dtrace.c revision 179198
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#pragma ident	"%Z%%M%	%I%	%E% SMI"
28
29/*
30 * DTrace - Dynamic Tracing for Solaris
31 *
32 * This is the implementation of the Solaris Dynamic Tracing framework
33 * (DTrace).  The user-visible interface to DTrace is described at length in
34 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35 * library, the in-kernel DTrace framework, and the DTrace providers are
36 * described in the block comments in the <sys/dtrace.h> header file.  The
37 * internal architecture of DTrace is described in the block comments in the
38 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39 * implementation very much assume mastery of all of these sources; if one has
40 * an unanswered question about the implementation, one should consult them
41 * first.
42 *
43 * The functions here are ordered roughly as follows:
44 *
45 *   - Probe context functions
46 *   - Probe hashing functions
47 *   - Non-probe context utility functions
48 *   - Matching functions
49 *   - Provider-to-Framework API functions
50 *   - Probe management functions
51 *   - DIF object functions
52 *   - Format functions
53 *   - Predicate functions
54 *   - ECB functions
55 *   - Buffer functions
56 *   - Enabling functions
57 *   - DOF functions
58 *   - Anonymous enabling functions
59 *   - Consumer state functions
60 *   - Helper functions
61 *   - Hook functions
62 *   - Driver cookbook functions
63 *
64 * Each group of functions begins with a block comment labelled the "DTrace
65 * [Group] Functions", allowing one to find each block by searching forward
66 * on capital-f functions.
67 */
68#include <sys/errno.h>
69#if !defined(sun)
70#include <sys/time.h>
71#endif
72#include <sys/stat.h>
73#include <sys/modctl.h>
74#include <sys/conf.h>
75#include <sys/systm.h>
76#if defined(sun)
77#include <sys/ddi.h>
78#include <sys/sunddi.h>
79#endif
80#include <sys/cpuvar.h>
81#include <sys/kmem.h>
82#if defined(sun)
83#include <sys/strsubr.h>
84#endif
85#include <sys/sysmacros.h>
86#include <sys/dtrace_impl.h>
87#include <sys/atomic.h>
88#include <sys/cmn_err.h>
89#if defined(sun)
90#include <sys/mutex_impl.h>
91#include <sys/rwlock_impl.h>
92#endif
93#include <sys/ctf_api.h>
94#if defined(sun)
95#include <sys/panic.h>
96#include <sys/priv_impl.h>
97#endif
98#include <sys/policy.h>
99#if defined(sun)
100#include <sys/cred_impl.h>
101#include <sys/procfs_isa.h>
102#endif
103#include <sys/taskq.h>
104#if defined(sun)
105#include <sys/mkdev.h>
106#include <sys/kdi.h>
107#endif
108#include <sys/zone.h>
109#include <sys/socket.h>
110#include <netinet/in.h>
111
112/* FreeBSD includes: */
113#if !defined(sun)
114#include <sys/ctype.h>
115#include <sys/limits.h>
116#include <sys/kdb.h>
117#include <sys/kernel.h>
118#include <sys/malloc.h>
119#include <sys/sysctl.h>
120#include <sys/lock.h>
121#include <sys/mutex.h>
122#include <sys/sx.h>
123#include <sys/dtrace_bsd.h>
124#include <netinet/in.h>
125#include "dtrace_cddl.h"
126#include "dtrace_debug.c"
127#endif
128
129/*
130 * DTrace Tunable Variables
131 *
132 * The following variables may be tuned by adding a line to /etc/system that
133 * includes both the name of the DTrace module ("dtrace") and the name of the
134 * variable.  For example:
135 *
136 *   set dtrace:dtrace_destructive_disallow = 1
137 *
138 * In general, the only variables that one should be tuning this way are those
139 * that affect system-wide DTrace behavior, and for which the default behavior
140 * is undesirable.  Most of these variables are tunable on a per-consumer
141 * basis using DTrace options, and need not be tuned on a system-wide basis.
142 * When tuning these variables, avoid pathological values; while some attempt
143 * is made to verify the integrity of these variables, they are not considered
144 * part of the supported interface to DTrace, and they are therefore not
145 * checked comprehensively.  Further, these variables should not be tuned
146 * dynamically via "mdb -kw" or other means; they should only be tuned via
147 * /etc/system.
148 */
149int		dtrace_destructive_disallow = 0;
150dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
151size_t		dtrace_difo_maxsize = (256 * 1024);
152dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
153size_t		dtrace_global_maxsize = (16 * 1024);
154size_t		dtrace_actions_max = (16 * 1024);
155size_t		dtrace_retain_max = 1024;
156dtrace_optval_t	dtrace_helper_actions_max = 32;
157dtrace_optval_t	dtrace_helper_providers_max = 32;
158dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
159size_t		dtrace_strsize_default = 256;
160dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
161dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
162dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
163dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
164dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
165dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
166dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
167dtrace_optval_t	dtrace_nspec_default = 1;
168dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
169dtrace_optval_t dtrace_stackframes_default = 20;
170dtrace_optval_t dtrace_ustackframes_default = 20;
171dtrace_optval_t dtrace_jstackframes_default = 50;
172dtrace_optval_t dtrace_jstackstrsize_default = 512;
173int		dtrace_msgdsize_max = 128;
174hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
175hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
176int		dtrace_devdepth_max = 32;
177int		dtrace_err_verbose;
178hrtime_t	dtrace_deadman_interval = NANOSEC;
179hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
180hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
181
182/*
183 * DTrace External Variables
184 *
185 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
186 * available to DTrace consumers via the backtick (`) syntax.  One of these,
187 * dtrace_zero, is made deliberately so:  it is provided as a source of
188 * well-known, zero-filled memory.  While this variable is not documented,
189 * it is used by some translators as an implementation detail.
190 */
191const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
192
193/*
194 * DTrace Internal Variables
195 */
196#if defined(sun)
197static dev_info_t	*dtrace_devi;		/* device info */
198#endif
199#if defined(sun)
200static vmem_t		*dtrace_arena;		/* probe ID arena */
201static vmem_t		*dtrace_minor;		/* minor number arena */
202static taskq_t		*dtrace_taskq;		/* task queue */
203#else
204static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
205#endif
206static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
207static int		dtrace_nprobes;		/* number of probes */
208static dtrace_provider_t *dtrace_provider;	/* provider list */
209static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
210static int		dtrace_opens;		/* number of opens */
211static int		dtrace_helpers;		/* number of helpers */
212#if defined(sun)
213static void		*dtrace_softstate;	/* softstate pointer */
214#endif
215static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
216static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
217static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
218static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
219static int		dtrace_toxranges;	/* number of toxic ranges */
220static int		dtrace_toxranges_max;	/* size of toxic range array */
221static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
222static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
223static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
224static kthread_t	*dtrace_panicked;	/* panicking thread */
225static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
226static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
227static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
228static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
229static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
230#if !defined(sun)
231static struct mtx	dtrace_unr_mtx;
232MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
233int		dtrace_in_probe;	/* non-zero if executing a probe */
234#if defined(__i386__) || defined(__amd64__)
235uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
236#endif
237#endif
238
239/*
240 * DTrace Locking
241 * DTrace is protected by three (relatively coarse-grained) locks:
242 *
243 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
244 *     including enabling state, probes, ECBs, consumer state, helper state,
245 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
246 *     probe context is lock-free -- synchronization is handled via the
247 *     dtrace_sync() cross call mechanism.
248 *
249 * (2) dtrace_provider_lock is required when manipulating provider state, or
250 *     when provider state must be held constant.
251 *
252 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
253 *     when meta provider state must be held constant.
254 *
255 * The lock ordering between these three locks is dtrace_meta_lock before
256 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
257 * several places where dtrace_provider_lock is held by the framework as it
258 * calls into the providers -- which then call back into the framework,
259 * grabbing dtrace_lock.)
260 *
261 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
262 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
263 * role as a coarse-grained lock; it is acquired before both of these locks.
264 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
265 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
266 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
267 * acquired _between_ dtrace_provider_lock and dtrace_lock.
268 */
269static kmutex_t		dtrace_lock;		/* probe state lock */
270static kmutex_t		dtrace_provider_lock;	/* provider state lock */
271static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
272
273#if !defined(sun)
274/* XXX FreeBSD hacks. */
275static kmutex_t		mod_lock;
276
277#define cr_suid		cr_svuid
278#define cr_sgid		cr_svgid
279#define	ipaddr_t	in_addr_t
280#define mod_modname	pathname
281#define vuprintf	vprintf
282#define ttoproc(_a)	((_a)->td_proc)
283#define crgetzoneid(_a)	0
284#define	NCPU		MAXCPU
285#define SNOCD		0
286#define CPU_ON_INTR(_a)	0
287
288#define PRIV_EFFECTIVE		(1 << 0)
289#define PRIV_DTRACE_KERNEL	(1 << 1)
290#define PRIV_DTRACE_PROC	(1 << 2)
291#define PRIV_DTRACE_USER	(1 << 3)
292#define PRIV_PROC_OWNER		(1 << 4)
293#define PRIV_PROC_ZONE		(1 << 5)
294#define PRIV_ALL		~0
295
296SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
297#endif
298
299#if defined(sun)
300#define curcpu	CPU->cpu_id
301#endif
302
303
304/*
305 * DTrace Provider Variables
306 *
307 * These are the variables relating to DTrace as a provider (that is, the
308 * provider of the BEGIN, END, and ERROR probes).
309 */
310static dtrace_pattr_t	dtrace_provider_attr = {
311{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
312{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
313{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
314{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
315{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316};
317
318static void
319dtrace_nullop(void)
320{}
321
322static dtrace_pops_t	dtrace_provider_ops = {
323	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
324	(void (*)(void *, modctl_t *))dtrace_nullop,
325	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
326	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
327	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
328	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
329	NULL,
330	NULL,
331	NULL,
332	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
333};
334
335static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
336static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
337dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
338
339/*
340 * DTrace Helper Tracing Variables
341 */
342uint32_t dtrace_helptrace_next = 0;
343uint32_t dtrace_helptrace_nlocals;
344char	*dtrace_helptrace_buffer;
345int	dtrace_helptrace_bufsize = 512 * 1024;
346
347#ifdef DEBUG
348int	dtrace_helptrace_enabled = 1;
349#else
350int	dtrace_helptrace_enabled = 0;
351#endif
352
353/*
354 * DTrace Error Hashing
355 *
356 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
357 * table.  This is very useful for checking coverage of tests that are
358 * expected to induce DIF or DOF processing errors, and may be useful for
359 * debugging problems in the DIF code generator or in DOF generation .  The
360 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
361 */
362#ifdef DEBUG
363static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
364static const char *dtrace_errlast;
365static kthread_t *dtrace_errthread;
366static kmutex_t dtrace_errlock;
367#endif
368
369/*
370 * DTrace Macros and Constants
371 *
372 * These are various macros that are useful in various spots in the
373 * implementation, along with a few random constants that have no meaning
374 * outside of the implementation.  There is no real structure to this cpp
375 * mishmash -- but is there ever?
376 */
377#define	DTRACE_HASHSTR(hash, probe)	\
378	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
379
380#define	DTRACE_HASHNEXT(hash, probe)	\
381	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
382
383#define	DTRACE_HASHPREV(hash, probe)	\
384	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
385
386#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
387	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
388	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
389
390#define	DTRACE_AGGHASHSIZE_SLEW		17
391
392#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
393
394/*
395 * The key for a thread-local variable consists of the lower 61 bits of the
396 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
397 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
398 * equal to a variable identifier.  This is necessary (but not sufficient) to
399 * assure that global associative arrays never collide with thread-local
400 * variables.  To guarantee that they cannot collide, we must also define the
401 * order for keying dynamic variables.  That order is:
402 *
403 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
404 *
405 * Because the variable-key and the tls-key are in orthogonal spaces, there is
406 * no way for a global variable key signature to match a thread-local key
407 * signature.
408 */
409#if defined(sun)
410#define	DTRACE_TLS_THRKEY(where) { \
411	uint_t intr = 0; \
412	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
413	for (; actv; actv >>= 1) \
414		intr++; \
415	ASSERT(intr < (1 << 3)); \
416	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
417	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
418}
419#else
420#define	DTRACE_TLS_THRKEY(where) { \
421	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
422	uint_t intr = 0; \
423	uint_t actv = _c->cpu_intr_actv; \
424	for (; actv; actv >>= 1) \
425		intr++; \
426	ASSERT(intr < (1 << 3)); \
427	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
428	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
429}
430#endif
431
432#define	DT_BSWAP_8(x)	((x) & 0xff)
433#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
434#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
435#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
436
437#define	DT_MASK_LO 0x00000000FFFFFFFFULL
438
439#define	DTRACE_STORE(type, tomax, offset, what) \
440	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
441
442#ifndef __i386
443#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
444	if (addr & (size - 1)) {					\
445		*flags |= CPU_DTRACE_BADALIGN;				\
446		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
447		return (0);						\
448	}
449#else
450#define	DTRACE_ALIGNCHECK(addr, size, flags)
451#endif
452
453/*
454 * Test whether a range of memory starting at testaddr of size testsz falls
455 * within the range of memory described by addr, sz.  We take care to avoid
456 * problems with overflow and underflow of the unsigned quantities, and
457 * disallow all negative sizes.  Ranges of size 0 are allowed.
458 */
459#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
460	((testaddr) - (baseaddr) < (basesz) && \
461	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
462	(testaddr) + (testsz) >= (testaddr))
463
464/*
465 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
466 * alloc_sz on the righthand side of the comparison in order to avoid overflow
467 * or underflow in the comparison with it.  This is simpler than the INRANGE
468 * check above, because we know that the dtms_scratch_ptr is valid in the
469 * range.  Allocations of size zero are allowed.
470 */
471#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
472	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
473	(mstate)->dtms_scratch_ptr >= (alloc_sz))
474
475#define	DTRACE_LOADFUNC(bits)						\
476/*CSTYLED*/								\
477uint##bits##_t								\
478dtrace_load##bits(uintptr_t addr)					\
479{									\
480	size_t size = bits / NBBY;					\
481	/*CSTYLED*/							\
482	uint##bits##_t rval;						\
483	int i;								\
484	volatile uint16_t *flags = (volatile uint16_t *)		\
485	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
486									\
487	DTRACE_ALIGNCHECK(addr, size, flags);				\
488									\
489	for (i = 0; i < dtrace_toxranges; i++) {			\
490		if (addr >= dtrace_toxrange[i].dtt_limit)		\
491			continue;					\
492									\
493		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
494			continue;					\
495									\
496		/*							\
497		 * This address falls within a toxic region; return 0.	\
498		 */							\
499		*flags |= CPU_DTRACE_BADADDR;				\
500		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
501		return (0);						\
502	}								\
503									\
504	*flags |= CPU_DTRACE_NOFAULT;					\
505	/*CSTYLED*/							\
506	rval = *((volatile uint##bits##_t *)addr);			\
507	*flags &= ~CPU_DTRACE_NOFAULT;					\
508									\
509	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
510}
511
512#ifdef _LP64
513#define	dtrace_loadptr	dtrace_load64
514#else
515#define	dtrace_loadptr	dtrace_load32
516#endif
517
518#define	DTRACE_DYNHASH_FREE	0
519#define	DTRACE_DYNHASH_SINK	1
520#define	DTRACE_DYNHASH_VALID	2
521
522#define	DTRACE_MATCH_NEXT	0
523#define	DTRACE_MATCH_DONE	1
524#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
525#define	DTRACE_STATE_ALIGN	64
526
527#define	DTRACE_FLAGS2FLT(flags)						\
528	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
529	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
530	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
531	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
532	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
533	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
534	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
535	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
536	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
537	DTRACEFLT_UNKNOWN)
538
539#define	DTRACEACT_ISSTRING(act)						\
540	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
541	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
542
543/* Function prototype definitions: */
544static size_t dtrace_strlen(const char *, size_t);
545static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
546static void dtrace_enabling_provide(dtrace_provider_t *);
547static int dtrace_enabling_match(dtrace_enabling_t *, int *);
548static void dtrace_enabling_matchall(void);
549static dtrace_state_t *dtrace_anon_grab(void);
550#if defined(sun)
551static uint64_t dtrace_helper(int, dtrace_mstate_t *,
552    dtrace_state_t *, uint64_t, uint64_t);
553static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
554#endif
555static void dtrace_buffer_drop(dtrace_buffer_t *);
556static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
557    dtrace_state_t *, dtrace_mstate_t *);
558static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
559    dtrace_optval_t);
560static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
561#if defined(sun)
562static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
563#endif
564uint16_t dtrace_load16(uintptr_t);
565uint32_t dtrace_load32(uintptr_t);
566uint64_t dtrace_load64(uintptr_t);
567uint8_t dtrace_load8(uintptr_t);
568void dtrace_dynvar_clean(dtrace_dstate_t *);
569dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
570    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
571uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
572
573/*
574 * DTrace Probe Context Functions
575 *
576 * These functions are called from probe context.  Because probe context is
577 * any context in which C may be called, arbitrarily locks may be held,
578 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
579 * As a result, functions called from probe context may only call other DTrace
580 * support functions -- they may not interact at all with the system at large.
581 * (Note that the ASSERT macro is made probe-context safe by redefining it in
582 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
583 * loads are to be performed from probe context, they _must_ be in terms of
584 * the safe dtrace_load*() variants.
585 *
586 * Some functions in this block are not actually called from probe context;
587 * for these functions, there will be a comment above the function reading
588 * "Note:  not called from probe context."
589 */
590void
591dtrace_panic(const char *format, ...)
592{
593	va_list alist;
594
595	va_start(alist, format);
596	dtrace_vpanic(format, alist);
597	va_end(alist);
598}
599
600int
601dtrace_assfail(const char *a, const char *f, int l)
602{
603	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
604
605	/*
606	 * We just need something here that even the most clever compiler
607	 * cannot optimize away.
608	 */
609	return (a[(uintptr_t)f]);
610}
611
612/*
613 * Atomically increment a specified error counter from probe context.
614 */
615static void
616dtrace_error(uint32_t *counter)
617{
618	/*
619	 * Most counters stored to in probe context are per-CPU counters.
620	 * However, there are some error conditions that are sufficiently
621	 * arcane that they don't merit per-CPU storage.  If these counters
622	 * are incremented concurrently on different CPUs, scalability will be
623	 * adversely affected -- but we don't expect them to be white-hot in a
624	 * correctly constructed enabling...
625	 */
626	uint32_t oval, nval;
627
628	do {
629		oval = *counter;
630
631		if ((nval = oval + 1) == 0) {
632			/*
633			 * If the counter would wrap, set it to 1 -- assuring
634			 * that the counter is never zero when we have seen
635			 * errors.  (The counter must be 32-bits because we
636			 * aren't guaranteed a 64-bit compare&swap operation.)
637			 * To save this code both the infamy of being fingered
638			 * by a priggish news story and the indignity of being
639			 * the target of a neo-puritan witch trial, we're
640			 * carefully avoiding any colorful description of the
641			 * likelihood of this condition -- but suffice it to
642			 * say that it is only slightly more likely than the
643			 * overflow of predicate cache IDs, as discussed in
644			 * dtrace_predicate_create().
645			 */
646			nval = 1;
647		}
648	} while (dtrace_cas32(counter, oval, nval) != oval);
649}
650
651/*
652 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
653 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
654 */
655DTRACE_LOADFUNC(8)
656DTRACE_LOADFUNC(16)
657DTRACE_LOADFUNC(32)
658DTRACE_LOADFUNC(64)
659
660static int
661dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
662{
663	if (dest < mstate->dtms_scratch_base)
664		return (0);
665
666	if (dest + size < dest)
667		return (0);
668
669	if (dest + size > mstate->dtms_scratch_ptr)
670		return (0);
671
672	return (1);
673}
674
675static int
676dtrace_canstore_statvar(uint64_t addr, size_t sz,
677    dtrace_statvar_t **svars, int nsvars)
678{
679	int i;
680
681	for (i = 0; i < nsvars; i++) {
682		dtrace_statvar_t *svar = svars[i];
683
684		if (svar == NULL || svar->dtsv_size == 0)
685			continue;
686
687		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
688			return (1);
689	}
690
691	return (0);
692}
693
694/*
695 * Check to see if the address is within a memory region to which a store may
696 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
697 * region.  The caller of dtrace_canstore() is responsible for performing any
698 * alignment checks that are needed before stores are actually executed.
699 */
700static int
701dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
702    dtrace_vstate_t *vstate)
703{
704	/*
705	 * First, check to see if the address is in scratch space...
706	 */
707	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
708	    mstate->dtms_scratch_size))
709		return (1);
710
711	/*
712	 * Now check to see if it's a dynamic variable.  This check will pick
713	 * up both thread-local variables and any global dynamically-allocated
714	 * variables.
715	 */
716	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
717	    vstate->dtvs_dynvars.dtds_size)) {
718		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
719		uintptr_t base = (uintptr_t)dstate->dtds_base +
720		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
721		uintptr_t chunkoffs;
722
723		/*
724		 * Before we assume that we can store here, we need to make
725		 * sure that it isn't in our metadata -- storing to our
726		 * dynamic variable metadata would corrupt our state.  For
727		 * the range to not include any dynamic variable metadata,
728		 * it must:
729		 *
730		 *	(1) Start above the hash table that is at the base of
731		 *	the dynamic variable space
732		 *
733		 *	(2) Have a starting chunk offset that is beyond the
734		 *	dtrace_dynvar_t that is at the base of every chunk
735		 *
736		 *	(3) Not span a chunk boundary
737		 *
738		 */
739		if (addr < base)
740			return (0);
741
742		chunkoffs = (addr - base) % dstate->dtds_chunksize;
743
744		if (chunkoffs < sizeof (dtrace_dynvar_t))
745			return (0);
746
747		if (chunkoffs + sz > dstate->dtds_chunksize)
748			return (0);
749
750		return (1);
751	}
752
753	/*
754	 * Finally, check the static local and global variables.  These checks
755	 * take the longest, so we perform them last.
756	 */
757	if (dtrace_canstore_statvar(addr, sz,
758	    vstate->dtvs_locals, vstate->dtvs_nlocals))
759		return (1);
760
761	if (dtrace_canstore_statvar(addr, sz,
762	    vstate->dtvs_globals, vstate->dtvs_nglobals))
763		return (1);
764
765	return (0);
766}
767
768
769/*
770 * Convenience routine to check to see if the address is within a memory
771 * region in which a load may be issued given the user's privilege level;
772 * if not, it sets the appropriate error flags and loads 'addr' into the
773 * illegal value slot.
774 *
775 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
776 * appropriate memory access protection.
777 */
778static int
779dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780    dtrace_vstate_t *vstate)
781{
782	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
783
784	/*
785	 * If we hold the privilege to read from kernel memory, then
786	 * everything is readable.
787	 */
788	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
789		return (1);
790
791	/*
792	 * You can obviously read that which you can store.
793	 */
794	if (dtrace_canstore(addr, sz, mstate, vstate))
795		return (1);
796
797	/*
798	 * We're allowed to read from our own string table.
799	 */
800	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
801	    mstate->dtms_difo->dtdo_strlen))
802		return (1);
803
804	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805	*illval = addr;
806	return (0);
807}
808
809/*
810 * Convenience routine to check to see if a given string is within a memory
811 * region in which a load may be issued given the user's privilege level;
812 * this exists so that we don't need to issue unnecessary dtrace_strlen()
813 * calls in the event that the user has all privileges.
814 */
815static int
816dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817    dtrace_vstate_t *vstate)
818{
819	size_t strsz;
820
821	/*
822	 * If we hold the privilege to read from kernel memory, then
823	 * everything is readable.
824	 */
825	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826		return (1);
827
828	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829	if (dtrace_canload(addr, strsz, mstate, vstate))
830		return (1);
831
832	return (0);
833}
834
835/*
836 * Convenience routine to check to see if a given variable is within a memory
837 * region in which a load may be issued given the user's privilege level.
838 */
839static int
840dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841    dtrace_vstate_t *vstate)
842{
843	size_t sz;
844	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845
846	/*
847	 * If we hold the privilege to read from kernel memory, then
848	 * everything is readable.
849	 */
850	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851		return (1);
852
853	if (type->dtdt_kind == DIF_TYPE_STRING)
854		sz = dtrace_strlen(src,
855		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856	else
857		sz = type->dtdt_size;
858
859	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860}
861
862/*
863 * Compare two strings using safe loads.
864 */
865static int
866dtrace_strncmp(char *s1, char *s2, size_t limit)
867{
868	uint8_t c1, c2;
869	volatile uint16_t *flags;
870
871	if (s1 == s2 || limit == 0)
872		return (0);
873
874	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
875
876	do {
877		if (s1 == NULL) {
878			c1 = '\0';
879		} else {
880			c1 = dtrace_load8((uintptr_t)s1++);
881		}
882
883		if (s2 == NULL) {
884			c2 = '\0';
885		} else {
886			c2 = dtrace_load8((uintptr_t)s2++);
887		}
888
889		if (c1 != c2)
890			return (c1 - c2);
891	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
892
893	return (0);
894}
895
896/*
897 * Compute strlen(s) for a string using safe memory accesses.  The additional
898 * len parameter is used to specify a maximum length to ensure completion.
899 */
900static size_t
901dtrace_strlen(const char *s, size_t lim)
902{
903	uint_t len;
904
905	for (len = 0; len != lim; len++) {
906		if (dtrace_load8((uintptr_t)s++) == '\0')
907			break;
908	}
909
910	return (len);
911}
912
913/*
914 * Check if an address falls within a toxic region.
915 */
916static int
917dtrace_istoxic(uintptr_t kaddr, size_t size)
918{
919	uintptr_t taddr, tsize;
920	int i;
921
922	for (i = 0; i < dtrace_toxranges; i++) {
923		taddr = dtrace_toxrange[i].dtt_base;
924		tsize = dtrace_toxrange[i].dtt_limit - taddr;
925
926		if (kaddr - taddr < tsize) {
927			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
928			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
929			return (1);
930		}
931
932		if (taddr - kaddr < size) {
933			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
935			return (1);
936		}
937	}
938
939	return (0);
940}
941
942/*
943 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
944 * memory specified by the DIF program.  The dst is assumed to be safe memory
945 * that we can store to directly because it is managed by DTrace.  As with
946 * standard bcopy, overlapping copies are handled properly.
947 */
948static void
949dtrace_bcopy(const void *src, void *dst, size_t len)
950{
951	if (len != 0) {
952		uint8_t *s1 = dst;
953		const uint8_t *s2 = src;
954
955		if (s1 <= s2) {
956			do {
957				*s1++ = dtrace_load8((uintptr_t)s2++);
958			} while (--len != 0);
959		} else {
960			s2 += len;
961			s1 += len;
962
963			do {
964				*--s1 = dtrace_load8((uintptr_t)--s2);
965			} while (--len != 0);
966		}
967	}
968}
969
970/*
971 * Copy src to dst using safe memory accesses, up to either the specified
972 * length, or the point that a nul byte is encountered.  The src is assumed to
973 * be unsafe memory specified by the DIF program.  The dst is assumed to be
974 * safe memory that we can store to directly because it is managed by DTrace.
975 * Unlike dtrace_bcopy(), overlapping regions are not handled.
976 */
977static void
978dtrace_strcpy(const void *src, void *dst, size_t len)
979{
980	if (len != 0) {
981		uint8_t *s1 = dst, c;
982		const uint8_t *s2 = src;
983
984		do {
985			*s1++ = c = dtrace_load8((uintptr_t)s2++);
986		} while (--len != 0 && c != '\0');
987	}
988}
989
990/*
991 * Copy src to dst, deriving the size and type from the specified (BYREF)
992 * variable type.  The src is assumed to be unsafe memory specified by the DIF
993 * program.  The dst is assumed to be DTrace variable memory that is of the
994 * specified type; we assume that we can store to directly.
995 */
996static void
997dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
998{
999	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1000
1001	if (type->dtdt_kind == DIF_TYPE_STRING) {
1002		dtrace_strcpy(src, dst, type->dtdt_size);
1003	} else {
1004		dtrace_bcopy(src, dst, type->dtdt_size);
1005	}
1006}
1007
1008/*
1009 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1010 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1011 * safe memory that we can access directly because it is managed by DTrace.
1012 */
1013static int
1014dtrace_bcmp(const void *s1, const void *s2, size_t len)
1015{
1016	volatile uint16_t *flags;
1017
1018	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1019
1020	if (s1 == s2)
1021		return (0);
1022
1023	if (s1 == NULL || s2 == NULL)
1024		return (1);
1025
1026	if (s1 != s2 && len != 0) {
1027		const uint8_t *ps1 = s1;
1028		const uint8_t *ps2 = s2;
1029
1030		do {
1031			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1032				return (1);
1033		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1034	}
1035	return (0);
1036}
1037
1038/*
1039 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1040 * is for safe DTrace-managed memory only.
1041 */
1042static void
1043dtrace_bzero(void *dst, size_t len)
1044{
1045	uchar_t *cp;
1046
1047	for (cp = dst; len != 0; len--)
1048		*cp++ = 0;
1049}
1050
1051static void
1052dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1053{
1054	uint64_t result[2];
1055
1056	result[0] = addend1[0] + addend2[0];
1057	result[1] = addend1[1] + addend2[1] +
1058	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1059
1060	sum[0] = result[0];
1061	sum[1] = result[1];
1062}
1063
1064/*
1065 * Shift the 128-bit value in a by b. If b is positive, shift left.
1066 * If b is negative, shift right.
1067 */
1068static void
1069dtrace_shift_128(uint64_t *a, int b)
1070{
1071	uint64_t mask;
1072
1073	if (b == 0)
1074		return;
1075
1076	if (b < 0) {
1077		b = -b;
1078		if (b >= 64) {
1079			a[0] = a[1] >> (b - 64);
1080			a[1] = 0;
1081		} else {
1082			a[0] >>= b;
1083			mask = 1LL << (64 - b);
1084			mask -= 1;
1085			a[0] |= ((a[1] & mask) << (64 - b));
1086			a[1] >>= b;
1087		}
1088	} else {
1089		if (b >= 64) {
1090			a[1] = a[0] << (b - 64);
1091			a[0] = 0;
1092		} else {
1093			a[1] <<= b;
1094			mask = a[0] >> (64 - b);
1095			a[1] |= mask;
1096			a[0] <<= b;
1097		}
1098	}
1099}
1100
1101/*
1102 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1103 * use native multiplication on those, and then re-combine into the
1104 * resulting 128-bit value.
1105 *
1106 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1107 *     hi1 * hi2 << 64 +
1108 *     hi1 * lo2 << 32 +
1109 *     hi2 * lo1 << 32 +
1110 *     lo1 * lo2
1111 */
1112static void
1113dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1114{
1115	uint64_t hi1, hi2, lo1, lo2;
1116	uint64_t tmp[2];
1117
1118	hi1 = factor1 >> 32;
1119	hi2 = factor2 >> 32;
1120
1121	lo1 = factor1 & DT_MASK_LO;
1122	lo2 = factor2 & DT_MASK_LO;
1123
1124	product[0] = lo1 * lo2;
1125	product[1] = hi1 * hi2;
1126
1127	tmp[0] = hi1 * lo2;
1128	tmp[1] = 0;
1129	dtrace_shift_128(tmp, 32);
1130	dtrace_add_128(product, tmp, product);
1131
1132	tmp[0] = hi2 * lo1;
1133	tmp[1] = 0;
1134	dtrace_shift_128(tmp, 32);
1135	dtrace_add_128(product, tmp, product);
1136}
1137
1138/*
1139 * This privilege check should be used by actions and subroutines to
1140 * verify that the user credentials of the process that enabled the
1141 * invoking ECB match the target credentials
1142 */
1143static int
1144dtrace_priv_proc_common_user(dtrace_state_t *state)
1145{
1146	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1147
1148	/*
1149	 * We should always have a non-NULL state cred here, since if cred
1150	 * is null (anonymous tracing), we fast-path bypass this routine.
1151	 */
1152	ASSERT(s_cr != NULL);
1153
1154	if ((cr = CRED()) != NULL &&
1155	    s_cr->cr_uid == cr->cr_uid &&
1156	    s_cr->cr_uid == cr->cr_ruid &&
1157	    s_cr->cr_uid == cr->cr_suid &&
1158	    s_cr->cr_gid == cr->cr_gid &&
1159	    s_cr->cr_gid == cr->cr_rgid &&
1160	    s_cr->cr_gid == cr->cr_sgid)
1161		return (1);
1162
1163	return (0);
1164}
1165
1166/*
1167 * This privilege check should be used by actions and subroutines to
1168 * verify that the zone of the process that enabled the invoking ECB
1169 * matches the target credentials
1170 */
1171static int
1172dtrace_priv_proc_common_zone(dtrace_state_t *state)
1173{
1174#if defined(sun)
1175	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1176
1177	/*
1178	 * We should always have a non-NULL state cred here, since if cred
1179	 * is null (anonymous tracing), we fast-path bypass this routine.
1180	 */
1181	ASSERT(s_cr != NULL);
1182
1183	if ((cr = CRED()) != NULL &&
1184	    s_cr->cr_zone == cr->cr_zone)
1185		return (1);
1186
1187	return (0);
1188#else
1189	return (1);
1190#endif
1191}
1192
1193/*
1194 * This privilege check should be used by actions and subroutines to
1195 * verify that the process has not setuid or changed credentials.
1196 */
1197static int
1198dtrace_priv_proc_common_nocd(void)
1199{
1200	proc_t *proc;
1201
1202	if ((proc = ttoproc(curthread)) != NULL &&
1203	    !(proc->p_flag & SNOCD))
1204		return (1);
1205
1206	return (0);
1207}
1208
1209static int
1210dtrace_priv_proc_destructive(dtrace_state_t *state)
1211{
1212	int action = state->dts_cred.dcr_action;
1213
1214	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1215	    dtrace_priv_proc_common_zone(state) == 0)
1216		goto bad;
1217
1218	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1219	    dtrace_priv_proc_common_user(state) == 0)
1220		goto bad;
1221
1222	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1223	    dtrace_priv_proc_common_nocd() == 0)
1224		goto bad;
1225
1226	return (1);
1227
1228bad:
1229	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1230
1231	return (0);
1232}
1233
1234static int
1235dtrace_priv_proc_control(dtrace_state_t *state)
1236{
1237	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1238		return (1);
1239
1240	if (dtrace_priv_proc_common_zone(state) &&
1241	    dtrace_priv_proc_common_user(state) &&
1242	    dtrace_priv_proc_common_nocd())
1243		return (1);
1244
1245	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1246
1247	return (0);
1248}
1249
1250static int
1251dtrace_priv_proc(dtrace_state_t *state)
1252{
1253	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1254		return (1);
1255
1256	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257
1258	return (0);
1259}
1260
1261static int
1262dtrace_priv_kernel(dtrace_state_t *state)
1263{
1264	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265		return (1);
1266
1267	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268
1269	return (0);
1270}
1271
1272static int
1273dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274{
1275	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276		return (1);
1277
1278	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279
1280	return (0);
1281}
1282
1283/*
1284 * Note:  not called from probe context.  This function is called
1285 * asynchronously (and at a regular interval) from outside of probe context to
1286 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1287 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1288 */
1289void
1290dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1291{
1292	dtrace_dynvar_t *dirty;
1293	dtrace_dstate_percpu_t *dcpu;
1294	int i, work = 0;
1295
1296	for (i = 0; i < NCPU; i++) {
1297		dcpu = &dstate->dtds_percpu[i];
1298
1299		ASSERT(dcpu->dtdsc_rinsing == NULL);
1300
1301		/*
1302		 * If the dirty list is NULL, there is no dirty work to do.
1303		 */
1304		if (dcpu->dtdsc_dirty == NULL)
1305			continue;
1306
1307		/*
1308		 * If the clean list is non-NULL, then we're not going to do
1309		 * any work for this CPU -- it means that there has not been
1310		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1311		 * since the last time we cleaned house.
1312		 */
1313		if (dcpu->dtdsc_clean != NULL)
1314			continue;
1315
1316		work = 1;
1317
1318		/*
1319		 * Atomically move the dirty list aside.
1320		 */
1321		do {
1322			dirty = dcpu->dtdsc_dirty;
1323
1324			/*
1325			 * Before we zap the dirty list, set the rinsing list.
1326			 * (This allows for a potential assertion in
1327			 * dtrace_dynvar():  if a free dynamic variable appears
1328			 * on a hash chain, either the dirty list or the
1329			 * rinsing list for some CPU must be non-NULL.)
