dtrace.c revision 183397
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: head/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 183397 2008-09-27 08:51:18Z ed $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31/*
32 * DTrace - Dynamic Tracing for Solaris
33 *
34 * This is the implementation of the Solaris Dynamic Tracing framework
35 * (DTrace).  The user-visible interface to DTrace is described at length in
36 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37 * library, the in-kernel DTrace framework, and the DTrace providers are
38 * described in the block comments in the <sys/dtrace.h> header file.  The
39 * internal architecture of DTrace is described in the block comments in the
40 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41 * implementation very much assume mastery of all of these sources; if one has
42 * an unanswered question about the implementation, one should consult them
43 * first.
44 *
45 * The functions here are ordered roughly as follows:
46 *
47 *   - Probe context functions
48 *   - Probe hashing functions
49 *   - Non-probe context utility functions
50 *   - Matching functions
51 *   - Provider-to-Framework API functions
52 *   - Probe management functions
53 *   - DIF object functions
54 *   - Format functions
55 *   - Predicate functions
56 *   - ECB functions
57 *   - Buffer functions
58 *   - Enabling functions
59 *   - DOF functions
60 *   - Anonymous enabling functions
61 *   - Consumer state functions
62 *   - Helper functions
63 *   - Hook functions
64 *   - Driver cookbook functions
65 *
66 * Each group of functions begins with a block comment labelled the "DTrace
67 * [Group] Functions", allowing one to find each block by searching forward
68 * on capital-f functions.
69 */
70#include <sys/errno.h>
71#if !defined(sun)
72#include <sys/time.h>
73#endif
74#include <sys/stat.h>
75#include <sys/modctl.h>
76#include <sys/conf.h>
77#include <sys/systm.h>
78#if defined(sun)
79#include <sys/ddi.h>
80#include <sys/sunddi.h>
81#endif
82#include <sys/cpuvar.h>
83#include <sys/kmem.h>
84#if defined(sun)
85#include <sys/strsubr.h>
86#endif
87#include <sys/sysmacros.h>
88#include <sys/dtrace_impl.h>
89#include <sys/atomic.h>
90#include <sys/cmn_err.h>
91#if defined(sun)
92#include <sys/mutex_impl.h>
93#include <sys/rwlock_impl.h>
94#endif
95#include <sys/ctf_api.h>
96#if defined(sun)
97#include <sys/panic.h>
98#include <sys/priv_impl.h>
99#endif
100#include <sys/policy.h>
101#if defined(sun)
102#include <sys/cred_impl.h>
103#include <sys/procfs_isa.h>
104#endif
105#include <sys/taskq.h>
106#if defined(sun)
107#include <sys/mkdev.h>
108#include <sys/kdi.h>
109#endif
110#include <sys/zone.h>
111#include <sys/socket.h>
112#include <netinet/in.h>
113
114/* FreeBSD includes: */
115#if !defined(sun)
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/limits.h>
119#include <sys/kdb.h>
120#include <sys/kernel.h>
121#include <sys/malloc.h>
122#include <sys/sysctl.h>
123#include <sys/lock.h>
124#include <sys/mutex.h>
125#include <sys/sx.h>
126#include <sys/dtrace_bsd.h>
127#include <netinet/in.h>
128#include "dtrace_cddl.h"
129#include "dtrace_debug.c"
130#endif
131
132/*
133 * DTrace Tunable Variables
134 *
135 * The following variables may be tuned by adding a line to /etc/system that
136 * includes both the name of the DTrace module ("dtrace") and the name of the
137 * variable.  For example:
138 *
139 *   set dtrace:dtrace_destructive_disallow = 1
140 *
141 * In general, the only variables that one should be tuning this way are those
142 * that affect system-wide DTrace behavior, and for which the default behavior
143 * is undesirable.  Most of these variables are tunable on a per-consumer
144 * basis using DTrace options, and need not be tuned on a system-wide basis.
145 * When tuning these variables, avoid pathological values; while some attempt
146 * is made to verify the integrity of these variables, they are not considered
147 * part of the supported interface to DTrace, and they are therefore not
148 * checked comprehensively.  Further, these variables should not be tuned
149 * dynamically via "mdb -kw" or other means; they should only be tuned via
150 * /etc/system.
151 */
152int		dtrace_destructive_disallow = 0;
153dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
154size_t		dtrace_difo_maxsize = (256 * 1024);
155dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
156size_t		dtrace_global_maxsize = (16 * 1024);
157size_t		dtrace_actions_max = (16 * 1024);
158size_t		dtrace_retain_max = 1024;
159dtrace_optval_t	dtrace_helper_actions_max = 32;
160dtrace_optval_t	dtrace_helper_providers_max = 32;
161dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
162size_t		dtrace_strsize_default = 256;
163dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
164dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
165dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
166dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
167dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
168dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
169dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
170dtrace_optval_t	dtrace_nspec_default = 1;
171dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
172dtrace_optval_t dtrace_stackframes_default = 20;
173dtrace_optval_t dtrace_ustackframes_default = 20;
174dtrace_optval_t dtrace_jstackframes_default = 50;
175dtrace_optval_t dtrace_jstackstrsize_default = 512;
176int		dtrace_msgdsize_max = 128;
177hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
178hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
179int		dtrace_devdepth_max = 32;
180int		dtrace_err_verbose;
181hrtime_t	dtrace_deadman_interval = NANOSEC;
182hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
183hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
184
185/*
186 * DTrace External Variables
187 *
188 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
189 * available to DTrace consumers via the backtick (`) syntax.  One of these,
190 * dtrace_zero, is made deliberately so:  it is provided as a source of
191 * well-known, zero-filled memory.  While this variable is not documented,
192 * it is used by some translators as an implementation detail.
193 */
194const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
195
196/*
197 * DTrace Internal Variables
198 */
199#if defined(sun)
200static dev_info_t	*dtrace_devi;		/* device info */
201#endif
202#if defined(sun)
203static vmem_t		*dtrace_arena;		/* probe ID arena */
204static vmem_t		*dtrace_minor;		/* minor number arena */
205static taskq_t		*dtrace_taskq;		/* task queue */
206#else
207static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
208#endif
209static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
210static int		dtrace_nprobes;		/* number of probes */
211static dtrace_provider_t *dtrace_provider;	/* provider list */
212static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
213static int		dtrace_opens;		/* number of opens */
214static int		dtrace_helpers;		/* number of helpers */
215#if defined(sun)
216static void		*dtrace_softstate;	/* softstate pointer */
217#endif
218static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
219static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
220static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
221static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
222static int		dtrace_toxranges;	/* number of toxic ranges */
223static int		dtrace_toxranges_max;	/* size of toxic range array */
224static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
225static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
226static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
227static kthread_t	*dtrace_panicked;	/* panicking thread */
228static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
229static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
230static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
231static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
232static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
233#if !defined(sun)
234static struct mtx	dtrace_unr_mtx;
235MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
236int		dtrace_in_probe;	/* non-zero if executing a probe */
237#if defined(__i386__) || defined(__amd64__)
238uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
239#endif
240#endif
241
242/*
243 * DTrace Locking
244 * DTrace is protected by three (relatively coarse-grained) locks:
245 *
246 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
247 *     including enabling state, probes, ECBs, consumer state, helper state,
248 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
249 *     probe context is lock-free -- synchronization is handled via the
250 *     dtrace_sync() cross call mechanism.
251 *
252 * (2) dtrace_provider_lock is required when manipulating provider state, or
253 *     when provider state must be held constant.
254 *
255 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
256 *     when meta provider state must be held constant.
257 *
258 * The lock ordering between these three locks is dtrace_meta_lock before
259 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
260 * several places where dtrace_provider_lock is held by the framework as it
261 * calls into the providers -- which then call back into the framework,
262 * grabbing dtrace_lock.)
263 *
264 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
265 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
266 * role as a coarse-grained lock; it is acquired before both of these locks.
267 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
268 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
269 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
270 * acquired _between_ dtrace_provider_lock and dtrace_lock.
271 */
272static kmutex_t		dtrace_lock;		/* probe state lock */
273static kmutex_t		dtrace_provider_lock;	/* provider state lock */
274static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
275
276#if !defined(sun)
277/* XXX FreeBSD hacks. */
278static kmutex_t		mod_lock;
279
280#define cr_suid		cr_svuid
281#define cr_sgid		cr_svgid
282#define	ipaddr_t	in_addr_t
283#define mod_modname	pathname
284#define vuprintf	vprintf
285#define ttoproc(_a)	((_a)->td_proc)
286#define crgetzoneid(_a)	0
287#define	NCPU		MAXCPU
288#define SNOCD		0
289#define CPU_ON_INTR(_a)	0
290
291#define PRIV_EFFECTIVE		(1 << 0)
292#define PRIV_DTRACE_KERNEL	(1 << 1)
293#define PRIV_DTRACE_PROC	(1 << 2)
294#define PRIV_DTRACE_USER	(1 << 3)
295#define PRIV_PROC_OWNER		(1 << 4)
296#define PRIV_PROC_ZONE		(1 << 5)
297#define PRIV_ALL		~0
298
299SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
300#endif
301
302#if defined(sun)
303#define curcpu	CPU->cpu_id
304#endif
305
306
307/*
308 * DTrace Provider Variables
309 *
310 * These are the variables relating to DTrace as a provider (that is, the
311 * provider of the BEGIN, END, and ERROR probes).
312 */
313static dtrace_pattr_t	dtrace_provider_attr = {
314{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
315{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
316{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
318{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319};
320
321static void
322dtrace_nullop(void)
323{}
324
325static dtrace_pops_t	dtrace_provider_ops = {
326	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
327	(void (*)(void *, modctl_t *))dtrace_nullop,
328	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
329	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332	NULL,
333	NULL,
334	NULL,
335	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
336};
337
338static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
339static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
340dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
341
342/*
343 * DTrace Helper Tracing Variables
344 */
345uint32_t dtrace_helptrace_next = 0;
346uint32_t dtrace_helptrace_nlocals;
347char	*dtrace_helptrace_buffer;
348int	dtrace_helptrace_bufsize = 512 * 1024;
349
350#ifdef DEBUG
351int	dtrace_helptrace_enabled = 1;
352#else
353int	dtrace_helptrace_enabled = 0;
354#endif
355
356/*
357 * DTrace Error Hashing
358 *
359 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
360 * table.  This is very useful for checking coverage of tests that are
361 * expected to induce DIF or DOF processing errors, and may be useful for
362 * debugging problems in the DIF code generator or in DOF generation .  The
363 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
364 */
365#ifdef DEBUG
366static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
367static const char *dtrace_errlast;
368static kthread_t *dtrace_errthread;
369static kmutex_t dtrace_errlock;
370#endif
371
372/*
373 * DTrace Macros and Constants
374 *
375 * These are various macros that are useful in various spots in the
376 * implementation, along with a few random constants that have no meaning
377 * outside of the implementation.  There is no real structure to this cpp
378 * mishmash -- but is there ever?
379 */
380#define	DTRACE_HASHSTR(hash, probe)	\
381	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
382
383#define	DTRACE_HASHNEXT(hash, probe)	\
384	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
385
386#define	DTRACE_HASHPREV(hash, probe)	\
387	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
388
389#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
390	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
391	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
392
393#define	DTRACE_AGGHASHSIZE_SLEW		17
394
395#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
396
397/*
398 * The key for a thread-local variable consists of the lower 61 bits of the
399 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
400 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
401 * equal to a variable identifier.  This is necessary (but not sufficient) to
402 * assure that global associative arrays never collide with thread-local
403 * variables.  To guarantee that they cannot collide, we must also define the
404 * order for keying dynamic variables.  That order is:
405 *
406 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
407 *
408 * Because the variable-key and the tls-key are in orthogonal spaces, there is
409 * no way for a global variable key signature to match a thread-local key
410 * signature.
411 */
412#if defined(sun)
413#define	DTRACE_TLS_THRKEY(where) { \
414	uint_t intr = 0; \
415	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
416	for (; actv; actv >>= 1) \
417		intr++; \
418	ASSERT(intr < (1 << 3)); \
419	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
420	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
421}
422#else
423#define	DTRACE_TLS_THRKEY(where) { \
424	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
425	uint_t intr = 0; \
426	uint_t actv = _c->cpu_intr_actv; \
427	for (; actv; actv >>= 1) \
428		intr++; \
429	ASSERT(intr < (1 << 3)); \
430	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
431	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
432}
433#endif
434
435#define	DT_BSWAP_8(x)	((x) & 0xff)
436#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
437#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
438#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
439
440#define	DT_MASK_LO 0x00000000FFFFFFFFULL
441
442#define	DTRACE_STORE(type, tomax, offset, what) \
443	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
444
445#ifndef __i386
446#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
447	if (addr & (size - 1)) {					\
448		*flags |= CPU_DTRACE_BADALIGN;				\
449		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
450		return (0);						\
451	}
452#else
453#define	DTRACE_ALIGNCHECK(addr, size, flags)
454#endif
455
456/*
457 * Test whether a range of memory starting at testaddr of size testsz falls
458 * within the range of memory described by addr, sz.  We take care to avoid
459 * problems with overflow and underflow of the unsigned quantities, and
460 * disallow all negative sizes.  Ranges of size 0 are allowed.
461 */
462#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
463	((testaddr) - (baseaddr) < (basesz) && \
464	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
465	(testaddr) + (testsz) >= (testaddr))
466
467/*
468 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
469 * alloc_sz on the righthand side of the comparison in order to avoid overflow
470 * or underflow in the comparison with it.  This is simpler than the INRANGE
471 * check above, because we know that the dtms_scratch_ptr is valid in the
472 * range.  Allocations of size zero are allowed.
473 */
474#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
475	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
476	(mstate)->dtms_scratch_ptr >= (alloc_sz))
477
478#define	DTRACE_LOADFUNC(bits)						\
479/*CSTYLED*/								\
480uint##bits##_t								\
481dtrace_load##bits(uintptr_t addr)					\
482{									\
483	size_t size = bits / NBBY;					\
484	/*CSTYLED*/							\
485	uint##bits##_t rval;						\
486	int i;								\
487	volatile uint16_t *flags = (volatile uint16_t *)		\
488	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
489									\
490	DTRACE_ALIGNCHECK(addr, size, flags);				\
491									\
492	for (i = 0; i < dtrace_toxranges; i++) {			\
493		if (addr >= dtrace_toxrange[i].dtt_limit)		\
494			continue;					\
495									\
496		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
497			continue;					\
498									\
499		/*							\
500		 * This address falls within a toxic region; return 0.	\
501		 */							\
502		*flags |= CPU_DTRACE_BADADDR;				\
503		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
504		return (0);						\
505	}								\
506									\
507	*flags |= CPU_DTRACE_NOFAULT;					\
508	/*CSTYLED*/							\
509	rval = *((volatile uint##bits##_t *)addr);			\
510	*flags &= ~CPU_DTRACE_NOFAULT;					\
511									\
512	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
513}
514
515#ifdef _LP64
516#define	dtrace_loadptr	dtrace_load64
517#else
518#define	dtrace_loadptr	dtrace_load32
519#endif
520
521#define	DTRACE_DYNHASH_FREE	0
522#define	DTRACE_DYNHASH_SINK	1
523#define	DTRACE_DYNHASH_VALID	2
524
525#define	DTRACE_MATCH_NEXT	0
526#define	DTRACE_MATCH_DONE	1
527#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
528#define	DTRACE_STATE_ALIGN	64
529
530#define	DTRACE_FLAGS2FLT(flags)						\
531	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
532	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
533	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
534	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
535	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
536	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
537	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
538	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
539	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
540	DTRACEFLT_UNKNOWN)
541
542#define	DTRACEACT_ISSTRING(act)						\
543	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
544	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
545
546/* Function prototype definitions: */
547static size_t dtrace_strlen(const char *, size_t);
548static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
549static void dtrace_enabling_provide(dtrace_provider_t *);
550static int dtrace_enabling_match(dtrace_enabling_t *, int *);
551static void dtrace_enabling_matchall(void);
552static dtrace_state_t *dtrace_anon_grab(void);
553#if defined(sun)
554static uint64_t dtrace_helper(int, dtrace_mstate_t *,
555    dtrace_state_t *, uint64_t, uint64_t);
556static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
557#endif
558static void dtrace_buffer_drop(dtrace_buffer_t *);
559static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
560    dtrace_state_t *, dtrace_mstate_t *);
561static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
562    dtrace_optval_t);
563static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
564#if defined(sun)
565static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
566#endif
567uint16_t dtrace_load16(uintptr_t);
568uint32_t dtrace_load32(uintptr_t);
569uint64_t dtrace_load64(uintptr_t);
570uint8_t dtrace_load8(uintptr_t);
571void dtrace_dynvar_clean(dtrace_dstate_t *);
572dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
573    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
574uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
575
576/*
577 * DTrace Probe Context Functions
578 *
579 * These functions are called from probe context.  Because probe context is
580 * any context in which C may be called, arbitrarily locks may be held,
581 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
582 * As a result, functions called from probe context may only call other DTrace
583 * support functions -- they may not interact at all with the system at large.
584 * (Note that the ASSERT macro is made probe-context safe by redefining it in
585 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
586 * loads are to be performed from probe context, they _must_ be in terms of
587 * the safe dtrace_load*() variants.
588 *
589 * Some functions in this block are not actually called from probe context;
590 * for these functions, there will be a comment above the function reading
591 * "Note:  not called from probe context."
592 */
593void
594dtrace_panic(const char *format, ...)
595{
596	va_list alist;
597
598	va_start(alist, format);
599	dtrace_vpanic(format, alist);
600	va_end(alist);
601}
602
603int
604dtrace_assfail(const char *a, const char *f, int l)
605{
606	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
607
608	/*
609	 * We just need something here that even the most clever compiler
610	 * cannot optimize away.
611	 */
612	return (a[(uintptr_t)f]);
613}
614
615/*
616 * Atomically increment a specified error counter from probe context.
617 */
618static void
619dtrace_error(uint32_t *counter)
620{
621	/*
622	 * Most counters stored to in probe context are per-CPU counters.
623	 * However, there are some error conditions that are sufficiently
624	 * arcane that they don't merit per-CPU storage.  If these counters
625	 * are incremented concurrently on different CPUs, scalability will be
626	 * adversely affected -- but we don't expect them to be white-hot in a
627	 * correctly constructed enabling...
628	 */
629	uint32_t oval, nval;
630
631	do {
632		oval = *counter;
633
634		if ((nval = oval + 1) == 0) {
635			/*
636			 * If the counter would wrap, set it to 1 -- assuring
637			 * that the counter is never zero when we have seen
638			 * errors.  (The counter must be 32-bits because we
639			 * aren't guaranteed a 64-bit compare&swap operation.)
640			 * To save this code both the infamy of being fingered
641			 * by a priggish news story and the indignity of being
642			 * the target of a neo-puritan witch trial, we're
643			 * carefully avoiding any colorful description of the
644			 * likelihood of this condition -- but suffice it to
645			 * say that it is only slightly more likely than the
646			 * overflow of predicate cache IDs, as discussed in
647			 * dtrace_predicate_create().
648			 */
649			nval = 1;
650		}
651	} while (dtrace_cas32(counter, oval, nval) != oval);
652}
653
654/*
655 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
656 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
657 */
658DTRACE_LOADFUNC(8)
659DTRACE_LOADFUNC(16)
660DTRACE_LOADFUNC(32)
661DTRACE_LOADFUNC(64)
662
663static int
664dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
665{
666	if (dest < mstate->dtms_scratch_base)
667		return (0);
668
669	if (dest + size < dest)
670		return (0);
671
672	if (dest + size > mstate->dtms_scratch_ptr)
673		return (0);
674
675	return (1);
676}
677
678static int
679dtrace_canstore_statvar(uint64_t addr, size_t sz,
680    dtrace_statvar_t **svars, int nsvars)
681{
682	int i;
683
684	for (i = 0; i < nsvars; i++) {
685		dtrace_statvar_t *svar = svars[i];
686
687		if (svar == NULL || svar->dtsv_size == 0)
688			continue;
689
690		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
691			return (1);
692	}
693
694	return (0);
695}
696
697/*
698 * Check to see if the address is within a memory region to which a store may
699 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
700 * region.  The caller of dtrace_canstore() is responsible for performing any
701 * alignment checks that are needed before stores are actually executed.
702 */
703static int
704dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
705    dtrace_vstate_t *vstate)
706{
707	/*
708	 * First, check to see if the address is in scratch space...
709	 */
710	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
711	    mstate->dtms_scratch_size))
712		return (1);
713
714	/*
715	 * Now check to see if it's a dynamic variable.  This check will pick
716	 * up both thread-local variables and any global dynamically-allocated
717	 * variables.
718	 */
719	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
720	    vstate->dtvs_dynvars.dtds_size)) {
721		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
722		uintptr_t base = (uintptr_t)dstate->dtds_base +
723		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
724		uintptr_t chunkoffs;
725
726		/*
727		 * Before we assume that we can store here, we need to make
728		 * sure that it isn't in our metadata -- storing to our
729		 * dynamic variable metadata would corrupt our state.  For
730		 * the range to not include any dynamic variable metadata,
731		 * it must:
732		 *
733		 *	(1) Start above the hash table that is at the base of
734		 *	the dynamic variable space
735		 *
736		 *	(2) Have a starting chunk offset that is beyond the
737		 *	dtrace_dynvar_t that is at the base of every chunk
738		 *
739		 *	(3) Not span a chunk boundary
740		 *
741		 */
742		if (addr < base)
743			return (0);
744
745		chunkoffs = (addr - base) % dstate->dtds_chunksize;
746
747		if (chunkoffs < sizeof (dtrace_dynvar_t))
748			return (0);
749
750		if (chunkoffs + sz > dstate->dtds_chunksize)
751			return (0);
752
753		return (1);
754	}
755
756	/*
757	 * Finally, check the static local and global variables.  These checks
758	 * take the longest, so we perform them last.
759	 */
760	if (dtrace_canstore_statvar(addr, sz,
761	    vstate->dtvs_locals, vstate->dtvs_nlocals))
762		return (1);
763
764	if (dtrace_canstore_statvar(addr, sz,
765	    vstate->dtvs_globals, vstate->dtvs_nglobals))
766		return (1);
767
768	return (0);
769}
770
771
772/*
773 * Convenience routine to check to see if the address is within a memory
774 * region in which a load may be issued given the user's privilege level;
775 * if not, it sets the appropriate error flags and loads 'addr' into the
776 * illegal value slot.
777 *
778 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
779 * appropriate memory access protection.
780 */
781static int
782dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
783    dtrace_vstate_t *vstate)
784{
785	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
786
787	/*
788	 * If we hold the privilege to read from kernel memory, then
789	 * everything is readable.
790	 */
791	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
792		return (1);
793
794	/*
795	 * You can obviously read that which you can store.
796	 */
797	if (dtrace_canstore(addr, sz, mstate, vstate))
798		return (1);
799
800	/*
801	 * We're allowed to read from our own string table.
802	 */
803	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
804	    mstate->dtms_difo->dtdo_strlen))
805		return (1);
806
807	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
808	*illval = addr;
809	return (0);
810}
811
812/*
813 * Convenience routine to check to see if a given string is within a memory
814 * region in which a load may be issued given the user's privilege level;
815 * this exists so that we don't need to issue unnecessary dtrace_strlen()
816 * calls in the event that the user has all privileges.
817 */
818static int
819dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
820    dtrace_vstate_t *vstate)
821{
822	size_t strsz;
823
824	/*
825	 * If we hold the privilege to read from kernel memory, then
826	 * everything is readable.
827	 */
828	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
829		return (1);
830
831	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
832	if (dtrace_canload(addr, strsz, mstate, vstate))
833		return (1);
834
835	return (0);
836}
837
838/*
839 * Convenience routine to check to see if a given variable is within a memory
840 * region in which a load may be issued given the user's privilege level.
841 */
842static int
843dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
844    dtrace_vstate_t *vstate)
845{
846	size_t sz;
847	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
848
849	/*
850	 * If we hold the privilege to read from kernel memory, then
851	 * everything is readable.
852	 */
853	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
854		return (1);
855
856	if (type->dtdt_kind == DIF_TYPE_STRING)
857		sz = dtrace_strlen(src,
858		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
859	else
860		sz = type->dtdt_size;
861
862	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
863}
864
865/*
866 * Compare two strings using safe loads.
867 */
868static int
869dtrace_strncmp(char *s1, char *s2, size_t limit)
870{
871	uint8_t c1, c2;
872	volatile uint16_t *flags;
873
874	if (s1 == s2 || limit == 0)
875		return (0);
876
877	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
878
879	do {
880		if (s1 == NULL) {
881			c1 = '\0';
882		} else {
883			c1 = dtrace_load8((uintptr_t)s1++);
884		}
885
886		if (s2 == NULL) {
887			c2 = '\0';
888		} else {
889			c2 = dtrace_load8((uintptr_t)s2++);
890		}
891
892		if (c1 != c2)
893			return (c1 - c2);
894	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
895
896	return (0);
897}
898
899/*
900 * Compute strlen(s) for a string using safe memory accesses.  The additional
901 * len parameter is used to specify a maximum length to ensure completion.
902 */
903static size_t
904dtrace_strlen(const char *s, size_t lim)
905{
906	uint_t len;
907
908	for (len = 0; len != lim; len++) {
909		if (dtrace_load8((uintptr_t)s++) == '\0')
910			break;
911	}
912
913	return (len);
914}
915
916/*
917 * Check if an address falls within a toxic region.
918 */
919static int
920dtrace_istoxic(uintptr_t kaddr, size_t size)
921{
922	uintptr_t taddr, tsize;
923	int i;
924
925	for (i = 0; i < dtrace_toxranges; i++) {
926		taddr = dtrace_toxrange[i].dtt_base;
927		tsize = dtrace_toxrange[i].dtt_limit - taddr;
928
929		if (kaddr - taddr < tsize) {
930			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
931			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
932			return (1);
933		}
934
935		if (taddr - kaddr < size) {
936			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
937			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
938			return (1);
939		}
940	}
941
942	return (0);
943}
944
945/*
946 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
947 * memory specified by the DIF program.  The dst is assumed to be safe memory
948 * that we can store to directly because it is managed by DTrace.  As with
949 * standard bcopy, overlapping copies are handled properly.
950 */
951static void
952dtrace_bcopy(const void *src, void *dst, size_t len)
953{
954	if (len != 0) {
955		uint8_t *s1 = dst;
956		const uint8_t *s2 = src;
957
958		if (s1 <= s2) {
959			do {
960				*s1++ = dtrace_load8((uintptr_t)s2++);
961			} while (--len != 0);
962		} else {
963			s2 += len;
964			s1 += len;
965
966			do {
967				*--s1 = dtrace_load8((uintptr_t)--s2);
968			} while (--len != 0);
969		}
970	}
971}
972
973/*
974 * Copy src to dst using safe memory accesses, up to either the specified
975 * length, or the point that a nul byte is encountered.  The src is assumed to
976 * be unsafe memory specified by the DIF program.  The dst is assumed to be
977 * safe memory that we can store to directly because it is managed by DTrace.
978 * Unlike dtrace_bcopy(), overlapping regions are not handled.
979 */
980static void
981dtrace_strcpy(const void *src, void *dst, size_t len)
982{
983	if (len != 0) {
984		uint8_t *s1 = dst, c;
985		const uint8_t *s2 = src;
986
987		do {
988			*s1++ = c = dtrace_load8((uintptr_t)s2++);
989		} while (--len != 0 && c != '\0');
990	}
991}
992
993/*
994 * Copy src to dst, deriving the size and type from the specified (BYREF)
995 * variable type.  The src is assumed to be unsafe memory specified by the DIF
996 * program.  The dst is assumed to be DTrace variable memory that is of the
997 * specified type; we assume that we can store to directly.
998 */
999static void
1000dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1001{
1002	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1003
1004	if (type->dtdt_kind == DIF_TYPE_STRING) {
1005		dtrace_strcpy(src, dst, type->dtdt_size);
1006	} else {
1007		dtrace_bcopy(src, dst, type->dtdt_size);
1008	}
1009}
1010
1011/*
1012 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1013 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1014 * safe memory that we can access directly because it is managed by DTrace.
1015 */
1016static int
1017dtrace_bcmp(const void *s1, const void *s2, size_t len)
1018{
1019	volatile uint16_t *flags;
1020
1021	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1022
1023	if (s1 == s2)
1024		return (0);
1025
1026	if (s1 == NULL || s2 == NULL)
1027		return (1);
1028
1029	if (s1 != s2 && len != 0) {
1030		const uint8_t *ps1 = s1;
1031		const uint8_t *ps2 = s2;
1032
1033		do {
1034			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1035				return (1);
1036		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1037	}
1038	return (0);
1039}
1040
1041/*
1042 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1043 * is for safe DTrace-managed memory only.
1044 */
1045static void
1046dtrace_bzero(void *dst, size_t len)
1047{
1048	uchar_t *cp;
1049
1050	for (cp = dst; len != 0; len--)
1051		*cp++ = 0;
1052}
1053
1054static void
1055dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1056{
1057	uint64_t result[2];
1058
1059	result[0] = addend1[0] + addend2[0];
1060	result[1] = addend1[1] + addend2[1] +
1061	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1062
1063	sum[0] = result[0];
1064	sum[1] = result[1];
1065}
1066
1067/*
1068 * Shift the 128-bit value in a by b. If b is positive, shift left.
1069 * If b is negative, shift right.
1070 */
1071static void
1072dtrace_shift_128(uint64_t *a, int b)
1073{
1074	uint64_t mask;
1075
1076	if (b == 0)
1077		return;
1078
1079	if (b < 0) {
1080		b = -b;
1081		if (b >= 64) {
1082			a[0] = a[1] >> (b - 64);
1083			a[1] = 0;
1084		} else {
1085			a[0] >>= b;
1086			mask = 1LL << (64 - b);
1087			mask -= 1;
1088			a[0] |= ((a[1] & mask) << (64 - b));
1089			a[1] >>= b;
1090		}
1091	} else {
1092		if (b >= 64) {
1093			a[1] = a[0] << (b - 64);
1094			a[0] = 0;
1095		} else {
1096			a[1] <<= b;
1097			mask = a[0] >> (64 - b);
1098			a[1] |= mask;
1099			a[0] <<= b;
1100		}
1101	}
1102}
1103
1104/*
1105 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1106 * use native multiplication on those, and then re-combine into the
1107 * resulting 128-bit value.
1108 *
1109 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1110 *     hi1 * hi2 << 64 +
1111 *     hi1 * lo2 << 32 +
1112 *     hi2 * lo1 << 32 +
1113 *     lo1 * lo2
1114 */
1115static void
1116dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1117{
1118	uint64_t hi1, hi2, lo1, lo2;
1119	uint64_t tmp[2];
1120
1121	hi1 = factor1 >> 32;
1122	hi2 = factor2 >> 32;
1123
1124	lo1 = factor1 & DT_MASK_LO;
1125	lo2 = factor2 & DT_MASK_LO;
1126
1127	product[0] = lo1 * lo2;
1128	product[1] = hi1 * hi2;
1129
1130	tmp[0] = hi1 * lo2;
1131	tmp[1] = 0;
1132	dtrace_shift_128(tmp, 32);
1133	dtrace_add_128(product, tmp, product);
1134
1135	tmp[0] = hi2 * lo1;
1136	tmp[1] = 0;
1137	dtrace_shift_128(tmp, 32);
1138	dtrace_add_128(product, tmp, product);
1139}
1140
1141/*
1142 * This privilege check should be used by actions and subroutines to
1143 * verify that the user credentials of the process that enabled the
1144 * invoking ECB match the target credentials
1145 */
1146static int
1147dtrace_priv_proc_common_user(dtrace_state_t *state)
1148{
1149	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1150
1151	/*
1152	 * We should always have a non-NULL state cred here, since if cred
1153	 * is null (anonymous tracing), we fast-path bypass this routine.
1154	 */
1155	ASSERT(s_cr != NULL);
1156
1157	if ((cr = CRED()) != NULL &&
1158	    s_cr->cr_uid == cr->cr_uid &&
1159	    s_cr->cr_uid == cr->cr_ruid &&
1160	    s_cr->cr_uid == cr->cr_suid &&
1161	    s_cr->cr_gid == cr->cr_gid &&
1162	    s_cr->cr_gid == cr->cr_rgid &&
1163	    s_cr->cr_gid == cr->cr_sgid)
1164		return (1);
1165
1166	return (0);
1167}
1168
1169/*
1170 * This privilege check should be used by actions and subroutines to
1171 * verify that the zone of the process that enabled the invoking ECB
1172 * matches the target credentials
1173 */
1174static int
1175dtrace_priv_proc_common_zone(dtrace_state_t *state)
1176{
1177#if defined(sun)
1178	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1179
1180	/*
1181	 * We should always have a non-NULL state cred here, since if cred
1182	 * is null (anonymous tracing), we fast-path bypass this routine.
1183	 */
1184	ASSERT(s_cr != NULL);
1185
1186	if ((cr = CRED()) != NULL &&
1187	    s_cr->cr_zone == cr->cr_zone)
1188		return (1);
1189
1190	return (0);
1191#else
1192	return (1);
1193#endif
1194}
1195
1196/*
1197 * This privilege check should be used by actions and subroutines to
1198 * verify that the process has not setuid or changed credentials.
1199 */
1200static int
1201dtrace_priv_proc_common_nocd(void)
1202{
1203	proc_t *proc;
1204
1205	if ((proc = ttoproc(curthread)) != NULL &&
1206	    !(proc->p_flag & SNOCD))
1207		return (1);
1208
1209	return (0);
1210}
1211
1212static int
1213dtrace_priv_proc_destructive(dtrace_state_t *state)
1214{
1215	int action = state->dts_cred.dcr_action;
1216
1217	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1218	    dtrace_priv_proc_common_zone(state) == 0)
1219		goto bad;
1220
1221	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1222	    dtrace_priv_proc_common_user(state) == 0)
1223		goto bad;
1224
1225	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1226	    dtrace_priv_proc_common_nocd() == 0)
1227		goto bad;
1228
1229	return (1);
1230
1231bad:
1232	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1233
1234	return (0);
1235}
1236
1237static int
1238dtrace_priv_proc_control(dtrace_state_t *state)
1239{
1240	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1241		return (1);
1242
1243	if (dtrace_priv_proc_common_zone(state) &&
1244	    dtrace_priv_proc_common_user(state) &&
1245	    dtrace_priv_proc_common_nocd())
1246		return (1);
1247
1248	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1249
1250	return (0);
1251}
1252
1253static int
1254dtrace_priv_proc(dtrace_state_t *state)
1255{
1256	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1257		return (1);
1258
1259	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1260
1261	return (0);
1262}
1263
1264static int
1265dtrace_priv_kernel(dtrace_state_t *state)
1266{
1267	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1268		return (1);
1269
1270	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1271
1272	return (0);
1273}
1274
1275static int
1276dtrace_priv_kernel_destructive(dtrace_state_t *state)
1277{
1278	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1279		return (1);
1280
1281	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1282
1283	return (0);
1284}
1285
1286/*
1287 * Note:  not called from probe context.  This function is called
1288 * asynchronously (and at a regular interval) from outside of probe context to
1289 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1290 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1291 */
1292void
1293dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1294{
1295	dtrace_dynvar_t *dirty;
1296	dtrace_dstate_percpu_t *dcpu;
1297	int i, work = 0;
1298
1299	for (i = 0; i < NCPU; i++) {
1300		dcpu = &dstate->dtds_percpu[i];
1301
1302		ASSERT(dcpu->dtdsc_rinsing == NULL);
1303
1304		/*
1305		 * If the dirty list is NULL, there is no dirty work to do.
1306		 */
1307		if (dcpu->dtdsc_dirty == NULL)
1308			continue;
1309
1310		/*
1311		 * If the clean list is non-NULL, then we're not going to do
1312		 * any work for this CPU -- it means that there has not been
1313		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1314		 * since the last time we cleaned house.
1315		 */
1316		if (dcpu->dtdsc_clean != NULL)
1317			continue;
1318
1319		work = 1;
1320
1321		/*
1322		 * Atomically move the dirty list aside.
1323		 */
1324		do {
1325			dirty = dcpu->dtdsc_dirty;
1326
1327			/*
1328			 * Before we zap the dirty list, set the rinsing list.
1329			 * (This allows for a potential assertion in
1330			 * dtrace_dynvar():  if a free dynamic variable appears
1331			 * on a hash chain, either the dirty list or the
1332			 * rinsing list for some CPU must be non-NULL.)
1333			 */
1334			dcpu->dtdsc_rinsing = dirty;
1335			dtrace_membar_producer();
1336		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1337		    dirty, NULL) != dirty);
1338	}
1339
1340	if (!work) {
1341		/*
1342		 * We have no work to do; we can simply return.
1343		 */
1344		return;
1345	}
1346
1347	dtrace_sync();
1348
1349	for (i = 0; i < NCPU; i++) {
1350		dcpu = &dstate->dtds_percpu[i];
1351
1352		if (dcpu->dtdsc_rinsing == NULL)
1353			continue;
1354
1355		/*
1356		 * We are now guaranteed that no hash chain contains a pointer
1357		 * into this dirty list; we can make it clean.
1358		 */
1359		ASSERT(dcpu->dtdsc_clean == NULL);
1360		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1361		dcpu->dtdsc_rinsing = NULL;
1362	}
1363
1364	/*
1365	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1366	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1367	 * This prevents a race whereby a CPU incorrectly decides that
1368	 * the state should be something other than DTRACE_DSTATE_CLEAN
1369	 * after dtrace_dynvar_clean() has completed.
1370	 */
1371	dtrace_sync();
1372
1373	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1374}
1375
1376/*
1377 * Depending on the value of the op parameter, this function looks-up,
1378 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1379 * allocation is requested, this function will return a pointer to a
1380 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1381 * variable can be allocated.  If NULL is returned, the appropriate counter
1382 * will be incremented.
1383 */
1384dtrace_dynvar_t *
1385dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1386    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1387    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1388{
1389	uint64_t hashval = DTRACE_DYNHASH_VALID;
1390	dtrace_dynhash_t *hash = dstate->dtds_hash;
1391	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1392	processorid_t me = curcpu, cpu = me;
1393	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1394	size_t bucket, ksize;
1395	size_t chunksize = dstate->dtds_chunksize;
1396	uintptr_t kdata, lock, nstate;
1397	uint_t i;
1398
1399	ASSERT(nkeys != 0);
1400
1401	/*
1402	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1403	 * algorithm.  For the by-value portions, we perform the algorithm in
1404	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1405	 * bit, and seems to have only a minute effect on distribution.  For
1406	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1407	 * over each referenced byte.  It's painful to do this, but it's much
1408	 * better than pathological hash distribution.  The efficacy of the
1409	 * hashing algorithm (and a comparison with other algorithms) may be
1410	 * found by running the ::dtrace_dynstat MDB dcmd.
1411	 */
1412	for (i = 0; i < nkeys; i++) {
1413		if (key[i].dttk_size == 0) {
1414			uint64_t val = key[i].dttk_value;
1415
1416			hashval += (val >> 48) & 0xffff;
1417			hashval += (hashval << 10);
1418			hashval ^= (hashval >> 6);
1419
1420			hashval += (val >> 32) & 0xffff;
1421			hashval += (hashval << 10);
1422			hashval ^= (hashval >> 6);
1423
1424			hashval += (val >> 16) & 0xffff;
1425			hashval += (hashval << 10);
1426			hashval ^= (hashval >> 6);
1427
1428			hashval += val & 0xffff;
1429			hashval += (hashval << 10);
1430			hashval ^= (hashval >> 6);
1431		} else {
1432			/*
1433			 * This is incredibly painful, but it beats the hell
1434			 * out of the alternative.
1435			 */
1436			uint64_t j, size = key[i].dttk_size;
1437			uintptr_t base = (uintptr_t)key[i].dttk_value;
1438
1439			if (!dtrace_canload(base, size, mstate, vstate))
1440				break;
1441
1442			for (j = 0; j < size; j++) {
1443				hashval += dtrace_load8(base + j);
1444				hashval += (hashval << 10);
1445				hashval ^= (hashval >> 6);
1446			}
1447		}
1448	}
1449
1450	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1451		return (NULL);
1452
1453	hashval += (hashval << 3);
1454	hashval ^= (hashval >> 11);
1455	hashval += (hashval << 15);
1456
1457	/*
1458	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1459	 * comes out to be one of our two sentinel hash values.  If this
1460	 * actually happens, we set the hashval to be a value known to be a
1461	 * non-sentinel value.
1462	 */
1463	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1464		hashval = DTRACE_DYNHASH_VALID;
1465
1466	/*
1467	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1468	 * important here, tricks can be pulled to reduce it.  (However, it's
1469	 * critical that hash collisions be kept to an absolute minimum;
1470	 * they're much more painful than a divide.)  It's better to have a
1471	 * solution that generates few collisions and still keeps things
1472	 * relatively simple.
1473	 */
1474	bucket = hashval % dstate->dtds_hashsize;
1475
1476	if (op == DTRACE_DYNVAR_DEALLOC) {
1477		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1478
1479		for (;;) {
1480			while ((lock = *lockp) & 1)
1481				continue;
1482
1483			if (dtrace_casptr((volatile void *)lockp,
1484			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1485				break;
1486		}
1487
1488		dtrace_membar_producer();
1489	}
1490
1491top:
1492	prev = NULL;
1493	lock = hash[bucket].dtdh_lock;
1494
1495	dtrace_membar_consumer();
1496
1497	start = hash[bucket].dtdh_chain;
1498	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1499	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1500	    op != DTRACE_DYNVAR_DEALLOC));
1501
1502	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1503		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1504		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1505
1506		if (dvar->dtdv_hashval != hashval) {
1507			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1508				/*
1509				 * We've reached the sink, and therefore the
1510				 * end of the hash chain; we can kick out of
1511				 * the loop knowing that we have seen a valid
1512				 * snapshot of state.
1513				 */
1514				ASSERT(dvar->dtdv_next == NULL);
1515				ASSERT(dvar == &dtrace_dynhash_sink);
1516				break;
1517			}
1518
1519			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1520				/*
1521				 * We've gone off the rails:  somewhere along
1522				 * the line, one of the members of this hash
1523				 * chain was deleted.  Note that we could also
1524				 * detect this by simply letting this loop run
1525				 * to completion, as we would eventually hit
1526				 * the end of the dirty list.  However, we
1527				 * want to avoid running the length of the
1528				 * dirty list unnecessarily (it might be quite
1529				 * long), so we catch this as early as
1530				 * possible by detecting the hash marker.  In
1531				 * this case, we simply set dvar to NULL and
1532				 * break; the conditional after the loop will
1533				 * send us back to top.
1534				 */
1535				dvar = NULL;
1536				break;
1537			}
1538
1539			goto next;
1540		}
1541
1542		if (dtuple->dtt_nkeys != nkeys)
1543			goto next;
1544
1545		for (i = 0; i < nkeys; i++, dkey++) {
1546			if (dkey->dttk_size != key[i].dttk_size)
1547				goto next; /* size or type mismatch */
1548
1549			if (dkey->dttk_size != 0) {
1550				if (dtrace_bcmp(
1551				    (void *)(uintptr_t)key[i].dttk_value,
1552				    (void *)(uintptr_t)dkey->dttk_value,
1553				    dkey->dttk_size))
1554					goto next;
1555			} else {
1556				if (dkey->dttk_value != key[i].dttk_value)
1557					goto next;
1558			}
1559		}
1560
1561		if (op != DTRACE_DYNVAR_DEALLOC)
1562			return (dvar);
1563
1564		ASSERT(dvar->dtdv_next == NULL ||
1565		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1566
1567		if (prev != NULL) {
1568			ASSERT(hash[bucket].dtdh_chain != dvar);
1569			ASSERT(start != dvar);
1570			ASSERT(prev->dtdv_next == dvar);
1571			prev->dtdv_next = dvar->dtdv_next;
1572		} else {
1573			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1574			    start, dvar->dtdv_next) != start) {
1575				/*
1576				 * We have failed to atomically swing the
1577				 * hash table head pointer, presumably because
1578				 * of a conflicting allocation on another CPU.
1579				 * We need to reread the hash chain and try
1580				 * again.
1581				 */
1582				goto top;
1583			}
1584		}
1585
1586		dtrace_membar_producer();
1587
1588		/*
1589		 * Now set the hash value to indicate that it's free.
1590		 */
1591		ASSERT(hash[bucket].dtdh_chain != dvar);
1592		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1593
1594		dtrace_membar_producer();
1595
1596		/*
1597		 * Set the next pointer to point at the dirty list, and
1598		 * atomically swing the dirty pointer to the newly freed dvar.
1599		 */
1600		do {
1601			next = dcpu->dtdsc_dirty;
1602			dvar->dtdv_next = next;
1603		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1604
1605		/*
1606		 * Finally, unlock this hash bucket.
1607		 */
1608		ASSERT(hash[bucket].dtdh_lock == lock);
1609		ASSERT(lock & 1);
1610		hash[bucket].dtdh_lock++;
1611
1612		return (NULL);
1613next:
1614		prev = dvar;
1615		continue;
1616	}
1617
1618	if (dvar == NULL) {
1619		/*
1620		 * If dvar is NULL, it is because we went off the rails:
1621		 * one of the elements that we traversed in the hash chain
1622		 * was deleted while we were traversing it.  In this case,
1623		 * we assert that we aren't doing a dealloc (deallocs lock
1624		 * the hash bucket to prevent themselves from racing with
1625		 * one another), and retry the hash chain traversal.
1626		 */
1627		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1628		goto top;
1629	}
1630
1631	if (op != DTRACE_DYNVAR_ALLOC) {
1632		/*
1633		 * If we are not to allocate a new variable, we want to
1634		 * return NULL now.  Before we return, check that the value
1635		 * of the lock word hasn't changed.  If it has, we may have
1636		 * seen an inconsistent snapshot.
1637		 */
1638		if (op == DTRACE_DYNVAR_NOALLOC) {
1639			if (hash[bucket].dtdh_lock != lock)
1640				goto top;
1641		} else {
1642			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1643			ASSERT(hash[bucket].dtdh_lock == lock);
1644			ASSERT(lock & 1);
1645			hash[bucket].dtdh_lock++;
1646		}
1647
1648		return (NULL);
1649	}
1650
1651	/*
1652	 * We need to allocate a new dynamic variable.  The size we need is the
1653	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1654	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1655	 * the size of any referred-to data (dsize).  We then round the final
1656	 * size up to the chunksize for allocation.
1657	 */
1658	for (ksize = 0, i = 0; i < nkeys; i++)
1659		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1660
1661	/*
1662	 * This should be pretty much impossible, but could happen if, say,
1663	 * strange DIF specified the tuple.  Ideally, this should be an
1664	 * assertion and not an error condition -- but that requires that the
1665	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1666	 * bullet-proof.  (That is, it must not be able to be fooled by
1667	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1668	 * solving this would presumably not amount to solving the Halting
1669	 * Problem -- but it still seems awfully hard.
1670	 */
1671	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1672	    ksize + dsize > chunksize) {
1673		dcpu->dtdsc_drops++;
1674		return (NULL);
1675	}
1676
1677	nstate = DTRACE_DSTATE_EMPTY;
1678
1679	do {
1680retry:
1681		free = dcpu->dtdsc_free;
1682
1683		if (free == NULL) {
1684			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1685			void *rval;
1686
1687			if (clean == NULL) {
1688				/*
1689				 * We're out of dynamic variable space on
1690				 * this CPU.  Unless we have tried all CPUs,
1691				 * we'll try to allocate from a different
1692				 * CPU.
1693				 */
1694				switch (dstate->dtds_state) {
1695				case DTRACE_DSTATE_CLEAN: {
1696					void *sp = &dstate->dtds_state;
1697
1698					if (++cpu >= NCPU)
1699						cpu = 0;
1700
1701					if (dcpu->dtdsc_dirty != NULL &&
1702					    nstate == DTRACE_DSTATE_EMPTY)
1703						nstate = DTRACE_DSTATE_DIRTY;
1704
1705					if (dcpu->dtdsc_rinsing != NULL)
1706						nstate = DTRACE_DSTATE_RINSING;
1707
1708					dcpu = &dstate->dtds_percpu[cpu];
1709
1710					if (cpu != me)
1711						goto retry;
1712
1713					(void) dtrace_cas32(sp,
1714					    DTRACE_DSTATE_CLEAN, nstate);
1715
1716					/*
1717					 * To increment the correct bean
1718					 * counter, take another lap.
1719					 */
1720					goto retry;
1721				}
1722
1723				case DTRACE_DSTATE_DIRTY:
1724					dcpu->dtdsc_dirty_drops++;
1725					break;
1726
1727				case DTRACE_DSTATE_RINSING:
1728					dcpu->dtdsc_rinsing_drops++;
1729					break;
1730
1731				case DTRACE_DSTATE_EMPTY:
1732					dcpu->dtdsc_drops++;
1733					break;
1734				}
1735
1736				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1737				return (NULL);
1738			}
1739
1740			/*
1741			 * The clean list appears to be non-empty.  We want to
1742			 * move the clean list to the free list; we start by
1743			 * moving the clean pointer aside.
1744			 */
1745			if (dtrace_casptr(&dcpu->dtdsc_clean,
1746			    clean, NULL) != clean) {
1747				/*
1748				 * We are in one of two situations:
1749				 *
1750				 *  (a)	The clean list was switched to the
1751				 *	free list by another CPU.
1752				 *
1753				 *  (b)	The clean list was added to by the
1754				 *	cleansing cyclic.
1755				 *
1756				 * In either of these situations, we can
1757				 * just reattempt the free list allocation.
1758				 */
1759				goto retry;
1760			}
1761
1762			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1763
1764			/*
1765			 * Now we'll move the clean list to the free list.
1766			 * It's impossible for this to fail:  the only way
1767			 * the free list can be updated is through this
1768			 * code path, and only one CPU can own the clean list.
1769			 * Thus, it would only be possible for this to fail if
1770			 * this code were racing with dtrace_dynvar_clean().
1771			 * (That is, if dtrace_dynvar_clean() updated the clean
1772			 * list, and we ended up racing to update the free
1773			 * list.)  This race is prevented by the dtrace_sync()
1774			 * in dtrace_dynvar_clean() -- which flushes the
1775			 * owners of the clean lists out before resetting
1776			 * the clean lists.
1777			 */
1778			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1779			ASSERT(rval == NULL);
1780			goto retry;
1781		}
1782
1783		dvar = free;
1784		new_free = dvar->dtdv_next;
1785	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1786
1787	/*
1788	 * We have now allocated a new chunk.  We copy the tuple keys into the
1789	 * tuple array and copy any referenced key data into the data space
1790	 * following the tuple array.  As we do this, we relocate dttk_value
1791	 * in the final tuple to point to the key data address in the chunk.
1792	 */
1793	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1794	dvar->dtdv_data = (void *)(kdata + ksize);
1795	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1796
1797	for (i = 0; i < nkeys; i++) {
1798		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1799		size_t kesize = key[i].dttk_size;
1800
1801		if (kesize != 0) {
1802			dtrace_bcopy(
1803			    (const void *)(uintptr_t)key[i].dttk_value,
1804			    (void *)kdata, kesize);
1805			dkey->dttk_value = kdata;
1806			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1807		} else {
1808			dkey->dttk_value = key[i].dttk_value;
1809		}
1810
1811		dkey->dttk_size = kesize;
1812	}
1813
1814	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1815	dvar->dtdv_hashval = hashval;
1816	dvar->dtdv_next = start;
1817
1818	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1819		return (dvar);
1820
1821	/*
1822	 * The cas has failed.  Either another CPU is adding an element to
1823	 * this hash chain, or another CPU is deleting an element from this
1824	 * hash chain.  The simplest way to deal with both of these cases
1825	 * (though not necessarily the most efficient) is to free our
1826	 * allocated block and tail-call ourselves.  Note that the free is
1827	 * to the dirty list and _not_ to the free list.  This is to prevent
1828	 * races with allocators, above.
1829	 */
1830	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1831
1832	dtrace_membar_producer();
1833
1834	do {
1835		free = dcpu->dtdsc_dirty;
1836		dvar->dtdv_next = free;
1837	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1838
1839	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1840}
1841
1842/*ARGSUSED*/
1843static void
1844dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1845{
1846	if ((int64_t)nval < (int64_t)*oval)
1847		*oval = nval;
1848}
1849
1850/*ARGSUSED*/
1851static void
1852dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1853{
1854	if ((int64_t)nval > (int64_t)*oval)
1855		*oval = nval;
1856}
1857
1858static void
1859dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1860{
1861	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1862	int64_t val = (int64_t)nval;
1863
1864	if (val < 0) {
1865		for (i = 0; i < zero; i++) {
1866			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1867				quanta[i] += incr;
1868				return;
1869			}
1870		}
1871	} else {
1872		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1873			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1874				quanta[i - 1] += incr;
1875				return;
1876			}
1877		}
1878
1879		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1880		return;
1881	}
1882
1883	ASSERT(0);
1884}
1885
1886static void
1887dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1888{
1889	uint64_t arg = *lquanta++;
1890	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1891	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1892	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1893	int32_t val = (int32_t)nval, level;
1894
1895	ASSERT(step != 0);
1896	ASSERT(levels != 0);
1897
1898	if (val < base) {
1899		/*
1900		 * This is an underflow.
1901		 */
1902		lquanta[0] += incr;
1903		return;
1904	}
1905
1906	level = (val - base) / step;
1907
1908	if (level < levels) {
1909		lquanta[level + 1] += incr;
1910		return;
1911	}
1912
1913	/*
1914	 * This is an overflow.
1915	 */
1916	lquanta[levels + 1] += incr;
1917}
1918
1919/*ARGSUSED*/
1920static void
1921dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1922{
1923	data[0]++;
1924	data[1] += nval;
1925}
1926
1927/*ARGSUSED*/
1928static void
1929dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1930{
1931	int64_t snval = (int64_t)nval;
1932	uint64_t tmp[2];
1933
1934	data[0]++;
1935	data[1] += nval;
1936
1937	/*
1938	 * What we want to say here is:
1939	 *
1940	 * data[2] += nval * nval;
1941	 *
1942	 * But given that nval is 64-bit, we could easily overflow, so
1943	 * we do this as 128-bit arithmetic.
1944	 */
1945	if (snval < 0)
1946		snval = -snval;
1947
1948	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1949	dtrace_add_128(data + 2, tmp, data + 2);
1950}
1951
1952/*ARGSUSED*/
1953static void
1954dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1955{
1956	*oval = *oval + 1;
1957}
1958
1959/*ARGSUSED*/
1960static void
1961dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1962{
1963	*oval += nval;
1964}
1965
1966/*
1967 * Aggregate given the tuple in the principal data buffer, and the aggregating
1968 * action denoted by the specified dtrace_aggregation_t.  The aggregation
1969 * buffer is specified as the buf parameter.  This routine does not return
1970 * failure; if there is no space in the aggregation buffer, the data will be
1971 * dropped, and a corresponding counter incremented.
1972 */
1973static void
1974dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1975    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1976{
1977	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1978	uint32_t i, ndx, size, fsize;
1979	uint32_t align = sizeof (uint64_t) - 1;
1980	dtrace_aggbuffer_t *agb;
1981	dtrace_aggkey_t *key;
1982	uint32_t hashval = 0, limit, isstr;
1983	caddr_t tomax, data, kdata;
1984	dtrace_actkind_t action;
1985	dtrace_action_t *act;
1986	uintptr_t offs;
1987
1988	if (buf == NULL)
1989		return;
1990
1991	if (!agg->dtag_hasarg) {
1992		/*
1993		 * Currently, only quantize() and lquantize() take additional
1994		 * arguments, and they have the same semantics:  an increment
1995		 * value that defaults to 1 when not present.  If additional
1996		 * aggregating actions take arguments, the setting of the
1997		 * default argument value will presumably have to become more
1998		 * sophisticated...
1999		 */
2000		arg = 1;
2001	}
2002
2003	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2004	size = rec->dtrd_offset - agg->dtag_base;
2005	fsize = size + rec->dtrd_size;
2006
2007	ASSERT(dbuf->dtb_tomax != NULL);
2008	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2009
2010	if ((tomax = buf->dtb_tomax) == NULL) {
2011		dtrace_buffer_drop(buf);
2012		return;
2013	}
2014
2015	/*
2016	 * The metastructure is always at the bottom of the buffer.
2017	 */
2018	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2019	    sizeof (dtrace_aggbuffer_t));
2020
2021	if (buf->dtb_offset == 0) {
2022		/*
2023		 * We just kludge up approximately 1/8th of the size to be
2024		 * buckets.  If this guess ends up being routinely
2025		 * off-the-mark, we may need to dynamically readjust this
2026		 * based on past performance.
2027		 */
2028		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2029
2030		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2031		    (uintptr_t)tomax || hashsize == 0) {
2032			/*
2033			 * We've been given a ludicrously small buffer;
2034			 * increment our drop count and leave.
2035			 */
2036			dtrace_buffer_drop(buf);
2037			return;
2038		}
2039
2040		/*
2041		 * And now, a pathetic attempt to try to get a an odd (or
2042		 * perchance, a prime) hash size for better hash distribution.
2043		 */
2044		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2045			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2046
2047		agb->dtagb_hashsize = hashsize;
2048		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2049		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2050		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2051
2052		for (i = 0; i < agb->dtagb_hashsize; i++)
2053			agb->dtagb_hash[i] = NULL;
2054	}
2055
2056	ASSERT(agg->dtag_first != NULL);
2057	ASSERT(agg->dtag_first->dta_intuple);
2058
2059	/*
2060	 * Calculate the hash value based on the key.  Note that we _don't_
2061	 * include the aggid in the hashing (but we will store it as part of
2062	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2063	 * algorithm: a simple, quick algorithm that has no known funnels, and
2064	 * gets good distribution in practice.  The efficacy of the hashing
2065	 * algorithm (and a comparison with other algorithms) may be found by
2066	 * running the ::dtrace_aggstat MDB dcmd.
2067	 */
2068	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2069		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2070		limit = i + act->dta_rec.dtrd_size;
2071		ASSERT(limit <= size);
2072		isstr = DTRACEACT_ISSTRING(act);
2073
2074		for (; i < limit; i++) {
2075			hashval += data[i];
2076			hashval += (hashval << 10);
2077			hashval ^= (hashval >> 6);
2078
2079			if (isstr && data[i] == '\0')
2080				break;
2081		}
2082	}
2083
2084	hashval += (hashval << 3);
2085	hashval ^= (hashval >> 11);
2086	hashval += (hashval << 15);
2087
2088	/*
2089	 * Yes, the divide here is expensive -- but it's generally the least
2090	 * of the performance issues given the amount of data that we iterate
2091	 * over to compute hash values, compare data, etc.
