16030				desc.dtbd_drops = 0;
16031				desc.dtbd_errors = 0;
16032				desc.dtbd_oldest = 0;
16033				sz = sizeof (desc);
16034
16035				if (copyout(&desc, (void *)arg, sz) != 0)
16036					return (EFAULT);
16037
16038				return (0);
16039			}
16040
16041			/*
16042			 * If this is a ring buffer that has wrapped, we want
16043			 * to copy the whole thing out.
16044			 */
16045			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16046				dtrace_buffer_polish(buf);
16047				sz = buf->dtb_size;
16048			}
16049
16050			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16051				mutex_exit(&dtrace_lock);
16052				return (EFAULT);
16053			}
16054
16055			desc.dtbd_size = sz;
16056			desc.dtbd_drops = buf->dtb_drops;
16057			desc.dtbd_errors = buf->dtb_errors;
16058			desc.dtbd_oldest = buf->dtb_xamot_offset;
16059
16060			mutex_exit(&dtrace_lock);
16061
16062			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16063				return (EFAULT);
16064
16065			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16066
16067			return (0);
16068		}
16069
16070		if (buf->dtb_tomax == NULL) {
16071			ASSERT(buf->dtb_xamot == NULL);
16072			mutex_exit(&dtrace_lock);
16073			return (ENOENT);
16074		}
16075
16076		cached = buf->dtb_tomax;
16077		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16078
16079		dtrace_xcall(desc.dtbd_cpu,
16080		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16081
16082		state->dts_errors += buf->dtb_xamot_errors;
16083
16084		/*
16085		 * If the buffers did not actually switch, then the cross call
16086		 * did not take place -- presumably because the given CPU is
16087		 * not in the ready set.  If this is the case, we'll return
16088		 * ENOENT.
16089		 */
16090		if (buf->dtb_tomax == cached) {
16091			ASSERT(buf->dtb_xamot != cached);
16092			mutex_exit(&dtrace_lock);
16093			return (ENOENT);
16094		}
16095
16096		ASSERT(cached == buf->dtb_xamot);
16097
16098		/*
16099		 * We have our snapshot; now copy it out.
16100		 */
16101		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16102		    buf->dtb_xamot_offset) != 0) {
16103			mutex_exit(&dtrace_lock);
16104			return (EFAULT);
16105		}
16106
16107		desc.dtbd_size = buf->dtb_xamot_offset;
16108		desc.dtbd_drops = buf->dtb_xamot_drops;
16109		desc.dtbd_errors = buf->dtb_xamot_errors;
16110		desc.dtbd_oldest = 0;
16111
16112		mutex_exit(&dtrace_lock);
16113
16114		/*
16115		 * Finally, copy out the buffer description.
16116		 */
16117		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16118			return (EFAULT);
16119
16120		return (0);
16121	}
16122
16123	case DTRACEIOC_CONF: {
16124		dtrace_conf_t conf;
16125
16126		bzero(&conf, sizeof (conf));
16127		conf.dtc_difversion = DIF_VERSION;
16128		conf.dtc_difintregs = DIF_DIR_NREGS;
16129		conf.dtc_diftupregs = DIF_DTR_NREGS;
16130		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16131
16132		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16133			return (EFAULT);
16134
16135		return (0);
16136	}
16137
16138	case DTRACEIOC_STATUS: {
16139		dtrace_status_t stat;
16140		dtrace_dstate_t *dstate;
16141		int i, j;
16142		uint64_t nerrs;
16143
16144		/*
16145		 * See the comment in dtrace_state_deadman() for the reason
16146		 * for setting dts_laststatus to INT64_MAX before setting
16147		 * it to the correct value.
16148		 */
16149		state->dts_laststatus = INT64_MAX;
16150		dtrace_membar_producer();
16151		state->dts_laststatus = dtrace_gethrtime();
16152
16153		bzero(&stat, sizeof (stat));
16154
16155		mutex_enter(&dtrace_lock);
16156
16157		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16158			mutex_exit(&dtrace_lock);
16159			return (ENOENT);
16160		}
16161
16162		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16163			stat.dtst_exiting = 1;
16164
16165		nerrs = state->dts_errors;
16166		dstate = &state->dts_vstate.dtvs_dynvars;
16167
16168		for (i = 0; i < NCPU; i++) {
16169			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16170
16171			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16172			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16173			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16174
16175			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16176				stat.dtst_filled++;
16177
16178			nerrs += state->dts_buffer[i].dtb_errors;
16179
16180			for (j = 0; j < state->dts_nspeculations; j++) {
16181				dtrace_speculation_t *spec;
16182				dtrace_buffer_t *buf;
16183
16184				spec = &state->dts_speculations[j];
16185				buf = &spec->dtsp_buffer[i];
16186				stat.dtst_specdrops += buf->dtb_xamot_drops;
16187			}
16188		}
16189
16190		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16191		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16192		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16193		stat.dtst_dblerrors = state->dts_dblerrors;
16194		stat.dtst_killed =
16195		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16196		stat.dtst_errors = nerrs;
16197
16198		mutex_exit(&dtrace_lock);
16199
16200		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16201			return (EFAULT);
16202
16203		return (0);
16204	}
16205
16206	case DTRACEIOC_FORMAT: {
16207		dtrace_fmtdesc_t fmt;
16208		char *str;
16209		int len;
16210
16211		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16212			return (EFAULT);
16213
16214		mutex_enter(&dtrace_lock);
16215
16216		if (fmt.dtfd_format == 0 ||
16217		    fmt.dtfd_format > state->dts_nformats) {
16218			mutex_exit(&dtrace_lock);
16219			return (EINVAL);
16220		}
16221
16222		/*
16223		 * Format strings are allocated contiguously and they are
16224		 * never freed; if a format index is less than the number
16225		 * of formats, we can assert that the format map is non-NULL
16226		 * and that the format for the specified index is non-NULL.