1330			 */
1331			dcpu->dtdsc_rinsing = dirty;
1332			dtrace_membar_producer();
1333		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1334		    dirty, NULL) != dirty);
1335	}
1336
1337	if (!work) {
1338		/*
1339		 * We have no work to do; we can simply return.
1340		 */
1341		return;
1342	}
1343
1344	dtrace_sync();
1345
1346	for (i = 0; i < NCPU; i++) {
1347		dcpu = &dstate->dtds_percpu[i];
1348
1349		if (dcpu->dtdsc_rinsing == NULL)
1350			continue;
1351
1352		/*
1353		 * We are now guaranteed that no hash chain contains a pointer
1354		 * into this dirty list; we can make it clean.
1355		 */
1356		ASSERT(dcpu->dtdsc_clean == NULL);
1357		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1358		dcpu->dtdsc_rinsing = NULL;
1359	}
1360
1361	/*
1362	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1363	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1364	 * This prevents a race whereby a CPU incorrectly decides that
1365	 * the state should be something other than DTRACE_DSTATE_CLEAN
1366	 * after dtrace_dynvar_clean() has completed.
1367	 */
1368	dtrace_sync();
1369
1370	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1371}
1372
1373/*
1374 * Depending on the value of the op parameter, this function looks-up,
1375 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1376 * allocation is requested, this function will return a pointer to a
1377 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1378 * variable can be allocated.  If NULL is returned, the appropriate counter
1379 * will be incremented.
1380 */
1381dtrace_dynvar_t *
1382dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1383    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1384    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1385{
1386	uint64_t hashval = DTRACE_DYNHASH_VALID;
1387	dtrace_dynhash_t *hash = dstate->dtds_hash;
1388	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1389	processorid_t me = curcpu, cpu = me;
1390	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1391	size_t bucket, ksize;
1392	size_t chunksize = dstate->dtds_chunksize;
1393	uintptr_t kdata, lock, nstate;
1394	uint_t i;
1395
1396	ASSERT(nkeys != 0);
1397
1398	/*
1399	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1400	 * algorithm.  For the by-value portions, we perform the algorithm in
1401	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1402	 * bit, and seems to have only a minute effect on distribution.  For
1403	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1404	 * over each referenced byte.  It's painful to do this, but it's much
1405	 * better than pathological hash distribution.  The efficacy of the
1406	 * hashing algorithm (and a comparison with other algorithms) may be
1407	 * found by running the ::dtrace_dynstat MDB dcmd.
1408	 */
1409	for (i = 0; i < nkeys; i++) {
1410		if (key[i].dttk_size == 0) {
1411			uint64_t val = key[i].dttk_value;
1412
1413			hashval += (val >> 48) & 0xffff;
1414			hashval += (hashval << 10);
1415			hashval ^= (hashval >> 6);
1416
1417			hashval += (val >> 32) & 0xffff;
1418			hashval += (hashval << 10);
1419			hashval ^= (hashval >> 6);
1420
1421			hashval += (val >> 16) & 0xffff;
1422			hashval += (hashval << 10);
1423			hashval ^= (hashval >> 6);
1424
1425			hashval += val & 0xffff;
1426			hashval += (hashval << 10);
1427			hashval ^= (hashval >> 6);
1428		} else {
1429			/*
1430			 * This is incredibly painful, but it beats the hell
1431			 * out of the alternative.
1432			 */
1433			uint64_t j, size = key[i].dttk_size;
1434			uintptr_t base = (uintptr_t)key[i].dttk_value;
1435
1436			if (!dtrace_canload(base, size, mstate, vstate))
1437				break;
1438
1439			for (j = 0; j < size; j++) {
1440				hashval += dtrace_load8(base + j);
1441				hashval += (hashval << 10);
1442				hashval ^= (hashval >> 6);
1443			}
1444		}
1445	}
1446
1447	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1448		return (NULL);
1449
1450	hashval += (hashval << 3);
1451	hashval ^= (hashval >> 11);
1452	hashval += (hashval << 15);
1453
1454	/*
1455	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1456	 * comes out to be one of our two sentinel hash values.  If this
1457	 * actually happens, we set the hashval to be a value known to be a
1458	 * non-sentinel value.
1459	 */
1460	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1461		hashval = DTRACE_DYNHASH_VALID;
1462
1463	/*
1464	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1465	 * important here, tricks can be pulled to reduce it.  (However, it's
1466	 * critical that hash collisions be kept to an absolute minimum;
1467	 * they're much more painful than a divide.)  It's better to have a
1468	 * solution that generates few collisions and still keeps things
1469	 * relatively simple.
1470	 */
1471	bucket = hashval % dstate->dtds_hashsize;
1472
1473	if (op == DTRACE_DYNVAR_DEALLOC) {
1474		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1475
1476		for (;;) {
1477			while ((lock = *lockp) & 1)
1478				continue;
1479
1480			if (dtrace_casptr((volatile void *)lockp,
1481			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1482				break;
1483		}
1484
1485		dtrace_membar_producer();
1486	}
1487
1488top:
1489	prev = NULL;
1490	lock = hash[bucket].dtdh_lock;
1491
1492	dtrace_membar_consumer();
1493
1494	start = hash[bucket].dtdh_chain;
1495	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1496	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1497	    op != DTRACE_DYNVAR_DEALLOC));
1498
1499	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1500		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1501		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1502
1503		if (dvar->dtdv_hashval != hashval) {
1504			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1505				/*
1506				 * We've reached the sink, and therefore the
1507				 * end of the hash chain; we can kick out of
1508				 * the loop knowing that we have seen a valid
1509				 * snapshot of state.
1510				 */
1511				ASSERT(dvar->dtdv_next == NULL);
1512				ASSERT(dvar == &dtrace_dynhash_sink);
1513				break;
1514			}
1515
1516			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1517				/*
1518				 * We've gone off the rails:  somewhere along
1519				 * the line, one of the members of this hash
1520				 * chain was deleted.  Note that we could also
1521				 * detect this by simply letting this loop run
1522				 * to completion, as we would eventually hit
1523				 * the end of the dirty list.  However, we
1524				 * want to avoid running the length of the
1525				 * dirty list unnecessarily (it might be quite
1526				 * long), so we catch this as early as
1527				 * possible by detecting the hash marker.  In
1528				 * this case, we simply set dvar to NULL and
1529				 * break; the conditional after the loop will
1530				 * send us back to top.
1531				 */
1532				dvar = NULL;
1533				break;
1534			}
1535
1536			goto next;
1537		}
1538
1539		if (dtuple->dtt_nkeys != nkeys)
1540			goto next;
1541
1542		for (i = 0; i < nkeys; i++, dkey++) {
1543			if (dkey->dttk_size != key[i].dttk_size)
1544				goto next; /* size or type mismatch */
1545
1546			if (dkey->dttk_size != 0) {
1547				if (dtrace_bcmp(
1548				    (void *)(uintptr_t)key[i].dttk_value,
1549				    (void *)(uintptr_t)dkey->dttk_value,
1550				    dkey->dttk_size))
1551					goto next;
1552			} else {
1553				if (dkey->dttk_value != key[i].dttk_value)
1554					goto next;
1555			}
1556		}
1557
1558		if (op != DTRACE_DYNVAR_DEALLOC)
1559			return (dvar);
1560
1561		ASSERT(dvar->dtdv_next == NULL ||
1562		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1563
1564		if (prev != NULL) {
1565			ASSERT(hash[bucket].dtdh_chain != dvar);
1566			ASSERT(start != dvar);
1567			ASSERT(prev->dtdv_next == dvar);
1568			prev->dtdv_next = dvar->dtdv_next;
1569		} else {
1570			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1571			    start, dvar->dtdv_next) != start) {
1572				/*
1573				 * We have failed to atomically swing the
1574				 * hash table head pointer, presumably because
1575				 * of a conflicting allocation on another CPU.
1576				 * We need to reread the hash chain and try
1577				 * again.
1578				 */
1579				goto top;
1580			}
1581		}
1582
1583		dtrace_membar_producer();
1584
1585		/*
1586		 * Now set the hash value to indicate that it's free.
1587		 */
1588		ASSERT(hash[bucket].dtdh_chain != dvar);
1589		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1590
1591		dtrace_membar_producer();
1592
1593		/*
1594		 * Set the next pointer to point at the dirty list, and
1595		 * atomically swing the dirty pointer to the newly freed dvar.
1596		 */
1597		do {
1598			next = dcpu->dtdsc_dirty;
1599			dvar->dtdv_next = next;
1600		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1601
1602		/*
1603		 * Finally, unlock this hash bucket.
1604		 */
1605		ASSERT(hash[bucket].dtdh_lock == lock);
1606		ASSERT(lock & 1);
1607		hash[bucket].dtdh_lock++;
1608
1609		return (NULL);
1610next:
1611		prev = dvar;
1612		continue;
1613	}
1614
1615	if (dvar == NULL) {
1616		/*
1617		 * If dvar is NULL, it is because we went off the rails:
1618		 * one of the elements that we traversed in the hash chain
1619		 * was deleted while we were traversing it.  In this case,
1620		 * we assert that we aren't doing a dealloc (deallocs lock
1621		 * the hash bucket to prevent themselves from racing with
1622		 * one another), and retry the hash chain traversal.
1623		 */
1624		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1625		goto top;
1626	}
1627
1628	if (op != DTRACE_DYNVAR_ALLOC) {
1629		/*
1630		 * If we are not to allocate a new variable, we want to
1631		 * return NULL now.  Before we return, check that the value
1632		 * of the lock word hasn't changed.  If it has, we may have
1633		 * seen an inconsistent snapshot.
1634		 */
1635		if (op == DTRACE_DYNVAR_NOALLOC) {
1636			if (hash[bucket].dtdh_lock != lock)
1637				goto top;
1638		} else {
1639			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1640			ASSERT(hash[bucket].dtdh_lock == lock);
1641			ASSERT(lock & 1);
1642			hash[bucket].dtdh_lock++;
1643		}
1644
1645		return (NULL);
1646	}
1647
1648	/*
1649	 * We need to allocate a new dynamic variable.  The size we need is the
1650	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1651	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1652	 * the size of any referred-to data (dsize).  We then round the final
1653	 * size up to the chunksize for allocation.
1654	 */
1655	for (ksize = 0, i = 0; i < nkeys; i++)
1656		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1657
1658	/*
1659	 * This should be pretty much impossible, but could happen if, say,
1660	 * strange DIF specified the tuple.  Ideally, this should be an
1661	 * assertion and not an error condition -- but that requires that the
1662	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1663	 * bullet-proof.  (That is, it must not be able to be fooled by
1664	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1665	 * solving this would presumably not amount to solving the Halting
1666	 * Problem -- but it still seems awfully hard.
1667	 */
1668	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1669	    ksize + dsize > chunksize) {
1670		dcpu->dtdsc_drops++;
1671		return (NULL);
1672	}
1673
1674	nstate = DTRACE_DSTATE_EMPTY;
1675
1676	do {
1677retry:
1678		free = dcpu->dtdsc_free;
1679
1680		if (free == NULL) {
1681			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1682			void *rval;
1683
1684			if (clean == NULL) {
1685				/*
1686				 * We're out of dynamic variable space on
1687				 * this CPU.  Unless we have tried all CPUs,
1688				 * we'll try to allocate from a different
1689				 * CPU.
1690				 */
1691				switch (dstate->dtds_state) {
1692				case DTRACE_DSTATE_CLEAN: {
1693					void *sp = &dstate->dtds_state;
1694
1695					if (++cpu >= NCPU)
1696						cpu = 0;
1697
1698					if (dcpu->dtdsc_dirty != NULL &&
1699					    nstate == DTRACE_DSTATE_EMPTY)
1700						nstate = DTRACE_DSTATE_DIRTY;
1701
1702					if (dcpu->dtdsc_rinsing != NULL)
1703						nstate = DTRACE_DSTATE_RINSING;
1704
1705					dcpu = &dstate->dtds_percpu[cpu];
1706
1707					if (cpu != me)
1708						goto retry;
1709
1710					(void) dtrace_cas32(sp,
1711					    DTRACE_DSTATE_CLEAN, nstate);
1712
1713					/*
1714					 * To increment the correct bean
1715					 * counter, take another lap.
1716					 */
1717					goto retry;
1718				}
1719
1720				case DTRACE_DSTATE_DIRTY:
1721					dcpu->dtdsc_dirty_drops++;
1722					break;
1723
1724				case DTRACE_DSTATE_RINSING:
1725					dcpu->dtdsc_rinsing_drops++;
1726					break;
1727
1728				case DTRACE_DSTATE_EMPTY:
1729					dcpu->dtdsc_drops++;
1730					break;
1731				}
1732
1733				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1734				return (NULL);
1735			}
1736
1737			/*
1738			 * The clean list appears to be non-empty.  We want to
1739			 * move the clean list to the free list; we start by
1740			 * moving the clean pointer aside.
1741			 */
1742			if (dtrace_casptr(&dcpu->dtdsc_clean,
1743			    clean, NULL) != clean) {
1744				/*
1745				 * We are in one of two situations:
1746				 *
1747				 *  (a)	The clean list was switched to the
1748				 *	free list by another CPU.
1749				 *
1750				 *  (b)	The clean list was added to by the
1751				 *	cleansing cyclic.
1752				 *
1753				 * In either of these situations, we can
1754				 * just reattempt the free list allocation.
1755				 */
1756				goto retry;
1757			}
1758
1759			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1760
1761			/*
1762			 * Now we'll move the clean list to the free list.
1763			 * It's impossible for this to fail:  the only way
1764			 * the free list can be updated is through this
1765			 * code path, and only one CPU can own the clean list.
1766			 * Thus, it would only be possible for this to fail if
1767			 * this code were racing with dtrace_dynvar_clean().
1768			 * (That is, if dtrace_dynvar_clean() updated the clean
1769			 * list, and we ended up racing to update the free
1770			 * list.)  This race is prevented by the dtrace_sync()
1771			 * in dtrace_dynvar_clean() -- which flushes the
1772			 * owners of the clean lists out before resetting
1773			 * the clean lists.
1774			 */
1775			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1776			ASSERT(rval == NULL);
1777			goto retry;
1778		}
1779
1780		dvar = free;
1781		new_free = dvar->dtdv_next;
1782	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1783
1784	/*
1785	 * We have now allocated a new chunk.  We copy the tuple keys into the
1786	 * tuple array and copy any referenced key data into the data space
1787	 * following the tuple array.  As we do this, we relocate dttk_value
1788	 * in the final tuple to point to the key data address in the chunk.
1789	 */
1790	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1791	dvar->dtdv_data = (void *)(kdata + ksize);
1792	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1793
1794	for (i = 0; i < nkeys; i++) {
1795		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1796		size_t kesize = key[i].dttk_size;
1797
1798		if (kesize != 0) {
1799			dtrace_bcopy(
1800			    (const void *)(uintptr_t)key[i].dttk_value,
1801			    (void *)kdata, kesize);
1802			dkey->dttk_value = kdata;
1803			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1804		} else {
1805			dkey->dttk_value = key[i].dttk_value;
1806		}
1807
1808		dkey->dttk_size = kesize;
1809	}
1810
1811	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1812	dvar->dtdv_hashval = hashval;
1813	dvar->dtdv_next = start;
1814
1815	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1816		return (dvar);
1817
1818	/*
1819	 * The cas has failed.  Either another CPU is adding an element to
1820	 * this hash chain, or another CPU is deleting an element from this
1821	 * hash chain.  The simplest way to deal with both of these cases
1822	 * (though not necessarily the most efficient) is to free our
1823	 * allocated block and tail-call ourselves.  Note that the free is
1824	 * to the dirty list and _not_ to the free list.  This is to prevent
1825	 * races with allocators, above.
1826	 */
1827	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1828
1829	dtrace_membar_producer();
1830
1831	do {
1832		free = dcpu->dtdsc_dirty;
1833		dvar->dtdv_next = free;
1834	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1835
1836	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1837}
1838
1839/*ARGSUSED*/
1840static void
1841dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1842{
1843	if ((int64_t)nval < (int64_t)*oval)
1844		*oval = nval;
1845}
1846
1847/*ARGSUSED*/
1848static void
1849dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1850{
1851	if ((int64_t)nval > (int64_t)*oval)
1852		*oval = nval;
1853}
1854
1855static void
1856dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1857{
1858	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1859	int64_t val = (int64_t)nval;
1860
1861	if (val < 0) {
1862		for (i = 0; i < zero; i++) {
1863			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1864				quanta[i] += incr;
1865				return;
1866			}
1867		}
1868	} else {
1869		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1870			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1871				quanta[i - 1] += incr;
1872				return;
1873			}
1874		}
1875
1876		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1877		return;
1878	}
1879
1880	ASSERT(0);
1881}
1882
1883static void
1884dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1885{
1886	uint64_t arg = *lquanta++;
1887	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1888	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1889	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1890	int32_t val = (int32_t)nval, level;
1891
1892	ASSERT(step != 0);
1893	ASSERT(levels != 0);
1894
1895	if (val < base) {
1896		/*
1897		 * This is an underflow.
1898		 */
1899		lquanta[0] += incr;
1900		return;
1901	}
1902
1903	level = (val - base) / step;
1904
1905	if (level < levels) {
1906		lquanta[level + 1] += incr;
1907		return;
1908	}
1909
1910	/*
1911	 * This is an overflow.
1912	 */
1913	lquanta[levels + 1] += incr;
1914}
1915
1916/*ARGSUSED*/
1917static void
1918dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1919{
1920	data[0]++;
1921	data[1] += nval;
1922}
1923
1924/*ARGSUSED*/
1925static void
1926dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1927{
1928	int64_t snval = (int64_t)nval;
1929	uint64_t tmp[2];
1930
1931	data[0]++;
1932	data[1] += nval;
1933
1934	/*
1935	 * What we want to say here is:
1936	 *
1937	 * data[2] += nval * nval;
1938	 *
1939	 * But given that nval is 64-bit, we could easily overflow, so
1940	 * we do this as 128-bit arithmetic.
1941	 */
1942	if (snval < 0)
1943		snval = -snval;
1944
1945	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1946	dtrace_add_128(data + 2, tmp, data + 2);
1947}
1948
1949/*ARGSUSED*/
1950static void
1951dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1952{
1953	*oval = *oval + 1;
1954}
1955
1956/*ARGSUSED*/
1957static void
1958dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1959{
1960	*oval += nval;
1961}
1962
1963/*
1964 * Aggregate given the tuple in the principal data buffer, and the aggregating
1965 * action denoted by the specified dtrace_aggregation_t.  The aggregation
1966 * buffer is specified as the buf parameter.  This routine does not return
1967 * failure; if there is no space in the aggregation buffer, the data will be
1968 * dropped, and a corresponding counter incremented.
1969 */
1970static void
1971dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1972    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1973{
1974	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1975	uint32_t i, ndx, size, fsize;
1976	uint32_t align = sizeof (uint64_t) - 1;
1977	dtrace_aggbuffer_t *agb;
1978	dtrace_aggkey_t *key;
1979	uint32_t hashval = 0, limit, isstr;
1980	caddr_t tomax, data, kdata;
1981	dtrace_actkind_t action;
1982	dtrace_action_t *act;
1983	uintptr_t offs;
1984
1985	if (buf == NULL)
1986		return;
1987
1988	if (!agg->dtag_hasarg) {
1989		/*
1990		 * Currently, only quantize() and lquantize() take additional
1991		 * arguments, and they have the same semantics:  an increment
1992		 * value that defaults to 1 when not present.  If additional
1993		 * aggregating actions take arguments, the setting of the
1994		 * default argument value will presumably have to become more
1995		 * sophisticated...
1996		 */
1997		arg = 1;
1998	}
1999
2000	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2001	size = rec->dtrd_offset - agg->dtag_base;
2002	fsize = size + rec->dtrd_size;
2003
2004	ASSERT(dbuf->dtb_tomax != NULL);
2005	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2006
2007	if ((tomax = buf->dtb_tomax) == NULL) {
2008		dtrace_buffer_drop(buf);
2009		return;
2010	}
2011
2012	/*
2013	 * The metastructure is always at the bottom of the buffer.
2014	 */
2015	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2016	    sizeof (dtrace_aggbuffer_t));
2017
2018	if (buf->dtb_offset == 0) {
2019		/*
2020		 * We just kludge up approximately 1/8th of the size to be
2021		 * buckets.  If this guess ends up being routinely
2022		 * off-the-mark, we may need to dynamically readjust this
2023		 * based on past performance.
2024		 */
2025		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2026
2027		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2028		    (uintptr_t)tomax || hashsize == 0) {
2029			/*
2030			 * We've been given a ludicrously small buffer;
2031			 * increment our drop count and leave.
2032			 */
2033			dtrace_buffer_drop(buf);
2034			return;
2035		}
2036
2037		/*
2038		 * And now, a pathetic attempt to try to get a an odd (or
2039		 * perchance, a prime) hash size for better hash distribution.
2040		 */
2041		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2042			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2043
2044		agb->dtagb_hashsize = hashsize;
2045		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2046		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2047		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2048
2049		for (i = 0; i < agb->dtagb_hashsize; i++)
2050			agb->dtagb_hash[i] = NULL;
2051	}
2052
2053	ASSERT(agg->dtag_first != NULL);
2054	ASSERT(agg->dtag_first->dta_intuple);
2055
2056	/*
2057	 * Calculate the hash value based on the key.  Note that we _don't_
2058	 * include the aggid in the hashing (but we will store it as part of
2059	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2060	 * algorithm: a simple, quick algorithm that has no known funnels, and
2061	 * gets good distribution in practice.  The efficacy of the hashing
2062	 * algorithm (and a comparison with other algorithms) may be found by
2063	 * running the ::dtrace_aggstat MDB dcmd.
2064	 */
2065	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2066		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2067		limit = i + act->dta_rec.dtrd_size;
2068		ASSERT(limit <= size);
2069		isstr = DTRACEACT_ISSTRING(act);
2070
2071		for (; i < limit; i++) {
2072			hashval += data[i];
2073			hashval += (hashval << 10);
2074			hashval ^= (hashval >> 6);
2075
2076			if (isstr && data[i] == '\0')
2077				break;
2078		}
2079	}
2080
2081	hashval += (hashval << 3);
2082	hashval ^= (hashval >> 11);
2083	hashval += (hashval << 15);
2084
2085	/*
2086	 * Yes, the divide here is expensive -- but it's generally the least
2087	 * of the performance issues given the amount of data that we iterate
2088	 * over to compute hash values, compare data, etc.
2089	 */
2090	ndx = hashval % agb->dtagb_hashsize;
2091
2092	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2093		ASSERT((caddr_t)key >= tomax);
2094		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2095
2096		if (hashval != key->dtak_hashval || key->dtak_size != size)
2097			continue;
2098
2099		kdata = key->dtak_data;
2100		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2101
2102		for (act = agg->dtag_first; act->dta_intuple;
2103		    act = act->dta_next) {
2104			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2105			limit = i + act->dta_rec.dtrd_size;
2106			ASSERT(limit <= size);
2107			isstr = DTRACEACT_ISSTRING(act);
2108
2109			for (; i < limit; i++) {
2110				if (kdata[i] != data[i])
2111					goto next;
2112
2113				if (isstr && data[i] == '\0')
2114					break;
2115			}
2116		}
2117
2118		if (action != key->dtak_action) {
2119			/*
2120			 * We are aggregating on the same value in the same
2121			 * aggregation with two different aggregating actions.
2122			 * (This should have been picked up in the compiler,
2123			 * so we may be dealing with errant or devious DIF.)
2124			 * This is an error condition; we indicate as much,
2125			 * and return.
2126			 */
2127			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2128			return;
2129		}
2130
2131		/*
2132		 * This is a hit:  we need to apply the aggregator to
2133		 * the value at this key.
2134		 */
2135		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2136		return;
2137next:
2138		continue;
2139	}
2140
2141	/*
2142	 * We didn't find it.  We need to allocate some zero-filled space,
2143	 * link it into the hash table appropriately, and apply the aggregator
2144	 * to the (zero-filled) value.
2145	 */
2146	offs = buf->dtb_offset;
2147	while (offs & (align - 1))
2148		offs += sizeof (uint32_t);
2149
2150	/*
2151	 * If we don't have enough room to both allocate a new key _and_
2152	 * its associated data, increment the drop count and return.
2153	 */
2154	if ((uintptr_t)tomax + offs + fsize >
2155	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2156		dtrace_buffer_drop(buf);
2157		return;
2158	}
2159
2160	/*CONSTCOND*/
2161	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2162	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2163	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2164
2165	key->dtak_data = kdata = tomax + offs;
2166	buf->dtb_offset = offs + fsize;
2167
2168	/*
2169	 * Now copy the data across.
2170	 */
2171	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2172
2173	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2174		kdata[i] = data[i];
2175
2176	/*
2177	 * Because strings are not zeroed out by default, we need to iterate
2178	 * looking for actions that store strings, and we need to explicitly
2179	 * pad these strings out with zeroes.
2180	 */
2181	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2182		int nul;
2183
2184		if (!DTRACEACT_ISSTRING(act))
2185			continue;
2186
2187		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2188		limit = i + act->dta_rec.dtrd_size;
2189		ASSERT(limit <= size);
2190
2191		for (nul = 0; i < limit; i++) {
2192			if (nul) {
2193				kdata[i] = '\0';
2194				continue;
2195			}
2196
2197			if (data[i] != '\0')
2198				continue;
2199
2200			nul = 1;
2201		}
2202	}
2203
2204	for (i = size; i < fsize; i++)
2205		kdata[i] = 0;
2206
2207	key->dtak_hashval = hashval;
2208	key->dtak_size = size;
2209	key->dtak_action = action;
2210	key->dtak_next = agb->dtagb_hash[ndx];
2211	agb->dtagb_hash[ndx] = key;
2212
2213	/*
2214	 * Finally, apply the aggregator.
2215	 */
2216	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2217	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2218}
2219
2220/*
2221 * Given consumer state, this routine finds a speculation in the INACTIVE
2222 * state and transitions it into the ACTIVE state.  If there is no speculation
2223 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2224 * incremented -- it is up to the caller to take appropriate action.
2225 */
2226static int
2227dtrace_speculation(dtrace_state_t *state)
2228{
2229	int i = 0;
2230	dtrace_speculation_state_t current;
2231	uint32_t *stat = &state->dts_speculations_unavail, count;
2232
2233	while (i < state->dts_nspeculations) {
2234		dtrace_speculation_t *spec = &state->dts_speculations[i];
2235
2236		current = spec->dtsp_state;
2237
2238		if (current != DTRACESPEC_INACTIVE) {
2239			if (current == DTRACESPEC_COMMITTINGMANY ||
2240			    current == DTRACESPEC_COMMITTING ||
2241			    current == DTRACESPEC_DISCARDING)
2242				stat = &state->dts_speculations_busy;
2243			i++;
2244			continue;
2245		}
2246
2247		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2248		    current, DTRACESPEC_ACTIVE) == current)
2249			return (i + 1);
2250	}
2251
2252	/*
2253	 * We couldn't find a speculation.  If we found as much as a single
2254	 * busy speculation buffer, we'll attribute this failure as "busy"
2255	 * instead of "unavail".
2256	 */
2257	do {
2258		count = *stat;
2259	} while (dtrace_cas32(stat, count, count + 1) != count);
2260
2261	return (0);
2262}
2263
2264/*
2265 * This routine commits an active speculation.  If the specified speculation
2266 * is not in a valid state to perform a commit(), this routine will silently do
2267 * nothing.  The state of the specified speculation is transitioned according
2268 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2269 */
2270static void
2271dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2272    dtrace_specid_t which)
2273{
2274	dtrace_speculation_t *spec;
2275	dtrace_buffer_t *src, *dest;
2276	uintptr_t daddr, saddr, dlimit;
2277	dtrace_speculation_state_t current, new = 0;
2278	intptr_t offs;
2279
2280	if (which == 0)
2281		return;
2282
2283	if (which > state->dts_nspeculations) {
2284		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2285		return;
2286	}
2287
2288	spec = &state->dts_speculations[which - 1];
2289	src = &spec->dtsp_buffer[cpu];
2290	dest = &state->dts_buffer[cpu];
2291
2292	do {
2293		current = spec->dtsp_state;
2294
2295		if (current == DTRACESPEC_COMMITTINGMANY)
2296			break;
2297
2298		switch (current) {
2299		case DTRACESPEC_INACTIVE:
2300		case DTRACESPEC_DISCARDING:
2301			return;
2302
2303		case DTRACESPEC_COMMITTING:
2304			/*
2305			 * This is only possible if we are (a) commit()'ing
2306			 * without having done a prior speculate() on this CPU
2307			 * and (b) racing with another commit() on a different
2308			 * CPU.  There's nothing to do -- we just assert that
2309			 * our offset is 0.
2310			 */
2311			ASSERT(src->dtb_offset == 0);
2312			return;
2313
2314		case DTRACESPEC_ACTIVE:
2315			new = DTRACESPEC_COMMITTING;
2316			break;
2317
2318		case DTRACESPEC_ACTIVEONE:
2319			/*
2320			 * This speculation is active on one CPU.  If our
2321			 * buffer offset is non-zero, we know that the one CPU
2322			 * must be us.  Otherwise, we are committing on a
2323			 * different CPU from the speculate(), and we must
2324			 * rely on being asynchronously cleaned.
2325			 */
2326			if (src->dtb_offset != 0) {
2327				new = DTRACESPEC_COMMITTING;
2328				break;
2329			}
2330			/*FALLTHROUGH*/
2331
2332		case DTRACESPEC_ACTIVEMANY:
2333			new = DTRACESPEC_COMMITTINGMANY;
2334			break;
2335
2336		default:
2337			ASSERT(0);
2338		}
2339	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2340	    current, new) != current);
2341
2342	/*
2343	 * We have set the state to indicate that we are committing this
2344	 * speculation.  Now reserve the necessary space in the destination
2345	 * buffer.
2346	 */
2347	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2348	    sizeof (uint64_t), state, NULL)) < 0) {
2349		dtrace_buffer_drop(dest);
2350		goto out;
2351	}
2352
2353	/*
2354	 * We have the space; copy the buffer across.  (Note that this is a
2355	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2356	 * a serious performance issue, a high-performance DTrace-specific
2357	 * bcopy() should obviously be invented.)
2358	 */
2359	daddr = (uintptr_t)dest->dtb_tomax + offs;
2360	dlimit = daddr + src->dtb_offset;
2361	saddr = (uintptr_t)src->dtb_tomax;
2362
2363	/*
2364	 * First, the aligned portion.
2365	 */
2366	while (dlimit - daddr >= sizeof (uint64_t)) {
2367		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2368
2369		daddr += sizeof (uint64_t);
2370		saddr += sizeof (uint64_t);
2371	}
2372
2373	/*
2374	 * Now any left-over bit...
2375	 */
2376	while (dlimit - daddr)
2377		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2378
2379	/*
2380	 * Finally, commit the reserved space in the destination buffer.
2381	 */
2382	dest->dtb_offset = offs + src->dtb_offset;
2383
2384out:
2385	/*
2386	 * If we're lucky enough to be the only active CPU on this speculation
2387	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2388	 */
2389	if (current == DTRACESPEC_ACTIVE ||
2390	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2391		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2392		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2393
2394		ASSERT(rval == DTRACESPEC_COMMITTING);
2395	}
2396
2397	src->dtb_offset = 0;
2398	src->dtb_xamot_drops += src->dtb_drops;
2399	src->dtb_drops = 0;
2400}
2401
2402/*
2403 * This routine discards an active speculation.  If the specified speculation
2404 * is not in a valid state to perform a discard(), this routine will silently
2405 * do nothing.  The state of the specified speculation is transitioned
2406 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2407 */
2408static void
2409dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2410    dtrace_specid_t which)
2411{
2412	dtrace_speculation_t *spec;
2413	dtrace_speculation_state_t current, new = 0;
2414	dtrace_buffer_t *buf;
2415
2416	if (which == 0)
2417		return;
2418
2419	if (which > state->dts_nspeculations) {
2420		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2421		return;
2422	}
2423
2424	spec = &state->dts_speculations[which - 1];
2425	buf = &spec->dtsp_buffer[cpu];
2426
2427	do {
2428		current = spec->dtsp_state;
2429
2430		switch (current) {
2431		case DTRACESPEC_INACTIVE:
2432		case DTRACESPEC_COMMITTINGMANY:
2433		case DTRACESPEC_COMMITTING:
2434		case DTRACESPEC_DISCARDING:
2435			return;
2436
2437		case DTRACESPEC_ACTIVE:
2438		case DTRACESPEC_ACTIVEMANY:
2439			new = DTRACESPEC_DISCARDING;
2440			break;
2441
2442		case DTRACESPEC_ACTIVEONE:
2443			if (buf->dtb_offset != 0) {
2444				new = DTRACESPEC_INACTIVE;
2445			} else {
2446				new = DTRACESPEC_DISCARDING;
2447			}
2448			break;
2449
2450		default:
2451			ASSERT(0);
2452		}
2453	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2454	    current, new) != current);
2455
2456	buf->dtb_offset = 0;
2457	buf->dtb_drops = 0;
2458}
2459
2460/*
2461 * Note:  not called from probe context.  This function is called
2462 * asynchronously from cross call context to clean any speculations that are
2463 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2464 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2465 * speculation.
2466 */
2467static void
2468dtrace_speculation_clean_here(dtrace_state_t *state)
2469{
2470	dtrace_icookie_t cookie;
2471	processorid_t cpu = curcpu;
2472	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2473	dtrace_specid_t i;
2474
2475	cookie = dtrace_interrupt_disable();
2476
2477	if (dest->dtb_tomax == NULL) {
2478		dtrace_interrupt_enable(cookie);
2479		return;
2480	}
2481
2482	for (i = 0; i < state->dts_nspeculations; i++) {
2483		dtrace_speculation_t *spec = &state->dts_speculations[i];
2484		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2485
2486		if (src->dtb_tomax == NULL)
2487			continue;
2488
2489		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2490			src->dtb_offset = 0;
2491			continue;
2492		}
2493
2494		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2495			continue;
2496
2497		if (src->dtb_offset == 0)
2498			continue;
2499
2500		dtrace_speculation_commit(state, cpu, i + 1);
2501	}
2502
2503	dtrace_interrupt_enable(cookie);
2504}
2505
2506/*
2507 * Note:  not called from probe context.  This function is called
2508 * asynchronously (and at a regular interval) to clean any speculations that
2509 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2510 * is work to be done, it cross calls all CPUs to perform that work;
2511 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2512 * INACTIVE state until they have been cleaned by all CPUs.
2513 */
2514static void
2515dtrace_speculation_clean(dtrace_state_t *state)
2516{
2517	int work = 0, rv;
2518	dtrace_specid_t i;
2519
2520	for (i = 0; i < state->dts_nspeculations; i++) {
2521		dtrace_speculation_t *spec = &state->dts_speculations[i];
2522
2523		ASSERT(!spec->dtsp_cleaning);
2524
2525		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2526		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2527			continue;
2528
2529		work++;
2530		spec->dtsp_cleaning = 1;
2531	}
2532
2533	if (!work)
2534		return;
2535
2536	dtrace_xcall(DTRACE_CPUALL,
2537	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2538
2539	/*
2540	 * We now know that all CPUs have committed or discarded their
2541	 * speculation buffers, as appropriate.  We can now set the state
2542	 * to inactive.
2543	 */
2544	for (i = 0; i < state->dts_nspeculations; i++) {
2545		dtrace_speculation_t *spec = &state->dts_speculations[i];
2546		dtrace_speculation_state_t current, new;
2547
2548		if (!spec->dtsp_cleaning)
2549			continue;
2550
2551		current = spec->dtsp_state;
2552		ASSERT(current == DTRACESPEC_DISCARDING ||
2553		    current == DTRACESPEC_COMMITTINGMANY);
2554
2555		new = DTRACESPEC_INACTIVE;
2556
2557		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2558		ASSERT(rv == current);
2559		spec->dtsp_cleaning = 0;
2560	}
2561}
2562
2563/*
2564 * Called as part of a speculate() to get the speculative buffer associated
2565 * with a given speculation.  Returns NULL if the specified speculation is not
2566 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2567 * the active CPU is not the specified CPU -- the speculation will be
2568 * atomically transitioned into the ACTIVEMANY state.