2092	 */
2093	ndx = hashval % agb->dtagb_hashsize;
2094
2095	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2096		ASSERT((caddr_t)key >= tomax);
2097		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2098
2099		if (hashval != key->dtak_hashval || key->dtak_size != size)
2100			continue;
2101
2102		kdata = key->dtak_data;
2103		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2104
2105		for (act = agg->dtag_first; act->dta_intuple;
2106		    act = act->dta_next) {
2107			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2108			limit = i + act->dta_rec.dtrd_size;
2109			ASSERT(limit <= size);
2110			isstr = DTRACEACT_ISSTRING(act);
2111
2112			for (; i < limit; i++) {
2113				if (kdata[i] != data[i])
2114					goto next;
2115
2116				if (isstr && data[i] == '\0')
2117					break;
2118			}
2119		}
2120
2121		if (action != key->dtak_action) {
2122			/*
2123			 * We are aggregating on the same value in the same
2124			 * aggregation with two different aggregating actions.
2125			 * (This should have been picked up in the compiler,
2126			 * so we may be dealing with errant or devious DIF.)
2127			 * This is an error condition; we indicate as much,
2128			 * and return.
2129			 */
2130			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2131			return;
2132		}
2133
2134		/*
2135		 * This is a hit:  we need to apply the aggregator to
2136		 * the value at this key.
2137		 */
2138		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2139		return;
2140next:
2141		continue;
2142	}
2143
2144	/*
2145	 * We didn't find it.  We need to allocate some zero-filled space,
2146	 * link it into the hash table appropriately, and apply the aggregator
2147	 * to the (zero-filled) value.
2148	 */
2149	offs = buf->dtb_offset;
2150	while (offs & (align - 1))
2151		offs += sizeof (uint32_t);
2152
2153	/*
2154	 * If we don't have enough room to both allocate a new key _and_
2155	 * its associated data, increment the drop count and return.
2156	 */
2157	if ((uintptr_t)tomax + offs + fsize >
2158	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2159		dtrace_buffer_drop(buf);
2160		return;
2161	}
2162
2163	/*CONSTCOND*/
2164	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2165	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2166	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2167
2168	key->dtak_data = kdata = tomax + offs;
2169	buf->dtb_offset = offs + fsize;
2170
2171	/*
2172	 * Now copy the data across.
2173	 */
2174	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2175
2176	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2177		kdata[i] = data[i];
2178
2179	/*
2180	 * Because strings are not zeroed out by default, we need to iterate
2181	 * looking for actions that store strings, and we need to explicitly
2182	 * pad these strings out with zeroes.
2183	 */
2184	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2185		int nul;
2186
2187		if (!DTRACEACT_ISSTRING(act))
2188			continue;
2189
2190		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2191		limit = i + act->dta_rec.dtrd_size;
2192		ASSERT(limit <= size);
2193
2194		for (nul = 0; i < limit; i++) {
2195			if (nul) {
2196				kdata[i] = '\0';
2197				continue;
2198			}
2199
2200			if (data[i] != '\0')
2201				continue;
2202
2203			nul = 1;
2204		}
2205	}
2206
2207	for (i = size; i < fsize; i++)
2208		kdata[i] = 0;
2209
2210	key->dtak_hashval = hashval;
2211	key->dtak_size = size;
2212	key->dtak_action = action;
2213	key->dtak_next = agb->dtagb_hash[ndx];
2214	agb->dtagb_hash[ndx] = key;
2215
2216	/*
2217	 * Finally, apply the aggregator.
2218	 */
2219	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2220	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2221}
2222
2223/*
2224 * Given consumer state, this routine finds a speculation in the INACTIVE
2225 * state and transitions it into the ACTIVE state.  If there is no speculation
2226 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2227 * incremented -- it is up to the caller to take appropriate action.
2228 */
2229static int
2230dtrace_speculation(dtrace_state_t *state)
2231{
2232	int i = 0;
2233	dtrace_speculation_state_t current;
2234	uint32_t *stat = &state->dts_speculations_unavail, count;
2235
2236	while (i < state->dts_nspeculations) {
2237		dtrace_speculation_t *spec = &state->dts_speculations[i];
2238
2239		current = spec->dtsp_state;
2240
2241		if (current != DTRACESPEC_INACTIVE) {
2242			if (current == DTRACESPEC_COMMITTINGMANY ||
2243			    current == DTRACESPEC_COMMITTING ||
2244			    current == DTRACESPEC_DISCARDING)
2245				stat = &state->dts_speculations_busy;
2246			i++;
2247			continue;
2248		}
2249
2250		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2251		    current, DTRACESPEC_ACTIVE) == current)
2252			return (i + 1);
2253	}
2254
2255	/*
2256	 * We couldn't find a speculation.  If we found as much as a single
2257	 * busy speculation buffer, we'll attribute this failure as "busy"
2258	 * instead of "unavail".
2259	 */
2260	do {
2261		count = *stat;
2262	} while (dtrace_cas32(stat, count, count + 1) != count);
2263
2264	return (0);
2265}
2266
2267/*
2268 * This routine commits an active speculation.  If the specified speculation
2269 * is not in a valid state to perform a commit(), this routine will silently do
2270 * nothing.  The state of the specified speculation is transitioned according
2271 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2272 */
2273static void
2274dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2275    dtrace_specid_t which)
2276{
2277	dtrace_speculation_t *spec;
2278	dtrace_buffer_t *src, *dest;
2279	uintptr_t daddr, saddr, dlimit;
2280	dtrace_speculation_state_t current, new = 0;
2281	intptr_t offs;
2282
2283	if (which == 0)
2284		return;
2285
2286	if (which > state->dts_nspeculations) {
2287		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2288		return;
2289	}
2290
2291	spec = &state->dts_speculations[which - 1];
2292	src = &spec->dtsp_buffer[cpu];
2293	dest = &state->dts_buffer[cpu];
2294
2295	do {
2296		current = spec->dtsp_state;
2297
2298		if (current == DTRACESPEC_COMMITTINGMANY)
2299			break;
2300
2301		switch (current) {
2302		case DTRACESPEC_INACTIVE:
2303		case DTRACESPEC_DISCARDING:
2304			return;
2305
2306		case DTRACESPEC_COMMITTING:
2307			/*
2308			 * This is only possible if we are (a) commit()'ing
2309			 * without having done a prior speculate() on this CPU
2310			 * and (b) racing with another commit() on a different
2311			 * CPU.  There's nothing to do -- we just assert that
2312			 * our offset is 0.
2313			 */
2314			ASSERT(src->dtb_offset == 0);
2315			return;
2316
2317		case DTRACESPEC_ACTIVE:
2318			new = DTRACESPEC_COMMITTING;
2319			break;
2320
2321		case DTRACESPEC_ACTIVEONE:
2322			/*
2323			 * This speculation is active on one CPU.  If our
2324			 * buffer offset is non-zero, we know that the one CPU
2325			 * must be us.  Otherwise, we are committing on a
2326			 * different CPU from the speculate(), and we must
2327			 * rely on being asynchronously cleaned.
2328			 */
2329			if (src->dtb_offset != 0) {
2330				new = DTRACESPEC_COMMITTING;
2331				break;
2332			}
2333			/*FALLTHROUGH*/
2334
2335		case DTRACESPEC_ACTIVEMANY:
2336			new = DTRACESPEC_COMMITTINGMANY;
2337			break;
2338
2339		default:
2340			ASSERT(0);
2341		}
2342	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2343	    current, new) != current);
2344
2345	/*
2346	 * We have set the state to indicate that we are committing this
2347	 * speculation.  Now reserve the necessary space in the destination
2348	 * buffer.
2349	 */
2350	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2351	    sizeof (uint64_t), state, NULL)) < 0) {
2352		dtrace_buffer_drop(dest);
2353		goto out;
2354	}
2355
2356	/*
2357	 * We have the space; copy the buffer across.  (Note that this is a
2358	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2359	 * a serious performance issue, a high-performance DTrace-specific
2360	 * bcopy() should obviously be invented.)
2361	 */
2362	daddr = (uintptr_t)dest->dtb_tomax + offs;
2363	dlimit = daddr + src->dtb_offset;
2364	saddr = (uintptr_t)src->dtb_tomax;
2365
2366	/*
2367	 * First, the aligned portion.
2368	 */
2369	while (dlimit - daddr >= sizeof (uint64_t)) {
2370		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2371
2372		daddr += sizeof (uint64_t);
2373		saddr += sizeof (uint64_t);
2374	}
2375
2376	/*
2377	 * Now any left-over bit...
2378	 */
2379	while (dlimit - daddr)
2380		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2381
2382	/*
2383	 * Finally, commit the reserved space in the destination buffer.
2384	 */
2385	dest->dtb_offset = offs + src->dtb_offset;
2386
2387out:
2388	/*
2389	 * If we're lucky enough to be the only active CPU on this speculation
2390	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2391	 */
2392	if (current == DTRACESPEC_ACTIVE ||
2393	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2394		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2395		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2396
2397		ASSERT(rval == DTRACESPEC_COMMITTING);
2398	}
2399
2400	src->dtb_offset = 0;
2401	src->dtb_xamot_drops += src->dtb_drops;
2402	src->dtb_drops = 0;
2403}
2404
2405/*
2406 * This routine discards an active speculation.  If the specified speculation
2407 * is not in a valid state to perform a discard(), this routine will silently
2408 * do nothing.  The state of the specified speculation is transitioned
2409 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2410 */
2411static void
2412dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2413    dtrace_specid_t which)
2414{
2415	dtrace_speculation_t *spec;
2416	dtrace_speculation_state_t current, new = 0;
2417	dtrace_buffer_t *buf;
2418
2419	if (which == 0)
2420		return;
2421
2422	if (which > state->dts_nspeculations) {
2423		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2424		return;
2425	}
2426
2427	spec = &state->dts_speculations[which - 1];
2428	buf = &spec->dtsp_buffer[cpu];
2429
2430	do {
2431		current = spec->dtsp_state;
2432
2433		switch (current) {
2434		case DTRACESPEC_INACTIVE:
2435		case DTRACESPEC_COMMITTINGMANY:
2436		case DTRACESPEC_COMMITTING:
2437		case DTRACESPEC_DISCARDING:
2438			return;
2439
2440		case DTRACESPEC_ACTIVE:
2441		case DTRACESPEC_ACTIVEMANY:
2442			new = DTRACESPEC_DISCARDING;
2443			break;
2444
2445		case DTRACESPEC_ACTIVEONE:
2446			if (buf->dtb_offset != 0) {
2447				new = DTRACESPEC_INACTIVE;
2448			} else {
2449				new = DTRACESPEC_DISCARDING;
2450			}
2451			break;
2452
2453		default:
2454			ASSERT(0);
2455		}
2456	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2457	    current, new) != current);
2458
2459	buf->dtb_offset = 0;
2460	buf->dtb_drops = 0;
2461}
2462
2463/*
2464 * Note:  not called from probe context.  This function is called
2465 * asynchronously from cross call context to clean any speculations that are
2466 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2467 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2468 * speculation.
2469 */
2470static void
2471dtrace_speculation_clean_here(dtrace_state_t *state)
2472{
2473	dtrace_icookie_t cookie;
2474	processorid_t cpu = curcpu;
2475	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2476	dtrace_specid_t i;
2477
2478	cookie = dtrace_interrupt_disable();
2479
2480	if (dest->dtb_tomax == NULL) {
2481		dtrace_interrupt_enable(cookie);
2482		return;
2483	}
2484
2485	for (i = 0; i < state->dts_nspeculations; i++) {
2486		dtrace_speculation_t *spec = &state->dts_speculations[i];
2487		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2488
2489		if (src->dtb_tomax == NULL)
2490			continue;
2491
2492		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2493			src->dtb_offset = 0;
2494			continue;
2495		}
2496
2497		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2498			continue;
2499
2500		if (src->dtb_offset == 0)
2501			continue;
2502
2503		dtrace_speculation_commit(state, cpu, i + 1);
2504	}
2505
2506	dtrace_interrupt_enable(cookie);
2507}
2508
2509/*
2510 * Note:  not called from probe context.  This function is called
2511 * asynchronously (and at a regular interval) to clean any speculations that
2512 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2513 * is work to be done, it cross calls all CPUs to perform that work;
2514 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2515 * INACTIVE state until they have been cleaned by all CPUs.
2516 */
2517static void
2518dtrace_speculation_clean(dtrace_state_t *state)
2519{
2520	int work = 0, rv;
2521	dtrace_specid_t i;
2522
2523	for (i = 0; i < state->dts_nspeculations; i++) {
2524		dtrace_speculation_t *spec = &state->dts_speculations[i];
2525
2526		ASSERT(!spec->dtsp_cleaning);
2527
2528		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2529		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2530			continue;
2531
2532		work++;
2533		spec->dtsp_cleaning = 1;
2534	}
2535
2536	if (!work)
2537		return;
2538
2539	dtrace_xcall(DTRACE_CPUALL,
2540	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2541
2542	/*
2543	 * We now know that all CPUs have committed or discarded their
2544	 * speculation buffers, as appropriate.  We can now set the state
2545	 * to inactive.
2546	 */
2547	for (i = 0; i < state->dts_nspeculations; i++) {
2548		dtrace_speculation_t *spec = &state->dts_speculations[i];
2549		dtrace_speculation_state_t current, new;
2550
2551		if (!spec->dtsp_cleaning)
2552			continue;
2553
2554		current = spec->dtsp_state;
2555		ASSERT(current == DTRACESPEC_DISCARDING ||
2556		    current == DTRACESPEC_COMMITTINGMANY);
2557
2558		new = DTRACESPEC_INACTIVE;
2559
2560		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2561		ASSERT(rv == current);
2562		spec->dtsp_cleaning = 0;
2563	}
2564}
2565
2566/*
2567 * Called as part of a speculate() to get the speculative buffer associated
2568 * with a given speculation.  Returns NULL if the specified speculation is not
2569 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2570 * the active CPU is not the specified CPU -- the speculation will be
2571 * atomically transitioned into the ACTIVEMANY state.
2572 */
2573static dtrace_buffer_t *
2574dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2575    dtrace_specid_t which)
2576{
2577	dtrace_speculation_t *spec;
2578	dtrace_speculation_state_t current, new = 0;
2579	dtrace_buffer_t *buf;
2580
2581	if (which == 0)
2582		return (NULL);
2583
2584	if (which > state->dts_nspeculations) {
2585		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2586		return (NULL);
2587	}
2588
2589	spec = &state->dts_speculations[which - 1];
2590	buf = &spec->dtsp_buffer[cpuid];
2591
2592	do {
2593		current = spec->dtsp_state;
2594
2595		switch (current) {
2596		case DTRACESPEC_INACTIVE:
2597		case DTRACESPEC_COMMITTINGMANY:
2598		case DTRACESPEC_DISCARDING:
2599			return (NULL);
2600
2601		case DTRACESPEC_COMMITTING:
2602			ASSERT(buf->dtb_offset == 0);
2603			return (NULL);
2604
2605		case DTRACESPEC_ACTIVEONE:
2606			/*
2607			 * This speculation is currently active on one CPU.
2608			 * Check the offset in the buffer; if it's non-zero,
2609			 * that CPU must be us (and we leave the state alone).
2610			 * If it's zero, assume that we're starting on a new
2611			 * CPU -- and change the state to indicate that the
2612			 * speculation is active on more than one CPU.
2613			 */
2614			if (buf->dtb_offset != 0)
2615				return (buf);
2616
2617			new = DTRACESPEC_ACTIVEMANY;
2618			break;
2619
2620		case DTRACESPEC_ACTIVEMANY:
2621			return (buf);
2622
2623		case DTRACESPEC_ACTIVE:
2624			new = DTRACESPEC_ACTIVEONE;
2625			break;
2626
2627		default:
2628			ASSERT(0);
2629		}
2630	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2631	    current, new) != current);
2632
2633	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2634	return (buf);
2635}
2636
2637/*
2638 * Return a string.  In the event that the user lacks the privilege to access
2639 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2640 * don't fail access checking.
2641 *
2642 * dtrace_dif_variable() uses this routine as a helper for various
2643 * builtin values such as 'execname' and 'probefunc.'
2644 */
2645uintptr_t
2646dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2647    dtrace_mstate_t *mstate)
2648{
2649	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2650	uintptr_t ret;
2651	size_t strsz;
2652
2653	/*
2654	 * The easy case: this probe is allowed to read all of memory, so
2655	 * we can just return this as a vanilla pointer.
2656	 */
2657	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2658		return (addr);
2659
2660	/*
2661	 * This is the tougher case: we copy the string in question from
2662	 * kernel memory into scratch memory and return it that way: this
2663	 * ensures that we won't trip up when access checking tests the
2664	 * BYREF return value.
2665	 */
2666	strsz = dtrace_strlen((char *)addr, size) + 1;
2667
2668	if (mstate->dtms_scratch_ptr + strsz >
2669	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2670		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2671		return (0);
2672	}
2673
2674	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2675	    strsz);
2676	ret = mstate->dtms_scratch_ptr;
2677	mstate->dtms_scratch_ptr += strsz;
2678	return (ret);
2679}
2680
2681/*
2682 * Return a string from a memoy address which is known to have one or
2683 * more concatenated, individually zero terminated, sub-strings.
2684 * In the event that the user lacks the privilege to access
2685 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2686 * don't fail access checking.
2687 *
2688 * dtrace_dif_variable() uses this routine as a helper for various
2689 * builtin values such as 'execargs'.
2690 */
2691static uintptr_t
2692dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2693    dtrace_mstate_t *mstate)
2694{
2695	char *p;
2696	size_t i;
2697	uintptr_t ret;
2698
2699	if (mstate->dtms_scratch_ptr + strsz >
2700	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2701		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2702		return (0);
2703	}
2704
2705	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2706	    strsz);
2707
2708	/* Replace sub-string termination characters with a space. */
2709	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2710	    p++, i++)
2711		if (*p == '\0')
2712			*p = ' ';
2713
2714	ret = mstate->dtms_scratch_ptr;
2715	mstate->dtms_scratch_ptr += strsz;
2716	return (ret);
2717}
2718
2719/*
2720 * This function implements the DIF emulator's variable lookups.  The emulator
2721 * passes a reserved variable identifier and optional built-in array index.
2722 */
2723static uint64_t
2724dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2725    uint64_t ndx)
2726{
2727	/*
2728	 * If we're accessing one of the uncached arguments, we'll turn this
2729	 * into a reference in the args array.
2730	 */
2731	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2732		ndx = v - DIF_VAR_ARG0;
2733		v = DIF_VAR_ARGS;
2734	}
2735
2736	switch (v) {
2737	case DIF_VAR_ARGS:
2738		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2739		if (ndx >= sizeof (mstate->dtms_arg) /
2740		    sizeof (mstate->dtms_arg[0])) {
2741			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2742			dtrace_provider_t *pv;
2743			uint64_t val;
2744
2745			pv = mstate->dtms_probe->dtpr_provider;
2746			if (pv->dtpv_pops.dtps_getargval != NULL)
2747				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2748				    mstate->dtms_probe->dtpr_id,
2749				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2750			else
2751				val = dtrace_getarg(ndx, aframes);
2752
2753			/*
2754			 * This is regrettably required to keep the compiler
2755			 * from tail-optimizing the call to dtrace_getarg().
2756			 * The condition always evaluates to true, but the
2757			 * compiler has no way of figuring that out a priori.
2758			 * (None of this would be necessary if the compiler
2759			 * could be relied upon to _always_ tail-optimize
2760			 * the call to dtrace_getarg() -- but it can't.)
2761			 */
2762			if (mstate->dtms_probe != NULL)
2763				return (val);
2764
2765			ASSERT(0);
2766		}
2767
2768		return (mstate->dtms_arg[ndx]);
2769
2770#if defined(sun)
2771	case DIF_VAR_UREGS: {
2772		klwp_t *lwp;
2773
2774		if (!dtrace_priv_proc(state))
2775			return (0);
2776
2777		if ((lwp = curthread->t_lwp) == NULL) {
2778			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2779			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2780			return (0);
2781		}
2782
2783		return (dtrace_getreg(lwp->lwp_regs, ndx));
2784		return (0);
2785	}
2786#endif
2787
2788	case DIF_VAR_CURTHREAD:
2789		if (!dtrace_priv_kernel(state))
2790			return (0);
2791		return ((uint64_t)(uintptr_t)curthread);
2792
2793	case DIF_VAR_TIMESTAMP:
2794		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2795			mstate->dtms_timestamp = dtrace_gethrtime();
2796			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2797		}
2798		return (mstate->dtms_timestamp);
2799
2800	case DIF_VAR_VTIMESTAMP:
2801		ASSERT(dtrace_vtime_references != 0);
2802		return (curthread->t_dtrace_vtime);
2803
2804	case DIF_VAR_WALLTIMESTAMP:
2805		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2806			mstate->dtms_walltimestamp = dtrace_gethrestime();
2807			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2808		}
2809		return (mstate->dtms_walltimestamp);
2810
2811#if defined(sun)
2812	case DIF_VAR_IPL:
2813		if (!dtrace_priv_kernel(state))
2814			return (0);
2815		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2816			mstate->dtms_ipl = dtrace_getipl();
2817			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2818		}
2819		return (mstate->dtms_ipl);
2820#endif
2821
2822	case DIF_VAR_EPID:
2823		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2824		return (mstate->dtms_epid);
2825
2826	case DIF_VAR_ID:
2827		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2828		return (mstate->dtms_probe->dtpr_id);
2829
2830	case DIF_VAR_STACKDEPTH:
2831		if (!dtrace_priv_kernel(state))
2832			return (0);
2833		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2834			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2835
2836			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2837			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2838		}
2839		return (mstate->dtms_stackdepth);
2840
2841#if defined(sun)
2842	case DIF_VAR_USTACKDEPTH:
2843		if (!dtrace_priv_proc(state))
2844			return (0);
2845		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2846			/*
2847			 * See comment in DIF_VAR_PID.
2848			 */
2849			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2850			    CPU_ON_INTR(CPU)) {
2851				mstate->dtms_ustackdepth = 0;
2852			} else {
2853				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2854				mstate->dtms_ustackdepth =
2855				    dtrace_getustackdepth();
2856				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2857			}
2858			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2859		}
2860		return (mstate->dtms_ustackdepth);
2861#endif
2862
2863	case DIF_VAR_CALLER:
2864		if (!dtrace_priv_kernel(state))
2865			return (0);
2866		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2867			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2868
2869			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2870				/*
2871				 * If this is an unanchored probe, we are
2872				 * required to go through the slow path:
2873				 * dtrace_caller() only guarantees correct
2874				 * results for anchored probes.
2875				 */
2876				pc_t caller[2] = {0, 0};
2877
2878				dtrace_getpcstack(caller, 2, aframes,
2879				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2880				mstate->dtms_caller = caller[1];
2881			} else if ((mstate->dtms_caller =
2882			    dtrace_caller(aframes)) == -1) {
2883				/*
2884				 * We have failed to do this the quick way;
2885				 * we must resort to the slower approach of
2886				 * calling dtrace_getpcstack().
2887				 */
2888				pc_t caller = 0;
2889
2890				dtrace_getpcstack(&caller, 1, aframes, NULL);
2891				mstate->dtms_caller = caller;
2892			}
2893
2894			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2895		}
2896		return (mstate->dtms_caller);
2897
2898#if defined(sun)
2899	case DIF_VAR_UCALLER:
2900		if (!dtrace_priv_proc(state))
2901			return (0);
2902
2903		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2904			uint64_t ustack[3];
2905
2906			/*
2907			 * dtrace_getupcstack() fills in the first uint64_t
2908			 * with the current PID.  The second uint64_t will
2909			 * be the program counter at user-level.  The third
2910			 * uint64_t will contain the caller, which is what
2911			 * we're after.
2912			 */
2913			ustack[2] = 0;
2914			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2915			dtrace_getupcstack(ustack, 3);
2916			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2917			mstate->dtms_ucaller = ustack[2];
2918			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2919		}
2920
2921		return (mstate->dtms_ucaller);
2922#endif
2923
2924	case DIF_VAR_PROBEPROV:
2925		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2926		return (dtrace_dif_varstr(
2927		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2928		    state, mstate));
2929
2930	case DIF_VAR_PROBEMOD:
2931		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2932		return (dtrace_dif_varstr(
2933		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2934		    state, mstate));
2935
2936	case DIF_VAR_PROBEFUNC:
2937		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2938		return (dtrace_dif_varstr(
2939		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2940		    state, mstate));
2941
2942	case DIF_VAR_PROBENAME:
2943		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2944		return (dtrace_dif_varstr(
2945		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2946		    state, mstate));
2947
2948	case DIF_VAR_PID:
2949		if (!dtrace_priv_proc(state))
2950			return (0);
2951
2952#if defined(sun)
2953		/*
2954		 * Note that we are assuming that an unanchored probe is
2955		 * always due to a high-level interrupt.  (And we're assuming
2956		 * that there is only a single high level interrupt.)
2957		 */
2958		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2959			return (pid0.pid_id);
2960
2961		/*
2962		 * It is always safe to dereference one's own t_procp pointer:
2963		 * it always points to a valid, allocated proc structure.
2964		 * Further, it is always safe to dereference the p_pidp member
2965		 * of one's own proc structure.  (These are truisms becuase
2966		 * threads and processes don't clean up their own state --
2967		 * they leave that task to whomever reaps them.)
2968		 */
2969		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2970#else
2971		return ((uint64_t)curproc->p_pid);
2972#endif
2973
2974	case DIF_VAR_PPID:
2975		if (!dtrace_priv_proc(state))
2976			return (0);
2977
2978#if defined(sun)
2979		/*
2980		 * See comment in DIF_VAR_PID.
2981		 */
2982		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2983			return (pid0.pid_id);
2984
2985		/*
2986		 * It is always safe to dereference one's own t_procp pointer:
2987		 * it always points to a valid, allocated proc structure.
2988		 * (This is true because threads don't clean up their own
2989		 * state -- they leave that task to whomever reaps them.)
2990		 */
2991		return ((uint64_t)curthread->t_procp->p_ppid);
2992#else
2993		return ((uint64_t)curproc->p_pptr->p_pid);
2994#endif
2995
2996	case DIF_VAR_TID:
2997#if defined(sun)
2998		/*
2999		 * See comment in DIF_VAR_PID.
3000		 */
3001		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3002			return (0);
3003#endif
3004
3005		return ((uint64_t)curthread->t_tid);
3006
3007	case DIF_VAR_EXECARGS: {
3008		struct pargs *p_args = curthread->td_proc->p_args;
3009
3010		return (dtrace_dif_varstrz(
3011		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3012	}
3013
3014	case DIF_VAR_EXECNAME:
3015#if defined(sun)
3016		if (!dtrace_priv_proc(state))
3017			return (0);
3018
3019		/*
3020		 * See comment in DIF_VAR_PID.
3021		 */
3022		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3023			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3024
3025		/*
3026		 * It is always safe to dereference one's own t_procp pointer:
3027		 * it always points to a valid, allocated proc structure.
3028		 * (This is true because threads don't clean up their own
3029		 * state -- they leave that task to whomever reaps them.)
3030		 */
3031		return (dtrace_dif_varstr(
3032		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3033		    state, mstate));
3034#else
3035		return (dtrace_dif_varstr(
3036		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3037#endif
3038
3039	case DIF_VAR_ZONENAME:
3040#if defined(sun)
3041		if (!dtrace_priv_proc(state))
3042			return (0);
3043
3044		/*
3045		 * See comment in DIF_VAR_PID.
3046		 */
3047		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3048			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3049
3050		/*
3051		 * It is always safe to dereference one's own t_procp pointer:
3052		 * it always points to a valid, allocated proc structure.
3053		 * (This is true because threads don't clean up their own
3054		 * state -- they leave that task to whomever reaps them.)
3055		 */
3056		return (dtrace_dif_varstr(
3057		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3058		    state, mstate));
3059#else
3060		return (0);
3061#endif
3062
3063	case DIF_VAR_UID:
3064		if (!dtrace_priv_proc(state))
3065			return (0);
3066
3067#if defined(sun)
3068		/*
3069		 * See comment in DIF_VAR_PID.
3070		 */
3071		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3072			return ((uint64_t)p0.p_cred->cr_uid);
3073#endif
3074
3075		/*
3076		 * It is always safe to dereference one's own t_procp pointer:
3077		 * it always points to a valid, allocated proc structure.
3078		 * (This is true because threads don't clean up their own
3079		 * state -- they leave that task to whomever reaps them.)
3080		 *
3081		 * Additionally, it is safe to dereference one's own process
3082		 * credential, since this is never NULL after process birth.
3083		 */
3084		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3085
3086	case DIF_VAR_GID:
3087		if (!dtrace_priv_proc(state))
3088			return (0);
3089
3090#if defined(sun)
3091		/*
3092		 * See comment in DIF_VAR_PID.
3093		 */
3094		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3095			return ((uint64_t)p0.p_cred->cr_gid);
3096#endif
3097
3098		/*
3099		 * It is always safe to dereference one's own t_procp pointer:
3100		 * it always points to a valid, allocated proc structure.
3101		 * (This is true because threads don't clean up their own
3102		 * state -- they leave that task to whomever reaps them.)
3103		 *
3104		 * Additionally, it is safe to dereference one's own process
3105		 * credential, since this is never NULL after process birth.
3106		 */
3107		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3108
3109	case DIF_VAR_ERRNO: {
3110#if defined(sun)
3111		klwp_t *lwp;
3112		if (!dtrace_priv_proc(state))
3113			return (0);
3114
3115		/*
3116		 * See comment in DIF_VAR_PID.
3117		 */
3118		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3119			return (0);
3120
3121		/*
3122		 * It is always safe to dereference one's own t_lwp pointer in
3123		 * the event that this pointer is non-NULL.  (This is true
3124		 * because threads and lwps don't clean up their own state --
3125		 * they leave that task to whomever reaps them.)
3126		 */
3127		if ((lwp = curthread->t_lwp) == NULL)
3128			return (0);
3129
3130		return ((uint64_t)lwp->lwp_errno);
3131#else
3132		return (curthread->td_errno);
3133#endif
3134	}
3135	default:
3136		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3137		return (0);
3138	}
3139}
3140
3141/*
3142 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3143 * Notice that we don't bother validating the proper number of arguments or
3144 * their types in the tuple stack.  This isn't needed because all argument
3145 * interpretation is safe because of our load safety -- the worst that can
3146 * happen is that a bogus program can obtain bogus results.
3147 */
3148static void
3149dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3150    dtrace_key_t *tupregs, int nargs,
3151    dtrace_mstate_t *mstate, dtrace_state_t *state)
3152{
3153	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3154	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3155	dtrace_vstate_t *vstate = &state->dts_vstate;
3156
3157#if defined(sun)
3158	union {
3159		mutex_impl_t mi;
3160		uint64_t mx;
3161	} m;
3162
3163	union {
3164		krwlock_t ri;
3165		uintptr_t rw;
3166	} r;
3167#else
3168	union {
3169		struct mtx *mi;
3170		uintptr_t mx;
3171	} m;
3172	union {
3173		struct sx *si;
3174		uintptr_t sx;
3175	} s;
3176#endif
3177
3178	switch (subr) {
3179	case DIF_SUBR_RAND:
3180		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3181		break;
3182
3183#if defined(sun)
3184	case DIF_SUBR_MUTEX_OWNED:
3185		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3186		    mstate, vstate)) {
3187			regs[rd] = 0;
3188			break;
3189		}
3190
3191		m.mx = dtrace_load64(tupregs[0].dttk_value);
3192		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3193			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3194		else
3195			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3196		break;
3197
3198	case DIF_SUBR_MUTEX_OWNER:
3199		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3200		    mstate, vstate)) {
3201			regs[rd] = 0;
3202			break;
3203		}
3204
3205		m.mx = dtrace_load64(tupregs[0].dttk_value);
3206		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3207		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3208			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3209		else
3210			regs[rd] = 0;
3211		break;
3212
3213	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3214		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3215		    mstate, vstate)) {
3216			regs[rd] = 0;
3217			break;
3218		}
3219
3220		m.mx = dtrace_load64(tupregs[0].dttk_value);
3221		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3222		break;
3223
3224	case DIF_SUBR_MUTEX_TYPE_SPIN:
3225		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3226		    mstate, vstate)) {
3227			regs[rd] = 0;
3228			break;
3229		}
3230
3231		m.mx = dtrace_load64(tupregs[0].dttk_value);
3232		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3233		break;
3234
3235	case DIF_SUBR_RW_READ_HELD: {
3236		uintptr_t tmp;
3237
3238		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3239		    mstate, vstate)) {
3240			regs[rd] = 0;
3241			break;
3242		}
3243
3244		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3245		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3246		break;
3247	}
3248
3249	case DIF_SUBR_RW_WRITE_HELD:
3250		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3251		    mstate, vstate)) {
3252			regs[rd] = 0;
3253			break;
3254		}
3255
3256		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3257		regs[rd] = _RW_WRITE_HELD(&r.ri);
3258		break;
3259
3260	case DIF_SUBR_RW_ISWRITER:
3261		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3262		    mstate, vstate)) {
3263			regs[rd] = 0;
3264			break;
3265		}
3266
3267		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3268		regs[rd] = _RW_ISWRITER(&r.ri);
3269		break;
3270
3271#else
3272	/*
3273         * XXX - The following code works because mutex, rwlocks, & sxlocks
3274         *       all have similar data structures in FreeBSD.  This may not be
3275         *	 good if someone changes one of the lock data structures.
3276	 * 	 Ideally, it would be nice if all these shared a common lock
3277	 * 	 object.
3278         */
3279	case DIF_SUBR_MUTEX_OWNED:
3280		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3281		m.mx = tupregs[0].dttk_value;
3282
3283#ifdef DOODAD
3284		if (LO_CLASSINDEX(&(m.mi->lock_object)) < 2) {
3285			regs[rd] = !(m.mi->mtx_lock & MTX_UNOWNED);
3286		} else {
3287			regs[rd] = !(m.mi->mtx_lock & SX_UNLOCKED);
3288		}
3289#endif
3290		break;
3291
3292	case DIF_SUBR_MUTEX_OWNER:
3293		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3294		m.mx = tupregs[0].dttk_value;
3295
3296		if (LO_CLASSINDEX(&(m.mi->lock_object)) < 2) {
3297			regs[rd] = m.mi->mtx_lock & ~MTX_FLAGMASK;
3298		} else {
3299			if (!(m.mi->mtx_lock & SX_LOCK_SHARED))
3300				regs[rd] = SX_OWNER(m.mi->mtx_lock);
3301			else
3302				regs[rd] = 0;
3303		}
3304		break;
3305
3306	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3307		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3308		m.mx = tupregs[0].dttk_value;
3309
3310		regs[rd] = (LO_CLASSINDEX(&(m.mi->lock_object)) != 0);
3311		break;
3312
3313	case DIF_SUBR_MUTEX_TYPE_SPIN:
3314		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3315		m.mx = tupregs[0].dttk_value;
3316
3317		regs[rd] = (LO_CLASSINDEX(&(m.mi->lock_object)) == 0);
3318		break;
3319
3320	case DIF_SUBR_RW_READ_HELD:
3321	case DIF_SUBR_SX_SHARED_HELD:
3322		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3323		s.sx = tupregs[0].dttk_value;
3324		regs[rd] = ((s.si->sx_lock & SX_LOCK_SHARED)  &&
3325			    (SX_OWNER(s.si->sx_lock) >> SX_SHARERS_SHIFT) != 0);
3326		break;
3327
3328	case DIF_SUBR_RW_WRITE_HELD:
3329	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3330		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3331		s.sx = tupregs[0].dttk_value;
3332		regs[rd] = (SX_OWNER(s.si->sx_lock) == (uintptr_t) curthread);
3333		break;
3334
3335	case DIF_SUBR_RW_ISWRITER:
3336	case DIF_SUBR_SX_ISEXCLUSIVE:
3337		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3338		s.sx = tupregs[0].dttk_value;
3339		regs[rd] = ((s.si->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS) ||
3340		            !(s.si->sx_lock & SX_LOCK_SHARED));
3341		break;
3342#endif /* ! defined(sun) */
3343
3344	case DIF_SUBR_BCOPY: {
3345		/*
3346		 * We need to be sure that the destination is in the scratch
3347		 * region -- no other region is allowed.
3348		 */
3349		uintptr_t src = tupregs[0].dttk_value;
3350		uintptr_t dest = tupregs[1].dttk_value;
3351		size_t size = tupregs[2].dttk_value;
3352
3353		if (!dtrace_inscratch(dest, size, mstate)) {
3354			*flags |= CPU_DTRACE_BADADDR;
3355			*illval = regs[rd];
3356			break;
3357		}
3358
3359		if (!dtrace_canload(src, size, mstate, vstate)) {
3360			regs[rd] = 0;
3361			break;
3362		}
3363
3364		dtrace_bcopy((void *)src, (void *)dest, size);
3365		break;
3366	}
3367
3368	case DIF_SUBR_ALLOCA:
3369	case DIF_SUBR_COPYIN: {
3370		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3371		uint64_t size =
3372		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3373		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3374
3375		/*
3376		 * This action doesn't require any credential checks since
3377		 * probes will not activate in user contexts to which the
3378		 * enabling user does not have permissions.
3379		 */
3380
3381		/*
3382		 * Rounding up the user allocation size could have overflowed
3383		 * a large, bogus allocation (like -1ULL) to 0.
3384		 */
3385		if (scratch_size < size ||
3386		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3387			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3388			regs[rd] = 0;
3389			break;
3390		}
3391
3392		if (subr == DIF_SUBR_COPYIN) {
3393			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3394			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3395			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3396		}
3397
3398		mstate->dtms_scratch_ptr += scratch_size;
3399		regs[rd] = dest;
3400		break;
3401	}
3402
3403	case DIF_SUBR_COPYINTO: {
3404		uint64_t size = tupregs[1].dttk_value;
3405		uintptr_t dest = tupregs[2].dttk_value;
3406
3407		/*
3408		 * This action doesn't require any credential checks since
3409		 * probes will not activate in user contexts to which the
3410		 * enabling user does not have permissions.
3411		 */
3412		if (!dtrace_inscratch(dest, size, mstate)) {
3413			*flags |= CPU_DTRACE_BADADDR;
3414			*illval = regs[rd];
3415			break;
3416		}
3417
3418		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3419		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3420		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3421		break;
3422	}
3423
3424	case DIF_SUBR_COPYINSTR: {
3425		uintptr_t dest = mstate->dtms_scratch_ptr;
3426		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3427
3428		if (nargs > 1 && tupregs[1].dttk_value < size)
3429			size = tupregs[1].dttk_value + 1;
3430
3431		/*
3432		 * This action doesn't require any credential checks since
3433		 * probes will not activate in user contexts to which the
3434		 * enabling user does not have permissions.
3435		 */
3436		if (!DTRACE_INSCRATCH(mstate, size)) {
3437			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3438			regs[rd] = 0;
3439			break;
3440		}
3441
3442		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3443		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3444		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3445
3446		((char *)dest)[size - 1] = '\0';
3447		mstate->dtms_scratch_ptr += size;
3448		regs[rd] = dest;
3449		break;
3450	}
3451
3452#if defined(sun)
3453	case DIF_SUBR_MSGSIZE:
3454	case DIF_SUBR_MSGDSIZE: {
3455		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3456		uintptr_t wptr, rptr;
3457		size_t count = 0;
3458		int cont = 0;
3459
3460		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3461
3462			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3463			    vstate)) {
3464				regs[rd] = 0;
3465				break;
3466			}
3467
3468			wptr = dtrace_loadptr(baddr +
3469			    offsetof(mblk_t, b_wptr));
3470
3471			rptr = dtrace_loadptr(baddr +
3472			    offsetof(mblk_t, b_rptr));
3473
3474			if (wptr < rptr) {
3475				*flags |= CPU_DTRACE_BADADDR;
3476				*illval = tupregs[0].dttk_value;
3477				break;
3478			}
3479
3480			daddr = dtrace_loadptr(baddr +
3481			    offsetof(mblk_t, b_datap));
3482
3483			baddr = dtrace_loadptr(baddr +
3484			    offsetof(mblk_t, b_cont));
3485
3486			/*
3487			 * We want to prevent against denial-of-service here,
3488			 * so we're only going to search the list for
3489			 * dtrace_msgdsize_max mblks.
3490			 */
3491			if (cont++ > dtrace_msgdsize_max) {
3492				*flags |= CPU_DTRACE_ILLOP;
3493				break;
3494			}
3495
3496			if (subr == DIF_SUBR_MSGDSIZE) {
3497				if (dtrace_load8(daddr +
3498				    offsetof(dblk_t, db_type)) != M_DATA)
3499					continue;
3500			}
3501
3502			count += wptr - rptr;
3503		}
3504
3505		if (!(*flags & CPU_DTRACE_FAULT))
3506			regs[rd] = count;
3507
3508		break;
3509	}
3510#endif
3511
3512	case DIF_SUBR_PROGENYOF: {
3513		pid_t pid = tupregs[0].dttk_value;
3514		proc_t *p;
3515		int rval = 0;
3516
3517		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3518
3519		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3520#if defined(sun)
3521			if (p->p_pidp->pid_id == pid) {
3522#else
3523			if (p->p_pid == pid) {
3524#endif
3525				rval = 1;
3526				break;
3527			}
3528		}
3529
3530		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3531
3532		regs[rd] = rval;
3533		break;
3534	}
3535
3536	case DIF_SUBR_SPECULATION:
3537		regs[rd] = dtrace_speculation(state);
3538		break;
3539
3540	case DIF_SUBR_COPYOUT: {
3541		uintptr_t kaddr = tupregs[0].dttk_value;
3542		uintptr_t uaddr = tupregs[1].dttk_value;
3543		uint64_t size = tupregs[2].dttk_value;
3544
3545		if (!dtrace_destructive_disallow &&
3546		    dtrace_priv_proc_control(state) &&
3547		    !dtrace_istoxic(kaddr, size)) {
3548			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3549			dtrace_copyout(kaddr, uaddr, size, flags);
3550			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3551		}
3552		break;
3553	}
3554
3555	case DIF_SUBR_COPYOUTSTR: {
3556		uintptr_t kaddr = tupregs[0].dttk_value;
3557		uintptr_t uaddr = tupregs[1].dttk_value;
3558		uint64_t size = tupregs[2].dttk_value;
3559
3560		if (!dtrace_destructive_disallow &&
3561		    dtrace_priv_proc_control(state) &&
3562		    !dtrace_istoxic(kaddr, size)) {
3563			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3564			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3565			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3566		}
3567		break;
3568	}
3569
3570	case DIF_SUBR_STRLEN: {
3571		size_t sz;
3572		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3573		sz = dtrace_strlen((char *)addr,
3574		    state->dts_options[DTRACEOPT_STRSIZE]);
3575
3576		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3577			regs[rd] = 0;
3578			break;
3579		}
3580
3581		regs[rd] = sz;
3582
3583		break;
3584	}
3585
3586	case DIF_SUBR_STRCHR:
3587	case DIF_SUBR_STRRCHR: {
3588		/*
3589		 * We're going to iterate over the string looking for the
3590		 * specified character.  We will iterate until we have reached
3591		 * the string length or we have found the character.  If this
3592		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3593		 * of the specified character instead of the first.
3594		 */
3595		uintptr_t saddr = tupregs[0].dttk_value;
3596		uintptr_t addr = tupregs[0].dttk_value;
3597		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3598		char c, target = (char)tupregs[1].dttk_value;
3599
3600		for (regs[rd] = 0; addr < limit; addr++) {
3601			if ((c = dtrace_load8(addr)) == target) {
3602				regs[rd] = addr;
3603
3604				if (subr == DIF_SUBR_STRCHR)
3605					break;
3606			}
3607
3608			if (c == '\0')
3609				break;
3610		}
3611
3612		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3613			regs[rd] = 0;
3614			break;
3615		}
3616
3617		break;
3618	}
3619
3620	case DIF_SUBR_STRSTR:
3621	case DIF_SUBR_INDEX:
3622	case DIF_SUBR_RINDEX: {
3623		/*
3624		 * We're going to iterate over the string looking for the
3625		 * specified string.  We will iterate until we have reached
3626		 * the string length or we have found the string.  (Yes, this
3627		 * is done in the most naive way possible -- but considering
3628		 * that the string we're searching for is likely to be
3629		 * relatively short, the complexity of Rabin-Karp or similar
3630		 * hardly seems merited.)
3631		 */
3632		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3633		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3634		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3635		size_t len = dtrace_strlen(addr, size);
3636		size_t sublen = dtrace_strlen(substr, size);
3637		char *limit = addr + len, *orig = addr;
3638		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3639		int inc = 1;
3640
3641		regs[rd] = notfound;
3642
3643		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3644			regs[rd] = 0;
3645			break;
3646		}
3647
3648		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3649		    vstate)) {
3650			regs[rd] = 0;
3651			break;
3652		}
3653
3654		/*
3655		 * strstr() and index()/rindex() have similar semantics if
3656		 * both strings are the empty string: strstr() returns a
3657		 * pointer to the (empty) string, and index() and rindex()
3658		 * both return index 0 (regardless of any position argument).
3659		 */
3660		if (sublen == 0 && len == 0) {
3661			if (subr == DIF_SUBR_STRSTR)
3662				regs[rd] = (uintptr_t)addr;
3663			else
3664				regs[rd] = 0;
3665			break;
3666		}
3667
3668		if (subr != DIF_SUBR_STRSTR) {
3669			if (subr == DIF_SUBR_RINDEX) {
3670				limit = orig - 1;
3671				addr += len;
3672				inc = -1;
3673			}
3674
3675			/*
3676			 * Both index() and rindex() take an optional position
3677			 * argument that denotes the starting position.
3678			 */
3679			if (nargs == 3) {
3680				int64_t pos = (int64_t)tupregs[2].dttk_value;
3681
3682				/*
3683				 * If the position argument to index() is
3684				 * negative, Perl implicitly clamps it at
3685				 * zero.  This semantic is a little surprising
3686				 * given the special meaning of negative
3687				 * positions to similar Perl functions like
3688				 * substr(), but it appears to reflect a
3689				 * notion that index() can start from a
3690				 * negative index and increment its way up to
3691				 * the string.  Given this notion, Perl's
3692				 * rindex() is at least self-consistent in
3693				 * that it implicitly clamps positions greater
3694				 * than the string length to be the string
3695				 * length.  Where Perl completely loses
3696				 * coherence, however, is when the specified
3697				 * substring is the empty string ("").  In
3698				 * this case, even if the position is
3699				 * negative, rindex() returns 0 -- and even if
3700				 * the position is greater than the length,
3701				 * index() returns the string length.  These
3702				 * semantics violate the notion that index()
3703				 * should never return a value less than the
3704				 * specified position and that rindex() should
3705				 * never return a value greater than the
3706				 * specified position.  (One assumes that
3707				 * these semantics are artifacts of Perl's
3708				 * implementation and not the results of
3709				 * deliberate design -- it beggars belief that
3710				 * even Larry Wall could desire such oddness.)
3711				 * While in the abstract one would wish for
3712				 * consistent position semantics across
3713				 * substr(), index() and rindex() -- or at the
3714				 * very least self-consistent position
3715				 * semantics for index() and rindex() -- we
3716				 * instead opt to keep with the extant Perl
3717				 * semantics, in all their broken glory.  (Do
3718				 * we have more desire to maintain Perl's
3719				 * semantics than Perl does?  Probably.)
3720				 */
3721				if (subr == DIF_SUBR_RINDEX) {
3722					if (pos < 0) {
3723						if (sublen == 0)
3724							regs[rd] = 0;
3725						break;
3726					}
3727
3728					if (pos > len)
3729						pos = len;
3730				} else {
3731					if (pos < 0)
3732						pos = 0;
3733
3734					if (pos >= len) {
3735						if (sublen == 0)
3736							regs[rd] = len;
3737						break;
3738					}
3739				}
3740
3741				addr = orig + pos;
3742			}
3743		}
3744
3745		for (regs[rd] = notfound; addr != limit; addr += inc) {
3746			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3747				if (subr != DIF_SUBR_STRSTR) {
3748					/*
3749					 * As D index() and rindex() are
3750					 * modeled on Perl (and not on awk),
3751					 * we return a zero-based (and not a
3752					 * one-based) index.  (For you Perl
3753					 * weenies: no, we're not going to add
3754					 * $[ -- and shouldn't you be at a con
3755					 * or something?)
3756					 */
3757					regs[rd] = (uintptr_t)(addr - orig);
3758					break;
3759				}
3760
3761				ASSERT(subr == DIF_SUBR_STRSTR);
3762				regs[rd] = (uintptr_t)addr;
3763				break;
3764			}
3765		}
3766
3767		break;
3768	}
3769
3770	case DIF_SUBR_STRTOK: {
3771		uintptr_t addr = tupregs[0].dttk_value;
3772		uintptr_t tokaddr = tupregs[1].dttk_value;
3773		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3774		uintptr_t limit, toklimit = tokaddr + size;
3775		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3776		char *dest = (char *)mstate->dtms_scratch_ptr;
3777		int i;
3778
3779		/*
3780		 * Check both the token buffer and (later) the input buffer,
3781		 * since both could be non-scratch addresses.
3782		 */
3783		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3784			regs[rd] = 0;
3785			break;
3786		}
3787
3788		if (!DTRACE_INSCRATCH(mstate, size)) {
3789			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3790			regs[rd] = 0;
3791			break;
3792		}
3793
3794		if (addr == 0) {
3795			/*
3796			 * If the address specified is NULL, we use our saved
3797			 * strtok pointer from the mstate.  Note that this
3798			 * means that the saved strtok pointer is _only_
3799			 * valid within multiple enablings of the same probe --
3800			 * it behaves like an implicit clause-local variable.
3801			 */
3802			addr = mstate->dtms_strtok;
3803		} else {
3804			/*
3805			 * If the user-specified address is non-NULL we must
3806			 * access check it.  This is the only time we have
3807			 * a chance to do so, since this address may reside
3808			 * in the string table of this clause-- future calls
3809			 * (when we fetch addr from mstate->dtms_strtok)
3810			 * would fail this access check.
3811			 */
3812			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3813				regs[rd] = 0;
3814				break;
3815			}
3816		}
3817
3818		/*
3819		 * First, zero the token map, and then process the token
3820		 * string -- setting a bit in the map for every character
3821		 * found in the token string.
3822		 */
3823		for (i = 0; i < sizeof (tokmap); i++)
3824			tokmap[i] = 0;
3825
3826		for (; tokaddr < toklimit; tokaddr++) {
3827			if ((c = dtrace_load8(tokaddr)) == '\0')
3828				break;
3829
3830			ASSERT((c >> 3) < sizeof (tokmap));
3831			tokmap[c >> 3] |= (1 << (c & 0x7));
3832		}
3833
3834		for (limit = addr + size; addr < limit; addr++) {
3835			/*
3836			 * We're looking for a character that is _not_ contained
3837			 * in the token string.
3838			 */
3839			if ((c = dtrace_load8(addr)) == '\0')
3840				break;
3841
3842			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3843				break;
3844		}
3845
3846		if (c == '\0') {
3847			/*
3848			 * We reached the end of the string without finding
3849			 * any character that was not in the token string.
3850			 * We return NULL in this case, and we set the saved
3851			 * address to NULL as well.
3852			 */
3853			regs[rd] = 0;
3854			mstate->dtms_strtok = 0;
3855			break;
3856		}
3857
3858		/*
3859		 * From here on, we're copying into the destination string.
3860		 */
3861		for (i = 0; addr < limit && i < size - 1; addr++) {
3862			if ((c = dtrace_load8(addr)) == '\0')
3863				break;
3864
3865			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3866				break;
3867
3868			ASSERT(i < size);
3869			dest[i++] = c;
3870		}
3871
3872		ASSERT(i < size);
3873		dest[i] = '\0';
3874		regs[rd] = (uintptr_t)dest;
3875		mstate->dtms_scratch_ptr += size;
3876		mstate->dtms_strtok = addr;
3877		break;
3878	}
3879
3880	case DIF_SUBR_SUBSTR: {
3881		uintptr_t s = tupregs[0].dttk_value;
3882		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3883		char *d = (char *)mstate->dtms_scratch_ptr;
3884		int64_t index = (int64_t)tupregs[1].dttk_value;
3885		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3886		size_t len = dtrace_strlen((char *)s, size);
3887		int64_t i = 0;
3888
3889		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3890			regs[rd] = 0;
3891			break;
3892		}
3893
3894		if (!DTRACE_INSCRATCH(mstate, size)) {
3895			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3896			regs[rd] = 0;
3897			break;
3898		}
3899
3900		if (nargs <= 2)
3901			remaining = (int64_t)size;
3902
3903		if (index < 0) {
3904			index += len;
3905
3906			if (index < 0 && index + remaining > 0) {
3907				remaining += index;
3908				index = 0;
3909			}
3910		}
3911
3912		if (index >= len || index < 0) {
3913			remaining = 0;
3914		} else if (remaining < 0) {
3915			remaining += len - index;
3916		} else if (index + remaining > size) {
3917			remaining = size - index;
3918		}
3919
3920		for (i = 0; i < remaining; i++) {
3921			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3922				break;
3923		}
3924
3925		d[i] = '\0';
3926
3927		mstate->dtms_scratch_ptr += size;
3928		regs[rd] = (uintptr_t)d;
3929		break;
3930	}
3931
3932#if defined(sun)
3933	case DIF_SUBR_GETMAJOR:
3934#ifdef _LP64
3935		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3936#else
3937		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3938#endif
3939		break;
3940
3941	case DIF_SUBR_GETMINOR:
3942#ifdef _LP64
3943		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3944#else
3945		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3946#endif
3947		break;
3948
3949	case DIF_SUBR_DDI_PATHNAME: {
3950		/*
3951		 * This one is a galactic mess.  We are going to roughly
3952		 * emulate ddi_pathname(), but it's made more complicated
3953		 * by the fact that we (a) want to include the minor name and
3954		 * (b) must proceed iteratively instead of recursively.
3955		 */
3956		uintptr_t dest = mstate->dtms_scratch_ptr;
3957		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3958		char *start = (char *)dest, *end = start + size - 1;
3959		uintptr_t daddr = tupregs[0].dttk_value;
3960		int64_t minor = (int64_t)tupregs[1].dttk_value;
3961		char *s;
3962		int i, len, depth = 0;
3963
3964		/*
3965		 * Due to all the pointer jumping we do and context we must
3966		 * rely upon, we just mandate that the user must have kernel
3967		 * read privileges to use this routine.
3968		 */
3969		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3970			*flags |= CPU_DTRACE_KPRIV;
3971			*illval = daddr;
3972			regs[rd] = 0;
3973		}
3974
3975		if (!DTRACE_INSCRATCH(mstate, size)) {
3976			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3977			regs[rd] = 0;
3978			break;
3979		}
3980
3981		*end = '\0';
3982
3983		/*
3984		 * We want to have a name for the minor.  In order to do this,
3985		 * we need to walk the minor list from the devinfo.  We want
3986		 * to be sure that we don't infinitely walk a circular list,
3987		 * so we check for circularity by sending a scout pointer
3988		 * ahead two elements for every element that we iterate over;
3989		 * if the list is circular, these will ultimately point to the
3990		 * same element.  You may recognize this little trick as the
3991		 * answer to a stupid interview question -- one that always
3992		 * seems to be asked by those who had to have it laboriously
3993		 * explained to them, and who can't even concisely describe
3994		 * the conditions under which one would be forced to resort to
3995		 * this technique.  Needless to say, those conditions are
3996		 * found here -- and probably only here.  Is this the only use
3997		 * of this infamous trick in shipping, production code?  If it
3998		 * isn't, it probably should be...
3999		 */
4000		if (minor != -1) {
4001			uintptr_t maddr = dtrace_loadptr(daddr +
4002			    offsetof(struct dev_info, devi_minor));
4003
4004			uintptr_t next = offsetof(struct ddi_minor_data, next);
4005			uintptr_t name = offsetof(struct ddi_minor_data,
4006			    d_minor) + offsetof(struct ddi_minor, name);
4007			uintptr_t dev = offsetof(struct ddi_minor_data,
4008			    d_minor) + offsetof(struct ddi_minor, dev);
4009			uintptr_t scout;
4010
4011			if (maddr != NULL)
4012				scout = dtrace_loadptr(maddr + next);
4013
4014			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4015				uint64_t m;
4016#ifdef _LP64
4017				m = dtrace_load64(maddr + dev) & MAXMIN64;
4018#else
4019				m = dtrace_load32(maddr + dev) & MAXMIN;
4020#endif
4021				if (m != minor) {
4022					maddr = dtrace_loadptr(maddr + next);
4023
4024					if (scout == NULL)
4025						continue;
4026
4027					scout = dtrace_loadptr(scout + next);
4028
4029					if (scout == NULL)
4030						continue;
4031
4032					scout = dtrace_loadptr(scout + next);
4033
4034					if (scout == NULL)
4035						continue;
4036
4037					if (scout == maddr) {
4038						*flags |= CPU_DTRACE_ILLOP;
4039						break;
4040					}
4041
4042					continue;
4043				}
4044
4045				/*
4046				 * We have the minor data.  Now we need to
4047				 * copy the minor's name into the end of the
4048				 * pathname.
4049				 */
4050				s = (char *)dtrace_loadptr(maddr + name);
4051				len = dtrace_strlen(s, size);
4052
4053				if (*flags & CPU_DTRACE_FAULT)
4054					break;
4055
4056				if (len != 0) {
4057					if ((end -= (len + 1)) < start)
4058						break;
4059
4060					*end = ':';
4061				}
4062
4063				for (i = 1; i <= len; i++)
4064					end[i] = dtrace_load8((uintptr_t)s++);
4065				break;
4066			}
4067		}
4068
4069		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4070			ddi_node_state_t devi_state;
4071
4072			devi_state = dtrace_load32(daddr +
4073			    offsetof(struct dev_info, devi_node_state));
4074
4075			if (*flags & CPU_DTRACE_FAULT)
4076				break;
4077
4078			if (devi_state >= DS_INITIALIZED) {
4079				s = (char *)dtrace_loadptr(daddr +
4080				    offsetof(struct dev_info, devi_addr));
4081				len = dtrace_strlen(s, size);
4082
4083				if (*flags & CPU_DTRACE_FAULT)
4084					break;
4085
4086				if (len != 0) {
4087					if ((end -= (len + 1)) < start)
4088						break;
4089
4090					*end = '@';
4091				}
4092
4093				for (i = 1; i <= len; i++)
4094					end[i] = dtrace_load8((uintptr_t)s++);
4095			}
4096
4097			/*
4098			 * Now for the node name...
4099			 */
4100			s = (char *)dtrace_loadptr(daddr +
4101			    offsetof(struct dev_info, devi_node_name));
4102
4103			daddr = dtrace_loadptr(daddr +
4104			    offsetof(struct dev_info, devi_parent));
4105
4106			/*
4107			 * If our parent is NULL (that is, if we're the root
4108			 * node), we're going to use the special path
4109			 * "devices".