16227		 */
16228		ASSERT(state->dts_formats != NULL);
16229		str = state->dts_formats[fmt.dtfd_format - 1];
16230		ASSERT(str != NULL);
16231
16232		len = strlen(str) + 1;
16233
16234		if (len > fmt.dtfd_length) {
16235			fmt.dtfd_length = len;
16236
16237			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16238				mutex_exit(&dtrace_lock);
16239				return (EINVAL);
16240			}
16241		} else {
16242			if (copyout(str, fmt.dtfd_string, len) != 0) {
16243				mutex_exit(&dtrace_lock);
16244				return (EINVAL);
16245			}
16246		}
16247
16248		mutex_exit(&dtrace_lock);
16249		return (0);
16250	}
16251
16252	default:
16253		break;
16254	}
16255
16256	return (ENOTTY);
16257}
16258
16259/*ARGSUSED*/
16260static int
16261dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16262{
16263	dtrace_state_t *state;
16264
16265	switch (cmd) {
16266	case DDI_DETACH:
16267		break;
16268
16269	case DDI_SUSPEND:
16270		return (DDI_SUCCESS);
16271
16272	default:
16273		return (DDI_FAILURE);
16274	}
16275
16276	mutex_enter(&cpu_lock);
16277	mutex_enter(&dtrace_provider_lock);
16278	mutex_enter(&dtrace_lock);
16279
16280	ASSERT(dtrace_opens == 0);
16281
16282	if (dtrace_helpers > 0) {
16283		mutex_exit(&dtrace_provider_lock);
16284		mutex_exit(&dtrace_lock);
16285		mutex_exit(&cpu_lock);
16286		return (DDI_FAILURE);
16287	}
16288
16289	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16290		mutex_exit(&dtrace_provider_lock);
16291		mutex_exit(&dtrace_lock);
16292		mutex_exit(&cpu_lock);
16293		return (DDI_FAILURE);
16294	}
16295
16296	dtrace_provider = NULL;
16297
16298	if ((state = dtrace_anon_grab()) != NULL) {
16299		/*
16300		 * If there were ECBs on this state, the provider should
16301		 * have not been allowed to detach; assert that there is
16302		 * none.
16303		 */
16304		ASSERT(state->dts_necbs == 0);
16305		dtrace_state_destroy(state);
16306
16307		/*
16308		 * If we're being detached with anonymous state, we need to
16309		 * indicate to the kernel debugger that DTrace is now inactive.
16310		 */
16311		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16312	}
16313
16314	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16315	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16316	dtrace_cpu_init = NULL;
16317	dtrace_helpers_cleanup = NULL;
16318	dtrace_helpers_fork = NULL;
16319	dtrace_cpustart_init = NULL;
16320	dtrace_cpustart_fini = NULL;
16321	dtrace_debugger_init = NULL;
16322	dtrace_debugger_fini = NULL;
16323	dtrace_modload = NULL;
16324	dtrace_modunload = NULL;
16325
16326	mutex_exit(&cpu_lock);
16327
16328	if (dtrace_helptrace_enabled) {
16329		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16330		dtrace_helptrace_buffer = NULL;
16331	}
16332
16333	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16334	dtrace_probes = NULL;
16335	dtrace_nprobes = 0;
16336
16337	dtrace_hash_destroy(dtrace_bymod);
16338	dtrace_hash_destroy(dtrace_byfunc);
16339	dtrace_hash_destroy(dtrace_byname);
16340	dtrace_bymod = NULL;
16341	dtrace_byfunc = NULL;
16342	dtrace_byname = NULL;
16343
16344	kmem_cache_destroy(dtrace_state_cache);
16345	vmem_destroy(dtrace_minor);
16346	vmem_destroy(dtrace_arena);
16347
16348	if (dtrace_toxrange != NULL) {
16349		kmem_free(dtrace_toxrange,
16350		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16351		dtrace_toxrange = NULL;
16352		dtrace_toxranges = 0;
16353		dtrace_toxranges_max = 0;
16354	}
16355
16356	ddi_remove_minor_node(dtrace_devi, NULL);
16357	dtrace_devi = NULL;
16358
16359	ddi_soft_state_fini(&dtrace_softstate);
16360
16361	ASSERT(dtrace_vtime_references == 0);
16362	ASSERT(dtrace_opens == 0);
16363	ASSERT(dtrace_retained == NULL);
16364
16365	mutex_exit(&dtrace_lock);
16366	mutex_exit(&dtrace_provider_lock);
16367
16368	/*
16369	 * We don't destroy the task queue until after we have dropped our
16370	 * locks (taskq_destroy() may block on running tasks).  To prevent
16371	 * attempting to do work after we have effectively detached but before
16372	 * the task queue has been destroyed, all tasks dispatched via the
16373	 * task queue must check that DTrace is still attached before
16374	 * performing any operation.