2569 */
2570static dtrace_buffer_t *
2571dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2572    dtrace_specid_t which)
2573{
2574	dtrace_speculation_t *spec;
2575	dtrace_speculation_state_t current, new = 0;
2576	dtrace_buffer_t *buf;
2577
2578	if (which == 0)
2579		return (NULL);
2580
2581	if (which > state->dts_nspeculations) {
2582		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2583		return (NULL);
2584	}
2585
2586	spec = &state->dts_speculations[which - 1];
2587	buf = &spec->dtsp_buffer[cpuid];
2588
2589	do {
2590		current = spec->dtsp_state;
2591
2592		switch (current) {
2593		case DTRACESPEC_INACTIVE:
2594		case DTRACESPEC_COMMITTINGMANY:
2595		case DTRACESPEC_DISCARDING:
2596			return (NULL);
2597
2598		case DTRACESPEC_COMMITTING:
2599			ASSERT(buf->dtb_offset == 0);
2600			return (NULL);
2601
2602		case DTRACESPEC_ACTIVEONE:
2603			/*
2604			 * This speculation is currently active on one CPU.
2605			 * Check the offset in the buffer; if it's non-zero,
2606			 * that CPU must be us (and we leave the state alone).
2607			 * If it's zero, assume that we're starting on a new
2608			 * CPU -- and change the state to indicate that the
2609			 * speculation is active on more than one CPU.
2610			 */
2611			if (buf->dtb_offset != 0)
2612				return (buf);
2613
2614			new = DTRACESPEC_ACTIVEMANY;
2615			break;
2616
2617		case DTRACESPEC_ACTIVEMANY:
2618			return (buf);
2619
2620		case DTRACESPEC_ACTIVE:
2621			new = DTRACESPEC_ACTIVEONE;
2622			break;
2623
2624		default:
2625			ASSERT(0);
2626		}
2627	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2628	    current, new) != current);
2629
2630	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2631	return (buf);
2632}
2633
2634/*
2635 * Return a string.  In the event that the user lacks the privilege to access
2636 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2637 * don't fail access checking.
2638 *
2639 * dtrace_dif_variable() uses this routine as a helper for various
2640 * builtin values such as 'execname' and 'probefunc.'
2641 */
2642uintptr_t
2643dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2644    dtrace_mstate_t *mstate)
2645{
2646	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2647	uintptr_t ret;
2648	size_t strsz;
2649
2650	/*
2651	 * The easy case: this probe is allowed to read all of memory, so
2652	 * we can just return this as a vanilla pointer.
2653	 */
2654	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2655		return (addr);
2656
2657	/*
2658	 * This is the tougher case: we copy the string in question from
2659	 * kernel memory into scratch memory and return it that way: this
2660	 * ensures that we won't trip up when access checking tests the
2661	 * BYREF return value.
2662	 */
2663	strsz = dtrace_strlen((char *)addr, size) + 1;
2664
2665	if (mstate->dtms_scratch_ptr + strsz >
2666	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2667		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2668		return (0);
2669	}
2670
2671	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2672	    strsz);
2673	ret = mstate->dtms_scratch_ptr;
2674	mstate->dtms_scratch_ptr += strsz;
2675	return (ret);
2676}
2677
2678/*
2679 * Return a string from a memoy address which is known to have one or
2680 * more concatenated, individually zero terminated, sub-strings.
2681 * In the event that the user lacks the privilege to access
2682 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2683 * don't fail access checking.
2684 *
2685 * dtrace_dif_variable() uses this routine as a helper for various
2686 * builtin values such as 'execargs'.
2687 */
2688static uintptr_t
2689dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2690    dtrace_mstate_t *mstate)
2691{
2692	char *p;
2693	size_t i;
2694	uintptr_t ret;
2695
2696	if (mstate->dtms_scratch_ptr + strsz >
2697	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2698		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2699		return (0);
2700	}
2701
2702	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2703	    strsz);
2704
2705	/* Replace sub-string termination characters with a space. */
2706	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2707	    p++, i++)
2708		if (*p == '\0')
2709			*p = ' ';
2710
2711	ret = mstate->dtms_scratch_ptr;
2712	mstate->dtms_scratch_ptr += strsz;
2713	return (ret);
2714}
2715
2716/*
2717 * This function implements the DIF emulator's variable lookups.  The emulator
2718 * passes a reserved variable identifier and optional built-in array index.
2719 */
2720static uint64_t
2721dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2722    uint64_t ndx)
2723{
2724	/*
2725	 * If we're accessing one of the uncached arguments, we'll turn this
2726	 * into a reference in the args array.
2727	 */
2728	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2729		ndx = v - DIF_VAR_ARG0;
2730		v = DIF_VAR_ARGS;
2731	}
2732
2733	switch (v) {
2734	case DIF_VAR_ARGS:
2735		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2736		if (ndx >= sizeof (mstate->dtms_arg) /
2737		    sizeof (mstate->dtms_arg[0])) {
2738			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2739			dtrace_provider_t *pv;
2740			uint64_t val;
2741
2742			pv = mstate->dtms_probe->dtpr_provider;
2743			if (pv->dtpv_pops.dtps_getargval != NULL)
2744				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2745				    mstate->dtms_probe->dtpr_id,
2746				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2747			else
2748				val = dtrace_getarg(ndx, aframes);
2749
2750			/*
2751			 * This is regrettably required to keep the compiler
2752			 * from tail-optimizing the call to dtrace_getarg().
2753			 * The condition always evaluates to true, but the
2754			 * compiler has no way of figuring that out a priori.
2755			 * (None of this would be necessary if the compiler
2756			 * could be relied upon to _always_ tail-optimize
2757			 * the call to dtrace_getarg() -- but it can't.)
2758			 */
2759			if (mstate->dtms_probe != NULL)
2760				return (val);
2761
2762			ASSERT(0);
2763		}
2764
2765		return (mstate->dtms_arg[ndx]);
2766
2767#if defined(sun)
2768	case DIF_VAR_UREGS: {
2769		klwp_t *lwp;
2770
2771		if (!dtrace_priv_proc(state))
2772			return (0);
2773
2774		if ((lwp = curthread->t_lwp) == NULL) {
2775			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2776			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2777			return (0);
2778		}
2779
2780		return (dtrace_getreg(lwp->lwp_regs, ndx));
2781		return (0);
2782	}
2783#endif
2784
2785	case DIF_VAR_CURTHREAD:
2786		if (!dtrace_priv_kernel(state))
2787			return (0);
2788		return ((uint64_t)(uintptr_t)curthread);
2789
2790	case DIF_VAR_TIMESTAMP:
2791		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2792			mstate->dtms_timestamp = dtrace_gethrtime();
2793			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2794		}
2795		return (mstate->dtms_timestamp);
2796
2797	case DIF_VAR_VTIMESTAMP:
2798		ASSERT(dtrace_vtime_references != 0);
2799		return (curthread->t_dtrace_vtime);
2800
2801	case DIF_VAR_WALLTIMESTAMP:
2802		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2803			mstate->dtms_walltimestamp = dtrace_gethrestime();
2804			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2805		}
2806		return (mstate->dtms_walltimestamp);
2807
2808#if defined(sun)
2809	case DIF_VAR_IPL:
2810		if (!dtrace_priv_kernel(state))
2811			return (0);
2812		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2813			mstate->dtms_ipl = dtrace_getipl();
2814			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2815		}
2816		return (mstate->dtms_ipl);
2817#endif
2818
2819	case DIF_VAR_EPID:
2820		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2821		return (mstate->dtms_epid);
2822
2823	case DIF_VAR_ID:
2824		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2825		return (mstate->dtms_probe->dtpr_id);
2826
2827	case DIF_VAR_STACKDEPTH:
2828		if (!dtrace_priv_kernel(state))
2829			return (0);
2830		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2831			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2832
2833			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2834			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2835		}
2836		return (mstate->dtms_stackdepth);
2837
2838#if defined(sun)
2839	case DIF_VAR_USTACKDEPTH:
2840		if (!dtrace_priv_proc(state))
2841			return (0);
2842		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2843			/*
2844			 * See comment in DIF_VAR_PID.
2845			 */
2846			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2847			    CPU_ON_INTR(CPU)) {
2848				mstate->dtms_ustackdepth = 0;
2849			} else {
2850				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2851				mstate->dtms_ustackdepth =
2852				    dtrace_getustackdepth();
2853				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2854			}
2855			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2856		}
2857		return (mstate->dtms_ustackdepth);
2858#endif
2859
2860	case DIF_VAR_CALLER:
2861		if (!dtrace_priv_kernel(state))
2862			return (0);
2863		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2864			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2865
2866			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2867				/*
2868				 * If this is an unanchored probe, we are
2869				 * required to go through the slow path:
2870				 * dtrace_caller() only guarantees correct
2871				 * results for anchored probes.
2872				 */
2873				pc_t caller[2] = {0, 0};
2874
2875				dtrace_getpcstack(caller, 2, aframes,
2876				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2877				mstate->dtms_caller = caller[1];
2878			} else if ((mstate->dtms_caller =
2879			    dtrace_caller(aframes)) == -1) {
2880				/*
2881				 * We have failed to do this the quick way;
2882				 * we must resort to the slower approach of
2883				 * calling dtrace_getpcstack().
2884				 */
2885				pc_t caller = 0;
2886
2887				dtrace_getpcstack(&caller, 1, aframes, NULL);
2888				mstate->dtms_caller = caller;
2889			}
2890
2891			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2892		}
2893		return (mstate->dtms_caller);
2894
2895#if defined(sun)
2896	case DIF_VAR_UCALLER:
2897		if (!dtrace_priv_proc(state))
2898			return (0);
2899
2900		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2901			uint64_t ustack[3];
2902
2903			/*
2904			 * dtrace_getupcstack() fills in the first uint64_t
2905			 * with the current PID.  The second uint64_t will
2906			 * be the program counter at user-level.  The third
2907			 * uint64_t will contain the caller, which is what
2908			 * we're after.
2909			 */
2910			ustack[2] = 0;
2911			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2912			dtrace_getupcstack(ustack, 3);
2913			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2914			mstate->dtms_ucaller = ustack[2];
2915			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2916		}
2917
2918		return (mstate->dtms_ucaller);
2919#endif
2920
2921	case DIF_VAR_PROBEPROV:
2922		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2923		return (dtrace_dif_varstr(
2924		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2925		    state, mstate));
2926
2927	case DIF_VAR_PROBEMOD:
2928		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2929		return (dtrace_dif_varstr(
2930		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2931		    state, mstate));
2932
2933	case DIF_VAR_PROBEFUNC:
2934		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2935		return (dtrace_dif_varstr(
2936		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2937		    state, mstate));
2938
2939	case DIF_VAR_PROBENAME:
2940		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2941		return (dtrace_dif_varstr(
2942		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2943		    state, mstate));
2944
2945	case DIF_VAR_PID:
2946		if (!dtrace_priv_proc(state))
2947			return (0);
2948
2949#if defined(sun)
2950		/*
2951		 * Note that we are assuming that an unanchored probe is
2952		 * always due to a high-level interrupt.  (And we're assuming
2953		 * that there is only a single high level interrupt.)
2954		 */
2955		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2956			return (pid0.pid_id);
2957
2958		/*
2959		 * It is always safe to dereference one's own t_procp pointer:
2960		 * it always points to a valid, allocated proc structure.
2961		 * Further, it is always safe to dereference the p_pidp member
2962		 * of one's own proc structure.  (These are truisms becuase
2963		 * threads and processes don't clean up their own state --
2964		 * they leave that task to whomever reaps them.)
2965		 */
2966		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2967#else
2968		return ((uint64_t)curproc->p_pid);
2969#endif
2970
2971	case DIF_VAR_PPID:
2972		if (!dtrace_priv_proc(state))
2973			return (0);
2974
2975#if defined(sun)
2976		/*
2977		 * See comment in DIF_VAR_PID.
2978		 */
2979		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2980			return (pid0.pid_id);
2981
2982		/*
2983		 * It is always safe to dereference one's own t_procp pointer:
2984		 * it always points to a valid, allocated proc structure.
2985		 * (This is true because threads don't clean up their own
2986		 * state -- they leave that task to whomever reaps them.)
2987		 */
2988		return ((uint64_t)curthread->t_procp->p_ppid);
2989#else
2990		return ((uint64_t)curproc->p_pptr->p_pid);
2991#endif
2992
2993	case DIF_VAR_TID:
2994#if defined(sun)
2995		/*
2996		 * See comment in DIF_VAR_PID.
2997		 */
2998		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2999			return (0);
3000#endif
3001
3002		return ((uint64_t)curthread->t_tid);
3003
3004	case DIF_VAR_EXECARGS: {
3005		struct pargs *p_args = curthread->td_proc->p_args;
3006
3007		return (dtrace_dif_varstrz(
3008		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3009	}
3010
3011	case DIF_VAR_EXECNAME:
3012#if defined(sun)
3013		if (!dtrace_priv_proc(state))
3014			return (0);
3015
3016		/*
3017		 * See comment in DIF_VAR_PID.
3018		 */
3019		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3020			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3021
3022		/*
3023		 * It is always safe to dereference one's own t_procp pointer:
3024		 * it always points to a valid, allocated proc structure.
3025		 * (This is true because threads don't clean up their own
3026		 * state -- they leave that task to whomever reaps them.)
3027		 */
3028		return (dtrace_dif_varstr(
3029		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3030		    state, mstate));
3031#else
3032		return (dtrace_dif_varstr(
3033		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3034#endif
3035
3036	case DIF_VAR_ZONENAME:
3037#if defined(sun)
3038		if (!dtrace_priv_proc(state))
3039			return (0);
3040
3041		/*
3042		 * See comment in DIF_VAR_PID.
3043		 */
3044		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3045			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3046
3047		/*
3048		 * It is always safe to dereference one's own t_procp pointer:
3049		 * it always points to a valid, allocated proc structure.
3050		 * (This is true because threads don't clean up their own
3051		 * state -- they leave that task to whomever reaps them.)
3052		 */
3053		return (dtrace_dif_varstr(
3054		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3055		    state, mstate));
3056#else
3057		return (0);
3058#endif
3059
3060	case DIF_VAR_UID:
3061		if (!dtrace_priv_proc(state))
3062			return (0);
3063
3064#if defined(sun)
3065		/*
3066		 * See comment in DIF_VAR_PID.
3067		 */
3068		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3069			return ((uint64_t)p0.p_cred->cr_uid);
3070#endif
3071
3072		/*
3073		 * It is always safe to dereference one's own t_procp pointer:
3074		 * it always points to a valid, allocated proc structure.
3075		 * (This is true because threads don't clean up their own
3076		 * state -- they leave that task to whomever reaps them.)
3077		 *
3078		 * Additionally, it is safe to dereference one's own process
3079		 * credential, since this is never NULL after process birth.
3080		 */
3081		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3082
3083	case DIF_VAR_GID:
3084		if (!dtrace_priv_proc(state))
3085			return (0);
3086
3087#if defined(sun)
3088		/*
3089		 * See comment in DIF_VAR_PID.
3090		 */
3091		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3092			return ((uint64_t)p0.p_cred->cr_gid);
3093#endif
3094
3095		/*
3096		 * It is always safe to dereference one's own t_procp pointer:
3097		 * it always points to a valid, allocated proc structure.
3098		 * (This is true because threads don't clean up their own
3099		 * state -- they leave that task to whomever reaps them.)
3100		 *
3101		 * Additionally, it is safe to dereference one's own process
3102		 * credential, since this is never NULL after process birth.
3103		 */
3104		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3105
3106	case DIF_VAR_ERRNO: {
3107#if defined(sun)
3108		klwp_t *lwp;
3109		if (!dtrace_priv_proc(state))
3110			return (0);
3111
3112		/*
3113		 * See comment in DIF_VAR_PID.
3114		 */
3115		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3116			return (0);
3117
3118		/*
3119		 * It is always safe to dereference one's own t_lwp pointer in
3120		 * the event that this pointer is non-NULL.  (This is true
3121		 * because threads and lwps don't clean up their own state --
3122		 * they leave that task to whomever reaps them.)
3123		 */
3124		if ((lwp = curthread->t_lwp) == NULL)
3125			return (0);
3126
3127		return ((uint64_t)lwp->lwp_errno);
3128#else
3129		return (curthread->td_errno);
3130#endif
3131	}
3132	default:
3133		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3134		return (0);
3135	}
3136}
3137
3138/*
3139 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3140 * Notice that we don't bother validating the proper number of arguments or
3141 * their types in the tuple stack.  This isn't needed because all argument
3142 * interpretation is safe because of our load safety -- the worst that can
3143 * happen is that a bogus program can obtain bogus results.
3144 */
3145static void
3146dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3147    dtrace_key_t *tupregs, int nargs,
3148    dtrace_mstate_t *mstate, dtrace_state_t *state)
3149{
3150	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3151	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3152	dtrace_vstate_t *vstate = &state->dts_vstate;
3153
3154#if defined(sun)
3155	union {
3156		mutex_impl_t mi;
3157		uint64_t mx;
3158	} m;
3159
3160	union {
3161		krwlock_t ri;
3162		uintptr_t rw;
3163	} r;
3164#else
3165	union {
3166		struct mtx *mi;
3167		uintptr_t mx;
3168	} m;
3169	union {
3170		struct sx *si;
3171		uintptr_t sx;
3172	} s;
3173#endif
3174
3175	switch (subr) {
3176	case DIF_SUBR_RAND:
3177		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3178		break;
3179
3180#if defined(sun)
3181	case DIF_SUBR_MUTEX_OWNED:
3182		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3183		    mstate, vstate)) {
3184			regs[rd] = 0;
3185			break;
3186		}
3187
3188		m.mx = dtrace_load64(tupregs[0].dttk_value);
3189		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3190			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3191		else
3192			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3193		break;
3194
3195	case DIF_SUBR_MUTEX_OWNER:
3196		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3197		    mstate, vstate)) {
3198			regs[rd] = 0;
3199			break;
3200		}
3201
3202		m.mx = dtrace_load64(tupregs[0].dttk_value);
3203		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3204		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3205			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3206		else
3207			regs[rd] = 0;
3208		break;
3209
3210	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3211		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3212		    mstate, vstate)) {
3213			regs[rd] = 0;
3214			break;
3215		}
3216
3217		m.mx = dtrace_load64(tupregs[0].dttk_value);
3218		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3219		break;
3220
3221	case DIF_SUBR_MUTEX_TYPE_SPIN:
3222		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3223		    mstate, vstate)) {
3224			regs[rd] = 0;
3225			break;
3226		}
3227
3228		m.mx = dtrace_load64(tupregs[0].dttk_value);
3229		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3230		break;
3231
3232	case DIF_SUBR_RW_READ_HELD: {
3233		uintptr_t tmp;
3234
3235		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3236		    mstate, vstate)) {
3237			regs[rd] = 0;
3238			break;
3239		}
3240
3241		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3242		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3243		break;
3244	}
3245
3246	case DIF_SUBR_RW_WRITE_HELD:
3247		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3248		    mstate, vstate)) {
3249			regs[rd] = 0;
3250			break;
3251		}
3252
3253		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3254		regs[rd] = _RW_WRITE_HELD(&r.ri);
3255		break;
3256
3257	case DIF_SUBR_RW_ISWRITER:
3258		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3259		    mstate, vstate)) {
3260			regs[rd] = 0;
3261			break;
3262		}
3263
3264		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3265		regs[rd] = _RW_ISWRITER(&r.ri);
3266		break;
3267
3268#else
3269	/*
3270         * XXX - The following code works because mutex, rwlocks, & sxlocks
3271         *       all have similar data structures in FreeBSD.  This may not be
3272         *	 good if someone changes one of the lock data structures.
3273	 * 	 Ideally, it would be nice if all these shared a common lock
3274	 * 	 object.
3275         */
3276	case DIF_SUBR_MUTEX_OWNED:
3277		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3278		m.mx = tupregs[0].dttk_value;
3279
3280		if (LO_CLASSINDEX(&(m.mi->lock_object)) < 2) {
3281			regs[rd] = !(m.mi->mtx_lock & MTX_UNOWNED);
3282		} else {
3283			regs[rd] = !(m.mi->mtx_lock & SX_UNLOCKED);
3284		}
3285		break;
3286
3287	case DIF_SUBR_MUTEX_OWNER:
3288		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3289		m.mx = tupregs[0].dttk_value;
3290
3291		if (LO_CLASSINDEX(&(m.mi->lock_object)) < 2) {
3292			regs[rd] = m.mi->mtx_lock & ~MTX_FLAGMASK;
3293		} else {
3294			if (!(m.mi->mtx_lock & SX_LOCK_SHARED))
3295				regs[rd] = SX_OWNER(m.mi->mtx_lock);
3296			else
3297				regs[rd] = 0;
3298		}
3299		break;
3300
3301	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3302		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3303		m.mx = tupregs[0].dttk_value;
3304
3305		regs[rd] = (LO_CLASSINDEX(&(m.mi->lock_object)) != 0);
3306		break;
3307
3308	case DIF_SUBR_MUTEX_TYPE_SPIN:
3309		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3310		m.mx = tupregs[0].dttk_value;
3311
3312		regs[rd] = (LO_CLASSINDEX(&(m.mi->lock_object)) == 0);
3313		break;
3314
3315	case DIF_SUBR_RW_READ_HELD:
3316	case DIF_SUBR_SX_SHARED_HELD:
3317		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3318		s.sx = tupregs[0].dttk_value;
3319		regs[rd] = ((s.si->sx_lock & SX_LOCK_SHARED)  &&
3320			    (SX_OWNER(s.si->sx_lock) >> SX_SHARERS_SHIFT) != 0);
3321		break;
3322
3323	case DIF_SUBR_RW_WRITE_HELD:
3324	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3325		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3326		s.sx = tupregs[0].dttk_value;
3327		regs[rd] = (SX_OWNER(s.si->sx_lock) == (uintptr_t) curthread);
3328		break;
3329
3330	case DIF_SUBR_RW_ISWRITER:
3331	case DIF_SUBR_SX_ISEXCLUSIVE:
3332		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3333		s.sx = tupregs[0].dttk_value;
3334		regs[rd] = ((s.si->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS) ||
3335		            !(s.si->sx_lock & SX_LOCK_SHARED));
3336		break;
3337#endif /* ! defined(sun) */
3338
3339	case DIF_SUBR_BCOPY: {
3340		/*
3341		 * We need to be sure that the destination is in the scratch
3342		 * region -- no other region is allowed.
3343		 */
3344		uintptr_t src = tupregs[0].dttk_value;
3345		uintptr_t dest = tupregs[1].dttk_value;
3346		size_t size = tupregs[2].dttk_value;
3347
3348		if (!dtrace_inscratch(dest, size, mstate)) {
3349			*flags |= CPU_DTRACE_BADADDR;
3350			*illval = regs[rd];
3351			break;
3352		}
3353
3354		if (!dtrace_canload(src, size, mstate, vstate)) {
3355			regs[rd] = 0;
3356			break;
3357		}
3358
3359		dtrace_bcopy((void *)src, (void *)dest, size);
3360		break;
3361	}
3362
3363	case DIF_SUBR_ALLOCA:
3364	case DIF_SUBR_COPYIN: {
3365		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3366		uint64_t size =
3367		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3368		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3369
3370		/*
3371		 * This action doesn't require any credential checks since
3372		 * probes will not activate in user contexts to which the
3373		 * enabling user does not have permissions.
3374		 */
3375
3376		/*
3377		 * Rounding up the user allocation size could have overflowed
3378		 * a large, bogus allocation (like -1ULL) to 0.
3379		 */
3380		if (scratch_size < size ||
3381		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3382			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3383			regs[rd] = 0;
3384			break;
3385		}
3386
3387		if (subr == DIF_SUBR_COPYIN) {
3388			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3389			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3390			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3391		}
3392
3393		mstate->dtms_scratch_ptr += scratch_size;
3394		regs[rd] = dest;
3395		break;
3396	}
3397
3398	case DIF_SUBR_COPYINTO: {
3399		uint64_t size = tupregs[1].dttk_value;
3400		uintptr_t dest = tupregs[2].dttk_value;
3401
3402		/*
3403		 * This action doesn't require any credential checks since
3404		 * probes will not activate in user contexts to which the
3405		 * enabling user does not have permissions.
3406		 */
3407		if (!dtrace_inscratch(dest, size, mstate)) {
3408			*flags |= CPU_DTRACE_BADADDR;
3409			*illval = regs[rd];
3410			break;
3411		}
3412
3413		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3414		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3415		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3416		break;
3417	}
3418
3419	case DIF_SUBR_COPYINSTR: {
3420		uintptr_t dest = mstate->dtms_scratch_ptr;
3421		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3422
3423		if (nargs > 1 && tupregs[1].dttk_value < size)
3424			size = tupregs[1].dttk_value + 1;
3425
3426		/*
3427		 * This action doesn't require any credential checks since
3428		 * probes will not activate in user contexts to which the
3429		 * enabling user does not have permissions.
3430		 */
3431		if (!DTRACE_INSCRATCH(mstate, size)) {
3432			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3433			regs[rd] = 0;
3434			break;
3435		}
3436
3437		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3438		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3439		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3440
3441		((char *)dest)[size - 1] = '\0';
3442		mstate->dtms_scratch_ptr += size;
3443		regs[rd] = dest;
3444		break;
3445	}
3446
3447#if defined(sun)
3448	case DIF_SUBR_MSGSIZE:
3449	case DIF_SUBR_MSGDSIZE: {
3450		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3451		uintptr_t wptr, rptr;
3452		size_t count = 0;
3453		int cont = 0;
3454
3455		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3456
3457			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3458			    vstate)) {
3459				regs[rd] = 0;
3460				break;
3461			}
3462
3463			wptr = dtrace_loadptr(baddr +
3464			    offsetof(mblk_t, b_wptr));
3465
3466			rptr = dtrace_loadptr(baddr +
3467			    offsetof(mblk_t, b_rptr));
3468
3469			if (wptr < rptr) {
3470				*flags |= CPU_DTRACE_BADADDR;
3471				*illval = tupregs[0].dttk_value;
3472				break;
3473			}
3474
3475			daddr = dtrace_loadptr(baddr +
3476			    offsetof(mblk_t, b_datap));
3477
3478			baddr = dtrace_loadptr(baddr +
3479			    offsetof(mblk_t, b_cont));
3480
3481			/*
3482			 * We want to prevent against denial-of-service here,
3483			 * so we're only going to search the list for
3484			 * dtrace_msgdsize_max mblks.
3485			 */
3486			if (cont++ > dtrace_msgdsize_max) {
3487				*flags |= CPU_DTRACE_ILLOP;
3488				break;
3489			}
3490
3491			if (subr == DIF_SUBR_MSGDSIZE) {
3492				if (dtrace_load8(daddr +
3493				    offsetof(dblk_t, db_type)) != M_DATA)
3494					continue;
3495			}
3496
3497			count += wptr - rptr;
3498		}
3499
3500		if (!(*flags & CPU_DTRACE_FAULT))
3501			regs[rd] = count;
3502
3503		break;
3504	}
3505#endif
3506
3507	case DIF_SUBR_PROGENYOF: {
3508		pid_t pid = tupregs[0].dttk_value;
3509		proc_t *p;
3510		int rval = 0;
3511
3512		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3513
3514		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3515#if defined(sun)
3516			if (p->p_pidp->pid_id == pid) {
3517#else
3518			if (p->p_pid == pid) {
3519#endif
3520				rval = 1;
3521				break;
3522			}
3523		}
3524
3525		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3526
3527		regs[rd] = rval;
3528		break;
3529	}
3530
3531	case DIF_SUBR_SPECULATION:
3532		regs[rd] = dtrace_speculation(state);
3533		break;
3534
3535	case DIF_SUBR_COPYOUT: {
3536		uintptr_t kaddr = tupregs[0].dttk_value;
3537		uintptr_t uaddr = tupregs[1].dttk_value;
3538		uint64_t size = tupregs[2].dttk_value;
3539
3540		if (!dtrace_destructive_disallow &&
3541		    dtrace_priv_proc_control(state) &&
3542		    !dtrace_istoxic(kaddr, size)) {
3543			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3544			dtrace_copyout(kaddr, uaddr, size, flags);
3545			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3546		}
3547		break;
3548	}
3549
3550	case DIF_SUBR_COPYOUTSTR: {
3551		uintptr_t kaddr = tupregs[0].dttk_value;
3552		uintptr_t uaddr = tupregs[1].dttk_value;
3553		uint64_t size = tupregs[2].dttk_value;
3554
3555		if (!dtrace_destructive_disallow &&
3556		    dtrace_priv_proc_control(state) &&
3557		    !dtrace_istoxic(kaddr, size)) {
3558			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3559			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3560			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3561		}
3562		break;
3563	}
3564
3565	case DIF_SUBR_STRLEN: {
3566		size_t sz;
3567		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3568		sz = dtrace_strlen((char *)addr,
3569		    state->dts_options[DTRACEOPT_STRSIZE]);
3570
3571		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3572			regs[rd] = 0;
3573			break;
3574		}
3575
3576		regs[rd] = sz;
3577
3578		break;
3579	}
3580
3581	case DIF_SUBR_STRCHR:
3582	case DIF_SUBR_STRRCHR: {
3583		/*
3584		 * We're going to iterate over the string looking for the
3585		 * specified character.  We will iterate until we have reached
3586		 * the string length or we have found the character.  If this
3587		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3588		 * of the specified character instead of the first.
3589		 */
3590		uintptr_t saddr = tupregs[0].dttk_value;
3591		uintptr_t addr = tupregs[0].dttk_value;
3592		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3593		char c, target = (char)tupregs[1].dttk_value;
3594
3595		for (regs[rd] = 0; addr < limit; addr++) {
3596			if ((c = dtrace_load8(addr)) == target) {
3597				regs[rd] = addr;
3598
3599				if (subr == DIF_SUBR_STRCHR)
3600					break;
3601			}
3602
3603			if (c == '\0')
3604				break;
3605		}
3606
3607		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3608			regs[rd] = 0;
3609			break;
3610		}
3611
3612		break;
3613	}
3614
3615	case DIF_SUBR_STRSTR:
3616	case DIF_SUBR_INDEX:
3617	case DIF_SUBR_RINDEX: {
3618		/*
3619		 * We're going to iterate over the string looking for the
3620		 * specified string.  We will iterate until we have reached
3621		 * the string length or we have found the string.  (Yes, this
3622		 * is done in the most naive way possible -- but considering
3623		 * that the string we're searching for is likely to be
3624		 * relatively short, the complexity of Rabin-Karp or similar
3625		 * hardly seems merited.)
3626		 */
3627		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3628		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3629		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3630		size_t len = dtrace_strlen(addr, size);
3631		size_t sublen = dtrace_strlen(substr, size);
3632		char *limit = addr + len, *orig = addr;
3633		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3634		int inc = 1;
3635
3636		regs[rd] = notfound;
3637
3638		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3639			regs[rd] = 0;
3640			break;
3641		}
3642
3643		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3644		    vstate)) {
3645			regs[rd] = 0;
3646			break;
3647		}
3648
3649		/*
3650		 * strstr() and index()/rindex() have similar semantics if
3651		 * both strings are the empty string: strstr() returns a
3652		 * pointer to the (empty) string, and index() and rindex()
3653		 * both return index 0 (regardless of any position argument).
3654		 */
3655		if (sublen == 0 && len == 0) {
3656			if (subr == DIF_SUBR_STRSTR)
3657				regs[rd] = (uintptr_t)addr;
3658			else
3659				regs[rd] = 0;
3660			break;
3661		}
3662
3663		if (subr != DIF_SUBR_STRSTR) {
3664			if (subr == DIF_SUBR_RINDEX) {
3665				limit = orig - 1;
3666				addr += len;
3667				inc = -1;
3668			}
3669
3670			/*
3671			 * Both index() and rindex() take an optional position
3672			 * argument that denotes the starting position.
3673			 */
3674			if (nargs == 3) {
3675				int64_t pos = (int64_t)tupregs[2].dttk_value;
3676
3677				/*
3678				 * If the position argument to index() is
3679				 * negative, Perl implicitly clamps it at
3680				 * zero.  This semantic is a little surprising
3681				 * given the special meaning of negative
3682				 * positions to similar Perl functions like
3683				 * substr(), but it appears to reflect a
3684				 * notion that index() can start from a
3685				 * negative index and increment its way up to
3686				 * the string.  Given this notion, Perl's
3687				 * rindex() is at least self-consistent in
3688				 * that it implicitly clamps positions greater
3689				 * than the string length to be the string
3690				 * length.  Where Perl completely loses
3691				 * coherence, however, is when the specified
3692				 * substring is the empty string ("").  In
3693				 * this case, even if the position is
3694				 * negative, rindex() returns 0 -- and even if
3695				 * the position is greater than the length,
3696				 * index() returns the string length.  These
3697				 * semantics violate the notion that index()
3698				 * should never return a value less than the
3699				 * specified position and that rindex() should
3700				 * never return a value greater than the
3701				 * specified position.  (One assumes that
3702				 * these semantics are artifacts of Perl's
3703				 * implementation and not the results of
3704				 * deliberate design -- it beggars belief that
3705				 * even Larry Wall could desire such oddness.)
3706				 * While in the abstract one would wish for
3707				 * consistent position semantics across
3708				 * substr(), index() and rindex() -- or at the
3709				 * very least self-consistent position
3710				 * semantics for index() and rindex() -- we
3711				 * instead opt to keep with the extant Perl
3712				 * semantics, in all their broken glory.  (Do
3713				 * we have more desire to maintain Perl's
3714				 * semantics than Perl does?  Probably.)
3715				 */
3716				if (subr == DIF_SUBR_RINDEX) {
3717					if (pos < 0) {
3718						if (sublen == 0)
3719							regs[rd] = 0;
3720						break;
3721					}
3722
3723					if (pos > len)
3724						pos = len;
3725				} else {
3726					if (pos < 0)
3727						pos = 0;
3728
3729					if (pos >= len) {
3730						if (sublen == 0)
3731							regs[rd] = len;
3732						break;
3733					}
3734				}
3735
3736				addr = orig + pos;
3737			}
3738		}
3739
3740		for (regs[rd] = notfound; addr != limit; addr += inc) {
3741			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3742				if (subr != DIF_SUBR_STRSTR) {
3743					/*
3744					 * As D index() and rindex() are
3745					 * modeled on Perl (and not on awk),
3746					 * we return a zero-based (and not a
3747					 * one-based) index.  (For you Perl
3748					 * weenies: no, we're not going to add
3749					 * $[ -- and shouldn't you be at a con
3750					 * or something?)
3751					 */
3752					regs[rd] = (uintptr_t)(addr - orig);
3753					break;
3754				}
3755
3756				ASSERT(subr == DIF_SUBR_STRSTR);
3757				regs[rd] = (uintptr_t)addr;
3758				break;
3759			}
3760		}
3761
3762		break;
3763	}
3764
3765	case DIF_SUBR_STRTOK: {
3766		uintptr_t addr = tupregs[0].dttk_value;
3767		uintptr_t tokaddr = tupregs[1].dttk_value;
3768		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3769		uintptr_t limit, toklimit = tokaddr + size;
3770		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3771		char *dest = (char *)mstate->dtms_scratch_ptr;
3772		int i;
3773
3774		/*
3775		 * Check both the token buffer and (later) the input buffer,
3776		 * since both could be non-scratch addresses.
3777		 */
3778		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3779			regs[rd] = 0;
3780			break;
3781		}
3782
3783		if (!DTRACE_INSCRATCH(mstate, size)) {
3784			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3785			regs[rd] = 0;
3786			break;
3787		}
3788
3789		if (addr == 0) {
3790			/*
3791			 * If the address specified is NULL, we use our saved
3792			 * strtok pointer from the mstate.  Note that this
3793			 * means that the saved strtok pointer is _only_
3794			 * valid within multiple enablings of the same probe --
3795			 * it behaves like an implicit clause-local variable.
3796			 */
3797			addr = mstate->dtms_strtok;
3798		} else {
3799			/*
3800			 * If the user-specified address is non-NULL we must
3801			 * access check it.  This is the only time we have
3802			 * a chance to do so, since this address may reside
3803			 * in the string table of this clause-- future calls
3804			 * (when we fetch addr from mstate->dtms_strtok)
3805			 * would fail this access check.