4110			 */
4111			if (daddr == 0)
4112				s = "devices";
4113
4114			len = dtrace_strlen(s, size);
4115			if (*flags & CPU_DTRACE_FAULT)
4116				break;
4117
4118			if ((end -= (len + 1)) < start)
4119				break;
4120
4121			for (i = 1; i <= len; i++)
4122				end[i] = dtrace_load8((uintptr_t)s++);
4123			*end = '/';
4124
4125			if (depth++ > dtrace_devdepth_max) {
4126				*flags |= CPU_DTRACE_ILLOP;
4127				break;
4128			}
4129		}
4130
4131		if (end < start)
4132			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4133
4134		if (daddr == 0) {
4135			regs[rd] = (uintptr_t)end;
4136			mstate->dtms_scratch_ptr += size;
4137		}
4138
4139		break;
4140	}
4141#endif
4142
4143	case DIF_SUBR_STRJOIN: {
4144		char *d = (char *)mstate->dtms_scratch_ptr;
4145		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4146		uintptr_t s1 = tupregs[0].dttk_value;
4147		uintptr_t s2 = tupregs[1].dttk_value;
4148		int i = 0;
4149
4150		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4151		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4152			regs[rd] = 0;
4153			break;
4154		}
4155
4156		if (!DTRACE_INSCRATCH(mstate, size)) {
4157			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4158			regs[rd] = 0;
4159			break;
4160		}
4161
4162		for (;;) {
4163			if (i >= size) {
4164				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4165				regs[rd] = 0;
4166				break;
4167			}
4168
4169			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4170				i--;
4171				break;
4172			}
4173		}
4174
4175		for (;;) {
4176			if (i >= size) {
4177				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4178				regs[rd] = 0;
4179				break;
4180			}
4181
4182			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4183				break;
4184		}
4185
4186		if (i < size) {
4187			mstate->dtms_scratch_ptr += i;
4188			regs[rd] = (uintptr_t)d;
4189		}
4190
4191		break;
4192	}
4193
4194	case DIF_SUBR_LLTOSTR: {
4195		int64_t i = (int64_t)tupregs[0].dttk_value;
4196		int64_t val = i < 0 ? i * -1 : i;
4197		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4198		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4199
4200		if (!DTRACE_INSCRATCH(mstate, size)) {
4201			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4202			regs[rd] = 0;
4203			break;
4204		}
4205
4206		for (*end-- = '\0'; val; val /= 10)
4207			*end-- = '0' + (val % 10);
4208
4209		if (i == 0)
4210			*end-- = '0';
4211
4212		if (i < 0)
4213			*end-- = '-';
4214
4215		regs[rd] = (uintptr_t)end + 1;
4216		mstate->dtms_scratch_ptr += size;
4217		break;
4218	}
4219
4220	case DIF_SUBR_HTONS:
4221	case DIF_SUBR_NTOHS:
4222#if BYTE_ORDER == BIG_ENDIAN
4223		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4224#else
4225		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4226#endif
4227		break;
4228
4229
4230	case DIF_SUBR_HTONL:
4231	case DIF_SUBR_NTOHL:
4232#if BYTE_ORDER == BIG_ENDIAN
4233		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4234#else
4235		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4236#endif
4237		break;
4238
4239
4240	case DIF_SUBR_HTONLL:
4241	case DIF_SUBR_NTOHLL:
4242#if BYTE_ORDER == BIG_ENDIAN
4243		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4244#else
4245		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4246#endif
4247		break;
4248
4249
4250	case DIF_SUBR_DIRNAME:
4251	case DIF_SUBR_BASENAME: {
4252		char *dest = (char *)mstate->dtms_scratch_ptr;
4253		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4254		uintptr_t src = tupregs[0].dttk_value;
4255		int i, j, len = dtrace_strlen((char *)src, size);
4256		int lastbase = -1, firstbase = -1, lastdir = -1;
4257		int start, end;
4258
4259		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4260			regs[rd] = 0;
4261			break;
4262		}
4263
4264		if (!DTRACE_INSCRATCH(mstate, size)) {
4265			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4266			regs[rd] = 0;
4267			break;
4268		}
4269
4270		/*
4271		 * The basename and dirname for a zero-length string is
4272		 * defined to be "."
4273		 */
4274		if (len == 0) {
4275			len = 1;
4276			src = (uintptr_t)".";
4277		}
4278
4279		/*
4280		 * Start from the back of the string, moving back toward the
4281		 * front until we see a character that isn't a slash.  That
4282		 * character is the last character in the basename.
4283		 */
4284		for (i = len - 1; i >= 0; i--) {
4285			if (dtrace_load8(src + i) != '/')
4286				break;
4287		}
4288
4289		if (i >= 0)
4290			lastbase = i;
4291
4292		/*
4293		 * Starting from the last character in the basename, move
4294		 * towards the front until we find a slash.  The character
4295		 * that we processed immediately before that is the first
4296		 * character in the basename.
4297		 */
4298		for (; i >= 0; i--) {
4299			if (dtrace_load8(src + i) == '/')
4300				break;
4301		}
4302
4303		if (i >= 0)
4304			firstbase = i + 1;
4305
4306		/*
4307		 * Now keep going until we find a non-slash character.  That
4308		 * character is the last character in the dirname.
4309		 */
4310		for (; i >= 0; i--) {
4311			if (dtrace_load8(src + i) != '/')
4312				break;
4313		}
4314
4315		if (i >= 0)
4316			lastdir = i;
4317
4318		ASSERT(!(lastbase == -1 && firstbase != -1));
4319		ASSERT(!(firstbase == -1 && lastdir != -1));
4320
4321		if (lastbase == -1) {
4322			/*
4323			 * We didn't find a non-slash character.  We know that
4324			 * the length is non-zero, so the whole string must be
4325			 * slashes.  In either the dirname or the basename
4326			 * case, we return '/'.
4327			 */
4328			ASSERT(firstbase == -1);
4329			firstbase = lastbase = lastdir = 0;
4330		}
4331
4332		if (firstbase == -1) {
4333			/*
4334			 * The entire string consists only of a basename
4335			 * component.  If we're looking for dirname, we need
4336			 * to change our string to be just "."; if we're
4337			 * looking for a basename, we'll just set the first
4338			 * character of the basename to be 0.
4339			 */
4340			if (subr == DIF_SUBR_DIRNAME) {
4341				ASSERT(lastdir == -1);
4342				src = (uintptr_t)".";
4343				lastdir = 0;
4344			} else {
4345				firstbase = 0;
4346			}
4347		}
4348
4349		if (subr == DIF_SUBR_DIRNAME) {
4350			if (lastdir == -1) {
4351				/*
4352				 * We know that we have a slash in the name --
4353				 * or lastdir would be set to 0, above.  And
4354				 * because lastdir is -1, we know that this
4355				 * slash must be the first character.  (That
4356				 * is, the full string must be of the form
4357				 * "/basename".)  In this case, the last
4358				 * character of the directory name is 0.
4359				 */
4360				lastdir = 0;
4361			}
4362
4363			start = 0;
4364			end = lastdir;
4365		} else {
4366			ASSERT(subr == DIF_SUBR_BASENAME);
4367			ASSERT(firstbase != -1 && lastbase != -1);
4368			start = firstbase;
4369			end = lastbase;
4370		}
4371
4372		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4373			dest[j] = dtrace_load8(src + i);
4374
4375		dest[j] = '\0';
4376		regs[rd] = (uintptr_t)dest;
4377		mstate->dtms_scratch_ptr += size;
4378		break;
4379	}
4380
4381	case DIF_SUBR_CLEANPATH: {
4382		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4383		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4384		uintptr_t src = tupregs[0].dttk_value;
4385		int i = 0, j = 0;
4386
4387		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4388			regs[rd] = 0;
4389			break;
4390		}
4391
4392		if (!DTRACE_INSCRATCH(mstate, size)) {
4393			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4394			regs[rd] = 0;
4395			break;
4396		}
4397
4398		/*
4399		 * Move forward, loading each character.
4400		 */
4401		do {
4402			c = dtrace_load8(src + i++);
4403next:
4404			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4405				break;
4406
4407			if (c != '/') {
4408				dest[j++] = c;
4409				continue;
4410			}
4411
4412			c = dtrace_load8(src + i++);
4413
4414			if (c == '/') {
4415				/*
4416				 * We have two slashes -- we can just advance
4417				 * to the next character.
4418				 */
4419				goto next;
4420			}
4421
4422			if (c != '.') {
4423				/*
4424				 * This is not "." and it's not ".." -- we can
4425				 * just store the "/" and this character and
4426				 * drive on.
4427				 */
4428				dest[j++] = '/';
4429				dest[j++] = c;
4430				continue;
4431			}
4432
4433			c = dtrace_load8(src + i++);
4434
4435			if (c == '/') {
4436				/*
4437				 * This is a "/./" component.  We're not going
4438				 * to store anything in the destination buffer;
4439				 * we're just going to go to the next component.
4440				 */
4441				goto next;
4442			}
4443
4444			if (c != '.') {
4445				/*
4446				 * This is not ".." -- we can just store the
4447				 * "/." and this character and continue
4448				 * processing.
4449				 */
4450				dest[j++] = '/';
4451				dest[j++] = '.';
4452				dest[j++] = c;
4453				continue;
4454			}
4455
4456			c = dtrace_load8(src + i++);
4457
4458			if (c != '/' && c != '\0') {
4459				/*
4460				 * This is not ".." -- it's "..[mumble]".
4461				 * We'll store the "/.." and this character
4462				 * and continue processing.
4463				 */
4464				dest[j++] = '/';
4465				dest[j++] = '.';
4466				dest[j++] = '.';
4467				dest[j++] = c;
4468				continue;
4469			}
4470
4471			/*
4472			 * This is "/../" or "/..\0".  We need to back up
4473			 * our destination pointer until we find a "/".
4474			 */
4475			i--;
4476			while (j != 0 && dest[--j] != '/')
4477				continue;
4478
4479			if (c == '\0')
4480				dest[++j] = '/';
4481		} while (c != '\0');
4482
4483		dest[j] = '\0';
4484		regs[rd] = (uintptr_t)dest;
4485		mstate->dtms_scratch_ptr += size;
4486		break;
4487	}
4488
4489	case DIF_SUBR_INET_NTOA:
4490	case DIF_SUBR_INET_NTOA6:
4491	case DIF_SUBR_INET_NTOP: {
4492		size_t size;
4493		int af, argi, i;
4494		char *base, *end;
4495
4496		if (subr == DIF_SUBR_INET_NTOP) {
4497			af = (int)tupregs[0].dttk_value;
4498			argi = 1;
4499		} else {
4500			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4501			argi = 0;
4502		}
4503
4504		if (af == AF_INET) {
4505			ipaddr_t ip4;
4506			uint8_t *ptr8, val;
4507
4508			/*
4509			 * Safely load the IPv4 address.
4510			 */
4511			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4512
4513			/*
4514			 * Check an IPv4 string will fit in scratch.
4515			 */
4516			size = INET_ADDRSTRLEN;
4517			if (!DTRACE_INSCRATCH(mstate, size)) {
4518				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4519				regs[rd] = 0;
4520				break;
4521			}
4522			base = (char *)mstate->dtms_scratch_ptr;
4523			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4524
4525			/*
4526			 * Stringify as a dotted decimal quad.
4527			 */
4528			*end-- = '\0';
4529			ptr8 = (uint8_t *)&ip4;
4530			for (i = 3; i >= 0; i--) {
4531				val = ptr8[i];
4532
4533				if (val == 0) {
4534					*end-- = '0';
4535				} else {
4536					for (; val; val /= 10) {
4537						*end-- = '0' + (val % 10);
4538					}
4539				}
4540
4541				if (i > 0)
4542					*end-- = '.';
4543			}
4544			ASSERT(end + 1 >= base);
4545
4546		} else if (af == AF_INET6) {
4547			struct in6_addr ip6;
4548			int firstzero, tryzero, numzero, v6end;
4549			uint16_t val;
4550			const char digits[] = "0123456789abcdef";
4551
4552			/*
4553			 * Stringify using RFC 1884 convention 2 - 16 bit
4554			 * hexadecimal values with a zero-run compression.
4555			 * Lower case hexadecimal digits are used.
4556			 * 	eg, fe80::214:4fff:fe0b:76c8.
4557			 * The IPv4 embedded form is returned for inet_ntop,
4558			 * just the IPv4 string is returned for inet_ntoa6.
4559			 */
4560
4561			/*
4562			 * Safely load the IPv6 address.
4563			 */
4564			dtrace_bcopy(
4565			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4566			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4567
4568			/*
4569			 * Check an IPv6 string will fit in scratch.
4570			 */
4571			size = INET6_ADDRSTRLEN;
4572			if (!DTRACE_INSCRATCH(mstate, size)) {
4573				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4574				regs[rd] = 0;
4575				break;
4576			}
4577			base = (char *)mstate->dtms_scratch_ptr;
4578			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4579			*end-- = '\0';
4580
4581			/*
4582			 * Find the longest run of 16 bit zero values
4583			 * for the single allowed zero compression - "::".
4584			 */
4585			firstzero = -1;
4586			tryzero = -1;
4587			numzero = 1;
4588			for (i = 0; i < sizeof (struct in6_addr); i++) {
4589#if defined(sun)
4590				if (ip6._S6_un._S6_u8[i] == 0 &&
4591#else
4592				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4593#endif
4594				    tryzero == -1 && i % 2 == 0) {
4595					tryzero = i;
4596					continue;
4597				}
4598
4599				if (tryzero != -1 &&
4600#if defined(sun)
4601				    (ip6._S6_un._S6_u8[i] != 0 ||
4602#else
4603				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4604#endif
4605				    i == sizeof (struct in6_addr) - 1)) {
4606
4607					if (i - tryzero <= numzero) {
4608						tryzero = -1;
4609						continue;
4610					}
4611
4612					firstzero = tryzero;
4613					numzero = i - i % 2 - tryzero;
4614					tryzero = -1;
4615
4616#if defined(sun)
4617					if (ip6._S6_un._S6_u8[i] == 0 &&
4618#else
4619					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4620#endif
4621					    i == sizeof (struct in6_addr) - 1)
4622						numzero += 2;
4623				}
4624			}
4625			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4626
4627			/*
4628			 * Check for an IPv4 embedded address.
4629			 */
4630			v6end = sizeof (struct in6_addr) - 2;
4631			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4632			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4633				for (i = sizeof (struct in6_addr) - 1;
4634				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4635					ASSERT(end >= base);
4636
4637#if defined(sun)
4638					val = ip6._S6_un._S6_u8[i];
4639#else
4640					val = ip6.__u6_addr.__u6_addr8[i];
4641#endif
4642
4643					if (val == 0) {
4644						*end-- = '0';
4645					} else {
4646						for (; val; val /= 10) {
4647							*end-- = '0' + val % 10;
4648						}
4649					}
4650
4651					if (i > DTRACE_V4MAPPED_OFFSET)
4652						*end-- = '.';
4653				}
4654
4655				if (subr == DIF_SUBR_INET_NTOA6)
4656					goto inetout;
4657
4658				/*
4659				 * Set v6end to skip the IPv4 address that
4660				 * we have already stringified.
4661				 */
4662				v6end = 10;
4663			}
4664
4665			/*
4666			 * Build the IPv6 string by working through the
4667			 * address in reverse.
4668			 */
4669			for (i = v6end; i >= 0; i -= 2) {
4670				ASSERT(end >= base);
4671
4672				if (i == firstzero + numzero - 2) {
4673					*end-- = ':';
4674					*end-- = ':';
4675					i -= numzero - 2;
4676					continue;
4677				}
4678
4679				if (i < 14 && i != firstzero - 2)
4680					*end-- = ':';
4681
4682#if defined(sun)
4683				val = (ip6._S6_un._S6_u8[i] << 8) +
4684				    ip6._S6_un._S6_u8[i + 1];
4685#else
4686				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4687				    ip6.__u6_addr.__u6_addr8[i + 1];
4688#endif
4689
4690				if (val == 0) {
4691					*end-- = '0';
4692				} else {
4693					for (; val; val /= 16) {
4694						*end-- = digits[val % 16];
4695					}
4696				}
4697			}
4698			ASSERT(end + 1 >= base);
4699
4700		} else {
4701			/*
4702			 * The user didn't use AH_INET or AH_INET6.
4703			 */
4704			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4705			regs[rd] = 0;
4706			break;
4707		}
4708
4709inetout:	regs[rd] = (uintptr_t)end + 1;
4710		mstate->dtms_scratch_ptr += size;
4711		break;
4712	}
4713
4714	case DIF_SUBR_MEMREF: {
4715		uintptr_t size = 2 * sizeof(uintptr_t);
4716		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4717		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4718
4719		/* address and length */
4720		memref[0] = tupregs[0].dttk_value;
4721		memref[1] = tupregs[1].dttk_value;
4722
4723		regs[rd] = (uintptr_t) memref;
4724		mstate->dtms_scratch_ptr += scratch_size;
4725		break;
4726	}
4727
4728	case DIF_SUBR_TYPEREF: {
4729		uintptr_t size = 4 * sizeof(uintptr_t);
4730		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4731		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4732
4733		/* address, num_elements, type_str, type_len */
4734		typeref[0] = tupregs[0].dttk_value;
4735		typeref[1] = tupregs[1].dttk_value;
4736		typeref[2] = tupregs[2].dttk_value;
4737		typeref[3] = tupregs[3].dttk_value;
4738
4739		regs[rd] = (uintptr_t) typeref;
4740		mstate->dtms_scratch_ptr += scratch_size;
4741		break;
4742	}
4743	}
4744}
4745
4746/*
4747 * Emulate the execution of DTrace IR instructions specified by the given
4748 * DIF object.  This function is deliberately void of assertions as all of
4749 * the necessary checks are handled by a call to dtrace_difo_validate().
4750 */
4751static uint64_t
4752dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4753    dtrace_vstate_t *vstate, dtrace_state_t *state)
4754{
4755	const dif_instr_t *text = difo->dtdo_buf;
4756	const uint_t textlen = difo->dtdo_len;
4757	const char *strtab = difo->dtdo_strtab;
4758	const uint64_t *inttab = difo->dtdo_inttab;
4759
4760	uint64_t rval = 0;
4761	dtrace_statvar_t *svar;
4762	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4763	dtrace_difv_t *v;
4764	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4765	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4766
4767	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4768	uint64_t regs[DIF_DIR_NREGS];
4769	uint64_t *tmp;
4770
4771	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4772	int64_t cc_r;
4773	uint_t pc = 0, id, opc = 0;
4774	uint8_t ttop = 0;
4775	dif_instr_t instr;
4776	uint_t r1, r2, rd;
4777
4778	/*
4779	 * We stash the current DIF object into the machine state: we need it
4780	 * for subsequent access checking.
4781	 */
4782	mstate->dtms_difo = difo;
4783
4784	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4785
4786	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4787		opc = pc;
4788
4789		instr = text[pc++];
4790		r1 = DIF_INSTR_R1(instr);
4791		r2 = DIF_INSTR_R2(instr);
4792		rd = DIF_INSTR_RD(instr);
4793
4794		switch (DIF_INSTR_OP(instr)) {
4795		case DIF_OP_OR:
4796			regs[rd] = regs[r1] | regs[r2];
4797			break;
4798		case DIF_OP_XOR:
4799			regs[rd] = regs[r1] ^ regs[r2];
4800			break;
4801		case DIF_OP_AND:
4802			regs[rd] = regs[r1] & regs[r2];
4803			break;
4804		case DIF_OP_SLL:
4805			regs[rd] = regs[r1] << regs[r2];
4806			break;
4807		case DIF_OP_SRL:
4808			regs[rd] = regs[r1] >> regs[r2];
4809			break;
4810		case DIF_OP_SUB:
4811			regs[rd] = regs[r1] - regs[r2];
4812			break;
4813		case DIF_OP_ADD:
4814			regs[rd] = regs[r1] + regs[r2];
4815			break;
4816		case DIF_OP_MUL:
4817			regs[rd] = regs[r1] * regs[r2];
4818			break;
4819		case DIF_OP_SDIV:
4820			if (regs[r2] == 0) {
4821				regs[rd] = 0;
4822				*flags |= CPU_DTRACE_DIVZERO;
4823			} else {
4824				regs[rd] = (int64_t)regs[r1] /
4825				    (int64_t)regs[r2];
4826			}
4827			break;
4828
4829		case DIF_OP_UDIV:
4830			if (regs[r2] == 0) {
4831				regs[rd] = 0;
4832				*flags |= CPU_DTRACE_DIVZERO;
4833			} else {
4834				regs[rd] = regs[r1] / regs[r2];
4835			}
4836			break;
4837
4838		case DIF_OP_SREM:
4839			if (regs[r2] == 0) {
4840				regs[rd] = 0;
4841				*flags |= CPU_DTRACE_DIVZERO;
4842			} else {
4843				regs[rd] = (int64_t)regs[r1] %
4844				    (int64_t)regs[r2];
4845			}
4846			break;
4847
4848		case DIF_OP_UREM:
4849			if (regs[r2] == 0) {
4850				regs[rd] = 0;
4851				*flags |= CPU_DTRACE_DIVZERO;
4852			} else {
4853				regs[rd] = regs[r1] % regs[r2];
4854			}
4855			break;
4856
4857		case DIF_OP_NOT:
4858			regs[rd] = ~regs[r1];
4859			break;
4860		case DIF_OP_MOV:
4861			regs[rd] = regs[r1];
4862			break;
4863		case DIF_OP_CMP:
4864			cc_r = regs[r1] - regs[r2];
4865			cc_n = cc_r < 0;
4866			cc_z = cc_r == 0;
4867			cc_v = 0;
4868			cc_c = regs[r1] < regs[r2];
4869			break;
4870		case DIF_OP_TST:
4871			cc_n = cc_v = cc_c = 0;
4872			cc_z = regs[r1] == 0;
4873			break;
4874		case DIF_OP_BA:
4875			pc = DIF_INSTR_LABEL(instr);
4876			break;
4877		case DIF_OP_BE:
4878			if (cc_z)
4879				pc = DIF_INSTR_LABEL(instr);
4880			break;
4881		case DIF_OP_BNE:
4882			if (cc_z == 0)
4883				pc = DIF_INSTR_LABEL(instr);
4884			break;
4885		case DIF_OP_BG:
4886			if ((cc_z | (cc_n ^ cc_v)) == 0)
4887				pc = DIF_INSTR_LABEL(instr);
4888			break;
4889		case DIF_OP_BGU:
4890			if ((cc_c | cc_z) == 0)
4891				pc = DIF_INSTR_LABEL(instr);
4892			break;
4893		case DIF_OP_BGE:
4894			if ((cc_n ^ cc_v) == 0)
4895				pc = DIF_INSTR_LABEL(instr);
4896			break;
4897		case DIF_OP_BGEU:
4898			if (cc_c == 0)
4899				pc = DIF_INSTR_LABEL(instr);
4900			break;
4901		case DIF_OP_BL:
4902			if (cc_n ^ cc_v)
4903				pc = DIF_INSTR_LABEL(instr);
4904			break;
4905		case DIF_OP_BLU:
4906			if (cc_c)
4907				pc = DIF_INSTR_LABEL(instr);
4908			break;
4909		case DIF_OP_BLE:
4910			if (cc_z | (cc_n ^ cc_v))
4911				pc = DIF_INSTR_LABEL(instr);
4912			break;
4913		case DIF_OP_BLEU:
4914			if (cc_c | cc_z)
4915				pc = DIF_INSTR_LABEL(instr);
4916			break;
4917		case DIF_OP_RLDSB:
4918			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4919				*flags |= CPU_DTRACE_KPRIV;
4920				*illval = regs[r1];
4921				break;
4922			}
4923			/*FALLTHROUGH*/
4924		case DIF_OP_LDSB:
4925			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4926			break;
4927		case DIF_OP_RLDSH:
4928			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4929				*flags |= CPU_DTRACE_KPRIV;
4930				*illval = regs[r1];
4931				break;
4932			}
4933			/*FALLTHROUGH*/
4934		case DIF_OP_LDSH:
4935			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4936			break;
4937		case DIF_OP_RLDSW:
4938			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4939				*flags |= CPU_DTRACE_KPRIV;
4940				*illval = regs[r1];
4941				break;
4942			}
4943			/*FALLTHROUGH*/
4944		case DIF_OP_LDSW:
4945			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4946			break;
4947		case DIF_OP_RLDUB:
4948			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4949				*flags |= CPU_DTRACE_KPRIV;
4950				*illval = regs[r1];
4951				break;
4952			}
4953			/*FALLTHROUGH*/
4954		case DIF_OP_LDUB:
4955			regs[rd] = dtrace_load8(regs[r1]);
4956			break;
4957		case DIF_OP_RLDUH:
4958			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4959				*flags |= CPU_DTRACE_KPRIV;
4960				*illval = regs[r1];
4961				break;
4962			}
4963			/*FALLTHROUGH*/
4964		case DIF_OP_LDUH:
4965			regs[rd] = dtrace_load16(regs[r1]);
4966			break;
4967		case DIF_OP_RLDUW:
4968			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4969				*flags |= CPU_DTRACE_KPRIV;
4970				*illval = regs[r1];
4971				break;
4972			}
4973			/*FALLTHROUGH*/
4974		case DIF_OP_LDUW:
4975			regs[rd] = dtrace_load32(regs[r1]);
4976			break;
4977		case DIF_OP_RLDX:
4978			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4979				*flags |= CPU_DTRACE_KPRIV;
4980				*illval = regs[r1];
4981				break;
4982			}
4983			/*FALLTHROUGH*/
4984		case DIF_OP_LDX:
4985			regs[rd] = dtrace_load64(regs[r1]);
4986			break;
4987		case DIF_OP_ULDSB:
4988			regs[rd] = (int8_t)
4989			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4990			break;
4991		case DIF_OP_ULDSH:
4992			regs[rd] = (int16_t)
4993			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4994			break;
4995		case DIF_OP_ULDSW:
4996			regs[rd] = (int32_t)
4997			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4998			break;
4999		case DIF_OP_ULDUB:
5000			regs[rd] =
5001			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5002			break;
5003		case DIF_OP_ULDUH:
5004			regs[rd] =
5005			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5006			break;
5007		case DIF_OP_ULDUW:
5008			regs[rd] =
5009			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5010			break;
5011		case DIF_OP_ULDX:
5012			regs[rd] =
5013			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5014			break;
5015		case DIF_OP_RET:
5016			rval = regs[rd];
5017			pc = textlen;
5018			break;
5019		case DIF_OP_NOP:
5020			break;
5021		case DIF_OP_SETX:
5022			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5023			break;
5024		case DIF_OP_SETS:
5025			regs[rd] = (uint64_t)(uintptr_t)
5026			    (strtab + DIF_INSTR_STRING(instr));
5027			break;
5028		case DIF_OP_SCMP: {
5029			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5030			uintptr_t s1 = regs[r1];
5031			uintptr_t s2 = regs[r2];
5032
5033			if (s1 != 0 &&
5034			    !dtrace_strcanload(s1, sz, mstate, vstate))
5035				break;
5036			if (s2 != 0 &&
5037			    !dtrace_strcanload(s2, sz, mstate, vstate))
5038				break;
5039
5040			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5041
5042			cc_n = cc_r < 0;
5043			cc_z = cc_r == 0;
5044			cc_v = cc_c = 0;
5045			break;
5046		}
5047		case DIF_OP_LDGA:
5048			regs[rd] = dtrace_dif_variable(mstate, state,
5049			    r1, regs[r2]);
5050			break;
5051		case DIF_OP_LDGS:
5052			id = DIF_INSTR_VAR(instr);
5053
5054			if (id >= DIF_VAR_OTHER_UBASE) {
5055				uintptr_t a;
5056
5057				id -= DIF_VAR_OTHER_UBASE;
5058				svar = vstate->dtvs_globals[id];
5059				ASSERT(svar != NULL);
5060				v = &svar->dtsv_var;
5061
5062				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5063					regs[rd] = svar->dtsv_data;
5064					break;
5065				}
5066
5067				a = (uintptr_t)svar->dtsv_data;
5068
5069				if (*(uint8_t *)a == UINT8_MAX) {
5070					/*
5071					 * If the 0th byte is set to UINT8_MAX
5072					 * then this is to be treated as a
5073					 * reference to a NULL variable.
5074					 */
5075					regs[rd] = 0;
5076				} else {
5077					regs[rd] = a + sizeof (uint64_t);
5078				}
5079
5080				break;
5081			}
5082
5083			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5084			break;
5085
5086		case DIF_OP_STGS:
5087			id = DIF_INSTR_VAR(instr);
5088
5089			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5090			id -= DIF_VAR_OTHER_UBASE;
5091
5092			svar = vstate->dtvs_globals[id];
5093			ASSERT(svar != NULL);
5094			v = &svar->dtsv_var;
5095
5096			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5097				uintptr_t a = (uintptr_t)svar->dtsv_data;
5098
5099				ASSERT(a != 0);
5100				ASSERT(svar->dtsv_size != 0);
5101
5102				if (regs[rd] == 0) {
5103					*(uint8_t *)a = UINT8_MAX;
5104					break;
5105				} else {
5106					*(uint8_t *)a = 0;
5107					a += sizeof (uint64_t);
5108				}
5109				if (!dtrace_vcanload(
5110				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5111				    mstate, vstate))
5112					break;
5113
5114				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5115				    (void *)a, &v->dtdv_type);
5116				break;
5117			}
5118
5119			svar->dtsv_data = regs[rd];
5120			break;
5121
5122		case DIF_OP_LDTA:
5123			/*
5124			 * There are no DTrace built-in thread-local arrays at
5125			 * present.  This opcode is saved for future work.
5126			 */
5127			*flags |= CPU_DTRACE_ILLOP;
5128			regs[rd] = 0;
5129			break;
5130
5131		case DIF_OP_LDLS:
5132			id = DIF_INSTR_VAR(instr);
5133
5134			if (id < DIF_VAR_OTHER_UBASE) {
5135				/*
5136				 * For now, this has no meaning.
5137				 */
5138				regs[rd] = 0;
5139				break;
5140			}
5141
5142			id -= DIF_VAR_OTHER_UBASE;
5143
5144			ASSERT(id < vstate->dtvs_nlocals);
5145			ASSERT(vstate->dtvs_locals != NULL);
5146
5147			svar = vstate->dtvs_locals[id];
5148			ASSERT(svar != NULL);
5149			v = &svar->dtsv_var;
5150
5151			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5152				uintptr_t a = (uintptr_t)svar->dtsv_data;
5153				size_t sz = v->dtdv_type.dtdt_size;
5154
5155				sz += sizeof (uint64_t);
5156				ASSERT(svar->dtsv_size == NCPU * sz);
5157				a += curcpu * sz;
5158
5159				if (*(uint8_t *)a == UINT8_MAX) {
5160					/*
5161					 * If the 0th byte is set to UINT8_MAX
5162					 * then this is to be treated as a
5163					 * reference to a NULL variable.
5164					 */
5165					regs[rd] = 0;
5166				} else {
5167					regs[rd] = a + sizeof (uint64_t);
5168				}
5169
5170				break;
5171			}
5172
5173			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5174			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5175			regs[rd] = tmp[curcpu];
5176			break;
5177
5178		case DIF_OP_STLS:
5179			id = DIF_INSTR_VAR(instr);
5180
5181			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5182			id -= DIF_VAR_OTHER_UBASE;
5183			ASSERT(id < vstate->dtvs_nlocals);
5184
5185			ASSERT(vstate->dtvs_locals != NULL);
5186			svar = vstate->dtvs_locals[id];
5187			ASSERT(svar != NULL);
5188			v = &svar->dtsv_var;
5189
5190			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5191				uintptr_t a = (uintptr_t)svar->dtsv_data;
5192				size_t sz = v->dtdv_type.dtdt_size;
5193
5194				sz += sizeof (uint64_t);
5195				ASSERT(svar->dtsv_size == NCPU * sz);
5196				a += curcpu * sz;
5197
5198				if (regs[rd] == 0) {
5199					*(uint8_t *)a = UINT8_MAX;
5200					break;
5201				} else {
5202					*(uint8_t *)a = 0;
5203					a += sizeof (uint64_t);
5204				}
5205
5206				if (!dtrace_vcanload(
5207				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5208				    mstate, vstate))
5209					break;
5210
5211				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5212				    (void *)a, &v->dtdv_type);
5213				break;
5214			}
5215
5216			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5217			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5218			tmp[curcpu] = regs[rd];
5219			break;
5220
5221		case DIF_OP_LDTS: {
5222			dtrace_dynvar_t *dvar;
5223			dtrace_key_t *key;
5224
5225			id = DIF_INSTR_VAR(instr);
5226			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5227			id -= DIF_VAR_OTHER_UBASE;
5228			v = &vstate->dtvs_tlocals[id];
5229
5230			key = &tupregs[DIF_DTR_NREGS];
5231			key[0].dttk_value = (uint64_t)id;
5232			key[0].dttk_size = 0;
5233			DTRACE_TLS_THRKEY(key[1].dttk_value);
5234			key[1].dttk_size = 0;
5235
5236			dvar = dtrace_dynvar(dstate, 2, key,
5237			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5238			    mstate, vstate);
5239
5240			if (dvar == NULL) {
5241				regs[rd] = 0;
5242				break;
5243			}
5244
5245			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5246				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5247			} else {
5248				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5249			}
5250
5251			break;
5252		}
5253
5254		case DIF_OP_STTS: {
5255			dtrace_dynvar_t *dvar;
5256			dtrace_key_t *key;
5257
5258			id = DIF_INSTR_VAR(instr);
5259			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5260			id -= DIF_VAR_OTHER_UBASE;
5261
5262			key = &tupregs[DIF_DTR_NREGS];
5263			key[0].dttk_value = (uint64_t)id;
5264			key[0].dttk_size = 0;
5265			DTRACE_TLS_THRKEY(key[1].dttk_value);
5266			key[1].dttk_size = 0;
5267			v = &vstate->dtvs_tlocals[id];
5268
5269			dvar = dtrace_dynvar(dstate, 2, key,
5270			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5271			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5272			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5273			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5274
5275			/*
5276			 * Given that we're storing to thread-local data,
5277			 * we need to flush our predicate cache.
5278			 */
5279			curthread->t_predcache = 0;
5280
5281			if (dvar == NULL)
5282				break;
5283
5284			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5285				if (!dtrace_vcanload(
5286				    (void *)(uintptr_t)regs[rd],
5287				    &v->dtdv_type, mstate, vstate))
5288					break;
5289
5290				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5291				    dvar->dtdv_data, &v->dtdv_type);
5292			} else {
5293				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5294			}
5295
5296			break;
5297		}
5298
5299		case DIF_OP_SRA:
5300			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5301			break;
5302
5303		case DIF_OP_CALL:
5304			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5305			    regs, tupregs, ttop, mstate, state);
5306			break;
5307
5308		case DIF_OP_PUSHTR:
5309			if (ttop == DIF_DTR_NREGS) {
5310				*flags |= CPU_DTRACE_TUPOFLOW;
5311				break;
5312			}
5313
5314			if (r1 == DIF_TYPE_STRING) {
5315				/*
5316				 * If this is a string type and the size is 0,
5317				 * we'll use the system-wide default string
5318				 * size.  Note that we are _not_ looking at
5319				 * the value of the DTRACEOPT_STRSIZE option;
5320				 * had this been set, we would expect to have
5321				 * a non-zero size value in the "pushtr".
5322				 */
5323				tupregs[ttop].dttk_size =
5324				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5325				    regs[r2] ? regs[r2] :
5326				    dtrace_strsize_default) + 1;
5327			} else {
5328				tupregs[ttop].dttk_size = regs[r2];
5329			}
5330
5331			tupregs[ttop++].dttk_value = regs[rd];
5332			break;
5333
5334		case DIF_OP_PUSHTV:
5335			if (ttop == DIF_DTR_NREGS) {
5336				*flags |= CPU_DTRACE_TUPOFLOW;
5337				break;
5338			}
5339
5340			tupregs[ttop].dttk_value = regs[rd];
5341			tupregs[ttop++].dttk_size = 0;
5342			break;
5343
5344		case DIF_OP_POPTS:
5345			if (ttop != 0)
5346				ttop--;
5347			break;
5348
5349		case DIF_OP_FLUSHTS:
5350			ttop = 0;
5351			break;
5352
5353		case DIF_OP_LDGAA:
5354		case DIF_OP_LDTAA: {
5355			dtrace_dynvar_t *dvar;
5356			dtrace_key_t *key = tupregs;
5357			uint_t nkeys = ttop;
5358
5359			id = DIF_INSTR_VAR(instr);
5360			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5361			id -= DIF_VAR_OTHER_UBASE;
5362
5363			key[nkeys].dttk_value = (uint64_t)id;
5364			key[nkeys++].dttk_size = 0;
5365
5366			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5367				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5368				key[nkeys++].dttk_size = 0;
5369				v = &vstate->dtvs_tlocals[id];
5370			} else {
5371				v = &vstate->dtvs_globals[id]->dtsv_var;
5372			}
5373
5374			dvar = dtrace_dynvar(dstate, nkeys, key,
5375			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5376			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5377			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5378
5379			if (dvar == NULL) {
5380				regs[rd] = 0;
5381				break;
5382			}
5383
5384			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5385				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5386			} else {
5387				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5388			}
5389
5390			break;
5391		}
5392
5393		case DIF_OP_STGAA:
5394		case DIF_OP_STTAA: {
5395			dtrace_dynvar_t *dvar;
5396			dtrace_key_t *key = tupregs;
5397			uint_t nkeys = ttop;
5398
5399			id = DIF_INSTR_VAR(instr);
5400			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5401			id -= DIF_VAR_OTHER_UBASE;
5402
5403			key[nkeys].dttk_value = (uint64_t)id;
5404			key[nkeys++].dttk_size = 0;
5405
5406			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5407				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5408				key[nkeys++].dttk_size = 0;
5409				v = &vstate->dtvs_tlocals[id];
5410			} else {
5411				v = &vstate->dtvs_globals[id]->dtsv_var;
5412			}
5413
5414			dvar = dtrace_dynvar(dstate, nkeys, key,
5415			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5416			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5417			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5418			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5419
5420			if (dvar == NULL)
5421				break;
5422
5423			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5424				if (!dtrace_vcanload(
5425				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5426				    mstate, vstate))
5427					break;
5428
5429				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5430				    dvar->dtdv_data, &v->dtdv_type);
5431			} else {
5432				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5433			}
5434
5435			break;
5436		}
5437
5438		case DIF_OP_ALLOCS: {
5439			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5440			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5441
5442			/*
5443			 * Rounding up the user allocation size could have
5444			 * overflowed large, bogus allocations (like -1ULL) to
5445			 * 0.
5446			 */
5447			if (size < regs[r1] ||
5448			    !DTRACE_INSCRATCH(mstate, size)) {
5449				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5450				regs[rd] = 0;
5451				break;
5452			}
5453
5454			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5455			mstate->dtms_scratch_ptr += size;
5456			regs[rd] = ptr;
5457			break;
5458		}
5459
5460		case DIF_OP_COPYS:
5461			if (!dtrace_canstore(regs[rd], regs[r2],
5462			    mstate, vstate)) {
5463				*flags |= CPU_DTRACE_BADADDR;
5464				*illval = regs[rd];
5465				break;
5466			}
5467
5468			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5469				break;
5470
5471			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5472			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5473			break;
5474
5475		case DIF_OP_STB:
5476			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5477				*flags |= CPU_DTRACE_BADADDR;
5478				*illval = regs[rd];
5479				break;
5480			}
5481			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5482			break;
5483
5484		case DIF_OP_STH:
5485			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5486				*flags |= CPU_DTRACE_BADADDR;
5487				*illval = regs[rd];
5488				break;
5489			}
5490			if (regs[rd] & 1) {
5491				*flags |= CPU_DTRACE_BADALIGN;
5492				*illval = regs[rd];
5493				break;
5494			}
5495			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5496			break;
5497
5498		case DIF_OP_STW:
5499			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5500				*flags |= CPU_DTRACE_BADADDR;
5501				*illval = regs[rd];
5502				break;
5503			}
5504			if (regs[rd] & 3) {
5505				*flags |= CPU_DTRACE_BADALIGN;
5506				*illval = regs[rd];
5507				break;
5508			}
5509			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5510			break;
5511
5512		case DIF_OP_STX:
5513			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5514				*flags |= CPU_DTRACE_BADADDR;
5515				*illval = regs[rd];
5516				break;
5517			}
5518			if (regs[rd] & 7) {
5519				*flags |= CPU_DTRACE_BADALIGN;
5520				*illval = regs[rd];
5521				break;
5522			}
5523			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5524			break;
5525		}
5526	}
5527
5528	if (!(*flags & CPU_DTRACE_FAULT))
5529		return (rval);
5530
5531	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5532	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5533
5534	return (0);
5535}
5536
5537static void
5538dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5539{
5540	dtrace_probe_t *probe = ecb->dte_probe;
5541	dtrace_provider_t *prov = probe->dtpr_provider;
5542	char c[DTRACE_FULLNAMELEN + 80], *str;
5543	char *msg = "dtrace: breakpoint action at probe ";
5544	char *ecbmsg = " (ecb ";
5545	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5546	uintptr_t val = (uintptr_t)ecb;
5547	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5548
5549	if (dtrace_destructive_disallow)
5550		return;
5551
5552	/*
5553	 * It's impossible to be taking action on the NULL probe.
5554	 */
5555	ASSERT(probe != NULL);
5556
5557	/*
5558	 * This is a poor man's (destitute man's?) sprintf():  we want to
5559	 * print the provider name, module name, function name and name of
5560	 * the probe, along with the hex address of the ECB with the breakpoint
5561	 * action -- all of which we must place in the character buffer by
5562	 * hand.
5563	 */
5564	while (*msg != '\0')
5565		c[i++] = *msg++;
5566
5567	for (str = prov->dtpv_name; *str != '\0'; str++)
5568		c[i++] = *str;
5569	c[i++] = ':';
5570
5571	for (str = probe->dtpr_mod; *str != '\0'; str++)
5572		c[i++] = *str;
5573	c[i++] = ':';
5574
5575	for (str = probe->dtpr_func; *str != '\0'; str++)
5576		c[i++] = *str;
5577	c[i++] = ':';
5578
5579	for (str = probe->dtpr_name; *str != '\0'; str++)
5580		c[i++] = *str;
5581
5582	while (*ecbmsg != '\0')
5583		c[i++] = *ecbmsg++;
5584
5585	while (shift >= 0) {
5586		mask = (uintptr_t)0xf << shift;
5587
5588		if (val >= ((uintptr_t)1 << shift))
5589			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5590		shift -= 4;
5591	}
5592
5593	c[i++] = ')';
5594	c[i] = '\0';
5595
5596#if defined(sun)
5597	debug_enter(c);
5598#else
5599	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5600#endif
5601}
5602
5603static void
5604dtrace_action_panic(dtrace_ecb_t *ecb)
5605{
5606	dtrace_probe_t *probe = ecb->dte_probe;
5607
5608	/*
5609	 * It's impossible to be taking action on the NULL probe.
5610	 */
5611	ASSERT(probe != NULL);
5612
5613	if (dtrace_destructive_disallow)
5614		return;
5615
5616	if (dtrace_panicked != NULL)
5617		return;
5618
5619	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5620		return;
5621
5622	/*
5623	 * We won the right to panic.  (We want to be sure that only one
5624	 * thread calls panic() from dtrace_probe(), and that panic() is
5625	 * called exactly once.)
5626	 */
5627	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5628	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5629	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5630}
5631
5632static void
5633dtrace_action_raise(uint64_t sig)
5634{
5635	if (dtrace_destructive_disallow)
5636		return;
5637
5638	if (sig >= NSIG) {
5639		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5640		return;
5641	}
5642
5643#if defined(sun)
5644	/*
5645	 * raise() has a queue depth of 1 -- we ignore all subsequent
5646	 * invocations of the raise() action.
5647	 */
5648	if (curthread->t_dtrace_sig == 0)
5649		curthread->t_dtrace_sig = (uint8_t)sig;
5650
5651	curthread->t_sig_check = 1;
5652	aston(curthread);
5653#else
5654	struct proc *p = curproc;
5655	PROC_LOCK(p);
5656	psignal(p, sig);
5657	PROC_UNLOCK(p);
5658#endif
5659}
5660
5661static void
5662dtrace_action_stop(void)
5663{
5664	if (dtrace_destructive_disallow)
5665		return;
5666
5667#if defined(sun)
5668	if (!curthread->t_dtrace_stop) {
5669		curthread->t_dtrace_stop = 1;
5670		curthread->t_sig_check = 1;
5671		aston(curthread);
5672	}
5673#else
5674	struct proc *p = curproc;
5675	PROC_LOCK(p);
5676	psignal(p, SIGSTOP);
5677	PROC_UNLOCK(p);
5678#endif
5679}
5680
5681static void
5682dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5683{
5684	hrtime_t now;
5685	volatile uint16_t *flags;
5686#if defined(sun)
5687	cpu_t *cpu = CPU;
5688#else
5689	cpu_t *cpu = &solaris_cpu[curcpu];
5690#endif
5691
5692	if (dtrace_destructive_disallow)
5693		return;
5694
5695	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5696
5697	now = dtrace_gethrtime();
5698
5699	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5700		/*
5701		 * We need to advance the mark to the current time.
5702		 */
5703		cpu->cpu_dtrace_chillmark = now;
5704		cpu->cpu_dtrace_chilled = 0;
5705	}
5706
5707	/*
5708	 * Now check to see if the requested chill time would take us over
5709	 * the maximum amount of time allowed in the chill interval.  (Or
5710	 * worse, if the calculation itself induces overflow.)
5711	 */
5712	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5713	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5714		*flags |= CPU_DTRACE_ILLOP;
5715		return;
5716	}
5717
5718	while (dtrace_gethrtime() - now < val)
5719		continue;
5720
5721	/*
5722	 * Normally, we assure that the value of the variable "timestamp" does
5723	 * not change within an ECB.  The presence of chill() represents an
5724	 * exception to this rule, however.
5725	 */
5726	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5727	cpu->cpu_dtrace_chilled += val;
5728}
5729
5730#if defined(sun)
5731static void
5732dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5733    uint64_t *buf, uint64_t arg)
5734{
5735	int nframes = DTRACE_USTACK_NFRAMES(arg);
5736	int strsize = DTRACE_USTACK_STRSIZE(arg);
5737	uint64_t *pcs = &buf[1], *fps;
5738	char *str = (char *)&pcs[nframes];
5739	int size, offs = 0, i, j;
5740	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5741	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5742	char *sym;
5743
5744	/*
5745	 * Should be taking a faster path if string space has not been
5746	 * allocated.
5747	 */
5748	ASSERT(strsize != 0);
5749
5750	/*
5751	 * We will first allocate some temporary space for the frame pointers.
5752	 */
5753	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5754	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5755	    (nframes * sizeof (uint64_t));
5756
5757	if (!DTRACE_INSCRATCH(mstate, size)) {
5758		/*
5759		 * Not enough room for our frame pointers -- need to indicate
5760		 * that we ran out of scratch space.
5761		 */
5762		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5763		return;
5764	}
5765
5766	mstate->dtms_scratch_ptr += size;
5767	saved = mstate->dtms_scratch_ptr;
5768
5769	/*
5770	 * Now get a stack with both program counters and frame pointers.
5771	 */
5772	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5773	dtrace_getufpstack(buf, fps, nframes + 1);
5774	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5775
5776	/*
5777	 * If that faulted, we're cooked.
5778	 */
5779	if (*flags & CPU_DTRACE_FAULT)
5780		goto out;
5781
5782	/*
5783	 * Now we want to walk up the stack, calling the USTACK helper.  For
5784	 * each iteration, we restore the scratch pointer.
5785	 */
5786	for (i = 0; i < nframes; i++) {
5787		mstate->dtms_scratch_ptr = saved;
5788
5789		if (offs >= strsize)
5790			break;
5791
5792		sym = (char *)(uintptr_t)dtrace_helper(
5793		    DTRACE_HELPER_ACTION_USTACK,
5794		    mstate, state, pcs[i], fps[i]);
5795
5796		/*
5797		 * If we faulted while running the helper, we're going to
5798		 * clear the fault and null out the corresponding string.
5799		 */
5800		if (*flags & CPU_DTRACE_FAULT) {
5801			*flags &= ~CPU_DTRACE_FAULT;
5802			str[offs++] = '\0';
5803			continue;
5804		}
5805
5806		if (sym == NULL) {
5807			str[offs++] = '\0';
5808			continue;
5809		}
5810
5811		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5812
5813		/*
5814		 * Now copy in the string that the helper returned to us.
5815		 */
5816		for (j = 0; offs + j < strsize; j++) {
5817			if ((str[offs + j] = sym[j]) == '\0')
5818				break;
5819		}
5820
5821		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5822
5823		offs += j + 1;
5824	}
5825
5826	if (offs >= strsize) {
5827		/*
5828		 * If we didn't have room for all of the strings, we don't
5829		 * abort processing -- this needn't be a fatal error -- but we
5830		 * still want to increment a counter (dts_stkstroverflows) to
5831		 * allow this condition to be warned about.  (If this is from
5832		 * a jstack() action, it is easily tuned via jstackstrsize.)
5833		 */
5834		dtrace_error(&state->dts_stkstroverflows);
5835	}
5836
5837	while (offs < strsize)
5838		str[offs++] = '\0';
5839
5840out:
5841	mstate->dtms_scratch_ptr = old;
5842}
5843#endif
5844
5845/*
5846 * If you're looking for the epicenter of DTrace, you just found it.  This
5847 * is the function called by the provider to fire a probe -- from which all
5848 * subsequent probe-context DTrace activity emanates.
5849 */
5850void
5851dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5852    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5853{
5854	processorid_t cpuid;
5855	dtrace_icookie_t cookie;
5856	dtrace_probe_t *probe;
5857	dtrace_mstate_t mstate;
5858	dtrace_ecb_t *ecb;
5859	dtrace_action_t *act;
5860	intptr_t offs;
5861	size_t size;
5862	int vtime, onintr;
5863	volatile uint16_t *flags;
5864	hrtime_t now;
5865
5866#if defined(sun)
5867	/*
5868	 * Kick out immediately if this CPU is still being born (in which case
5869	 * curthread will be set to -1) or the current thread can't allow
5870	 * probes in its current context.
5871	 */
5872	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5873		return;
5874#endif
5875
5876	cookie = dtrace_interrupt_disable();
5877	probe = dtrace_probes[id - 1];
5878	cpuid = curcpu;
5879	onintr = CPU_ON_INTR(CPU);
5880
5881	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5882	    probe->dtpr_predcache == curthread->t_predcache) {
5883		/*
5884		 * We have hit in the predicate cache; we know that
5885		 * this predicate would evaluate to be false.
5886		 */
5887		dtrace_interrupt_enable(cookie);
5888		return;
5889	}
5890
5891#if defined(sun)
5892	if (panic_quiesce) {
5893#else
5894	if (panicstr != NULL) {
5895#endif
5896		/*
5897		 * We don't trace anything if we're panicking.
5898		 */
5899		dtrace_interrupt_enable(cookie);
5900		return;
5901	}
5902
5903	now = dtrace_gethrtime();
5904	vtime = dtrace_vtime_references != 0;
5905
5906	if (vtime && curthread->t_dtrace_start)
5907		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5908
5909	mstate.dtms_difo = NULL;
5910	mstate.dtms_probe = probe;
5911	mstate.dtms_strtok = 0;
5912	mstate.dtms_arg[0] = arg0;
5913	mstate.dtms_arg[1] = arg1;
5914	mstate.dtms_arg[2] = arg2;
5915	mstate.dtms_arg[3] = arg3;
5916	mstate.dtms_arg[4] = arg4;
5917
5918	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5919
5920	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5921		dtrace_predicate_t *pred = ecb->dte_predicate;
5922		dtrace_state_t *state = ecb->dte_state;
5923		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5924		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5925		dtrace_vstate_t *vstate = &state->dts_vstate;
5926		dtrace_provider_t *prov = probe->dtpr_provider;
5927		int committed = 0;
5928		caddr_t tomax;
5929
5930		/*
5931		 * A little subtlety with the following (seemingly innocuous)
5932		 * declaration of the automatic 'val':  by looking at the
5933		 * code, you might think that it could be declared in the
5934		 * action processing loop, below.  (That is, it's only used in
5935		 * the action processing loop.)  However, it must be declared
5936		 * out of that scope because in the case of DIF expression
5937		 * arguments to aggregating actions, one iteration of the
5938		 * action loop will use the last iteration's value.
5939		 */
5940		uint64_t val = 0;
5941
5942		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5943		*flags &= ~CPU_DTRACE_ERROR;
5944
5945		if (prov == dtrace_provider) {
5946			/*
5947			 * If dtrace itself is the provider of this probe,
5948			 * we're only going to continue processing the ECB if
5949			 * arg0 (the dtrace_state_t) is equal to the ECB's
5950			 * creating state.  (This prevents disjoint consumers
5951			 * from seeing one another's metaprobes.)
5952			 */
5953			if (arg0 != (uint64_t)(uintptr_t)state)
5954				continue;
5955		}
5956
5957		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5958			/*
5959			 * We're not currently active.  If our provider isn't
5960			 * the dtrace pseudo provider, we're not interested.
5961			 */
5962			if (prov != dtrace_provider)
5963				continue;
5964
5965			/*
5966			 * Now we must further check if we are in the BEGIN
5967			 * probe.  If we are, we will only continue processing
5968			 * if we're still in WARMUP -- if one BEGIN enabling
5969			 * has invoked the exit() action, we don't want to
5970			 * evaluate subsequent BEGIN enablings.
5971			 */
5972			if (probe->dtpr_id == dtrace_probeid_begin &&
5973			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5974				ASSERT(state->dts_activity ==
5975				    DTRACE_ACTIVITY_DRAINING);
5976				continue;
5977			}
5978		}
5979
5980		if (ecb->dte_cond) {
5981			/*
5982			 * If the dte_cond bits indicate that this
5983			 * consumer is only allowed to see user-mode firings
5984			 * of this probe, call the provider's dtps_usermode()
5985			 * entry point to check that the probe was fired
5986			 * while in a user context. Skip this ECB if that's
5987			 * not the case.
5988			 */
5989			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5990			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5991			    probe->dtpr_id, probe->dtpr_arg) == 0)
5992				continue;
5993
5994#if defined(sun)
5995			/*
5996			 * This is more subtle than it looks. We have to be
5997			 * absolutely certain that CRED() isn't going to
5998			 * change out from under us so it's only legit to
5999			 * examine that structure if we're in constrained
6000			 * situations. Currently, the only times we'll this
6001			 * check is if a non-super-user has enabled the
6002			 * profile or syscall providers -- providers that
6003			 * allow visibility of all processes. For the
6004			 * profile case, the check above will ensure that
6005			 * we're examining a user context.
6006			 */
6007			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6008				cred_t *cr;
6009				cred_t *s_cr =
6010				    ecb->dte_state->dts_cred.dcr_cred;
6011				proc_t *proc;
6012
6013				ASSERT(s_cr != NULL);
6014
6015				if ((cr = CRED()) == NULL ||
6016				    s_cr->cr_uid != cr->cr_uid ||
6017				    s_cr->cr_uid != cr->cr_ruid ||
6018				    s_cr->cr_uid != cr->cr_suid ||
6019				    s_cr->cr_gid != cr->cr_gid ||
6020				    s_cr->cr_gid != cr->cr_rgid ||
6021				    s_cr->cr_gid != cr->cr_sgid ||
6022				    (proc = ttoproc(curthread)) == NULL ||
6023				    (proc->p_flag & SNOCD))
6024					continue;
6025			}
6026
6027			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6028				cred_t *cr;
6029				cred_t *s_cr =
6030				    ecb->dte_state->dts_cred.dcr_cred;
6031
6032				ASSERT(s_cr != NULL);
6033
6034				if ((cr = CRED()) == NULL ||
6035				    s_cr->cr_zone->zone_id !=
6036				    cr->cr_zone->zone_id)
6037					continue;
6038			}
6039#endif
6040		}
6041
6042		if (now - state->dts_alive > dtrace_deadman_timeout) {
6043			/*
6044			 * We seem to be dead.  Unless we (a) have kernel
6045			 * destructive permissions (b) have expicitly enabled
6046			 * destructive actions and (c) destructive actions have
6047			 * not been disabled, we're going to transition into
6048			 * the KILLED state, from which no further processing
6049			 * on this state will be performed.
6050			 */
6051			if (!dtrace_priv_kernel_destructive(state) ||
6052			    !state->dts_cred.dcr_destructive ||
6053			    dtrace_destructive_disallow) {
6054				void *activity = &state->dts_activity;
6055				dtrace_activity_t current;
6056
6057				do {
6058					current = state->dts_activity;
6059				} while (dtrace_cas32(activity, current,
6060				    DTRACE_ACTIVITY_KILLED) != current);
6061
6062				continue;
6063			}
6064		}
6065
6066		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6067		    ecb->dte_alignment, state, &mstate)) < 0)
6068			continue;
6069
6070		tomax = buf->dtb_tomax;
6071		ASSERT(tomax != NULL);
6072
6073		if (ecb->dte_size != 0)
6074			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6075
6076		mstate.dtms_epid = ecb->dte_epid;
6077		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6078
6079		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6080			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6081		else
6082			mstate.dtms_access = 0;
6083
6084		if (pred != NULL) {
6085			dtrace_difo_t *dp = pred->dtp_difo;
6086			int rval;
6087
6088			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6089
6090			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6091				dtrace_cacheid_t cid = probe->dtpr_predcache;
6092
6093				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6094					/*
6095					 * Update the predicate cache...
6096					 */
6097					ASSERT(cid == pred->dtp_cacheid);
6098					curthread->t_predcache = cid;
6099				}
6100
6101				continue;
6102			}
6103		}
6104
6105		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6106		    act != NULL; act = act->dta_next) {
6107			size_t valoffs;
6108			dtrace_difo_t *dp;
6109			dtrace_recdesc_t *rec = &act->dta_rec;
6110
6111			size = rec->dtrd_size;
6112			valoffs = offs + rec->dtrd_offset;
6113
6114			if (DTRACEACT_ISAGG(act->dta_kind)) {
6115				uint64_t v = 0xbad;
6116				dtrace_aggregation_t *agg;
6117
6118				agg = (dtrace_aggregation_t *)act;
6119
6120				if ((dp = act->dta_difo) != NULL)
6121					v = dtrace_dif_emulate(dp,
6122					    &mstate, vstate, state);
6123
6124				if (*flags & CPU_DTRACE_ERROR)
6125					continue;
6126
6127				/*
6128				 * Note that we always pass the expression
6129				 * value from the previous iteration of the
6130				 * action loop.  This value will only be used
6131				 * if there is an expression argument to the
6132				 * aggregating action, denoted by the
6133				 * dtag_hasarg field.
6134				 */
6135				dtrace_aggregate(agg, buf,
6136				    offs, aggbuf, v, val);
6137				continue;
6138			}
6139
6140			switch (act->dta_kind) {
6141			case DTRACEACT_STOP:
6142				if (dtrace_priv_proc_destructive(state))
6143					dtrace_action_stop();
6144				continue;
6145
6146			case DTRACEACT_BREAKPOINT:
6147				if (dtrace_priv_kernel_destructive(state))
6148					dtrace_action_breakpoint(ecb);
6149				continue;
6150
6151			case DTRACEACT_PANIC:
6152				if (dtrace_priv_kernel_destructive(state))
6153					dtrace_action_panic(ecb);
6154				continue;
6155
6156			case DTRACEACT_STACK:
6157				if (!dtrace_priv_kernel(state))
6158					continue;
6159
6160				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6161				    size / sizeof (pc_t), probe->dtpr_aframes,
6162				    DTRACE_ANCHORED(probe) ? NULL :
6163				    (uint32_t *)arg0);
6164				continue;
6165
6166#if defined(sun)
6167			case DTRACEACT_JSTACK:
6168			case DTRACEACT_USTACK:
6169				if (!dtrace_priv_proc(state))
6170					continue;
6171
6172				/*
6173				 * See comment in DIF_VAR_PID.