16375	 */
16376	taskq_destroy(dtrace_taskq);
16377	dtrace_taskq = NULL;
16378
16379	return (DDI_SUCCESS);
16380}
16381#endif
16382
16383#if defined(sun)
16384/*ARGSUSED*/
16385static int
16386dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16387{
16388	int error;
16389
16390	switch (infocmd) {
16391	case DDI_INFO_DEVT2DEVINFO:
16392		*result = (void *)dtrace_devi;
16393		error = DDI_SUCCESS;
16394		break;
16395	case DDI_INFO_DEVT2INSTANCE:
16396		*result = (void *)0;
16397		error = DDI_SUCCESS;
16398		break;
16399	default:
16400		error = DDI_FAILURE;
16401	}
16402	return (error);
16403}
16404#endif
16405
16406#if defined(sun)
16407static struct cb_ops dtrace_cb_ops = {
16408	dtrace_open,		/* open */
16409	dtrace_close,		/* close */
16410	nulldev,		/* strategy */
16411	nulldev,		/* print */
16412	nodev,			/* dump */
16413	nodev,			/* read */
16414	nodev,			/* write */
16415	dtrace_ioctl,		/* ioctl */
16416	nodev,			/* devmap */
16417	nodev,			/* mmap */
16418	nodev,			/* segmap */
16419	nochpoll,		/* poll */
16420	ddi_prop_op,		/* cb_prop_op */
16421	0,			/* streamtab  */
16422	D_NEW | D_MP		/* Driver compatibility flag */
16423};
16424
16425static struct dev_ops dtrace_ops = {
16426	DEVO_REV,		/* devo_rev */
16427	0,			/* refcnt */
16428	dtrace_info,		/* get_dev_info */
16429	nulldev,		/* identify */
16430	nulldev,		/* probe */
16431	dtrace_attach,		/* attach */
16432	dtrace_detach,		/* detach */
16433	nodev,			/* reset */
16434	&dtrace_cb_ops,		/* driver operations */
16435	NULL,			/* bus operations */
16436	nodev			/* dev power */
16437};
16438
16439static struct modldrv modldrv = {
16440	&mod_driverops,		/* module type (this is a pseudo driver) */
16441	"Dynamic Tracing",	/* name of module */
16442	&dtrace_ops,		/* driver ops */
16443};
16444
16445static struct modlinkage modlinkage = {
16446	MODREV_1,
16447	(void *)&modldrv,
16448	NULL
16449};
16450
16451int
16452_init(void)
16453{
16454	return (mod_install(&modlinkage));
16455}
16456
16457int
16458_info(struct modinfo *modinfop)
16459{
16460	return (mod_info(&modlinkage, modinfop));
16461}
16462
16463int
16464_fini(void)
16465{
16466	return (mod_remove(&modlinkage));
16467}
16468#else
16469
16470static d_ioctl_t	dtrace_ioctl;
16471static void		dtrace_load(void *);
16472static int		dtrace_unload(void);
16473#if __FreeBSD_version < 800039
16474static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16475static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16476static eventhandler_tag	eh_tag;			/* Event handler tag. */
16477#else
16478static struct cdev	*dtrace_dev;
16479#endif
16480
16481void dtrace_invop_init(void);
16482void dtrace_invop_uninit(void);
16483
16484static struct cdevsw dtrace_cdevsw = {
16485	.d_version	= D_VERSION,
16486	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16487	.d_close	= dtrace_close,
16488	.d_ioctl	= dtrace_ioctl,
16489	.d_open		= dtrace_open,
16490	.d_name		= "dtrace",
16491};
16492
16493#include <dtrace_anon.c>
16494#if __FreeBSD_version < 800039
16495#include <dtrace_clone.c>
16496#endif
16497#include <dtrace_ioctl.c>
16498#include <dtrace_load.c>
16499#include <dtrace_modevent.c>
16500#include <dtrace_sysctl.c>
16501#include <dtrace_unload.c>
16502#include <dtrace_vtime.c>
16503#include <dtrace_hacks.c>
16504#include <dtrace_isa.c>
16505
16506SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16507SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16508SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16509
16510DEV_MODULE(dtrace, dtrace_modevent, NULL);
16511MODULE_VERSION(dtrace, 1);
16512MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16513MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16514#endif
16515