3806			 */
3807			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3808				regs[rd] = 0;
3809				break;
3810			}
3811		}
3812
3813		/*
3814		 * First, zero the token map, and then process the token
3815		 * string -- setting a bit in the map for every character
3816		 * found in the token string.
3817		 */
3818		for (i = 0; i < sizeof (tokmap); i++)
3819			tokmap[i] = 0;
3820
3821		for (; tokaddr < toklimit; tokaddr++) {
3822			if ((c = dtrace_load8(tokaddr)) == '\0')
3823				break;
3824
3825			ASSERT((c >> 3) < sizeof (tokmap));
3826			tokmap[c >> 3] |= (1 << (c & 0x7));
3827		}
3828
3829		for (limit = addr + size; addr < limit; addr++) {
3830			/*
3831			 * We're looking for a character that is _not_ contained
3832			 * in the token string.
3833			 */
3834			if ((c = dtrace_load8(addr)) == '\0')
3835				break;
3836
3837			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3838				break;
3839		}
3840
3841		if (c == '\0') {
3842			/*
3843			 * We reached the end of the string without finding
3844			 * any character that was not in the token string.
3845			 * We return NULL in this case, and we set the saved
3846			 * address to NULL as well.
3847			 */
3848			regs[rd] = 0;
3849			mstate->dtms_strtok = 0;
3850			break;
3851		}
3852
3853		/*
3854		 * From here on, we're copying into the destination string.
3855		 */
3856		for (i = 0; addr < limit && i < size - 1; addr++) {
3857			if ((c = dtrace_load8(addr)) == '\0')
3858				break;
3859
3860			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3861				break;
3862
3863			ASSERT(i < size);
3864			dest[i++] = c;
3865		}
3866
3867		ASSERT(i < size);
3868		dest[i] = '\0';
3869		regs[rd] = (uintptr_t)dest;
3870		mstate->dtms_scratch_ptr += size;
3871		mstate->dtms_strtok = addr;
3872		break;
3873	}
3874
3875	case DIF_SUBR_SUBSTR: {
3876		uintptr_t s = tupregs[0].dttk_value;
3877		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3878		char *d = (char *)mstate->dtms_scratch_ptr;
3879		int64_t index = (int64_t)tupregs[1].dttk_value;
3880		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3881		size_t len = dtrace_strlen((char *)s, size);
3882		int64_t i = 0;
3883
3884		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3885			regs[rd] = 0;
3886			break;
3887		}
3888
3889		if (!DTRACE_INSCRATCH(mstate, size)) {
3890			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3891			regs[rd] = 0;
3892			break;
3893		}
3894
3895		if (nargs <= 2)
3896			remaining = (int64_t)size;
3897
3898		if (index < 0) {
3899			index += len;
3900
3901			if (index < 0 && index + remaining > 0) {
3902				remaining += index;
3903				index = 0;
3904			}
3905		}
3906
3907		if (index >= len || index < 0) {
3908			remaining = 0;
3909		} else if (remaining < 0) {
3910			remaining += len - index;
3911		} else if (index + remaining > size) {
3912			remaining = size - index;
3913		}
3914
3915		for (i = 0; i < remaining; i++) {
3916			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3917				break;
3918		}
3919
3920		d[i] = '\0';
3921
3922		mstate->dtms_scratch_ptr += size;
3923		regs[rd] = (uintptr_t)d;
3924		break;
3925	}
3926
3927#if defined(sun)
3928	case DIF_SUBR_GETMAJOR:
3929#ifdef _LP64
3930		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3931#else
3932		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3933#endif
3934		break;
3935
3936	case DIF_SUBR_GETMINOR:
3937#ifdef _LP64
3938		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3939#else
3940		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3941#endif
3942		break;
3943
3944	case DIF_SUBR_DDI_PATHNAME: {
3945		/*
3946		 * This one is a galactic mess.  We are going to roughly
3947		 * emulate ddi_pathname(), but it's made more complicated
3948		 * by the fact that we (a) want to include the minor name and
3949		 * (b) must proceed iteratively instead of recursively.
3950		 */
3951		uintptr_t dest = mstate->dtms_scratch_ptr;
3952		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3953		char *start = (char *)dest, *end = start + size - 1;
3954		uintptr_t daddr = tupregs[0].dttk_value;
3955		int64_t minor = (int64_t)tupregs[1].dttk_value;
3956		char *s;
3957		int i, len, depth = 0;
3958
3959		/*
3960		 * Due to all the pointer jumping we do and context we must
3961		 * rely upon, we just mandate that the user must have kernel
3962		 * read privileges to use this routine.
3963		 */
3964		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3965			*flags |= CPU_DTRACE_KPRIV;
3966			*illval = daddr;
3967			regs[rd] = 0;
3968		}
3969
3970		if (!DTRACE_INSCRATCH(mstate, size)) {
3971			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3972			regs[rd] = 0;
3973			break;
3974		}
3975
3976		*end = '\0';
3977
3978		/*
3979		 * We want to have a name for the minor.  In order to do this,
3980		 * we need to walk the minor list from the devinfo.  We want
3981		 * to be sure that we don't infinitely walk a circular list,
3982		 * so we check for circularity by sending a scout pointer
3983		 * ahead two elements for every element that we iterate over;
3984		 * if the list is circular, these will ultimately point to the
3985		 * same element.  You may recognize this little trick as the
3986		 * answer to a stupid interview question -- one that always
3987		 * seems to be asked by those who had to have it laboriously
3988		 * explained to them, and who can't even concisely describe
3989		 * the conditions under which one would be forced to resort to
3990		 * this technique.  Needless to say, those conditions are
3991		 * found here -- and probably only here.  Is this the only use
3992		 * of this infamous trick in shipping, production code?  If it
3993		 * isn't, it probably should be...
3994		 */
3995		if (minor != -1) {
3996			uintptr_t maddr = dtrace_loadptr(daddr +
3997			    offsetof(struct dev_info, devi_minor));
3998
3999			uintptr_t next = offsetof(struct ddi_minor_data, next);
4000			uintptr_t name = offsetof(struct ddi_minor_data,
4001			    d_minor) + offsetof(struct ddi_minor, name);
4002			uintptr_t dev = offsetof(struct ddi_minor_data,
4003			    d_minor) + offsetof(struct ddi_minor, dev);
4004			uintptr_t scout;
4005
4006			if (maddr != NULL)
4007				scout = dtrace_loadptr(maddr + next);
4008
4009			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4010				uint64_t m;
4011#ifdef _LP64
4012				m = dtrace_load64(maddr + dev) & MAXMIN64;
4013#else
4014				m = dtrace_load32(maddr + dev) & MAXMIN;
4015#endif
4016				if (m != minor) {
4017					maddr = dtrace_loadptr(maddr + next);
4018
4019					if (scout == NULL)
4020						continue;
4021
4022					scout = dtrace_loadptr(scout + next);
4023
4024					if (scout == NULL)
4025						continue;
4026
4027					scout = dtrace_loadptr(scout + next);
4028
4029					if (scout == NULL)
4030						continue;
4031
4032					if (scout == maddr) {
4033						*flags |= CPU_DTRACE_ILLOP;
4034						break;
4035					}
4036
4037					continue;
4038				}
4039
4040				/*
4041				 * We have the minor data.  Now we need to
4042				 * copy the minor's name into the end of the
4043				 * pathname.
4044				 */
4045				s = (char *)dtrace_loadptr(maddr + name);
4046				len = dtrace_strlen(s, size);
4047
4048				if (*flags & CPU_DTRACE_FAULT)
4049					break;
4050
4051				if (len != 0) {
4052					if ((end -= (len + 1)) < start)
4053						break;
4054
4055					*end = ':';
4056				}
4057
4058				for (i = 1; i <= len; i++)
4059					end[i] = dtrace_load8((uintptr_t)s++);
4060				break;
4061			}
4062		}
4063
4064		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4065			ddi_node_state_t devi_state;
4066
4067			devi_state = dtrace_load32(daddr +
4068			    offsetof(struct dev_info, devi_node_state));
4069
4070			if (*flags & CPU_DTRACE_FAULT)
4071				break;
4072
4073			if (devi_state >= DS_INITIALIZED) {
4074				s = (char *)dtrace_loadptr(daddr +
4075				    offsetof(struct dev_info, devi_addr));
4076				len = dtrace_strlen(s, size);
4077
4078				if (*flags & CPU_DTRACE_FAULT)
4079					break;
4080
4081				if (len != 0) {
4082					if ((end -= (len + 1)) < start)
4083						break;
4084
4085					*end = '@';
4086				}
4087
4088				for (i = 1; i <= len; i++)
4089					end[i] = dtrace_load8((uintptr_t)s++);
4090			}
4091
4092			/*
4093			 * Now for the node name...
4094			 */
4095			s = (char *)dtrace_loadptr(daddr +
4096			    offsetof(struct dev_info, devi_node_name));
4097
4098			daddr = dtrace_loadptr(daddr +
4099			    offsetof(struct dev_info, devi_parent));
4100
4101			/*
4102			 * If our parent is NULL (that is, if we're the root
4103			 * node), we're going to use the special path
4104			 * "devices".
4105			 */
4106			if (daddr == 0)
4107				s = "devices";
4108
4109			len = dtrace_strlen(s, size);
4110			if (*flags & CPU_DTRACE_FAULT)
4111				break;
4112
4113			if ((end -= (len + 1)) < start)
4114				break;
4115
4116			for (i = 1; i <= len; i++)
4117				end[i] = dtrace_load8((uintptr_t)s++);
4118			*end = '/';
4119
4120			if (depth++ > dtrace_devdepth_max) {
4121				*flags |= CPU_DTRACE_ILLOP;
4122				break;
4123			}
4124		}
4125
4126		if (end < start)
4127			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4128
4129		if (daddr == 0) {
4130			regs[rd] = (uintptr_t)end;
4131			mstate->dtms_scratch_ptr += size;
4132		}
4133
4134		break;
4135	}
4136#endif
4137
4138	case DIF_SUBR_STRJOIN: {
4139		char *d = (char *)mstate->dtms_scratch_ptr;
4140		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4141		uintptr_t s1 = tupregs[0].dttk_value;
4142		uintptr_t s2 = tupregs[1].dttk_value;
4143		int i = 0;
4144
4145		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4146		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4147			regs[rd] = 0;
4148			break;
4149		}
4150
4151		if (!DTRACE_INSCRATCH(mstate, size)) {
4152			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4153			regs[rd] = 0;
4154			break;
4155		}
4156
4157		for (;;) {
4158			if (i >= size) {
4159				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4160				regs[rd] = 0;
4161				break;
4162			}
4163
4164			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4165				i--;
4166				break;
4167			}
4168		}
4169
4170		for (;;) {
4171			if (i >= size) {
4172				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4173				regs[rd] = 0;
4174				break;
4175			}
4176
4177			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4178				break;
4179		}
4180
4181		if (i < size) {
4182			mstate->dtms_scratch_ptr += i;
4183			regs[rd] = (uintptr_t)d;
4184		}
4185
4186		break;
4187	}
4188
4189	case DIF_SUBR_LLTOSTR: {
4190		int64_t i = (int64_t)tupregs[0].dttk_value;
4191		int64_t val = i < 0 ? i * -1 : i;
4192		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4193		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4194
4195		if (!DTRACE_INSCRATCH(mstate, size)) {
4196			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4197			regs[rd] = 0;
4198			break;
4199		}
4200
4201		for (*end-- = '\0'; val; val /= 10)
4202			*end-- = '0' + (val % 10);
4203
4204		if (i == 0)
4205			*end-- = '0';
4206
4207		if (i < 0)
4208			*end-- = '-';
4209
4210		regs[rd] = (uintptr_t)end + 1;
4211		mstate->dtms_scratch_ptr += size;
4212		break;
4213	}
4214
4215	case DIF_SUBR_HTONS:
4216	case DIF_SUBR_NTOHS:
4217#if BYTE_ORDER == BIG_ENDIAN
4218		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4219#else
4220		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4221#endif
4222		break;
4223
4224
4225	case DIF_SUBR_HTONL:
4226	case DIF_SUBR_NTOHL:
4227#if BYTE_ORDER == BIG_ENDIAN
4228		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4229#else
4230		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4231#endif
4232		break;
4233
4234
4235	case DIF_SUBR_HTONLL:
4236	case DIF_SUBR_NTOHLL:
4237#if BYTE_ORDER == BIG_ENDIAN
4238		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4239#else
4240		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4241#endif
4242		break;
4243
4244
4245	case DIF_SUBR_DIRNAME:
4246	case DIF_SUBR_BASENAME: {
4247		char *dest = (char *)mstate->dtms_scratch_ptr;
4248		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4249		uintptr_t src = tupregs[0].dttk_value;
4250		int i, j, len = dtrace_strlen((char *)src, size);
4251		int lastbase = -1, firstbase = -1, lastdir = -1;
4252		int start, end;
4253
4254		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4255			regs[rd] = 0;
4256			break;
4257		}
4258
4259		if (!DTRACE_INSCRATCH(mstate, size)) {
4260			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4261			regs[rd] = 0;
4262			break;
4263		}
4264
4265		/*
4266		 * The basename and dirname for a zero-length string is
4267		 * defined to be "."
4268		 */
4269		if (len == 0) {
4270			len = 1;
4271			src = (uintptr_t)".";
4272		}
4273
4274		/*
4275		 * Start from the back of the string, moving back toward the
4276		 * front until we see a character that isn't a slash.  That
4277		 * character is the last character in the basename.
4278		 */
4279		for (i = len - 1; i >= 0; i--) {
4280			if (dtrace_load8(src + i) != '/')
4281				break;
4282		}
4283
4284		if (i >= 0)
4285			lastbase = i;
4286
4287		/*
4288		 * Starting from the last character in the basename, move
4289		 * towards the front until we find a slash.  The character
4290		 * that we processed immediately before that is the first
4291		 * character in the basename.
4292		 */
4293		for (; i >= 0; i--) {
4294			if (dtrace_load8(src + i) == '/')
4295				break;
4296		}
4297
4298		if (i >= 0)
4299			firstbase = i + 1;
4300
4301		/*
4302		 * Now keep going until we find a non-slash character.  That
4303		 * character is the last character in the dirname.
4304		 */
4305		for (; i >= 0; i--) {
4306			if (dtrace_load8(src + i) != '/')
4307				break;
4308		}
4309
4310		if (i >= 0)
4311			lastdir = i;
4312
4313		ASSERT(!(lastbase == -1 && firstbase != -1));
4314		ASSERT(!(firstbase == -1 && lastdir != -1));
4315
4316		if (lastbase == -1) {
4317			/*
4318			 * We didn't find a non-slash character.  We know that
4319			 * the length is non-zero, so the whole string must be
4320			 * slashes.  In either the dirname or the basename
4321			 * case, we return '/'.
4322			 */
4323			ASSERT(firstbase == -1);
4324			firstbase = lastbase = lastdir = 0;
4325		}
4326
4327		if (firstbase == -1) {
4328			/*
4329			 * The entire string consists only of a basename
4330			 * component.  If we're looking for dirname, we need
4331			 * to change our string to be just "."; if we're
4332			 * looking for a basename, we'll just set the first
4333			 * character of the basename to be 0.
4334			 */
4335			if (subr == DIF_SUBR_DIRNAME) {
4336				ASSERT(lastdir == -1);
4337				src = (uintptr_t)".";
4338				lastdir = 0;
4339			} else {
4340				firstbase = 0;
4341			}
4342		}
4343
4344		if (subr == DIF_SUBR_DIRNAME) {
4345			if (lastdir == -1) {
4346				/*
4347				 * We know that we have a slash in the name --
4348				 * or lastdir would be set to 0, above.  And
4349				 * because lastdir is -1, we know that this
4350				 * slash must be the first character.  (That
4351				 * is, the full string must be of the form
4352				 * "/basename".)  In this case, the last
4353				 * character of the directory name is 0.
4354				 */
4355				lastdir = 0;
4356			}
4357
4358			start = 0;
4359			end = lastdir;
4360		} else {
4361			ASSERT(subr == DIF_SUBR_BASENAME);
4362			ASSERT(firstbase != -1 && lastbase != -1);
4363			start = firstbase;
4364			end = lastbase;
4365		}
4366
4367		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4368			dest[j] = dtrace_load8(src + i);
4369
4370		dest[j] = '\0';
4371		regs[rd] = (uintptr_t)dest;
4372		mstate->dtms_scratch_ptr += size;
4373		break;
4374	}
4375
4376	case DIF_SUBR_CLEANPATH: {
4377		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4378		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4379		uintptr_t src = tupregs[0].dttk_value;
4380		int i = 0, j = 0;
4381
4382		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4383			regs[rd] = 0;
4384			break;
4385		}
4386
4387		if (!DTRACE_INSCRATCH(mstate, size)) {
4388			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4389			regs[rd] = 0;
4390			break;
4391		}
4392
4393		/*
4394		 * Move forward, loading each character.
4395		 */
4396		do {
4397			c = dtrace_load8(src + i++);
4398next:
4399			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4400				break;
4401
4402			if (c != '/') {
4403				dest[j++] = c;
4404				continue;
4405			}
4406
4407			c = dtrace_load8(src + i++);
4408
4409			if (c == '/') {
4410				/*
4411				 * We have two slashes -- we can just advance
4412				 * to the next character.
4413				 */
4414				goto next;
4415			}
4416
4417			if (c != '.') {
4418				/*
4419				 * This is not "." and it's not ".." -- we can
4420				 * just store the "/" and this character and
4421				 * drive on.
4422				 */
4423				dest[j++] = '/';
4424				dest[j++] = c;
4425				continue;
4426			}
4427
4428			c = dtrace_load8(src + i++);
4429
4430			if (c == '/') {
4431				/*
4432				 * This is a "/./" component.  We're not going
4433				 * to store anything in the destination buffer;
4434				 * we're just going to go to the next component.
4435				 */
4436				goto next;
4437			}
4438
4439			if (c != '.') {
4440				/*
4441				 * This is not ".." -- we can just store the
4442				 * "/." and this character and continue
4443				 * processing.
4444				 */
4445				dest[j++] = '/';
4446				dest[j++] = '.';
4447				dest[j++] = c;
4448				continue;
4449			}
4450
4451			c = dtrace_load8(src + i++);
4452
4453			if (c != '/' && c != '\0') {
4454				/*
4455				 * This is not ".." -- it's "..[mumble]".
4456				 * We'll store the "/.." and this character
4457				 * and continue processing.
4458				 */
4459				dest[j++] = '/';
4460				dest[j++] = '.';
4461				dest[j++] = '.';
4462				dest[j++] = c;
4463				continue;
4464			}
4465
4466			/*
4467			 * This is "/../" or "/..\0".  We need to back up
4468			 * our destination pointer until we find a "/".
4469			 */
4470			i--;
4471			while (j != 0 && dest[--j] != '/')
4472				continue;
4473
4474			if (c == '\0')
4475				dest[++j] = '/';
4476		} while (c != '\0');
4477
4478		dest[j] = '\0';
4479		regs[rd] = (uintptr_t)dest;
4480		mstate->dtms_scratch_ptr += size;
4481		break;
4482	}
4483
4484	case DIF_SUBR_INET_NTOA:
4485	case DIF_SUBR_INET_NTOA6:
4486	case DIF_SUBR_INET_NTOP: {
4487		size_t size;
4488		int af, argi, i;
4489		char *base, *end;
4490
4491		if (subr == DIF_SUBR_INET_NTOP) {
4492			af = (int)tupregs[0].dttk_value;
4493			argi = 1;
4494		} else {
4495			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4496			argi = 0;
4497		}
4498
4499		if (af == AF_INET) {
4500			ipaddr_t ip4;
4501			uint8_t *ptr8, val;
4502
4503			/*
4504			 * Safely load the IPv4 address.
4505			 */
4506			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4507
4508			/*
4509			 * Check an IPv4 string will fit in scratch.
4510			 */
4511			size = INET_ADDRSTRLEN;
4512			if (!DTRACE_INSCRATCH(mstate, size)) {
4513				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4514				regs[rd] = 0;
4515				break;
4516			}
4517			base = (char *)mstate->dtms_scratch_ptr;
4518			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4519
4520			/*
4521			 * Stringify as a dotted decimal quad.
4522			 */
4523			*end-- = '\0';
4524			ptr8 = (uint8_t *)&ip4;
4525			for (i = 3; i >= 0; i--) {
4526				val = ptr8[i];
4527
4528				if (val == 0) {
4529					*end-- = '0';
4530				} else {
4531					for (; val; val /= 10) {
4532						*end-- = '0' + (val % 10);
4533					}
4534				}
4535
4536				if (i > 0)
4537					*end-- = '.';
4538			}
4539			ASSERT(end + 1 >= base);
4540
4541		} else if (af == AF_INET6) {
4542			struct in6_addr ip6;
4543			int firstzero, tryzero, numzero, v6end;
4544			uint16_t val;
4545			const char digits[] = "0123456789abcdef";
4546
4547			/*
4548			 * Stringify using RFC 1884 convention 2 - 16 bit
4549			 * hexadecimal values with a zero-run compression.
4550			 * Lower case hexadecimal digits are used.
4551			 * 	eg, fe80::214:4fff:fe0b:76c8.
4552			 * The IPv4 embedded form is returned for inet_ntop,
4553			 * just the IPv4 string is returned for inet_ntoa6.
4554			 */
4555
4556			/*
4557			 * Safely load the IPv6 address.
4558			 */
4559			dtrace_bcopy(
4560			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4561			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4562
4563			/*
4564			 * Check an IPv6 string will fit in scratch.
4565			 */
4566			size = INET6_ADDRSTRLEN;
4567			if (!DTRACE_INSCRATCH(mstate, size)) {
4568				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4569				regs[rd] = 0;
4570				break;
4571			}
4572			base = (char *)mstate->dtms_scratch_ptr;
4573			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4574			*end-- = '\0';
4575
4576			/*
4577			 * Find the longest run of 16 bit zero values
4578			 * for the single allowed zero compression - "::".
4579			 */
4580			firstzero = -1;
4581			tryzero = -1;
4582			numzero = 1;
4583			for (i = 0; i < sizeof (struct in6_addr); i++) {
4584#if defined(sun)
4585				if (ip6._S6_un._S6_u8[i] == 0 &&
4586#else
4587				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4588#endif
4589				    tryzero == -1 && i % 2 == 0) {
4590					tryzero = i;
4591					continue;
4592				}
4593
4594				if (tryzero != -1 &&
4595#if defined(sun)
4596				    (ip6._S6_un._S6_u8[i] != 0 ||
4597#else
4598				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4599#endif
4600				    i == sizeof (struct in6_addr) - 1)) {
4601
4602					if (i - tryzero <= numzero) {
4603						tryzero = -1;
4604						continue;
4605					}
4606
4607					firstzero = tryzero;
4608					numzero = i - i % 2 - tryzero;
4609					tryzero = -1;
4610
4611#if defined(sun)
4612					if (ip6._S6_un._S6_u8[i] == 0 &&
4613#else
4614					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4615#endif
4616					    i == sizeof (struct in6_addr) - 1)
4617						numzero += 2;
4618				}
4619			}
4620			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4621
4622			/*
4623			 * Check for an IPv4 embedded address.
4624			 */
4625			v6end = sizeof (struct in6_addr) - 2;
4626			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4627			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4628				for (i = sizeof (struct in6_addr) - 1;
4629				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4630					ASSERT(end >= base);
4631
4632#if defined(sun)
4633					val = ip6._S6_un._S6_u8[i];
4634#else
4635					val = ip6.__u6_addr.__u6_addr8[i];
4636#endif
4637
4638					if (val == 0) {
4639						*end-- = '0';
4640					} else {
4641						for (; val; val /= 10) {
4642							*end-- = '0' + val % 10;
4643						}
4644					}
4645
4646					if (i > DTRACE_V4MAPPED_OFFSET)
4647						*end-- = '.';
4648				}
4649
4650				if (subr == DIF_SUBR_INET_NTOA6)
4651					goto inetout;
4652
4653				/*
4654				 * Set v6end to skip the IPv4 address that
4655				 * we have already stringified.
4656				 */
4657				v6end = 10;
4658			}
4659
4660			/*
4661			 * Build the IPv6 string by working through the
4662			 * address in reverse.
4663			 */
4664			for (i = v6end; i >= 0; i -= 2) {
4665				ASSERT(end >= base);
4666
4667				if (i == firstzero + numzero - 2) {
4668					*end-- = ':';
4669					*end-- = ':';
4670					i -= numzero - 2;
4671					continue;
4672				}
4673
4674				if (i < 14 && i != firstzero - 2)
4675					*end-- = ':';
4676
4677#if defined(sun)
4678				val = (ip6._S6_un._S6_u8[i] << 8) +
4679				    ip6._S6_un._S6_u8[i + 1];
4680#else
4681				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4682				    ip6.__u6_addr.__u6_addr8[i + 1];
4683#endif
4684
4685				if (val == 0) {
4686					*end-- = '0';
4687				} else {
4688					for (; val; val /= 16) {
4689						*end-- = digits[val % 16];
4690					}
4691				}
4692			}
4693			ASSERT(end + 1 >= base);
4694
4695		} else {
4696			/*
4697			 * The user didn't use AH_INET or AH_INET6.
4698			 */
4699			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4700			regs[rd] = 0;
4701			break;
4702		}
4703
4704inetout:	regs[rd] = (uintptr_t)end + 1;
4705		mstate->dtms_scratch_ptr += size;
4706		break;
4707	}
4708
4709	case DIF_SUBR_MEMREF: {
4710		uintptr_t size = 2 * sizeof(uintptr_t);
4711		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4712		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4713
4714		/* address and length */
4715		memref[0] = tupregs[0].dttk_value;
4716		memref[1] = tupregs[1].dttk_value;
4717
4718		regs[rd] = (uintptr_t) memref;
4719		mstate->dtms_scratch_ptr += scratch_size;
4720		break;
4721	}
4722
4723	case DIF_SUBR_TYPEREF: {
4724		uintptr_t size = 4 * sizeof(uintptr_t);
4725		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4726		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4727
4728		/* address, num_elements, type_str, type_len */
4729		typeref[0] = tupregs[0].dttk_value;
4730		typeref[1] = tupregs[1].dttk_value;
4731		typeref[2] = tupregs[2].dttk_value;
4732		typeref[3] = tupregs[3].dttk_value;
4733
4734		regs[rd] = (uintptr_t) typeref;
4735		mstate->dtms_scratch_ptr += scratch_size;
4736		break;
4737	}
4738	}
4739}
4740
4741/*
4742 * Emulate the execution of DTrace IR instructions specified by the given
4743 * DIF object.  This function is deliberately void of assertions as all of
4744 * the necessary checks are handled by a call to dtrace_difo_validate().
4745 */
4746static uint64_t
4747dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4748    dtrace_vstate_t *vstate, dtrace_state_t *state)
4749{
4750	const dif_instr_t *text = difo->dtdo_buf;
4751	const uint_t textlen = difo->dtdo_len;
4752	const char *strtab = difo->dtdo_strtab;
4753	const uint64_t *inttab = difo->dtdo_inttab;
4754
4755	uint64_t rval = 0;
4756	dtrace_statvar_t *svar;
4757	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4758	dtrace_difv_t *v;
4759	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4760	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4761
4762	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4763	uint64_t regs[DIF_DIR_NREGS];
4764	uint64_t *tmp;
4765
4766	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4767	int64_t cc_r;
4768	uint_t pc = 0, id, opc = 0;
4769	uint8_t ttop = 0;
4770	dif_instr_t instr;
4771	uint_t r1, r2, rd;
4772
4773	/*
4774	 * We stash the current DIF object into the machine state: we need it
4775	 * for subsequent access checking.
4776	 */
4777	mstate->dtms_difo = difo;
4778
4779	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4780
4781	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4782		opc = pc;
4783
4784		instr = text[pc++];
4785		r1 = DIF_INSTR_R1(instr);
4786		r2 = DIF_INSTR_R2(instr);
4787		rd = DIF_INSTR_RD(instr);
4788
4789		switch (DIF_INSTR_OP(instr)) {
4790		case DIF_OP_OR:
4791			regs[rd] = regs[r1] | regs[r2];
4792			break;
4793		case DIF_OP_XOR:
4794			regs[rd] = regs[r1] ^ regs[r2];
4795			break;
4796		case DIF_OP_AND:
4797			regs[rd] = regs[r1] & regs[r2];
4798			break;
4799		case DIF_OP_SLL:
4800			regs[rd] = regs[r1] << regs[r2];
4801			break;
4802		case DIF_OP_SRL:
4803			regs[rd] = regs[r1] >> regs[r2];
4804			break;
4805		case DIF_OP_SUB:
4806			regs[rd] = regs[r1] - regs[r2];
4807			break;
4808		case DIF_OP_ADD:
4809			regs[rd] = regs[r1] + regs[r2];
4810			break;
4811		case DIF_OP_MUL:
4812			regs[rd] = regs[r1] * regs[r2];
4813			break;
4814		case DIF_OP_SDIV:
4815			if (regs[r2] == 0) {
4816				regs[rd] = 0;
4817				*flags |= CPU_DTRACE_DIVZERO;
4818			} else {
4819				regs[rd] = (int64_t)regs[r1] /
4820				    (int64_t)regs[r2];
4821			}
4822			break;
4823
4824		case DIF_OP_UDIV:
4825			if (regs[r2] == 0) {
4826				regs[rd] = 0;
4827				*flags |= CPU_DTRACE_DIVZERO;
4828			} else {
4829				regs[rd] = regs[r1] / regs[r2];
4830			}
4831			break;
4832
4833		case DIF_OP_SREM:
4834			if (regs[r2] == 0) {
4835				regs[rd] = 0;
4836				*flags |= CPU_DTRACE_DIVZERO;
4837			} else {
4838				regs[rd] = (int64_t)regs[r1] %
4839				    (int64_t)regs[r2];
4840			}
4841			break;
4842
4843		case DIF_OP_UREM:
4844			if (regs[r2] == 0) {
4845				regs[rd] = 0;
4846				*flags |= CPU_DTRACE_DIVZERO;
4847			} else {
4848				regs[rd] = regs[r1] % regs[r2];
4849			}
4850			break;
4851
4852		case DIF_OP_NOT:
4853			regs[rd] = ~regs[r1];
4854			break;
4855		case DIF_OP_MOV:
4856			regs[rd] = regs[r1];
4857			break;
4858		case DIF_OP_CMP:
4859			cc_r = regs[r1] - regs[r2];
4860			cc_n = cc_r < 0;
4861			cc_z = cc_r == 0;
4862			cc_v = 0;
4863			cc_c = regs[r1] < regs[r2];
4864			break;
4865		case DIF_OP_TST:
4866			cc_n = cc_v = cc_c = 0;
4867			cc_z = regs[r1] == 0;
4868			break;
4869		case DIF_OP_BA:
4870			pc = DIF_INSTR_LABEL(instr);
4871			break;
4872		case DIF_OP_BE:
4873			if (cc_z)
4874				pc = DIF_INSTR_LABEL(instr);
4875			break;
4876		case DIF_OP_BNE:
4877			if (cc_z == 0)
4878				pc = DIF_INSTR_LABEL(instr);
4879			break;
4880		case DIF_OP_BG:
4881			if ((cc_z | (cc_n ^ cc_v)) == 0)
4882				pc = DIF_INSTR_LABEL(instr);
4883			break;
4884		case DIF_OP_BGU:
4885			if ((cc_c | cc_z) == 0)
4886				pc = DIF_INSTR_LABEL(instr);
4887			break;
4888		case DIF_OP_BGE:
4889			if ((cc_n ^ cc_v) == 0)
4890				pc = DIF_INSTR_LABEL(instr);
4891			break;
4892		case DIF_OP_BGEU:
4893			if (cc_c == 0)
4894				pc = DIF_INSTR_LABEL(instr);
4895			break;
4896		case DIF_OP_BL:
4897			if (cc_n ^ cc_v)
4898				pc = DIF_INSTR_LABEL(instr);
4899			break;
4900		case DIF_OP_BLU:
4901			if (cc_c)
4902				pc = DIF_INSTR_LABEL(instr);
4903			break;
4904		case DIF_OP_BLE:
4905			if (cc_z | (cc_n ^ cc_v))
4906				pc = DIF_INSTR_LABEL(instr);
4907			break;
4908		case DIF_OP_BLEU:
4909			if (cc_c | cc_z)
4910				pc = DIF_INSTR_LABEL(instr);
4911			break;
4912		case DIF_OP_RLDSB:
4913			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4914				*flags |= CPU_DTRACE_KPRIV;
4915				*illval = regs[r1];
4916				break;
4917			}
4918			/*FALLTHROUGH*/
4919		case DIF_OP_LDSB:
4920			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4921			break;
4922		case DIF_OP_RLDSH:
4923			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4924				*flags |= CPU_DTRACE_KPRIV;
4925				*illval = regs[r1];
4926				break;
4927			}
4928			/*FALLTHROUGH*/
4929		case DIF_OP_LDSH:
4930			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4931			break;
4932		case DIF_OP_RLDSW:
4933			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4934				*flags |= CPU_DTRACE_KPRIV;
4935				*illval = regs[r1];
4936				break;
4937			}
4938			/*FALLTHROUGH*/
4939		case DIF_OP_LDSW:
4940			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4941			break;
4942		case DIF_OP_RLDUB:
4943			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4944				*flags |= CPU_DTRACE_KPRIV;
4945				*illval = regs[r1];
4946				break;
4947			}
4948			/*FALLTHROUGH*/
4949		case DIF_OP_LDUB:
4950			regs[rd] = dtrace_load8(regs[r1]);
4951			break;
4952		case DIF_OP_RLDUH:
4953			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4954				*flags |= CPU_DTRACE_KPRIV;
4955				*illval = regs[r1];
4956				break;
4957			}
4958			/*FALLTHROUGH*/
4959		case DIF_OP_LDUH:
4960			regs[rd] = dtrace_load16(regs[r1]);
4961			break;
4962		case DIF_OP_RLDUW:
4963			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4964				*flags |= CPU_DTRACE_KPRIV;
4965				*illval = regs[r1];
4966				break;
4967			}
4968			/*FALLTHROUGH*/
4969		case DIF_OP_LDUW:
4970			regs[rd] = dtrace_load32(regs[r1]);
4971			break;
4972		case DIF_OP_RLDX:
4973			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4974				*flags |= CPU_DTRACE_KPRIV;
4975				*illval = regs[r1];
4976				break;
4977			}
4978			/*FALLTHROUGH*/
4979		case DIF_OP_LDX:
4980			regs[rd] = dtrace_load64(regs[r1]);
4981			break;
4982		case DIF_OP_ULDSB:
4983			regs[rd] = (int8_t)
4984			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4985			break;
4986		case DIF_OP_ULDSH:
4987			regs[rd] = (int16_t)
4988			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4989			break;
4990		case DIF_OP_ULDSW:
4991			regs[rd] = (int32_t)
4992			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4993			break;
4994		case DIF_OP_ULDUB:
4995			regs[rd] =
4996			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4997			break;
4998		case DIF_OP_ULDUH:
4999			regs[rd] =
5000			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5001			break;
5002		case DIF_OP_ULDUW:
5003			regs[rd] =
5004			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5005			break;
5006		case DIF_OP_ULDX:
5007			regs[rd] =
5008			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5009			break;
5010		case DIF_OP_RET:
5011			rval = regs[rd];
5012			pc = textlen;
5013			break;
5014		case DIF_OP_NOP:
5015			break;
5016		case DIF_OP_SETX:
5017			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5018			break;
5019		case DIF_OP_SETS:
5020			regs[rd] = (uint64_t)(uintptr_t)
5021			    (strtab + DIF_INSTR_STRING(instr));
5022			break;
5023		case DIF_OP_SCMP: {
5024			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5025			uintptr_t s1 = regs[r1];
5026			uintptr_t s2 = regs[r2];
5027
5028			if (s1 != 0 &&
5029			    !dtrace_strcanload(s1, sz, mstate, vstate))
5030				break;
5031			if (s2 != 0 &&
5032			    !dtrace_strcanload(s2, sz, mstate, vstate))
5033				break;
5034
5035			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5036
5037			cc_n = cc_r < 0;
5038			cc_z = cc_r == 0;
5039			cc_v = cc_c = 0;
5040			break;
5041		}
5042		case DIF_OP_LDGA:
5043			regs[rd] = dtrace_dif_variable(mstate, state,
5044			    r1, regs[r2]);
5045			break;
5046		case DIF_OP_LDGS:
5047			id = DIF_INSTR_VAR(instr);
5048
5049			if (id >= DIF_VAR_OTHER_UBASE) {
5050				uintptr_t a;
5051
5052				id -= DIF_VAR_OTHER_UBASE;
5053				svar = vstate->dtvs_globals[id];
5054				ASSERT(svar != NULL);
5055				v = &svar->dtsv_var;
5056
5057				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5058					regs[rd] = svar->dtsv_data;
5059					break;
5060				}
5061
5062				a = (uintptr_t)svar->dtsv_data;
5063
5064				if (*(uint8_t *)a == UINT8_MAX) {
5065					/*
5066					 * If the 0th byte is set to UINT8_MAX
5067					 * then this is to be treated as a
5068					 * reference to a NULL variable.