6174				 */
6175				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6176				    CPU_ON_INTR(CPU)) {
6177					int depth = DTRACE_USTACK_NFRAMES(
6178					    rec->dtrd_arg) + 1;
6179
6180					dtrace_bzero((void *)(tomax + valoffs),
6181					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6182					    + depth * sizeof (uint64_t));
6183
6184					continue;
6185				}
6186
6187				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6188				    curproc->p_dtrace_helpers != NULL) {
6189					/*
6190					 * This is the slow path -- we have
6191					 * allocated string space, and we're
6192					 * getting the stack of a process that
6193					 * has helpers.  Call into a separate
6194					 * routine to perform this processing.
6195					 */
6196					dtrace_action_ustack(&mstate, state,
6197					    (uint64_t *)(tomax + valoffs),
6198					    rec->dtrd_arg);
6199					continue;
6200				}
6201
6202				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6203				dtrace_getupcstack((uint64_t *)
6204				    (tomax + valoffs),
6205				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6206				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6207				continue;
6208#endif
6209
6210			default:
6211				break;
6212			}
6213
6214			dp = act->dta_difo;
6215			ASSERT(dp != NULL);
6216
6217			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6218
6219			if (*flags & CPU_DTRACE_ERROR)
6220				continue;
6221
6222			switch (act->dta_kind) {
6223			case DTRACEACT_SPECULATE:
6224				ASSERT(buf == &state->dts_buffer[cpuid]);
6225				buf = dtrace_speculation_buffer(state,
6226				    cpuid, val);
6227
6228				if (buf == NULL) {
6229					*flags |= CPU_DTRACE_DROP;
6230					continue;
6231				}
6232
6233				offs = dtrace_buffer_reserve(buf,
6234				    ecb->dte_needed, ecb->dte_alignment,
6235				    state, NULL);
6236
6237				if (offs < 0) {
6238					*flags |= CPU_DTRACE_DROP;
6239					continue;
6240				}
6241
6242				tomax = buf->dtb_tomax;
6243				ASSERT(tomax != NULL);
6244
6245				if (ecb->dte_size != 0)
6246					DTRACE_STORE(uint32_t, tomax, offs,
6247					    ecb->dte_epid);
6248				continue;
6249
6250			case DTRACEACT_PRINTM: {
6251				/* The DIF returns a 'memref'. */
6252				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6253
6254				/* Get the size from the memref. */
6255				size = memref[1];
6256
6257				/*
6258				 * Check if the size exceeds the allocated
6259				 * buffer size.
6260				 */
6261				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6262					/* Flag a drop! */
6263					*flags |= CPU_DTRACE_DROP;
6264					continue;
6265				}
6266
6267				/* Store the size in the buffer first. */
6268				DTRACE_STORE(uintptr_t, tomax,
6269				    valoffs, size);
6270
6271				/*
6272				 * Offset the buffer address to the start
6273				 * of the data.
6274				 */
6275				valoffs += sizeof(uintptr_t);
6276
6277				/*
6278				 * Reset to the memory address rather than
6279				 * the memref array, then let the BYREF
6280				 * code below do the work to store the
6281				 * memory data in the buffer.
6282				 */
6283				val = memref[0];
6284				break;
6285			}
6286
6287			case DTRACEACT_PRINTT: {
6288				/* The DIF returns a 'typeref'. */
6289				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6290				char c = '\0' + 1;
6291				size_t s;
6292
6293				/*
6294				 * Get the type string length and round it
6295				 * up so that the data that follows is
6296				 * aligned for easy access.
6297				 */
6298				size_t typs = strlen((char *) typeref[2]) + 1;
6299				typs = roundup(typs,  sizeof(uintptr_t));
6300
6301				/*
6302				 *Get the size from the typeref using the
6303				 * number of elements and the type size.
6304				 */
6305				size = typeref[1] * typeref[3];
6306
6307				/*
6308				 * Check if the size exceeds the allocated
6309				 * buffer size.
6310				 */
6311				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6312					/* Flag a drop! */
6313					*flags |= CPU_DTRACE_DROP;
6314
6315				}
6316
6317				/* Store the size in the buffer first. */
6318				DTRACE_STORE(uintptr_t, tomax,
6319				    valoffs, size);
6320				valoffs += sizeof(uintptr_t);
6321
6322				/* Store the type size in the buffer. */
6323				DTRACE_STORE(uintptr_t, tomax,
6324				    valoffs, typeref[3]);
6325				valoffs += sizeof(uintptr_t);
6326
6327				val = typeref[2];
6328
6329				for (s = 0; s < typs; s++) {
6330					if (c != '\0')
6331						c = dtrace_load8(val++);
6332
6333					DTRACE_STORE(uint8_t, tomax,
6334					    valoffs++, c);
6335				}
6336
6337				/*
6338				 * Reset to the memory address rather than
6339				 * the typeref array, then let the BYREF
6340				 * code below do the work to store the
6341				 * memory data in the buffer.
6342				 */
6343				val = typeref[0];
6344				break;
6345			}
6346
6347			case DTRACEACT_CHILL:
6348				if (dtrace_priv_kernel_destructive(state))
6349					dtrace_action_chill(&mstate, val);
6350				continue;
6351
6352			case DTRACEACT_RAISE:
6353				if (dtrace_priv_proc_destructive(state))
6354					dtrace_action_raise(val);
6355				continue;
6356
6357			case DTRACEACT_COMMIT:
6358				ASSERT(!committed);
6359
6360				/*
6361				 * We need to commit our buffer state.
6362				 */
6363				if (ecb->dte_size)
6364					buf->dtb_offset = offs + ecb->dte_size;
6365				buf = &state->dts_buffer[cpuid];
6366				dtrace_speculation_commit(state, cpuid, val);
6367				committed = 1;
6368				continue;
6369
6370			case DTRACEACT_DISCARD:
6371				dtrace_speculation_discard(state, cpuid, val);
6372				continue;
6373
6374			case DTRACEACT_DIFEXPR:
6375			case DTRACEACT_LIBACT:
6376			case DTRACEACT_PRINTF:
6377			case DTRACEACT_PRINTA:
6378			case DTRACEACT_SYSTEM:
6379			case DTRACEACT_FREOPEN:
6380				break;
6381
6382			case DTRACEACT_SYM:
6383			case DTRACEACT_MOD:
6384				if (!dtrace_priv_kernel(state))
6385					continue;
6386				break;
6387
6388			case DTRACEACT_USYM:
6389			case DTRACEACT_UMOD:
6390			case DTRACEACT_UADDR: {
6391#if defined(sun)
6392				struct pid *pid = curthread->t_procp->p_pidp;
6393#endif
6394
6395				if (!dtrace_priv_proc(state))
6396					continue;
6397
6398				DTRACE_STORE(uint64_t, tomax,
6399#if defined(sun)
6400				    valoffs, (uint64_t)pid->pid_id);
6401#else
6402				    valoffs, (uint64_t) curproc->p_pid);
6403#endif
6404				DTRACE_STORE(uint64_t, tomax,
6405				    valoffs + sizeof (uint64_t), val);
6406
6407				continue;
6408			}
6409
6410			case DTRACEACT_EXIT: {
6411				/*
6412				 * For the exit action, we are going to attempt
6413				 * to atomically set our activity to be
6414				 * draining.  If this fails (either because
6415				 * another CPU has beat us to the exit action,
6416				 * or because our current activity is something
6417				 * other than ACTIVE or WARMUP), we will
6418				 * continue.  This assures that the exit action
6419				 * can be successfully recorded at most once
6420				 * when we're in the ACTIVE state.  If we're
6421				 * encountering the exit() action while in
6422				 * COOLDOWN, however, we want to honor the new
6423				 * status code.  (We know that we're the only
6424				 * thread in COOLDOWN, so there is no race.)
6425				 */
6426				void *activity = &state->dts_activity;
6427				dtrace_activity_t current = state->dts_activity;
6428
6429				if (current == DTRACE_ACTIVITY_COOLDOWN)
6430					break;
6431
6432				if (current != DTRACE_ACTIVITY_WARMUP)
6433					current = DTRACE_ACTIVITY_ACTIVE;
6434
6435				if (dtrace_cas32(activity, current,
6436				    DTRACE_ACTIVITY_DRAINING) != current) {
6437					*flags |= CPU_DTRACE_DROP;
6438					continue;
6439				}
6440
6441				break;
6442			}
6443
6444			default:
6445				ASSERT(0);
6446			}
6447
6448			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6449				uintptr_t end = valoffs + size;
6450
6451				if (!dtrace_vcanload((void *)(uintptr_t)val,
6452				    &dp->dtdo_rtype, &mstate, vstate))
6453					continue;
6454
6455				/*
6456				 * If this is a string, we're going to only
6457				 * load until we find the zero byte -- after
6458				 * which we'll store zero bytes.
6459				 */
6460				if (dp->dtdo_rtype.dtdt_kind ==
6461				    DIF_TYPE_STRING) {
6462					char c = '\0' + 1;
6463					int intuple = act->dta_intuple;
6464					size_t s;
6465
6466					for (s = 0; s < size; s++) {
6467						if (c != '\0')
6468							c = dtrace_load8(val++);
6469
6470						DTRACE_STORE(uint8_t, tomax,
6471						    valoffs++, c);
6472
6473						if (c == '\0' && intuple)
6474							break;
6475					}
6476
6477					continue;
6478				}
6479
6480				while (valoffs < end) {
6481					DTRACE_STORE(uint8_t, tomax, valoffs++,
6482					    dtrace_load8(val++));
6483				}
6484
6485				continue;
6486			}
6487
6488			switch (size) {
6489			case 0:
6490				break;
6491
6492			case sizeof (uint8_t):
6493				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6494				break;
6495			case sizeof (uint16_t):
6496				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6497				break;
6498			case sizeof (uint32_t):
6499				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6500				break;
6501			case sizeof (uint64_t):
6502				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6503				break;
6504			default:
6505				/*
6506				 * Any other size should have been returned by
6507				 * reference, not by value.
6508				 */
6509				ASSERT(0);
6510				break;
6511			}
6512		}
6513
6514		if (*flags & CPU_DTRACE_DROP)
6515			continue;
6516
6517		if (*flags & CPU_DTRACE_FAULT) {
6518			int ndx;
6519			dtrace_action_t *err;
6520
6521			buf->dtb_errors++;
6522
6523			if (probe->dtpr_id == dtrace_probeid_error) {
6524				/*
6525				 * There's nothing we can do -- we had an
6526				 * error on the error probe.  We bump an
6527				 * error counter to at least indicate that
6528				 * this condition happened.
6529				 */
6530				dtrace_error(&state->dts_dblerrors);
6531				continue;
6532			}
6533
6534			if (vtime) {
6535				/*
6536				 * Before recursing on dtrace_probe(), we
6537				 * need to explicitly clear out our start
6538				 * time to prevent it from being accumulated
6539				 * into t_dtrace_vtime.
6540				 */
6541				curthread->t_dtrace_start = 0;
6542			}
6543
6544			/*
6545			 * Iterate over the actions to figure out which action
6546			 * we were processing when we experienced the error.
6547			 * Note that act points _past_ the faulting action; if
6548			 * act is ecb->dte_action, the fault was in the
6549			 * predicate, if it's ecb->dte_action->dta_next it's
6550			 * in action #1, and so on.
6551			 */
6552			for (err = ecb->dte_action, ndx = 0;
6553			    err != act; err = err->dta_next, ndx++)
6554				continue;
6555
6556			dtrace_probe_error(state, ecb->dte_epid, ndx,
6557			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6558			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6559			    cpu_core[cpuid].cpuc_dtrace_illval);
6560
6561			continue;
6562		}
6563
6564		if (!committed)
6565			buf->dtb_offset = offs + ecb->dte_size;
6566	}
6567
6568	if (vtime)
6569		curthread->t_dtrace_start = dtrace_gethrtime();
6570
6571	dtrace_interrupt_enable(cookie);
6572}
6573
6574/*
6575 * DTrace Probe Hashing Functions
6576 *
6577 * The functions in this section (and indeed, the functions in remaining
6578 * sections) are not _called_ from probe context.  (Any exceptions to this are
6579 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6580 * DTrace framework to look-up probes in, add probes to and remove probes from
6581 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6582 * probe tuple -- allowing for fast lookups, regardless of what was
6583 * specified.)
6584 */
6585static uint_t
6586dtrace_hash_str(const char *p)
6587{
6588	unsigned int g;
6589	uint_t hval = 0;
6590
6591	while (*p) {
6592		hval = (hval << 4) + *p++;
6593		if ((g = (hval & 0xf0000000)) != 0)
6594			hval ^= g >> 24;
6595		hval &= ~g;
6596	}
6597	return (hval);
6598}
6599
6600static dtrace_hash_t *
6601dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6602{
6603	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6604
6605	hash->dth_stroffs = stroffs;
6606	hash->dth_nextoffs = nextoffs;
6607	hash->dth_prevoffs = prevoffs;
6608
6609	hash->dth_size = 1;
6610	hash->dth_mask = hash->dth_size - 1;
6611
6612	hash->dth_tab = kmem_zalloc(hash->dth_size *
6613	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6614
6615	return (hash);
6616}
6617
6618static void
6619dtrace_hash_destroy(dtrace_hash_t *hash)
6620{
6621#ifdef DEBUG
6622	int i;
6623
6624	for (i = 0; i < hash->dth_size; i++)
6625		ASSERT(hash->dth_tab[i] == NULL);
6626#endif
6627
6628	kmem_free(hash->dth_tab,
6629	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6630	kmem_free(hash, sizeof (dtrace_hash_t));
6631}
6632
6633static void
6634dtrace_hash_resize(dtrace_hash_t *hash)
6635{
6636	int size = hash->dth_size, i, ndx;
6637	int new_size = hash->dth_size << 1;
6638	int new_mask = new_size - 1;
6639	dtrace_hashbucket_t **new_tab, *bucket, *next;
6640
6641	ASSERT((new_size & new_mask) == 0);
6642
6643	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6644
6645	for (i = 0; i < size; i++) {
6646		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6647			dtrace_probe_t *probe = bucket->dthb_chain;
6648
6649			ASSERT(probe != NULL);
6650			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6651
6652			next = bucket->dthb_next;
6653			bucket->dthb_next = new_tab[ndx];
6654			new_tab[ndx] = bucket;
6655		}
6656	}
6657
6658	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6659	hash->dth_tab = new_tab;
6660	hash->dth_size = new_size;
6661	hash->dth_mask = new_mask;
6662}
6663
6664static void
6665dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6666{
6667	int hashval = DTRACE_HASHSTR(hash, new);
6668	int ndx = hashval & hash->dth_mask;
6669	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6670	dtrace_probe_t **nextp, **prevp;
6671
6672	for (; bucket != NULL; bucket = bucket->dthb_next) {
6673		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6674			goto add;
6675	}
6676
6677	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6678		dtrace_hash_resize(hash);
6679		dtrace_hash_add(hash, new);
6680		return;
6681	}
6682
6683	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6684	bucket->dthb_next = hash->dth_tab[ndx];
6685	hash->dth_tab[ndx] = bucket;
6686	hash->dth_nbuckets++;
6687
6688add:
6689	nextp = DTRACE_HASHNEXT(hash, new);
6690	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6691	*nextp = bucket->dthb_chain;
6692
6693	if (bucket->dthb_chain != NULL) {
6694		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6695		ASSERT(*prevp == NULL);
6696		*prevp = new;
6697	}
6698
6699	bucket->dthb_chain = new;
6700	bucket->dthb_len++;
6701}
6702
6703static dtrace_probe_t *
6704dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6705{
6706	int hashval = DTRACE_HASHSTR(hash, template);
6707	int ndx = hashval & hash->dth_mask;
6708	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6709
6710	for (; bucket != NULL; bucket = bucket->dthb_next) {
6711		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6712			return (bucket->dthb_chain);
6713	}
6714
6715	return (NULL);
6716}
6717
6718static int
6719dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6720{
6721	int hashval = DTRACE_HASHSTR(hash, template);
6722	int ndx = hashval & hash->dth_mask;
6723	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6724
6725	for (; bucket != NULL; bucket = bucket->dthb_next) {
6726		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6727			return (bucket->dthb_len);
6728	}
6729
6730	return (0);
6731}
6732
6733static void
6734dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6735{
6736	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6737	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6738
6739	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6740	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6741
6742	/*
6743	 * Find the bucket that we're removing this probe from.
6744	 */
6745	for (; bucket != NULL; bucket = bucket->dthb_next) {
6746		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6747			break;
6748	}
6749
6750	ASSERT(bucket != NULL);
6751
6752	if (*prevp == NULL) {
6753		if (*nextp == NULL) {
6754			/*
6755			 * The removed probe was the only probe on this
6756			 * bucket; we need to remove the bucket.
6757			 */
6758			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6759
6760			ASSERT(bucket->dthb_chain == probe);
6761			ASSERT(b != NULL);
6762
6763			if (b == bucket) {
6764				hash->dth_tab[ndx] = bucket->dthb_next;
6765			} else {
6766				while (b->dthb_next != bucket)
6767					b = b->dthb_next;
6768				b->dthb_next = bucket->dthb_next;
6769			}
6770
6771			ASSERT(hash->dth_nbuckets > 0);
6772			hash->dth_nbuckets--;
6773			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6774			return;
6775		}
6776
6777		bucket->dthb_chain = *nextp;
6778	} else {
6779		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6780	}
6781
6782	if (*nextp != NULL)
6783		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6784}
6785
6786/*
6787 * DTrace Utility Functions
6788 *
6789 * These are random utility functions that are _not_ called from probe context.
6790 */
6791static int
6792dtrace_badattr(const dtrace_attribute_t *a)
6793{
6794	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6795	    a->dtat_data > DTRACE_STABILITY_MAX ||
6796	    a->dtat_class > DTRACE_CLASS_MAX);
6797}
6798
6799/*
6800 * Return a duplicate copy of a string.  If the specified string is NULL,
6801 * this function returns a zero-length string.
6802 */
6803static char *
6804dtrace_strdup(const char *str)
6805{
6806	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6807
6808	if (str != NULL)
6809		(void) strcpy(new, str);
6810
6811	return (new);
6812}
6813
6814#define	DTRACE_ISALPHA(c)	\
6815	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6816
6817static int
6818dtrace_badname(const char *s)
6819{
6820	char c;
6821
6822	if (s == NULL || (c = *s++) == '\0')
6823		return (0);
6824
6825	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6826		return (1);
6827
6828	while ((c = *s++) != '\0') {
6829		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6830		    c != '-' && c != '_' && c != '.' && c != '`')
6831			return (1);
6832	}
6833
6834	return (0);
6835}
6836
6837static void
6838dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6839{
6840	uint32_t priv;
6841
6842#if defined(sun)
6843	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6844		/*
6845		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6846		 */
6847		priv = DTRACE_PRIV_ALL;
6848	} else {
6849		*uidp = crgetuid(cr);
6850		*zoneidp = crgetzoneid(cr);
6851
6852		priv = 0;
6853		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6854			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6855		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6856			priv |= DTRACE_PRIV_USER;
6857		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6858			priv |= DTRACE_PRIV_PROC;
6859		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6860			priv |= DTRACE_PRIV_OWNER;
6861		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6862			priv |= DTRACE_PRIV_ZONEOWNER;
6863	}
6864#else
6865	priv = DTRACE_PRIV_ALL;
6866#endif
6867
6868	*privp = priv;
6869}
6870
6871#ifdef DTRACE_ERRDEBUG
6872static void
6873dtrace_errdebug(const char *str)
6874{
6875	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6876	int occupied = 0;
6877
6878	mutex_enter(&dtrace_errlock);
6879	dtrace_errlast = str;
6880	dtrace_errthread = curthread;
6881
6882	while (occupied++ < DTRACE_ERRHASHSZ) {
6883		if (dtrace_errhash[hval].dter_msg == str) {
6884			dtrace_errhash[hval].dter_count++;
6885			goto out;
6886		}
6887
6888		if (dtrace_errhash[hval].dter_msg != NULL) {
6889			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6890			continue;
6891		}
6892
6893		dtrace_errhash[hval].dter_msg = str;
6894		dtrace_errhash[hval].dter_count = 1;
6895		goto out;
6896	}
6897
6898	panic("dtrace: undersized error hash");
6899out:
6900	mutex_exit(&dtrace_errlock);
6901}
6902#endif
6903
6904/*
6905 * DTrace Matching Functions
6906 *
6907 * These functions are used to match groups of probes, given some elements of
6908 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6909 */
6910static int
6911dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6912    zoneid_t zoneid)
6913{
6914	if (priv != DTRACE_PRIV_ALL) {
6915		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6916		uint32_t match = priv & ppriv;
6917
6918		/*
6919		 * No PRIV_DTRACE_* privileges...
6920		 */
6921		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6922		    DTRACE_PRIV_KERNEL)) == 0)
6923			return (0);
6924
6925		/*
6926		 * No matching bits, but there were bits to match...
6927		 */
6928		if (match == 0 && ppriv != 0)
6929			return (0);
6930
6931		/*
6932		 * Need to have permissions to the process, but don't...
6933		 */
6934		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6935		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6936			return (0);
6937		}
6938
6939		/*
6940		 * Need to be in the same zone unless we possess the
6941		 * privilege to examine all zones.
6942		 */
6943		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6944		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6945			return (0);
6946		}
6947	}
6948
6949	return (1);
6950}
6951
6952/*
6953 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6954 * consists of input pattern strings and an ops-vector to evaluate them.
6955 * This function returns >0 for match, 0 for no match, and <0 for error.
6956 */
6957static int
6958dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6959    uint32_t priv, uid_t uid, zoneid_t zoneid)
6960{
6961	dtrace_provider_t *pvp = prp->dtpr_provider;
6962	int rv;
6963
6964	if (pvp->dtpv_defunct)
6965		return (0);
6966
6967	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6968		return (rv);
6969
6970	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6971		return (rv);
6972
6973	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6974		return (rv);
6975
6976	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6977		return (rv);
6978
6979	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6980		return (0);
6981
6982	return (rv);
6983}
6984
6985/*
6986 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6987 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6988 * libc's version, the kernel version only applies to 8-bit ASCII strings.
6989 * In addition, all of the recursion cases except for '*' matching have been
6990 * unwound.  For '*', we still implement recursive evaluation, but a depth
6991 * counter is maintained and matching is aborted if we recurse too deep.
6992 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6993 */
6994static int
6995dtrace_match_glob(const char *s, const char *p, int depth)
6996{
6997	const char *olds;
6998	char s1, c;
6999	int gs;
7000
7001	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7002		return (-1);
7003
7004	if (s == NULL)
7005		s = ""; /* treat NULL as empty string */
7006
7007top:
7008	olds = s;
7009	s1 = *s++;
7010
7011	if (p == NULL)
7012		return (0);
7013
7014	if ((c = *p++) == '\0')
7015		return (s1 == '\0');
7016
7017	switch (c) {
7018	case '[': {
7019		int ok = 0, notflag = 0;
7020		char lc = '\0';
7021
7022		if (s1 == '\0')
7023			return (0);
7024
7025		if (*p == '!') {
7026			notflag = 1;
7027			p++;
7028		}
7029
7030		if ((c = *p++) == '\0')
7031			return (0);
7032
7033		do {
7034			if (c == '-' && lc != '\0' && *p != ']') {
7035				if ((c = *p++) == '\0')
7036					return (0);
7037				if (c == '\\' && (c = *p++) == '\0')
7038					return (0);
7039
7040				if (notflag) {
7041					if (s1 < lc || s1 > c)
7042						ok++;
7043					else
7044						return (0);
7045				} else if (lc <= s1 && s1 <= c)
7046					ok++;
7047
7048			} else if (c == '\\' && (c = *p++) == '\0')
7049				return (0);
7050
7051			lc = c; /* save left-hand 'c' for next iteration */
7052
7053			if (notflag) {
7054				if (s1 != c)
7055					ok++;
7056				else
7057					return (0);
7058			} else if (s1 == c)
7059				ok++;
7060
7061			if ((c = *p++) == '\0')
7062				return (0);
7063
7064		} while (c != ']');
7065
7066		if (ok)
7067			goto top;
7068
7069		return (0);
7070	}
7071
7072	case '\\':
7073		if ((c = *p++) == '\0')
7074			return (0);
7075		/*FALLTHRU*/
7076
7077	default:
7078		if (c != s1)
7079			return (0);
7080		/*FALLTHRU*/
7081
7082	case '?':
7083		if (s1 != '\0')
7084			goto top;
7085		return (0);
7086
7087	case '*':
7088		while (*p == '*')
7089			p++; /* consecutive *'s are identical to a single one */
7090
7091		if (*p == '\0')
7092			return (1);
7093
7094		for (s = olds; *s != '\0'; s++) {
7095			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7096				return (gs);
7097		}
7098
7099		return (0);
7100	}
7101}
7102
7103/*ARGSUSED*/
7104static int
7105dtrace_match_string(const char *s, const char *p, int depth)
7106{
7107	return (s != NULL && strcmp(s, p) == 0);
7108}
7109
7110/*ARGSUSED*/
7111static int
7112dtrace_match_nul(const char *s, const char *p, int depth)
7113{
7114	return (1); /* always match the empty pattern */
7115}
7116
7117/*ARGSUSED*/
7118static int
7119dtrace_match_nonzero(const char *s, const char *p, int depth)
7120{
7121	return (s != NULL && s[0] != '\0');
7122}
7123
7124static int
7125dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7126    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7127{
7128	dtrace_probe_t template, *probe;
7129	dtrace_hash_t *hash = NULL;
7130	int len, best = INT_MAX, nmatched = 0;
7131	dtrace_id_t i;
7132
7133	ASSERT(MUTEX_HELD(&dtrace_lock));
7134
7135	/*
7136	 * If the probe ID is specified in the key, just lookup by ID and
7137	 * invoke the match callback once if a matching probe is found.
7138	 */
7139	if (pkp->dtpk_id != DTRACE_IDNONE) {
7140		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7141		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7142			(void) (*matched)(probe, arg);
7143			nmatched++;
7144		}
7145		return (nmatched);
7146	}
7147
7148	template.dtpr_mod = (char *)pkp->dtpk_mod;
7149	template.dtpr_func = (char *)pkp->dtpk_func;
7150	template.dtpr_name = (char *)pkp->dtpk_name;
7151
7152	/*
7153	 * We want to find the most distinct of the module name, function
7154	 * name, and name.  So for each one that is not a glob pattern or
7155	 * empty string, we perform a lookup in the corresponding hash and
7156	 * use the hash table with the fewest collisions to do our search.
7157	 */
7158	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7159	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7160		best = len;
7161		hash = dtrace_bymod;
7162	}
7163
7164	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7165	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7166		best = len;
7167		hash = dtrace_byfunc;
7168	}
7169
7170	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7171	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7172		best = len;
7173		hash = dtrace_byname;
7174	}
7175
7176	/*
7177	 * If we did not select a hash table, iterate over every probe and
7178	 * invoke our callback for each one that matches our input probe key.
7179	 */
7180	if (hash == NULL) {
7181		for (i = 0; i < dtrace_nprobes; i++) {
7182			if ((probe = dtrace_probes[i]) == NULL ||
7183			    dtrace_match_probe(probe, pkp, priv, uid,
7184			    zoneid) <= 0)
7185				continue;
7186
7187			nmatched++;
7188
7189			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7190				break;
7191		}
7192
7193		return (nmatched);
7194	}
7195
7196	/*
7197	 * If we selected a hash table, iterate over each probe of the same key
7198	 * name and invoke the callback for every probe that matches the other
7199	 * attributes of our input probe key.
7200	 */
7201	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7202	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7203
7204		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7205			continue;
7206
7207		nmatched++;
7208
7209		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7210			break;
7211	}
7212
7213	return (nmatched);
7214}
7215
7216/*
7217 * Return the function pointer dtrace_probecmp() should use to compare the
7218 * specified pattern with a string.  For NULL or empty patterns, we select
7219 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7220 * For non-empty non-glob strings, we use dtrace_match_string().
7221 */
7222static dtrace_probekey_f *
7223dtrace_probekey_func(const char *p)
7224{
7225	char c;
7226
7227	if (p == NULL || *p == '\0')
7228		return (&dtrace_match_nul);
7229
7230	while ((c = *p++) != '\0') {
7231		if (c == '[' || c == '?' || c == '*' || c == '\\')
7232			return (&dtrace_match_glob);
7233	}
7234
7235	return (&dtrace_match_string);
7236}
7237
7238/*
7239 * Build a probe comparison key for use with dtrace_match_probe() from the
7240 * given probe description.  By convention, a null key only matches anchored
7241 * probes: if each field is the empty string, reset dtpk_fmatch to
7242 * dtrace_match_nonzero().
7243 */
7244static void
7245dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7246{
7247	pkp->dtpk_prov = pdp->dtpd_provider;
7248	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7249
7250	pkp->dtpk_mod = pdp->dtpd_mod;
7251	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7252
7253	pkp->dtpk_func = pdp->dtpd_func;
7254	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7255
7256	pkp->dtpk_name = pdp->dtpd_name;
7257	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7258
7259	pkp->dtpk_id = pdp->dtpd_id;
7260
7261	if (pkp->dtpk_id == DTRACE_IDNONE &&
7262	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7263	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7264	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7265	    pkp->dtpk_nmatch == &dtrace_match_nul)
7266		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7267}
7268
7269/*
7270 * DTrace Provider-to-Framework API Functions
7271 *
7272 * These functions implement much of the Provider-to-Framework API, as
7273 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7274 * the functions in the API for probe management (found below), and
7275 * dtrace_probe() itself (found above).
7276 */
7277
7278/*
7279 * Register the calling provider with the DTrace framework.  This should
7280 * generally be called by DTrace providers in their attach(9E) entry point.
7281 */
7282int
7283dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7284    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7285{
7286	dtrace_provider_t *provider;
7287
7288	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7289		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7290		    "arguments", name ? name : "<NULL>");
7291		return (EINVAL);
7292	}
7293
7294	if (name[0] == '\0' || dtrace_badname(name)) {
7295		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7296		    "provider name", name);
7297		return (EINVAL);
7298	}
7299
7300	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7301	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7302	    pops->dtps_destroy == NULL ||
7303	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7304		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7305		    "provider ops", name);
7306		return (EINVAL);
7307	}
7308
7309	if (dtrace_badattr(&pap->dtpa_provider) ||
7310	    dtrace_badattr(&pap->dtpa_mod) ||
7311	    dtrace_badattr(&pap->dtpa_func) ||
7312	    dtrace_badattr(&pap->dtpa_name) ||
7313	    dtrace_badattr(&pap->dtpa_args)) {
7314		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7315		    "provider attributes", name);
7316		return (EINVAL);
7317	}
7318
7319	if (priv & ~DTRACE_PRIV_ALL) {
7320		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7321		    "privilege attributes", name);
7322		return (EINVAL);
7323	}
7324
7325	if ((priv & DTRACE_PRIV_KERNEL) &&
7326	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7327	    pops->dtps_usermode == NULL) {
7328		cmn_err(CE_WARN, "failed to register provider '%s': need "
7329		    "dtps_usermode() op for given privilege attributes", name);
7330		return (EINVAL);
7331	}
7332
7333	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7334	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7335	(void) strcpy(provider->dtpv_name, name);
7336
7337	provider->dtpv_attr = *pap;
7338	provider->dtpv_priv.dtpp_flags = priv;
7339	if (cr != NULL) {
7340		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7341		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7342	}
7343	provider->dtpv_pops = *pops;
7344
7345	if (pops->dtps_provide == NULL) {
7346		ASSERT(pops->dtps_provide_module != NULL);
7347		provider->dtpv_pops.dtps_provide =
7348		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7349	}
7350
7351	if (pops->dtps_provide_module == NULL) {
7352		ASSERT(pops->dtps_provide != NULL);
7353		provider->dtpv_pops.dtps_provide_module =
7354		    (void (*)(void *, modctl_t *))dtrace_nullop;
7355	}
7356
7357	if (pops->dtps_suspend == NULL) {
7358		ASSERT(pops->dtps_resume == NULL);
7359		provider->dtpv_pops.dtps_suspend =
7360		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7361		provider->dtpv_pops.dtps_resume =
7362		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7363	}
7364
7365	provider->dtpv_arg = arg;
7366	*idp = (dtrace_provider_id_t)provider;
7367
7368	if (pops == &dtrace_provider_ops) {
7369		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7370		ASSERT(MUTEX_HELD(&dtrace_lock));
7371		ASSERT(dtrace_anon.dta_enabling == NULL);
7372
7373		/*
7374		 * We make sure that the DTrace provider is at the head of
7375		 * the provider chain.
7376		 */
7377		provider->dtpv_next = dtrace_provider;
7378		dtrace_provider = provider;
7379		return (0);
7380	}
7381
7382	mutex_enter(&dtrace_provider_lock);
7383	mutex_enter(&dtrace_lock);
7384
7385	/*
7386	 * If there is at least one provider registered, we'll add this
7387	 * provider after the first provider.
7388	 */
7389	if (dtrace_provider != NULL) {
7390		provider->dtpv_next = dtrace_provider->dtpv_next;
7391		dtrace_provider->dtpv_next = provider;
7392	} else {
7393		dtrace_provider = provider;
7394	}
7395
7396	if (dtrace_retained != NULL) {
7397		dtrace_enabling_provide(provider);
7398
7399		/*
7400		 * Now we need to call dtrace_enabling_matchall() -- which
7401		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7402		 * to drop all of our locks before calling into it...
7403		 */
7404		mutex_exit(&dtrace_lock);
7405		mutex_exit(&dtrace_provider_lock);
7406		dtrace_enabling_matchall();
7407
7408		return (0);
7409	}
7410
7411	mutex_exit(&dtrace_lock);
7412	mutex_exit(&dtrace_provider_lock);
7413
7414	return (0);
7415}
7416
7417/*
7418 * Unregister the specified provider from the DTrace framework.  This should
7419 * generally be called by DTrace providers in their detach(9E) entry point.
7420 */
7421int
7422dtrace_unregister(dtrace_provider_id_t id)
7423{
7424	dtrace_provider_t *old = (dtrace_provider_t *)id;
7425	dtrace_provider_t *prev = NULL;
7426	int i, self = 0;
7427	dtrace_probe_t *probe, *first = NULL;
7428
7429	if (old->dtpv_pops.dtps_enable ==
7430	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7431		/*
7432		 * If DTrace itself is the provider, we're called with locks
7433		 * already held.
7434		 */
7435		ASSERT(old == dtrace_provider);
7436#if defined(sun)
7437		ASSERT(dtrace_devi != NULL);
7438#endif
7439		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7440		ASSERT(MUTEX_HELD(&dtrace_lock));
7441		self = 1;
7442
7443		if (dtrace_provider->dtpv_next != NULL) {
7444			/*
7445			 * There's another provider here; return failure.
7446			 */
7447			return (EBUSY);
7448		}
7449	} else {
7450		mutex_enter(&dtrace_provider_lock);
7451		mutex_enter(&mod_lock);
7452		mutex_enter(&dtrace_lock);
7453	}
7454
7455	/*
7456	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7457	 * probes, we refuse to let providers slither away, unless this
7458	 * provider has already been explicitly invalidated.
7459	 */
7460	if (!old->dtpv_defunct &&
7461	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7462	    dtrace_anon.dta_state->dts_necbs > 0))) {
7463		if (!self) {
7464			mutex_exit(&dtrace_lock);
7465			mutex_exit(&mod_lock);
7466			mutex_exit(&dtrace_provider_lock);
7467		}
7468		return (EBUSY);
7469	}
7470
7471	/*
7472	 * Attempt to destroy the probes associated with this provider.
7473	 */
7474	for (i = 0; i < dtrace_nprobes; i++) {
7475		if ((probe = dtrace_probes[i]) == NULL)
7476			continue;
7477
7478		if (probe->dtpr_provider != old)
7479			continue;
7480
7481		if (probe->dtpr_ecb == NULL)
7482			continue;
7483
7484		/*
7485		 * We have at least one ECB; we can't remove this provider.
7486		 */
7487		if (!self) {
7488			mutex_exit(&dtrace_lock);
7489			mutex_exit(&mod_lock);
7490			mutex_exit(&dtrace_provider_lock);
7491		}
7492		return (EBUSY);
7493	}
7494
7495	/*
7496	 * All of the probes for this provider are disabled; we can safely
7497	 * remove all of them from their hash chains and from the probe array.
7498	 */
7499	for (i = 0; i < dtrace_nprobes; i++) {
7500		if ((probe = dtrace_probes[i]) == NULL)
7501			continue;
7502
7503		if (probe->dtpr_provider != old)
7504			continue;
7505
7506		dtrace_probes[i] = NULL;
7507
7508		dtrace_hash_remove(dtrace_bymod, probe);
7509		dtrace_hash_remove(dtrace_byfunc, probe);
7510		dtrace_hash_remove(dtrace_byname, probe);
7511
7512		if (first == NULL) {
7513			first = probe;
7514			probe->dtpr_nextmod = NULL;
7515		} else {
7516			probe->dtpr_nextmod = first;
7517			first = probe;
7518		}
7519	}
7520
7521	/*
7522	 * The provider's probes have been removed from the hash chains and
7523	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7524	 * everyone has cleared out from any probe array processing.
7525	 */
7526	dtrace_sync();
7527
7528	for (probe = first; probe != NULL; probe = first) {
7529		first = probe->dtpr_nextmod;
7530
7531		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7532		    probe->dtpr_arg);
7533		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7534		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7535		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7536#if defined(sun)
7537		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7538#else
7539		free_unr(dtrace_arena, probe->dtpr_id);
7540#endif
7541		kmem_free(probe, sizeof (dtrace_probe_t));
7542	}
7543
7544	if ((prev = dtrace_provider) == old) {
7545#if defined(sun)
7546		ASSERT(self || dtrace_devi == NULL);
7547		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7548#endif
7549		dtrace_provider = old->dtpv_next;
7550	} else {
7551		while (prev != NULL && prev->dtpv_next != old)
7552			prev = prev->dtpv_next;
7553
7554		if (prev == NULL) {
7555			panic("attempt to unregister non-existent "
7556			    "dtrace provider %p\n", (void *)id);
7557		}
7558
7559		prev->dtpv_next = old->dtpv_next;
7560	}
7561
7562	if (!self) {
7563		mutex_exit(&dtrace_lock);
7564		mutex_exit(&mod_lock);
7565		mutex_exit(&dtrace_provider_lock);
7566	}
7567
7568	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7569	kmem_free(old, sizeof (dtrace_provider_t));
7570
7571	return (0);
7572}
7573
7574/*
7575 * Invalidate the specified provider.  All subsequent probe lookups for the
7576 * specified provider will fail, but its probes will not be removed.
7577 */
7578void
7579dtrace_invalidate(dtrace_provider_id_t id)
7580{
7581	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7582
7583	ASSERT(pvp->dtpv_pops.dtps_enable !=
7584	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7585
7586	mutex_enter(&dtrace_provider_lock);
7587	mutex_enter(&dtrace_lock);
7588
7589	pvp->dtpv_defunct = 1;
7590
7591	mutex_exit(&dtrace_lock);
7592	mutex_exit(&dtrace_provider_lock);
7593}
7594
7595/*
7596 * Indicate whether or not DTrace has attached.
7597 */
7598int
7599dtrace_attached(void)
7600{
7601	/*
7602	 * dtrace_provider will be non-NULL iff the DTrace driver has
7603	 * attached.  (It's non-NULL because DTrace is always itself a
7604	 * provider.)
7605	 */
7606	return (dtrace_provider != NULL);
7607}
7608
7609/*
7610 * Remove all the unenabled probes for the given provider.  This function is
7611 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7612 * -- just as many of its associated probes as it can.
7613 */
7614int
7615dtrace_condense(dtrace_provider_id_t id)
7616{
7617	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7618	int i;
7619	dtrace_probe_t *probe;
7620
7621	/*
7622	 * Make sure this isn't the dtrace provider itself.
7623	 */
7624	ASSERT(prov->dtpv_pops.dtps_enable !=
7625	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7626
7627	mutex_enter(&dtrace_provider_lock);
7628	mutex_enter(&dtrace_lock);
7629
7630	/*
7631	 * Attempt to destroy the probes associated with this provider.
7632	 */
7633	for (i = 0; i < dtrace_nprobes; i++) {
7634		if ((probe = dtrace_probes[i]) == NULL)
7635			continue;
7636
7637		if (probe->dtpr_provider != prov)
7638			continue;
7639
7640		if (probe->dtpr_ecb != NULL)
7641			continue;
7642
7643		dtrace_probes[i] = NULL;
7644
7645		dtrace_hash_remove(dtrace_bymod, probe);
7646		dtrace_hash_remove(dtrace_byfunc, probe);
7647		dtrace_hash_remove(dtrace_byname, probe);
7648
7649		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7650		    probe->dtpr_arg);
7651		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7652		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7653		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7654		kmem_free(probe, sizeof (dtrace_probe_t));
7655#if defined(sun)
7656		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7657#else
7658		free_unr(dtrace_arena, i + 1);
7659#endif
7660	}
7661
7662	mutex_exit(&dtrace_lock);
7663	mutex_exit(&dtrace_provider_lock);
7664
7665	return (0);
7666}
7667
7668/*
7669 * DTrace Probe Management Functions
7670 *
7671 * The functions in this section perform the DTrace probe management,
7672 * including functions to create probes, look-up probes, and call into the
7673 * providers to request that probes be provided.  Some of these functions are
7674 * in the Provider-to-Framework API; these functions can be identified by the
7675 * fact that they are not declared "static".
7676 */
7677
7678/*
7679 * Create a probe with the specified module name, function name, and name.
7680 */
7681dtrace_id_t
7682dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7683    const char *func, const char *name, int aframes, void *arg)
7684{
7685	dtrace_probe_t *probe, **probes;
7686	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7687	dtrace_id_t id;
7688
7689	if (provider == dtrace_provider) {
7690		ASSERT(MUTEX_HELD(&dtrace_lock));
7691	} else {
7692		mutex_enter(&dtrace_lock);
7693	}
7694
7695#if defined(sun)
7696	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7697	    VM_BESTFIT | VM_SLEEP);
7698#else
7699	id = alloc_unr(dtrace_arena);
7700#endif
7701	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7702
7703	probe->dtpr_id = id;
7704	probe->dtpr_gen = dtrace_probegen++;
7705	probe->dtpr_mod = dtrace_strdup(mod);
7706	probe->dtpr_func = dtrace_strdup(func);
7707	probe->dtpr_name = dtrace_strdup(name);
7708	probe->dtpr_arg = arg;
7709	probe->dtpr_aframes = aframes;
7710	probe->dtpr_provider = provider;
7711
7712	dtrace_hash_add(dtrace_bymod, probe);
7713	dtrace_hash_add(dtrace_byfunc, probe);
7714	dtrace_hash_add(dtrace_byname, probe);
7715
7716	if (id - 1 >= dtrace_nprobes) {
7717		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7718		size_t nsize = osize << 1;
7719
7720		if (nsize == 0) {
7721			ASSERT(osize == 0);
7722			ASSERT(dtrace_probes == NULL);
7723			nsize = sizeof (dtrace_probe_t *);
7724		}
7725
7726		probes = kmem_zalloc(nsize, KM_SLEEP);
7727
7728		if (dtrace_probes == NULL) {
7729			ASSERT(osize == 0);
7730			dtrace_probes = probes;
7731			dtrace_nprobes = 1;
7732		} else {
7733			dtrace_probe_t **oprobes = dtrace_probes;
7734
7735			bcopy(oprobes, probes, osize);
7736			dtrace_membar_producer();
7737			dtrace_probes = probes;
7738
7739			dtrace_sync();
7740
7741			/*
7742			 * All CPUs are now seeing the new probes array; we can
7743			 * safely free the old array.
7744			 */
7745			kmem_free(oprobes, osize);
7746			dtrace_nprobes <<= 1;
7747		}
7748
7749		ASSERT(id - 1 < dtrace_nprobes);
7750	}
7751
7752	ASSERT(dtrace_probes[id - 1] == NULL);
7753	dtrace_probes[id - 1] = probe;
7754
7755	if (provider != dtrace_provider)
7756		mutex_exit(&dtrace_lock);
7757
7758	return (id);
7759}
7760
7761static dtrace_probe_t *
7762dtrace_probe_lookup_id(dtrace_id_t id)
7763{
7764	ASSERT(MUTEX_HELD(&dtrace_lock));
7765
7766	if (id == 0 || id > dtrace_nprobes)
7767		return (NULL);
7768
7769	return (dtrace_probes[id - 1]);
7770}
7771
7772static int
7773dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7774{
7775	*((dtrace_id_t *)arg) = probe->dtpr_id;
7776
7777	return (DTRACE_MATCH_DONE);
7778}
7779
7780/*
7781 * Look up a probe based on provider and one or more of module name, function
7782 * name and probe name.
7783 */
7784dtrace_id_t
7785dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7786    char *func, char *name)
7787{
7788	dtrace_probekey_t pkey;
7789	dtrace_id_t id;
7790	int match;
7791
7792	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7793	pkey.dtpk_pmatch = &dtrace_match_string;
7794	pkey.dtpk_mod = mod;
7795	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7796	pkey.dtpk_func = func;
7797	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7798	pkey.dtpk_name = name;
7799	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7800	pkey.dtpk_id = DTRACE_IDNONE;
7801
7802	mutex_enter(&dtrace_lock);
7803	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7804	    dtrace_probe_lookup_match, &id);
7805	mutex_exit(&dtrace_lock);
7806
7807	ASSERT(match == 1 || match == 0);
7808	return (match ? id : 0);
7809}
7810
7811/*
7812 * Returns the probe argument associated with the specified probe.
7813 */
7814void *
7815dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7816{
7817	dtrace_probe_t *probe;
7818	void *rval = NULL;
7819
7820	mutex_enter(&dtrace_lock);
7821
7822	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7823	    probe->dtpr_provider == (dtrace_provider_t *)id)
7824		rval = probe->dtpr_arg;
7825
7826	mutex_exit(&dtrace_lock);
7827
7828	return (rval);
7829}
7830
7831/*
7832 * Copy a probe into a probe description.
7833 */
7834static void
7835dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7836{
7837	bzero(pdp, sizeof (dtrace_probedesc_t));
7838	pdp->dtpd_id = prp->dtpr_id;
7839
7840	(void) strncpy(pdp->dtpd_provider,
7841	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7842
7843	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7844	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7845	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7846}
7847
7848#if !defined(sun)
7849static int
7850dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7851{
7852	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7853
7854	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7855
7856	return(0);
7857}
7858#endif
7859
7860
7861/*
7862 * Called to indicate that a probe -- or probes -- should be provided by a
7863 * specfied provider.  If the specified description is NULL, the provider will
7864 * be told to provide all of its probes.  (This is done whenever a new
7865 * consumer comes along, or whenever a retained enabling is to be matched.) If
7866 * the specified description is non-NULL, the provider is given the
7867 * opportunity to dynamically provide the specified probe, allowing providers
7868 * to support the creation of probes on-the-fly.  (So-called _autocreated_
7869 * probes.)  If the provider is NULL, the operations will be applied to all
7870 * providers; if the provider is non-NULL the operations will only be applied
7871 * to the specified provider.  The dtrace_provider_lock must be held, and the
7872 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7873 * will need to grab the dtrace_lock when it reenters the framework through
7874 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7875 */
7876static void
7877dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7878{
7879#if defined(sun)
7880	modctl_t *ctl;
7881#endif
7882	int all = 0;
7883
7884	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7885
7886	if (prv == NULL) {
7887		all = 1;
7888		prv = dtrace_provider;
7889	}
7890
7891	do {
7892		/*
7893		 * First, call the blanket provide operation.
7894		 */
7895		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7896
7897		/*
7898		 * Now call the per-module provide operation.  We will grab
7899		 * mod_lock to prevent the list from being modified.  Note
7900		 * that this also prevents the mod_busy bits from changing.
7901		 * (mod_busy can only be changed with mod_lock held.)
7902		 */
7903		mutex_enter(&mod_lock);
7904
7905#if defined(sun)
7906		ctl = &modules;
7907		do {
7908			if (ctl->mod_busy || ctl->mod_mp == NULL)
7909				continue;
7910
7911			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7912
7913		} while ((ctl = ctl->mod_next) != &modules);
7914#else
7915		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
7916#endif
7917
7918		mutex_exit(&mod_lock);
7919	} while (all && (prv = prv->dtpv_next) != NULL);
7920}
7921
7922#if defined(sun)
7923/*
7924 * Iterate over each probe, and call the Framework-to-Provider API function
7925 * denoted by offs.
7926 */
7927static void
7928dtrace_probe_foreach(uintptr_t offs)
7929{
7930	dtrace_provider_t *prov;
7931	void (*func)(void *, dtrace_id_t, void *);
7932	dtrace_probe_t *probe;
7933	dtrace_icookie_t cookie;
7934	int i;
7935
7936	/*
7937	 * We disable interrupts to walk through the probe array.  This is
7938	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7939	 * won't see stale data.
7940	 */
7941	cookie = dtrace_interrupt_disable();
7942
7943	for (i = 0; i < dtrace_nprobes; i++) {
7944		if ((probe = dtrace_probes[i]) == NULL)
7945			continue;
7946
7947		if (probe->dtpr_ecb == NULL) {
7948			/*
7949			 * This probe isn't enabled -- don't call the function.
7950			 */
7951			continue;
7952		}
7953
7954		prov = probe->dtpr_provider;
7955		func = *((void(**)(void *, dtrace_id_t, void *))
7956		    ((uintptr_t)&prov->dtpv_pops + offs));
7957
7958		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7959	}
7960
7961	dtrace_interrupt_enable(cookie);
7962}
7963#endif
7964
7965static int
7966dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7967{
7968	dtrace_probekey_t pkey;
7969	uint32_t priv;
7970	uid_t uid;
7971	zoneid_t zoneid;
7972
7973	ASSERT(MUTEX_HELD(&dtrace_lock));
7974	dtrace_ecb_create_cache = NULL;
7975
7976	if (desc == NULL) {
7977		/*
7978		 * If we're passed a NULL description, we're being asked to
7979		 * create an ECB with a NULL probe.
7980		 */
7981		(void) dtrace_ecb_create_enable(NULL, enab);
7982		return (0);
7983	}
7984
7985	dtrace_probekey(desc, &pkey);
7986	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7987	    &priv, &uid, &zoneid);
7988
7989	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7990	    enab));
7991}
7992
7993/*
7994 * DTrace Helper Provider Functions
7995 */
7996static void
7997dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7998{
7999	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8000	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8001	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8002}
8003
8004static void
8005dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8006    const dof_provider_t *dofprov, char *strtab)
8007{
8008	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8009	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8010	    dofprov->dofpv_provattr);
8011	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8012	    dofprov->dofpv_modattr);
8013	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8014	    dofprov->dofpv_funcattr);
8015	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8016	    dofprov->dofpv_nameattr);
8017	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8018	    dofprov->dofpv_argsattr);
8019}
8020
8021static void
8022dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8023{
8024	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8025	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8026	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8027	dof_provider_t *provider;
8028	dof_probe_t *probe;
8029	uint32_t *off, *enoff;
8030	uint8_t *arg;
8031	char *strtab;
8032	uint_t i, nprobes;
8033	dtrace_helper_provdesc_t dhpv;
8034	dtrace_helper_probedesc_t dhpb;
8035	dtrace_meta_t *meta = dtrace_meta_pid;
8036	dtrace_mops_t *mops = &meta->dtm_mops;
8037	void *parg;
8038
8039	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8040	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8041	    provider->dofpv_strtab * dof->dofh_secsize);
8042	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8043	    provider->dofpv_probes * dof->dofh_secsize);
8044	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8045	    provider->dofpv_prargs * dof->dofh_secsize);
8046	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8047	    provider->dofpv_proffs * dof->dofh_secsize);
8048
8049	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8050	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8051	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8052	enoff = NULL;
8053
8054	/*
8055	 * See dtrace_helper_provider_validate().
8056	 */
8057	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8058	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8059		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8060		    provider->dofpv_prenoffs * dof->dofh_secsize);
8061		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8062	}
8063
8064	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8065
8066	/*
8067	 * Create the provider.
8068	 */
8069	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8070
8071	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8072		return;
8073
8074	meta->dtm_count++;
8075
8076	/*
8077	 * Create the probes.
8078	 */
8079	for (i = 0; i < nprobes; i++) {
8080		probe = (dof_probe_t *)(uintptr_t)(daddr +
8081		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8082
8083		dhpb.dthpb_mod = dhp->dofhp_mod;
8084		dhpb.dthpb_func = strtab + probe->dofpr_func;
8085		dhpb.dthpb_name = strtab + probe->dofpr_name;
8086		dhpb.dthpb_base = probe->dofpr_addr;
8087		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8088		dhpb.dthpb_noffs = probe->dofpr_noffs;
8089		if (enoff != NULL) {
8090			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8091			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8092		} else {
8093			dhpb.dthpb_enoffs = NULL;
8094			dhpb.dthpb_nenoffs = 0;
8095		}
8096		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8097		dhpb.dthpb_nargc = probe->dofpr_nargc;
8098		dhpb.dthpb_xargc = probe->dofpr_xargc;
8099		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8100		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8101
8102		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8103	}
8104}
8105
8106static void
8107dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8108{
8109	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8110	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8111	int i;
8112
8113	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8114
8115	for (i = 0; i < dof->dofh_secnum; i++) {
8116		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8117		    dof->dofh_secoff + i * dof->dofh_secsize);
8118
8119		if (sec->dofs_type != DOF_SECT_PROVIDER)
8120			continue;
8121
8122		dtrace_helper_provide_one(dhp, sec, pid);
8123	}
8124
8125	/*
8126	 * We may have just created probes, so we must now rematch against
8127	 * any retained enablings.  Note that this call will acquire both
8128	 * cpu_lock and dtrace_lock; the fact that we are holding
8129	 * dtrace_meta_lock now is what defines the ordering with respect to
8130	 * these three locks.
8131	 */
8132	dtrace_enabling_matchall();
8133}
8134
8135#if defined(sun)
8136static void
8137dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8138{
8139	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8140	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8141	dof_sec_t *str_sec;
8142	dof_provider_t *provider;
8143	char *strtab;
8144	dtrace_helper_provdesc_t dhpv;
8145	dtrace_meta_t *meta = dtrace_meta_pid;
8146	dtrace_mops_t *mops = &meta->dtm_mops;
8147
8148	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8149	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8150	    provider->dofpv_strtab * dof->dofh_secsize);
8151
8152	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8153
8154	/*
8155	 * Create the provider.
8156	 */
8157	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8158
8159	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8160
8161	meta->dtm_count--;
8162}
8163
8164static void
8165dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8166{
8167	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8168	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8169	int i;
8170
8171	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8172
8173	for (i = 0; i < dof->dofh_secnum; i++) {
8174		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8175		    dof->dofh_secoff + i * dof->dofh_secsize);
8176
8177		if (sec->dofs_type != DOF_SECT_PROVIDER)
8178			continue;
8179
8180		dtrace_helper_provider_remove_one(dhp, sec, pid);
8181	}
8182}
8183#endif
8184
8185/*
8186 * DTrace Meta Provider-to-Framework API Functions
8187 *
8188 * These functions implement the Meta Provider-to-Framework API, as described
8189 * in <sys/dtrace.h>.
8190 */
8191int
8192dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8193    dtrace_meta_provider_id_t *idp)
8194{
8195	dtrace_meta_t *meta;
8196	dtrace_helpers_t *help, *next;
8197	int i;
8198
8199	*idp = DTRACE_METAPROVNONE;
8200
8201	/*
8202	 * We strictly don't need the name, but we hold onto it for
8203	 * debuggability. All hail error queues!
8204	 */
8205	if (name == NULL) {
8206		cmn_err(CE_WARN, "failed to register meta-provider: "
8207		    "invalid name");
8208		return (EINVAL);
8209	}
8210
8211	if (mops == NULL ||
8212	    mops->dtms_create_probe == NULL ||
8213	    mops->dtms_provide_pid == NULL ||
8214	    mops->dtms_remove_pid == NULL) {
8215		cmn_err(CE_WARN, "failed to register meta-register %s: "
8216		    "invalid ops", name);
8217		return (EINVAL);
8218	}
8219
8220	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8221	meta->dtm_mops = *mops;
8222	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8223	(void) strcpy(meta->dtm_name, name);
8224	meta->dtm_arg = arg;
8225
8226	mutex_enter(&dtrace_meta_lock);
8227	mutex_enter(&dtrace_lock);
8228
8229	if (dtrace_meta_pid != NULL) {
8230		mutex_exit(&dtrace_lock);
8231		mutex_exit(&dtrace_meta_lock);
8232		cmn_err(CE_WARN, "failed to register meta-register %s: "
8233		    "user-land meta-provider exists", name);
8234		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8235		kmem_free(meta, sizeof (dtrace_meta_t));
8236		return (EINVAL);
8237	}
8238
8239	dtrace_meta_pid = meta;
8240	*idp = (dtrace_meta_provider_id_t)meta;
8241
8242	/*
8243	 * If there are providers and probes ready to go, pass them
8244	 * off to the new meta provider now.
8245	 */
8246
8247	help = dtrace_deferred_pid;
8248	dtrace_deferred_pid = NULL;
8249
8250	mutex_exit(&dtrace_lock);
8251
8252	while (help != NULL) {
8253		for (i = 0; i < help->dthps_nprovs; i++) {
8254			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8255			    help->dthps_pid);
8256		}
8257
8258		next = help->dthps_next;
8259		help->dthps_next = NULL;
8260		help->dthps_prev = NULL;
8261		help->dthps_deferred = 0;
8262		help = next;
8263	}
8264
8265	mutex_exit(&dtrace_meta_lock);
8266
8267	return (0);
8268}
8269
8270int
8271dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8272{
8273	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8274
8275	mutex_enter(&dtrace_meta_lock);
8276	mutex_enter(&dtrace_lock);
8277
8278	if (old == dtrace_meta_pid) {
8279		pp = &dtrace_meta_pid;
8280	} else {
8281		panic("attempt to unregister non-existent "
8282		    "dtrace meta-provider %p\n", (void *)old);
8283	}
8284
8285	if (old->dtm_count != 0) {
8286		mutex_exit(&dtrace_lock);
8287		mutex_exit(&dtrace_meta_lock);
8288		return (EBUSY);
8289	}
8290
8291	*pp = NULL;
8292
8293	mutex_exit(&dtrace_lock);
8294	mutex_exit(&dtrace_meta_lock);
8295
8296	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8297	kmem_free(old, sizeof (dtrace_meta_t));
8298
8299	return (0);
8300}
8301
8302
8303/*
8304 * DTrace DIF Object Functions
8305 */
8306static int
8307dtrace_difo_err(uint_t pc, const char *format, ...)
8308{
8309	if (dtrace_err_verbose) {
8310		va_list alist;
8311
8312		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8313		va_start(alist, format);
8314		(void) vuprintf(format, alist);
8315		va_end(alist);
8316	}
8317
8318#ifdef DTRACE_ERRDEBUG
8319	dtrace_errdebug(format);
8320#endif
8321	return (1);
8322}
8323
8324/*
8325 * Validate a DTrace DIF object by checking the IR instructions.  The following
8326 * rules are currently enforced by dtrace_difo_validate():
8327 *
8328 * 1. Each instruction must have a valid opcode
8329 * 2. Each register, string, variable, or subroutine reference must be valid
8330 * 3. No instruction can modify register %r0 (must be zero)
8331 * 4. All instruction reserved bits must be set to zero
8332 * 5. The last instruction must be a "ret" instruction
8333 * 6. All branch targets must reference a valid instruction _after_ the branch
8334 */
8335static int
8336dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8337    cred_t *cr)
8338{
8339	int err = 0, i;
8340	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8341	int kcheckload;
8342	uint_t pc;
8343
8344	kcheckload = cr == NULL ||
8345	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8346
8347	dp->dtdo_destructive = 0;
8348
8349	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8350		dif_instr_t instr = dp->dtdo_buf[pc];
8351
8352		uint_t r1 = DIF_INSTR_R1(instr);
8353		uint_t r2 = DIF_INSTR_R2(instr);
8354		uint_t rd = DIF_INSTR_RD(instr);
8355		uint_t rs = DIF_INSTR_RS(instr);
8356		uint_t label = DIF_INSTR_LABEL(instr);
8357		uint_t v = DIF_INSTR_VAR(instr);
8358		uint_t subr = DIF_INSTR_SUBR(instr);
8359		uint_t type = DIF_INSTR_TYPE(instr);
8360		uint_t op = DIF_INSTR_OP(instr);
8361
8362		switch (op) {
8363		case DIF_OP_OR:
8364		case DIF_OP_XOR:
8365		case DIF_OP_AND:
8366		case DIF_OP_SLL:
8367		case DIF_OP_SRL:
8368		case DIF_OP_SRA:
8369		case DIF_OP_SUB:
8370		case DIF_OP_ADD:
8371		case DIF_OP_MUL:
8372		case DIF_OP_SDIV:
8373		case DIF_OP_UDIV:
8374		case DIF_OP_SREM:
8375		case DIF_OP_UREM:
8376		case DIF_OP_COPYS:
8377			if (r1 >= nregs)
8378				err += efunc(pc, "invalid register %u\n", r1);
8379			if (r2 >= nregs)
8380				err += efunc(pc, "invalid register %u\n", r2);
8381			if (rd >= nregs)
8382				err += efunc(pc, "invalid register %u\n", rd);
8383			if (rd == 0)
8384				err += efunc(pc, "cannot write to %r0\n");
8385			break;
8386		case DIF_OP_NOT:
8387		case DIF_OP_MOV:
8388		case DIF_OP_ALLOCS:
8389			if (r1 >= nregs)
8390				err += efunc(pc, "invalid register %u\n", r1);
8391			if (r2 != 0)
8392				err += efunc(pc, "non-zero reserved bits\n");
8393			if (rd >= nregs)
8394				err += efunc(pc, "invalid register %u\n", rd);
8395			if (rd == 0)
8396				err += efunc(pc, "cannot write to %r0\n");
8397			break;
8398		case DIF_OP_LDSB:
8399		case DIF_OP_LDSH:
8400		case DIF_OP_LDSW:
8401		case DIF_OP_LDUB:
8402		case DIF_OP_LDUH:
8403		case DIF_OP_LDUW:
8404		case DIF_OP_LDX:
8405			if (r1 >= nregs)
8406				err += efunc(pc, "invalid register %u\n", r1);
8407			if (r2 != 0)
8408				err += efunc(pc, "non-zero reserved bits\n");
8409			if (rd >= nregs)
8410				err += efunc(pc, "invalid register %u\n", rd);
8411			if (rd == 0)
8412				err += efunc(pc, "cannot write to %r0\n");
8413			if (kcheckload)
8414				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8415				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8416			break;
8417		case DIF_OP_RLDSB:
8418		case DIF_OP_RLDSH:
8419		case DIF_OP_RLDSW:
8420		case DIF_OP_RLDUB:
8421		case DIF_OP_RLDUH:
8422		case DIF_OP_RLDUW:
8423		case DIF_OP_RLDX:
8424			if (r1 >= nregs)
8425				err += efunc(pc, "invalid register %u\n", r1);
8426			if (r2 != 0)
8427				err += efunc(pc, "non-zero reserved bits\n");
8428			if (rd >= nregs)
8429				err += efunc(pc, "invalid register %u\n", rd);
8430			if (rd == 0)
8431				err += efunc(pc, "cannot write to %r0\n");
8432			break;
8433		case DIF_OP_ULDSB:
8434		case DIF_OP_ULDSH:
8435		case DIF_OP_ULDSW:
8436		case DIF_OP_ULDUB:
8437		case DIF_OP_ULDUH:
8438		case DIF_OP_ULDUW:
8439		case DIF_OP_ULDX:
8440			if (r1 >= nregs)
8441				err += efunc(pc, "invalid register %u\n", r1);
8442			if (r2 != 0)
8443				err += efunc(pc, "non-zero reserved bits\n");
8444			if (rd >= nregs)
8445				err += efunc(pc, "invalid register %u\n", rd);
8446			if (rd == 0)
8447				err += efunc(pc, "cannot write to %r0\n");
8448			break;
8449		case DIF_OP_STB:
8450		case DIF_OP_STH:
8451		case DIF_OP_STW:
8452		case DIF_OP_STX:
8453			if (r1 >= nregs)
8454				err += efunc(pc, "invalid register %u\n", r1);
8455			if (r2 != 0)
8456				err += efunc(pc, "non-zero reserved bits\n");
8457			if (rd >= nregs)
8458				err += efunc(pc, "invalid register %u\n", rd);
8459			if (rd == 0)
8460				err += efunc(pc, "cannot write to 0 address\n");
8461			break;
8462		case DIF_OP_CMP:
8463		case DIF_OP_SCMP:
8464			if (r1 >= nregs)
8465				err += efunc(pc, "invalid register %u\n", r1);
8466			if (r2 >= nregs)
8467				err += efunc(pc, "invalid register %u\n", r2);
8468			if (rd != 0)
8469				err += efunc(pc, "non-zero reserved bits\n");
8470			break;
8471		case DIF_OP_TST:
8472			if (r1 >= nregs)
8473				err += efunc(pc, "invalid register %u\n", r1);
8474			if (r2 != 0 || rd != 0)
8475				err += efunc(pc, "non-zero reserved bits\n");
8476			break;
8477		case DIF_OP_BA:
8478		case DIF_OP_BE:
8479		case DIF_OP_BNE:
8480		case DIF_OP_BG:
8481		case DIF_OP_BGU:
8482		case DIF_OP_BGE:
8483		case DIF_OP_BGEU:
8484		case DIF_OP_BL:
8485		case DIF_OP_BLU:
8486		case DIF_OP_BLE:
8487		case DIF_OP_BLEU:
8488			if (label >= dp->dtdo_len) {
8489				err += efunc(pc, "invalid branch target %u\n",
8490				    label);
8491			}
8492			if (label <= pc) {
8493				err += efunc(pc, "backward branch to %u\n",
8494				    label);
8495			}
8496			break;
8497		case DIF_OP_RET:
8498			if (r1 != 0 || r2 != 0)
8499				err += efunc(pc, "non-zero reserved bits\n");
8500			if (rd >= nregs)
8501				err += efunc(pc, "invalid register %u\n", rd);
8502			break;
8503		case DIF_OP_NOP:
8504		case DIF_OP_POPTS:
8505		case DIF_OP_FLUSHTS:
8506			if (r1 != 0 || r2 != 0 || rd != 0)
8507				err += efunc(pc, "non-zero reserved bits\n");
8508			break;
8509		case DIF_OP_SETX:
8510			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8511				err += efunc(pc, "invalid integer ref %u\n",
8512				    DIF_INSTR_INTEGER(instr));
8513			}
8514			if (rd >= nregs)
8515				err += efunc(pc, "invalid register %u\n", rd);
8516			if (rd == 0)
8517				err += efunc(pc, "cannot write to %r0\n");
8518			break;
8519		case DIF_OP_SETS:
8520			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8521				err += efunc(pc, "invalid string ref %u\n",
8522				    DIF_INSTR_STRING(instr));
8523			}
8524			if (rd >= nregs)
8525				err += efunc(pc, "invalid register %u\n", rd);
8526			if (rd == 0)
8527				err += efunc(pc, "cannot write to %r0\n");
8528			break;
8529		case DIF_OP_LDGA:
8530		case DIF_OP_LDTA:
8531			if (r1 > DIF_VAR_ARRAY_MAX)
8532				err += efunc(pc, "invalid array %u\n", r1);
8533			if (r2 >= nregs)
8534				err += efunc(pc, "invalid register %u\n", r2);
8535			if (rd >= nregs)
8536				err += efunc(pc, "invalid register %u\n", rd);
8537			if (rd == 0)
8538				err += efunc(pc, "cannot write to %r0\n");
8539			break;
8540		case DIF_OP_LDGS:
8541		case DIF_OP_LDTS:
8542		case DIF_OP_LDLS:
8543		case DIF_OP_LDGAA:
8544		case DIF_OP_LDTAA:
8545			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8546				err += efunc(pc, "invalid variable %u\n", v);
8547			if (rd >= nregs)
8548				err += efunc(pc, "invalid register %u\n", rd);
8549			if (rd == 0)
8550				err += efunc(pc, "cannot write to %r0\n");
8551			break;
8552		case DIF_OP_STGS:
8553		case DIF_OP_STTS:
8554		case DIF_OP_STLS:
8555		case DIF_OP_STGAA:
8556		case DIF_OP_STTAA:
8557			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8558				err += efunc(pc, "invalid variable %u\n", v);
8559			if (rs >= nregs)
8560				err += efunc(pc, "invalid register %u\n", rd);
8561			break;
8562		case DIF_OP_CALL:
8563			if (subr > DIF_SUBR_MAX)
8564				err += efunc(pc, "invalid subr %u\n", subr);
8565			if (rd >= nregs)
8566				err += efunc(pc, "invalid register %u\n", rd);
8567			if (rd == 0)
8568				err += efunc(pc, "cannot write to %r0\n");
8569
8570			if (subr == DIF_SUBR_COPYOUT ||
8571			    subr == DIF_SUBR_COPYOUTSTR) {
8572				dp->dtdo_destructive = 1;
8573			}
8574			break;
8575		case DIF_OP_PUSHTR:
8576			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8577				err += efunc(pc, "invalid ref type %u\n", type);
8578			if (r2 >= nregs)
8579				err += efunc(pc, "invalid register %u\n", r2);
8580			if (rs >= nregs)
8581				err += efunc(pc, "invalid register %u\n", rs);
8582			break;
8583		case DIF_OP_PUSHTV:
8584			if (type != DIF_TYPE_CTF)
8585				err += efunc(pc, "invalid val type %u\n", type);
8586			if (r2 >= nregs)
8587				err += efunc(pc, "invalid register %u\n", r2);
8588			if (rs >= nregs)
8589				err += efunc(pc, "invalid register %u\n", rs);
8590			break;
8591		default:
8592			err += efunc(pc, "invalid opcode %u\n",
8593			    DIF_INSTR_OP(instr));
8594		}
8595	}
8596
8597	if (dp->dtdo_len != 0 &&
8598	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8599		err += efunc(dp->dtdo_len - 1,
8600		    "expected 'ret' as last DIF instruction\n");
8601	}
8602
8603	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8604		/*
8605		 * If we're not returning by reference, the size must be either
8606		 * 0 or the size of one of the base types.
8607		 */
8608		switch (dp->dtdo_rtype.dtdt_size) {
8609		case 0:
8610		case sizeof (uint8_t):
8611		case sizeof (uint16_t):
8612		case sizeof (uint32_t):
8613		case sizeof (uint64_t):
8614			break;
8615
8616		default:
8617			err += efunc(dp->dtdo_len - 1, "bad return size");
8618		}
8619	}
8620
8621	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8622		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8623		dtrace_diftype_t *vt, *et;
8624		uint_t id, ndx;
8625
8626		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8627		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8628		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8629			err += efunc(i, "unrecognized variable scope %d\n",
8630			    v->dtdv_scope);
8631			break;
8632		}
8633
8634		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8635		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8636			err += efunc(i, "unrecognized variable type %d\n",
8637			    v->dtdv_kind);
8638			break;
8639		}
8640
8641		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8642			err += efunc(i, "%d exceeds variable id limit\n", id);
8643			break;
8644		}
8645
8646		if (id < DIF_VAR_OTHER_UBASE)
8647			continue;
8648
8649		/*
8650		 * For user-defined variables, we need to check that this
8651		 * definition is identical to any previous definition that we
8652		 * encountered.
8653		 */
8654		ndx = id - DIF_VAR_OTHER_UBASE;
8655
8656		switch (v->dtdv_scope) {
8657		case DIFV_SCOPE_GLOBAL:
8658			if (ndx < vstate->dtvs_nglobals) {
8659				dtrace_statvar_t *svar;
8660
8661				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8662					existing = &svar->dtsv_var;
8663			}
8664
8665			break;
8666
8667		case DIFV_SCOPE_THREAD:
8668			if (ndx < vstate->dtvs_ntlocals)
8669				existing = &vstate->dtvs_tlocals[ndx];
8670			break;
8671
8672		case DIFV_SCOPE_LOCAL:
8673			if (ndx < vstate->dtvs_nlocals) {
8674				dtrace_statvar_t *svar;
8675
8676				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8677					existing = &svar->dtsv_var;
8678			}
8679
8680			break;
8681		}
8682
8683		vt = &v->dtdv_type;
8684
8685		if (vt->dtdt_flags & DIF_TF_BYREF) {
8686			if (vt->dtdt_size == 0) {
8687				err += efunc(i, "zero-sized variable\n");
8688				break;
8689			}
8690
8691			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8692			    vt->dtdt_size > dtrace_global_maxsize) {
8693				err += efunc(i, "oversized by-ref global\n");
8694				break;
8695			}
8696		}
8697
8698		if (existing == NULL || existing->dtdv_id == 0)
8699			continue;
8700
8701		ASSERT(existing->dtdv_id == v->dtdv_id);
8702		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8703
8704		if (existing->dtdv_kind != v->dtdv_kind)
8705			err += efunc(i, "%d changed variable kind\n", id);
8706
8707		et = &existing->dtdv_type;
8708
8709		if (vt->dtdt_flags != et->dtdt_flags) {
8710			err += efunc(i, "%d changed variable type flags\n", id);
8711			break;
8712		}
8713
8714		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8715			err += efunc(i, "%d changed variable type size\n", id);
8716			break;
8717		}
8718	}
8719
8720	return (err);
8721}
8722
8723#if defined(sun)
8724/*
8725 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8726 * are much more constrained than normal DIFOs.  Specifically, they may
8727 * not:
8728 *
8729 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8730 *    miscellaneous string routines
8731 * 2. Access DTrace variables other than the args[] array, and the
8732 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8733 * 3. Have thread-local variables.
8734 * 4. Have dynamic variables.
8735 */
8736static int
8737dtrace_difo_validate_helper(dtrace_difo_t *dp)
8738{
8739	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8740	int err = 0;
8741	uint_t pc;
8742
8743	for (pc = 0; pc < dp->dtdo_len; pc++) {
8744		dif_instr_t instr = dp->dtdo_buf[pc];
8745
8746		uint_t v = DIF_INSTR_VAR(instr);
8747		uint_t subr = DIF_INSTR_SUBR(instr);
8748		uint_t op = DIF_INSTR_OP(instr);
8749
8750		switch (op) {
8751		case DIF_OP_OR:
8752		case DIF_OP_XOR:
8753		case DIF_OP_AND:
8754		case DIF_OP_SLL:
8755		case DIF_OP_SRL:
8756		case DIF_OP_SRA:
8757		case DIF_OP_SUB:
8758		case DIF_OP_ADD:
8759		case DIF_OP_MUL:
8760		case DIF_OP_SDIV:
8761		case DIF_OP_UDIV:
8762		case DIF_OP_SREM:
8763		case DIF_OP_UREM:
8764		case DIF_OP_COPYS:
8765		case DIF_OP_NOT:
8766		case DIF_OP_MOV:
8767		case DIF_OP_RLDSB:
8768		case DIF_OP_RLDSH:
8769		case DIF_OP_RLDSW:
8770		case DIF_OP_RLDUB:
8771		case DIF_OP_RLDUH:
8772		case DIF_OP_RLDUW:
8773		case DIF_OP_RLDX:
8774		case DIF_OP_ULDSB:
8775		case DIF_OP_ULDSH:
8776		case DIF_OP_ULDSW:
8777		case DIF_OP_ULDUB:
8778		case DIF_OP_ULDUH:
8779		case DIF_OP_ULDUW:
8780		case DIF_OP_ULDX:
8781		case DIF_OP_STB:
8782		case DIF_OP_STH:
8783		case DIF_OP_STW:
8784		case DIF_OP_STX:
8785		case DIF_OP_ALLOCS:
8786		case DIF_OP_CMP:
8787		case DIF_OP_SCMP:
8788		case DIF_OP_TST:
8789		case DIF_OP_BA:
8790		case DIF_OP_BE:
8791		case DIF_OP_BNE:
8792		case DIF_OP_BG:
8793		case DIF_OP_BGU:
8794		case DIF_OP_BGE:
8795		case DIF_OP_BGEU:
8796		case DIF_OP_BL:
8797		case DIF_OP_BLU:
8798		case DIF_OP_BLE:
8799		case DIF_OP_BLEU:
8800		case DIF_OP_RET:
8801		case DIF_OP_NOP:
8802		case DIF_OP_POPTS:
8803		case DIF_OP_FLUSHTS:
8804		case DIF_OP_SETX:
8805		case DIF_OP_SETS:
8806		case DIF_OP_LDGA:
8807		case DIF_OP_LDLS:
8808		case DIF_OP_STGS:
8809		case DIF_OP_STLS:
8810		case DIF_OP_PUSHTR:
8811		case DIF_OP_PUSHTV:
8812			break;
8813
8814		case DIF_OP_LDGS:
8815			if (v >= DIF_VAR_OTHER_UBASE)
8816				break;
8817
8818			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8819				break;
8820
8821			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8822			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8823			    v == DIF_VAR_EXECARGS ||
8824			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8825			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8826				break;
8827
8828			err += efunc(pc, "illegal variable %u\n", v);
8829			break;
8830
8831		case DIF_OP_LDTA:
8832		case DIF_OP_LDTS:
8833		case DIF_OP_LDGAA:
8834		case DIF_OP_LDTAA:
8835			err += efunc(pc, "illegal dynamic variable load\n");
8836			break;
8837
8838		case DIF_OP_STTS:
8839		case DIF_OP_STGAA:
8840		case DIF_OP_STTAA:
8841			err += efunc(pc, "illegal dynamic variable store\n");
8842			break;
8843
8844		case DIF_OP_CALL:
8845			if (subr == DIF_SUBR_ALLOCA ||
8846			    subr == DIF_SUBR_BCOPY ||
8847			    subr == DIF_SUBR_COPYIN ||
8848			    subr == DIF_SUBR_COPYINTO ||
8849			    subr == DIF_SUBR_COPYINSTR ||
8850			    subr == DIF_SUBR_INDEX ||
8851			    subr == DIF_SUBR_INET_NTOA ||
8852			    subr == DIF_SUBR_INET_NTOA6 ||
8853			    subr == DIF_SUBR_INET_NTOP ||
8854			    subr == DIF_SUBR_LLTOSTR ||
8855			    subr == DIF_SUBR_RINDEX ||
8856			    subr == DIF_SUBR_STRCHR ||
8857			    subr == DIF_SUBR_STRJOIN ||
8858			    subr == DIF_SUBR_STRRCHR ||
8859			    subr == DIF_SUBR_STRSTR ||
8860			    subr == DIF_SUBR_HTONS ||
8861			    subr == DIF_SUBR_HTONL ||
8862			    subr == DIF_SUBR_HTONLL ||
8863			    subr == DIF_SUBR_NTOHS ||
8864			    subr == DIF_SUBR_NTOHL ||
8865			    subr == DIF_SUBR_NTOHLL ||
8866			    subr == DIF_SUBR_MEMREF ||
8867			    subr == DIF_SUBR_TYPEREF)
8868				break;
8869
8870			err += efunc(pc, "invalid subr %u\n", subr);
8871			break;
8872
8873		default:
8874			err += efunc(pc, "invalid opcode %u\n",
8875			    DIF_INSTR_OP(instr));
8876		}
8877	}
8878
8879	return (err);
8880}
8881#endif
8882
8883/*
8884 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8885 * basis; 0 if not.
8886 */
8887static int
8888dtrace_difo_cacheable(dtrace_difo_t *dp)
8889{
8890	int i;
8891
8892	if (dp == NULL)
8893		return (0);
8894
8895	for (i = 0; i < dp->dtdo_varlen; i++) {
8896		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8897
8898		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8899			continue;
8900
8901		switch (v->dtdv_id) {
8902		case DIF_VAR_CURTHREAD:
8903		case DIF_VAR_PID:
8904		case DIF_VAR_TID:
8905		case DIF_VAR_EXECARGS:
8906		case DIF_VAR_EXECNAME:
8907		case DIF_VAR_ZONENAME:
8908			break;
8909
8910		default:
8911			return (0);
8912		}
8913	}
8914
8915	/*
8916	 * This DIF object may be cacheable.  Now we need to look for any
8917	 * array loading instructions, any memory loading instructions, or
8918	 * any stores to thread-local variables.
8919	 */
8920	for (i = 0; i < dp->dtdo_len; i++) {
8921		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8922
8923		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8924		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8925		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8926		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8927			return (0);
8928	}
8929
8930	return (1);
8931}
8932
8933static void
8934dtrace_difo_hold(dtrace_difo_t *dp)
8935{
8936	int i;
8937
8938	ASSERT(MUTEX_HELD(&dtrace_lock));
8939
8940	dp->dtdo_refcnt++;
8941	ASSERT(dp->dtdo_refcnt != 0);
8942
8943	/*
8944	 * We need to check this DIF object for references to the variable
8945	 * DIF_VAR_VTIMESTAMP.
8946	 */
8947	for (i = 0; i < dp->dtdo_varlen; i++) {
8948		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8949
8950		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8951			continue;
8952
8953		if (dtrace_vtime_references++ == 0)
8954			dtrace_vtime_enable();
8955	}
8956}
8957
8958/*
8959 * This routine calculates the dynamic variable chunksize for a given DIF
8960 * object.  The calculation is not fool-proof, and can probably be tricked by
8961 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8962 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8963 * if a dynamic variable size exceeds the chunksize.
8964 */
8965static void
8966dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8967{
8968	uint64_t sval = 0;
8969	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8970	const dif_instr_t *text = dp->dtdo_buf;
8971	uint_t pc, srd = 0;
8972	uint_t ttop = 0;
8973	size_t size, ksize;
8974	uint_t id, i;
8975
8976	for (pc = 0; pc < dp->dtdo_len; pc++) {
8977		dif_instr_t instr = text[pc];
8978		uint_t op = DIF_INSTR_OP(instr);
8979		uint_t rd = DIF_INSTR_RD(instr);
8980		uint_t r1 = DIF_INSTR_R1(instr);
8981		uint_t nkeys = 0;
8982		uchar_t scope = 0;
8983
8984		dtrace_key_t *key = tupregs;
8985
8986		switch (op) {
8987		case DIF_OP_SETX:
8988			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8989			srd = rd;
8990			continue;
8991
8992		case DIF_OP_STTS:
8993			key = &tupregs[DIF_DTR_NREGS];
8994			key[0].dttk_size = 0;
8995			key[1].dttk_size = 0;
8996			nkeys = 2;
8997			scope = DIFV_SCOPE_THREAD;
8998			break;
8999
9000		case DIF_OP_STGAA:
9001		case DIF_OP_STTAA:
9002			nkeys = ttop;
9003
9004			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9005				key[nkeys++].dttk_size = 0;
9006
9007			key[nkeys++].dttk_size = 0;
9008
9009			if (op == DIF_OP_STTAA) {
9010				scope = DIFV_SCOPE_THREAD;
9011			} else {
9012				scope = DIFV_SCOPE_GLOBAL;
9013			}
9014
9015			break;
9016
9017		case DIF_OP_PUSHTR:
9018			if (ttop == DIF_DTR_NREGS)
9019				return;
9020
9021			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9022				/*
9023				 * If the register for the size of the "pushtr"
9024				 * is %r0 (or the value is 0) and the type is
9025				 * a string, we'll use the system-wide default
9026				 * string size.
9027				 */
9028				tupregs[ttop++].dttk_size =
9029				    dtrace_strsize_default;
9030			} else {
9031				if (srd == 0)
9032					return;
9033
9034				tupregs[ttop++].dttk_size = sval;
9035			}
9036
9037			break;
9038
9039		case DIF_OP_PUSHTV:
9040			if (ttop == DIF_DTR_NREGS)
9041				return;
9042
9043			tupregs[ttop++].dttk_size = 0;
9044			break;
9045
9046		case DIF_OP_FLUSHTS:
9047			ttop = 0;
9048			break;
9049
9050		case DIF_OP_POPTS:
9051			if (ttop != 0)
9052				ttop--;
9053			break;
9054		}
9055
9056		sval = 0;
9057		srd = 0;
9058
9059		if (nkeys == 0)
9060			continue;
9061
9062		/*
9063		 * We have a dynamic variable allocation; calculate its size.
9064		 */
9065		for (ksize = 0, i = 0; i < nkeys; i++)
9066			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9067
9068		size = sizeof (dtrace_dynvar_t);
9069		size += sizeof (dtrace_key_t) * (nkeys - 1);
9070		size += ksize;
9071
9072		/*
9073		 * Now we need to determine the size of the stored data.
9074		 */
9075		id = DIF_INSTR_VAR(instr);
9076
9077		for (i = 0; i < dp->dtdo_varlen; i++) {
9078			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9079
9080			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9081				size += v->dtdv_type.dtdt_size;
9082				break;
9083			}
9084		}
9085
9086		if (i == dp->dtdo_varlen)
9087			return;
9088
9089		/*
9090		 * We have the size.  If this is larger than the chunk size
9091		 * for our dynamic variable state, reset the chunk size.
9092		 */
9093		size = P2ROUNDUP(size, sizeof (uint64_t));
9094
9095		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9096			vstate->dtvs_dynvars.dtds_chunksize = size;
9097	}
9098}
9099
9100static void
9101dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9102{
9103	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9104	uint_t id;
9105
9106	ASSERT(MUTEX_HELD(&dtrace_lock));
9107	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9108
9109	for (i = 0; i < dp->dtdo_varlen; i++) {
9110		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9111		dtrace_statvar_t *svar, ***svarp = NULL;
9112		size_t dsize = 0;
9113		uint8_t scope = v->dtdv_scope;
9114		int *np = NULL;
9115
9116		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9117			continue;
9118
9119		id -= DIF_VAR_OTHER_UBASE;
9120
9121		switch (scope) {
9122		case DIFV_SCOPE_THREAD:
9123			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9124				dtrace_difv_t *tlocals;
9125
9126				if ((ntlocals = (otlocals << 1)) == 0)
9127					ntlocals = 1;
9128
9129				osz = otlocals * sizeof (dtrace_difv_t);
9130				nsz = ntlocals * sizeof (dtrace_difv_t);
9131
9132				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9133
9134				if (osz != 0) {
9135					bcopy(vstate->dtvs_tlocals,
9136					    tlocals, osz);
9137					kmem_free(vstate->dtvs_tlocals, osz);
9138				}
9139
9140				vstate->dtvs_tlocals = tlocals;
9141				vstate->dtvs_ntlocals = ntlocals;
9142			}
9143
9144			vstate->dtvs_tlocals[id] = *v;
9145			continue;
9146
9147		case DIFV_SCOPE_LOCAL:
9148			np = &vstate->dtvs_nlocals;
9149			svarp = &vstate->dtvs_locals;
9150
9151			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9152				dsize = NCPU * (v->dtdv_type.dtdt_size +
9153				    sizeof (uint64_t));
9154			else
9155				dsize = NCPU * sizeof (uint64_t);
9156
9157			break;
9158
9159		case DIFV_SCOPE_GLOBAL:
9160			np = &vstate->dtvs_nglobals;
9161			svarp = &vstate->dtvs_globals;
9162
9163			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9164				dsize = v->dtdv_type.dtdt_size +
9165				    sizeof (uint64_t);
9166
9167			break;
9168
9169		default:
9170			ASSERT(0);
9171		}
9172
9173		while (id >= (oldsvars = *np)) {
9174			dtrace_statvar_t **statics;
9175			int newsvars, oldsize, newsize;
9176
9177			if ((newsvars = (oldsvars << 1)) == 0)
9178				newsvars = 1;
9179
9180			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9181			newsize = newsvars * sizeof (dtrace_statvar_t *);
9182
9183			statics = kmem_zalloc(newsize, KM_SLEEP);
9184
9185			if (oldsize != 0) {
9186				bcopy(*svarp, statics, oldsize);
9187				kmem_free(*svarp, oldsize);
9188			}
9189
9190			*svarp = statics;
9191			*np = newsvars;
9192		}
9193
9194		if ((svar = (*svarp)[id]) == NULL) {
9195			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9196			svar->dtsv_var = *v;
9197
9198			if ((svar->dtsv_size = dsize) != 0) {
9199				svar->dtsv_data = (uint64_t)(uintptr_t)
9200				    kmem_zalloc(dsize, KM_SLEEP);
9201			}
9202
9203			(*svarp)[id] = svar;
9204		}
9205
9206		svar->dtsv_refcnt++;
9207	}
9208
9209	dtrace_difo_chunksize(dp, vstate);
9210	dtrace_difo_hold(dp);
9211}
9212
9213#if defined(sun)
9214static dtrace_difo_t *
9215dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9216{
9217	dtrace_difo_t *new;
9218	size_t sz;
9219
9220	ASSERT(dp->dtdo_buf != NULL);
9221	ASSERT(dp->dtdo_refcnt != 0);
9222
9223	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9224
9225	ASSERT(dp->dtdo_buf != NULL);
9226	sz = dp->dtdo_len * sizeof (dif_instr_t);
9227	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9228	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9229	new->dtdo_len = dp->dtdo_len;
9230
9231	if (dp->dtdo_strtab != NULL) {
9232		ASSERT(dp->dtdo_strlen != 0);
9233		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9234		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9235		new->dtdo_strlen = dp->dtdo_strlen;
9236	}
9237
9238	if (dp->dtdo_inttab != NULL) {
9239		ASSERT(dp->dtdo_intlen != 0);
9240		sz = dp->dtdo_intlen * sizeof (uint64_t);
9241		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9242		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9243		new->dtdo_intlen = dp->dtdo_intlen;
9244	}
9245
9246	if (dp->dtdo_vartab != NULL) {
9247		ASSERT(dp->dtdo_varlen != 0);
9248		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9249		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9250		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9251		new->dtdo_varlen = dp->dtdo_varlen;
9252	}
9253
9254	dtrace_difo_init(new, vstate);
9255	return (new);
9256}
9257#endif
9258
9259static void
9260dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9261{
9262	int i;
9263
9264	ASSERT(dp->dtdo_refcnt == 0);
9265
9266	for (i = 0; i < dp->dtdo_varlen; i++) {
9267		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9268		dtrace_statvar_t *svar, **svarp = NULL;
9269		uint_t id;
9270		uint8_t scope = v->dtdv_scope;
9271		int *np = NULL;
9272
9273		switch (scope) {
9274		case DIFV_SCOPE_THREAD:
9275			continue;
9276
9277		case DIFV_SCOPE_LOCAL:
9278			np = &vstate->dtvs_nlocals;
9279			svarp = vstate->dtvs_locals;
9280			break;
9281
9282		case DIFV_SCOPE_GLOBAL:
9283			np = &vstate->dtvs_nglobals;
9284			svarp = vstate->dtvs_globals;
9285			break;
9286
9287		default:
9288			ASSERT(0);
9289		}
9290
9291		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9292			continue;
9293
9294		id -= DIF_VAR_OTHER_UBASE;
9295		ASSERT(id < *np);
9296
9297		svar = svarp[id];
9298		ASSERT(svar != NULL);
9299		ASSERT(svar->dtsv_refcnt > 0);
9300
9301		if (--svar->dtsv_refcnt > 0)
9302			continue;
9303
9304		if (svar->dtsv_size != 0) {
9305			ASSERT(svar->dtsv_data != 0);
9306			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9307			    svar->dtsv_size);
9308		}
9309
9310		kmem_free(svar, sizeof (dtrace_statvar_t));
9311		svarp[id] = NULL;
9312	}
9313
9314	if (dp->dtdo_buf != NULL)
9315		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9316	if (dp->dtdo_inttab != NULL)
9317		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9318	if (dp->dtdo_strtab != NULL)
9319		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9320	if (dp->dtdo_vartab != NULL)
9321		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9322
9323	kmem_free(dp, sizeof (dtrace_difo_t));
9324}
9325
9326static void
9327dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9328{
9329	int i;
9330
9331	ASSERT(MUTEX_HELD(&dtrace_lock));
9332	ASSERT(dp->dtdo_refcnt != 0);
9333
9334	for (i = 0; i < dp->dtdo_varlen; i++) {
9335		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9336
9337		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9338			continue;
9339
9340		ASSERT(dtrace_vtime_references > 0);
9341		if (--dtrace_vtime_references == 0)
9342			dtrace_vtime_disable();
9343	}
9344
9345	if (--dp->dtdo_refcnt == 0)
9346		dtrace_difo_destroy(dp, vstate);
9347}
9348
9349/*
9350 * DTrace Format Functions
9351 */
9352static uint16_t
9353dtrace_format_add(dtrace_state_t *state, char *str)
9354{
9355	char *fmt, **new;
9356	uint16_t ndx, len = strlen(str) + 1;
9357
9358	fmt = kmem_zalloc(len, KM_SLEEP);
9359	bcopy(str, fmt, len);
9360
9361	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9362		if (state->dts_formats[ndx] == NULL) {
9363			state->dts_formats[ndx] = fmt;
9364			return (ndx + 1);
9365		}
9366	}
9367
9368	if (state->dts_nformats == USHRT_MAX) {
9369		/*
9370		 * This is only likely if a denial-of-service attack is being
9371		 * attempted.  As such, it's okay to fail silently here.
9372		 */
9373		kmem_free(fmt, len);
9374		return (0);
9375	}
9376
9377	/*
9378	 * For simplicity, we always resize the formats array to be exactly the
9379	 * number of formats.
9380	 */
9381	ndx = state->dts_nformats++;
9382	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9383
9384	if (state->dts_formats != NULL) {
9385		ASSERT(ndx != 0);
9386		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9387		kmem_free(state->dts_formats, ndx * sizeof (char *));
9388	}
9389
9390	state->dts_formats = new;
9391	state->dts_formats[ndx] = fmt;
9392
9393	return (ndx + 1);
9394}
9395
9396static void
9397dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9398{
9399	char *fmt;
9400
9401	ASSERT(state->dts_formats != NULL);
9402	ASSERT(format <= state->dts_nformats);
9403	ASSERT(state->dts_formats[format - 1] != NULL);
9404
9405	fmt = state->dts_formats[format - 1];
9406	kmem_free(fmt, strlen(fmt) + 1);
9407	state->dts_formats[format - 1] = NULL;
9408}
9409
9410static void
9411dtrace_format_destroy(dtrace_state_t *state)
9412{
9413	int i;
9414
9415	if (state->dts_nformats == 0) {
9416		ASSERT(state->dts_formats == NULL);
9417		return;
9418	}
9419
9420	ASSERT(state->dts_formats != NULL);
9421
9422	for (i = 0; i < state->dts_nformats; i++) {
9423		char *fmt = state->dts_formats[i];
9424
9425		if (fmt == NULL)
9426			continue;
9427
9428		kmem_free(fmt, strlen(fmt) + 1);
9429	}
9430
9431	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9432	state->dts_nformats = 0;
9433	state->dts_formats = NULL;
9434}
9435
9436/*
9437 * DTrace Predicate Functions
9438 */
9439static dtrace_predicate_t *
9440dtrace_predicate_create(dtrace_difo_t *dp)
9441{
9442	dtrace_predicate_t *pred;
9443
9444	ASSERT(MUTEX_HELD(&dtrace_lock));
9445	ASSERT(dp->dtdo_refcnt != 0);
9446
9447	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9448	pred->dtp_difo = dp;
9449	pred->dtp_refcnt = 1;
9450
9451	if (!dtrace_difo_cacheable(dp))
9452		return (pred);
9453
9454	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9455		/*
9456		 * This is only theoretically possible -- we have had 2^32
9457		 * cacheable predicates on this machine.  We cannot allow any
9458		 * more predicates to become cacheable:  as unlikely as it is,
9459		 * there may be a thread caching a (now stale) predicate cache
9460		 * ID. (N.B.: the temptation is being successfully resisted to
9461		 * have this cmn_err() "Holy shit -- we executed this code!")
9462		 */
9463		return (pred);
9464	}
9465
9466	pred->dtp_cacheid = dtrace_predcache_id++;
9467
9468	return (pred);
9469}
9470
9471static void
9472dtrace_predicate_hold(dtrace_predicate_t *pred)
9473{
9474	ASSERT(MUTEX_HELD(&dtrace_lock));
9475	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9476	ASSERT(pred->dtp_refcnt > 0);
9477
9478	pred->dtp_refcnt++;
9479}
9480
9481static void
9482dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9483{
9484	dtrace_difo_t *dp = pred->dtp_difo;
9485
9486	ASSERT(MUTEX_HELD(&dtrace_lock));
9487	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9488	ASSERT(pred->dtp_refcnt > 0);
9489
9490	if (--pred->dtp_refcnt == 0) {
9491		dtrace_difo_release(pred->dtp_difo, vstate);
9492		kmem_free(pred, sizeof (dtrace_predicate_t));
9493	}
9494}
9495
9496/*
9497 * DTrace Action Description Functions
9498 */
9499static dtrace_actdesc_t *
9500dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9501    uint64_t uarg, uint64_t arg)
9502{
9503	dtrace_actdesc_t *act;
9504
9505#if defined(sun)
9506	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9507	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9508#endif
9509
9510	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9511	act->dtad_kind = kind;
9512	act->dtad_ntuple = ntuple;
9513	act->dtad_uarg = uarg;
9514	act->dtad_arg = arg;
9515	act->dtad_refcnt = 1;
9516
9517	return (act);
9518}
9519
9520static void
9521dtrace_actdesc_hold(dtrace_actdesc_t *act)
9522{
9523	ASSERT(act->dtad_refcnt >= 1);
9524	act->dtad_refcnt++;
9525}
9526
9527static void
9528dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9529{
9530	dtrace_actkind_t kind = act->dtad_kind;
9531	dtrace_difo_t *dp;
9532
9533	ASSERT(act->dtad_refcnt >= 1);
9534
9535	if (--act->dtad_refcnt != 0)
9536		return;
9537
9538	if ((dp = act->dtad_difo) != NULL)
9539		dtrace_difo_release(dp, vstate);
9540
9541	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9542		char *str = (char *)(uintptr_t)act->dtad_arg;
9543
9544#if defined(sun)
9545		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9546		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9547#endif
9548
9549		if (str != NULL)
9550			kmem_free(str, strlen(str) + 1);
9551	}
9552
9553	kmem_free(act, sizeof (dtrace_actdesc_t));
9554}
9555
9556/*
9557 * DTrace ECB Functions
9558 */
9559static dtrace_ecb_t *
9560dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9561{
9562	dtrace_ecb_t *ecb;
9563	dtrace_epid_t epid;
9564
9565	ASSERT(MUTEX_HELD(&dtrace_lock));
9566
9567	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9568	ecb->dte_predicate = NULL;
9569	ecb->dte_probe = probe;
9570
9571	/*
9572	 * The default size is the size of the default action: recording
9573	 * the epid.
9574	 */
9575	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9576	ecb->dte_alignment = sizeof (dtrace_epid_t);
9577
9578	epid = state->dts_epid++;
9579
9580	if (epid - 1 >= state->dts_necbs) {
9581		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9582		int necbs = state->dts_necbs << 1;
9583
9584		ASSERT(epid == state->dts_necbs + 1);
9585
9586		if (necbs == 0) {
9587			ASSERT(oecbs == NULL);
9588			necbs = 1;
9589		}
9590
9591		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9592
9593		if (oecbs != NULL)
9594			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9595
9596		dtrace_membar_producer();
9597		state->dts_ecbs = ecbs;
9598
9599		if (oecbs != NULL) {
9600			/*
9601			 * If this state is active, we must dtrace_sync()
9602			 * before we can free the old dts_ecbs array:  we're
9603			 * coming in hot, and there may be active ring
9604			 * buffer processing (which indexes into the dts_ecbs
9605			 * array) on another CPU.
9606			 */
9607			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9608				dtrace_sync();
9609
9610			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9611		}
9612
9613		dtrace_membar_producer();
9614		state->dts_necbs = necbs;
9615	}
9616
9617	ecb->dte_state = state;
9618
9619	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9620	dtrace_membar_producer();
9621	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9622
9623	return (ecb);
9624}
9625
9626static void
9627dtrace_ecb_enable(dtrace_ecb_t *ecb)
9628{
9629	dtrace_probe_t *probe = ecb->dte_probe;
9630
9631	ASSERT(MUTEX_HELD(&cpu_lock));
9632	ASSERT(MUTEX_HELD(&dtrace_lock));
9633	ASSERT(ecb->dte_next == NULL);
9634
9635	if (probe == NULL) {
9636		/*
9637		 * This is the NULL probe -- there's nothing to do.
9638		 */
9639		return;
9640	}
9641
9642	if (probe->dtpr_ecb == NULL) {
9643		dtrace_provider_t *prov = probe->dtpr_provider;
9644
9645		/*
9646		 * We're the first ECB on this probe.
9647		 */
9648		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9649
9650		if (ecb->dte_predicate != NULL)
9651			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9652
9653		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9654		    probe->dtpr_id, probe->dtpr_arg);
9655	} else {
9656		/*
9657		 * This probe is already active.  Swing the last pointer to
9658		 * point to the new ECB, and issue a dtrace_sync() to assure
9659		 * that all CPUs have seen the change.
9660		 */
9661		ASSERT(probe->dtpr_ecb_last != NULL);
9662		probe->dtpr_ecb_last->dte_next = ecb;
9663		probe->dtpr_ecb_last = ecb;
9664		probe->dtpr_predcache = 0;
9665
9666		dtrace_sync();
9667	}
9668}
9669
9670static void
9671dtrace_ecb_resize(dtrace_ecb_t *ecb)
9672{
9673	uint32_t maxalign = sizeof (dtrace_epid_t);
9674	uint32_t align = sizeof (uint8_t), offs, diff;
9675	dtrace_action_t *act;
9676	int wastuple = 0;
9677	uint32_t aggbase = UINT32_MAX;
9678	dtrace_state_t *state = ecb->dte_state;
9679
9680	/*
9681	 * If we record anything, we always record the epid.  (And we always
9682	 * record it first.)
9683	 */
9684	offs = sizeof (dtrace_epid_t);
9685	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9686
9687	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9688		dtrace_recdesc_t *rec = &act->dta_rec;
9689
9690		if ((align = rec->dtrd_alignment) > maxalign)
9691			maxalign = align;
9692
9693		if (!wastuple && act->dta_intuple) {
9694			/*
9695			 * This is the first record in a tuple.  Align the
9696			 * offset to be at offset 4 in an 8-byte aligned
9697			 * block.
9698			 */
9699			diff = offs + sizeof (dtrace_aggid_t);
9700
9701			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9702				offs += sizeof (uint64_t) - diff;
9703
9704			aggbase = offs - sizeof (dtrace_aggid_t);
9705			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9706		}
9707
9708		/*LINTED*/
9709		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9710			/*
9711			 * The current offset is not properly aligned; align it.
9712			 */
9713			offs += align - diff;
9714		}
9715
9716		rec->dtrd_offset = offs;
9717
9718		if (offs + rec->dtrd_size > ecb->dte_needed) {
9719			ecb->dte_needed = offs + rec->dtrd_size;
9720
9721			if (ecb->dte_needed > state->dts_needed)
9722				state->dts_needed = ecb->dte_needed;
9723		}
9724
9725		if (DTRACEACT_ISAGG(act->dta_kind)) {
9726			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9727			dtrace_action_t *first = agg->dtag_first, *prev;
9728
9729			ASSERT(rec->dtrd_size != 0 && first != NULL);
9730			ASSERT(wastuple);
9731			ASSERT(aggbase != UINT32_MAX);
9732
9733			agg->dtag_base = aggbase;
9734
9735			while ((prev = first->dta_prev) != NULL &&
9736			    DTRACEACT_ISAGG(prev->dta_kind)) {
9737				agg = (dtrace_aggregation_t *)prev;
9738				first = agg->dtag_first;
9739			}
9740
9741			if (prev != NULL) {
9742				offs = prev->dta_rec.dtrd_offset +
9743				    prev->dta_rec.dtrd_size;
9744			} else {
9745				offs = sizeof (dtrace_epid_t);
9746			}
9747			wastuple = 0;
9748		} else {
9749			if (!act->dta_intuple)
9750				ecb->dte_size = offs + rec->dtrd_size;
9751
9752			offs += rec->dtrd_size;
9753		}
9754
9755		wastuple = act->dta_intuple;
9756	}
9757
9758	if ((act = ecb->dte_action) != NULL &&
9759	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9760	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9761		/*
9762		 * If the size is still sizeof (dtrace_epid_t), then all
9763		 * actions store no data; set the size to 0.
9764		 */
9765		ecb->dte_alignment = maxalign;
9766		ecb->dte_size = 0;
9767
9768		/*
9769		 * If the needed space is still sizeof (dtrace_epid_t), then
9770		 * all actions need no additional space; set the needed
9771		 * size to 0.
9772		 */
9773		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9774			ecb->dte_needed = 0;
9775
9776		return;
9777	}
9778
9779	/*
9780	 * Set our alignment, and make sure that the dte_size and dte_needed
9781	 * are aligned to the size of an EPID.
9782	 */
9783	ecb->dte_alignment = maxalign;
9784	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9785	    ~(sizeof (dtrace_epid_t) - 1);
9786	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9787	    ~(sizeof (dtrace_epid_t) - 1);
9788	ASSERT(ecb->dte_size <= ecb->dte_needed);
9789}
9790
9791static dtrace_action_t *
9792dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9793{
9794	dtrace_aggregation_t *agg;
9795	size_t size = sizeof (uint64_t);
9796	int ntuple = desc->dtad_ntuple;
9797	dtrace_action_t *act;
9798	dtrace_recdesc_t *frec;
9799	dtrace_aggid_t aggid;
9800	dtrace_state_t *state = ecb->dte_state;
9801
9802	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9803	agg->dtag_ecb = ecb;
9804
9805	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9806
9807	switch (desc->dtad_kind) {
9808	case DTRACEAGG_MIN:
9809		agg->dtag_initial = INT64_MAX;
9810		agg->dtag_aggregate = dtrace_aggregate_min;
9811		break;
9812
9813	case DTRACEAGG_MAX:
9814		agg->dtag_initial = INT64_MIN;
9815		agg->dtag_aggregate = dtrace_aggregate_max;
9816		break;
9817
9818	case DTRACEAGG_COUNT:
9819		agg->dtag_aggregate = dtrace_aggregate_count;
9820		break;
9821
9822	case DTRACEAGG_QUANTIZE:
9823		agg->dtag_aggregate = dtrace_aggregate_quantize;
9824		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9825		    sizeof (uint64_t);
9826		break;
9827
9828	case DTRACEAGG_LQUANTIZE: {
9829		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9830		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9831
9832		agg->dtag_initial = desc->dtad_arg;
9833		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9834
9835		if (step == 0 || levels == 0)
9836			goto err;
9837
9838		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9839		break;
9840	}
9841
9842	case DTRACEAGG_AVG:
9843		agg->dtag_aggregate = dtrace_aggregate_avg;
9844		size = sizeof (uint64_t) * 2;
9845		break;
9846
9847	case DTRACEAGG_STDDEV:
9848		agg->dtag_aggregate = dtrace_aggregate_stddev;
9849		size = sizeof (uint64_t) * 4;
9850		break;
9851
9852	case DTRACEAGG_SUM:
9853		agg->dtag_aggregate = dtrace_aggregate_sum;
9854		break;
9855
9856	default:
9857		goto err;
9858	}
9859
9860	agg->dtag_action.dta_rec.dtrd_size = size;
9861
9862	if (ntuple == 0)
9863		goto err;
9864
9865	/*
9866	 * We must make sure that we have enough actions for the n-tuple.
9867	 */
9868	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9869		if (DTRACEACT_ISAGG(act->dta_kind))
9870			break;
9871
9872		if (--ntuple == 0) {
9873			/*
9874			 * This is the action with which our n-tuple begins.
9875			 */
9876			agg->dtag_first = act;
9877			goto success;
9878		}
9879	}
9880
9881	/*
9882	 * This n-tuple is short by ntuple elements.  Return failure.
9883	 */
9884	ASSERT(ntuple != 0);
9885err:
9886	kmem_free(agg, sizeof (dtrace_aggregation_t));
9887	return (NULL);
9888
9889success:
9890	/*
9891	 * If the last action in the tuple has a size of zero, it's actually
9892	 * an expression argument for the aggregating action.
9893	 */
9894	ASSERT(ecb->dte_action_last != NULL);
9895	act = ecb->dte_action_last;
9896
9897	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9898		ASSERT(act->dta_difo != NULL);
9899
9900		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9901			agg->dtag_hasarg = 1;
9902	}
9903
9904	/*
9905	 * We need to allocate an id for this aggregation.
9906	 */
9907#if defined(sun)
9908	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9909	    VM_BESTFIT | VM_SLEEP);
9910#else
9911	aggid = alloc_unr(state->dts_aggid_arena);
9912#endif
9913
9914	if (aggid - 1 >= state->dts_naggregations) {
9915		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9916		dtrace_aggregation_t **aggs;
9917		int naggs = state->dts_naggregations << 1;
9918		int onaggs = state->dts_naggregations;
9919
9920		ASSERT(aggid == state->dts_naggregations + 1);
9921
9922		if (naggs == 0) {
9923			ASSERT(oaggs == NULL);
9924			naggs = 1;
9925		}
9926
9927		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9928
9929		if (oaggs != NULL) {
9930			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9931			kmem_free(oaggs, onaggs * sizeof (*aggs));
9932		}
9933
9934		state->dts_aggregations = aggs;
9935		state->dts_naggregations = naggs;
9936	}
9937
9938	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9939	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9940
9941	frec = &agg->dtag_first->dta_rec;
9942	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9943		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9944
9945	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9946		ASSERT(!act->dta_intuple);
9947		act->dta_intuple = 1;
9948	}
9949
9950	return (&agg->dtag_action);
9951}
9952
9953static void
9954dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9955{
9956	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9957	dtrace_state_t *state = ecb->dte_state;
9958	dtrace_aggid_t aggid = agg->dtag_id;
9959
9960	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9961#if defined(sun)
9962	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9963#else
9964	free_unr(state->dts_aggid_arena, aggid);
9965#endif
9966
9967	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9968	state->dts_aggregations[aggid - 1] = NULL;
9969
9970	kmem_free(agg, sizeof (dtrace_aggregation_t));
9971}
9972
9973static int
9974dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9975{
9976	dtrace_action_t *action, *last;
9977	dtrace_difo_t *dp = desc->dtad_difo;
9978	uint32_t size = 0, align = sizeof (uint8_t), mask;
9979	uint16_t format = 0;
9980	dtrace_recdesc_t *rec;
9981	dtrace_state_t *state = ecb->dte_state;
9982	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
9983	uint64_t arg = desc->dtad_arg;
9984
9985	ASSERT(MUTEX_HELD(&dtrace_lock));
9986	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9987
9988	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9989		/*
9990		 * If this is an aggregating action, there must be neither
9991		 * a speculate nor a commit on the action chain.
9992		 */
9993		dtrace_action_t *act;
9994
9995		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9996			if (act->dta_kind == DTRACEACT_COMMIT)
9997				return (EINVAL);
9998
9999			if (act->dta_kind == DTRACEACT_SPECULATE)
10000				return (EINVAL);
10001		}
10002
10003		action = dtrace_ecb_aggregation_create(ecb, desc);
10004
10005		if (action == NULL)
10006			return (EINVAL);
10007	} else {
10008		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10009		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10010		    dp != NULL && dp->dtdo_destructive)) {
10011			state->dts_destructive = 1;
10012		}
10013
10014		switch (desc->dtad_kind) {
10015		case DTRACEACT_PRINTF:
10016		case DTRACEACT_PRINTA:
10017		case DTRACEACT_SYSTEM:
10018		case DTRACEACT_FREOPEN:
10019			/*
10020			 * We know that our arg is a string -- turn it into a
10021			 * format.
10022			 */
10023			if (arg == 0) {
10024				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10025				format = 0;
10026			} else {
10027				ASSERT(arg != 0);
10028#if defined(sun)
10029				ASSERT(arg > KERNELBASE);
10030#endif
10031				format = dtrace_format_add(state,
10032				    (char *)(uintptr_t)arg);
10033			}
10034
10035			/*FALLTHROUGH*/
10036		case DTRACEACT_LIBACT:
10037		case DTRACEACT_DIFEXPR:
10038			if (dp == NULL)
10039				return (EINVAL);
10040
10041			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10042				break;
10043
10044			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10045				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10046					return (EINVAL);
10047
10048				size = opt[DTRACEOPT_STRSIZE];
10049			}
10050
10051			break;
10052
10053		case DTRACEACT_STACK:
10054			if ((nframes = arg) == 0) {
10055				nframes = opt[DTRACEOPT_STACKFRAMES];
10056				ASSERT(nframes > 0);
10057				arg = nframes;
10058			}
10059
10060			size = nframes * sizeof (pc_t);
10061			break;
10062
10063		case DTRACEACT_JSTACK:
10064			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10065				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10066
10067			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10068				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10069
10070			arg = DTRACE_USTACK_ARG(nframes, strsize);
10071
10072			/*FALLTHROUGH*/
10073		case DTRACEACT_USTACK:
10074			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10075			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10076				strsize = DTRACE_USTACK_STRSIZE(arg);
10077				nframes = opt[DTRACEOPT_USTACKFRAMES];
10078				ASSERT(nframes > 0);
10079				arg = DTRACE_USTACK_ARG(nframes, strsize);
10080			}
10081
10082			/*
10083			 * Save a slot for the pid.
10084			 */
10085			size = (nframes + 1) * sizeof (uint64_t);
10086			size += DTRACE_USTACK_STRSIZE(arg);
10087			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10088
10089			break;
10090
10091		case DTRACEACT_SYM:
10092		case DTRACEACT_MOD:
10093			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10094			    sizeof (uint64_t)) ||
10095			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10096				return (EINVAL);
10097			break;
10098
10099		case DTRACEACT_USYM:
10100		case DTRACEACT_UMOD:
10101		case DTRACEACT_UADDR:
10102			if (dp == NULL ||
10103			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10104			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10105				return (EINVAL);
10106
10107			/*
10108			 * We have a slot for the pid, plus a slot for the
10109			 * argument.  To keep things simple (aligned with
10110			 * bitness-neutral sizing), we store each as a 64-bit
10111			 * quantity.
10112			 */
10113			size = 2 * sizeof (uint64_t);
10114			break;
10115
10116		case DTRACEACT_STOP:
10117		case DTRACEACT_BREAKPOINT:
10118		case DTRACEACT_PANIC:
10119			break;
10120
10121		case DTRACEACT_CHILL:
10122		case DTRACEACT_DISCARD:
10123		case DTRACEACT_RAISE:
10124			if (dp == NULL)
10125				return (EINVAL);
10126			break;
10127
10128		case DTRACEACT_EXIT:
10129			if (dp == NULL ||
10130			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10131			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10132				return (EINVAL);
10133			break;
10134
10135		case DTRACEACT_SPECULATE:
10136			if (ecb->dte_size > sizeof (dtrace_epid_t))
10137				return (EINVAL);
10138
10139			if (dp == NULL)
10140				return (EINVAL);
10141
10142			state->dts_speculates = 1;
10143			break;
10144
10145		case DTRACEACT_PRINTM:
10146		    	size = dp->dtdo_rtype.dtdt_size;
10147			break;
10148
10149		case DTRACEACT_PRINTT:
10150		    	size = dp->dtdo_rtype.dtdt_size;
10151			break;
10152
10153		case DTRACEACT_COMMIT: {
10154			dtrace_action_t *act = ecb->dte_action;
10155
10156			for (; act != NULL; act = act->dta_next) {
10157				if (act->dta_kind == DTRACEACT_COMMIT)
10158					return (EINVAL);
10159			}
10160
10161			if (dp == NULL)
10162				return (EINVAL);
10163			break;
10164		}
10165
10166		default:
10167			return (EINVAL);
10168		}
10169
10170		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10171			/*
10172			 * If this is a data-storing action or a speculate,
10173			 * we must be sure that there isn't a commit on the
10174			 * action chain.
10175			 */
10176			dtrace_action_t *act = ecb->dte_action;
10177
10178			for (; act != NULL; act = act->dta_next) {
10179				if (act->dta_kind == DTRACEACT_COMMIT)
10180					return (EINVAL);
10181			}
10182		}
10183
10184		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10185		action->dta_rec.dtrd_size = size;
10186	}
10187
10188	action->dta_refcnt = 1;
10189	rec = &action->dta_rec;
10190	size = rec->dtrd_size;
10191
10192	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10193		if (!(size & mask)) {
10194			align = mask + 1;
10195			break;
10196		}
10197	}
10198
10199	action->dta_kind = desc->dtad_kind;
10200
10201	if ((action->dta_difo = dp) != NULL)
10202		dtrace_difo_hold(dp);
10203
10204	rec->dtrd_action = action->dta_kind;
10205	rec->dtrd_arg = arg;
10206	rec->dtrd_uarg = desc->dtad_uarg;
10207	rec->dtrd_alignment = (uint16_t)align;
10208	rec->dtrd_format = format;
10209
10210	if ((last = ecb->dte_action_last) != NULL) {
10211		ASSERT(ecb->dte_action != NULL);
10212		action->dta_prev = last;
10213		last->dta_next = action;
10214	} else {
10215		ASSERT(ecb->dte_action == NULL);
10216		ecb->dte_action = action;
10217	}
10218
10219	ecb->dte_action_last = action;
10220
10221	return (0);
10222}
10223
10224static void
10225dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10226{
10227	dtrace_action_t *act = ecb->dte_action, *next;
10228	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10229	dtrace_difo_t *dp;
10230	uint16_t format;
10231
10232	if (act != NULL && act->dta_refcnt > 1) {
10233		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10234		act->dta_refcnt--;
10235	} else {
10236		for (; act != NULL; act = next) {
10237			next = act->dta_next;
10238			ASSERT(next != NULL || act == ecb->dte_action_last);
10239			ASSERT(act->dta_refcnt == 1);
10240
10241			if ((format = act->dta_rec.dtrd_format) != 0)
10242				dtrace_format_remove(ecb->dte_state, format);
10243
10244			if ((dp = act->dta_difo) != NULL)
10245				dtrace_difo_release(dp, vstate);
10246
10247			if (DTRACEACT_ISAGG(act->dta_kind)) {
10248				dtrace_ecb_aggregation_destroy(ecb, act);
10249			} else {
10250				kmem_free(act, sizeof (dtrace_action_t));
10251			}
10252		}
10253	}
10254
10255	ecb->dte_action = NULL;
10256	ecb->dte_action_last = NULL;
10257	ecb->dte_size = sizeof (dtrace_epid_t);
10258}
10259
10260static void
10261dtrace_ecb_disable(dtrace_ecb_t *ecb)
10262{
10263	/*
10264	 * We disable the ECB by removing it from its probe.