5069					 */
5070					regs[rd] = 0;
5071				} else {
5072					regs[rd] = a + sizeof (uint64_t);
5073				}
5074
5075				break;
5076			}
5077
5078			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5079			break;
5080
5081		case DIF_OP_STGS:
5082			id = DIF_INSTR_VAR(instr);
5083
5084			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5085			id -= DIF_VAR_OTHER_UBASE;
5086
5087			svar = vstate->dtvs_globals[id];
5088			ASSERT(svar != NULL);
5089			v = &svar->dtsv_var;
5090
5091			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5092				uintptr_t a = (uintptr_t)svar->dtsv_data;
5093
5094				ASSERT(a != 0);
5095				ASSERT(svar->dtsv_size != 0);
5096
5097				if (regs[rd] == 0) {
5098					*(uint8_t *)a = UINT8_MAX;
5099					break;
5100				} else {
5101					*(uint8_t *)a = 0;
5102					a += sizeof (uint64_t);
5103				}
5104				if (!dtrace_vcanload(
5105				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5106				    mstate, vstate))
5107					break;
5108
5109				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5110				    (void *)a, &v->dtdv_type);
5111				break;
5112			}
5113
5114			svar->dtsv_data = regs[rd];
5115			break;
5116
5117		case DIF_OP_LDTA:
5118			/*
5119			 * There are no DTrace built-in thread-local arrays at
5120			 * present.  This opcode is saved for future work.
5121			 */
5122			*flags |= CPU_DTRACE_ILLOP;
5123			regs[rd] = 0;
5124			break;
5125
5126		case DIF_OP_LDLS:
5127			id = DIF_INSTR_VAR(instr);
5128
5129			if (id < DIF_VAR_OTHER_UBASE) {
5130				/*
5131				 * For now, this has no meaning.
5132				 */
5133				regs[rd] = 0;
5134				break;
5135			}
5136
5137			id -= DIF_VAR_OTHER_UBASE;
5138
5139			ASSERT(id < vstate->dtvs_nlocals);
5140			ASSERT(vstate->dtvs_locals != NULL);
5141
5142			svar = vstate->dtvs_locals[id];
5143			ASSERT(svar != NULL);
5144			v = &svar->dtsv_var;
5145
5146			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5147				uintptr_t a = (uintptr_t)svar->dtsv_data;
5148				size_t sz = v->dtdv_type.dtdt_size;
5149
5150				sz += sizeof (uint64_t);
5151				ASSERT(svar->dtsv_size == NCPU * sz);
5152				a += curcpu * sz;
5153
5154				if (*(uint8_t *)a == UINT8_MAX) {
5155					/*
5156					 * If the 0th byte is set to UINT8_MAX
5157					 * then this is to be treated as a
5158					 * reference to a NULL variable.
5159					 */
5160					regs[rd] = 0;
5161				} else {
5162					regs[rd] = a + sizeof (uint64_t);
5163				}
5164
5165				break;
5166			}
5167
5168			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5169			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5170			regs[rd] = tmp[curcpu];
5171			break;
5172
5173		case DIF_OP_STLS:
5174			id = DIF_INSTR_VAR(instr);
5175
5176			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5177			id -= DIF_VAR_OTHER_UBASE;
5178			ASSERT(id < vstate->dtvs_nlocals);
5179
5180			ASSERT(vstate->dtvs_locals != NULL);
5181			svar = vstate->dtvs_locals[id];
5182			ASSERT(svar != NULL);
5183			v = &svar->dtsv_var;
5184
5185			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5186				uintptr_t a = (uintptr_t)svar->dtsv_data;
5187				size_t sz = v->dtdv_type.dtdt_size;
5188
5189				sz += sizeof (uint64_t);
5190				ASSERT(svar->dtsv_size == NCPU * sz);
5191				a += curcpu * sz;
5192
5193				if (regs[rd] == 0) {
5194					*(uint8_t *)a = UINT8_MAX;
5195					break;
5196				} else {
5197					*(uint8_t *)a = 0;
5198					a += sizeof (uint64_t);
5199				}
5200
5201				if (!dtrace_vcanload(
5202				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5203				    mstate, vstate))
5204					break;
5205
5206				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5207				    (void *)a, &v->dtdv_type);
5208				break;
5209			}
5210
5211			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5212			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5213			tmp[curcpu] = regs[rd];
5214			break;
5215
5216		case DIF_OP_LDTS: {
5217			dtrace_dynvar_t *dvar;
5218			dtrace_key_t *key;
5219
5220			id = DIF_INSTR_VAR(instr);
5221			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5222			id -= DIF_VAR_OTHER_UBASE;
5223			v = &vstate->dtvs_tlocals[id];
5224
5225			key = &tupregs[DIF_DTR_NREGS];
5226			key[0].dttk_value = (uint64_t)id;
5227			key[0].dttk_size = 0;
5228			DTRACE_TLS_THRKEY(key[1].dttk_value);
5229			key[1].dttk_size = 0;
5230
5231			dvar = dtrace_dynvar(dstate, 2, key,
5232			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5233			    mstate, vstate);
5234
5235			if (dvar == NULL) {
5236				regs[rd] = 0;
5237				break;
5238			}
5239
5240			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5241				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5242			} else {
5243				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5244			}
5245
5246			break;
5247		}
5248
5249		case DIF_OP_STTS: {
5250			dtrace_dynvar_t *dvar;
5251			dtrace_key_t *key;
5252
5253			id = DIF_INSTR_VAR(instr);
5254			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5255			id -= DIF_VAR_OTHER_UBASE;
5256
5257			key = &tupregs[DIF_DTR_NREGS];
5258			key[0].dttk_value = (uint64_t)id;
5259			key[0].dttk_size = 0;
5260			DTRACE_TLS_THRKEY(key[1].dttk_value);
5261			key[1].dttk_size = 0;
5262			v = &vstate->dtvs_tlocals[id];
5263
5264			dvar = dtrace_dynvar(dstate, 2, key,
5265			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5266			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5267			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5268			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5269
5270			/*
5271			 * Given that we're storing to thread-local data,
5272			 * we need to flush our predicate cache.
5273			 */
5274			curthread->t_predcache = 0;
5275
5276			if (dvar == NULL)
5277				break;
5278
5279			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5280				if (!dtrace_vcanload(
5281				    (void *)(uintptr_t)regs[rd],
5282				    &v->dtdv_type, mstate, vstate))
5283					break;
5284
5285				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5286				    dvar->dtdv_data, &v->dtdv_type);
5287			} else {
5288				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5289			}
5290
5291			break;
5292		}
5293
5294		case DIF_OP_SRA:
5295			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5296			break;
5297
5298		case DIF_OP_CALL:
5299			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5300			    regs, tupregs, ttop, mstate, state);
5301			break;
5302
5303		case DIF_OP_PUSHTR:
5304			if (ttop == DIF_DTR_NREGS) {
5305				*flags |= CPU_DTRACE_TUPOFLOW;
5306				break;
5307			}
5308
5309			if (r1 == DIF_TYPE_STRING) {
5310				/*
5311				 * If this is a string type and the size is 0,
5312				 * we'll use the system-wide default string
5313				 * size.  Note that we are _not_ looking at
5314				 * the value of the DTRACEOPT_STRSIZE option;
5315				 * had this been set, we would expect to have
5316				 * a non-zero size value in the "pushtr".
5317				 */
5318				tupregs[ttop].dttk_size =
5319				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5320				    regs[r2] ? regs[r2] :
5321				    dtrace_strsize_default) + 1;
5322			} else {
5323				tupregs[ttop].dttk_size = regs[r2];
5324			}
5325
5326			tupregs[ttop++].dttk_value = regs[rd];
5327			break;
5328
5329		case DIF_OP_PUSHTV:
5330			if (ttop == DIF_DTR_NREGS) {
5331				*flags |= CPU_DTRACE_TUPOFLOW;
5332				break;
5333			}
5334
5335			tupregs[ttop].dttk_value = regs[rd];
5336			tupregs[ttop++].dttk_size = 0;
5337			break;
5338
5339		case DIF_OP_POPTS:
5340			if (ttop != 0)
5341				ttop--;
5342			break;
5343
5344		case DIF_OP_FLUSHTS:
5345			ttop = 0;
5346			break;
5347
5348		case DIF_OP_LDGAA:
5349		case DIF_OP_LDTAA: {
5350			dtrace_dynvar_t *dvar;
5351			dtrace_key_t *key = tupregs;
5352			uint_t nkeys = ttop;
5353
5354			id = DIF_INSTR_VAR(instr);
5355			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5356			id -= DIF_VAR_OTHER_UBASE;
5357
5358			key[nkeys].dttk_value = (uint64_t)id;
5359			key[nkeys++].dttk_size = 0;
5360
5361			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5362				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5363				key[nkeys++].dttk_size = 0;
5364				v = &vstate->dtvs_tlocals[id];
5365			} else {
5366				v = &vstate->dtvs_globals[id]->dtsv_var;
5367			}
5368
5369			dvar = dtrace_dynvar(dstate, nkeys, key,
5370			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5371			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5372			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5373
5374			if (dvar == NULL) {
5375				regs[rd] = 0;
5376				break;
5377			}
5378
5379			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5380				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5381			} else {
5382				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5383			}
5384
5385			break;
5386		}
5387
5388		case DIF_OP_STGAA:
5389		case DIF_OP_STTAA: {
5390			dtrace_dynvar_t *dvar;
5391			dtrace_key_t *key = tupregs;
5392			uint_t nkeys = ttop;
5393
5394			id = DIF_INSTR_VAR(instr);
5395			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5396			id -= DIF_VAR_OTHER_UBASE;
5397
5398			key[nkeys].dttk_value = (uint64_t)id;
5399			key[nkeys++].dttk_size = 0;
5400
5401			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5402				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5403				key[nkeys++].dttk_size = 0;
5404				v = &vstate->dtvs_tlocals[id];
5405			} else {
5406				v = &vstate->dtvs_globals[id]->dtsv_var;
5407			}
5408
5409			dvar = dtrace_dynvar(dstate, nkeys, key,
5410			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5411			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5412			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5413			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5414
5415			if (dvar == NULL)
5416				break;
5417
5418			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5419				if (!dtrace_vcanload(
5420				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5421				    mstate, vstate))
5422					break;
5423
5424				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5425				    dvar->dtdv_data, &v->dtdv_type);
5426			} else {
5427				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5428			}
5429
5430			break;
5431		}
5432
5433		case DIF_OP_ALLOCS: {
5434			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5435			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5436
5437			/*
5438			 * Rounding up the user allocation size could have
5439			 * overflowed large, bogus allocations (like -1ULL) to
5440			 * 0.
5441			 */
5442			if (size < regs[r1] ||
5443			    !DTRACE_INSCRATCH(mstate, size)) {
5444				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5445				regs[rd] = 0;
5446				break;
5447			}
5448
5449			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5450			mstate->dtms_scratch_ptr += size;
5451			regs[rd] = ptr;
5452			break;
5453		}
5454
5455		case DIF_OP_COPYS:
5456			if (!dtrace_canstore(regs[rd], regs[r2],
5457			    mstate, vstate)) {
5458				*flags |= CPU_DTRACE_BADADDR;
5459				*illval = regs[rd];
5460				break;
5461			}
5462
5463			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5464				break;
5465
5466			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5467			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5468			break;
5469
5470		case DIF_OP_STB:
5471			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5472				*flags |= CPU_DTRACE_BADADDR;
5473				*illval = regs[rd];
5474				break;
5475			}
5476			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5477			break;
5478
5479		case DIF_OP_STH:
5480			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5481				*flags |= CPU_DTRACE_BADADDR;
5482				*illval = regs[rd];
5483				break;
5484			}
5485			if (regs[rd] & 1) {
5486				*flags |= CPU_DTRACE_BADALIGN;
5487				*illval = regs[rd];
5488				break;
5489			}
5490			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5491			break;
5492
5493		case DIF_OP_STW:
5494			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5495				*flags |= CPU_DTRACE_BADADDR;
5496				*illval = regs[rd];
5497				break;
5498			}
5499			if (regs[rd] & 3) {
5500				*flags |= CPU_DTRACE_BADALIGN;
5501				*illval = regs[rd];
5502				break;
5503			}
5504			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5505			break;
5506
5507		case DIF_OP_STX:
5508			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5509				*flags |= CPU_DTRACE_BADADDR;
5510				*illval = regs[rd];
5511				break;
5512			}
5513			if (regs[rd] & 7) {
5514				*flags |= CPU_DTRACE_BADALIGN;
5515				*illval = regs[rd];
5516				break;
5517			}
5518			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5519			break;
5520		}
5521	}
5522
5523	if (!(*flags & CPU_DTRACE_FAULT))
5524		return (rval);
5525
5526	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5527	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5528
5529	return (0);
5530}
5531
5532static void
5533dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5534{
5535	dtrace_probe_t *probe = ecb->dte_probe;
5536	dtrace_provider_t *prov = probe->dtpr_provider;
5537	char c[DTRACE_FULLNAMELEN + 80], *str;
5538	char *msg = "dtrace: breakpoint action at probe ";
5539	char *ecbmsg = " (ecb ";
5540	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5541	uintptr_t val = (uintptr_t)ecb;
5542	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5543
5544	if (dtrace_destructive_disallow)
5545		return;
5546
5547	/*
5548	 * It's impossible to be taking action on the NULL probe.
5549	 */
5550	ASSERT(probe != NULL);
5551
5552	/*
5553	 * This is a poor man's (destitute man's?) sprintf():  we want to
5554	 * print the provider name, module name, function name and name of
5555	 * the probe, along with the hex address of the ECB with the breakpoint
5556	 * action -- all of which we must place in the character buffer by
5557	 * hand.
5558	 */
5559	while (*msg != '\0')
5560		c[i++] = *msg++;
5561
5562	for (str = prov->dtpv_name; *str != '\0'; str++)
5563		c[i++] = *str;
5564	c[i++] = ':';
5565
5566	for (str = probe->dtpr_mod; *str != '\0'; str++)
5567		c[i++] = *str;
5568	c[i++] = ':';
5569
5570	for (str = probe->dtpr_func; *str != '\0'; str++)
5571		c[i++] = *str;
5572	c[i++] = ':';
5573
5574	for (str = probe->dtpr_name; *str != '\0'; str++)
5575		c[i++] = *str;
5576
5577	while (*ecbmsg != '\0')
5578		c[i++] = *ecbmsg++;
5579
5580	while (shift >= 0) {
5581		mask = (uintptr_t)0xf << shift;
5582
5583		if (val >= ((uintptr_t)1 << shift))
5584			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5585		shift -= 4;
5586	}
5587
5588	c[i++] = ')';
5589	c[i] = '\0';
5590
5591#if defined(sun)
5592	debug_enter(c);
5593#else
5594	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5595#endif
5596}
5597
5598static void
5599dtrace_action_panic(dtrace_ecb_t *ecb)
5600{
5601	dtrace_probe_t *probe = ecb->dte_probe;
5602
5603	/*
5604	 * It's impossible to be taking action on the NULL probe.
5605	 */
5606	ASSERT(probe != NULL);
5607
5608	if (dtrace_destructive_disallow)
5609		return;
5610
5611	if (dtrace_panicked != NULL)
5612		return;
5613
5614	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5615		return;
5616
5617	/*
5618	 * We won the right to panic.  (We want to be sure that only one
5619	 * thread calls panic() from dtrace_probe(), and that panic() is
5620	 * called exactly once.)
5621	 */
5622	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5623	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5624	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5625}
5626
5627static void
5628dtrace_action_raise(uint64_t sig)
5629{
5630	if (dtrace_destructive_disallow)
5631		return;
5632
5633	if (sig >= NSIG) {
5634		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5635		return;
5636	}
5637
5638#if defined(sun)
5639	/*
5640	 * raise() has a queue depth of 1 -- we ignore all subsequent
5641	 * invocations of the raise() action.
5642	 */
5643	if (curthread->t_dtrace_sig == 0)
5644		curthread->t_dtrace_sig = (uint8_t)sig;
5645
5646	curthread->t_sig_check = 1;
5647	aston(curthread);
5648#else
5649	struct proc *p = curproc;
5650	PROC_LOCK(p);
5651	psignal(p, sig);
5652	PROC_UNLOCK(p);
5653#endif
5654}
5655
5656static void
5657dtrace_action_stop(void)
5658{
5659	if (dtrace_destructive_disallow)
5660		return;
5661
5662#if defined(sun)
5663	if (!curthread->t_dtrace_stop) {
5664		curthread->t_dtrace_stop = 1;
5665		curthread->t_sig_check = 1;
5666		aston(curthread);
5667	}
5668#else
5669	struct proc *p = curproc;
5670	PROC_LOCK(p);
5671	psignal(p, SIGSTOP);
5672	PROC_UNLOCK(p);
5673#endif
5674}
5675
5676static void
5677dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5678{
5679	hrtime_t now;
5680	volatile uint16_t *flags;
5681#if defined(sun)
5682	cpu_t *cpu = CPU;
5683#else
5684	cpu_t *cpu = &solaris_cpu[curcpu];
5685#endif
5686
5687	if (dtrace_destructive_disallow)
5688		return;
5689
5690	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5691
5692	now = dtrace_gethrtime();
5693
5694	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5695		/*
5696		 * We need to advance the mark to the current time.
5697		 */
5698		cpu->cpu_dtrace_chillmark = now;
5699		cpu->cpu_dtrace_chilled = 0;
5700	}
5701
5702	/*
5703	 * Now check to see if the requested chill time would take us over
5704	 * the maximum amount of time allowed in the chill interval.  (Or
5705	 * worse, if the calculation itself induces overflow.)
5706	 */
5707	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5708	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5709		*flags |= CPU_DTRACE_ILLOP;
5710		return;
5711	}
5712
5713	while (dtrace_gethrtime() - now < val)
5714		continue;
5715
5716	/*
5717	 * Normally, we assure that the value of the variable "timestamp" does
5718	 * not change within an ECB.  The presence of chill() represents an
5719	 * exception to this rule, however.
5720	 */
5721	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5722	cpu->cpu_dtrace_chilled += val;
5723}
5724
5725#if defined(sun)
5726static void
5727dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5728    uint64_t *buf, uint64_t arg)
5729{
5730	int nframes = DTRACE_USTACK_NFRAMES(arg);
5731	int strsize = DTRACE_USTACK_STRSIZE(arg);
5732	uint64_t *pcs = &buf[1], *fps;
5733	char *str = (char *)&pcs[nframes];
5734	int size, offs = 0, i, j;
5735	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5736	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5737	char *sym;
5738
5739	/*
5740	 * Should be taking a faster path if string space has not been
5741	 * allocated.
5742	 */
5743	ASSERT(strsize != 0);
5744
5745	/*
5746	 * We will first allocate some temporary space for the frame pointers.
5747	 */
5748	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5749	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5750	    (nframes * sizeof (uint64_t));
5751
5752	if (!DTRACE_INSCRATCH(mstate, size)) {
5753		/*
5754		 * Not enough room for our frame pointers -- need to indicate
5755		 * that we ran out of scratch space.
5756		 */
5757		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5758		return;
5759	}
5760
5761	mstate->dtms_scratch_ptr += size;
5762	saved = mstate->dtms_scratch_ptr;
5763
5764	/*
5765	 * Now get a stack with both program counters and frame pointers.
5766	 */
5767	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5768	dtrace_getufpstack(buf, fps, nframes + 1);
5769	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5770
5771	/*
5772	 * If that faulted, we're cooked.
5773	 */
5774	if (*flags & CPU_DTRACE_FAULT)
5775		goto out;
5776
5777	/*
5778	 * Now we want to walk up the stack, calling the USTACK helper.  For
5779	 * each iteration, we restore the scratch pointer.
5780	 */
5781	for (i = 0; i < nframes; i++) {
5782		mstate->dtms_scratch_ptr = saved;
5783
5784		if (offs >= strsize)
5785			break;
5786
5787		sym = (char *)(uintptr_t)dtrace_helper(
5788		    DTRACE_HELPER_ACTION_USTACK,
5789		    mstate, state, pcs[i], fps[i]);
5790
5791		/*
5792		 * If we faulted while running the helper, we're going to
5793		 * clear the fault and null out the corresponding string.
5794		 */
5795		if (*flags & CPU_DTRACE_FAULT) {
5796			*flags &= ~CPU_DTRACE_FAULT;
5797			str[offs++] = '\0';
5798			continue;
5799		}
5800
5801		if (sym == NULL) {
5802			str[offs++] = '\0';
5803			continue;
5804		}
5805
5806		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5807
5808		/*
5809		 * Now copy in the string that the helper returned to us.
5810		 */
5811		for (j = 0; offs + j < strsize; j++) {
5812			if ((str[offs + j] = sym[j]) == '\0')
5813				break;
5814		}
5815
5816		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5817
5818		offs += j + 1;
5819	}
5820
5821	if (offs >= strsize) {
5822		/*
5823		 * If we didn't have room for all of the strings, we don't
5824		 * abort processing -- this needn't be a fatal error -- but we
5825		 * still want to increment a counter (dts_stkstroverflows) to
5826		 * allow this condition to be warned about.  (If this is from
5827		 * a jstack() action, it is easily tuned via jstackstrsize.)
5828		 */
5829		dtrace_error(&state->dts_stkstroverflows);
5830	}
5831
5832	while (offs < strsize)
5833		str[offs++] = '\0';
5834
5835out:
5836	mstate->dtms_scratch_ptr = old;
5837}
5838#endif
5839
5840/*
5841 * If you're looking for the epicenter of DTrace, you just found it.  This
5842 * is the function called by the provider to fire a probe -- from which all
5843 * subsequent probe-context DTrace activity emanates.
5844 */
5845void
5846dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5847    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5848{
5849	processorid_t cpuid;
5850	dtrace_icookie_t cookie;
5851	dtrace_probe_t *probe;
5852	dtrace_mstate_t mstate;
5853	dtrace_ecb_t *ecb;
5854	dtrace_action_t *act;
5855	intptr_t offs;
5856	size_t size;
5857	int vtime, onintr;
5858	volatile uint16_t *flags;
5859	hrtime_t now;
5860
5861#if defined(sun)
5862	/*
5863	 * Kick out immediately if this CPU is still being born (in which case
5864	 * curthread will be set to -1) or the current thread can't allow
5865	 * probes in its current context.
5866	 */
5867	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5868		return;
5869#endif
5870
5871	cookie = dtrace_interrupt_disable();
5872	probe = dtrace_probes[id - 1];
5873	cpuid = curcpu;
5874	onintr = CPU_ON_INTR(CPU);
5875
5876	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5877	    probe->dtpr_predcache == curthread->t_predcache) {
5878		/*
5879		 * We have hit in the predicate cache; we know that
5880		 * this predicate would evaluate to be false.
5881		 */
5882		dtrace_interrupt_enable(cookie);
5883		return;
5884	}
5885
5886#if defined(sun)
5887	if (panic_quiesce) {
5888#else
5889	if (panicstr != NULL) {
5890#endif
5891		/*
5892		 * We don't trace anything if we're panicking.
5893		 */
5894		dtrace_interrupt_enable(cookie);
5895		return;
5896	}
5897
5898	now = dtrace_gethrtime();
5899	vtime = dtrace_vtime_references != 0;
5900
5901	if (vtime && curthread->t_dtrace_start)
5902		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5903
5904	mstate.dtms_difo = NULL;
5905	mstate.dtms_probe = probe;
5906	mstate.dtms_strtok = 0;
5907	mstate.dtms_arg[0] = arg0;
5908	mstate.dtms_arg[1] = arg1;
5909	mstate.dtms_arg[2] = arg2;
5910	mstate.dtms_arg[3] = arg3;
5911	mstate.dtms_arg[4] = arg4;
5912
5913	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5914
5915	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5916		dtrace_predicate_t *pred = ecb->dte_predicate;
5917		dtrace_state_t *state = ecb->dte_state;
5918		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5919		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5920		dtrace_vstate_t *vstate = &state->dts_vstate;
5921		dtrace_provider_t *prov = probe->dtpr_provider;
5922		int committed = 0;
5923		caddr_t tomax;
5924
5925		/*
5926		 * A little subtlety with the following (seemingly innocuous)
5927		 * declaration of the automatic 'val':  by looking at the
5928		 * code, you might think that it could be declared in the
5929		 * action processing loop, below.  (That is, it's only used in
5930		 * the action processing loop.)  However, it must be declared
5931		 * out of that scope because in the case of DIF expression
5932		 * arguments to aggregating actions, one iteration of the
5933		 * action loop will use the last iteration's value.
5934		 */
5935		uint64_t val = 0;
5936
5937		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5938		*flags &= ~CPU_DTRACE_ERROR;
5939
5940		if (prov == dtrace_provider) {
5941			/*
5942			 * If dtrace itself is the provider of this probe,
5943			 * we're only going to continue processing the ECB if
5944			 * arg0 (the dtrace_state_t) is equal to the ECB's
5945			 * creating state.  (This prevents disjoint consumers
5946			 * from seeing one another's metaprobes.)
5947			 */
5948			if (arg0 != (uint64_t)(uintptr_t)state)
5949				continue;
5950		}
5951
5952		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5953			/*
5954			 * We're not currently active.  If our provider isn't
5955			 * the dtrace pseudo provider, we're not interested.
5956			 */
5957			if (prov != dtrace_provider)
5958				continue;
5959
5960			/*
5961			 * Now we must further check if we are in the BEGIN
5962			 * probe.  If we are, we will only continue processing
5963			 * if we're still in WARMUP -- if one BEGIN enabling
5964			 * has invoked the exit() action, we don't want to
5965			 * evaluate subsequent BEGIN enablings.
5966			 */
5967			if (probe->dtpr_id == dtrace_probeid_begin &&
5968			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5969				ASSERT(state->dts_activity ==
5970				    DTRACE_ACTIVITY_DRAINING);
5971				continue;
5972			}
5973		}
5974
5975		if (ecb->dte_cond) {
5976			/*
5977			 * If the dte_cond bits indicate that this
5978			 * consumer is only allowed to see user-mode firings
5979			 * of this probe, call the provider's dtps_usermode()
5980			 * entry point to check that the probe was fired
5981			 * while in a user context. Skip this ECB if that's
5982			 * not the case.
5983			 */
5984			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5985			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5986			    probe->dtpr_id, probe->dtpr_arg) == 0)
5987				continue;
5988
5989#if defined(sun)
5990			/*
5991			 * This is more subtle than it looks. We have to be
5992			 * absolutely certain that CRED() isn't going to
5993			 * change out from under us so it's only legit to
5994			 * examine that structure if we're in constrained
5995			 * situations. Currently, the only times we'll this
5996			 * check is if a non-super-user has enabled the
5997			 * profile or syscall providers -- providers that
5998			 * allow visibility of all processes. For the
5999			 * profile case, the check above will ensure that
6000			 * we're examining a user context.
6001			 */
6002			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6003				cred_t *cr;
6004				cred_t *s_cr =
6005				    ecb->dte_state->dts_cred.dcr_cred;
6006				proc_t *proc;
6007
6008				ASSERT(s_cr != NULL);
6009
6010				if ((cr = CRED()) == NULL ||
6011				    s_cr->cr_uid != cr->cr_uid ||
6012				    s_cr->cr_uid != cr->cr_ruid ||
6013				    s_cr->cr_uid != cr->cr_suid ||
6014				    s_cr->cr_gid != cr->cr_gid ||
6015				    s_cr->cr_gid != cr->cr_rgid ||
6016				    s_cr->cr_gid != cr->cr_sgid ||
6017				    (proc = ttoproc(curthread)) == NULL ||
6018				    (proc->p_flag & SNOCD))
6019					continue;
6020			}
6021
6022			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6023				cred_t *cr;
6024				cred_t *s_cr =
6025				    ecb->dte_state->dts_cred.dcr_cred;
6026
6027				ASSERT(s_cr != NULL);
6028
6029				if ((cr = CRED()) == NULL ||
6030				    s_cr->cr_zone->zone_id !=
6031				    cr->cr_zone->zone_id)
6032					continue;
6033			}
6034#endif
6035		}
6036
6037		if (now - state->dts_alive > dtrace_deadman_timeout) {
6038			/*
6039			 * We seem to be dead.  Unless we (a) have kernel
6040			 * destructive permissions (b) have expicitly enabled
6041			 * destructive actions and (c) destructive actions have
6042			 * not been disabled, we're going to transition into
6043			 * the KILLED state, from which no further processing
6044			 * on this state will be performed.
6045			 */
6046			if (!dtrace_priv_kernel_destructive(state) ||
6047			    !state->dts_cred.dcr_destructive ||
6048			    dtrace_destructive_disallow) {
6049				void *activity = &state->dts_activity;
6050				dtrace_activity_t current;
6051
6052				do {
6053					current = state->dts_activity;
6054				} while (dtrace_cas32(activity, current,
6055				    DTRACE_ACTIVITY_KILLED) != current);
6056
6057				continue;
6058			}
6059		}
6060
6061		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6062		    ecb->dte_alignment, state, &mstate)) < 0)
6063			continue;
6064
6065		tomax = buf->dtb_tomax;
6066		ASSERT(tomax != NULL);
6067
6068		if (ecb->dte_size != 0)
6069			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6070
6071		mstate.dtms_epid = ecb->dte_epid;
6072		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6073
6074		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6075			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6076		else
6077			mstate.dtms_access = 0;
6078
6079		if (pred != NULL) {
6080			dtrace_difo_t *dp = pred->dtp_difo;
6081			int rval;
6082
6083			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6084
6085			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6086				dtrace_cacheid_t cid = probe->dtpr_predcache;
6087
6088				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6089					/*
6090					 * Update the predicate cache...
6091					 */
6092					ASSERT(cid == pred->dtp_cacheid);
6093					curthread->t_predcache = cid;
6094				}
6095
6096				continue;
6097			}
6098		}
6099
6100		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6101		    act != NULL; act = act->dta_next) {
6102			size_t valoffs;
6103			dtrace_difo_t *dp;
6104			dtrace_recdesc_t *rec = &act->dta_rec;
6105
6106			size = rec->dtrd_size;
6107			valoffs = offs + rec->dtrd_offset;
6108
6109			if (DTRACEACT_ISAGG(act->dta_kind)) {
6110				uint64_t v = 0xbad;
6111				dtrace_aggregation_t *agg;
6112
6113				agg = (dtrace_aggregation_t *)act;
6114
6115				if ((dp = act->dta_difo) != NULL)
6116					v = dtrace_dif_emulate(dp,
6117					    &mstate, vstate, state);
6118
6119				if (*flags & CPU_DTRACE_ERROR)
6120					continue;
6121
6122				/*
6123				 * Note that we always pass the expression
6124				 * value from the previous iteration of the
6125				 * action loop.  This value will only be used
6126				 * if there is an expression argument to the
6127				 * aggregating action, denoted by the
6128				 * dtag_hasarg field.
6129				 */
6130				dtrace_aggregate(agg, buf,
6131				    offs, aggbuf, v, val);
6132				continue;
6133			}
6134
6135			switch (act->dta_kind) {
6136			case DTRACEACT_STOP:
6137				if (dtrace_priv_proc_destructive(state))
6138					dtrace_action_stop();
6139				continue;
6140
6141			case DTRACEACT_BREAKPOINT:
6142				if (dtrace_priv_kernel_destructive(state))
6143					dtrace_action_breakpoint(ecb);
6144				continue;
6145
6146			case DTRACEACT_PANIC:
6147				if (dtrace_priv_kernel_destructive(state))
6148					dtrace_action_panic(ecb);
6149				continue;
6150
6151			case DTRACEACT_STACK:
6152				if (!dtrace_priv_kernel(state))
6153					continue;
6154
6155				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6156				    size / sizeof (pc_t), probe->dtpr_aframes,
6157				    DTRACE_ANCHORED(probe) ? NULL :
6158				    (uint32_t *)arg0);
6159				continue;
6160
6161#if defined(sun)
6162			case DTRACEACT_JSTACK:
6163			case DTRACEACT_USTACK:
6164				if (!dtrace_priv_proc(state))
6165					continue;
6166
6167				/*
6168				 * See comment in DIF_VAR_PID.
6169				 */
6170				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6171				    CPU_ON_INTR(CPU)) {
6172					int depth = DTRACE_USTACK_NFRAMES(
6173					    rec->dtrd_arg) + 1;
6174
6175					dtrace_bzero((void *)(tomax + valoffs),
6176					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6177					    + depth * sizeof (uint64_t));
6178
6179					continue;
6180				}
6181
6182				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6183				    curproc->p_dtrace_helpers != NULL) {
6184					/*
6185					 * This is the slow path -- we have
6186					 * allocated string space, and we're
6187					 * getting the stack of a process that
6188					 * has helpers.  Call into a separate
6189					 * routine to perform this processing.
6190					 */
6191					dtrace_action_ustack(&mstate, state,
6192					    (uint64_t *)(tomax + valoffs),
6193					    rec->dtrd_arg);
6194					continue;
6195				}
6196
6197				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6198				dtrace_getupcstack((uint64_t *)
6199				    (tomax + valoffs),
6200				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6201				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6202				continue;
6203#endif
6204
6205			default:
6206				break;
6207			}
6208
6209			dp = act->dta_difo;
6210			ASSERT(dp != NULL);
6211
6212			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6213
6214			if (*flags & CPU_DTRACE_ERROR)
6215				continue;
6216
6217			switch (act->dta_kind) {
6218			case DTRACEACT_SPECULATE:
6219				ASSERT(buf == &state->dts_buffer[cpuid]);
6220				buf = dtrace_speculation_buffer(state,
6221				    cpuid, val);
6222
6223				if (buf == NULL) {
6224					*flags |= CPU_DTRACE_DROP;
6225					continue;
6226				}
6227
6228				offs = dtrace_buffer_reserve(buf,
6229				    ecb->dte_needed, ecb->dte_alignment,
6230				    state, NULL);
6231
6232				if (offs < 0) {
6233					*flags |= CPU_DTRACE_DROP;
6234					continue;
6235				}
6236
6237				tomax = buf->dtb_tomax;
6238				ASSERT(tomax != NULL);
6239
6240				if (ecb->dte_size != 0)
6241					DTRACE_STORE(uint32_t, tomax, offs,
6242					    ecb->dte_epid);
6243				continue;
6244
6245			case DTRACEACT_PRINTM: {
6246				/* The DIF returns a 'memref'. */
6247				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6248
6249				/* Get the size from the memref. */
6250				size = memref[1];
6251
6252				/*
6253				 * Check if the size exceeds the allocated
6254				 * buffer size.
6255				 */
6256				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6257					/* Flag a drop! */
6258					*flags |= CPU_DTRACE_DROP;
6259					continue;
6260				}
6261
6262				/* Store the size in the buffer first. */
6263				DTRACE_STORE(uintptr_t, tomax,
6264				    valoffs, size);
6265
6266				/*
6267				 * Offset the buffer address to the start
6268				 * of the data.
6269				 */
6270				valoffs += sizeof(uintptr_t);
6271
6272				/*
6273				 * Reset to the memory address rather than
6274				 * the memref array, then let the BYREF
6275				 * code below do the work to store the
6276				 * memory data in the buffer.
6277				 */
6278				val = memref[0];
6279				break;
6280			}
6281
6282			case DTRACEACT_PRINTT: {
6283				/* The DIF returns a 'typeref'. */
6284				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6285				char c = '\0' + 1;
6286				size_t s;
6287
6288				/*
6289				 * Get the type string length and round it
6290				 * up so that the data that follows is
6291				 * aligned for easy access.