10265	 */
10266	dtrace_ecb_t *pecb, *prev = NULL;
10267	dtrace_probe_t *probe = ecb->dte_probe;
10268
10269	ASSERT(MUTEX_HELD(&dtrace_lock));
10270
10271	if (probe == NULL) {
10272		/*
10273		 * This is the NULL probe; there is nothing to disable.
10274		 */
10275		return;
10276	}
10277
10278	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10279		if (pecb == ecb)
10280			break;
10281		prev = pecb;
10282	}
10283
10284	ASSERT(pecb != NULL);
10285
10286	if (prev == NULL) {
10287		probe->dtpr_ecb = ecb->dte_next;
10288	} else {
10289		prev->dte_next = ecb->dte_next;
10290	}
10291
10292	if (ecb == probe->dtpr_ecb_last) {
10293		ASSERT(ecb->dte_next == NULL);
10294		probe->dtpr_ecb_last = prev;
10295	}
10296
10297	/*
10298	 * The ECB has been disconnected from the probe; now sync to assure
10299	 * that all CPUs have seen the change before returning.
10300	 */
10301	dtrace_sync();
10302
10303	if (probe->dtpr_ecb == NULL) {
10304		/*
10305		 * That was the last ECB on the probe; clear the predicate
10306		 * cache ID for the probe, disable it and sync one more time
10307		 * to assure that we'll never hit it again.
10308		 */
10309		dtrace_provider_t *prov = probe->dtpr_provider;
10310
10311		ASSERT(ecb->dte_next == NULL);
10312		ASSERT(probe->dtpr_ecb_last == NULL);
10313		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10314		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10315		    probe->dtpr_id, probe->dtpr_arg);
10316		dtrace_sync();
10317	} else {
10318		/*
10319		 * There is at least one ECB remaining on the probe.  If there
10320		 * is _exactly_ one, set the probe's predicate cache ID to be
10321		 * the predicate cache ID of the remaining ECB.
10322		 */
10323		ASSERT(probe->dtpr_ecb_last != NULL);
10324		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10325
10326		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10327			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10328
10329			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10330
10331			if (p != NULL)
10332				probe->dtpr_predcache = p->dtp_cacheid;
10333		}
10334
10335		ecb->dte_next = NULL;
10336	}
10337}
10338
10339static void
10340dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10341{
10342	dtrace_state_t *state = ecb->dte_state;
10343	dtrace_vstate_t *vstate = &state->dts_vstate;
10344	dtrace_predicate_t *pred;
10345	dtrace_epid_t epid = ecb->dte_epid;
10346
10347	ASSERT(MUTEX_HELD(&dtrace_lock));
10348	ASSERT(ecb->dte_next == NULL);
10349	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10350
10351	if ((pred = ecb->dte_predicate) != NULL)
10352		dtrace_predicate_release(pred, vstate);
10353
10354	dtrace_ecb_action_remove(ecb);
10355
10356	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10357	state->dts_ecbs[epid - 1] = NULL;
10358
10359	kmem_free(ecb, sizeof (dtrace_ecb_t));
10360}
10361
10362static dtrace_ecb_t *
10363dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10364    dtrace_enabling_t *enab)
10365{
10366	dtrace_ecb_t *ecb;
10367	dtrace_predicate_t *pred;
10368	dtrace_actdesc_t *act;
10369	dtrace_provider_t *prov;
10370	dtrace_ecbdesc_t *desc = enab->dten_current;
10371
10372	ASSERT(MUTEX_HELD(&dtrace_lock));
10373	ASSERT(state != NULL);
10374
10375	ecb = dtrace_ecb_add(state, probe);
10376	ecb->dte_uarg = desc->dted_uarg;
10377
10378	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10379		dtrace_predicate_hold(pred);
10380		ecb->dte_predicate = pred;
10381	}
10382
10383	if (probe != NULL) {
10384		/*
10385		 * If the provider shows more leg than the consumer is old
10386		 * enough to see, we need to enable the appropriate implicit
10387		 * predicate bits to prevent the ecb from activating at
10388		 * revealing times.
10389		 *
10390		 * Providers specifying DTRACE_PRIV_USER at register time
10391		 * are stating that they need the /proc-style privilege
10392		 * model to be enforced, and this is what DTRACE_COND_OWNER
10393		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10394		 */
10395		prov = probe->dtpr_provider;
10396		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10397		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10398			ecb->dte_cond |= DTRACE_COND_OWNER;
10399
10400		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10401		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10402			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10403
10404		/*
10405		 * If the provider shows us kernel innards and the user
10406		 * is lacking sufficient privilege, enable the
10407		 * DTRACE_COND_USERMODE implicit predicate.
10408		 */
10409		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10410		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10411			ecb->dte_cond |= DTRACE_COND_USERMODE;
10412	}
10413
10414	if (dtrace_ecb_create_cache != NULL) {
10415		/*
10416		 * If we have a cached ecb, we'll use its action list instead
10417		 * of creating our own (saving both time and space).
10418		 */
10419		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10420		dtrace_action_t *act = cached->dte_action;
10421
10422		if (act != NULL) {
10423			ASSERT(act->dta_refcnt > 0);
10424			act->dta_refcnt++;
10425			ecb->dte_action = act;
10426			ecb->dte_action_last = cached->dte_action_last;
10427			ecb->dte_needed = cached->dte_needed;
10428			ecb->dte_size = cached->dte_size;
10429			ecb->dte_alignment = cached->dte_alignment;
10430		}
10431
10432		return (ecb);
10433	}
10434
10435	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10436		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10437			dtrace_ecb_destroy(ecb);
10438			return (NULL);
10439		}
10440	}
10441
10442	dtrace_ecb_resize(ecb);
10443
10444	return (dtrace_ecb_create_cache = ecb);
10445}
10446
10447static int
10448dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10449{
10450	dtrace_ecb_t *ecb;
10451	dtrace_enabling_t *enab = arg;
10452	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10453
10454	ASSERT(state != NULL);
10455
10456	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10457		/*
10458		 * This probe was created in a generation for which this
10459		 * enabling has previously created ECBs; we don't want to
10460		 * enable it again, so just kick out.
10461		 */
10462		return (DTRACE_MATCH_NEXT);
10463	}
10464
10465	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10466		return (DTRACE_MATCH_DONE);
10467
10468	dtrace_ecb_enable(ecb);
10469	return (DTRACE_MATCH_NEXT);
10470}
10471
10472static dtrace_ecb_t *
10473dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10474{
10475	dtrace_ecb_t *ecb;
10476
10477	ASSERT(MUTEX_HELD(&dtrace_lock));
10478
10479	if (id == 0 || id > state->dts_necbs)
10480		return (NULL);
10481
10482	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10483	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10484
10485	return (state->dts_ecbs[id - 1]);
10486}
10487
10488static dtrace_aggregation_t *
10489dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10490{
10491	dtrace_aggregation_t *agg;
10492
10493	ASSERT(MUTEX_HELD(&dtrace_lock));
10494
10495	if (id == 0 || id > state->dts_naggregations)
10496		return (NULL);
10497
10498	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10499	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10500	    agg->dtag_id == id);
10501
10502	return (state->dts_aggregations[id - 1]);
10503}
10504
10505/*
10506 * DTrace Buffer Functions
10507 *
10508 * The following functions manipulate DTrace buffers.  Most of these functions
10509 * are called in the context of establishing or processing consumer state;
10510 * exceptions are explicitly noted.
10511 */
10512
10513/*
10514 * Note:  called from cross call context.  This function switches the two
10515 * buffers on a given CPU.  The atomicity of this operation is assured by
10516 * disabling interrupts while the actual switch takes place; the disabling of
10517 * interrupts serializes the execution with any execution of dtrace_probe() on
10518 * the same CPU.
10519 */
10520static void
10521dtrace_buffer_switch(dtrace_buffer_t *buf)
10522{
10523	caddr_t tomax = buf->dtb_tomax;
10524	caddr_t xamot = buf->dtb_xamot;
10525	dtrace_icookie_t cookie;
10526
10527	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10528	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10529
10530	cookie = dtrace_interrupt_disable();
10531	buf->dtb_tomax = xamot;
10532	buf->dtb_xamot = tomax;
10533	buf->dtb_xamot_drops = buf->dtb_drops;
10534	buf->dtb_xamot_offset = buf->dtb_offset;
10535	buf->dtb_xamot_errors = buf->dtb_errors;
10536	buf->dtb_xamot_flags = buf->dtb_flags;
10537	buf->dtb_offset = 0;
10538	buf->dtb_drops = 0;
10539	buf->dtb_errors = 0;
10540	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10541	dtrace_interrupt_enable(cookie);
10542}
10543
10544/*
10545 * Note:  called from cross call context.  This function activates a buffer
10546 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10547 * is guaranteed by the disabling of interrupts.
10548 */
10549static void
10550dtrace_buffer_activate(dtrace_state_t *state)
10551{
10552	dtrace_buffer_t *buf;
10553	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10554
10555	buf = &state->dts_buffer[curcpu];
10556
10557	if (buf->dtb_tomax != NULL) {
10558		/*
10559		 * We might like to assert that the buffer is marked inactive,
10560		 * but this isn't necessarily true:  the buffer for the CPU
10561		 * that processes the BEGIN probe has its buffer activated
10562		 * manually.  In this case, we take the (harmless) action
10563		 * re-clearing the bit INACTIVE bit.
10564		 */
10565		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10566	}
10567
10568	dtrace_interrupt_enable(cookie);
10569}
10570
10571static int
10572dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10573    processorid_t cpu)
10574{
10575#if defined(sun)
10576	cpu_t *cp;
10577#else
10578	struct pcpu *cp;
10579#endif
10580	dtrace_buffer_t *buf;
10581
10582#if defined(sun)
10583	ASSERT(MUTEX_HELD(&cpu_lock));
10584	ASSERT(MUTEX_HELD(&dtrace_lock));
10585
10586	if (size > dtrace_nonroot_maxsize &&
10587	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10588		return (EFBIG);
10589
10590	cp = cpu_list;
10591
10592	do {
10593		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10594			continue;
10595
10596		buf = &bufs[cp->cpu_id];
10597
10598		/*
10599		 * If there is already a buffer allocated for this CPU, it
10600		 * is only possible that this is a DR event.  In this case,
10601		 * the buffer size must match our specified size.
10602		 */
10603		if (buf->dtb_tomax != NULL) {
10604			ASSERT(buf->dtb_size == size);
10605			continue;
10606		}
10607
10608		ASSERT(buf->dtb_xamot == NULL);
10609
10610		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10611			goto err;
10612
10613		buf->dtb_size = size;
10614		buf->dtb_flags = flags;
10615		buf->dtb_offset = 0;
10616		buf->dtb_drops = 0;
10617
10618		if (flags & DTRACEBUF_NOSWITCH)
10619			continue;
10620
10621		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10622			goto err;
10623	} while ((cp = cp->cpu_next) != cpu_list);
10624
10625	return (0);
10626
10627err:
10628	cp = cpu_list;
10629
10630	do {
10631		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10632			continue;
10633
10634		buf = &bufs[cp->cpu_id];
10635
10636		if (buf->dtb_xamot != NULL) {
10637			ASSERT(buf->dtb_tomax != NULL);
10638			ASSERT(buf->dtb_size == size);
10639			kmem_free(buf->dtb_xamot, size);
10640		}
10641
10642		if (buf->dtb_tomax != NULL) {
10643			ASSERT(buf->dtb_size == size);
10644			kmem_free(buf->dtb_tomax, size);
10645		}
10646
10647		buf->dtb_tomax = NULL;
10648		buf->dtb_xamot = NULL;
10649		buf->dtb_size = 0;
10650	} while ((cp = cp->cpu_next) != cpu_list);
10651
10652	return (ENOMEM);
10653#else
10654	int i;
10655
10656#if defined(__amd64__)
10657	/*
10658	 * FreeBSD isn't good at limiting the amount of memory we
10659	 * ask to malloc, so let's place a limit here before trying
10660	 * to do something that might well end in tears at bedtime.
10661	 */
10662	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10663		return(ENOMEM);
10664#endif
10665
10666	ASSERT(MUTEX_HELD(&dtrace_lock));
10667	for (i = 0; i <= mp_maxid; i++) {
10668		if ((cp = pcpu_find(i)) == NULL)
10669			continue;
10670
10671		if (cpu != DTRACE_CPUALL && cpu != i)
10672			continue;
10673
10674		buf = &bufs[i];
10675
10676		/*
10677		 * If there is already a buffer allocated for this CPU, it
10678		 * is only possible that this is a DR event.  In this case,
10679		 * the buffer size must match our specified size.
10680		 */
10681		if (buf->dtb_tomax != NULL) {
10682			ASSERT(buf->dtb_size == size);
10683			continue;
10684		}
10685
10686		ASSERT(buf->dtb_xamot == NULL);
10687
10688		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10689			goto err;
10690
10691		buf->dtb_size = size;
10692		buf->dtb_flags = flags;
10693		buf->dtb_offset = 0;
10694		buf->dtb_drops = 0;
10695
10696		if (flags & DTRACEBUF_NOSWITCH)
10697			continue;
10698
10699		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10700			goto err;
10701	}
10702
10703	return (0);
10704
10705err:
10706	/*
10707	 * Error allocating memory, so free the buffers that were
10708	 * allocated before the failed allocation.
10709	 */
10710	for (i = 0; i <= mp_maxid; i++) {
10711		if ((cp = pcpu_find(i)) == NULL)
10712			continue;
10713
10714		if (cpu != DTRACE_CPUALL && cpu != i)
10715			continue;
10716
10717		buf = &bufs[i];
10718
10719		if (buf->dtb_xamot != NULL) {
10720			ASSERT(buf->dtb_tomax != NULL);
10721			ASSERT(buf->dtb_size == size);
10722			kmem_free(buf->dtb_xamot, size);
10723		}
10724
10725		if (buf->dtb_tomax != NULL) {
10726			ASSERT(buf->dtb_size == size);
10727			kmem_free(buf->dtb_tomax, size);
10728		}
10729
10730		buf->dtb_tomax = NULL;
10731		buf->dtb_xamot = NULL;
10732		buf->dtb_size = 0;
10733
10734	}
10735
10736	return (ENOMEM);
10737#endif
10738}
10739
10740/*
10741 * Note:  called from probe context.  This function just increments the drop
10742 * count on a buffer.  It has been made a function to allow for the
10743 * possibility of understanding the source of mysterious drop counts.  (A
10744 * problem for which one may be particularly disappointed that DTrace cannot
10745 * be used to understand DTrace.)
10746 */
10747static void
10748dtrace_buffer_drop(dtrace_buffer_t *buf)
10749{
10750	buf->dtb_drops++;
10751}
10752
10753/*
10754 * Note:  called from probe context.  This function is called to reserve space
10755 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10756 * mstate.  Returns the new offset in the buffer, or a negative value if an
10757 * error has occurred.
10758 */
10759static intptr_t
10760dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10761    dtrace_state_t *state, dtrace_mstate_t *mstate)
10762{
10763	intptr_t offs = buf->dtb_offset, soffs;
10764	intptr_t woffs;
10765	caddr_t tomax;
10766	size_t total;
10767
10768	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10769		return (-1);
10770
10771	if ((tomax = buf->dtb_tomax) == NULL) {
10772		dtrace_buffer_drop(buf);
10773		return (-1);
10774	}
10775
10776	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10777		while (offs & (align - 1)) {
10778			/*
10779			 * Assert that our alignment is off by a number which
10780			 * is itself sizeof (uint32_t) aligned.
10781			 */
10782			ASSERT(!((align - (offs & (align - 1))) &
10783			    (sizeof (uint32_t) - 1)));
10784			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10785			offs += sizeof (uint32_t);
10786		}
10787
10788		if ((soffs = offs + needed) > buf->dtb_size) {
10789			dtrace_buffer_drop(buf);
10790			return (-1);
10791		}
10792
10793		if (mstate == NULL)
10794			return (offs);
10795
10796		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10797		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10798		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10799
10800		return (offs);
10801	}
10802
10803	if (buf->dtb_flags & DTRACEBUF_FILL) {
10804		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10805		    (buf->dtb_flags & DTRACEBUF_FULL))
10806			return (-1);
10807		goto out;
10808	}
10809
10810	total = needed + (offs & (align - 1));
10811
10812	/*
10813	 * For a ring buffer, life is quite a bit more complicated.  Before
10814	 * we can store any padding, we need to adjust our wrapping offset.
10815	 * (If we've never before wrapped or we're not about to, no adjustment
10816	 * is required.)
10817	 */
10818	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10819	    offs + total > buf->dtb_size) {
10820		woffs = buf->dtb_xamot_offset;
10821
10822		if (offs + total > buf->dtb_size) {
10823			/*
10824			 * We can't fit in the end of the buffer.  First, a
10825			 * sanity check that we can fit in the buffer at all.
10826			 */
10827			if (total > buf->dtb_size) {
10828				dtrace_buffer_drop(buf);
10829				return (-1);
10830			}
10831
10832			/*
10833			 * We're going to be storing at the top of the buffer,
10834			 * so now we need to deal with the wrapped offset.  We
10835			 * only reset our wrapped offset to 0 if it is
10836			 * currently greater than the current offset.  If it
10837			 * is less than the current offset, it is because a
10838			 * previous allocation induced a wrap -- but the
10839			 * allocation didn't subsequently take the space due
10840			 * to an error or false predicate evaluation.  In this
10841			 * case, we'll just leave the wrapped offset alone: if
10842			 * the wrapped offset hasn't been advanced far enough
10843			 * for this allocation, it will be adjusted in the
10844			 * lower loop.
10845			 */
10846			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10847				if (woffs >= offs)
10848					woffs = 0;
10849			} else {
10850				woffs = 0;
10851			}
10852
10853			/*
10854			 * Now we know that we're going to be storing to the
10855			 * top of the buffer and that there is room for us
10856			 * there.  We need to clear the buffer from the current
10857			 * offset to the end (there may be old gunk there).
10858			 */
10859			while (offs < buf->dtb_size)
10860				tomax[offs++] = 0;
10861
10862			/*
10863			 * We need to set our offset to zero.  And because we
10864			 * are wrapping, we need to set the bit indicating as
10865			 * much.  We can also adjust our needed space back
10866			 * down to the space required by the ECB -- we know
10867			 * that the top of the buffer is aligned.
10868			 */
10869			offs = 0;
10870			total = needed;
10871			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10872		} else {
10873			/*
10874			 * There is room for us in the buffer, so we simply
10875			 * need to check the wrapped offset.
10876			 */
10877			if (woffs < offs) {
10878				/*
10879				 * The wrapped offset is less than the offset.
10880				 * This can happen if we allocated buffer space
10881				 * that induced a wrap, but then we didn't
10882				 * subsequently take the space due to an error
10883				 * or false predicate evaluation.  This is
10884				 * okay; we know that _this_ allocation isn't
10885				 * going to induce a wrap.  We still can't
10886				 * reset the wrapped offset to be zero,
10887				 * however: the space may have been trashed in
10888				 * the previous failed probe attempt.  But at
10889				 * least the wrapped offset doesn't need to
10890				 * be adjusted at all...
10891				 */
10892				goto out;
10893			}
10894		}
10895
10896		while (offs + total > woffs) {
10897			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10898			size_t size;
10899
10900			if (epid == DTRACE_EPIDNONE) {
10901				size = sizeof (uint32_t);
10902			} else {
10903				ASSERT(epid <= state->dts_necbs);
10904				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10905
10906				size = state->dts_ecbs[epid - 1]->dte_size;
10907			}
10908
10909			ASSERT(woffs + size <= buf->dtb_size);
10910			ASSERT(size != 0);
10911
10912			if (woffs + size == buf->dtb_size) {
10913				/*
10914				 * We've reached the end of the buffer; we want
10915				 * to set the wrapped offset to 0 and break
10916				 * out.  However, if the offs is 0, then we're
10917				 * in a strange edge-condition:  the amount of
10918				 * space that we want to reserve plus the size
10919				 * of the record that we're overwriting is
10920				 * greater than the size of the buffer.  This
10921				 * is problematic because if we reserve the
10922				 * space but subsequently don't consume it (due
10923				 * to a failed predicate or error) the wrapped
10924				 * offset will be 0 -- yet the EPID at offset 0
10925				 * will not be committed.  This situation is
10926				 * relatively easy to deal with:  if we're in
10927				 * this case, the buffer is indistinguishable
10928				 * from one that hasn't wrapped; we need only
10929				 * finish the job by clearing the wrapped bit,
10930				 * explicitly setting the offset to be 0, and
10931				 * zero'ing out the old data in the buffer.
10932				 */
10933				if (offs == 0) {
10934					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10935					buf->dtb_offset = 0;
10936					woffs = total;
10937
10938					while (woffs < buf->dtb_size)
10939						tomax[woffs++] = 0;
10940				}
10941
10942				woffs = 0;
10943				break;
10944			}
10945
10946			woffs += size;
10947		}
10948
10949		/*
10950		 * We have a wrapped offset.  It may be that the wrapped offset
10951		 * has become zero -- that's okay.
10952		 */
10953		buf->dtb_xamot_offset = woffs;
10954	}
10955
10956out:
10957	/*
10958	 * Now we can plow the buffer with any necessary padding.
10959	 */
10960	while (offs & (align - 1)) {
10961		/*
10962		 * Assert that our alignment is off by a number which
10963		 * is itself sizeof (uint32_t) aligned.
10964		 */
10965		ASSERT(!((align - (offs & (align - 1))) &
10966		    (sizeof (uint32_t) - 1)));
10967		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10968		offs += sizeof (uint32_t);
10969	}
10970
10971	if (buf->dtb_flags & DTRACEBUF_FILL) {
10972		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10973			buf->dtb_flags |= DTRACEBUF_FULL;
10974			return (-1);
10975		}
10976	}
10977
10978	if (mstate == NULL)
10979		return (offs);
10980
10981	/*
10982	 * For ring buffers and fill buffers, the scratch space is always
10983	 * the inactive buffer.
10984	 */
10985	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10986	mstate->dtms_scratch_size = buf->dtb_size;
10987	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10988
10989	return (offs);
10990}
10991
10992static void
10993dtrace_buffer_polish(dtrace_buffer_t *buf)
10994{
10995	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10996	ASSERT(MUTEX_HELD(&dtrace_lock));
10997
10998	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10999		return;
11000
11001	/*
11002	 * We need to polish the ring buffer.  There are three cases:
11003	 *
11004	 * - The first (and presumably most common) is that there is no gap
11005	 *   between the buffer offset and the wrapped offset.  In this case,
11006	 *   there is nothing in the buffer that isn't valid data; we can
11007	 *   mark the buffer as polished and return.
11008	 *
11009	 * - The second (less common than the first but still more common
11010	 *   than the third) is that there is a gap between the buffer offset
11011	 *   and the wrapped offset, and the wrapped offset is larger than the
11012	 *   buffer offset.  This can happen because of an alignment issue, or
11013	 *   can happen because of a call to dtrace_buffer_reserve() that
11014	 *   didn't subsequently consume the buffer space.  In this case,
11015	 *   we need to zero the data from the buffer offset to the wrapped
11016	 *   offset.
11017	 *
11018	 * - The third (and least common) is that there is a gap between the
11019	 *   buffer offset and the wrapped offset, but the wrapped offset is
11020	 *   _less_ than the buffer offset.  This can only happen because a
11021	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11022	 *   was not subsequently consumed.  In this case, we need to zero the
11023	 *   space from the offset to the end of the buffer _and_ from the
11024	 *   top of the buffer to the wrapped offset.
11025	 */
11026	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11027		bzero(buf->dtb_tomax + buf->dtb_offset,
11028		    buf->dtb_xamot_offset - buf->dtb_offset);
11029	}
11030
11031	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11032		bzero(buf->dtb_tomax + buf->dtb_offset,
11033		    buf->dtb_size - buf->dtb_offset);
11034		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11035	}
11036}
11037
11038static void
11039dtrace_buffer_free(dtrace_buffer_t *bufs)
11040{
11041	int i;
11042
11043	for (i = 0; i < NCPU; i++) {
11044		dtrace_buffer_t *buf = &bufs[i];
11045
11046		if (buf->dtb_tomax == NULL) {
11047			ASSERT(buf->dtb_xamot == NULL);
11048			ASSERT(buf->dtb_size == 0);
11049			continue;
11050		}
11051
11052		if (buf->dtb_xamot != NULL) {
11053			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11054			kmem_free(buf->dtb_xamot, buf->dtb_size);
11055		}
11056
11057		kmem_free(buf->dtb_tomax, buf->dtb_size);
11058		buf->dtb_size = 0;
11059		buf->dtb_tomax = NULL;
11060		buf->dtb_xamot = NULL;
11061	}
11062}
11063
11064/*
11065 * DTrace Enabling Functions
11066 */
11067static dtrace_enabling_t *
11068dtrace_enabling_create(dtrace_vstate_t *vstate)
11069{
11070	dtrace_enabling_t *enab;
11071
11072	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11073	enab->dten_vstate = vstate;
11074
11075	return (enab);
11076}
11077
11078static void
11079dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11080{
11081	dtrace_ecbdesc_t **ndesc;
11082	size_t osize, nsize;
11083
11084	/*
11085	 * We can't add to enablings after we've enabled them, or after we've
11086	 * retained them.
11087	 */
11088	ASSERT(enab->dten_probegen == 0);
11089	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11090
11091	if (enab->dten_ndesc < enab->dten_maxdesc) {
11092		enab->dten_desc[enab->dten_ndesc++] = ecb;
11093		return;
11094	}
11095
11096	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11097
11098	if (enab->dten_maxdesc == 0) {
11099		enab->dten_maxdesc = 1;
11100	} else {
11101		enab->dten_maxdesc <<= 1;
11102	}
11103
11104	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11105
11106	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11107	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11108	bcopy(enab->dten_desc, ndesc, osize);
11109	if (enab->dten_desc != NULL)
11110		kmem_free(enab->dten_desc, osize);
11111
11112	enab->dten_desc = ndesc;
11113	enab->dten_desc[enab->dten_ndesc++] = ecb;
11114}
11115
11116static void
11117dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11118    dtrace_probedesc_t *pd)
11119{
11120	dtrace_ecbdesc_t *new;
11121	dtrace_predicate_t *pred;
11122	dtrace_actdesc_t *act;
11123
11124	/*
11125	 * We're going to create a new ECB description that matches the
11126	 * specified ECB in every way, but has the specified probe description.
11127	 */
11128	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11129
11130	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11131		dtrace_predicate_hold(pred);
11132
11133	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11134		dtrace_actdesc_hold(act);
11135
11136	new->dted_action = ecb->dted_action;
11137	new->dted_pred = ecb->dted_pred;
11138	new->dted_probe = *pd;
11139	new->dted_uarg = ecb->dted_uarg;
11140
11141	dtrace_enabling_add(enab, new);
11142}
11143
11144static void
11145dtrace_enabling_dump(dtrace_enabling_t *enab)
11146{
11147	int i;
11148
11149	for (i = 0; i < enab->dten_ndesc; i++) {
11150		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11151
11152		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11153		    desc->dtpd_provider, desc->dtpd_mod,
11154		    desc->dtpd_func, desc->dtpd_name);
11155	}
11156}
11157
11158static void
11159dtrace_enabling_destroy(dtrace_enabling_t *enab)
11160{
11161	int i;
11162	dtrace_ecbdesc_t *ep;
11163	dtrace_vstate_t *vstate = enab->dten_vstate;
11164
11165	ASSERT(MUTEX_HELD(&dtrace_lock));
11166
11167	for (i = 0; i < enab->dten_ndesc; i++) {
11168		dtrace_actdesc_t *act, *next;
11169		dtrace_predicate_t *pred;
11170
11171		ep = enab->dten_desc[i];
11172
11173		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11174			dtrace_predicate_release(pred, vstate);
11175
11176		for (act = ep->dted_action; act != NULL; act = next) {
11177			next = act->dtad_next;
11178			dtrace_actdesc_release(act, vstate);
11179		}
11180
11181		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11182	}
11183
11184	if (enab->dten_desc != NULL)
11185		kmem_free(enab->dten_desc,
11186		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11187
11188	/*
11189	 * If this was a retained enabling, decrement the dts_nretained count
11190	 * and take it off of the dtrace_retained list.
11191	 */
11192	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11193	    dtrace_retained == enab) {
11194		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11195		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11196		enab->dten_vstate->dtvs_state->dts_nretained--;
11197	}
11198
11199	if (enab->dten_prev == NULL) {
11200		if (dtrace_retained == enab) {
11201			dtrace_retained = enab->dten_next;
11202
11203			if (dtrace_retained != NULL)
11204				dtrace_retained->dten_prev = NULL;
11205		}
11206	} else {
11207		ASSERT(enab != dtrace_retained);
11208		ASSERT(dtrace_retained != NULL);
11209		enab->dten_prev->dten_next = enab->dten_next;
11210	}
11211
11212	if (enab->dten_next != NULL) {
11213		ASSERT(dtrace_retained != NULL);
11214		enab->dten_next->dten_prev = enab->dten_prev;
11215	}
11216
11217	kmem_free(enab, sizeof (dtrace_enabling_t));
11218}
11219
11220static int
11221dtrace_enabling_retain(dtrace_enabling_t *enab)
11222{
11223	dtrace_state_t *state;
11224
11225	ASSERT(MUTEX_HELD(&dtrace_lock));
11226	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11227	ASSERT(enab->dten_vstate != NULL);
11228
11229	state = enab->dten_vstate->dtvs_state;
11230	ASSERT(state != NULL);
11231
11232	/*
11233	 * We only allow each state to retain dtrace_retain_max enablings.
11234	 */
11235	if (state->dts_nretained >= dtrace_retain_max)
11236		return (ENOSPC);
11237
11238	state->dts_nretained++;
11239
11240	if (dtrace_retained == NULL) {
11241		dtrace_retained = enab;
11242		return (0);
11243	}
11244
11245	enab->dten_next = dtrace_retained;
11246	dtrace_retained->dten_prev = enab;
11247	dtrace_retained = enab;
11248
11249	return (0);
11250}
11251
11252static int
11253dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11254    dtrace_probedesc_t *create)
11255{
11256	dtrace_enabling_t *new, *enab;
11257	int found = 0, err = ENOENT;
11258
11259	ASSERT(MUTEX_HELD(&dtrace_lock));
11260	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11261	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11262	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11263	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11264
11265	new = dtrace_enabling_create(&state->dts_vstate);
11266
11267	/*
11268	 * Iterate over all retained enablings, looking for enablings that
11269	 * match the specified state.
11270	 */
11271	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11272		int i;
11273
11274		/*
11275		 * dtvs_state can only be NULL for helper enablings -- and
11276		 * helper enablings can't be retained.
11277		 */
11278		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11279
11280		if (enab->dten_vstate->dtvs_state != state)
11281			continue;
11282
11283		/*
11284		 * Now iterate over each probe description; we're looking for
11285		 * an exact match to the specified probe description.
11286		 */
11287		for (i = 0; i < enab->dten_ndesc; i++) {
11288			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11289			dtrace_probedesc_t *pd = &ep->dted_probe;
11290
11291			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11292				continue;
11293
11294			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11295				continue;
11296
11297			if (strcmp(pd->dtpd_func, match->dtpd_func))
11298				continue;
11299
11300			if (strcmp(pd->dtpd_name, match->dtpd_name))
11301				continue;
11302
11303			/*
11304			 * We have a winning probe!  Add it to our growing
11305			 * enabling.
11306			 */
11307			found = 1;
11308			dtrace_enabling_addlike(new, ep, create);
11309		}
11310	}
11311
11312	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11313		dtrace_enabling_destroy(new);
11314		return (err);
11315	}
11316
11317	return (0);
11318}
11319
11320static void
11321dtrace_enabling_retract(dtrace_state_t *state)
11322{
11323	dtrace_enabling_t *enab, *next;
11324
11325	ASSERT(MUTEX_HELD(&dtrace_lock));
11326
11327	/*
11328	 * Iterate over all retained enablings, destroy the enablings retained
11329	 * for the specified state.
11330	 */
11331	for (enab = dtrace_retained; enab != NULL; enab = next) {
11332		next = enab->dten_next;
11333
11334		/*
11335		 * dtvs_state can only be NULL for helper enablings -- and
11336		 * helper enablings can't be retained.
11337		 */
11338		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11339
11340		if (enab->dten_vstate->dtvs_state == state) {
11341			ASSERT(state->dts_nretained > 0);
11342			dtrace_enabling_destroy(enab);
11343		}
11344	}
11345
11346	ASSERT(state->dts_nretained == 0);
11347}
11348
11349static int
11350dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11351{
11352	int i = 0;
11353	int matched = 0;
11354
11355	ASSERT(MUTEX_HELD(&cpu_lock));
11356	ASSERT(MUTEX_HELD(&dtrace_lock));
11357
11358	for (i = 0; i < enab->dten_ndesc; i++) {
11359		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11360
11361		enab->dten_current = ep;
11362		enab->dten_error = 0;
11363
11364		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11365
11366		if (enab->dten_error != 0) {
11367			/*
11368			 * If we get an error half-way through enabling the
11369			 * probes, we kick out -- perhaps with some number of
11370			 * them enabled.  Leaving enabled probes enabled may
11371			 * be slightly confusing for user-level, but we expect
11372			 * that no one will attempt to actually drive on in
11373			 * the face of such errors.  If this is an anonymous
11374			 * enabling (indicated with a NULL nmatched pointer),
11375			 * we cmn_err() a message.  We aren't expecting to
11376			 * get such an error -- such as it can exist at all,
11377			 * it would be a result of corrupted DOF in the driver
11378			 * properties.
11379			 */
11380			if (nmatched == NULL) {
11381				cmn_err(CE_WARN, "dtrace_enabling_match() "
11382				    "error on %p: %d", (void *)ep,
11383				    enab->dten_error);
11384			}
11385
11386			return (enab->dten_error);
11387		}
11388	}
11389
11390	enab->dten_probegen = dtrace_probegen;
11391	if (nmatched != NULL)
11392		*nmatched = matched;
11393
11394	return (0);
11395}
11396
11397static void
11398dtrace_enabling_matchall(void)
11399{
11400	dtrace_enabling_t *enab;
11401
11402	mutex_enter(&cpu_lock);
11403	mutex_enter(&dtrace_lock);
11404
11405	/*
11406	 * Iterate over all retained enablings to see if any probes match
11407	 * against them.  We only perform this operation on enablings for which
11408	 * we have sufficient permissions by virtue of being in the global zone
11409	 * or in the same zone as the DTrace client.  Because we can be called
11410	 * after dtrace_detach() has been called, we cannot assert that there
11411	 * are retained enablings.  We can safely load from dtrace_retained,
11412	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11413	 * block pending our completion.
11414	 */
11415	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11416#if defined(sun)
11417		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11418
11419		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11420#endif
11421			(void) dtrace_enabling_match(enab, NULL);
11422	}
11423
11424	mutex_exit(&dtrace_lock);
11425	mutex_exit(&cpu_lock);
11426}
11427
11428/*
11429 * If an enabling is to be enabled without having matched probes (that is, if
11430 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11431 * enabling must be _primed_ by creating an ECB for every ECB description.
11432 * This must be done to assure that we know the number of speculations, the
11433 * number of aggregations, the minimum buffer size needed, etc. before we
11434 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11435 * enabling any probes, we create ECBs for every ECB decription, but with a
11436 * NULL probe -- which is exactly what this function does.
11437 */
11438static void
11439dtrace_enabling_prime(dtrace_state_t *state)
11440{
11441	dtrace_enabling_t *enab;
11442	int i;
11443
11444	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11445		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11446
11447		if (enab->dten_vstate->dtvs_state != state)
11448			continue;
11449
11450		/*
11451		 * We don't want to prime an enabling more than once, lest
11452		 * we allow a malicious user to induce resource exhaustion.
11453		 * (The ECBs that result from priming an enabling aren't
11454		 * leaked -- but they also aren't deallocated until the
11455		 * consumer state is destroyed.)
11456		 */
11457		if (enab->dten_primed)
11458			continue;
11459
11460		for (i = 0; i < enab->dten_ndesc; i++) {
11461			enab->dten_current = enab->dten_desc[i];
11462			(void) dtrace_probe_enable(NULL, enab);
11463		}
11464
11465		enab->dten_primed = 1;
11466	}
11467}
11468
11469/*
11470 * Called to indicate that probes should be provided due to retained
11471 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11472 * must take an initial lap through the enabling calling the dtps_provide()
11473 * entry point explicitly to allow for autocreated probes.
11474 */
11475static void
11476dtrace_enabling_provide(dtrace_provider_t *prv)
11477{
11478	int i, all = 0;
11479	dtrace_probedesc_t desc;
11480
11481	ASSERT(MUTEX_HELD(&dtrace_lock));
11482	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11483
11484	if (prv == NULL) {
11485		all = 1;
11486		prv = dtrace_provider;
11487	}
11488
11489	do {
11490		dtrace_enabling_t *enab = dtrace_retained;
11491		void *parg = prv->dtpv_arg;
11492
11493		for (; enab != NULL; enab = enab->dten_next) {
11494			for (i = 0; i < enab->dten_ndesc; i++) {
11495				desc = enab->dten_desc[i]->dted_probe;
11496				mutex_exit(&dtrace_lock);
11497				prv->dtpv_pops.dtps_provide(parg, &desc);
11498				mutex_enter(&dtrace_lock);
11499			}
11500		}
11501	} while (all && (prv = prv->dtpv_next) != NULL);
11502
11503	mutex_exit(&dtrace_lock);
11504	dtrace_probe_provide(NULL, all ? NULL : prv);
11505	mutex_enter(&dtrace_lock);
11506}
11507
11508/*
11509 * DTrace DOF Functions
11510 */
11511/*ARGSUSED*/
11512static void
11513dtrace_dof_error(dof_hdr_t *dof, const char *str)
11514{
11515	if (dtrace_err_verbose)
11516		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11517
11518#ifdef DTRACE_ERRDEBUG
11519	dtrace_errdebug(str);
11520#endif
11521}
11522
11523/*
11524 * Create DOF out of a currently enabled state.  Right now, we only create
11525 * DOF containing the run-time options -- but this could be expanded to create
11526 * complete DOF representing the enabled state.
11527 */
11528static dof_hdr_t *
11529dtrace_dof_create(dtrace_state_t *state)
11530{
11531	dof_hdr_t *dof;
11532	dof_sec_t *sec;
11533	dof_optdesc_t *opt;
11534	int i, len = sizeof (dof_hdr_t) +
11535	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11536	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11537
11538	ASSERT(MUTEX_HELD(&dtrace_lock));
11539
11540	dof = kmem_zalloc(len, KM_SLEEP);
11541	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11542	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11543	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11544	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11545
11546	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11547	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11548	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11549	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11550	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11551	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11552
11553	dof->dofh_flags = 0;
11554	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11555	dof->dofh_secsize = sizeof (dof_sec_t);
11556	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11557	dof->dofh_secoff = sizeof (dof_hdr_t);
11558	dof->dofh_loadsz = len;
11559	dof->dofh_filesz = len;
11560	dof->dofh_pad = 0;
11561
11562	/*
11563	 * Fill in the option section header...
11564	 */
11565	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11566	sec->dofs_type = DOF_SECT_OPTDESC;
11567	sec->dofs_align = sizeof (uint64_t);
11568	sec->dofs_flags = DOF_SECF_LOAD;
11569	sec->dofs_entsize = sizeof (dof_optdesc_t);
11570
11571	opt = (dof_optdesc_t *)((uintptr_t)sec +
11572	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11573
11574	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11575	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11576
11577	for (i = 0; i < DTRACEOPT_MAX; i++) {
11578		opt[i].dofo_option = i;
11579		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11580		opt[i].dofo_value = state->dts_options[i];
11581	}
11582
11583	return (dof);
11584}
11585
11586static dof_hdr_t *
11587dtrace_dof_copyin(uintptr_t uarg, int *errp)
11588{
11589	dof_hdr_t hdr, *dof;
11590
11591	ASSERT(!MUTEX_HELD(&dtrace_lock));
11592
11593	/*
11594	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11595	 */
11596	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11597		dtrace_dof_error(NULL, "failed to copyin DOF header");
11598		*errp = EFAULT;
11599		return (NULL);
11600	}
11601
11602	/*
11603	 * Now we'll allocate the entire DOF and copy it in -- provided
11604	 * that the length isn't outrageous.
11605	 */
11606	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11607		dtrace_dof_error(&hdr, "load size exceeds maximum");
11608		*errp = E2BIG;
11609		return (NULL);
11610	}
11611
11612	if (hdr.dofh_loadsz < sizeof (hdr)) {
11613		dtrace_dof_error(&hdr, "invalid load size");
11614		*errp = EINVAL;
11615		return (NULL);
11616	}
11617
11618	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11619
11620	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11621		kmem_free(dof, hdr.dofh_loadsz);
11622		*errp = EFAULT;
11623		return (NULL);
11624	}
11625
11626	return (dof);
11627}
11628
11629#if !defined(sun)
11630static __inline uchar_t
11631dtrace_dof_char(char c) {
11632	switch (c) {
11633	case '0':
11634	case '1':
11635	case '2':
11636	case '3':
11637	case '4':
11638	case '5':
11639	case '6':
11640	case '7':
11641	case '8':
11642	case '9':
11643		return (c - '0');
11644	case 'A':
11645	case 'B':
11646	case 'C':
11647	case 'D':
11648	case 'E':
11649	case 'F':
11650		return (c - 'A' + 10);
11651	case 'a':
11652	case 'b':
11653	case 'c':
11654	case 'd':
11655	case 'e':
11656	case 'f':
11657		return (c - 'a' + 10);
11658	}
11659	/* Should not reach here. */
11660	return (0);
11661}
11662#endif
11663
11664static dof_hdr_t *
11665dtrace_dof_property(const char *name)
11666{
11667	uchar_t *buf;
11668	uint64_t loadsz;
11669	unsigned int len, i;
11670	dof_hdr_t *dof;
11671
11672#if defined(sun)
11673	/*
11674	 * Unfortunately, array of values in .conf files are always (and
11675	 * only) interpreted to be integer arrays.  We must read our DOF
11676	 * as an integer array, and then squeeze it into a byte array.
11677	 */
11678	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11679	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11680		return (NULL);
11681
11682	for (i = 0; i < len; i++)
11683		buf[i] = (uchar_t)(((int *)buf)[i]);
11684
11685	if (len < sizeof (dof_hdr_t)) {
11686		ddi_prop_free(buf);
11687		dtrace_dof_error(NULL, "truncated header");
11688		return (NULL);
11689	}
11690
11691	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11692		ddi_prop_free(buf);
11693		dtrace_dof_error(NULL, "truncated DOF");
11694		return (NULL);
11695	}
11696
11697	if (loadsz >= dtrace_dof_maxsize) {
11698		ddi_prop_free(buf);
11699		dtrace_dof_error(NULL, "oversized DOF");
11700		return (NULL);
11701	}
11702
11703	dof = kmem_alloc(loadsz, KM_SLEEP);
11704	bcopy(buf, dof, loadsz);
11705	ddi_prop_free(buf);
11706#else
11707	char *p;
11708	char *p_env;
11709
11710	if ((p_env = getenv(name)) == NULL)
11711		return (NULL);
11712
11713	len = strlen(p_env) / 2;
11714
11715	buf = kmem_alloc(len, KM_SLEEP);
11716
11717	dof = (dof_hdr_t *) buf;
11718
11719	p = p_env;
11720
11721	for (i = 0; i < len; i++) {
11722		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11723		     dtrace_dof_char(p[1]);
11724		p += 2;
11725	}
11726
11727	freeenv(p_env);
11728
11729	if (len < sizeof (dof_hdr_t)) {
11730		kmem_free(buf, 0);
11731		dtrace_dof_error(NULL, "truncated header");
11732		return (NULL);
11733	}
11734
11735	if (len < (loadsz = dof->dofh_loadsz)) {
11736		kmem_free(buf, 0);
11737		dtrace_dof_error(NULL, "truncated DOF");
11738		return (NULL);
11739	}
11740
11741	if (loadsz >= dtrace_dof_maxsize) {
11742		kmem_free(buf, 0);
11743		dtrace_dof_error(NULL, "oversized DOF");
11744		return (NULL);
11745	}
11746#endif
11747
11748	return (dof);
11749}
11750
11751static void
11752dtrace_dof_destroy(dof_hdr_t *dof)
11753{
11754	kmem_free(dof, dof->dofh_loadsz);
11755}
11756
11757/*
11758 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11759 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11760 * a type other than DOF_SECT_NONE is specified, the header is checked against
11761 * this type and NULL is returned if the types do not match.
11762 */
11763static dof_sec_t *
11764dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11765{
11766	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11767	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11768
11769	if (i >= dof->dofh_secnum) {
11770		dtrace_dof_error(dof, "referenced section index is invalid");
11771		return (NULL);
11772	}
11773
11774	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11775		dtrace_dof_error(dof, "referenced section is not loadable");
11776		return (NULL);
11777	}
11778
11779	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11780		dtrace_dof_error(dof, "referenced section is the wrong type");
11781		return (NULL);
11782	}
11783
11784	return (sec);
11785}
11786
11787static dtrace_probedesc_t *
11788dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11789{
11790	dof_probedesc_t *probe;
11791	dof_sec_t *strtab;
11792	uintptr_t daddr = (uintptr_t)dof;
11793	uintptr_t str;
11794	size_t size;
11795
11796	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11797		dtrace_dof_error(dof, "invalid probe section");
11798		return (NULL);
11799	}
11800
11801	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11802		dtrace_dof_error(dof, "bad alignment in probe description");
11803		return (NULL);
11804	}
11805
11806	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11807		dtrace_dof_error(dof, "truncated probe description");
11808		return (NULL);
11809	}
11810
11811	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11812	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11813
11814	if (strtab == NULL)
11815		return (NULL);
11816
11817	str = daddr + strtab->dofs_offset;
11818	size = strtab->dofs_size;
11819
11820	if (probe->dofp_provider >= strtab->dofs_size) {
11821		dtrace_dof_error(dof, "corrupt probe provider");
11822		return (NULL);
11823	}
11824
11825	(void) strncpy(desc->dtpd_provider,
11826	    (char *)(str + probe->dofp_provider),
11827	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11828
11829	if (probe->dofp_mod >= strtab->dofs_size) {
11830		dtrace_dof_error(dof, "corrupt probe module");
11831		return (NULL);
11832	}
11833
11834	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11835	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11836
11837	if (probe->dofp_func >= strtab->dofs_size) {
11838		dtrace_dof_error(dof, "corrupt probe function");
11839		return (NULL);
11840	}
11841
11842	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11843	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11844
11845	if (probe->dofp_name >= strtab->dofs_size) {
11846		dtrace_dof_error(dof, "corrupt probe name");
11847		return (NULL);
11848	}
11849
11850	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11851	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11852
11853	return (desc);
11854}
11855
11856static dtrace_difo_t *
11857dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11858    cred_t *cr)
11859{
11860	dtrace_difo_t *dp;
11861	size_t ttl = 0;
11862	dof_difohdr_t *dofd;
11863	uintptr_t daddr = (uintptr_t)dof;
11864	size_t max = dtrace_difo_maxsize;
11865	int i, l, n;
11866
11867	static const struct {
11868		int section;
11869		int bufoffs;
11870		int lenoffs;
11871		int entsize;
11872		int align;
11873		const char *msg;
11874	} difo[] = {
11875		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11876		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11877		sizeof (dif_instr_t), "multiple DIF sections" },
11878
11879		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11880		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11881		sizeof (uint64_t), "multiple integer tables" },
11882
11883		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11884		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11885		sizeof (char), "multiple string tables" },
11886
11887		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11888		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11889		sizeof (uint_t), "multiple variable tables" },
11890
11891		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11892	};
11893
11894	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11895		dtrace_dof_error(dof, "invalid DIFO header section");
11896		return (NULL);
11897	}
11898
11899	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11900		dtrace_dof_error(dof, "bad alignment in DIFO header");
11901		return (NULL);
11902	}
11903
11904	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11905	    sec->dofs_size % sizeof (dof_secidx_t)) {
11906		dtrace_dof_error(dof, "bad size in DIFO header");
11907		return (NULL);
11908	}
11909
11910	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11911	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11912
11913	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11914	dp->dtdo_rtype = dofd->dofd_rtype;
11915
11916	for (l = 0; l < n; l++) {
11917		dof_sec_t *subsec;
11918		void **bufp;
11919		uint32_t *lenp;
11920
11921		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11922		    dofd->dofd_links[l])) == NULL)
11923			goto err; /* invalid section link */
11924
11925		if (ttl + subsec->dofs_size > max) {
11926			dtrace_dof_error(dof, "exceeds maximum size");
11927			goto err;
11928		}
11929
11930		ttl += subsec->dofs_size;
11931
11932		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11933			if (subsec->dofs_type != difo[i].section)
11934				continue;
11935
11936			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11937				dtrace_dof_error(dof, "section not loaded");
11938				goto err;
11939			}
11940
11941			if (subsec->dofs_align != difo[i].align) {
11942				dtrace_dof_error(dof, "bad alignment");
11943				goto err;
11944			}
11945
11946			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11947			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11948
11949			if (*bufp != NULL) {
11950				dtrace_dof_error(dof, difo[i].msg);
11951				goto err;
11952			}
11953
11954			if (difo[i].entsize != subsec->dofs_entsize) {
11955				dtrace_dof_error(dof, "entry size mismatch");
11956				goto err;
11957			}
11958
11959			if (subsec->dofs_entsize != 0 &&
11960			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11961				dtrace_dof_error(dof, "corrupt entry size");
11962				goto err;
11963			}
11964
11965			*lenp = subsec->dofs_size;
11966			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11967			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11968			    *bufp, subsec->dofs_size);
11969
11970			if (subsec->dofs_entsize != 0)
11971				*lenp /= subsec->dofs_entsize;
11972
11973			break;
11974		}
11975
11976		/*
11977		 * If we encounter a loadable DIFO sub-section that is not
11978		 * known to us, assume this is a broken program and fail.
11979		 */
11980		if (difo[i].section == DOF_SECT_NONE &&
11981		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11982			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11983			goto err;
11984		}
11985	}
11986
11987	if (dp->dtdo_buf == NULL) {
11988		/*
11989		 * We can't have a DIF object without DIF text.
11990		 */
11991		dtrace_dof_error(dof, "missing DIF text");
11992		goto err;
11993	}
11994
11995	/*
11996	 * Before we validate the DIF object, run through the variable table
11997	 * looking for the strings -- if any of their size are under, we'll set
11998	 * their size to be the system-wide default string size.  Note that
11999	 * this should _not_ happen if the "strsize" option has been set --
12000	 * in this case, the compiler should have set the size to reflect the
12001	 * setting of the option.
12002	 */
12003	for (i = 0; i < dp->dtdo_varlen; i++) {
12004		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12005		dtrace_diftype_t *t = &v->dtdv_type;
12006
12007		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12008			continue;
12009
12010		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12011			t->dtdt_size = dtrace_strsize_default;
12012	}
12013
12014	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12015		goto err;
12016
12017	dtrace_difo_init(dp, vstate);
12018	return (dp);
12019
12020err:
12021	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12022	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12023	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12024	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12025
12026	kmem_free(dp, sizeof (dtrace_difo_t));
12027	return (NULL);
12028}
12029
12030static dtrace_predicate_t *
12031dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12032    cred_t *cr)
12033{
12034	dtrace_difo_t *dp;
12035
12036	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12037		return (NULL);
12038
12039	return (dtrace_predicate_create(dp));
12040}
12041
12042static dtrace_actdesc_t *
12043dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12044    cred_t *cr)
12045{
12046	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12047	dof_actdesc_t *desc;
12048	dof_sec_t *difosec;
12049	size_t offs;
12050	uintptr_t daddr = (uintptr_t)dof;
12051	uint64_t arg;
12052	dtrace_actkind_t kind;
12053
12054	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12055		dtrace_dof_error(dof, "invalid action section");
12056		return (NULL);
12057	}
12058
12059	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12060		dtrace_dof_error(dof, "truncated action description");
12061		return (NULL);
12062	}
12063
12064	if (sec->dofs_align != sizeof (uint64_t)) {
12065		dtrace_dof_error(dof, "bad alignment in action description");
12066		return (NULL);
12067	}
12068
12069	if (sec->dofs_size < sec->dofs_entsize) {
12070		dtrace_dof_error(dof, "section entry size exceeds total size");
12071		return (NULL);
12072	}
12073
12074	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12075		dtrace_dof_error(dof, "bad entry size in action description");
12076		return (NULL);
12077	}
12078
12079	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12080		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12081		return (NULL);
12082	}
12083
12084	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12085		desc = (dof_actdesc_t *)(daddr +
12086		    (uintptr_t)sec->dofs_offset + offs);
12087		kind = (dtrace_actkind_t)desc->dofa_kind;
12088
12089		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12090		    (kind != DTRACEACT_PRINTA ||
12091		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12092			dof_sec_t *strtab;
12093			char *str, *fmt;
12094			uint64_t i;
12095
12096			/*
12097			 * printf()-like actions must have a format string.
12098			 */
12099			if ((strtab = dtrace_dof_sect(dof,
12100			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12101				goto err;
12102
12103			str = (char *)((uintptr_t)dof +
12104			    (uintptr_t)strtab->dofs_offset);
12105
12106			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12107				if (str[i] == '\0')
12108					break;
12109			}
12110
12111			if (i >= strtab->dofs_size) {
12112				dtrace_dof_error(dof, "bogus format string");
12113				goto err;
12114			}
12115
12116			if (i == desc->dofa_arg) {
12117				dtrace_dof_error(dof, "empty format string");
12118				goto err;
12119			}
12120
12121			i -= desc->dofa_arg;
12122			fmt = kmem_alloc(i + 1, KM_SLEEP);
12123			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12124			arg = (uint64_t)(uintptr_t)fmt;
12125		} else {
12126			if (kind == DTRACEACT_PRINTA) {
12127				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12128				arg = 0;
12129			} else {
12130				arg = desc->dofa_arg;
12131			}
12132		}
12133
12134		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12135		    desc->dofa_uarg, arg);
12136
12137		if (last != NULL) {
12138			last->dtad_next = act;
12139		} else {
12140			first = act;
12141		}
12142
12143		last = act;
12144
12145		if (desc->dofa_difo == DOF_SECIDX_NONE)
12146			continue;
12147
12148		if ((difosec = dtrace_dof_sect(dof,
12149		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12150			goto err;
12151
12152		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12153
12154		if (act->dtad_difo == NULL)
12155			goto err;
12156	}
12157
12158	ASSERT(first != NULL);
12159	return (first);
12160
12161err:
12162	for (act = first; act != NULL; act = next) {
12163		next = act->dtad_next;
12164		dtrace_actdesc_release(act, vstate);
12165	}
12166
12167	return (NULL);
12168}
12169
12170static dtrace_ecbdesc_t *
12171dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12172    cred_t *cr)
12173{
12174	dtrace_ecbdesc_t *ep;
12175	dof_ecbdesc_t *ecb;
12176	dtrace_probedesc_t *desc;
12177	dtrace_predicate_t *pred = NULL;
12178
12179	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12180		dtrace_dof_error(dof, "truncated ECB description");
12181		return (NULL);
12182	}
12183
12184	if (sec->dofs_align != sizeof (uint64_t)) {
12185		dtrace_dof_error(dof, "bad alignment in ECB description");
12186		return (NULL);
12187	}
12188
12189	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12190	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12191
12192	if (sec == NULL)
12193		return (NULL);
12194
12195	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12196	ep->dted_uarg = ecb->dofe_uarg;
12197	desc = &ep->dted_probe;
12198
12199	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12200		goto err;
12201
12202	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12203		if ((sec = dtrace_dof_sect(dof,
12204		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12205			goto err;
12206
12207		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12208			goto err;
12209
12210		ep->dted_pred.dtpdd_predicate = pred;
12211	}
12212
12213	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12214		if ((sec = dtrace_dof_sect(dof,
12215		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12216			goto err;
12217
12218		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12219
12220		if (ep->dted_action == NULL)
12221			goto err;
12222	}
12223
12224	return (ep);
12225
12226err:
12227	if (pred != NULL)
12228		dtrace_predicate_release(pred, vstate);
12229	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12230	return (NULL);
12231}
12232
12233/*
12234 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12235 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12236 * site of any user SETX relocations to account for load object base address.
12237 * In the future, if we need other relocations, this function can be extended.
12238 */
12239static int
12240dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12241{
12242	uintptr_t daddr = (uintptr_t)dof;
12243	dof_relohdr_t *dofr =
12244	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12245	dof_sec_t *ss, *rs, *ts;
12246	dof_relodesc_t *r;
12247	uint_t i, n;
12248
12249	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12250	    sec->dofs_align != sizeof (dof_secidx_t)) {
12251		dtrace_dof_error(dof, "invalid relocation header");
12252		return (-1);
12253	}
12254
12255	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12256	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12257	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12258
12259	if (ss == NULL || rs == NULL || ts == NULL)
12260		return (-1); /* dtrace_dof_error() has been called already */
12261
12262	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12263	    rs->dofs_align != sizeof (uint64_t)) {
12264		dtrace_dof_error(dof, "invalid relocation section");
12265		return (-1);
12266	}
12267
12268	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12269	n = rs->dofs_size / rs->dofs_entsize;
12270
12271	for (i = 0; i < n; i++) {
12272		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12273
12274		switch (r->dofr_type) {
12275		case DOF_RELO_NONE:
12276			break;
12277		case DOF_RELO_SETX:
12278			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12279			    sizeof (uint64_t) > ts->dofs_size) {
12280				dtrace_dof_error(dof, "bad relocation offset");
12281				return (-1);
12282			}
12283
12284			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12285				dtrace_dof_error(dof, "misaligned setx relo");
12286				return (-1);
12287			}
12288
12289			*(uint64_t *)taddr += ubase;
12290			break;
12291		default:
12292			dtrace_dof_error(dof, "invalid relocation type");
12293			return (-1);
12294		}
12295
12296		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12297	}
12298
12299	return (0);
12300}
12301
12302/*
12303 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12304 * header:  it should be at the front of a memory region that is at least
12305 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12306 * size.  It need not be validated in any other way.
12307 */
12308static int
12309dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12310    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12311{
12312	uint64_t len = dof->dofh_loadsz, seclen;
12313	uintptr_t daddr = (uintptr_t)dof;
12314	dtrace_ecbdesc_t *ep;
12315	dtrace_enabling_t *enab;
12316	uint_t i;
12317
12318	ASSERT(MUTEX_HELD(&dtrace_lock));
12319	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12320
12321	/*
12322	 * Check the DOF header identification bytes.  In addition to checking
12323	 * valid settings, we also verify that unused bits/bytes are zeroed so
12324	 * we can use them later without fear of regressing existing binaries.
12325	 */
12326	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12327	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12328		dtrace_dof_error(dof, "DOF magic string mismatch");
12329		return (-1);
12330	}
12331
12332	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12333	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12334		dtrace_dof_error(dof, "DOF has invalid data model");
12335		return (-1);
12336	}
12337
12338	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12339		dtrace_dof_error(dof, "DOF encoding mismatch");
12340		return (-1);
12341	}
12342
12343	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12344	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12345		dtrace_dof_error(dof, "DOF version mismatch");
12346		return (-1);
12347	}
12348
12349	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12350		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12351		return (-1);
12352	}
12353
12354	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12355		dtrace_dof_error(dof, "DOF uses too many integer registers");
12356		return (-1);
12357	}
12358
12359	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12360		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12361		return (-1);
12362	}
12363
12364	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12365		if (dof->dofh_ident[i] != 0) {
12366			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12367			return (-1);
12368		}
12369	}
12370
12371	if (dof->dofh_flags & ~DOF_FL_VALID) {
12372		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12373		return (-1);
12374	}
12375
12376	if (dof->dofh_secsize == 0) {
12377		dtrace_dof_error(dof, "zero section header size");
12378		return (-1);
12379	}
12380
12381	/*
12382	 * Check that the section headers don't exceed the amount of DOF
12383	 * data.  Note that we cast the section size and number of sections
12384	 * to uint64_t's to prevent possible overflow in the multiplication.
12385	 */
12386	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12387
12388	if (dof->dofh_secoff > len || seclen > len ||
12389	    dof->dofh_secoff + seclen > len) {
12390		dtrace_dof_error(dof, "truncated section headers");
12391		return (-1);
12392	}
12393
12394	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12395		dtrace_dof_error(dof, "misaligned section headers");
12396		return (-1);
12397	}
12398
12399	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12400		dtrace_dof_error(dof, "misaligned section size");
12401		return (-1);
12402	}
12403
12404	/*
12405	 * Take an initial pass through the section headers to be sure that
12406	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12407	 * set, do not permit sections relating to providers, probes, or args.
12408	 */
12409	for (i = 0; i < dof->dofh_secnum; i++) {
12410		dof_sec_t *sec = (dof_sec_t *)(daddr +
12411		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12412
12413		if (noprobes) {
12414			switch (sec->dofs_type) {
12415			case DOF_SECT_PROVIDER:
12416			case DOF_SECT_PROBES:
12417			case DOF_SECT_PRARGS:
12418			case DOF_SECT_PROFFS:
12419				dtrace_dof_error(dof, "illegal sections "
12420				    "for enabling");
12421				return (-1);
12422			}
12423		}
12424
12425		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12426			continue; /* just ignore non-loadable sections */
12427
12428		if (sec->dofs_align & (sec->dofs_align - 1)) {
12429			dtrace_dof_error(dof, "bad section alignment");
12430			return (-1);
12431		}
12432
12433		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12434			dtrace_dof_error(dof, "misaligned section");
12435			return (-1);
12436		}
12437
12438		if (sec->dofs_offset > len || sec->dofs_size > len ||
12439		    sec->dofs_offset + sec->dofs_size > len) {
12440			dtrace_dof_error(dof, "corrupt section header");
12441			return (-1);
12442		}
12443
12444		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12445		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12446			dtrace_dof_error(dof, "non-terminating string table");
12447			return (-1);
12448		}
12449	}
12450
12451	/*
12452	 * Take a second pass through the sections and locate and perform any
12453	 * relocations that are present.  We do this after the first pass to
12454	 * be sure that all sections have had their headers validated.
12455	 */
12456	for (i = 0; i < dof->dofh_secnum; i++) {
12457		dof_sec_t *sec = (dof_sec_t *)(daddr +
12458		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12459
12460		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12461			continue; /* skip sections that are not loadable */
12462
12463		switch (sec->dofs_type) {
12464		case DOF_SECT_URELHDR:
12465			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12466				return (-1);
12467			break;
12468		}
12469	}
12470
12471	if ((enab = *enabp) == NULL)
12472		enab = *enabp = dtrace_enabling_create(vstate);
12473
12474	for (i = 0; i < dof->dofh_secnum; i++) {
12475		dof_sec_t *sec = (dof_sec_t *)(daddr +
12476		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12477
12478		if (sec->dofs_type != DOF_SECT_ECBDESC)
12479			continue;
12480
12481		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12482			dtrace_enabling_destroy(enab);
12483			*enabp = NULL;
12484			return (-1);
12485		}
12486
12487		dtrace_enabling_add(enab, ep);
12488	}
12489
12490	return (0);
12491}
12492
12493/*
12494 * Process DOF for any options.  This routine assumes that the DOF has been
12495 * at least processed by dtrace_dof_slurp().
12496 */
12497static int
12498dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12499{
12500	int i, rval;
12501	uint32_t entsize;
12502	size_t offs;
12503	dof_optdesc_t *desc;
12504
12505	for (i = 0; i < dof->dofh_secnum; i++) {
12506		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12507		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12508
12509		if (sec->dofs_type != DOF_SECT_OPTDESC)
12510			continue;
12511
12512		if (sec->dofs_align != sizeof (uint64_t)) {
12513			dtrace_dof_error(dof, "bad alignment in "
12514			    "option description");
12515			return (EINVAL);
12516		}
12517
12518		if ((entsize = sec->dofs_entsize) == 0) {
12519			dtrace_dof_error(dof, "zeroed option entry size");
12520			return (EINVAL);
12521		}
12522
12523		if (entsize < sizeof (dof_optdesc_t)) {
12524			dtrace_dof_error(dof, "bad option entry size");
12525			return (EINVAL);
12526		}
12527
12528		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12529			desc = (dof_optdesc_t *)((uintptr_t)dof +
12530			    (uintptr_t)sec->dofs_offset + offs);
12531
12532			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12533				dtrace_dof_error(dof, "non-zero option string");
12534				return (EINVAL);
12535			}
12536
12537			if (desc->dofo_value == DTRACEOPT_UNSET) {
12538				dtrace_dof_error(dof, "unset option");
12539				return (EINVAL);
12540			}
12541
12542			if ((rval = dtrace_state_option(state,
12543			    desc->dofo_option, desc->dofo_value)) != 0) {
12544				dtrace_dof_error(dof, "rejected option");
12545				return (rval);
12546			}
12547		}
12548	}
12549
12550	return (0);
12551}
12552
12553/*
12554 * DTrace Consumer State Functions
12555 */
12556static int
12557dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12558{
12559	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12560	void *base;
12561	uintptr_t limit;
12562	dtrace_dynvar_t *dvar, *next, *start;
12563	int i;
12564
12565	ASSERT(MUTEX_HELD(&dtrace_lock));
12566	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12567
12568	bzero(dstate, sizeof (dtrace_dstate_t));
12569
12570	if ((dstate->dtds_chunksize = chunksize) == 0)
12571		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12572
12573	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12574		size = min;
12575
12576	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12577		return (ENOMEM);
12578
12579	dstate->dtds_size = size;
12580	dstate->dtds_base = base;
12581	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12582	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12583
12584	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12585
12586	if (hashsize != 1 && (hashsize & 1))
12587		hashsize--;
12588
12589	dstate->dtds_hashsize = hashsize;
12590	dstate->dtds_hash = dstate->dtds_base;
12591
12592	/*
12593	 * Set all of our hash buckets to point to the single sink, and (if
12594	 * it hasn't already been set), set the sink's hash value to be the
12595	 * sink sentinel value.  The sink is needed for dynamic variable
12596	 * lookups to know that they have iterated over an entire, valid hash
12597	 * chain.
12598	 */
12599	for (i = 0; i < hashsize; i++)
12600		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12601
12602	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12603		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12604
12605	/*
12606	 * Determine number of active CPUs.  Divide free list evenly among
12607	 * active CPUs.
12608	 */
12609	start = (dtrace_dynvar_t *)
12610	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12611	limit = (uintptr_t)base + size;
12612
12613	maxper = (limit - (uintptr_t)start) / NCPU;
12614	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12615
12616	for (i = 0; i < NCPU; i++) {
12617#if !defined(sun)
12618		if (CPU_ABSENT(i))
12619			continue;
12620#endif
12621		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12622
12623		/*
12624		 * If we don't even have enough chunks to make it once through
12625		 * NCPUs, we're just going to allocate everything to the first
12626		 * CPU.  And if we're on the last CPU, we're going to allocate
12627		 * whatever is left over.  In either case, we set the limit to
12628		 * be the limit of the dynamic variable space.
12629		 */
12630		if (maxper == 0 || i == NCPU - 1) {
12631			limit = (uintptr_t)base + size;
12632			start = NULL;
12633		} else {
12634			limit = (uintptr_t)start + maxper;
12635			start = (dtrace_dynvar_t *)limit;
12636		}
12637
12638		ASSERT(limit <= (uintptr_t)base + size);
12639
12640		for (;;) {
12641			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12642			    dstate->dtds_chunksize);
12643
12644			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12645				break;
12646
12647			dvar->dtdv_next = next;
12648			dvar = next;
12649		}
12650
12651		if (maxper == 0)
12652			break;
12653	}
12654
12655	return (0);
12656}
12657
12658static void
12659dtrace_dstate_fini(dtrace_dstate_t *dstate)
12660{
12661	ASSERT(MUTEX_HELD(&cpu_lock));
12662
12663	if (dstate->dtds_base == NULL)
12664		return;
12665
12666	kmem_free(dstate->dtds_base, dstate->dtds_size);
12667	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12668}
12669
12670static void
12671dtrace_vstate_fini(dtrace_vstate_t *vstate)
12672{
12673	/*
12674	 * Logical XOR, where are you?
12675	 */
12676	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12677
12678	if (vstate->dtvs_nglobals > 0) {
12679		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12680		    sizeof (dtrace_statvar_t *));
12681	}
12682
12683	if (vstate->dtvs_ntlocals > 0) {
12684		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12685		    sizeof (dtrace_difv_t));
12686	}
12687
12688	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12689
12690	if (vstate->dtvs_nlocals > 0) {
12691		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12692		    sizeof (dtrace_statvar_t *));
12693	}
12694}
12695
12696#if defined(sun)
12697static void
12698dtrace_state_clean(dtrace_state_t *state)
12699{
12700	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12701		return;
12702
12703	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12704	dtrace_speculation_clean(state);
12705}
12706
12707static void
12708dtrace_state_deadman(dtrace_state_t *state)
12709{
12710	hrtime_t now;
12711
12712	dtrace_sync();
12713
12714	now = dtrace_gethrtime();
12715
12716	if (state != dtrace_anon.dta_state &&
12717	    now - state->dts_laststatus >= dtrace_deadman_user)
12718		return;
12719
12720	/*
12721	 * We must be sure that dts_alive never appears to be less than the
12722	 * value upon entry to dtrace_state_deadman(), and because we lack a
12723	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12724	 * store INT64_MAX to it, followed by a memory barrier, followed by
12725	 * the new value.  This assures that dts_alive never appears to be
12726	 * less than its true value, regardless of the order in which the
12727	 * stores to the underlying storage are issued.
12728	 */
12729	state->dts_alive = INT64_MAX;
12730	dtrace_membar_producer();
12731	state->dts_alive = now;
12732}
12733#else
12734static void
12735dtrace_state_clean(void *arg)
12736{
12737	dtrace_state_t *state = arg;
12738	dtrace_optval_t *opt = state->dts_options;
12739
12740	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12741		return;
12742
12743	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12744	dtrace_speculation_clean(state);
12745
12746	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12747	    dtrace_state_clean, state);
12748}
12749
12750static void
12751dtrace_state_deadman(void *arg)
12752{
12753	dtrace_state_t *state = arg;
12754	hrtime_t now;
12755
12756	dtrace_sync();
12757
12758	dtrace_debug_output();
12759
12760	now = dtrace_gethrtime();
12761
12762	if (state != dtrace_anon.dta_state &&
12763	    now - state->dts_laststatus >= dtrace_deadman_user)
12764		return;
12765
12766	/*
12767	 * We must be sure that dts_alive never appears to be less than the
12768	 * value upon entry to dtrace_state_deadman(), and because we lack a
12769	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12770	 * store INT64_MAX to it, followed by a memory barrier, followed by
12771	 * the new value.  This assures that dts_alive never appears to be
12772	 * less than its true value, regardless of the order in which the
12773	 * stores to the underlying storage are issued.
12774	 */
12775	state->dts_alive = INT64_MAX;
12776	dtrace_membar_producer();
12777	state->dts_alive = now;
12778
12779	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12780	    dtrace_state_deadman, state);
12781}
12782#endif
12783
12784static dtrace_state_t *
12785#if defined(sun)
12786dtrace_state_create(dev_t *devp, cred_t *cr)
12787#else
12788dtrace_state_create(struct cdev *dev)
12789#endif
12790{
12791#if defined(sun)
12792	minor_t minor;
12793	major_t major;
12794#else
12795	cred_t *cr = NULL;
12796	int m = 0;
12797#endif
12798	char c[30];
12799	dtrace_state_t *state;
12800	dtrace_optval_t *opt;
12801	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12802
12803	ASSERT(MUTEX_HELD(&dtrace_lock));
12804	ASSERT(MUTEX_HELD(&cpu_lock));
12805
12806#if defined(sun)
12807	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12808	    VM_BESTFIT | VM_SLEEP);
12809
12810	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12811		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12812		return (NULL);
12813	}
12814
12815	state = ddi_get_soft_state(dtrace_softstate, minor);
12816#else
12817	if (dev != NULL) {
12818		cr = dev->si_cred;
12819		m = dev2unit(dev);
12820		}
12821
12822	/* Allocate memory for the state. */
12823	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12824#endif
12825
12826	state->dts_epid = DTRACE_EPIDNONE + 1;
12827
12828	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12829#if defined(sun)
12830	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12831	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12832
12833	if (devp != NULL) {
12834		major = getemajor(*devp);
12835	} else {
12836		major = ddi_driver_major(dtrace_devi);
12837	}
12838
12839	state->dts_dev = makedevice(major, minor);
12840
12841	if (devp != NULL)
12842		*devp = state->dts_dev;
12843#else
12844	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12845	state->dts_dev = dev;
12846#endif
12847
12848	/*
12849	 * We allocate NCPU buffers.  On the one hand, this can be quite
12850	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12851	 * other hand, it saves an additional memory reference in the probe
12852	 * path.
12853	 */
12854	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12855	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12856
12857#if defined(sun)
12858	state->dts_cleaner = CYCLIC_NONE;
12859	state->dts_deadman = CYCLIC_NONE;
12860#else
12861	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
12862	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
12863#endif
12864	state->dts_vstate.dtvs_state = state;
12865
12866	for (i = 0; i < DTRACEOPT_MAX; i++)
12867		state->dts_options[i] = DTRACEOPT_UNSET;
12868
12869	/*
12870	 * Set the default options.
12871	 */
12872	opt = state->dts_options;
12873	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12874	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12875	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12876	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12877	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12878	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12879	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12880	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12881	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12882	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12883	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12884	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12885	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12886	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12887
12888	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12889
12890	/*
12891	 * Depending on the user credentials, we set flag bits which alter probe
12892	 * visibility or the amount of destructiveness allowed.  In the case of
12893	 * actual anonymous tracing, or the possession of all privileges, all of
12894	 * the normal checks are bypassed.
12895	 */
12896	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12897		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12898		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12899	} else {
12900		/*
12901		 * Set up the credentials for this instantiation.  We take a
12902		 * hold on the credential to prevent it from disappearing on
12903		 * us; this in turn prevents the zone_t referenced by this
12904		 * credential from disappearing.  This means that we can
12905		 * examine the credential and the zone from probe context.
12906		 */
12907		crhold(cr);
12908		state->dts_cred.dcr_cred = cr;
12909
12910		/*
12911		 * CRA_PROC means "we have *some* privilege for dtrace" and
12912		 * unlocks the use of variables like pid, zonename, etc.
12913		 */
12914		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12915		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12916			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12917		}
12918
12919		/*
12920		 * dtrace_user allows use of syscall and profile providers.
12921		 * If the user also has proc_owner and/or proc_zone, we
12922		 * extend the scope to include additional visibility and
12923		 * destructive power.
12924		 */
12925		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12926			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12927				state->dts_cred.dcr_visible |=
12928				    DTRACE_CRV_ALLPROC;
12929
12930				state->dts_cred.dcr_action |=
12931				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12932			}
12933
12934			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12935				state->dts_cred.dcr_visible |=
12936				    DTRACE_CRV_ALLZONE;
12937
12938				state->dts_cred.dcr_action |=
12939				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12940			}
12941
12942			/*
12943			 * If we have all privs in whatever zone this is,
12944			 * we can do destructive things to processes which
12945			 * have altered credentials.
12946			 */
12947#if defined(sun)
12948			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12949			    cr->cr_zone->zone_privset)) {
12950				state->dts_cred.dcr_action |=
12951				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12952			}
12953#endif
12954		}
12955
12956		/*
12957		 * Holding the dtrace_kernel privilege also implies that
12958		 * the user has the dtrace_user privilege from a visibility
12959		 * perspective.  But without further privileges, some
12960		 * destructive actions are not available.
12961		 */
12962		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12963			/*
12964			 * Make all probes in all zones visible.  However,
12965			 * this doesn't mean that all actions become available
12966			 * to all zones.
12967			 */
12968			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12969			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12970
12971			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12972			    DTRACE_CRA_PROC;
12973			/*
12974			 * Holding proc_owner means that destructive actions
12975			 * for *this* zone are allowed.
12976			 */
12977			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12978				state->dts_cred.dcr_action |=
12979				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12980
12981			/*
12982			 * Holding proc_zone means that destructive actions
12983			 * for this user/group ID in all zones is allowed.
12984			 */
12985			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12986				state->dts_cred.dcr_action |=
12987				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12988
12989#if defined(sun)
12990			/*
12991			 * If we have all privs in whatever zone this is,
12992			 * we can do destructive things to processes which
12993			 * have altered credentials.
12994			 */
12995			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12996			    cr->cr_zone->zone_privset)) {
12997				state->dts_cred.dcr_action |=
12998				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12999			}
13000#endif
13001		}
13002
13003		/*
13004		 * Holding the dtrace_proc privilege gives control over fasttrap
13005		 * and pid providers.  We need to grant wider destructive
13006		 * privileges in the event that the user has proc_owner and/or
13007		 * proc_zone.
13008		 */
13009		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13010			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13011				state->dts_cred.dcr_action |=
13012				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13013
13014			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13015				state->dts_cred.dcr_action |=
13016				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13017		}
13018	}
13019
13020	return (state);
13021}
13022
13023static int
13024dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13025{
13026	dtrace_optval_t *opt = state->dts_options, size;
13027	processorid_t cpu = 0;;
13028	int flags = 0, rval;
13029
13030	ASSERT(MUTEX_HELD(&dtrace_lock));
13031	ASSERT(MUTEX_HELD(&cpu_lock));
13032	ASSERT(which < DTRACEOPT_MAX);
13033	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13034	    (state == dtrace_anon.dta_state &&
13035	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13036
13037	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13038		return (0);
13039
13040	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13041		cpu = opt[DTRACEOPT_CPU];
13042
13043	if (which == DTRACEOPT_SPECSIZE)
13044		flags |= DTRACEBUF_NOSWITCH;
13045
13046	if (which == DTRACEOPT_BUFSIZE) {
13047		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13048			flags |= DTRACEBUF_RING;
13049
13050		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13051			flags |= DTRACEBUF_FILL;
13052
13053		if (state != dtrace_anon.dta_state ||
13054		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13055			flags |= DTRACEBUF_INACTIVE;
13056	}
13057
13058	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13059		/*
13060		 * The size must be 8-byte aligned.  If the size is not 8-byte
13061		 * aligned, drop it down by the difference.
13062		 */
13063		if (size & (sizeof (uint64_t) - 1))
13064			size -= size & (sizeof (uint64_t) - 1);
13065
13066		if (size < state->dts_reserve) {
13067			/*
13068			 * Buffers always must be large enough to accommodate
13069			 * their prereserved space.  We return E2BIG instead
13070			 * of ENOMEM in this case to allow for user-level
13071			 * software to differentiate the cases.
13072			 */
13073			return (E2BIG);
13074		}
13075
13076		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13077
13078		if (rval != ENOMEM) {
13079			opt[which] = size;
13080			return (rval);
13081		}
13082
13083		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13084			return (rval);
13085	}
13086
13087	return (ENOMEM);
13088}
13089
13090static int
13091dtrace_state_buffers(dtrace_state_t *state)
13092{
13093	dtrace_speculation_t *spec = state->dts_speculations;
13094	int rval, i;
13095
13096	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13097	    DTRACEOPT_BUFSIZE)) != 0)
13098		return (rval);
13099
13100	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13101	    DTRACEOPT_AGGSIZE)) != 0)
13102		return (rval);
13103
13104	for (i = 0; i < state->dts_nspeculations; i++) {
13105		if ((rval = dtrace_state_buffer(state,
13106		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13107			return (rval);
13108	}
13109
13110	return (0);
13111}
13112
13113static void
13114dtrace_state_prereserve(dtrace_state_t *state)
13115{
13116	dtrace_ecb_t *ecb;
13117	dtrace_probe_t *probe;
13118
13119	state->dts_reserve = 0;
13120
13121	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13122		return;
13123
13124	/*
13125	 * If our buffer policy is a "fill" buffer policy, we need to set the
13126	 * prereserved space to be the space required by the END probes.
13127	 */
13128	probe = dtrace_probes[dtrace_probeid_end - 1];
13129	ASSERT(probe != NULL);
13130
13131	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13132		if (ecb->dte_state != state)
13133			continue;
13134
13135		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13136	}
13137}
13138
13139static int
13140dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13141{
13142	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13143	dtrace_speculation_t *spec;
13144	dtrace_buffer_t *buf;
13145#if defined(sun)
13146	cyc_handler_t hdlr;
13147	cyc_time_t when;
13148#endif
13149	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13150	dtrace_icookie_t cookie;
13151
13152	mutex_enter(&cpu_lock);
13153	mutex_enter(&dtrace_lock);
13154
13155	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13156		rval = EBUSY;
13157		goto out;
13158	}
13159
13160	/*
13161	 * Before we can perform any checks, we must prime all of the
13162	 * retained enablings that correspond to this state.
13163	 */
13164	dtrace_enabling_prime(state);
13165
13166	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13167		rval = EACCES;
13168		goto out;
13169	}
13170
13171	dtrace_state_prereserve(state);
13172
13173	/*
13174	 * Now we want to do is try to allocate our speculations.
13175	 * We do not automatically resize the number of speculations; if
13176	 * this fails, we will fail the operation.
13177	 */
13178	nspec = opt[DTRACEOPT_NSPEC];
13179	ASSERT(nspec != DTRACEOPT_UNSET);
13180
13181	if (nspec > INT_MAX) {
13182		rval = ENOMEM;
13183		goto out;
13184	}
13185
13186	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13187
13188	if (spec == NULL) {
13189		rval = ENOMEM;
13190		goto out;
13191	}
13192
13193	state->dts_speculations = spec;
13194	state->dts_nspeculations = (int)nspec;
13195
13196	for (i = 0; i < nspec; i++) {
13197		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13198			rval = ENOMEM;
13199			goto err;
13200		}
13201
13202		spec[i].dtsp_buffer = buf;
13203	}
13204
13205	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13206		if (dtrace_anon.dta_state == NULL) {
13207			rval = ENOENT;
13208			goto out;
13209		}
13210
13211		if (state->dts_necbs != 0) {
13212			rval = EALREADY;
13213			goto out;
13214		}
13215
13216		state->dts_anon = dtrace_anon_grab();
13217		ASSERT(state->dts_anon != NULL);
13218		state = state->dts_anon;
13219
13220		/*
13221		 * We want "grabanon" to be set in the grabbed state, so we'll
13222		 * copy that option value from the grabbing state into the
13223		 * grabbed state.
13224		 */
13225		state->dts_options[DTRACEOPT_GRABANON] =
13226		    opt[DTRACEOPT_GRABANON];
13227
13228		*cpu = dtrace_anon.dta_beganon;
13229
13230		/*
13231		 * If the anonymous state is active (as it almost certainly
13232		 * is if the anonymous enabling ultimately matched anything),
13233		 * we don't allow any further option processing -- but we
13234		 * don't return failure.
13235		 */
13236		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13237			goto out;
13238	}
13239
13240	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13241	    opt[DTRACEOPT_AGGSIZE] != 0) {
13242		if (state->dts_aggregations == NULL) {
13243			/*
13244			 * We're not going to create an aggregation buffer
13245			 * because we don't have any ECBs that contain
13246			 * aggregations -- set this option to 0.
13247			 */
13248			opt[DTRACEOPT_AGGSIZE] = 0;
13249		} else {
13250			/*
13251			 * If we have an aggregation buffer, we must also have
13252			 * a buffer to use as scratch.
13253			 */
13254			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13255			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13256				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13257			}
13258		}
13259	}
13260
13261	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13262	    opt[DTRACEOPT_SPECSIZE] != 0) {
13263		if (!state->dts_speculates) {
13264			/*
13265			 * We're not going to create speculation buffers
13266			 * because we don't have any ECBs that actually
13267			 * speculate -- set the speculation size to 0.
13268			 */
13269			opt[DTRACEOPT_SPECSIZE] = 0;
13270		}
13271	}
13272
13273	/*
13274	 * The bare minimum size for any buffer that we're actually going to
13275	 * do anything to is sizeof (uint64_t).
13276	 */
13277	sz = sizeof (uint64_t);
13278
13279	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13280	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13281	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13282		/*
13283		 * A buffer size has been explicitly set to 0 (or to a size
13284		 * that will be adjusted to 0) and we need the space -- we
13285		 * need to return failure.  We return ENOSPC to differentiate
13286		 * it from failing to allocate a buffer due to failure to meet
13287		 * the reserve (for which we return E2BIG).
13288		 */
13289		rval = ENOSPC;
13290		goto out;
13291	}
13292
13293	if ((rval = dtrace_state_buffers(state)) != 0)
13294		goto err;
13295
13296	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13297		sz = dtrace_dstate_defsize;
13298
13299	do {
13300		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13301
13302		if (rval == 0)
13303			break;
13304
13305		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13306			goto err;
13307	} while (sz >>= 1);
13308
13309	opt[DTRACEOPT_DYNVARSIZE] = sz;
13310
13311	if (rval != 0)
13312		goto err;
13313
13314	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13315		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13316
13317	if (opt[DTRACEOPT_CLEANRATE] == 0)
13318		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13319
13320	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13321		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13322
13323	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13324		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13325
13326	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13327#if defined(sun)
13328	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13329	hdlr.cyh_arg = state;
13330	hdlr.cyh_level = CY_LOW_LEVEL;
13331
13332	when.cyt_when = 0;
13333	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13334
13335	state->dts_cleaner = cyclic_add(&hdlr, &when);
13336
13337	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13338	hdlr.cyh_arg = state;
13339	hdlr.cyh_level = CY_LOW_LEVEL;
13340
13341	when.cyt_when = 0;
13342	when.cyt_interval = dtrace_deadman_interval;
13343
13344	state->dts_deadman = cyclic_add(&hdlr, &when);
13345#else
13346	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13347	    dtrace_state_clean, state);
13348	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13349	    dtrace_state_deadman, state);
13350#endif
13351
13352	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13353
13354	/*
13355	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13356	 * interrupts here both to record the CPU on which we fired the BEGIN
13357	 * probe (the data from this CPU will be processed first at user
13358	 * level) and to manually activate the buffer for this CPU.
13359	 */
13360	cookie = dtrace_interrupt_disable();
13361	*cpu = curcpu;
13362	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13363	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13364
13365	dtrace_probe(dtrace_probeid_begin,
13366	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13367	dtrace_interrupt_enable(cookie);
13368	/*
13369	 * We may have had an exit action from a BEGIN probe; only change our
13370	 * state to ACTIVE if we're still in WARMUP.
13371	 */
13372	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13373	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13374
13375	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13376		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13377
13378	/*
13379	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13380	 * want each CPU to transition its principal buffer out of the
13381	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13382	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13383	 * atomically transition from processing none of a state's ECBs to
13384	 * processing all of them.
13385	 */
13386	dtrace_xcall(DTRACE_CPUALL,
13387	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13388	goto out;
13389
13390err:
13391	dtrace_buffer_free(state->dts_buffer);
13392	dtrace_buffer_free(state->dts_aggbuffer);
13393
13394	if ((nspec = state->dts_nspeculations) == 0) {
13395		ASSERT(state->dts_speculations == NULL);
13396		goto out;
13397	}
13398
13399	spec = state->dts_speculations;
13400	ASSERT(spec != NULL);
13401
13402	for (i = 0; i < state->dts_nspeculations; i++) {
13403		if ((buf = spec[i].dtsp_buffer) == NULL)
13404			break;
13405
13406		dtrace_buffer_free(buf);
13407		kmem_free(buf, bufsize);
13408	}
13409
13410	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13411	state->dts_nspeculations = 0;
13412	state->dts_speculations = NULL;
13413
13414out:
13415	mutex_exit(&dtrace_lock);
13416	mutex_exit(&cpu_lock);
13417
13418	return (rval);
13419}
13420
13421static int
13422dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13423{
13424	dtrace_icookie_t cookie;
13425
13426	ASSERT(MUTEX_HELD(&dtrace_lock));
13427
13428	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13429	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13430		return (EINVAL);
13431
13432	/*
13433	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13434	 * to be sure that every CPU has seen it.  See below for the details
13435	 * on why this is done.
13436	 */
13437	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13438	dtrace_sync();
13439
13440	/*
13441	 * By this point, it is impossible for any CPU to be still processing
13442	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13443	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13444	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13445	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13446	 * iff we're in the END probe.
13447	 */
13448	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13449	dtrace_sync();
13450	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13451
13452	/*
13453	 * Finally, we can release the reserve and call the END probe.  We
13454	 * disable interrupts across calling the END probe to allow us to
13455	 * return the CPU on which we actually called the END probe.  This
13456	 * allows user-land to be sure that this CPU's principal buffer is
13457	 * processed last.
13458	 */
13459	state->dts_reserve = 0;
13460
13461	cookie = dtrace_interrupt_disable();
13462	*cpu = curcpu;
13463	dtrace_probe(dtrace_probeid_end,
13464	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13465	dtrace_interrupt_enable(cookie);
13466
13467	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13468	dtrace_sync();
13469
13470	return (0);
13471}
13472
13473static int
13474dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13475    dtrace_optval_t val)
13476{
13477	ASSERT(MUTEX_HELD(&dtrace_lock));
13478
13479	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13480		return (EBUSY);
13481
13482	if (option >= DTRACEOPT_MAX)
13483		return (EINVAL);
13484
13485	if (option != DTRACEOPT_CPU && val < 0)
13486		return (EINVAL);
13487
13488	switch (option) {
13489	case DTRACEOPT_DESTRUCTIVE:
13490		if (dtrace_destructive_disallow)
13491			return (EACCES);
13492
13493		state->dts_cred.dcr_destructive = 1;
13494		break;
13495
13496	case DTRACEOPT_BUFSIZE:
13497	case DTRACEOPT_DYNVARSIZE:
13498	case DTRACEOPT_AGGSIZE:
13499	case DTRACEOPT_SPECSIZE:
13500	case DTRACEOPT_STRSIZE:
13501		if (val < 0)
13502			return (EINVAL);
13503
13504		if (val >= LONG_MAX) {
13505			/*
13506			 * If this is an otherwise negative value, set it to
13507			 * the highest multiple of 128m less than LONG_MAX.
13508			 * Technically, we're adjusting the size without
13509			 * regard to the buffer resizing policy, but in fact,
13510			 * this has no effect -- if we set the buffer size to
13511			 * ~LONG_MAX and the buffer policy is ultimately set to
13512			 * be "manual", the buffer allocation is guaranteed to
13513			 * fail, if only because the allocation requires two
13514			 * buffers.  (We set the the size to the highest
13515			 * multiple of 128m because it ensures that the size
13516			 * will remain a multiple of a megabyte when
13517			 * repeatedly halved -- all the way down to 15m.)
13518			 */
13519			val = LONG_MAX - (1 << 27) + 1;
13520		}
13521	}
13522
13523	state->dts_options[option] = val;
13524
13525	return (0);
13526}
13527
13528static void
13529dtrace_state_destroy(dtrace_state_t *state)
13530{
13531	dtrace_ecb_t *ecb;
13532	dtrace_vstate_t *vstate = &state->dts_vstate;
13533#if defined(sun)
13534	minor_t minor = getminor(state->dts_dev);
13535#endif
13536	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13537	dtrace_speculation_t *spec = state->dts_speculations;
13538	int nspec = state->dts_nspeculations;
13539	uint32_t match;
13540
13541	ASSERT(MUTEX_HELD(&dtrace_lock));
13542	ASSERT(MUTEX_HELD(&cpu_lock));
13543
13544	/*
13545	 * First, retract any retained enablings for this state.
13546	 */
13547	dtrace_enabling_retract(state);
13548	ASSERT(state->dts_nretained == 0);
13549
13550	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13551	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13552		/*
13553		 * We have managed to come into dtrace_state_destroy() on a
13554		 * hot enabling -- almost certainly because of a disorderly
13555		 * shutdown of a consumer.  (That is, a consumer that is
13556		 * exiting without having called dtrace_stop().) In this case,
13557		 * we're going to set our activity to be KILLED, and then
13558		 * issue a sync to be sure that everyone is out of probe
13559		 * context before we start blowing away ECBs.
13560		 */
13561		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13562		dtrace_sync();
13563	}
13564
13565	/*
13566	 * Release the credential hold we took in dtrace_state_create().
13567	 */
13568	if (state->dts_cred.dcr_cred != NULL)
13569		crfree(state->dts_cred.dcr_cred);
13570
13571	/*
13572	 * Now we can safely disable and destroy any enabled probes.  Because
13573	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13574	 * (especially if they're all enabled), we take two passes through the
13575	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13576	 * in the second we disable whatever is left over.
13577	 */
13578	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13579		for (i = 0; i < state->dts_necbs; i++) {
13580			if ((ecb = state->dts_ecbs[i]) == NULL)
13581				continue;
13582
13583			if (match && ecb->dte_probe != NULL) {
13584				dtrace_probe_t *probe = ecb->dte_probe;
13585				dtrace_provider_t *prov = probe->dtpr_provider;
13586
13587				if (!(prov->dtpv_priv.dtpp_flags & match))
13588					continue;
13589			}
13590
13591			dtrace_ecb_disable(ecb);
13592			dtrace_ecb_destroy(ecb);
13593		}
13594
13595		if (!match)
13596			break;
13597	}
13598
13599	/*
13600	 * Before we free the buffers, perform one more sync to assure that
13601	 * every CPU is out of probe context.
13602	 */
13603	dtrace_sync();
13604
13605	dtrace_buffer_free(state->dts_buffer);
13606	dtrace_buffer_free(state->dts_aggbuffer);
13607
13608	for (i = 0; i < nspec; i++)
13609		dtrace_buffer_free(spec[i].dtsp_buffer);
13610
13611#if defined(sun)
13612	if (state->dts_cleaner != CYCLIC_NONE)
13613		cyclic_remove(state->dts_cleaner);
13614
13615	if (state->dts_deadman != CYCLIC_NONE)
13616		cyclic_remove(state->dts_deadman);
13617#else
13618	callout_stop(&state->dts_cleaner);
13619	callout_drain(&state->dts_cleaner);
13620	callout_stop(&state->dts_deadman);
13621	callout_drain(&state->dts_deadman);
13622#endif
13623
13624	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13625	dtrace_vstate_fini(vstate);
13626	if (state->dts_ecbs != NULL)
13627		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13628
13629	if (state->dts_aggregations != NULL) {
13630#ifdef DEBUG
13631		for (i = 0; i < state->dts_naggregations; i++)
13632			ASSERT(state->dts_aggregations[i] == NULL);
13633#endif
13634		ASSERT(state->dts_naggregations > 0);
13635		kmem_free(state->dts_aggregations,
13636		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13637	}
13638
13639	kmem_free(state->dts_buffer, bufsize);
13640	kmem_free(state->dts_aggbuffer, bufsize);
13641
13642	for (i = 0; i < nspec; i++)
13643		kmem_free(spec[i].dtsp_buffer, bufsize);
13644
13645	if (spec != NULL)
13646		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13647
13648	dtrace_format_destroy(state);
13649
13650	if (state->dts_aggid_arena != NULL) {
13651#if defined(sun)
13652		vmem_destroy(state->dts_aggid_arena);
13653#else
13654		delete_unrhdr(state->dts_aggid_arena);
13655#endif
13656		state->dts_aggid_arena = NULL;
13657	}
13658#if defined(sun)
13659	ddi_soft_state_free(dtrace_softstate, minor);
13660	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13661#endif
13662}
13663
13664/*
13665 * DTrace Anonymous Enabling Functions
13666 */
13667static dtrace_state_t *
13668dtrace_anon_grab(void)
13669{
13670	dtrace_state_t *state;
13671
13672	ASSERT(MUTEX_HELD(&dtrace_lock));
13673
13674	if ((state = dtrace_anon.dta_state) == NULL) {
13675		ASSERT(dtrace_anon.dta_enabling == NULL);
13676		return (NULL);
13677	}
13678
13679	ASSERT(dtrace_anon.dta_enabling != NULL);
13680	ASSERT(dtrace_retained != NULL);
13681
13682	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13683	dtrace_anon.dta_enabling = NULL;
13684	dtrace_anon.dta_state = NULL;
13685
13686	return (state);
13687}
13688
13689static void
13690dtrace_anon_property(void)
13691{
13692	int i, rv;
13693	dtrace_state_t *state;
13694	dof_hdr_t *dof;
13695	char c[32];		/* enough for "dof-data-" + digits */
13696
13697	ASSERT(MUTEX_HELD(&dtrace_lock));
13698	ASSERT(MUTEX_HELD(&cpu_lock));
13699
13700	for (i = 0; ; i++) {
13701		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13702
13703		dtrace_err_verbose = 1;
13704
13705		if ((dof = dtrace_dof_property(c)) == NULL) {
13706			dtrace_err_verbose = 0;
13707			break;
13708		}
13709
13710#if defined(sun)
13711		/*
13712		 * We want to create anonymous state, so we need to transition
13713		 * the kernel debugger to indicate that DTrace is active.  If
13714		 * this fails (e.g. because the debugger has modified text in
13715		 * some way), we won't continue with the processing.
13716		 */
13717		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13718			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13719			    "enabling ignored.");
13720			dtrace_dof_destroy(dof);
13721			break;
13722		}
13723#endif
13724
13725		/*
13726		 * If we haven't allocated an anonymous state, we'll do so now.
13727		 */
13728		if ((state = dtrace_anon.dta_state) == NULL) {
13729#if defined(sun)
13730			state = dtrace_state_create(NULL, NULL);
13731#else
13732			state = dtrace_state_create(NULL);
13733#endif
13734			dtrace_anon.dta_state = state;
13735
13736			if (state == NULL) {
13737				/*
13738				 * This basically shouldn't happen:  the only
13739				 * failure mode from dtrace_state_create() is a
13740				 * failure of ddi_soft_state_zalloc() that
13741				 * itself should never happen.  Still, the
13742				 * interface allows for a failure mode, and
13743				 * we want to fail as gracefully as possible:
13744				 * we'll emit an error message and cease
13745				 * processing anonymous state in this case.
13746				 */
13747				cmn_err(CE_WARN, "failed to create "
13748				    "anonymous state");
13749				dtrace_dof_destroy(dof);
13750				break;
13751			}
13752		}
13753
13754		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13755		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13756
13757		if (rv == 0)
13758			rv = dtrace_dof_options(dof, state);
13759
13760		dtrace_err_verbose = 0;
13761		dtrace_dof_destroy(dof);
13762
13763		if (rv != 0) {
13764			/*
13765			 * This is malformed DOF; chuck any anonymous state
13766			 * that we created.
13767			 */
13768			ASSERT(dtrace_anon.dta_enabling == NULL);
13769			dtrace_state_destroy(state);
13770			dtrace_anon.dta_state = NULL;
13771			break;
13772		}
13773
13774		ASSERT(dtrace_anon.dta_enabling != NULL);
13775	}
13776
13777	if (dtrace_anon.dta_enabling != NULL) {
13778		int rval;
13779
13780		/*
13781		 * dtrace_enabling_retain() can only fail because we are
13782		 * trying to retain more enablings than are allowed -- but
13783		 * we only have one anonymous enabling, and we are guaranteed
13784		 * to be allowed at least one retained enabling; we assert
13785		 * that dtrace_enabling_retain() returns success.
13786		 */
13787		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13788		ASSERT(rval == 0);
13789
13790		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13791	}
13792}
13793
13794#if defined(sun)
13795/*
13796 * DTrace Helper Functions
13797 */
13798static void
13799dtrace_helper_trace(dtrace_helper_action_t *helper,
13800    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13801{
13802	uint32_t size, next, nnext, i;
13803	dtrace_helptrace_t *ent;
13804	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13805
13806	if (!dtrace_helptrace_enabled)
13807		return;
13808
13809	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13810
13811	/*
13812	 * What would a tracing framework be without its own tracing
13813	 * framework?  (Well, a hell of a lot simpler, for starters...)
13814	 */
13815	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13816	    sizeof (uint64_t) - sizeof (uint64_t);
13817
13818	/*
13819	 * Iterate until we can allocate a slot in the trace buffer.
13820	 */
13821	do {
13822		next = dtrace_helptrace_next;
13823
13824		if (next + size < dtrace_helptrace_bufsize) {
13825			nnext = next + size;
13826		} else {
13827			nnext = size;
13828		}
13829	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13830
13831	/*
13832	 * We have our slot; fill it in.
13833	 */
13834	if (nnext == size)
13835		next = 0;
13836
13837	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13838	ent->dtht_helper = helper;
13839	ent->dtht_where = where;
13840	ent->dtht_nlocals = vstate->dtvs_nlocals;
13841
13842	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13843	    mstate->dtms_fltoffs : -1;
13844	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13845	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13846
13847	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13848		dtrace_statvar_t *svar;
13849
13850		if ((svar = vstate->dtvs_locals[i]) == NULL)
13851			continue;
13852
13853		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13854		ent->dtht_locals[i] =
13855		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13856	}
13857}
13858#endif
13859
13860#if defined(sun)
13861static uint64_t
13862dtrace_helper(int which, dtrace_mstate_t *mstate,
13863    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13864{
13865	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13866	uint64_t sarg0 = mstate->dtms_arg[0];
13867	uint64_t sarg1 = mstate->dtms_arg[1];
13868	uint64_t rval;
13869	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13870	dtrace_helper_action_t *helper;
13871	dtrace_vstate_t *vstate;
13872	dtrace_difo_t *pred;
13873	int i, trace = dtrace_helptrace_enabled;
13874
13875	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13876
13877	if (helpers == NULL)
13878		return (0);
13879
13880	if ((helper = helpers->dthps_actions[which]) == NULL)
13881		return (0);
13882
13883	vstate = &helpers->dthps_vstate;
13884	mstate->dtms_arg[0] = arg0;
13885	mstate->dtms_arg[1] = arg1;
13886
13887	/*
13888	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13889	 * we'll call the corresponding actions.  Note that the below calls
13890	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13891	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13892	 * the stored DIF offset with its own (which is the desired behavior).
13893	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13894	 * from machine state; this is okay, too.
13895	 */
13896	for (; helper != NULL; helper = helper->dtha_next) {
13897		if ((pred = helper->dtha_predicate) != NULL) {
13898			if (trace)
13899				dtrace_helper_trace(helper, mstate, vstate, 0);
13900
13901			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13902				goto next;
13903
13904			if (*flags & CPU_DTRACE_FAULT)
13905				goto err;
13906		}
13907
13908		for (i = 0; i < helper->dtha_nactions; i++) {
13909			if (trace)
13910				dtrace_helper_trace(helper,
13911				    mstate, vstate, i + 1);
13912
13913			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13914			    mstate, vstate, state);
13915
13916			if (*flags & CPU_DTRACE_FAULT)
13917				goto err;
13918		}
13919
13920next:
13921		if (trace)
13922			dtrace_helper_trace(helper, mstate, vstate,
13923			    DTRACE_HELPTRACE_NEXT);
13924	}
13925
13926	if (trace)
13927		dtrace_helper_trace(helper, mstate, vstate,
13928		    DTRACE_HELPTRACE_DONE);
13929
13930	/*
13931	 * Restore the arg0 that we saved upon entry.
13932	 */
13933	mstate->dtms_arg[0] = sarg0;
13934	mstate->dtms_arg[1] = sarg1;
13935
13936	return (rval);
13937
13938err:
13939	if (trace)
13940		dtrace_helper_trace(helper, mstate, vstate,
13941		    DTRACE_HELPTRACE_ERR);
13942
13943	/*
13944	 * Restore the arg0 that we saved upon entry.
13945	 */
13946	mstate->dtms_arg[0] = sarg0;
13947	mstate->dtms_arg[1] = sarg1;
13948
13949	return (0);
13950}
13951
13952static void
13953dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13954    dtrace_vstate_t *vstate)
13955{
13956	int i;
13957
13958	if (helper->dtha_predicate != NULL)
13959		dtrace_difo_release(helper->dtha_predicate, vstate);
13960
13961	for (i = 0; i < helper->dtha_nactions; i++) {
13962		ASSERT(helper->dtha_actions[i] != NULL);
13963		dtrace_difo_release(helper->dtha_actions[i], vstate);
13964	}
13965
13966	kmem_free(helper->dtha_actions,
13967	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13968	kmem_free(helper, sizeof (dtrace_helper_action_t));
13969}
13970
13971static int
13972dtrace_helper_destroygen(int gen)
13973{
13974	proc_t *p = curproc;
13975	dtrace_helpers_t *help = p->p_dtrace_helpers;
13976	dtrace_vstate_t *vstate;
13977	int i;
13978
13979	ASSERT(MUTEX_HELD(&dtrace_lock));
13980
13981	if (help == NULL || gen > help->dthps_generation)
13982		return (EINVAL);
13983
13984	vstate = &help->dthps_vstate;
13985
13986	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13987		dtrace_helper_action_t *last = NULL, *h, *next;
13988
13989		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13990			next = h->dtha_next;
13991
13992			if (h->dtha_generation == gen) {
13993				if (last != NULL) {
13994					last->dtha_next = next;
13995				} else {
13996					help->dthps_actions[i] = next;
13997				}
13998
13999				dtrace_helper_action_destroy(h, vstate);
14000			} else {
14001				last = h;
14002			}
14003		}
14004	}
14005
14006	/*
14007	 * Interate until we've cleared out all helper providers with the
14008	 * given generation number.
14009	 */
14010	for (;;) {
14011		dtrace_helper_provider_t *prov;
14012
14013		/*
14014		 * Look for a helper provider with the right generation. We
14015		 * have to start back at the beginning of the list each time
14016		 * because we drop dtrace_lock. It's unlikely that we'll make
14017		 * more than two passes.
14018		 */
14019		for (i = 0; i < help->dthps_nprovs; i++) {
14020			prov = help->dthps_provs[i];
14021
14022			if (prov->dthp_generation == gen)
14023				break;
14024		}
14025
14026		/*
14027		 * If there were no matches, we're done.
14028		 */
14029		if (i == help->dthps_nprovs)
14030			break;
14031
14032		/*
14033		 * Move the last helper provider into this slot.
14034		 */
14035		help->dthps_nprovs--;
14036		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14037		help->dthps_provs[help->dthps_nprovs] = NULL;
14038
14039		mutex_exit(&dtrace_lock);
14040
14041		/*
14042		 * If we have a meta provider, remove this helper provider.
14043		 */
14044		mutex_enter(&dtrace_meta_lock);
14045		if (dtrace_meta_pid != NULL) {
14046			ASSERT(dtrace_deferred_pid == NULL);
14047			dtrace_helper_provider_remove(&prov->dthp_prov,
14048			    p->p_pid);
14049		}
14050		mutex_exit(&dtrace_meta_lock);
14051
14052		dtrace_helper_provider_destroy(prov);
14053
14054		mutex_enter(&dtrace_lock);
14055	}
14056
14057	return (0);
14058}
14059#endif
14060
14061#if defined(sun)
14062static int
14063dtrace_helper_validate(dtrace_helper_action_t *helper)
14064{
14065	int err = 0, i;
14066	dtrace_difo_t *dp;
14067
14068	if ((dp = helper->dtha_predicate) != NULL)
14069		err += dtrace_difo_validate_helper(dp);
14070
14071	for (i = 0; i < helper->dtha_nactions; i++)
14072		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14073
14074	return (err == 0);
14075}
14076#endif
14077
14078#if defined(sun)
14079static int
14080dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14081{
14082	dtrace_helpers_t *help;
14083	dtrace_helper_action_t *helper, *last;
14084	dtrace_actdesc_t *act;
14085	dtrace_vstate_t *vstate;
14086	dtrace_predicate_t *pred;
14087	int count = 0, nactions = 0, i;
14088
14089	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14090		return (EINVAL);
14091
14092	help = curproc->p_dtrace_helpers;
14093	last = help->dthps_actions[which];
14094	vstate = &help->dthps_vstate;
14095
14096	for (count = 0; last != NULL; last = last->dtha_next) {
14097		count++;
14098		if (last->dtha_next == NULL)
14099			break;
14100	}
14101
14102	/*
14103	 * If we already have dtrace_helper_actions_max helper actions for this
14104	 * helper action type, we'll refuse to add a new one.
14105	 */
14106	if (count >= dtrace_helper_actions_max)
14107		return (ENOSPC);
14108
14109	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14110	helper->dtha_generation = help->dthps_generation;
14111
14112	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14113		ASSERT(pred->dtp_difo != NULL);
14114		dtrace_difo_hold(pred->dtp_difo);
14115		helper->dtha_predicate = pred->dtp_difo;
14116	}
14117
14118	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14119		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14120			goto err;
14121
14122		if (act->dtad_difo == NULL)
14123			goto err;
14124
14125		nactions++;
14126	}
14127
14128	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14129	    (helper->dtha_nactions = nactions), KM_SLEEP);
14130
14131	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14132		dtrace_difo_hold(act->dtad_difo);
14133		helper->dtha_actions[i++] = act->dtad_difo;
14134	}
14135
14136	if (!dtrace_helper_validate(helper))
14137		goto err;
14138
14139	if (last == NULL) {
14140		help->dthps_actions[which] = helper;
14141	} else {
14142		last->dtha_next = helper;
14143	}
14144
14145	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14146		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14147		dtrace_helptrace_next = 0;
14148	}
14149
14150	return (0);
14151err:
14152	dtrace_helper_action_destroy(helper, vstate);
14153	return (EINVAL);
14154}
14155
14156static void
14157dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14158    dof_helper_t *dofhp)
14159{
14160	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14161
14162	mutex_enter(&dtrace_meta_lock);
14163	mutex_enter(&dtrace_lock);
14164
14165	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14166		/*
14167		 * If the dtrace module is loaded but not attached, or if
14168		 * there aren't isn't a meta provider registered to deal with
14169		 * these provider descriptions, we need to postpone creating
14170		 * the actual providers until later.
14171		 */
14172
14173		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14174		    dtrace_deferred_pid != help) {
14175			help->dthps_deferred = 1;
14176			help->dthps_pid = p->p_pid;
14177			help->dthps_next = dtrace_deferred_pid;
14178			help->dthps_prev = NULL;
14179			if (dtrace_deferred_pid != NULL)
14180				dtrace_deferred_pid->dthps_prev = help;
14181			dtrace_deferred_pid = help;
14182		}
14183
14184		mutex_exit(&dtrace_lock);
14185
14186	} else if (dofhp != NULL) {
14187		/*
14188		 * If the dtrace module is loaded and we have a particular
14189		 * helper provider description, pass that off to the
14190		 * meta provider.
14191		 */
14192
14193		mutex_exit(&dtrace_lock);
14194
14195		dtrace_helper_provide(dofhp, p->p_pid);
14196
14197	} else {
14198		/*
14199		 * Otherwise, just pass all the helper provider descriptions
14200		 * off to the meta provider.
14201		 */
14202
14203		int i;
14204		mutex_exit(&dtrace_lock);
14205
14206		for (i = 0; i < help->dthps_nprovs; i++) {
14207			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14208			    p->p_pid);
14209		}
14210	}
14211
14212	mutex_exit(&dtrace_meta_lock);
14213}
14214
14215static int
14216dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14217{
14218	dtrace_helpers_t *help;
14219	dtrace_helper_provider_t *hprov, **tmp_provs;
14220	uint_t tmp_maxprovs, i;
14221
14222	ASSERT(MUTEX_HELD(&dtrace_lock));
14223
14224	help = curproc->p_dtrace_helpers;
14225	ASSERT(help != NULL);
14226
14227	/*
14228	 * If we already have dtrace_helper_providers_max helper providers,
14229	 * we're refuse to add a new one.
14230	 */
14231	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14232		return (ENOSPC);
14233
14234	/*
14235	 * Check to make sure this isn't a duplicate.
14236	 */
14237	for (i = 0; i < help->dthps_nprovs; i++) {
14238		if (dofhp->dofhp_addr ==
14239		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14240			return (EALREADY);
14241	}
14242
14243	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14244	hprov->dthp_prov = *dofhp;
14245	hprov->dthp_ref = 1;
14246	hprov->dthp_generation = gen;
14247
14248	/*
14249	 * Allocate a bigger table for helper providers if it's already full.
14250	 */
14251	if (help->dthps_maxprovs == help->dthps_nprovs) {
14252		tmp_maxprovs = help->dthps_maxprovs;
14253		tmp_provs = help->dthps_provs;
14254
14255		if (help->dthps_maxprovs == 0)
14256			help->dthps_maxprovs = 2;
14257		else
14258			help->dthps_maxprovs *= 2;
14259		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14260			help->dthps_maxprovs = dtrace_helper_providers_max;
14261
14262		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14263
14264		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14265		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14266
14267		if (tmp_provs != NULL) {
14268			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14269			    sizeof (dtrace_helper_provider_t *));
14270			kmem_free(tmp_provs, tmp_maxprovs *
14271			    sizeof (dtrace_helper_provider_t *));
14272		}
14273	}
14274
14275	help->dthps_provs[help->dthps_nprovs] = hprov;
14276	help->dthps_nprovs++;
14277
14278	return (0);
14279}
14280
14281static void
14282dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14283{
14284	mutex_enter(&dtrace_lock);
14285
14286	if (--hprov->dthp_ref == 0) {
14287		dof_hdr_t *dof;
14288		mutex_exit(&dtrace_lock);
14289		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14290		dtrace_dof_destroy(dof);
14291		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14292	} else {
14293		mutex_exit(&dtrace_lock);
14294	}
14295}
14296
14297static int
14298dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14299{
14300	uintptr_t daddr = (uintptr_t)dof;
14301	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14302	dof_provider_t *provider;
14303	dof_probe_t *probe;
14304	uint8_t *arg;
14305	char *strtab, *typestr;
14306	dof_stridx_t typeidx;
14307	size_t typesz;
14308	uint_t nprobes, j, k;
14309
14310	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14311
14312	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14313		dtrace_dof_error(dof, "misaligned section offset");
14314		return (-1);
14315	}
14316
14317	/*
14318	 * The section needs to be large enough to contain the DOF provider
14319	 * structure appropriate for the given version.
14320	 */
14321	if (sec->dofs_size <
14322	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14323	    offsetof(dof_provider_t, dofpv_prenoffs) :
14324	    sizeof (dof_provider_t))) {
14325		dtrace_dof_error(dof, "provider section too small");
14326		return (-1);
14327	}
14328
14329	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14330	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14331	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14332	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14333	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14334
14335	if (str_sec == NULL || prb_sec == NULL ||
14336	    arg_sec == NULL || off_sec == NULL)
14337		return (-1);
14338
14339	enoff_sec = NULL;
14340
14341	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14342	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14343	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14344	    provider->dofpv_prenoffs)) == NULL)
14345		return (-1);
14346
14347	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14348
14349	if (provider->dofpv_name >= str_sec->dofs_size ||
14350	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14351		dtrace_dof_error(dof, "invalid provider name");
14352		return (-1);
14353	}
14354
14355	if (prb_sec->dofs_entsize == 0 ||
14356	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14357		dtrace_dof_error(dof, "invalid entry size");
14358		return (-1);
14359	}
14360
14361	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14362		dtrace_dof_error(dof, "misaligned entry size");
14363		return (-1);
14364	}
14365
14366	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14367		dtrace_dof_error(dof, "invalid entry size");
14368		return (-1);
14369	}
14370
14371	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14372		dtrace_dof_error(dof, "misaligned section offset");
14373		return (-1);
14374	}
14375
14376	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14377		dtrace_dof_error(dof, "invalid entry size");
14378		return (-1);
14379	}
14380
14381	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14382
14383	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14384
14385	/*
14386	 * Take a pass through the probes to check for errors.
14387	 */
14388	for (j = 0; j < nprobes; j++) {
14389		probe = (dof_probe_t *)(uintptr_t)(daddr +
14390		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14391
14392		if (probe->dofpr_func >= str_sec->dofs_size) {
14393			dtrace_dof_error(dof, "invalid function name");
14394			return (-1);
14395		}
14396
14397		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14398			dtrace_dof_error(dof, "function name too long");
14399			return (-1);
14400		}
14401
14402		if (probe->dofpr_name >= str_sec->dofs_size ||
14403		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14404			dtrace_dof_error(dof, "invalid probe name");
14405			return (-1);
14406		}
14407
14408		/*
14409		 * The offset count must not wrap the index, and the offsets
14410		 * must also not overflow the section's data.
14411		 */
14412		if (probe->dofpr_offidx + probe->dofpr_noffs <
14413		    probe->dofpr_offidx ||
14414		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14415		    off_sec->dofs_entsize > off_sec->dofs_size) {
14416			dtrace_dof_error(dof, "invalid probe offset");
14417			return (-1);
14418		}
14419
14420		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14421			/*
14422			 * If there's no is-enabled offset section, make sure
14423			 * there aren't any is-enabled offsets. Otherwise
14424			 * perform the same checks as for probe offsets
14425			 * (immediately above).