6292				 */
6293				size_t typs = strlen((char *) typeref[2]) + 1;
6294				typs = roundup(typs,  sizeof(uintptr_t));
6295
6296				/*
6297				 *Get the size from the typeref using the
6298				 * number of elements and the type size.
6299				 */
6300				size = typeref[1] * typeref[3];
6301
6302				/*
6303				 * Check if the size exceeds the allocated
6304				 * buffer size.
6305				 */
6306				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6307					/* Flag a drop! */
6308					*flags |= CPU_DTRACE_DROP;
6309
6310				}
6311
6312				/* Store the size in the buffer first. */
6313				DTRACE_STORE(uintptr_t, tomax,
6314				    valoffs, size);
6315				valoffs += sizeof(uintptr_t);
6316
6317				/* Store the type size in the buffer. */
6318				DTRACE_STORE(uintptr_t, tomax,
6319				    valoffs, typeref[3]);
6320				valoffs += sizeof(uintptr_t);
6321
6322				val = typeref[2];
6323
6324				for (s = 0; s < typs; s++) {
6325					if (c != '\0')
6326						c = dtrace_load8(val++);
6327
6328					DTRACE_STORE(uint8_t, tomax,
6329					    valoffs++, c);
6330				}
6331
6332				/*
6333				 * Reset to the memory address rather than
6334				 * the typeref array, then let the BYREF
6335				 * code below do the work to store the
6336				 * memory data in the buffer.
6337				 */
6338				val = typeref[0];
6339				break;
6340			}
6341
6342			case DTRACEACT_CHILL:
6343				if (dtrace_priv_kernel_destructive(state))
6344					dtrace_action_chill(&mstate, val);
6345				continue;
6346
6347			case DTRACEACT_RAISE:
6348				if (dtrace_priv_proc_destructive(state))
6349					dtrace_action_raise(val);
6350				continue;
6351
6352			case DTRACEACT_COMMIT:
6353				ASSERT(!committed);
6354
6355				/*
6356				 * We need to commit our buffer state.
6357				 */
6358				if (ecb->dte_size)
6359					buf->dtb_offset = offs + ecb->dte_size;
6360				buf = &state->dts_buffer[cpuid];
6361				dtrace_speculation_commit(state, cpuid, val);
6362				committed = 1;
6363				continue;
6364
6365			case DTRACEACT_DISCARD:
6366				dtrace_speculation_discard(state, cpuid, val);
6367				continue;
6368
6369			case DTRACEACT_DIFEXPR:
6370			case DTRACEACT_LIBACT:
6371			case DTRACEACT_PRINTF:
6372			case DTRACEACT_PRINTA:
6373			case DTRACEACT_SYSTEM:
6374			case DTRACEACT_FREOPEN:
6375				break;
6376
6377			case DTRACEACT_SYM:
6378			case DTRACEACT_MOD:
6379				if (!dtrace_priv_kernel(state))
6380					continue;
6381				break;
6382
6383			case DTRACEACT_USYM:
6384			case DTRACEACT_UMOD:
6385			case DTRACEACT_UADDR: {
6386#if defined(sun)
6387				struct pid *pid = curthread->t_procp->p_pidp;
6388#endif
6389
6390				if (!dtrace_priv_proc(state))
6391					continue;
6392
6393				DTRACE_STORE(uint64_t, tomax,
6394#if defined(sun)
6395				    valoffs, (uint64_t)pid->pid_id);
6396#else
6397				    valoffs, (uint64_t) curproc->p_pid);
6398#endif
6399				DTRACE_STORE(uint64_t, tomax,
6400				    valoffs + sizeof (uint64_t), val);
6401
6402				continue;
6403			}
6404
6405			case DTRACEACT_EXIT: {
6406				/*
6407				 * For the exit action, we are going to attempt
6408				 * to atomically set our activity to be
6409				 * draining.  If this fails (either because
6410				 * another CPU has beat us to the exit action,
6411				 * or because our current activity is something
6412				 * other than ACTIVE or WARMUP), we will
6413				 * continue.  This assures that the exit action
6414				 * can be successfully recorded at most once
6415				 * when we're in the ACTIVE state.  If we're
6416				 * encountering the exit() action while in
6417				 * COOLDOWN, however, we want to honor the new
6418				 * status code.  (We know that we're the only
6419				 * thread in COOLDOWN, so there is no race.)
6420				 */
6421				void *activity = &state->dts_activity;
6422				dtrace_activity_t current = state->dts_activity;
6423
6424				if (current == DTRACE_ACTIVITY_COOLDOWN)
6425					break;
6426
6427				if (current != DTRACE_ACTIVITY_WARMUP)
6428					current = DTRACE_ACTIVITY_ACTIVE;
6429
6430				if (dtrace_cas32(activity, current,
6431				    DTRACE_ACTIVITY_DRAINING) != current) {
6432					*flags |= CPU_DTRACE_DROP;
6433					continue;
6434				}
6435
6436				break;
6437			}
6438
6439			default:
6440				ASSERT(0);
6441			}
6442
6443			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6444				uintptr_t end = valoffs + size;
6445
6446				if (!dtrace_vcanload((void *)(uintptr_t)val,
6447				    &dp->dtdo_rtype, &mstate, vstate))
6448					continue;
6449
6450				/*
6451				 * If this is a string, we're going to only
6452				 * load until we find the zero byte -- after
6453				 * which we'll store zero bytes.
6454				 */
6455				if (dp->dtdo_rtype.dtdt_kind ==
6456				    DIF_TYPE_STRING) {
6457					char c = '\0' + 1;
6458					int intuple = act->dta_intuple;
6459					size_t s;
6460
6461					for (s = 0; s < size; s++) {
6462						if (c != '\0')
6463							c = dtrace_load8(val++);
6464
6465						DTRACE_STORE(uint8_t, tomax,
6466						    valoffs++, c);
6467
6468						if (c == '\0' && intuple)
6469							break;
6470					}
6471
6472					continue;
6473				}
6474
6475				while (valoffs < end) {
6476					DTRACE_STORE(uint8_t, tomax, valoffs++,
6477					    dtrace_load8(val++));
6478				}
6479
6480				continue;
6481			}
6482
6483			switch (size) {
6484			case 0:
6485				break;
6486
6487			case sizeof (uint8_t):
6488				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6489				break;
6490			case sizeof (uint16_t):
6491				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6492				break;
6493			case sizeof (uint32_t):
6494				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6495				break;
6496			case sizeof (uint64_t):
6497				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6498				break;
6499			default:
6500				/*
6501				 * Any other size should have been returned by
6502				 * reference, not by value.
6503				 */
6504				ASSERT(0);
6505				break;
6506			}
6507		}
6508
6509		if (*flags & CPU_DTRACE_DROP)
6510			continue;
6511
6512		if (*flags & CPU_DTRACE_FAULT) {
6513			int ndx;
6514			dtrace_action_t *err;
6515
6516			buf->dtb_errors++;
6517
6518			if (probe->dtpr_id == dtrace_probeid_error) {
6519				/*
6520				 * There's nothing we can do -- we had an
6521				 * error on the error probe.  We bump an
6522				 * error counter to at least indicate that
6523				 * this condition happened.
6524				 */
6525				dtrace_error(&state->dts_dblerrors);
6526				continue;
6527			}
6528
6529			if (vtime) {
6530				/*
6531				 * Before recursing on dtrace_probe(), we
6532				 * need to explicitly clear out our start
6533				 * time to prevent it from being accumulated
6534				 * into t_dtrace_vtime.
6535				 */
6536				curthread->t_dtrace_start = 0;
6537			}
6538
6539			/*
6540			 * Iterate over the actions to figure out which action
6541			 * we were processing when we experienced the error.
6542			 * Note that act points _past_ the faulting action; if
6543			 * act is ecb->dte_action, the fault was in the
6544			 * predicate, if it's ecb->dte_action->dta_next it's
6545			 * in action #1, and so on.
6546			 */
6547			for (err = ecb->dte_action, ndx = 0;
6548			    err != act; err = err->dta_next, ndx++)
6549				continue;
6550
6551			dtrace_probe_error(state, ecb->dte_epid, ndx,
6552			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6553			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6554			    cpu_core[cpuid].cpuc_dtrace_illval);
6555
6556			continue;
6557		}
6558
6559		if (!committed)
6560			buf->dtb_offset = offs + ecb->dte_size;
6561	}
6562
6563	if (vtime)
6564		curthread->t_dtrace_start = dtrace_gethrtime();
6565
6566	dtrace_interrupt_enable(cookie);
6567}
6568
6569/*
6570 * DTrace Probe Hashing Functions
6571 *
6572 * The functions in this section (and indeed, the functions in remaining
6573 * sections) are not _called_ from probe context.  (Any exceptions to this are
6574 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6575 * DTrace framework to look-up probes in, add probes to and remove probes from
6576 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6577 * probe tuple -- allowing for fast lookups, regardless of what was
6578 * specified.)
6579 */
6580static uint_t
6581dtrace_hash_str(const char *p)
6582{
6583	unsigned int g;
6584	uint_t hval = 0;
6585
6586	while (*p) {
6587		hval = (hval << 4) + *p++;
6588		if ((g = (hval & 0xf0000000)) != 0)
6589			hval ^= g >> 24;
6590		hval &= ~g;
6591	}
6592	return (hval);
6593}
6594
6595static dtrace_hash_t *
6596dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6597{
6598	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6599
6600	hash->dth_stroffs = stroffs;
6601	hash->dth_nextoffs = nextoffs;
6602	hash->dth_prevoffs = prevoffs;
6603
6604	hash->dth_size = 1;
6605	hash->dth_mask = hash->dth_size - 1;
6606
6607	hash->dth_tab = kmem_zalloc(hash->dth_size *
6608	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6609
6610	return (hash);
6611}
6612
6613static void
6614dtrace_hash_destroy(dtrace_hash_t *hash)
6615{
6616#ifdef DEBUG
6617	int i;
6618
6619	for (i = 0; i < hash->dth_size; i++)
6620		ASSERT(hash->dth_tab[i] == NULL);
6621#endif
6622
6623	kmem_free(hash->dth_tab,
6624	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6625	kmem_free(hash, sizeof (dtrace_hash_t));
6626}
6627
6628static void
6629dtrace_hash_resize(dtrace_hash_t *hash)
6630{
6631	int size = hash->dth_size, i, ndx;
6632	int new_size = hash->dth_size << 1;
6633	int new_mask = new_size - 1;
6634	dtrace_hashbucket_t **new_tab, *bucket, *next;
6635
6636	ASSERT((new_size & new_mask) == 0);
6637
6638	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6639
6640	for (i = 0; i < size; i++) {
6641		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6642			dtrace_probe_t *probe = bucket->dthb_chain;
6643
6644			ASSERT(probe != NULL);
6645			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6646
6647			next = bucket->dthb_next;
6648			bucket->dthb_next = new_tab[ndx];
6649			new_tab[ndx] = bucket;
6650		}
6651	}
6652
6653	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6654	hash->dth_tab = new_tab;
6655	hash->dth_size = new_size;
6656	hash->dth_mask = new_mask;
6657}
6658
6659static void
6660dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6661{
6662	int hashval = DTRACE_HASHSTR(hash, new);
6663	int ndx = hashval & hash->dth_mask;
6664	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6665	dtrace_probe_t **nextp, **prevp;
6666
6667	for (; bucket != NULL; bucket = bucket->dthb_next) {
6668		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6669			goto add;
6670	}
6671
6672	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6673		dtrace_hash_resize(hash);
6674		dtrace_hash_add(hash, new);
6675		return;
6676	}
6677
6678	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6679	bucket->dthb_next = hash->dth_tab[ndx];
6680	hash->dth_tab[ndx] = bucket;
6681	hash->dth_nbuckets++;
6682
6683add:
6684	nextp = DTRACE_HASHNEXT(hash, new);
6685	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6686	*nextp = bucket->dthb_chain;
6687
6688	if (bucket->dthb_chain != NULL) {
6689		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6690		ASSERT(*prevp == NULL);
6691		*prevp = new;
6692	}
6693
6694	bucket->dthb_chain = new;
6695	bucket->dthb_len++;
6696}
6697
6698static dtrace_probe_t *
6699dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6700{
6701	int hashval = DTRACE_HASHSTR(hash, template);
6702	int ndx = hashval & hash->dth_mask;
6703	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6704
6705	for (; bucket != NULL; bucket = bucket->dthb_next) {
6706		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6707			return (bucket->dthb_chain);
6708	}
6709
6710	return (NULL);
6711}
6712
6713static int
6714dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6715{
6716	int hashval = DTRACE_HASHSTR(hash, template);
6717	int ndx = hashval & hash->dth_mask;
6718	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6719
6720	for (; bucket != NULL; bucket = bucket->dthb_next) {
6721		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6722			return (bucket->dthb_len);
6723	}
6724
6725	return (0);
6726}
6727
6728static void
6729dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6730{
6731	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6732	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6733
6734	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6735	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6736
6737	/*
6738	 * Find the bucket that we're removing this probe from.
6739	 */
6740	for (; bucket != NULL; bucket = bucket->dthb_next) {
6741		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6742			break;
6743	}
6744
6745	ASSERT(bucket != NULL);
6746
6747	if (*prevp == NULL) {
6748		if (*nextp == NULL) {
6749			/*
6750			 * The removed probe was the only probe on this
6751			 * bucket; we need to remove the bucket.
6752			 */
6753			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6754
6755			ASSERT(bucket->dthb_chain == probe);
6756			ASSERT(b != NULL);
6757
6758			if (b == bucket) {
6759				hash->dth_tab[ndx] = bucket->dthb_next;
6760			} else {
6761				while (b->dthb_next != bucket)
6762					b = b->dthb_next;
6763				b->dthb_next = bucket->dthb_next;
6764			}
6765
6766			ASSERT(hash->dth_nbuckets > 0);
6767			hash->dth_nbuckets--;
6768			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6769			return;
6770		}
6771
6772		bucket->dthb_chain = *nextp;
6773	} else {
6774		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6775	}
6776
6777	if (*nextp != NULL)
6778		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6779}
6780
6781/*
6782 * DTrace Utility Functions
6783 *
6784 * These are random utility functions that are _not_ called from probe context.
6785 */
6786static int
6787dtrace_badattr(const dtrace_attribute_t *a)
6788{
6789	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6790	    a->dtat_data > DTRACE_STABILITY_MAX ||
6791	    a->dtat_class > DTRACE_CLASS_MAX);
6792}
6793
6794/*
6795 * Return a duplicate copy of a string.  If the specified string is NULL,
6796 * this function returns a zero-length string.
6797 */
6798static char *
6799dtrace_strdup(const char *str)
6800{
6801	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6802
6803	if (str != NULL)
6804		(void) strcpy(new, str);
6805
6806	return (new);
6807}
6808
6809#define	DTRACE_ISALPHA(c)	\
6810	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6811
6812static int
6813dtrace_badname(const char *s)
6814{
6815	char c;
6816
6817	if (s == NULL || (c = *s++) == '\0')
6818		return (0);
6819
6820	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6821		return (1);
6822
6823	while ((c = *s++) != '\0') {
6824		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6825		    c != '-' && c != '_' && c != '.' && c != '`')
6826			return (1);
6827	}
6828
6829	return (0);
6830}
6831
6832static void
6833dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6834{
6835	uint32_t priv;
6836
6837#if defined(sun)
6838	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6839		/*
6840		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6841		 */
6842		priv = DTRACE_PRIV_ALL;
6843	} else {
6844		*uidp = crgetuid(cr);
6845		*zoneidp = crgetzoneid(cr);
6846
6847		priv = 0;
6848		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6849			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6850		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6851			priv |= DTRACE_PRIV_USER;
6852		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6853			priv |= DTRACE_PRIV_PROC;
6854		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6855			priv |= DTRACE_PRIV_OWNER;
6856		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6857			priv |= DTRACE_PRIV_ZONEOWNER;
6858	}
6859#else
6860	priv = DTRACE_PRIV_ALL;
6861#endif
6862
6863	*privp = priv;
6864}
6865
6866#ifdef DTRACE_ERRDEBUG
6867static void
6868dtrace_errdebug(const char *str)
6869{
6870	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6871	int occupied = 0;
6872
6873	mutex_enter(&dtrace_errlock);
6874	dtrace_errlast = str;
6875	dtrace_errthread = curthread;
6876
6877	while (occupied++ < DTRACE_ERRHASHSZ) {
6878		if (dtrace_errhash[hval].dter_msg == str) {
6879			dtrace_errhash[hval].dter_count++;
6880			goto out;
6881		}
6882
6883		if (dtrace_errhash[hval].dter_msg != NULL) {
6884			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6885			continue;
6886		}
6887
6888		dtrace_errhash[hval].dter_msg = str;
6889		dtrace_errhash[hval].dter_count = 1;
6890		goto out;
6891	}
6892
6893	panic("dtrace: undersized error hash");
6894out:
6895	mutex_exit(&dtrace_errlock);
6896}
6897#endif
6898
6899/*
6900 * DTrace Matching Functions
6901 *
6902 * These functions are used to match groups of probes, given some elements of
6903 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6904 */
6905static int
6906dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6907    zoneid_t zoneid)
6908{
6909	if (priv != DTRACE_PRIV_ALL) {
6910		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6911		uint32_t match = priv & ppriv;
6912
6913		/*
6914		 * No PRIV_DTRACE_* privileges...
6915		 */
6916		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6917		    DTRACE_PRIV_KERNEL)) == 0)
6918			return (0);
6919
6920		/*
6921		 * No matching bits, but there were bits to match...
6922		 */
6923		if (match == 0 && ppriv != 0)
6924			return (0);
6925
6926		/*
6927		 * Need to have permissions to the process, but don't...
6928		 */
6929		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6930		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6931			return (0);
6932		}
6933
6934		/*
6935		 * Need to be in the same zone unless we possess the
6936		 * privilege to examine all zones.
6937		 */
6938		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6939		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6940			return (0);
6941		}
6942	}
6943
6944	return (1);
6945}
6946
6947/*
6948 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6949 * consists of input pattern strings and an ops-vector to evaluate them.
6950 * This function returns >0 for match, 0 for no match, and <0 for error.
6951 */
6952static int
6953dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6954    uint32_t priv, uid_t uid, zoneid_t zoneid)
6955{
6956	dtrace_provider_t *pvp = prp->dtpr_provider;
6957	int rv;
6958
6959	if (pvp->dtpv_defunct)
6960		return (0);
6961
6962	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6963		return (rv);
6964
6965	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6966		return (rv);
6967
6968	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6969		return (rv);
6970
6971	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6972		return (rv);
6973
6974	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6975		return (0);
6976
6977	return (rv);
6978}
6979
6980/*
6981 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6982 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6983 * libc's version, the kernel version only applies to 8-bit ASCII strings.
6984 * In addition, all of the recursion cases except for '*' matching have been
6985 * unwound.  For '*', we still implement recursive evaluation, but a depth
6986 * counter is maintained and matching is aborted if we recurse too deep.
6987 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6988 */
6989static int
6990dtrace_match_glob(const char *s, const char *p, int depth)
6991{
6992	const char *olds;
6993	char s1, c;
6994	int gs;
6995
6996	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6997		return (-1);
6998
6999	if (s == NULL)
7000		s = ""; /* treat NULL as empty string */
7001
7002top:
7003	olds = s;
7004	s1 = *s++;
7005
7006	if (p == NULL)
7007		return (0);
7008
7009	if ((c = *p++) == '\0')
7010		return (s1 == '\0');
7011
7012	switch (c) {
7013	case '[': {
7014		int ok = 0, notflag = 0;
7015		char lc = '\0';
7016
7017		if (s1 == '\0')
7018			return (0);
7019
7020		if (*p == '!') {
7021			notflag = 1;
7022			p++;
7023		}
7024
7025		if ((c = *p++) == '\0')
7026			return (0);
7027
7028		do {
7029			if (c == '-' && lc != '\0' && *p != ']') {
7030				if ((c = *p++) == '\0')
7031					return (0);
7032				if (c == '\\' && (c = *p++) == '\0')
7033					return (0);
7034
7035				if (notflag) {
7036					if (s1 < lc || s1 > c)
7037						ok++;
7038					else
7039						return (0);
7040				} else if (lc <= s1 && s1 <= c)
7041					ok++;
7042
7043			} else if (c == '\\' && (c = *p++) == '\0')
7044				return (0);
7045
7046			lc = c; /* save left-hand 'c' for next iteration */
7047
7048			if (notflag) {
7049				if (s1 != c)
7050					ok++;
7051				else
7052					return (0);
7053			} else if (s1 == c)
7054				ok++;
7055
7056			if ((c = *p++) == '\0')
7057				return (0);
7058
7059		} while (c != ']');
7060
7061		if (ok)
7062			goto top;
7063
7064		return (0);
7065	}
7066
7067	case '\\':
7068		if ((c = *p++) == '\0')
7069			return (0);
7070		/*FALLTHRU*/
7071
7072	default:
7073		if (c != s1)
7074			return (0);
7075		/*FALLTHRU*/
7076
7077	case '?':
7078		if (s1 != '\0')
7079			goto top;
7080		return (0);
7081
7082	case '*':
7083		while (*p == '*')
7084			p++; /* consecutive *'s are identical to a single one */
7085
7086		if (*p == '\0')
7087			return (1);
7088
7089		for (s = olds; *s != '\0'; s++) {
7090			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7091				return (gs);
7092		}
7093
7094		return (0);
7095	}
7096}
7097
7098/*ARGSUSED*/
7099static int
7100dtrace_match_string(const char *s, const char *p, int depth)
7101{
7102	return (s != NULL && strcmp(s, p) == 0);
7103}
7104
7105/*ARGSUSED*/
7106static int
7107dtrace_match_nul(const char *s, const char *p, int depth)
7108{
7109	return (1); /* always match the empty pattern */
7110}
7111
7112/*ARGSUSED*/
7113static int
7114dtrace_match_nonzero(const char *s, const char *p, int depth)
7115{
7116	return (s != NULL && s[0] != '\0');
7117}
7118
7119static int
7120dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7121    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7122{
7123	dtrace_probe_t template, *probe;
7124	dtrace_hash_t *hash = NULL;
7125	int len, best = INT_MAX, nmatched = 0;
7126	dtrace_id_t i;
7127
7128	ASSERT(MUTEX_HELD(&dtrace_lock));
7129
7130	/*
7131	 * If the probe ID is specified in the key, just lookup by ID and
7132	 * invoke the match callback once if a matching probe is found.
7133	 */
7134	if (pkp->dtpk_id != DTRACE_IDNONE) {
7135		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7136		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7137			(void) (*matched)(probe, arg);
7138			nmatched++;
7139		}
7140		return (nmatched);
7141	}
7142
7143	template.dtpr_mod = (char *)pkp->dtpk_mod;
7144	template.dtpr_func = (char *)pkp->dtpk_func;
7145	template.dtpr_name = (char *)pkp->dtpk_name;
7146
7147	/*
7148	 * We want to find the most distinct of the module name, function
7149	 * name, and name.  So for each one that is not a glob pattern or
7150	 * empty string, we perform a lookup in the corresponding hash and
7151	 * use the hash table with the fewest collisions to do our search.
7152	 */
7153	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7154	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7155		best = len;
7156		hash = dtrace_bymod;
7157	}
7158
7159	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7160	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7161		best = len;
7162		hash = dtrace_byfunc;
7163	}
7164
7165	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7166	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7167		best = len;
7168		hash = dtrace_byname;
7169	}
7170
7171	/*
7172	 * If we did not select a hash table, iterate over every probe and
7173	 * invoke our callback for each one that matches our input probe key.
7174	 */
7175	if (hash == NULL) {
7176		for (i = 0; i < dtrace_nprobes; i++) {
7177			if ((probe = dtrace_probes[i]) == NULL ||
7178			    dtrace_match_probe(probe, pkp, priv, uid,
7179			    zoneid) <= 0)
7180				continue;
7181
7182			nmatched++;
7183
7184			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7185				break;
7186		}
7187
7188		return (nmatched);
7189	}
7190
7191	/*
7192	 * If we selected a hash table, iterate over each probe of the same key
7193	 * name and invoke the callback for every probe that matches the other
7194	 * attributes of our input probe key.
7195	 */
7196	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7197	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7198
7199		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7200			continue;
7201
7202		nmatched++;
7203
7204		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7205			break;
7206	}
7207
7208	return (nmatched);
7209}
7210
7211/*
7212 * Return the function pointer dtrace_probecmp() should use to compare the
7213 * specified pattern with a string.  For NULL or empty patterns, we select
7214 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7215 * For non-empty non-glob strings, we use dtrace_match_string().
7216 */
7217static dtrace_probekey_f *
7218dtrace_probekey_func(const char *p)
7219{
7220	char c;
7221
7222	if (p == NULL || *p == '\0')
7223		return (&dtrace_match_nul);
7224
7225	while ((c = *p++) != '\0') {
7226		if (c == '[' || c == '?' || c == '*' || c == '\\')
7227			return (&dtrace_match_glob);
7228	}
7229
7230	return (&dtrace_match_string);
7231}
7232
7233/*
7234 * Build a probe comparison key for use with dtrace_match_probe() from the
7235 * given probe description.  By convention, a null key only matches anchored
7236 * probes: if each field is the empty string, reset dtpk_fmatch to
7237 * dtrace_match_nonzero().
7238 */
7239static void
7240dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7241{
7242	pkp->dtpk_prov = pdp->dtpd_provider;
7243	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7244
7245	pkp->dtpk_mod = pdp->dtpd_mod;
7246	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7247
7248	pkp->dtpk_func = pdp->dtpd_func;
7249	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7250
7251	pkp->dtpk_name = pdp->dtpd_name;
7252	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7253
7254	pkp->dtpk_id = pdp->dtpd_id;
7255
7256	if (pkp->dtpk_id == DTRACE_IDNONE &&
7257	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7258	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7259	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7260	    pkp->dtpk_nmatch == &dtrace_match_nul)
7261		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7262}
7263
7264/*
7265 * DTrace Provider-to-Framework API Functions
7266 *
7267 * These functions implement much of the Provider-to-Framework API, as
7268 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7269 * the functions in the API for probe management (found below), and
7270 * dtrace_probe() itself (found above).
7271 */
7272
7273/*
7274 * Register the calling provider with the DTrace framework.  This should
7275 * generally be called by DTrace providers in their attach(9E) entry point.
7276 */
7277int
7278dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7279    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7280{
7281	dtrace_provider_t *provider;
7282
7283	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7284		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7285		    "arguments", name ? name : "<NULL>");
7286		return (EINVAL);
7287	}
7288
7289	if (name[0] == '\0' || dtrace_badname(name)) {
7290		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7291		    "provider name", name);
7292		return (EINVAL);
7293	}
7294
7295	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7296	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7297	    pops->dtps_destroy == NULL ||
7298	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7299		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7300		    "provider ops", name);
7301		return (EINVAL);
7302	}
7303
7304	if (dtrace_badattr(&pap->dtpa_provider) ||
7305	    dtrace_badattr(&pap->dtpa_mod) ||
7306	    dtrace_badattr(&pap->dtpa_func) ||
7307	    dtrace_badattr(&pap->dtpa_name) ||
7308	    dtrace_badattr(&pap->dtpa_args)) {
7309		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7310		    "provider attributes", name);
7311		return (EINVAL);
7312	}
7313
7314	if (priv & ~DTRACE_PRIV_ALL) {
7315		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7316		    "privilege attributes", name);
7317		return (EINVAL);
7318	}
7319
7320	if ((priv & DTRACE_PRIV_KERNEL) &&
7321	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7322	    pops->dtps_usermode == NULL) {
7323		cmn_err(CE_WARN, "failed to register provider '%s': need "
7324		    "dtps_usermode() op for given privilege attributes", name);
7325		return (EINVAL);
7326	}
7327
7328	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7329	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7330	(void) strcpy(provider->dtpv_name, name);
7331
7332	provider->dtpv_attr = *pap;
7333	provider->dtpv_priv.dtpp_flags = priv;
7334	if (cr != NULL) {
7335		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7336		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7337	}
7338	provider->dtpv_pops = *pops;
7339
7340	if (pops->dtps_provide == NULL) {
7341		ASSERT(pops->dtps_provide_module != NULL);
7342		provider->dtpv_pops.dtps_provide =
7343		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7344	}
7345
7346	if (pops->dtps_provide_module == NULL) {
7347		ASSERT(pops->dtps_provide != NULL);
7348		provider->dtpv_pops.dtps_provide_module =
7349		    (void (*)(void *, modctl_t *))dtrace_nullop;
7350	}
7351
7352	if (pops->dtps_suspend == NULL) {
7353		ASSERT(pops->dtps_resume == NULL);
7354		provider->dtpv_pops.dtps_suspend =
7355		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7356		provider->dtpv_pops.dtps_resume =
7357		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7358	}
7359
7360	provider->dtpv_arg = arg;
7361	*idp = (dtrace_provider_id_t)provider;
7362
7363	if (pops == &dtrace_provider_ops) {
7364		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7365		ASSERT(MUTEX_HELD(&dtrace_lock));
7366		ASSERT(dtrace_anon.dta_enabling == NULL);
7367
7368		/*
7369		 * We make sure that the DTrace provider is at the head of
7370		 * the provider chain.
7371		 */
7372		provider->dtpv_next = dtrace_provider;
7373		dtrace_provider = provider;
7374		return (0);
7375	}
7376
7377	mutex_enter(&dtrace_provider_lock);
7378	mutex_enter(&dtrace_lock);
7379
7380	/*
7381	 * If there is at least one provider registered, we'll add this
7382	 * provider after the first provider.
7383	 */
7384	if (dtrace_provider != NULL) {
7385		provider->dtpv_next = dtrace_provider->dtpv_next;
7386		dtrace_provider->dtpv_next = provider;
7387	} else {
7388		dtrace_provider = provider;
7389	}
7390
7391	if (dtrace_retained != NULL) {
7392		dtrace_enabling_provide(provider);
7393
7394		/*
7395		 * Now we need to call dtrace_enabling_matchall() -- which
7396		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7397		 * to drop all of our locks before calling into it...
7398		 */
7399		mutex_exit(&dtrace_lock);
7400		mutex_exit(&dtrace_provider_lock);
7401		dtrace_enabling_matchall();
7402
7403		return (0);
7404	}
7405
7406	mutex_exit(&dtrace_lock);
7407	mutex_exit(&dtrace_provider_lock);
7408
7409	return (0);
7410}
7411
7412/*
7413 * Unregister the specified provider from the DTrace framework.  This should
7414 * generally be called by DTrace providers in their detach(9E) entry point.
7415 */
7416int
7417dtrace_unregister(dtrace_provider_id_t id)
7418{
7419	dtrace_provider_t *old = (dtrace_provider_t *)id;
7420	dtrace_provider_t *prev = NULL;
7421	int i, self = 0;
7422	dtrace_probe_t *probe, *first = NULL;
7423
7424	if (old->dtpv_pops.dtps_enable ==
7425	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7426		/*
7427		 * If DTrace itself is the provider, we're called with locks
7428		 * already held.
7429		 */
7430		ASSERT(old == dtrace_provider);
7431#if defined(sun)
7432		ASSERT(dtrace_devi != NULL);
7433#endif
7434		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7435		ASSERT(MUTEX_HELD(&dtrace_lock));
7436		self = 1;
7437
7438		if (dtrace_provider->dtpv_next != NULL) {
7439			/*
7440			 * There's another provider here; return failure.
7441			 */
7442			return (EBUSY);
7443		}
7444	} else {
7445		mutex_enter(&dtrace_provider_lock);
7446		mutex_enter(&mod_lock);
7447		mutex_enter(&dtrace_lock);
7448	}
7449
7450	/*
7451	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7452	 * probes, we refuse to let providers slither away, unless this
7453	 * provider has already been explicitly invalidated.
7454	 */
7455	if (!old->dtpv_defunct &&
7456	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7457	    dtrace_anon.dta_state->dts_necbs > 0))) {
7458		if (!self) {
7459			mutex_exit(&dtrace_lock);
7460			mutex_exit(&mod_lock);
7461			mutex_exit(&dtrace_provider_lock);
7462		}
7463		return (EBUSY);
7464	}
7465
7466	/*
7467	 * Attempt to destroy the probes associated with this provider.
7468	 */
7469	for (i = 0; i < dtrace_nprobes; i++) {
7470		if ((probe = dtrace_probes[i]) == NULL)
7471			continue;
7472
7473		if (probe->dtpr_provider != old)
7474			continue;
7475
7476		if (probe->dtpr_ecb == NULL)
7477			continue;
7478
7479		/*
7480		 * We have at least one ECB; we can't remove this provider.
7481		 */
7482		if (!self) {
7483			mutex_exit(&dtrace_lock);
7484			mutex_exit(&mod_lock);
7485			mutex_exit(&dtrace_provider_lock);
7486		}
7487		return (EBUSY);
7488	}
7489
7490	/*
7491	 * All of the probes for this provider are disabled; we can safely
7492	 * remove all of them from their hash chains and from the probe array.
7493	 */
7494	for (i = 0; i < dtrace_nprobes; i++) {
7495		if ((probe = dtrace_probes[i]) == NULL)
7496			continue;
7497
7498		if (probe->dtpr_provider != old)
7499			continue;
7500
7501		dtrace_probes[i] = NULL;
7502
7503		dtrace_hash_remove(dtrace_bymod, probe);
7504		dtrace_hash_remove(dtrace_byfunc, probe);
7505		dtrace_hash_remove(dtrace_byname, probe);
7506
7507		if (first == NULL) {
7508			first = probe;
7509			probe->dtpr_nextmod = NULL;
7510		} else {
7511			probe->dtpr_nextmod = first;
7512			first = probe;
7513		}
7514	}
7515
7516	/*
7517	 * The provider's probes have been removed from the hash chains and
7518	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7519	 * everyone has cleared out from any probe array processing.
7520	 */
7521	dtrace_sync();
7522
7523	for (probe = first; probe != NULL; probe = first) {
7524		first = probe->dtpr_nextmod;
7525
7526		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7527		    probe->dtpr_arg);
7528		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7529		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7530		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7531#if defined(sun)
7532		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7533#else
7534		free_unr(dtrace_arena, probe->dtpr_id);
7535#endif
7536		kmem_free(probe, sizeof (dtrace_probe_t));
7537	}
7538
7539	if ((prev = dtrace_provider) == old) {
7540#if defined(sun)
7541		ASSERT(self || dtrace_devi == NULL);
7542		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7543#endif
7544		dtrace_provider = old->dtpv_next;
7545	} else {
7546		while (prev != NULL && prev->dtpv_next != old)
7547			prev = prev->dtpv_next;
7548
7549		if (prev == NULL) {
7550			panic("attempt to unregister non-existent "
7551			    "dtrace provider %p\n", (void *)id);
7552		}
7553
7554		prev->dtpv_next = old->dtpv_next;
7555	}
7556
7557	if (!self) {
7558		mutex_exit(&dtrace_lock);
7559		mutex_exit(&mod_lock);
7560		mutex_exit(&dtrace_provider_lock);
7561	}
7562
7563	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7564	kmem_free(old, sizeof (dtrace_provider_t));
7565
7566	return (0);
7567}
7568
7569/*
7570 * Invalidate the specified provider.  All subsequent probe lookups for the
7571 * specified provider will fail, but its probes will not be removed.
7572 */
7573void
7574dtrace_invalidate(dtrace_provider_id_t id)
7575{
7576	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7577
7578	ASSERT(pvp->dtpv_pops.dtps_enable !=
7579	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7580
7581	mutex_enter(&dtrace_provider_lock);
7582	mutex_enter(&dtrace_lock);
7583
7584	pvp->dtpv_defunct = 1;
7585
7586	mutex_exit(&dtrace_lock);
7587	mutex_exit(&dtrace_provider_lock);
7588}
7589
7590/*
7591 * Indicate whether or not DTrace has attached.
7592 */
7593int
7594dtrace_attached(void)
7595{
7596	/*
7597	 * dtrace_provider will be non-NULL iff the DTrace driver has
7598	 * attached.  (It's non-NULL because DTrace is always itself a
7599	 * provider.)
7600	 */
7601	return (dtrace_provider != NULL);
7602}
7603
7604/*
7605 * Remove all the unenabled probes for the given provider.  This function is
7606 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7607 * -- just as many of its associated probes as it can.
7608 */
7609int
7610dtrace_condense(dtrace_provider_id_t id)
7611{
7612	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7613	int i;
7614	dtrace_probe_t *probe;
7615
7616	/*
7617	 * Make sure this isn't the dtrace provider itself.