14426			 */
14427			if (enoff_sec == NULL) {
14428				if (probe->dofpr_enoffidx != 0 ||
14429				    probe->dofpr_nenoffs != 0) {
14430					dtrace_dof_error(dof, "is-enabled "
14431					    "offsets with null section");
14432					return (-1);
14433				}
14434			} else if (probe->dofpr_enoffidx +
14435			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14436			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14437			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14438				dtrace_dof_error(dof, "invalid is-enabled "
14439				    "offset");
14440				return (-1);
14441			}
14442
14443			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14444				dtrace_dof_error(dof, "zero probe and "
14445				    "is-enabled offsets");
14446				return (-1);
14447			}
14448		} else if (probe->dofpr_noffs == 0) {
14449			dtrace_dof_error(dof, "zero probe offsets");
14450			return (-1);
14451		}
14452
14453		if (probe->dofpr_argidx + probe->dofpr_xargc <
14454		    probe->dofpr_argidx ||
14455		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14456		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14457			dtrace_dof_error(dof, "invalid args");
14458			return (-1);
14459		}
14460
14461		typeidx = probe->dofpr_nargv;
14462		typestr = strtab + probe->dofpr_nargv;
14463		for (k = 0; k < probe->dofpr_nargc; k++) {
14464			if (typeidx >= str_sec->dofs_size) {
14465				dtrace_dof_error(dof, "bad "
14466				    "native argument type");
14467				return (-1);
14468			}
14469
14470			typesz = strlen(typestr) + 1;
14471			if (typesz > DTRACE_ARGTYPELEN) {
14472				dtrace_dof_error(dof, "native "
14473				    "argument type too long");
14474				return (-1);
14475			}
14476			typeidx += typesz;
14477			typestr += typesz;
14478		}
14479
14480		typeidx = probe->dofpr_xargv;
14481		typestr = strtab + probe->dofpr_xargv;
14482		for (k = 0; k < probe->dofpr_xargc; k++) {
14483			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14484				dtrace_dof_error(dof, "bad "
14485				    "native argument index");
14486				return (-1);
14487			}
14488
14489			if (typeidx >= str_sec->dofs_size) {
14490				dtrace_dof_error(dof, "bad "
14491				    "translated argument type");
14492				return (-1);
14493			}
14494
14495			typesz = strlen(typestr) + 1;
14496			if (typesz > DTRACE_ARGTYPELEN) {
14497				dtrace_dof_error(dof, "translated argument "
14498				    "type too long");
14499				return (-1);
14500			}
14501
14502			typeidx += typesz;
14503			typestr += typesz;
14504		}
14505	}
14506
14507	return (0);
14508}
14509
14510static int
14511dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14512{
14513	dtrace_helpers_t *help;
14514	dtrace_vstate_t *vstate;
14515	dtrace_enabling_t *enab = NULL;
14516	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14517	uintptr_t daddr = (uintptr_t)dof;
14518
14519	ASSERT(MUTEX_HELD(&dtrace_lock));
14520
14521	if ((help = curproc->p_dtrace_helpers) == NULL)
14522		help = dtrace_helpers_create(curproc);
14523
14524	vstate = &help->dthps_vstate;
14525
14526	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14527	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14528		dtrace_dof_destroy(dof);
14529		return (rv);
14530	}
14531
14532	/*
14533	 * Look for helper providers and validate their descriptions.
14534	 */
14535	if (dhp != NULL) {
14536		for (i = 0; i < dof->dofh_secnum; i++) {
14537			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14538			    dof->dofh_secoff + i * dof->dofh_secsize);
14539
14540			if (sec->dofs_type != DOF_SECT_PROVIDER)
14541				continue;
14542
14543			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14544				dtrace_enabling_destroy(enab);
14545				dtrace_dof_destroy(dof);
14546				return (-1);
14547			}
14548
14549			nprovs++;
14550		}
14551	}
14552
14553	/*
14554	 * Now we need to walk through the ECB descriptions in the enabling.
14555	 */
14556	for (i = 0; i < enab->dten_ndesc; i++) {
14557		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14558		dtrace_probedesc_t *desc = &ep->dted_probe;
14559
14560		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14561			continue;
14562
14563		if (strcmp(desc->dtpd_mod, "helper") != 0)
14564			continue;
14565
14566		if (strcmp(desc->dtpd_func, "ustack") != 0)
14567			continue;
14568
14569		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14570		    ep)) != 0) {
14571			/*
14572			 * Adding this helper action failed -- we are now going
14573			 * to rip out the entire generation and return failure.
14574			 */
14575			(void) dtrace_helper_destroygen(help->dthps_generation);
14576			dtrace_enabling_destroy(enab);
14577			dtrace_dof_destroy(dof);
14578			return (-1);
14579		}
14580
14581		nhelpers++;
14582	}
14583
14584	if (nhelpers < enab->dten_ndesc)
14585		dtrace_dof_error(dof, "unmatched helpers");
14586
14587	gen = help->dthps_generation++;
14588	dtrace_enabling_destroy(enab);
14589
14590	if (dhp != NULL && nprovs > 0) {
14591		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14592		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14593			mutex_exit(&dtrace_lock);
14594			dtrace_helper_provider_register(curproc, help, dhp);
14595			mutex_enter(&dtrace_lock);
14596
14597			destroy = 0;
14598		}
14599	}
14600
14601	if (destroy)
14602		dtrace_dof_destroy(dof);
14603
14604	return (gen);
14605}
14606
14607static dtrace_helpers_t *
14608dtrace_helpers_create(proc_t *p)
14609{
14610	dtrace_helpers_t *help;
14611
14612	ASSERT(MUTEX_HELD(&dtrace_lock));
14613	ASSERT(p->p_dtrace_helpers == NULL);
14614
14615	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14616	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14617	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14618
14619	p->p_dtrace_helpers = help;
14620	dtrace_helpers++;
14621
14622	return (help);
14623}
14624
14625static void
14626dtrace_helpers_destroy(void)
14627{
14628	dtrace_helpers_t *help;
14629	dtrace_vstate_t *vstate;
14630	proc_t *p = curproc;
14631	int i;
14632
14633	mutex_enter(&dtrace_lock);
14634
14635	ASSERT(p->p_dtrace_helpers != NULL);
14636	ASSERT(dtrace_helpers > 0);
14637
14638	help = p->p_dtrace_helpers;
14639	vstate = &help->dthps_vstate;
14640
14641	/*
14642	 * We're now going to lose the help from this process.
14643	 */
14644	p->p_dtrace_helpers = NULL;
14645	dtrace_sync();
14646
14647	/*
14648	 * Destory the helper actions.
14649	 */
14650	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14651		dtrace_helper_action_t *h, *next;
14652
14653		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14654			next = h->dtha_next;
14655			dtrace_helper_action_destroy(h, vstate);
14656			h = next;
14657		}
14658	}
14659
14660	mutex_exit(&dtrace_lock);
14661
14662	/*
14663	 * Destroy the helper providers.
14664	 */
14665	if (help->dthps_maxprovs > 0) {
14666		mutex_enter(&dtrace_meta_lock);
14667		if (dtrace_meta_pid != NULL) {
14668			ASSERT(dtrace_deferred_pid == NULL);
14669
14670			for (i = 0; i < help->dthps_nprovs; i++) {
14671				dtrace_helper_provider_remove(
14672				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14673			}
14674		} else {
14675			mutex_enter(&dtrace_lock);
14676			ASSERT(help->dthps_deferred == 0 ||
14677			    help->dthps_next != NULL ||
14678			    help->dthps_prev != NULL ||
14679			    help == dtrace_deferred_pid);
14680
14681			/*
14682			 * Remove the helper from the deferred list.
14683			 */
14684			if (help->dthps_next != NULL)
14685				help->dthps_next->dthps_prev = help->dthps_prev;
14686			if (help->dthps_prev != NULL)
14687				help->dthps_prev->dthps_next = help->dthps_next;
14688			if (dtrace_deferred_pid == help) {
14689				dtrace_deferred_pid = help->dthps_next;
14690				ASSERT(help->dthps_prev == NULL);
14691			}
14692
14693			mutex_exit(&dtrace_lock);
14694		}
14695
14696		mutex_exit(&dtrace_meta_lock);
14697
14698		for (i = 0; i < help->dthps_nprovs; i++) {
14699			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14700		}
14701
14702		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14703		    sizeof (dtrace_helper_provider_t *));
14704	}
14705
14706	mutex_enter(&dtrace_lock);
14707
14708	dtrace_vstate_fini(&help->dthps_vstate);
14709	kmem_free(help->dthps_actions,
14710	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14711	kmem_free(help, sizeof (dtrace_helpers_t));
14712
14713	--dtrace_helpers;
14714	mutex_exit(&dtrace_lock);
14715}
14716
14717static void
14718dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14719{
14720	dtrace_helpers_t *help, *newhelp;
14721	dtrace_helper_action_t *helper, *new, *last;
14722	dtrace_difo_t *dp;
14723	dtrace_vstate_t *vstate;
14724	int i, j, sz, hasprovs = 0;
14725
14726	mutex_enter(&dtrace_lock);
14727	ASSERT(from->p_dtrace_helpers != NULL);
14728	ASSERT(dtrace_helpers > 0);
14729
14730	help = from->p_dtrace_helpers;
14731	newhelp = dtrace_helpers_create(to);
14732	ASSERT(to->p_dtrace_helpers != NULL);
14733
14734	newhelp->dthps_generation = help->dthps_generation;
14735	vstate = &newhelp->dthps_vstate;
14736
14737	/*
14738	 * Duplicate the helper actions.
14739	 */
14740	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14741		if ((helper = help->dthps_actions[i]) == NULL)
14742			continue;
14743
14744		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14745			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14746			    KM_SLEEP);
14747			new->dtha_generation = helper->dtha_generation;
14748
14749			if ((dp = helper->dtha_predicate) != NULL) {
14750				dp = dtrace_difo_duplicate(dp, vstate);
14751				new->dtha_predicate = dp;
14752			}
14753
14754			new->dtha_nactions = helper->dtha_nactions;
14755			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14756			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14757
14758			for (j = 0; j < new->dtha_nactions; j++) {
14759				dtrace_difo_t *dp = helper->dtha_actions[j];
14760
14761				ASSERT(dp != NULL);
14762				dp = dtrace_difo_duplicate(dp, vstate);
14763				new->dtha_actions[j] = dp;
14764			}
14765
14766			if (last != NULL) {
14767				last->dtha_next = new;
14768			} else {
14769				newhelp->dthps_actions[i] = new;
14770			}
14771
14772			last = new;
14773		}
14774	}
14775
14776	/*
14777	 * Duplicate the helper providers and register them with the
14778	 * DTrace framework.
14779	 */
14780	if (help->dthps_nprovs > 0) {
14781		newhelp->dthps_nprovs = help->dthps_nprovs;
14782		newhelp->dthps_maxprovs = help->dthps_nprovs;
14783		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14784		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14785		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14786			newhelp->dthps_provs[i] = help->dthps_provs[i];
14787			newhelp->dthps_provs[i]->dthp_ref++;
14788		}
14789
14790		hasprovs = 1;
14791	}
14792
14793	mutex_exit(&dtrace_lock);
14794
14795	if (hasprovs)
14796		dtrace_helper_provider_register(to, newhelp, NULL);
14797}
14798#endif
14799
14800#if defined(sun)
14801/*
14802 * DTrace Hook Functions
14803 */
14804static void
14805dtrace_module_loaded(modctl_t *ctl)
14806{
14807	dtrace_provider_t *prv;
14808
14809	mutex_enter(&dtrace_provider_lock);
14810	mutex_enter(&mod_lock);
14811
14812	ASSERT(ctl->mod_busy);
14813
14814	/*
14815	 * We're going to call each providers per-module provide operation
14816	 * specifying only this module.
14817	 */
14818	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14819		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14820
14821	mutex_exit(&mod_lock);
14822	mutex_exit(&dtrace_provider_lock);
14823
14824	/*
14825	 * If we have any retained enablings, we need to match against them.
14826	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14827	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14828	 * module.  (In particular, this happens when loading scheduling
14829	 * classes.)  So if we have any retained enablings, we need to dispatch
14830	 * our task queue to do the match for us.
14831	 */
14832	mutex_enter(&dtrace_lock);
14833
14834	if (dtrace_retained == NULL) {
14835		mutex_exit(&dtrace_lock);
14836		return;
14837	}
14838
14839	(void) taskq_dispatch(dtrace_taskq,
14840	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14841
14842	mutex_exit(&dtrace_lock);
14843
14844	/*
14845	 * And now, for a little heuristic sleaze:  in general, we want to
14846	 * match modules as soon as they load.  However, we cannot guarantee
14847	 * this, because it would lead us to the lock ordering violation
14848	 * outlined above.  The common case, of course, is that cpu_lock is
14849	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14850	 * long enough for the task queue to do its work.  If it's not, it's
14851	 * not a serious problem -- it just means that the module that we
14852	 * just loaded may not be immediately instrumentable.
14853	 */
14854	delay(1);
14855}
14856
14857static void
14858dtrace_module_unloaded(modctl_t *ctl)
14859{
14860	dtrace_probe_t template, *probe, *first, *next;
14861	dtrace_provider_t *prov;
14862
14863	template.dtpr_mod = ctl->mod_modname;
14864
14865	mutex_enter(&dtrace_provider_lock);
14866	mutex_enter(&mod_lock);
14867	mutex_enter(&dtrace_lock);
14868
14869	if (dtrace_bymod == NULL) {
14870		/*
14871		 * The DTrace module is loaded (obviously) but not attached;
14872		 * we don't have any work to do.
14873		 */
14874		mutex_exit(&dtrace_provider_lock);
14875		mutex_exit(&mod_lock);
14876		mutex_exit(&dtrace_lock);
14877		return;
14878	}
14879
14880	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14881	    probe != NULL; probe = probe->dtpr_nextmod) {
14882		if (probe->dtpr_ecb != NULL) {
14883			mutex_exit(&dtrace_provider_lock);
14884			mutex_exit(&mod_lock);
14885			mutex_exit(&dtrace_lock);
14886
14887			/*
14888			 * This shouldn't _actually_ be possible -- we're
14889			 * unloading a module that has an enabled probe in it.
14890			 * (It's normally up to the provider to make sure that
14891			 * this can't happen.)  However, because dtps_enable()
14892			 * doesn't have a failure mode, there can be an
14893			 * enable/unload race.  Upshot:  we don't want to
14894			 * assert, but we're not going to disable the
14895			 * probe, either.
14896			 */
14897			if (dtrace_err_verbose) {
14898				cmn_err(CE_WARN, "unloaded module '%s' had "
14899				    "enabled probes", ctl->mod_modname);
14900			}
14901
14902			return;
14903		}
14904	}
14905
14906	probe = first;
14907
14908	for (first = NULL; probe != NULL; probe = next) {
14909		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14910
14911		dtrace_probes[probe->dtpr_id - 1] = NULL;
14912
14913		next = probe->dtpr_nextmod;
14914		dtrace_hash_remove(dtrace_bymod, probe);
14915		dtrace_hash_remove(dtrace_byfunc, probe);
14916		dtrace_hash_remove(dtrace_byname, probe);
14917
14918		if (first == NULL) {
14919			first = probe;
14920			probe->dtpr_nextmod = NULL;
14921		} else {
14922			probe->dtpr_nextmod = first;
14923			first = probe;
14924		}
14925	}
14926
14927	/*
14928	 * We've removed all of the module's probes from the hash chains and
14929	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14930	 * everyone has cleared out from any probe array processing.
14931	 */
14932	dtrace_sync();
14933
14934	for (probe = first; probe != NULL; probe = first) {
14935		first = probe->dtpr_nextmod;
14936		prov = probe->dtpr_provider;
14937		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14938		    probe->dtpr_arg);
14939		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14940		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14941		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14942		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14943		kmem_free(probe, sizeof (dtrace_probe_t));
14944	}
14945
14946	mutex_exit(&dtrace_lock);
14947	mutex_exit(&mod_lock);
14948	mutex_exit(&dtrace_provider_lock);
14949}
14950
14951static void
14952dtrace_suspend(void)
14953{
14954	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14955}
14956
14957static void
14958dtrace_resume(void)
14959{
14960	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14961}
14962#endif
14963
14964static int
14965dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14966{
14967	ASSERT(MUTEX_HELD(&cpu_lock));
14968	mutex_enter(&dtrace_lock);
14969
14970	switch (what) {
14971	case CPU_CONFIG: {
14972		dtrace_state_t *state;
14973		dtrace_optval_t *opt, rs, c;
14974
14975		/*
14976		 * For now, we only allocate a new buffer for anonymous state.
14977		 */
14978		if ((state = dtrace_anon.dta_state) == NULL)
14979			break;
14980
14981		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14982			break;
14983
14984		opt = state->dts_options;
14985		c = opt[DTRACEOPT_CPU];
14986
14987		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14988			break;
14989
14990		/*
14991		 * Regardless of what the actual policy is, we're going to
14992		 * temporarily set our resize policy to be manual.  We're
14993		 * also going to temporarily set our CPU option to denote
14994		 * the newly configured CPU.
14995		 */
14996		rs = opt[DTRACEOPT_BUFRESIZE];
14997		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14998		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14999
15000		(void) dtrace_state_buffers(state);
15001
15002		opt[DTRACEOPT_BUFRESIZE] = rs;
15003		opt[DTRACEOPT_CPU] = c;
15004
15005		break;
15006	}
15007
15008	case CPU_UNCONFIG:
15009		/*
15010		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15011		 * buffer will be freed when the consumer exits.)
15012		 */
15013		break;
15014
15015	default:
15016		break;
15017	}
15018
15019	mutex_exit(&dtrace_lock);
15020	return (0);
15021}
15022
15023#if defined(sun)
15024static void
15025dtrace_cpu_setup_initial(processorid_t cpu)
15026{
15027	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15028}
15029#endif
15030
15031static void
15032dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15033{
15034	if (dtrace_toxranges >= dtrace_toxranges_max) {
15035		int osize, nsize;
15036		dtrace_toxrange_t *range;
15037
15038		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15039
15040		if (osize == 0) {
15041			ASSERT(dtrace_toxrange == NULL);
15042			ASSERT(dtrace_toxranges_max == 0);
15043			dtrace_toxranges_max = 1;
15044		} else {
15045			dtrace_toxranges_max <<= 1;
15046		}
15047
15048		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15049		range = kmem_zalloc(nsize, KM_SLEEP);
15050
15051		if (dtrace_toxrange != NULL) {
15052			ASSERT(osize != 0);
15053			bcopy(dtrace_toxrange, range, osize);
15054			kmem_free(dtrace_toxrange, osize);
15055		}
15056
15057		dtrace_toxrange = range;
15058	}
15059
15060	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15061	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15062
15063	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15064	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15065	dtrace_toxranges++;
15066}
15067
15068/*
15069 * DTrace Driver Cookbook Functions
15070 */
15071#if defined(sun)
15072/*ARGSUSED*/
15073static int
15074dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15075{
15076	dtrace_provider_id_t id;
15077	dtrace_state_t *state = NULL;
15078	dtrace_enabling_t *enab;
15079
15080	mutex_enter(&cpu_lock);
15081	mutex_enter(&dtrace_provider_lock);
15082	mutex_enter(&dtrace_lock);
15083
15084	if (ddi_soft_state_init(&dtrace_softstate,
15085	    sizeof (dtrace_state_t), 0) != 0) {
15086		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15087		mutex_exit(&cpu_lock);
15088		mutex_exit(&dtrace_provider_lock);
15089		mutex_exit(&dtrace_lock);
15090		return (DDI_FAILURE);
15091	}
15092
15093	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15094	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15095	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15096	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15097		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15098		ddi_remove_minor_node(devi, NULL);
15099		ddi_soft_state_fini(&dtrace_softstate);
15100		mutex_exit(&cpu_lock);
15101		mutex_exit(&dtrace_provider_lock);
15102		mutex_exit(&dtrace_lock);
15103		return (DDI_FAILURE);
15104	}
15105
15106	ddi_report_dev(devi);
15107	dtrace_devi = devi;
15108
15109	dtrace_modload = dtrace_module_loaded;
15110	dtrace_modunload = dtrace_module_unloaded;
15111	dtrace_cpu_init = dtrace_cpu_setup_initial;
15112	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15113	dtrace_helpers_fork = dtrace_helpers_duplicate;
15114	dtrace_cpustart_init = dtrace_suspend;
15115	dtrace_cpustart_fini = dtrace_resume;
15116	dtrace_debugger_init = dtrace_suspend;
15117	dtrace_debugger_fini = dtrace_resume;
15118
15119	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15120
15121	ASSERT(MUTEX_HELD(&cpu_lock));
15122
15123	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15124	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15125	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15126	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15127	    VM_SLEEP | VMC_IDENTIFIER);
15128	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15129	    1, INT_MAX, 0);
15130
15131	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15132	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15133	    NULL, NULL, NULL, NULL, NULL, 0);
15134
15135	ASSERT(MUTEX_HELD(&cpu_lock));
15136	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15137	    offsetof(dtrace_probe_t, dtpr_nextmod),
15138	    offsetof(dtrace_probe_t, dtpr_prevmod));
15139
15140	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15141	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15142	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15143
15144	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15145	    offsetof(dtrace_probe_t, dtpr_nextname),
15146	    offsetof(dtrace_probe_t, dtpr_prevname));
15147
15148	if (dtrace_retain_max < 1) {
15149		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15150		    "setting to 1", dtrace_retain_max);
15151		dtrace_retain_max = 1;
15152	}
15153
15154	/*
15155	 * Now discover our toxic ranges.
15156	 */
15157	dtrace_toxic_ranges(dtrace_toxrange_add);
15158
15159	/*
15160	 * Before we register ourselves as a provider to our own framework,
15161	 * we would like to assert that dtrace_provider is NULL -- but that's
15162	 * not true if we were loaded as a dependency of a DTrace provider.
15163	 * Once we've registered, we can assert that dtrace_provider is our
15164	 * pseudo provider.
15165	 */
15166	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15167	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15168
15169	ASSERT(dtrace_provider != NULL);
15170	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15171
15172	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15173	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15174	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15175	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15176	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15177	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15178
15179	dtrace_anon_property();
15180	mutex_exit(&cpu_lock);
15181
15182	/*
15183	 * If DTrace helper tracing is enabled, we need to allocate the
15184	 * trace buffer and initialize the values.
15185	 */
15186	if (dtrace_helptrace_enabled) {
15187		ASSERT(dtrace_helptrace_buffer == NULL);
15188		dtrace_helptrace_buffer =
15189		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15190		dtrace_helptrace_next = 0;
15191	}
15192
15193	/*
15194	 * If there are already providers, we must ask them to provide their
15195	 * probes, and then match any anonymous enabling against them.  Note
15196	 * that there should be no other retained enablings at this time:
15197	 * the only retained enablings at this time should be the anonymous
15198	 * enabling.
15199	 */
15200	if (dtrace_anon.dta_enabling != NULL) {
15201		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15202
15203		dtrace_enabling_provide(NULL);
15204		state = dtrace_anon.dta_state;
15205
15206		/*
15207		 * We couldn't hold cpu_lock across the above call to
15208		 * dtrace_enabling_provide(), but we must hold it to actually
15209		 * enable the probes.  We have to drop all of our locks, pick
15210		 * up cpu_lock, and regain our locks before matching the
15211		 * retained anonymous enabling.
15212		 */
15213		mutex_exit(&dtrace_lock);
15214		mutex_exit(&dtrace_provider_lock);
15215
15216		mutex_enter(&cpu_lock);
15217		mutex_enter(&dtrace_provider_lock);
15218		mutex_enter(&dtrace_lock);
15219
15220		if ((enab = dtrace_anon.dta_enabling) != NULL)
15221			(void) dtrace_enabling_match(enab, NULL);
15222
15223		mutex_exit(&cpu_lock);
15224	}
15225
15226	mutex_exit(&dtrace_lock);
15227	mutex_exit(&dtrace_provider_lock);
15228
15229	if (state != NULL) {
15230		/*
15231		 * If we created any anonymous state, set it going now.
15232		 */
15233		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15234	}
15235
15236	return (DDI_SUCCESS);
15237}
15238#endif
15239
15240/*ARGSUSED*/
15241static int
15242#if defined(sun)
15243dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15244#else
15245dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15246#endif
15247{
15248	dtrace_state_t *state;
15249	uint32_t priv;
15250	uid_t uid;
15251	zoneid_t zoneid;
15252
15253#if defined(sun)
15254	if (getminor(*devp) == DTRACEMNRN_HELPER)
15255		return (0);
15256
15257	/*
15258	 * If this wasn't an open with the "helper" minor, then it must be
15259	 * the "dtrace" minor.
15260	 */
15261	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15262#else
15263	cred_t *cred_p = NULL;
15264
15265	/*
15266	 * The first minor device is the one that is cloned so there is
15267	 * nothing more to do here.
15268	 */
15269	if (dev2unit(dev) == 0)
15270		return 0;
15271
15272	/*
15273	 * Devices are cloned, so if the DTrace state has already
15274	 * been allocated, that means this device belongs to a
15275	 * different client. Each client should open '/dev/dtrace'
15276	 * to get a cloned device.
15277	 */
15278	if (dev->si_drv1 != NULL)
15279		return (EBUSY);
15280
15281	cred_p = dev->si_cred;
15282#endif
15283
15284	/*
15285	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15286	 * caller lacks sufficient permission to do anything with DTrace.
15287	 */
15288	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15289	if (priv == DTRACE_PRIV_NONE) {
15290#if !defined(sun)
15291		/* Destroy the cloned device. */
15292                destroy_dev(dev);
15293#endif
15294
15295		return (EACCES);
15296	}
15297
15298	/*
15299	 * Ask all providers to provide all their probes.
15300	 */
15301	mutex_enter(&dtrace_provider_lock);
15302	dtrace_probe_provide(NULL, NULL);
15303	mutex_exit(&dtrace_provider_lock);
15304
15305	mutex_enter(&cpu_lock);
15306	mutex_enter(&dtrace_lock);
15307	dtrace_opens++;
15308	dtrace_membar_producer();
15309
15310#if defined(sun)
15311	/*
15312	 * If the kernel debugger is active (that is, if the kernel debugger
15313	 * modified text in some way), we won't allow the open.
15314	 */
15315	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15316		dtrace_opens--;
15317		mutex_exit(&cpu_lock);
15318		mutex_exit(&dtrace_lock);
15319		return (EBUSY);
15320	}
15321
15322	state = dtrace_state_create(devp, cred_p);
15323#else
15324	state = dtrace_state_create(dev);
15325	dev->si_drv1 = state;
15326#endif
15327
15328	mutex_exit(&cpu_lock);
15329
15330	if (state == NULL) {
15331#if defined(sun)
15332		if (--dtrace_opens == 0)
15333			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15334#else
15335		--dtrace_opens;
15336#endif
15337		mutex_exit(&dtrace_lock);
15338#if !defined(sun)
15339		/* Destroy the cloned device. */
15340                destroy_dev(dev);
15341#endif
15342		return (EAGAIN);
15343	}
15344
15345	mutex_exit(&dtrace_lock);
15346
15347	return (0);
15348}
15349
15350/*ARGSUSED*/
15351static int
15352#if defined(sun)
15353dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15354#else
15355dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15356#endif
15357{
15358#if defined(sun)
15359	minor_t minor = getminor(dev);
15360	dtrace_state_t *state;
15361
15362	if (minor == DTRACEMNRN_HELPER)
15363		return (0);
15364
15365	state = ddi_get_soft_state(dtrace_softstate, minor);
15366#else
15367	dtrace_state_t *state = dev->si_drv1;
15368
15369	/* Check if this is not a cloned device. */
15370	if (dev2unit(dev) == 0)
15371		return (0);
15372
15373#endif
15374
15375	mutex_enter(&cpu_lock);
15376	mutex_enter(&dtrace_lock);
15377
15378	if (state != NULL) {
15379		if (state->dts_anon) {
15380			/*
15381			 * There is anonymous state. Destroy that first.
15382			 */
15383			ASSERT(dtrace_anon.dta_state == NULL);
15384			dtrace_state_destroy(state->dts_anon);
15385		}
15386
15387		dtrace_state_destroy(state);
15388
15389#if !defined(sun)
15390		kmem_free(state, 0);
15391		dev->si_drv1 = NULL;
15392#endif
15393	}
15394
15395	ASSERT(dtrace_opens > 0);
15396#if defined(sun)
15397	if (--dtrace_opens == 0)
15398		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15399#else
15400	--dtrace_opens;
15401#endif
15402
15403	mutex_exit(&dtrace_lock);
15404	mutex_exit(&cpu_lock);
15405
15406	/* Schedule this cloned device to be destroyed. */
15407	destroy_dev_sched(dev);
15408
15409	return (0);
15410}
15411
15412#if defined(sun)
15413/*ARGSUSED*/
15414static int
15415dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15416{
15417	int rval;
15418	dof_helper_t help, *dhp = NULL;
15419
15420	switch (cmd) {
15421	case DTRACEHIOC_ADDDOF:
15422		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15423			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15424			return (EFAULT);
15425		}
15426
15427		dhp = &help;
15428		arg = (intptr_t)help.dofhp_dof;
15429		/*FALLTHROUGH*/
15430
15431	case DTRACEHIOC_ADD: {
15432		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15433
15434		if (dof == NULL)
15435			return (rval);
15436
15437		mutex_enter(&dtrace_lock);
15438
15439		/*
15440		 * dtrace_helper_slurp() takes responsibility for the dof --
15441		 * it may free it now or it may save it and free it later.
15442		 */
15443		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15444			*rv = rval;
15445			rval = 0;
15446		} else {
15447			rval = EINVAL;
15448		}
15449
15450		mutex_exit(&dtrace_lock);
15451		return (rval);
15452	}
15453
15454	case DTRACEHIOC_REMOVE: {
15455		mutex_enter(&dtrace_lock);
15456		rval = dtrace_helper_destroygen(arg);
15457		mutex_exit(&dtrace_lock);
15458
15459		return (rval);
15460	}
15461
15462	default:
15463		break;
15464	}
15465
15466	return (ENOTTY);
15467}
15468
15469/*ARGSUSED*/
15470static int
15471dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15472{
15473	minor_t minor = getminor(dev);
15474	dtrace_state_t *state;
15475	int rval;
15476
15477	if (minor == DTRACEMNRN_HELPER)
15478		return (dtrace_ioctl_helper(cmd, arg, rv));
15479
15480	state = ddi_get_soft_state(dtrace_softstate, minor);
15481
15482	if (state->dts_anon) {
15483		ASSERT(dtrace_anon.dta_state == NULL);
15484		state = state->dts_anon;
15485	}
15486
15487	switch (cmd) {
15488	case DTRACEIOC_PROVIDER: {
15489		dtrace_providerdesc_t pvd;
15490		dtrace_provider_t *pvp;
15491
15492		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15493			return (EFAULT);
15494
15495		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15496		mutex_enter(&dtrace_provider_lock);
15497
15498		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15499			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15500				break;
15501		}
15502
15503		mutex_exit(&dtrace_provider_lock);
15504
15505		if (pvp == NULL)
15506			return (ESRCH);
15507
15508		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15509		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15510
15511		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15512			return (EFAULT);
15513
15514		return (0);
15515	}
15516
15517	case DTRACEIOC_EPROBE: {
15518		dtrace_eprobedesc_t epdesc;
15519		dtrace_ecb_t *ecb;
15520		dtrace_action_t *act;
15521		void *buf;
15522		size_t size;
15523		uintptr_t dest;
15524		int nrecs;
15525
15526		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15527			return (EFAULT);
15528
15529		mutex_enter(&dtrace_lock);
15530
15531		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15532			mutex_exit(&dtrace_lock);
15533			return (EINVAL);
15534		}
15535
15536		if (ecb->dte_probe == NULL) {
15537			mutex_exit(&dtrace_lock);
15538			return (EINVAL);
15539		}
15540
15541		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15542		epdesc.dtepd_uarg = ecb->dte_uarg;
15543		epdesc.dtepd_size = ecb->dte_size;
15544
15545		nrecs = epdesc.dtepd_nrecs;
15546		epdesc.dtepd_nrecs = 0;
15547		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15548			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15549				continue;
15550
15551			epdesc.dtepd_nrecs++;
15552		}
15553
15554		/*
15555		 * Now that we have the size, we need to allocate a temporary
15556		 * buffer in which to store the complete description.  We need
15557		 * the temporary buffer to be able to drop dtrace_lock()
15558		 * across the copyout(), below.
15559		 */
15560		size = sizeof (dtrace_eprobedesc_t) +
15561		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15562
15563		buf = kmem_alloc(size, KM_SLEEP);
15564		dest = (uintptr_t)buf;
15565
15566		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15567		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15568
15569		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15570			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15571				continue;
15572
15573			if (nrecs-- == 0)
15574				break;
15575
15576			bcopy(&act->dta_rec, (void *)dest,
15577			    sizeof (dtrace_recdesc_t));
15578			dest += sizeof (dtrace_recdesc_t);
15579		}
15580
15581		mutex_exit(&dtrace_lock);
15582
15583		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15584			kmem_free(buf, size);
15585			return (EFAULT);
15586		}
15587
15588		kmem_free(buf, size);
15589		return (0);
15590	}
15591
15592	case DTRACEIOC_AGGDESC: {
15593		dtrace_aggdesc_t aggdesc;
15594		dtrace_action_t *act;
15595		dtrace_aggregation_t *agg;
15596		int nrecs;
15597		uint32_t offs;
15598		dtrace_recdesc_t *lrec;
15599		void *buf;
15600		size_t size;
15601		uintptr_t dest;
15602
15603		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15604			return (EFAULT);
15605
15606		mutex_enter(&dtrace_lock);
15607
15608		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15609			mutex_exit(&dtrace_lock);
15610			return (EINVAL);
15611		}
15612
15613		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15614
15615		nrecs = aggdesc.dtagd_nrecs;
15616		aggdesc.dtagd_nrecs = 0;
15617
15618		offs = agg->dtag_base;
15619		lrec = &agg->dtag_action.dta_rec;
15620		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15621
15622		for (act = agg->dtag_first; ; act = act->dta_next) {
15623			ASSERT(act->dta_intuple ||
15624			    DTRACEACT_ISAGG(act->dta_kind));
15625
15626			/*
15627			 * If this action has a record size of zero, it
15628			 * denotes an argument to the aggregating action.
15629			 * Because the presence of this record doesn't (or
15630			 * shouldn't) affect the way the data is interpreted,
15631			 * we don't copy it out to save user-level the
15632			 * confusion of dealing with a zero-length record.
15633			 */
15634			if (act->dta_rec.dtrd_size == 0) {
15635				ASSERT(agg->dtag_hasarg);
15636				continue;
15637			}
15638
15639			aggdesc.dtagd_nrecs++;
15640
15641			if (act == &agg->dtag_action)
15642				break;
15643		}
15644
15645		/*
15646		 * Now that we have the size, we need to allocate a temporary
15647		 * buffer in which to store the complete description.  We need
15648		 * the temporary buffer to be able to drop dtrace_lock()
15649		 * across the copyout(), below.
15650		 */
15651		size = sizeof (dtrace_aggdesc_t) +
15652		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15653
15654		buf = kmem_alloc(size, KM_SLEEP);
15655		dest = (uintptr_t)buf;
15656
15657		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15658		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15659
15660		for (act = agg->dtag_first; ; act = act->dta_next) {
15661			dtrace_recdesc_t rec = act->dta_rec;
15662
15663			/*
15664			 * See the comment in the above loop for why we pass
15665			 * over zero-length records.
15666			 */
15667			if (rec.dtrd_size == 0) {
15668				ASSERT(agg->dtag_hasarg);
15669				continue;
15670			}
15671
15672			if (nrecs-- == 0)
15673				break;
15674
15675			rec.dtrd_offset -= offs;
15676			bcopy(&rec, (void *)dest, sizeof (rec));
15677			dest += sizeof (dtrace_recdesc_t);
15678
15679			if (act == &agg->dtag_action)
15680				break;
15681		}
15682
15683		mutex_exit(&dtrace_lock);
15684
15685		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15686			kmem_free(buf, size);
15687			return (EFAULT);
15688		}
15689
15690		kmem_free(buf, size);
15691		return (0);
15692	}
15693
15694	case DTRACEIOC_ENABLE: {
15695		dof_hdr_t *dof;
15696		dtrace_enabling_t *enab = NULL;
15697		dtrace_vstate_t *vstate;
15698		int err = 0;
15699
15700		*rv = 0;
15701
15702		/*
15703		 * If a NULL argument has been passed, we take this as our
15704		 * cue to reevaluate our enablings.
15705		 */
15706		if (arg == NULL) {
15707			dtrace_enabling_matchall();
15708
15709			return (0);
15710		}
15711
15712		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15713			return (rval);
15714
15715		mutex_enter(&cpu_lock);
15716		mutex_enter(&dtrace_lock);
15717		vstate = &state->dts_vstate;
15718
15719		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15720			mutex_exit(&dtrace_lock);
15721			mutex_exit(&cpu_lock);
15722			dtrace_dof_destroy(dof);
15723			return (EBUSY);
15724		}
15725
15726		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15727			mutex_exit(&dtrace_lock);
15728			mutex_exit(&cpu_lock);
15729			dtrace_dof_destroy(dof);
15730			return (EINVAL);
15731		}
15732
15733		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15734			dtrace_enabling_destroy(enab);
15735			mutex_exit(&dtrace_lock);
15736			mutex_exit(&cpu_lock);
15737			dtrace_dof_destroy(dof);
15738			return (rval);
15739		}
15740
15741		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15742			err = dtrace_enabling_retain(enab);
15743		} else {
15744			dtrace_enabling_destroy(enab);
15745		}
15746
15747		mutex_exit(&cpu_lock);
15748		mutex_exit(&dtrace_lock);
15749		dtrace_dof_destroy(dof);
15750
15751		return (err);
15752	}
15753
15754	case DTRACEIOC_REPLICATE: {
15755		dtrace_repldesc_t desc;
15756		dtrace_probedesc_t *match = &desc.dtrpd_match;
15757		dtrace_probedesc_t *create = &desc.dtrpd_create;
15758		int err;
15759
15760		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15761			return (EFAULT);
15762
15763		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15764		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15765		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15766		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15767
15768		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15769		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15770		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15771		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15772
15773		mutex_enter(&dtrace_lock);
15774		err = dtrace_enabling_replicate(state, match, create);
15775		mutex_exit(&dtrace_lock);
15776
15777		return (err);
15778	}
15779
15780	case DTRACEIOC_PROBEMATCH:
15781	case DTRACEIOC_PROBES: {
15782		dtrace_probe_t *probe = NULL;
15783		dtrace_probedesc_t desc;
15784		dtrace_probekey_t pkey;
15785		dtrace_id_t i;
15786		int m = 0;
15787		uint32_t priv;
15788		uid_t uid;
15789		zoneid_t zoneid;
15790
15791		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15792			return (EFAULT);
15793
15794		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15795		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15796		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15797		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15798
15799		/*
15800		 * Before we attempt to match this probe, we want to give
15801		 * all providers the opportunity to provide it.
15802		 */
15803		if (desc.dtpd_id == DTRACE_IDNONE) {
15804			mutex_enter(&dtrace_provider_lock);
15805			dtrace_probe_provide(&desc, NULL);
15806			mutex_exit(&dtrace_provider_lock);
15807			desc.dtpd_id++;
15808		}
15809
15810		if (cmd == DTRACEIOC_PROBEMATCH)  {
15811			dtrace_probekey(&desc, &pkey);
15812			pkey.dtpk_id = DTRACE_IDNONE;
15813		}
15814
15815		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15816
15817		mutex_enter(&dtrace_lock);
15818
15819		if (cmd == DTRACEIOC_PROBEMATCH) {
15820			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15821				if ((probe = dtrace_probes[i - 1]) != NULL &&
15822				    (m = dtrace_match_probe(probe, &pkey,
15823				    priv, uid, zoneid)) != 0)
15824					break;
15825			}
15826
15827			if (m < 0) {
15828				mutex_exit(&dtrace_lock);
15829				return (EINVAL);
15830			}
15831
15832		} else {
15833			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15834				if ((probe = dtrace_probes[i - 1]) != NULL &&
15835				    dtrace_match_priv(probe, priv, uid, zoneid))
15836					break;
15837			}
15838		}
15839
15840		if (probe == NULL) {
15841			mutex_exit(&dtrace_lock);
15842			return (ESRCH);
15843		}
15844
15845		dtrace_probe_description(probe, &desc);
15846		mutex_exit(&dtrace_lock);
15847
15848		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15849			return (EFAULT);
15850
15851		return (0);
15852	}
15853
15854	case DTRACEIOC_PROBEARG: {
15855		dtrace_argdesc_t desc;
15856		dtrace_probe_t *probe;
15857		dtrace_provider_t *prov;
15858
15859		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15860			return (EFAULT);
15861
15862		if (desc.dtargd_id == DTRACE_IDNONE)
15863			return (EINVAL);
15864
15865		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15866			return (EINVAL);
15867
15868		mutex_enter(&dtrace_provider_lock);
15869		mutex_enter(&mod_lock);
15870		mutex_enter(&dtrace_lock);
15871
15872		if (desc.dtargd_id > dtrace_nprobes) {
15873			mutex_exit(&dtrace_lock);
15874			mutex_exit(&mod_lock);
15875			mutex_exit(&dtrace_provider_lock);
15876			return (EINVAL);
15877		}
15878
15879		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15880			mutex_exit(&dtrace_lock);
15881			mutex_exit(&mod_lock);
15882			mutex_exit(&dtrace_provider_lock);
15883			return (EINVAL);
15884		}
15885
15886		mutex_exit(&dtrace_lock);
15887
15888		prov = probe->dtpr_provider;
15889
15890		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15891			/*
15892			 * There isn't any typed information for this probe.
15893			 * Set the argument number to DTRACE_ARGNONE.
15894			 */
15895			desc.dtargd_ndx = DTRACE_ARGNONE;
15896		} else {
15897			desc.dtargd_native[0] = '\0';
15898			desc.dtargd_xlate[0] = '\0';
15899			desc.dtargd_mapping = desc.dtargd_ndx;
15900
15901			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15902			    probe->dtpr_id, probe->dtpr_arg, &desc);
15903		}
15904
15905		mutex_exit(&mod_lock);
15906		mutex_exit(&dtrace_provider_lock);
15907
15908		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15909			return (EFAULT);
15910
15911		return (0);
15912	}
15913
15914	case DTRACEIOC_GO: {
15915		processorid_t cpuid;
15916		rval = dtrace_state_go(state, &cpuid);
15917
15918		if (rval != 0)
15919			return (rval);
15920
15921		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15922			return (EFAULT);
15923
15924		return (0);
15925	}
15926
15927	case DTRACEIOC_STOP: {
15928		processorid_t cpuid;
15929
15930		mutex_enter(&dtrace_lock);
15931		rval = dtrace_state_stop(state, &cpuid);
15932		mutex_exit(&dtrace_lock);
15933
15934		if (rval != 0)
15935			return (rval);
15936
15937		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15938			return (EFAULT);
15939
15940		return (0);
15941	}
15942
15943	case DTRACEIOC_DOFGET: {
15944		dof_hdr_t hdr, *dof;
15945		uint64_t len;
15946
15947		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15948			return (EFAULT);
15949
15950		mutex_enter(&dtrace_lock);
15951		dof = dtrace_dof_create(state);
15952		mutex_exit(&dtrace_lock);
15953
15954		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15955		rval = copyout(dof, (void *)arg, len);
15956		dtrace_dof_destroy(dof);
15957
15958		return (rval == 0 ? 0 : EFAULT);
15959	}
15960
15961	case DTRACEIOC_AGGSNAP:
15962	case DTRACEIOC_BUFSNAP: {
15963		dtrace_bufdesc_t desc;
15964		caddr_t cached;
15965		dtrace_buffer_t *buf;
15966
15967		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15968			return (EFAULT);
15969
15970		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15971			return (EINVAL);
15972
15973		mutex_enter(&dtrace_lock);
15974
15975		if (cmd == DTRACEIOC_BUFSNAP) {
15976			buf = &state->dts_buffer[desc.dtbd_cpu];
15977		} else {
15978			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15979		}
15980
15981		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15982			size_t sz = buf->dtb_offset;
15983
15984			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15985				mutex_exit(&dtrace_lock);
15986				return (EBUSY);
15987			}
15988
15989			/*
15990			 * If this buffer has already been consumed, we're
15991			 * going to indicate that there's nothing left here
15992			 * to consume.
15993			 */
15994			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15995				mutex_exit(&dtrace_lock);
15996
15997				desc.dtbd_size = 0;
15998				desc.dtbd_drops = 0;
15999				desc.dtbd_errors = 0;
16000				desc.dtbd_oldest = 0;
16001				sz = sizeof (desc);
16002
16003				if (copyout(&desc, (void *)arg, sz) != 0)
16004					return (EFAULT);
16005
16006				return (0);
16007			}
16008
16009			/*
16010			 * If this is a ring buffer that has wrapped, we want
16011			 * to copy the whole thing out.
16012			 */
16013			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16014				dtrace_buffer_polish(buf);
16015				sz = buf->dtb_size;
16016			}
16017
16018			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16019				mutex_exit(&dtrace_lock);
16020				return (EFAULT);
16021			}
16022
16023			desc.dtbd_size = sz;
16024			desc.dtbd_drops = buf->dtb_drops;
16025			desc.dtbd_errors = buf->dtb_errors;
16026			desc.dtbd_oldest = buf->dtb_xamot_offset;
16027
16028			mutex_exit(&dtrace_lock);
16029
16030			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16031				return (EFAULT);
16032
16033			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16034
16035			return (0);
16036		}
16037
16038		if (buf->dtb_tomax == NULL) {
16039			ASSERT(buf->dtb_xamot == NULL);
16040			mutex_exit(&dtrace_lock);
16041			return (ENOENT);
16042		}
16043
16044		cached = buf->dtb_tomax;
16045		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16046
16047		dtrace_xcall(desc.dtbd_cpu,
16048		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16049
16050		state->dts_errors += buf->dtb_xamot_errors;
16051
16052		/*
16053		 * If the buffers did not actually switch, then the cross call
16054		 * did not take place -- presumably because the given CPU is
16055		 * not in the ready set.  If this is the case, we'll return
16056		 * ENOENT.
16057		 */
16058		if (buf->dtb_tomax == cached) {
16059			ASSERT(buf->dtb_xamot != cached);
16060			mutex_exit(&dtrace_lock);
16061			return (ENOENT);
16062		}
16063
16064		ASSERT(cached == buf->dtb_xamot);
16065
16066		/*
16067		 * We have our snapshot; now copy it out.
16068		 */
16069		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16070		    buf->dtb_xamot_offset) != 0) {
16071			mutex_exit(&dtrace_lock);
16072			return (EFAULT);
16073		}
16074
16075		desc.dtbd_size = buf->dtb_xamot_offset;
16076		desc.dtbd_drops = buf->dtb_xamot_drops;
16077		desc.dtbd_errors = buf->dtb_xamot_errors;
16078		desc.dtbd_oldest = 0;
16079
16080		mutex_exit(&dtrace_lock);
16081
16082		/*
16083		 * Finally, copy out the buffer description.
16084		 */
16085		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16086			return (EFAULT);
16087
16088		return (0);
16089	}
16090
16091	case DTRACEIOC_CONF: {
16092		dtrace_conf_t conf;
16093
16094		bzero(&conf, sizeof (conf));
16095		conf.dtc_difversion = DIF_VERSION;
16096		conf.dtc_difintregs = DIF_DIR_NREGS;
16097		conf.dtc_diftupregs = DIF_DTR_NREGS;
16098		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16099
16100		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16101			return (EFAULT);
16102
16103		return (0);
16104	}
16105
16106	case DTRACEIOC_STATUS: {
16107		dtrace_status_t stat;
16108		dtrace_dstate_t *dstate;
16109		int i, j;
16110		uint64_t nerrs;
16111
16112		/*
16113		 * See the comment in dtrace_state_deadman() for the reason
16114		 * for setting dts_laststatus to INT64_MAX before setting
16115		 * it to the correct value.
16116		 */
16117		state->dts_laststatus = INT64_MAX;
16118		dtrace_membar_producer();
16119		state->dts_laststatus = dtrace_gethrtime();
16120
16121		bzero(&stat, sizeof (stat));
16122
16123		mutex_enter(&dtrace_lock);
16124
16125		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16126			mutex_exit(&dtrace_lock);
16127			return (ENOENT);
16128		}
16129
16130		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16131			stat.dtst_exiting = 1;
16132
16133		nerrs = state->dts_errors;
16134		dstate = &state->dts_vstate.dtvs_dynvars;
16135
16136		for (i = 0; i < NCPU; i++) {
16137			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16138
16139			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16140			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16141			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16142
16143			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16144				stat.dtst_filled++;
16145
16146			nerrs += state->dts_buffer[i].dtb_errors;
16147
16148			for (j = 0; j < state->dts_nspeculations; j++) {
16149				dtrace_speculation_t *spec;
16150				dtrace_buffer_t *buf;
16151
16152				spec = &state->dts_speculations[j];
16153				buf = &spec->dtsp_buffer[i];
16154				stat.dtst_specdrops += buf->dtb_xamot_drops;
16155			}
16156		}
16157
16158		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16159		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16160		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16161		stat.dtst_dblerrors = state->dts_dblerrors;
16162		stat.dtst_killed =
16163		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16164		stat.dtst_errors = nerrs;
16165
16166		mutex_exit(&dtrace_lock);
16167
16168		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16169			return (EFAULT);
16170
16171		return (0);
16172	}
16173
16174	case DTRACEIOC_FORMAT: {
16175		dtrace_fmtdesc_t fmt;
16176		char *str;
16177		int len;
16178
16179		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16180			return (EFAULT);
16181
16182		mutex_enter(&dtrace_lock);
16183
16184		if (fmt.dtfd_format == 0 ||
16185		    fmt.dtfd_format > state->dts_nformats) {
16186			mutex_exit(&dtrace_lock);
16187			return (EINVAL);
16188		}
16189
16190		/*
16191		 * Format strings are allocated contiguously and they are
16192		 * never freed; if a format index is less than the number
16193		 * of formats, we can assert that the format map is non-NULL
16194		 * and that the format for the specified index is non-NULL.
16195		 */
16196		ASSERT(state->dts_formats != NULL);
16197		str = state->dts_formats[fmt.dtfd_format - 1];
16198		ASSERT(str != NULL);
16199
16200		len = strlen(str) + 1;
16201
16202		if (len > fmt.dtfd_length) {
16203			fmt.dtfd_length = len;
16204
16205			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16206				mutex_exit(&dtrace_lock);
16207				return (EINVAL);
16208			}
16209		} else {
16210			if (copyout(str, fmt.dtfd_string, len) != 0) {
16211				mutex_exit(&dtrace_lock);
16212				return (EINVAL);
16213			}
16214		}
16215
16216		mutex_exit(&dtrace_lock);
16217		return (0);
16218	}
16219
16220	default:
16221		break;
16222	}
16223
16224	return (ENOTTY);
16225}
16226
16227/*ARGSUSED*/
16228static int
16229dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16230{
16231	dtrace_state_t *state;
16232
16233	switch (cmd) {
16234	case DDI_DETACH:
16235		break;
16236
16237	case DDI_SUSPEND:
16238		return (DDI_SUCCESS);
16239
16240	default:
16241		return (DDI_FAILURE);
16242	}
16243
16244	mutex_enter(&cpu_lock);
16245	mutex_enter(&dtrace_provider_lock);
16246	mutex_enter(&dtrace_lock);
16247
16248	ASSERT(dtrace_opens == 0);
16249
16250	if (dtrace_helpers > 0) {
16251		mutex_exit(&dtrace_provider_lock);
16252		mutex_exit(&dtrace_lock);
16253		mutex_exit(&cpu_lock);
16254		return (DDI_FAILURE);
16255	}
16256
16257	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16258		mutex_exit(&dtrace_provider_lock);
16259		mutex_exit(&dtrace_lock);
16260		mutex_exit(&cpu_lock);
16261		return (DDI_FAILURE);
16262	}
16263
16264	dtrace_provider = NULL;
16265
16266	if ((state = dtrace_anon_grab()) != NULL) {
16267		/*
16268		 * If there were ECBs on this state, the provider should
16269		 * have not been allowed to detach; assert that there is
16270		 * none.
16271		 */
16272		ASSERT(state->dts_necbs == 0);
16273		dtrace_state_destroy(state);
16274
16275		/*
16276		 * If we're being detached with anonymous state, we need to
16277		 * indicate to the kernel debugger that DTrace is now inactive.
16278		 */
16279		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16280	}
16281
16282	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16283	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16284	dtrace_cpu_init = NULL;
16285	dtrace_helpers_cleanup = NULL;
16286	dtrace_helpers_fork = NULL;
16287	dtrace_cpustart_init = NULL;
16288	dtrace_cpustart_fini = NULL;
16289	dtrace_debugger_init = NULL;
16290	dtrace_debugger_fini = NULL;
16291	dtrace_modload = NULL;
16292	dtrace_modunload = NULL;
16293
16294	mutex_exit(&cpu_lock);
16295
16296	if (dtrace_helptrace_enabled) {
16297		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16298		dtrace_helptrace_buffer = NULL;
16299	}
16300
16301	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16302	dtrace_probes = NULL;
16303	dtrace_nprobes = 0;
16304
16305	dtrace_hash_destroy(dtrace_bymod);
16306	dtrace_hash_destroy(dtrace_byfunc);
16307	dtrace_hash_destroy(dtrace_byname);
16308	dtrace_bymod = NULL;
16309	dtrace_byfunc = NULL;
16310	dtrace_byname = NULL;
16311
16312	kmem_cache_destroy(dtrace_state_cache);
16313	vmem_destroy(dtrace_minor);
16314	vmem_destroy(dtrace_arena);
16315
16316	if (dtrace_toxrange != NULL) {
16317		kmem_free(dtrace_toxrange,
16318		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16319		dtrace_toxrange = NULL;
16320		dtrace_toxranges = 0;
16321		dtrace_toxranges_max = 0;
16322	}
16323
16324	ddi_remove_minor_node(dtrace_devi, NULL);
16325	dtrace_devi = NULL;
16326
16327	ddi_soft_state_fini(&dtrace_softstate);
16328
16329	ASSERT(dtrace_vtime_references == 0);
16330	ASSERT(dtrace_opens == 0);
16331	ASSERT(dtrace_retained == NULL);
16332
16333	mutex_exit(&dtrace_lock);
16334	mutex_exit(&dtrace_provider_lock);
16335
16336	/*
16337	 * We don't destroy the task queue until after we have dropped our
16338	 * locks (taskq_destroy() may block on running tasks).  To prevent
16339	 * attempting to do work after we have effectively detached but before
16340	 * the task queue has been destroyed, all tasks dispatched via the
16341	 * task queue must check that DTrace is still attached before
16342	 * performing any operation.
16343	 */
16344	taskq_destroy(dtrace_taskq);
16345	dtrace_taskq = NULL;
16346
16347	return (DDI_SUCCESS);
16348}
16349#endif
16350
16351#if defined(sun)
16352/*ARGSUSED*/
16353static int
16354dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16355{
16356	int error;
16357
16358	switch (infocmd) {
16359	case DDI_INFO_DEVT2DEVINFO:
16360		*result = (void *)dtrace_devi;
16361		error = DDI_SUCCESS;
16362		break;
16363	case DDI_INFO_DEVT2INSTANCE:
16364		*result = (void *)0;
16365		error = DDI_SUCCESS;
16366		break;
16367	default:
16368		error = DDI_FAILURE;
16369	}
16370	return (error);
16371}
16372#endif
16373
16374#if defined(sun)
16375static struct cb_ops dtrace_cb_ops = {
16376	dtrace_open,		/* open */
16377	dtrace_close,		/* close */
16378	nulldev,		/* strategy */
16379	nulldev,		/* print */
16380	nodev,			/* dump */
16381	nodev,			/* read */
16382	nodev,			/* write */
16383	dtrace_ioctl,		/* ioctl */
16384	nodev,			/* devmap */
16385	nodev,			/* mmap */
16386	nodev,			/* segmap */
16387	nochpoll,		/* poll */
16388	ddi_prop_op,		/* cb_prop_op */
16389	0,			/* streamtab  */
16390	D_NEW | D_MP		/* Driver compatibility flag */
16391};
16392
16393static struct dev_ops dtrace_ops = {
16394	DEVO_REV,		/* devo_rev */
16395	0,			/* refcnt */
16396	dtrace_info,		/* get_dev_info */
16397	nulldev,		/* identify */
16398	nulldev,		/* probe */
16399	dtrace_attach,		/* attach */
16400	dtrace_detach,		/* detach */
16401	nodev,			/* reset */
16402	&dtrace_cb_ops,		/* driver operations */
16403	NULL,			/* bus operations */
16404	nodev			/* dev power */
16405};
16406
16407static struct modldrv modldrv = {
16408	&mod_driverops,		/* module type (this is a pseudo driver) */
16409	"Dynamic Tracing",	/* name of module */
16410	&dtrace_ops,		/* driver ops */
16411};
16412
16413static struct modlinkage modlinkage = {
16414	MODREV_1,
16415	(void *)&modldrv,
16416	NULL
16417};
16418
16419int
16420_init(void)
16421{
16422	return (mod_install(&modlinkage));
16423}
16424
16425int
16426_info(struct modinfo *modinfop)
16427{
16428	return (mod_info(&modlinkage, modinfop));
16429}
16430
16431int
16432_fini(void)
16433{
16434	return (mod_remove(&modlinkage));
16435}
16436#else
16437
16438static d_ioctl_t	dtrace_ioctl;
16439static void		dtrace_load(void *);
16440static int		dtrace_unload(void);
16441static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16442static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16443static eventhandler_tag	eh_tag;			/* Event handler tag. */
16444
16445void dtrace_invop_init(void);
16446void dtrace_invop_uninit(void);
16447
16448static struct cdevsw dtrace_cdevsw = {
16449	.d_version	= D_VERSION,
16450	.d_flags	= D_NEEDMINOR,
16451	.d_close	= dtrace_close,
16452	.d_ioctl	= dtrace_ioctl,
16453	.d_open		= dtrace_open,
16454	.d_name		= "dtrace",
16455};
16456
16457#include <dtrace_anon.c>
16458#include <dtrace_clone.c>
16459#include <dtrace_ioctl.c>
16460#include <dtrace_load.c>
16461#include <dtrace_modevent.c>
16462#include <dtrace_sysctl.c>
16463#include <dtrace_unload.c>
16464#include <dtrace_vtime.c>
16465#include <dtrace_hacks.c>
16466#include <dtrace_isa.c>
16467
16468SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16469SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16470SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16471
16472DEV_MODULE(dtrace, dtrace_modevent, NULL);
16473MODULE_VERSION(dtrace, 1);
16474MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16475MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16476#endif
16477