7618	 */
7619	ASSERT(prov->dtpv_pops.dtps_enable !=
7620	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7621
7622	mutex_enter(&dtrace_provider_lock);
7623	mutex_enter(&dtrace_lock);
7624
7625	/*
7626	 * Attempt to destroy the probes associated with this provider.
7627	 */
7628	for (i = 0; i < dtrace_nprobes; i++) {
7629		if ((probe = dtrace_probes[i]) == NULL)
7630			continue;
7631
7632		if (probe->dtpr_provider != prov)
7633			continue;
7634
7635		if (probe->dtpr_ecb != NULL)
7636			continue;
7637
7638		dtrace_probes[i] = NULL;
7639
7640		dtrace_hash_remove(dtrace_bymod, probe);
7641		dtrace_hash_remove(dtrace_byfunc, probe);
7642		dtrace_hash_remove(dtrace_byname, probe);
7643
7644		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7645		    probe->dtpr_arg);
7646		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7647		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7648		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7649		kmem_free(probe, sizeof (dtrace_probe_t));
7650#if defined(sun)
7651		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7652#else
7653		free_unr(dtrace_arena, i + 1);
7654#endif
7655	}
7656
7657	mutex_exit(&dtrace_lock);
7658	mutex_exit(&dtrace_provider_lock);
7659
7660	return (0);
7661}
7662
7663/*
7664 * DTrace Probe Management Functions
7665 *
7666 * The functions in this section perform the DTrace probe management,
7667 * including functions to create probes, look-up probes, and call into the
7668 * providers to request that probes be provided.  Some of these functions are
7669 * in the Provider-to-Framework API; these functions can be identified by the
7670 * fact that they are not declared "static".
7671 */
7672
7673/*
7674 * Create a probe with the specified module name, function name, and name.
7675 */
7676dtrace_id_t
7677dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7678    const char *func, const char *name, int aframes, void *arg)
7679{
7680	dtrace_probe_t *probe, **probes;
7681	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7682	dtrace_id_t id;
7683
7684	if (provider == dtrace_provider) {
7685		ASSERT(MUTEX_HELD(&dtrace_lock));
7686	} else {
7687		mutex_enter(&dtrace_lock);
7688	}
7689
7690#if defined(sun)
7691	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7692	    VM_BESTFIT | VM_SLEEP);
7693#else
7694	id = alloc_unr(dtrace_arena);
7695#endif
7696	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7697
7698	probe->dtpr_id = id;
7699	probe->dtpr_gen = dtrace_probegen++;
7700	probe->dtpr_mod = dtrace_strdup(mod);
7701	probe->dtpr_func = dtrace_strdup(func);
7702	probe->dtpr_name = dtrace_strdup(name);
7703	probe->dtpr_arg = arg;
7704	probe->dtpr_aframes = aframes;
7705	probe->dtpr_provider = provider;
7706
7707	dtrace_hash_add(dtrace_bymod, probe);
7708	dtrace_hash_add(dtrace_byfunc, probe);
7709	dtrace_hash_add(dtrace_byname, probe);
7710
7711	if (id - 1 >= dtrace_nprobes) {
7712		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7713		size_t nsize = osize << 1;
7714
7715		if (nsize == 0) {
7716			ASSERT(osize == 0);
7717			ASSERT(dtrace_probes == NULL);
7718			nsize = sizeof (dtrace_probe_t *);
7719		}
7720
7721		probes = kmem_zalloc(nsize, KM_SLEEP);
7722
7723		if (dtrace_probes == NULL) {
7724			ASSERT(osize == 0);
7725			dtrace_probes = probes;
7726			dtrace_nprobes = 1;
7727		} else {
7728			dtrace_probe_t **oprobes = dtrace_probes;
7729
7730			bcopy(oprobes, probes, osize);
7731			dtrace_membar_producer();
7732			dtrace_probes = probes;
7733
7734			dtrace_sync();
7735
7736			/*
7737			 * All CPUs are now seeing the new probes array; we can
7738			 * safely free the old array.
7739			 */
7740			kmem_free(oprobes, osize);
7741			dtrace_nprobes <<= 1;
7742		}
7743
7744		ASSERT(id - 1 < dtrace_nprobes);
7745	}
7746
7747	ASSERT(dtrace_probes[id - 1] == NULL);
7748	dtrace_probes[id - 1] = probe;
7749
7750	if (provider != dtrace_provider)
7751		mutex_exit(&dtrace_lock);
7752
7753	return (id);
7754}
7755
7756static dtrace_probe_t *
7757dtrace_probe_lookup_id(dtrace_id_t id)
7758{
7759	ASSERT(MUTEX_HELD(&dtrace_lock));
7760
7761	if (id == 0 || id > dtrace_nprobes)
7762		return (NULL);
7763
7764	return (dtrace_probes[id - 1]);
7765}
7766
7767static int
7768dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7769{
7770	*((dtrace_id_t *)arg) = probe->dtpr_id;
7771
7772	return (DTRACE_MATCH_DONE);
7773}
7774
7775/*
7776 * Look up a probe based on provider and one or more of module name, function
7777 * name and probe name.
7778 */
7779dtrace_id_t
7780dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7781    char *func, char *name)
7782{
7783	dtrace_probekey_t pkey;
7784	dtrace_id_t id;
7785	int match;
7786
7787	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7788	pkey.dtpk_pmatch = &dtrace_match_string;
7789	pkey.dtpk_mod = mod;
7790	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7791	pkey.dtpk_func = func;
7792	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7793	pkey.dtpk_name = name;
7794	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7795	pkey.dtpk_id = DTRACE_IDNONE;
7796
7797	mutex_enter(&dtrace_lock);
7798	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7799	    dtrace_probe_lookup_match, &id);
7800	mutex_exit(&dtrace_lock);
7801
7802	ASSERT(match == 1 || match == 0);
7803	return (match ? id : 0);
7804}
7805
7806/*
7807 * Returns the probe argument associated with the specified probe.
7808 */
7809void *
7810dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7811{
7812	dtrace_probe_t *probe;
7813	void *rval = NULL;
7814
7815	mutex_enter(&dtrace_lock);
7816
7817	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7818	    probe->dtpr_provider == (dtrace_provider_t *)id)
7819		rval = probe->dtpr_arg;
7820
7821	mutex_exit(&dtrace_lock);
7822
7823	return (rval);
7824}
7825
7826/*
7827 * Copy a probe into a probe description.
7828 */
7829static void
7830dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7831{
7832	bzero(pdp, sizeof (dtrace_probedesc_t));
7833	pdp->dtpd_id = prp->dtpr_id;
7834
7835	(void) strncpy(pdp->dtpd_provider,
7836	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7837
7838	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7839	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7840	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7841}
7842
7843#if !defined(sun)
7844static int
7845dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7846{
7847	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7848
7849	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7850
7851	return(0);
7852}
7853#endif
7854
7855
7856/*
7857 * Called to indicate that a probe -- or probes -- should be provided by a
7858 * specfied provider.  If the specified description is NULL, the provider will
7859 * be told to provide all of its probes.  (This is done whenever a new
7860 * consumer comes along, or whenever a retained enabling is to be matched.) If
7861 * the specified description is non-NULL, the provider is given the
7862 * opportunity to dynamically provide the specified probe, allowing providers
7863 * to support the creation of probes on-the-fly.  (So-called _autocreated_
7864 * probes.)  If the provider is NULL, the operations will be applied to all
7865 * providers; if the provider is non-NULL the operations will only be applied
7866 * to the specified provider.  The dtrace_provider_lock must be held, and the
7867 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7868 * will need to grab the dtrace_lock when it reenters the framework through
7869 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7870 */
7871static void
7872dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7873{
7874#if defined(sun)
7875	modctl_t *ctl;
7876#endif
7877	int all = 0;
7878
7879	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7880
7881	if (prv == NULL) {
7882		all = 1;
7883		prv = dtrace_provider;
7884	}
7885
7886	do {
7887		/*
7888		 * First, call the blanket provide operation.
7889		 */
7890		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7891
7892		/*
7893		 * Now call the per-module provide operation.  We will grab
7894		 * mod_lock to prevent the list from being modified.  Note
7895		 * that this also prevents the mod_busy bits from changing.
7896		 * (mod_busy can only be changed with mod_lock held.)
7897		 */
7898		mutex_enter(&mod_lock);
7899
7900#if defined(sun)
7901		ctl = &modules;
7902		do {
7903			if (ctl->mod_busy || ctl->mod_mp == NULL)
7904				continue;
7905
7906			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7907
7908		} while ((ctl = ctl->mod_next) != &modules);
7909#else
7910		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
7911#endif
7912
7913		mutex_exit(&mod_lock);
7914	} while (all && (prv = prv->dtpv_next) != NULL);
7915}
7916
7917#if defined(sun)
7918/*
7919 * Iterate over each probe, and call the Framework-to-Provider API function
7920 * denoted by offs.
7921 */
7922static void
7923dtrace_probe_foreach(uintptr_t offs)
7924{
7925	dtrace_provider_t *prov;
7926	void (*func)(void *, dtrace_id_t, void *);
7927	dtrace_probe_t *probe;
7928	dtrace_icookie_t cookie;
7929	int i;
7930
7931	/*
7932	 * We disable interrupts to walk through the probe array.  This is
7933	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7934	 * won't see stale data.
7935	 */
7936	cookie = dtrace_interrupt_disable();
7937
7938	for (i = 0; i < dtrace_nprobes; i++) {
7939		if ((probe = dtrace_probes[i]) == NULL)
7940			continue;
7941
7942		if (probe->dtpr_ecb == NULL) {
7943			/*
7944			 * This probe isn't enabled -- don't call the function.
7945			 */
7946			continue;
7947		}
7948
7949		prov = probe->dtpr_provider;
7950		func = *((void(**)(void *, dtrace_id_t, void *))
7951		    ((uintptr_t)&prov->dtpv_pops + offs));
7952
7953		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7954	}
7955
7956	dtrace_interrupt_enable(cookie);
7957}
7958#endif
7959
7960static int
7961dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7962{
7963	dtrace_probekey_t pkey;
7964	uint32_t priv;
7965	uid_t uid;
7966	zoneid_t zoneid;
7967
7968	ASSERT(MUTEX_HELD(&dtrace_lock));
7969	dtrace_ecb_create_cache = NULL;
7970
7971	if (desc == NULL) {
7972		/*
7973		 * If we're passed a NULL description, we're being asked to
7974		 * create an ECB with a NULL probe.
7975		 */
7976		(void) dtrace_ecb_create_enable(NULL, enab);
7977		return (0);
7978	}
7979
7980	dtrace_probekey(desc, &pkey);
7981	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7982	    &priv, &uid, &zoneid);
7983
7984	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7985	    enab));
7986}
7987
7988/*
7989 * DTrace Helper Provider Functions
7990 */
7991static void
7992dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7993{
7994	attr->dtat_name = DOF_ATTR_NAME(dofattr);
7995	attr->dtat_data = DOF_ATTR_DATA(dofattr);
7996	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7997}
7998
7999static void
8000dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8001    const dof_provider_t *dofprov, char *strtab)
8002{
8003	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8004	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8005	    dofprov->dofpv_provattr);
8006	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8007	    dofprov->dofpv_modattr);
8008	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8009	    dofprov->dofpv_funcattr);
8010	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8011	    dofprov->dofpv_nameattr);
8012	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8013	    dofprov->dofpv_argsattr);
8014}
8015
8016static void
8017dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8018{
8019	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8020	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8021	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8022	dof_provider_t *provider;
8023	dof_probe_t *probe;
8024	uint32_t *off, *enoff;
8025	uint8_t *arg;
8026	char *strtab;
8027	uint_t i, nprobes;
8028	dtrace_helper_provdesc_t dhpv;
8029	dtrace_helper_probedesc_t dhpb;
8030	dtrace_meta_t *meta = dtrace_meta_pid;
8031	dtrace_mops_t *mops = &meta->dtm_mops;
8032	void *parg;
8033
8034	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8035	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8036	    provider->dofpv_strtab * dof->dofh_secsize);
8037	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8038	    provider->dofpv_probes * dof->dofh_secsize);
8039	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8040	    provider->dofpv_prargs * dof->dofh_secsize);
8041	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8042	    provider->dofpv_proffs * dof->dofh_secsize);
8043
8044	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8045	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8046	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8047	enoff = NULL;
8048
8049	/*
8050	 * See dtrace_helper_provider_validate().
8051	 */
8052	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8053	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8054		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8055		    provider->dofpv_prenoffs * dof->dofh_secsize);
8056		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8057	}
8058
8059	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8060
8061	/*
8062	 * Create the provider.
8063	 */
8064	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8065
8066	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8067		return;
8068
8069	meta->dtm_count++;
8070
8071	/*
8072	 * Create the probes.
8073	 */
8074	for (i = 0; i < nprobes; i++) {
8075		probe = (dof_probe_t *)(uintptr_t)(daddr +
8076		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8077
8078		dhpb.dthpb_mod = dhp->dofhp_mod;
8079		dhpb.dthpb_func = strtab + probe->dofpr_func;
8080		dhpb.dthpb_name = strtab + probe->dofpr_name;
8081		dhpb.dthpb_base = probe->dofpr_addr;
8082		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8083		dhpb.dthpb_noffs = probe->dofpr_noffs;
8084		if (enoff != NULL) {
8085			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8086			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8087		} else {
8088			dhpb.dthpb_enoffs = NULL;
8089			dhpb.dthpb_nenoffs = 0;
8090		}
8091		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8092		dhpb.dthpb_nargc = probe->dofpr_nargc;
8093		dhpb.dthpb_xargc = probe->dofpr_xargc;
8094		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8095		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8096
8097		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8098	}
8099}
8100
8101static void
8102dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8103{
8104	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8105	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8106	int i;
8107
8108	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8109
8110	for (i = 0; i < dof->dofh_secnum; i++) {
8111		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8112		    dof->dofh_secoff + i * dof->dofh_secsize);
8113
8114		if (sec->dofs_type != DOF_SECT_PROVIDER)
8115			continue;
8116
8117		dtrace_helper_provide_one(dhp, sec, pid);
8118	}
8119
8120	/*
8121	 * We may have just created probes, so we must now rematch against
8122	 * any retained enablings.  Note that this call will acquire both
8123	 * cpu_lock and dtrace_lock; the fact that we are holding
8124	 * dtrace_meta_lock now is what defines the ordering with respect to
8125	 * these three locks.
8126	 */
8127	dtrace_enabling_matchall();
8128}
8129
8130#if defined(sun)
8131static void
8132dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8133{
8134	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8135	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8136	dof_sec_t *str_sec;
8137	dof_provider_t *provider;
8138	char *strtab;
8139	dtrace_helper_provdesc_t dhpv;
8140	dtrace_meta_t *meta = dtrace_meta_pid;
8141	dtrace_mops_t *mops = &meta->dtm_mops;
8142
8143	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8144	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8145	    provider->dofpv_strtab * dof->dofh_secsize);
8146
8147	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8148
8149	/*
8150	 * Create the provider.
8151	 */
8152	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8153
8154	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8155
8156	meta->dtm_count--;
8157}
8158
8159static void
8160dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8161{
8162	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8163	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8164	int i;
8165
8166	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8167
8168	for (i = 0; i < dof->dofh_secnum; i++) {
8169		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8170		    dof->dofh_secoff + i * dof->dofh_secsize);
8171
8172		if (sec->dofs_type != DOF_SECT_PROVIDER)
8173			continue;
8174
8175		dtrace_helper_provider_remove_one(dhp, sec, pid);
8176	}
8177}
8178#endif
8179
8180/*
8181 * DTrace Meta Provider-to-Framework API Functions
8182 *
8183 * These functions implement the Meta Provider-to-Framework API, as described
8184 * in <sys/dtrace.h>.
8185 */
8186int
8187dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8188    dtrace_meta_provider_id_t *idp)
8189{
8190	dtrace_meta_t *meta;
8191	dtrace_helpers_t *help, *next;
8192	int i;
8193
8194	*idp = DTRACE_METAPROVNONE;
8195
8196	/*
8197	 * We strictly don't need the name, but we hold onto it for
8198	 * debuggability. All hail error queues!
8199	 */
8200	if (name == NULL) {
8201		cmn_err(CE_WARN, "failed to register meta-provider: "
8202		    "invalid name");
8203		return (EINVAL);
8204	}
8205
8206	if (mops == NULL ||
8207	    mops->dtms_create_probe == NULL ||
8208	    mops->dtms_provide_pid == NULL ||
8209	    mops->dtms_remove_pid == NULL) {
8210		cmn_err(CE_WARN, "failed to register meta-register %s: "
8211		    "invalid ops", name);
8212		return (EINVAL);
8213	}
8214
8215	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8216	meta->dtm_mops = *mops;
8217	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8218	(void) strcpy(meta->dtm_name, name);
8219	meta->dtm_arg = arg;
8220
8221	mutex_enter(&dtrace_meta_lock);
8222	mutex_enter(&dtrace_lock);
8223
8224	if (dtrace_meta_pid != NULL) {
8225		mutex_exit(&dtrace_lock);
8226		mutex_exit(&dtrace_meta_lock);
8227		cmn_err(CE_WARN, "failed to register meta-register %s: "
8228		    "user-land meta-provider exists", name);
8229		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8230		kmem_free(meta, sizeof (dtrace_meta_t));
8231		return (EINVAL);
8232	}
8233
8234	dtrace_meta_pid = meta;
8235	*idp = (dtrace_meta_provider_id_t)meta;
8236
8237	/*
8238	 * If there are providers and probes ready to go, pass them
8239	 * off to the new meta provider now.
8240	 */
8241
8242	help = dtrace_deferred_pid;
8243	dtrace_deferred_pid = NULL;
8244
8245	mutex_exit(&dtrace_lock);
8246
8247	while (help != NULL) {
8248		for (i = 0; i < help->dthps_nprovs; i++) {
8249			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8250			    help->dthps_pid);
8251		}
8252
8253		next = help->dthps_next;
8254		help->dthps_next = NULL;
8255		help->dthps_prev = NULL;
8256		help->dthps_deferred = 0;
8257		help = next;
8258	}
8259
8260	mutex_exit(&dtrace_meta_lock);
8261
8262	return (0);
8263}
8264
8265int
8266dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8267{
8268	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8269
8270	mutex_enter(&dtrace_meta_lock);
8271	mutex_enter(&dtrace_lock);
8272
8273	if (old == dtrace_meta_pid) {
8274		pp = &dtrace_meta_pid;
8275	} else {
8276		panic("attempt to unregister non-existent "
8277		    "dtrace meta-provider %p\n", (void *)old);
8278	}
8279
8280	if (old->dtm_count != 0) {
8281		mutex_exit(&dtrace_lock);
8282		mutex_exit(&dtrace_meta_lock);
8283		return (EBUSY);
8284	}
8285
8286	*pp = NULL;
8287
8288	mutex_exit(&dtrace_lock);
8289	mutex_exit(&dtrace_meta_lock);
8290
8291	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8292	kmem_free(old, sizeof (dtrace_meta_t));
8293
8294	return (0);
8295}
8296
8297
8298/*
8299 * DTrace DIF Object Functions
8300 */
8301static int
8302dtrace_difo_err(uint_t pc, const char *format, ...)
8303{
8304	if (dtrace_err_verbose) {
8305		va_list alist;
8306
8307		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8308		va_start(alist, format);
8309		(void) vuprintf(format, alist);
8310		va_end(alist);
8311	}
8312
8313#ifdef DTRACE_ERRDEBUG
8314	dtrace_errdebug(format);
8315#endif
8316	return (1);
8317}
8318
8319/*
8320 * Validate a DTrace DIF object by checking the IR instructions.  The following
8321 * rules are currently enforced by dtrace_difo_validate():
8322 *
8323 * 1. Each instruction must have a valid opcode
8324 * 2. Each register, string, variable, or subroutine reference must be valid
8325 * 3. No instruction can modify register %r0 (must be zero)
8326 * 4. All instruction reserved bits must be set to zero
8327 * 5. The last instruction must be a "ret" instruction
8328 * 6. All branch targets must reference a valid instruction _after_ the branch
8329 */
8330static int
8331dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8332    cred_t *cr)
8333{
8334	int err = 0, i;
8335	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8336	int kcheckload;
8337	uint_t pc;
8338
8339	kcheckload = cr == NULL ||
8340	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8341
8342	dp->dtdo_destructive = 0;
8343
8344	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8345		dif_instr_t instr = dp->dtdo_buf[pc];
8346
8347		uint_t r1 = DIF_INSTR_R1(instr);
8348		uint_t r2 = DIF_INSTR_R2(instr);
8349		uint_t rd = DIF_INSTR_RD(instr);
8350		uint_t rs = DIF_INSTR_RS(instr);
8351		uint_t label = DIF_INSTR_LABEL(instr);
8352		uint_t v = DIF_INSTR_VAR(instr);
8353		uint_t subr = DIF_INSTR_SUBR(instr);
8354		uint_t type = DIF_INSTR_TYPE(instr);
8355		uint_t op = DIF_INSTR_OP(instr);
8356
8357		switch (op) {
8358		case DIF_OP_OR:
8359		case DIF_OP_XOR:
8360		case DIF_OP_AND:
8361		case DIF_OP_SLL:
8362		case DIF_OP_SRL:
8363		case DIF_OP_SRA:
8364		case DIF_OP_SUB:
8365		case DIF_OP_ADD:
8366		case DIF_OP_MUL:
8367		case DIF_OP_SDIV:
8368		case DIF_OP_UDIV:
8369		case DIF_OP_SREM:
8370		case DIF_OP_UREM:
8371		case DIF_OP_COPYS:
8372			if (r1 >= nregs)
8373				err += efunc(pc, "invalid register %u\n", r1);
8374			if (r2 >= nregs)
8375				err += efunc(pc, "invalid register %u\n", r2);
8376			if (rd >= nregs)
8377				err += efunc(pc, "invalid register %u\n", rd);
8378			if (rd == 0)
8379				err += efunc(pc, "cannot write to %r0\n");
8380			break;
8381		case DIF_OP_NOT:
8382		case DIF_OP_MOV:
8383		case DIF_OP_ALLOCS:
8384			if (r1 >= nregs)
8385				err += efunc(pc, "invalid register %u\n", r1);
8386			if (r2 != 0)
8387				err += efunc(pc, "non-zero reserved bits\n");
8388			if (rd >= nregs)
8389				err += efunc(pc, "invalid register %u\n", rd);
8390			if (rd == 0)
8391				err += efunc(pc, "cannot write to %r0\n");
8392			break;
8393		case DIF_OP_LDSB:
8394		case DIF_OP_LDSH:
8395		case DIF_OP_LDSW:
8396		case DIF_OP_LDUB:
8397		case DIF_OP_LDUH:
8398		case DIF_OP_LDUW:
8399		case DIF_OP_LDX:
8400			if (r1 >= nregs)
8401				err += efunc(pc, "invalid register %u\n", r1);
8402			if (r2 != 0)
8403				err += efunc(pc, "non-zero reserved bits\n");
8404			if (rd >= nregs)
8405				err += efunc(pc, "invalid register %u\n", rd);
8406			if (rd == 0)
8407				err += efunc(pc, "cannot write to %r0\n");
8408			if (kcheckload)
8409				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8410				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8411			break;
8412		case DIF_OP_RLDSB:
8413		case DIF_OP_RLDSH:
8414		case DIF_OP_RLDSW:
8415		case DIF_OP_RLDUB:
8416		case DIF_OP_RLDUH:
8417		case DIF_OP_RLDUW:
8418		case DIF_OP_RLDX:
8419			if (r1 >= nregs)
8420				err += efunc(pc, "invalid register %u\n", r1);
8421			if (r2 != 0)
8422				err += efunc(pc, "non-zero reserved bits\n");
8423			if (rd >= nregs)
8424				err += efunc(pc, "invalid register %u\n", rd);
8425			if (rd == 0)
8426				err += efunc(pc, "cannot write to %r0\n");
8427			break;
8428		case DIF_OP_ULDSB:
8429		case DIF_OP_ULDSH:
8430		case DIF_OP_ULDSW:
8431		case DIF_OP_ULDUB:
8432		case DIF_OP_ULDUH:
8433		case DIF_OP_ULDUW:
8434		case DIF_OP_ULDX:
8435			if (r1 >= nregs)
8436				err += efunc(pc, "invalid register %u\n", r1);
8437			if (r2 != 0)
8438				err += efunc(pc, "non-zero reserved bits\n");
8439			if (rd >= nregs)
8440				err += efunc(pc, "invalid register %u\n", rd);
8441			if (rd == 0)
8442				err += efunc(pc, "cannot write to %r0\n");
8443			break;
8444		case DIF_OP_STB:
8445		case DIF_OP_STH:
8446		case DIF_OP_STW:
8447		case DIF_OP_STX:
8448			if (r1 >= nregs)
8449				err += efunc(pc, "invalid register %u\n", r1);
8450			if (r2 != 0)
8451				err += efunc(pc, "non-zero reserved bits\n");
8452			if (rd >= nregs)
8453				err += efunc(pc, "invalid register %u\n", rd);
8454			if (rd == 0)
8455				err += efunc(pc, "cannot write to 0 address\n");
8456			break;
8457		case DIF_OP_CMP:
8458		case DIF_OP_SCMP:
8459			if (r1 >= nregs)
8460				err += efunc(pc, "invalid register %u\n", r1);
8461			if (r2 >= nregs)
8462				err += efunc(pc, "invalid register %u\n", r2);
8463			if (rd != 0)
8464				err += efunc(pc, "non-zero reserved bits\n");
8465			break;
8466		case DIF_OP_TST:
8467			if (r1 >= nregs)
8468				err += efunc(pc, "invalid register %u\n", r1);
8469			if (r2 != 0 || rd != 0)
8470				err += efunc(pc, "non-zero reserved bits\n");
8471			break;
8472		case DIF_OP_BA:
8473		case DIF_OP_BE:
8474		case DIF_OP_BNE:
8475		case DIF_OP_BG:
8476		case DIF_OP_BGU:
8477		case DIF_OP_BGE:
8478		case DIF_OP_BGEU:
8479		case DIF_OP_BL:
8480		case DIF_OP_BLU:
8481		case DIF_OP_BLE:
8482		case DIF_OP_BLEU:
8483			if (label >= dp->dtdo_len) {
8484				err += efunc(pc, "invalid branch target %u\n",
8485				    label);
8486			}
8487			if (label <= pc) {
8488				err += efunc(pc, "backward branch to %u\n",
8489				    label);
8490			}
8491			break;
8492		case DIF_OP_RET:
8493			if (r1 != 0 || r2 != 0)
8494				err += efunc(pc, "non-zero reserved bits\n");
8495			if (rd >= nregs)
8496				err += efunc(pc, "invalid register %u\n", rd);
8497			break;
8498		case DIF_OP_NOP:
8499		case DIF_OP_POPTS:
8500		case DIF_OP_FLUSHTS:
8501			if (r1 != 0 || r2 != 0 || rd != 0)
8502				err += efunc(pc, "non-zero reserved bits\n");
8503			break;
8504		case DIF_OP_SETX:
8505			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8506				err += efunc(pc, "invalid integer ref %u\n",
8507				    DIF_INSTR_INTEGER(instr));
8508			}
8509			if (rd >= nregs)
8510				err += efunc(pc, "invalid register %u\n", rd);
8511			if (rd == 0)
8512				err += efunc(pc, "cannot write to %r0\n");
8513			break;
8514		case DIF_OP_SETS:
8515			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8516				err += efunc(pc, "invalid string ref %u\n",
8517				    DIF_INSTR_STRING(instr));
8518			}
8519			if (rd >= nregs)
8520				err += efunc(pc, "invalid register %u\n", rd);
8521			if (rd == 0)
8522				err += efunc(pc, "cannot write to %r0\n");
8523			break;
8524		case DIF_OP_LDGA:
8525		case DIF_OP_LDTA:
8526			if (r1 > DIF_VAR_ARRAY_MAX)
8527				err += efunc(pc, "invalid array %u\n", r1);
8528			if (r2 >= nregs)
8529				err += efunc(pc, "invalid register %u\n", r2);
8530			if (rd >= nregs)
8531				err += efunc(pc, "invalid register %u\n", rd);
8532			if (rd == 0)
8533				err += efunc(pc, "cannot write to %r0\n");
8534			break;
8535		case DIF_OP_LDGS:
8536		case DIF_OP_LDTS:
8537		case DIF_OP_LDLS:
8538		case DIF_OP_LDGAA:
8539		case DIF_OP_LDTAA:
8540			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8541				err += efunc(pc, "invalid variable %u\n", v);
8542			if (rd >= nregs)
8543				err += efunc(pc, "invalid register %u\n", rd);
8544			if (rd == 0)
8545				err += efunc(pc, "cannot write to %r0\n");
8546			break;
8547		case DIF_OP_STGS:
8548		case DIF_OP_STTS:
8549		case DIF_OP_STLS:
8550		case DIF_OP_STGAA:
8551		case DIF_OP_STTAA:
8552			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8553				err += efunc(pc, "invalid variable %u\n", v);
8554			if (rs >= nregs)
8555				err += efunc(pc, "invalid register %u\n", rd);
8556			break;
8557		case DIF_OP_CALL:
8558			if (subr > DIF_SUBR_MAX)
8559				err += efunc(pc, "invalid subr %u\n", subr);
8560			if (rd >= nregs)
8561				err += efunc(pc, "invalid register %u\n", rd);
8562			if (rd == 0)
8563				err += efunc(pc, "cannot write to %r0\n");
8564
8565			if (subr == DIF_SUBR_COPYOUT ||
8566			    subr == DIF_SUBR_COPYOUTSTR) {
8567				dp->dtdo_destructive = 1;
8568			}
8569			break;
8570		case DIF_OP_PUSHTR:
8571			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8572				err += efunc(pc, "invalid ref type %u\n", type);
8573			if (r2 >= nregs)
8574				err += efunc(pc, "invalid register %u\n", r2);
8575			if (rs >= nregs)
8576				err += efunc(pc, "invalid register %u\n", rs);
8577			break;
8578		case DIF_OP_PUSHTV:
8579			if (type != DIF_TYPE_CTF)
8580				err += efunc(pc, "invalid val type %u\n", type);
8581			if (r2 >= nregs)
8582				err += efunc(pc, "invalid register %u\n", r2);
8583			if (rs >= nregs)
8584				err += efunc(pc, "invalid register %u\n", rs);
8585			break;
8586		default:
8587			err += efunc(pc, "invalid opcode %u\n",
8588			    DIF_INSTR_OP(instr));
8589		}
8590	}
8591
8592	if (dp->dtdo_len != 0 &&
8593	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8594		err += efunc(dp->dtdo_len - 1,
8595		    "expected 'ret' as last DIF instruction\n");
8596	}
8597
8598	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8599		/*
8600		 * If we're not returning by reference, the size must be either
8601		 * 0 or the size of one of the base types.
8602		 */
8603		switch (dp->dtdo_rtype.dtdt_size) {
8604		case 0:
8605		case sizeof (uint8_t):
8606		case sizeof (uint16_t):
8607		case sizeof (uint32_t):
8608		case sizeof (uint64_t):
8609			break;
8610
8611		default:
8612			err += efunc(dp->dtdo_len - 1, "bad return size");
8613		}
8614	}
8615
8616	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8617		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8618		dtrace_diftype_t *vt, *et;
8619		uint_t id, ndx;
8620
8621		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8622		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8623		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8624			err += efunc(i, "unrecognized variable scope %d\n",
8625			    v->dtdv_scope);
8626			break;
8627		}
8628
8629		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8630		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8631			err += efunc(i, "unrecognized variable type %d\n",
8632			    v->dtdv_kind);
8633			break;
8634		}
8635
8636		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8637			err += efunc(i, "%d exceeds variable id limit\n", id);
8638			break;
8639		}
8640
8641		if (id < DIF_VAR_OTHER_UBASE)
8642			continue;
8643
8644		/*
8645		 * For user-defined variables, we need to check that this
8646		 * definition is identical to any previous definition that we
8647		 * encountered.
8648		 */
8649		ndx = id - DIF_VAR_OTHER_UBASE;
8650
8651		switch (v->dtdv_scope) {
8652		case DIFV_SCOPE_GLOBAL:
8653			if (ndx < vstate->dtvs_nglobals) {
8654				dtrace_statvar_t *svar;
8655
8656				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8657					existing = &svar->dtsv_var;
8658			}
8659
8660			break;
8661
8662		case DIFV_SCOPE_THREAD:
8663			if (ndx < vstate->dtvs_ntlocals)
8664				existing = &vstate->dtvs_tlocals[ndx];
8665			break;
8666
8667		case DIFV_SCOPE_LOCAL:
8668			if (ndx < vstate->dtvs_nlocals) {
8669				dtrace_statvar_t *svar;
8670
8671				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8672					existing = &svar->dtsv_var;
8673			}
8674
8675			break;
8676		}
8677
8678		vt = &v->dtdv_type;
8679
8680		if (vt->dtdt_flags & DIF_TF_BYREF) {
8681			if (vt->dtdt_size == 0) {
8682				err += efunc(i, "zero-sized variable\n");
8683				break;
8684			}
8685
8686			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8687			    vt->dtdt_size > dtrace_global_maxsize) {
8688				err += efunc(i, "oversized by-ref global\n");
8689				break;
8690			}
8691		}
8692
8693		if (existing == NULL || existing->dtdv_id == 0)
8694			continue;
8695
8696		ASSERT(existing->dtdv_id == v->dtdv_id);
8697		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8698
8699		if (existing->dtdv_kind != v->dtdv_kind)
8700			err += efunc(i, "%d changed variable kind\n", id);
8701
8702		et = &existing->dtdv_type;
8703
8704		if (vt->dtdt_flags != et->dtdt_flags) {
8705			err += efunc(i, "%d changed variable type flags\n", id);
8706			break;
8707		}
8708
8709		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8710			err += efunc(i, "%d changed variable type size\n", id);
8711			break;
8712		}
8713	}
8714
8715	return (err);
8716}
8717
8718#if defined(sun)
8719/*
8720 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8721 * are much more constrained than normal DIFOs.  Specifically, they may
8722 * not:
8723 *
8724 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8725 *    miscellaneous string routines
8726 * 2. Access DTrace variables other than the args[] array, and the
8727 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8728 * 3. Have thread-local variables.
8729 * 4. Have dynamic variables.
8730 */
8731static int
8732dtrace_difo_validate_helper(dtrace_difo_t *dp)
8733{
8734	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8735	int err = 0;
8736	uint_t pc;
8737
8738	for (pc = 0; pc < dp->dtdo_len; pc++) {
8739		dif_instr_t instr = dp->dtdo_buf[pc];
8740
8741		uint_t v = DIF_INSTR_VAR(instr);
8742		uint_t subr = DIF_INSTR_SUBR(instr);
8743		uint_t op = DIF_INSTR_OP(instr);
8744
8745		switch (op) {
8746		case DIF_OP_OR:
8747		case DIF_OP_XOR:
8748		case DIF_OP_AND:
8749		case DIF_OP_SLL:
8750		case DIF_OP_SRL:
8751		case DIF_OP_SRA:
8752		case DIF_OP_SUB:
8753		case DIF_OP_ADD:
8754		case DIF_OP_MUL:
8755		case DIF_OP_SDIV:
8756		case DIF_OP_UDIV:
8757		case DIF_OP_SREM:
8758		case DIF_OP_UREM:
8759		case DIF_OP_COPYS:
8760		case DIF_OP_NOT:
8761		case DIF_OP_MOV:
8762		case DIF_OP_RLDSB:
8763		case DIF_OP_RLDSH:
8764		case DIF_OP_RLDSW:
8765		case DIF_OP_RLDUB:
8766		case DIF_OP_RLDUH:
8767		case DIF_OP_RLDUW:
8768		case DIF_OP_RLDX:
8769		case DIF_OP_ULDSB:
8770		case DIF_OP_ULDSH:
8771		case DIF_OP_ULDSW:
8772		case DIF_OP_ULDUB:
8773		case DIF_OP_ULDUH:
8774		case DIF_OP_ULDUW:
8775		case DIF_OP_ULDX:
8776		case DIF_OP_STB:
8777		case DIF_OP_STH:
8778		case DIF_OP_STW:
8779		case DIF_OP_STX:
8780		case DIF_OP_ALLOCS:
8781		case DIF_OP_CMP:
8782		case DIF_OP_SCMP:
8783		case DIF_OP_TST:
8784		case DIF_OP_BA:
8785		case DIF_OP_BE:
8786		case DIF_OP_BNE:
8787		case DIF_OP_BG:
8788		case DIF_OP_BGU:
8789		case DIF_OP_BGE:
8790		case DIF_OP_BGEU:
8791		case DIF_OP_BL:
8792		case DIF_OP_BLU:
8793		case DIF_OP_BLE:
8794		case DIF_OP_BLEU:
8795		case DIF_OP_RET:
8796		case DIF_OP_NOP:
8797		case DIF_OP_POPTS:
8798		case DIF_OP_FLUSHTS:
8799		case DIF_OP_SETX:
8800		case DIF_OP_SETS:
8801		case DIF_OP_LDGA:
8802		case DIF_OP_LDLS:
8803		case DIF_OP_STGS:
8804		case DIF_OP_STLS:
8805		case DIF_OP_PUSHTR:
8806		case DIF_OP_PUSHTV:
8807			break;
8808
8809		case DIF_OP_LDGS:
8810			if (v >= DIF_VAR_OTHER_UBASE)
8811				break;
8812
8813			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8814				break;
8815
8816			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8817			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8818			    v == DIF_VAR_EXECARGS ||
8819			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8820			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8821				break;
8822
8823			err += efunc(pc, "illegal variable %u\n", v);
8824			break;
8825
8826		case DIF_OP_LDTA:
8827		case DIF_OP_LDTS:
8828		case DIF_OP_LDGAA:
8829		case DIF_OP_LDTAA:
8830			err += efunc(pc, "illegal dynamic variable load\n");
8831			break;
8832
8833		case DIF_OP_STTS:
8834		case DIF_OP_STGAA:
8835		case DIF_OP_STTAA:
8836			err += efunc(pc, "illegal dynamic variable store\n");
8837			break;
8838
8839		case DIF_OP_CALL:
8840			if (subr == DIF_SUBR_ALLOCA ||
8841			    subr == DIF_SUBR_BCOPY ||
8842			    subr == DIF_SUBR_COPYIN ||
8843			    subr == DIF_SUBR_COPYINTO ||
8844			    subr == DIF_SUBR_COPYINSTR ||
8845			    subr == DIF_SUBR_INDEX ||
8846			    subr == DIF_SUBR_INET_NTOA ||
8847			    subr == DIF_SUBR_INET_NTOA6 ||
8848			    subr == DIF_SUBR_INET_NTOP ||
8849			    subr == DIF_SUBR_LLTOSTR ||
8850			    subr == DIF_SUBR_RINDEX ||
8851			    subr == DIF_SUBR_STRCHR ||
8852			    subr == DIF_SUBR_STRJOIN ||
8853			    subr == DIF_SUBR_STRRCHR ||
8854			    subr == DIF_SUBR_STRSTR ||
8855			    subr == DIF_SUBR_HTONS ||
8856			    subr == DIF_SUBR_HTONL ||
8857			    subr == DIF_SUBR_HTONLL ||
8858			    subr == DIF_SUBR_NTOHS ||
8859			    subr == DIF_SUBR_NTOHL ||
8860			    subr == DIF_SUBR_NTOHLL ||
8861			    subr == DIF_SUBR_MEMREF ||
8862			    subr == DIF_SUBR_TYPEREF)
8863				break;
8864
8865			err += efunc(pc, "invalid subr %u\n", subr);
8866			break;
8867
8868		default:
8869			err += efunc(pc, "invalid opcode %u\n",
8870			    DIF_INSTR_OP(instr));
8871		}
8872	}
8873
8874	return (err);
8875}
8876#endif
8877
8878/*
8879 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8880 * basis; 0 if not.
8881 */
8882static int
8883dtrace_difo_cacheable(dtrace_difo_t *dp)
8884{
8885	int i;
8886
8887	if (dp == NULL)
8888		return (0);
8889
8890	for (i = 0; i < dp->dtdo_varlen; i++) {
8891		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8892
8893		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8894			continue;
8895
8896		switch (v->dtdv_id) {
8897		case DIF_VAR_CURTHREAD:
8898		case DIF_VAR_PID:
8899		case DIF_VAR_TID:
8900		case DIF_VAR_EXECARGS:
8901		case DIF_VAR_EXECNAME:
8902		case DIF_VAR_ZONENAME:
8903			break;
8904
8905		default:
8906			return (0);
8907		}
8908	}
8909
8910	/*
8911	 * This DIF object may be cacheable.  Now we need to look for any
8912	 * array loading instructions, any memory loading instructions, or
8913	 * any stores to thread-local variables.
8914	 */
8915	for (i = 0; i < dp->dtdo_len; i++) {
8916		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8917
8918		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8919		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8920		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8921		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8922			return (0);
8923	}
8924
8925	return (1);
8926}
8927
8928static void
8929dtrace_difo_hold(dtrace_difo_t *dp)
8930{
8931	int i;
8932
8933	ASSERT(MUTEX_HELD(&dtrace_lock));
8934
8935	dp->dtdo_refcnt++;
8936	ASSERT(dp->dtdo_refcnt != 0);
8937
8938	/*
8939	 * We need to check this DIF object for references to the variable
8940	 * DIF_VAR_VTIMESTAMP.
8941	 */
8942	for (i = 0; i < dp->dtdo_varlen; i++) {
8943		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8944
8945		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8946			continue;
8947
8948		if (dtrace_vtime_references++ == 0)
8949			dtrace_vtime_enable();
8950	}
8951}
8952
8953/*
8954 * This routine calculates the dynamic variable chunksize for a given DIF
8955 * object.  The calculation is not fool-proof, and can probably be tricked by
8956 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8957 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8958 * if a dynamic variable size exceeds the chunksize.
8959 */
8960static void
8961dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8962{
8963	uint64_t sval = 0;
8964	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8965	const dif_instr_t *text = dp->dtdo_buf;
8966	uint_t pc, srd = 0;
8967	uint_t ttop = 0;
8968	size_t size, ksize;
8969	uint_t id, i;
8970
8971	for (pc = 0; pc < dp->dtdo_len; pc++) {
8972		dif_instr_t instr = text[pc];
8973		uint_t op = DIF_INSTR_OP(instr);
8974		uint_t rd = DIF_INSTR_RD(instr);
8975		uint_t r1 = DIF_INSTR_R1(instr);
8976		uint_t nkeys = 0;
8977		uchar_t scope = 0;
8978
8979		dtrace_key_t *key = tupregs;
8980
8981		switch (op) {
8982		case DIF_OP_SETX:
8983			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8984			srd = rd;
8985			continue;
8986
8987		case DIF_OP_STTS:
8988			key = &tupregs[DIF_DTR_NREGS];
8989			key[0].dttk_size = 0;
8990			key[1].dttk_size = 0;
8991			nkeys = 2;
8992			scope = DIFV_SCOPE_THREAD;
8993			break;
8994
8995		case DIF_OP_STGAA:
8996		case DIF_OP_STTAA:
8997			nkeys = ttop;
8998
8999			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9000				key[nkeys++].dttk_size = 0;
9001
9002			key[nkeys++].dttk_size = 0;
9003
9004			if (op == DIF_OP_STTAA) {
9005				scope = DIFV_SCOPE_THREAD;
9006			} else {
9007				scope = DIFV_SCOPE_GLOBAL;
9008			}
9009
9010			break;
9011
9012		case DIF_OP_PUSHTR:
9013			if (ttop == DIF_DTR_NREGS)
9014				return;
9015
9016			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9017				/*
9018				 * If the register for the size of the "pushtr"
9019				 * is %r0 (or the value is 0) and the type is
9020				 * a string, we'll use the system-wide default
9021				 * string size.
9022				 */
9023				tupregs[ttop++].dttk_size =
9024				    dtrace_strsize_default;
9025			} else {
9026				if (srd == 0)
9027					return;
9028
9029				tupregs[ttop++].dttk_size = sval;
9030			}
9031
9032			break;
9033
9034		case DIF_OP_PUSHTV:
9035			if (ttop == DIF_DTR_NREGS)
9036				return;
9037
9038			tupregs[ttop++].dttk_size = 0;
9039			break;
9040
9041		case DIF_OP_FLUSHTS:
9042			ttop = 0;
9043			break;
9044
9045		case DIF_OP_POPTS:
9046			if (ttop != 0)
9047				ttop--;
9048			break;
9049		}
9050
9051		sval = 0;
9052		srd = 0;
9053
9054		if (nkeys == 0)
9055			continue;
9056
9057		/*
9058		 * We have a dynamic variable allocation; calculate its size.
9059		 */
9060		for (ksize = 0, i = 0; i < nkeys; i++)
9061			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9062
9063		size = sizeof (dtrace_dynvar_t);
9064		size += sizeof (dtrace_key_t) * (nkeys - 1);
9065		size += ksize;
9066
9067		/*
9068		 * Now we need to determine the size of the stored data.
9069		 */
9070		id = DIF_INSTR_VAR(instr);
9071
9072		for (i = 0; i < dp->dtdo_varlen; i++) {
9073			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9074
9075			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9076				size += v->dtdv_type.dtdt_size;
9077				break;
9078			}
9079		}
9080
9081		if (i == dp->dtdo_varlen)
9082			return;
9083
9084		/*
9085		 * We have the size.  If this is larger than the chunk size
9086		 * for our dynamic variable state, reset the chunk size.
9087		 */
9088		size = P2ROUNDUP(size, sizeof (uint64_t));
9089
9090		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9091			vstate->dtvs_dynvars.dtds_chunksize = size;
9092	}
9093}
9094
9095static void
9096dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9097{
9098	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9099	uint_t id;
9100
9101	ASSERT(MUTEX_HELD(&dtrace_lock));
9102	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9103
9104	for (i = 0; i < dp->dtdo_varlen; i++) {
9105		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9106		dtrace_statvar_t *svar, ***svarp = NULL;
9107		size_t dsize = 0;
9108		uint8_t scope = v->dtdv_scope;
9109		int *np = NULL;
9110
9111		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9112			continue;
9113
9114		id -= DIF_VAR_OTHER_UBASE;
9115
9116		switch (scope) {
9117		case DIFV_SCOPE_THREAD:
9118			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9119				dtrace_difv_t *tlocals;
9120
9121				if ((ntlocals = (otlocals << 1)) == 0)
9122					ntlocals = 1;
9123
9124				osz = otlocals * sizeof (dtrace_difv_t);
9125				nsz = ntlocals * sizeof (dtrace_difv_t);
9126
9127				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9128
9129				if (osz != 0) {
9130					bcopy(vstate->dtvs_tlocals,
9131					    tlocals, osz);
9132					kmem_free(vstate->dtvs_tlocals, osz);
9133				}
9134
9135				vstate->dtvs_tlocals = tlocals;
9136				vstate->dtvs_ntlocals = ntlocals;
9137			}
9138
9139			vstate->dtvs_tlocals[id] = *v;
9140			continue;
9141
9142		case DIFV_SCOPE_LOCAL:
9143			np = &vstate->dtvs_nlocals;
9144			svarp = &vstate->dtvs_locals;
9145
9146			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9147				dsize = NCPU * (v->dtdv_type.dtdt_size +
9148				    sizeof (uint64_t));
9149			else
9150				dsize = NCPU * sizeof (uint64_t);
9151
9152			break;
9153
9154		case DIFV_SCOPE_GLOBAL:
9155			np = &vstate->dtvs_nglobals;
9156			svarp = &vstate->dtvs_globals;
9157
9158			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9159				dsize = v->dtdv_type.dtdt_size +
9160				    sizeof (uint64_t);
9161
9162			break;
9163
9164		default:
9165			ASSERT(0);
9166		}
9167
9168		while (id >= (oldsvars = *np)) {
9169			dtrace_statvar_t **statics;
9170			int newsvars, oldsize, newsize;
9171
9172			if ((newsvars = (oldsvars << 1)) == 0)
9173				newsvars = 1;
9174
9175			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9176			newsize = newsvars * sizeof (dtrace_statvar_t *);
9177
9178			statics = kmem_zalloc(newsize, KM_SLEEP);
9179
9180			if (oldsize != 0) {
9181				bcopy(*svarp, statics, oldsize);
9182				kmem_free(*svarp, oldsize);
9183			}
9184
9185			*svarp = statics;
9186			*np = newsvars;
9187		}
9188
9189		if ((svar = (*svarp)[id]) == NULL) {
9190			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9191			svar->dtsv_var = *v;
9192
9193			if ((svar->dtsv_size = dsize) != 0) {
9194				svar->dtsv_data = (uint64_t)(uintptr_t)
9195				    kmem_zalloc(dsize, KM_SLEEP);
9196			}
9197
9198			(*svarp)[id] = svar;
9199		}
9200
9201		svar->dtsv_refcnt++;
9202	}
9203
9204	dtrace_difo_chunksize(dp, vstate);
9205	dtrace_difo_hold(dp);
9206}
9207
9208#if defined(sun)
9209static dtrace_difo_t *
9210dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9211{
9212	dtrace_difo_t *new;
9213	size_t sz;
9214
9215	ASSERT(dp->dtdo_buf != NULL);
9216	ASSERT(dp->dtdo_refcnt != 0);
9217
9218	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9219
9220	ASSERT(dp->dtdo_buf != NULL);
9221	sz = dp->dtdo_len * sizeof (dif_instr_t);
9222	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9223	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9224	new->dtdo_len = dp->dtdo_len;
9225
9226	if (dp->dtdo_strtab != NULL) {
9227		ASSERT(dp->dtdo_strlen != 0);
9228		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9229		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9230		new->dtdo_strlen = dp->dtdo_strlen;
9231	}
9232
9233	if (dp->dtdo_inttab != NULL) {
9234		ASSERT(dp->dtdo_intlen != 0);
9235		sz = dp->dtdo_intlen * sizeof (uint64_t);
9236		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9237		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9238		new->dtdo_intlen = dp->dtdo_intlen;
9239	}
9240
9241	if (dp->dtdo_vartab != NULL) {
9242		ASSERT(dp->dtdo_varlen != 0);
9243		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9244		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9245		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9246		new->dtdo_varlen = dp->dtdo_varlen;
9247	}
9248
9249	dtrace_difo_init(new, vstate);
9250	return (new);
9251}
9252#endif
9253
9254static void
9255dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9256{
9257	int i;
9258
9259	ASSERT(dp->dtdo_refcnt == 0);
9260
9261	for (i = 0; i < dp->dtdo_varlen; i++) {
9262		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9263		dtrace_statvar_t *svar, **svarp = NULL;
9264		uint_t id;
9265		uint8_t scope = v->dtdv_scope;
9266		int *np = NULL;
9267
9268		switch (scope) {
9269		case DIFV_SCOPE_THREAD:
9270			continue;
9271
9272		case DIFV_SCOPE_LOCAL:
9273			np = &vstate->dtvs_nlocals;
9274			svarp = vstate->dtvs_locals;
9275			break;
9276
9277		case DIFV_SCOPE_GLOBAL:
9278			np = &vstate->dtvs_nglobals;
9279			svarp = vstate->dtvs_globals;
9280			break;
9281
9282		default:
9283			ASSERT(0);
9284		}
9285
9286		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9287			continue;
9288
9289		id -= DIF_VAR_OTHER_UBASE;
9290		ASSERT(id < *np);
9291
9292		svar = svarp[id];
9293		ASSERT(svar != NULL);
9294		ASSERT(svar->dtsv_refcnt > 0);
9295
9296		if (--svar->dtsv_refcnt > 0)
9297			continue;
9298
9299		if (svar->dtsv_size != 0) {
9300			ASSERT(svar->dtsv_data != 0);
9301			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9302			    svar->dtsv_size);
9303		}
9304
9305		kmem_free(svar, sizeof (dtrace_statvar_t));
9306		svarp[id] = NULL;
9307	}
9308
9309	if (dp->dtdo_buf != NULL)
9310		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9311	if (dp->dtdo_inttab != NULL)
9312		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9313	if (dp->dtdo_strtab != NULL)
9314		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9315	if (dp->dtdo_vartab != NULL)
9316		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9317
9318	kmem_free(dp, sizeof (dtrace_difo_t));
9319}
9320
9321static void
9322dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9323{
9324	int i;
9325
9326	ASSERT(MUTEX_HELD(&dtrace_lock));
9327	ASSERT(dp->dtdo_refcnt != 0);
9328
9329	for (i = 0; i < dp->dtdo_varlen; i++) {
9330		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9331
9332		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9333			continue;
9334
9335		ASSERT(dtrace_vtime_references > 0);
9336		if (--dtrace_vtime_references == 0)
9337			dtrace_vtime_disable();
9338	}
9339
9340	if (--dp->dtdo_refcnt == 0)
9341		dtrace_difo_destroy(dp, vstate);
9342}
9343
9344/*
9345 * DTrace Format Functions
9346 */
9347static uint16_t
9348dtrace_format_add(dtrace_state_t *state, char *str)
9349{
9350	char *fmt, **new;
9351	uint16_t ndx, len = strlen(str) + 1;
9352
9353	fmt = kmem_zalloc(len, KM_SLEEP);
9354	bcopy(str, fmt, len);
9355
9356	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9357		if (state->dts_formats[ndx] == NULL) {
9358			state->dts_formats[ndx] = fmt;
9359			return (ndx + 1);
9360		}
9361	}
9362
9363	if (state->dts_nformats == USHRT_MAX) {
9364		/*
9365		 * This is only likely if a denial-of-service attack is being
9366		 * attempted.  As such, it's okay to fail silently here.
9367		 */
9368		kmem_free(fmt, len);
9369		return (0);
9370	}
9371
9372	/*
9373	 * For simplicity, we always resize the formats array to be exactly the
9374	 * number of formats.
9375	 */
9376	ndx = state->dts_nformats++;
9377	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9378
9379	if (state->dts_formats != NULL) {
9380		ASSERT(ndx != 0);
9381		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9382		kmem_free(state->dts_formats, ndx * sizeof (char *));
9383	}
9384
9385	state->dts_formats = new;
9386	state->dts_formats[ndx] = fmt;
9387
9388	return (ndx + 1);
9389}
9390
9391static void
9392dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9393{
9394	char *fmt;
9395
9396	ASSERT(state->dts_formats != NULL);
9397	ASSERT(format <= state->dts_nformats);
9398	ASSERT(state->dts_formats[format - 1] != NULL);
9399
9400	fmt = state->dts_formats[format - 1];
9401	kmem_free(fmt, strlen(fmt) + 1);
9402	state->dts_formats[format - 1] = NULL;
9403}
9404
9405static void
9406dtrace_format_destroy(dtrace_state_t *state)
9407{
9408	int i;
9409
9410	if (state->dts_nformats == 0) {
9411		ASSERT(state->dts_formats == NULL);
9412		return;
9413	}
9414
9415	ASSERT(state->dts_formats != NULL);
9416
9417	for (i = 0; i < state->dts_nformats; i++) {
9418		char *fmt = state->dts_formats[i];
9419
9420		if (fmt == NULL)
9421			continue;
9422
9423		kmem_free(fmt, strlen(fmt) + 1);
9424	}
9425
9426	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9427	state->dts_nformats = 0;
9428	state->dts_formats = NULL;
9429}
9430
9431/*
9432 * DTrace Predicate Functions
9433 */
9434static dtrace_predicate_t *
9435dtrace_predicate_create(dtrace_difo_t *dp)
9436{
9437	dtrace_predicate_t *pred;
9438
9439	ASSERT(MUTEX_HELD(&dtrace_lock));
9440	ASSERT(dp->dtdo_refcnt != 0);
9441
9442	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9443	pred->dtp_difo = dp;
9444	pred->dtp_refcnt = 1;
9445
9446	if (!dtrace_difo_cacheable(dp))
9447		return (pred);
9448
9449	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9450		/*
9451		 * This is only theoretically possible -- we have had 2^32
9452		 * cacheable predicates on this machine.  We cannot allow any
9453		 * more predicates to become cacheable:  as unlikely as it is,
9454		 * there may be a thread caching a (now stale) predicate cache
9455		 * ID. (N.B.: the temptation is being successfully resisted to
9456		 * have this cmn_err() "Holy shit -- we executed this code!")
9457		 */
9458		return (pred);
9459	}
9460
9461	pred->dtp_cacheid = dtrace_predcache_id++;
9462
9463	return (pred);
9464}
9465
9466static void
9467dtrace_predicate_hold(dtrace_predicate_t *pred)
9468{
9469	ASSERT(MUTEX_HELD(&dtrace_lock));
9470	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9471	ASSERT(pred->dtp_refcnt > 0);
9472
9473	pred->dtp_refcnt++;
9474}
9475
9476static void
9477dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9478{
9479	dtrace_difo_t *dp = pred->dtp_difo;
9480
9481	ASSERT(MUTEX_HELD(&dtrace_lock));
9482	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9483	ASSERT(pred->dtp_refcnt > 0);
9484
9485	if (--pred->dtp_refcnt == 0) {
9486		dtrace_difo_release(pred->dtp_difo, vstate);
9487		kmem_free(pred, sizeof (dtrace_predicate_t));
9488	}
9489}
9490
9491/*
9492 * DTrace Action Description Functions
9493 */
9494static dtrace_actdesc_t *
9495dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9496    uint64_t uarg, uint64_t arg)
9497{
9498	dtrace_actdesc_t *act;
9499
9500#if defined(sun)
9501	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9502	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9503#endif
9504
9505	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9506	act->dtad_kind = kind;
9507	act->dtad_ntuple = ntuple;
9508	act->dtad_uarg = uarg;
9509	act->dtad_arg = arg;
9510	act->dtad_refcnt = 1;
9511
9512	return (act);
9513}
9514
9515static void
9516dtrace_actdesc_hold(dtrace_actdesc_t *act)
9517{
9518	ASSERT(act->dtad_refcnt >= 1);
9519	act->dtad_refcnt++;
9520}
9521
9522static void
9523dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9524{
9525	dtrace_actkind_t kind = act->dtad_kind;
9526	dtrace_difo_t *dp;
9527
9528	ASSERT(act->dtad_refcnt >= 1);
9529
9530	if (--act->dtad_refcnt != 0)
9531		return;
9532
9533	if ((dp = act->dtad_difo) != NULL)
9534		dtrace_difo_release(dp, vstate);
9535
9536	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9537		char *str = (char *)(uintptr_t)act->dtad_arg;
9538
9539#if defined(sun)
9540		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9541		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9542#endif
9543
9544		if (str != NULL)
9545			kmem_free(str, strlen(str) + 1);
9546	}
9547
9548	kmem_free(act, sizeof (dtrace_actdesc_t));
9549}
9550
9551/*
9552 * DTrace ECB Functions
9553 */
9554static dtrace_ecb_t *
9555dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9556{
9557	dtrace_ecb_t *ecb;
9558	dtrace_epid_t epid;
9559
9560	ASSERT(MUTEX_HELD(&dtrace_lock));
9561
9562	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9563	ecb->dte_predicate = NULL;
9564	ecb->dte_probe = probe;
9565
9566	/*
9567	 * The default size is the size of the default action: recording
9568	 * the epid.
9569	 */
9570	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9571	ecb->dte_alignment = sizeof (dtrace_epid_t);
9572
9573	epid = state->dts_epid++;
9574
9575	if (epid - 1 >= state->dts_necbs) {
9576		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9577		int necbs = state->dts_necbs << 1;
9578
9579		ASSERT(epid == state->dts_necbs + 1);
9580
9581		if (necbs == 0) {
9582			ASSERT(oecbs == NULL);
9583			necbs = 1;
9584		}
9585
9586		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9587
9588		if (oecbs != NULL)
9589			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9590
9591		dtrace_membar_producer();
9592		state->dts_ecbs = ecbs;
9593
9594		if (oecbs != NULL) {
9595			/*
9596			 * If this state is active, we must dtrace_sync()
9597			 * before we can free the old dts_ecbs array:  we're
9598			 * coming in hot, and there may be active ring
9599			 * buffer processing (which indexes into the dts_ecbs
9600			 * array) on another CPU.
9601			 */
9602			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9603				dtrace_sync();
9604
9605			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9606		}
9607
9608		dtrace_membar_producer();
9609		state->dts_necbs = necbs;
9610	}
9611
9612	ecb->dte_state = state;
9613
9614	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9615	dtrace_membar_producer();
9616	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9617
9618	return (ecb);
9619}
9620
9621static void
9622dtrace_ecb_enable(dtrace_ecb_t *ecb)
9623{
9624	dtrace_probe_t *probe = ecb->dte_probe;
9625
9626	ASSERT(MUTEX_HELD(&cpu_lock));
9627	ASSERT(MUTEX_HELD(&dtrace_lock));
9628	ASSERT(ecb->dte_next == NULL);
9629
9630	if (probe == NULL) {
9631		/*
9632		 * This is the NULL probe -- there's nothing to do.
9633		 */
9634		return;
9635	}
9636
9637	if (probe->dtpr_ecb == NULL) {
9638		dtrace_provider_t *prov = probe->dtpr_provider;
9639
9640		/*
9641		 * We're the first ECB on this probe.
9642		 */
9643		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9644
9645		if (ecb->dte_predicate != NULL)
9646			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9647
9648		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9649		    probe->dtpr_id, probe->dtpr_arg);
9650	} else {
9651		/*
9652		 * This probe is already active.  Swing the last pointer to
9653		 * point to the new ECB, and issue a dtrace_sync() to assure
9654		 * that all CPUs have seen the change.
9655		 */
9656		ASSERT(probe->dtpr_ecb_last != NULL);
9657		probe->dtpr_ecb_last->dte_next = ecb;
9658		probe->dtpr_ecb_last = ecb;
9659		probe->dtpr_predcache = 0;
9660
9661		dtrace_sync();
9662	}
9663}
9664
9665static void
9666dtrace_ecb_resize(dtrace_ecb_t *ecb)
9667{
9668	uint32_t maxalign = sizeof (dtrace_epid_t);
9669	uint32_t align = sizeof (uint8_t), offs, diff;
9670	dtrace_action_t *act;
9671	int wastuple = 0;
9672	uint32_t aggbase = UINT32_MAX;
9673	dtrace_state_t *state = ecb->dte_state;
9674
9675	/*
9676	 * If we record anything, we always record the epid.  (And we always
9677	 * record it first.)
9678	 */
9679	offs = sizeof (dtrace_epid_t);
9680	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9681
9682	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9683		dtrace_recdesc_t *rec = &act->dta_rec;
9684
9685		if ((align = rec->dtrd_alignment) > maxalign)
9686			maxalign = align;
9687
9688		if (!wastuple && act->dta_intuple) {
9689			/*
9690			 * This is the first record in a tuple.  Align the
9691			 * offset to be at offset 4 in an 8-byte aligned
9692			 * block.
9693			 */
9694			diff = offs + sizeof (dtrace_aggid_t);
9695
9696			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9697				offs += sizeof (uint64_t) - diff;
9698
9699			aggbase = offs - sizeof (dtrace_aggid_t);
9700			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9701		}
9702
9703		/*LINTED*/
9704		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9705			/*
9706			 * The current offset is not properly aligned; align it.
9707			 */
9708			offs += align - diff;
9709		}
9710
9711		rec->dtrd_offset = offs;
9712
9713		if (offs + rec->dtrd_size > ecb->dte_needed) {
9714			ecb->dte_needed = offs + rec->dtrd_size;
9715
9716			if (ecb->dte_needed > state->dts_needed)
9717				state->dts_needed = ecb->dte_needed;
9718		}
9719
9720		if (DTRACEACT_ISAGG(act->dta_kind)) {
9721			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9722			dtrace_action_t *first = agg->dtag_first, *prev;
9723
9724			ASSERT(rec->dtrd_size != 0 && first != NULL);
9725			ASSERT(wastuple);
9726			ASSERT(aggbase != UINT32_MAX);
9727
9728			agg->dtag_base = aggbase;
9729
9730			while ((prev = first->dta_prev) != NULL &&
9731			    DTRACEACT_ISAGG(prev->dta_kind)) {
9732				agg = (dtrace_aggregation_t *)prev;
9733				first = agg->dtag_first;
9734			}
9735
9736			if (prev != NULL) {
9737				offs = prev->dta_rec.dtrd_offset +
9738				    prev->dta_rec.dtrd_size;
9739			} else {
9740				offs = sizeof (dtrace_epid_t);
9741			}
9742			wastuple = 0;
9743		} else {
9744			if (!act->dta_intuple)
9745				ecb->dte_size = offs + rec->dtrd_size;
9746
9747			offs += rec->dtrd_size;
9748		}
9749
9750		wastuple = act->dta_intuple;
9751	}
9752
9753	if ((act = ecb->dte_action) != NULL &&
9754	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9755	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9756		/*
9757		 * If the size is still sizeof (dtrace_epid_t), then all
9758		 * actions store no data; set the size to 0.
9759		 */
9760		ecb->dte_alignment = maxalign;
9761		ecb->dte_size = 0;
9762
9763		/*
9764		 * If the needed space is still sizeof (dtrace_epid_t), then
9765		 * all actions need no additional space; set the needed
9766		 * size to 0.
9767		 */
9768		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9769			ecb->dte_needed = 0;
9770
9771		return;
9772	}
9773
9774	/*
9775	 * Set our alignment, and make sure that the dte_size and dte_needed
9776	 * are aligned to the size of an EPID.
9777	 */
9778	ecb->dte_alignment = maxalign;
9779	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9780	    ~(sizeof (dtrace_epid_t) - 1);
9781	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9782	    ~(sizeof (dtrace_epid_t) - 1);
9783	ASSERT(ecb->dte_size <= ecb->dte_needed);
9784}
9785
9786static dtrace_action_t *
9787dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9788{
9789	dtrace_aggregation_t *agg;
9790	size_t size = sizeof (uint64_t);
9791	int ntuple = desc->dtad_ntuple;
9792	dtrace_action_t *act;
9793	dtrace_recdesc_t *frec;
9794	dtrace_aggid_t aggid;
9795	dtrace_state_t *state = ecb->dte_state;
9796
9797	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9798	agg->dtag_ecb = ecb;
9799
9800	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9801
9802	switch (desc->dtad_kind) {
9803	case DTRACEAGG_MIN:
9804		agg->dtag_initial = INT64_MAX;
9805		agg->dtag_aggregate = dtrace_aggregate_min;
9806		break;
9807
9808	case DTRACEAGG_MAX:
9809		agg->dtag_initial = INT64_MIN;
9810		agg->dtag_aggregate = dtrace_aggregate_max;
9811		break;
9812
9813	case DTRACEAGG_COUNT:
9814		agg->dtag_aggregate = dtrace_aggregate_count;
9815		break;
9816
9817	case DTRACEAGG_QUANTIZE:
9818		agg->dtag_aggregate = dtrace_aggregate_quantize;
9819		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9820		    sizeof (uint64_t);
9821		break;
9822
9823	case DTRACEAGG_LQUANTIZE: {
9824		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9825		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9826
9827		agg->dtag_initial = desc->dtad_arg;
9828		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9829
9830		if (step == 0 || levels == 0)
9831			goto err;
9832
9833		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9834		break;
9835	}
9836
9837	case DTRACEAGG_AVG:
9838		agg->dtag_aggregate = dtrace_aggregate_avg;
9839		size = sizeof (uint64_t) * 2;
9840		break;
9841
9842	case DTRACEAGG_STDDEV:
9843		agg->dtag_aggregate = dtrace_aggregate_stddev;
9844		size = sizeof (uint64_t) * 4;
9845		break;
9846
9847	case DTRACEAGG_SUM:
9848		agg->dtag_aggregate = dtrace_aggregate_sum;
9849		break;
9850
9851	default:
9852		goto err;
9853	}
9854
9855	agg->dtag_action.dta_rec.dtrd_size = size;
9856
9857	if (ntuple == 0)
9858		goto err;
9859
9860	/*
9861	 * We must make sure that we have enough actions for the n-tuple.
9862	 */
9863	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9864		if (DTRACEACT_ISAGG(act->dta_kind))
9865			break;
9866
9867		if (--ntuple == 0) {
9868			/*
9869			 * This is the action with which our n-tuple begins.
9870			 */
9871			agg->dtag_first = act;
9872			goto success;
9873		}
9874	}
9875
9876	/*
9877	 * This n-tuple is short by ntuple elements.  Return failure.
9878	 */
9879	ASSERT(ntuple != 0);
9880err:
9881	kmem_free(agg, sizeof (dtrace_aggregation_t));
9882	return (NULL);
9883
9884success:
9885	/*
9886	 * If the last action in the tuple has a size of zero, it's actually
9887	 * an expression argument for the aggregating action.
9888	 */
9889	ASSERT(ecb->dte_action_last != NULL);
9890	act = ecb->dte_action_last;
9891
9892	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9893		ASSERT(act->dta_difo != NULL);
9894
9895		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9896			agg->dtag_hasarg = 1;
9897	}
9898
9899	/*
9900	 * We need to allocate an id for this aggregation.
9901	 */
9902#if defined(sun)
9903	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9904	    VM_BESTFIT | VM_SLEEP);
9905#else
9906	aggid = alloc_unr(state->dts_aggid_arena);
9907#endif
9908
9909	if (aggid - 1 >= state->dts_naggregations) {
9910		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9911		dtrace_aggregation_t **aggs;
9912		int naggs = state->dts_naggregations << 1;
9913		int onaggs = state->dts_naggregations;
9914
9915		ASSERT(aggid == state->dts_naggregations + 1);
9916
9917		if (naggs == 0) {
9918			ASSERT(oaggs == NULL);
9919			naggs = 1;
9920		}
9921
9922		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9923
9924		if (oaggs != NULL) {
9925			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9926			kmem_free(oaggs, onaggs * sizeof (*aggs));
9927		}
9928
9929		state->dts_aggregations = aggs;
9930		state->dts_naggregations = naggs;
9931	}
9932
9933	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9934	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9935
9936	frec = &agg->dtag_first->dta_rec;
9937	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9938		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9939
9940	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9941		ASSERT(!act->dta_intuple);
9942		act->dta_intuple = 1;
9943	}
9944
9945	return (&agg->dtag_action);
9946}
9947
9948static void
9949dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9950{
9951	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9952	dtrace_state_t *state = ecb->dte_state;
9953	dtrace_aggid_t aggid = agg->dtag_id;
9954
9955	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9956#if defined(sun)
9957	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9958#else
9959	free_unr(state->dts_aggid_arena, aggid);
9960#endif
9961
9962	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9963	state->dts_aggregations[aggid - 1] = NULL;
9964
9965	kmem_free(agg, sizeof (dtrace_aggregation_t));
9966}
9967
9968static int
9969dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9970{
9971	dtrace_action_t *action, *last;
9972	dtrace_difo_t *dp = desc->dtad_difo;
9973	uint32_t size = 0, align = sizeof (uint8_t), mask;
9974	uint16_t format = 0;
9975	dtrace_recdesc_t *rec;
9976	dtrace_state_t *state = ecb->dte_state;
9977	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
9978	uint64_t arg = desc->dtad_arg;
9979
9980	ASSERT(MUTEX_HELD(&dtrace_lock));
9981	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9982
9983	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9984		/*
9985		 * If this is an aggregating action, there must be neither
9986		 * a speculate nor a commit on the action chain.
9987		 */
9988		dtrace_action_t *act;
9989
9990		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9991			if (act->dta_kind == DTRACEACT_COMMIT)
9992				return (EINVAL);
9993
9994			if (act->dta_kind == DTRACEACT_SPECULATE)
9995				return (EINVAL);
9996		}
9997
9998		action = dtrace_ecb_aggregation_create(ecb, desc);
9999
10000		if (action == NULL)
10001			return (EINVAL);
10002	} else {
10003		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10004		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10005		    dp != NULL && dp->dtdo_destructive)) {
10006			state->dts_destructive = 1;
10007		}
10008
10009		switch (desc->dtad_kind) {
10010		case DTRACEACT_PRINTF:
10011		case DTRACEACT_PRINTA:
10012		case DTRACEACT_SYSTEM:
10013		case DTRACEACT_FREOPEN:
10014			/*
10015			 * We know that our arg is a string -- turn it into a
10016			 * format.
10017			 */
10018			if (arg == 0) {
10019				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10020				format = 0;
10021			} else {
10022				ASSERT(arg != 0);
10023#if defined(sun)
10024				ASSERT(arg > KERNELBASE);
10025#endif
10026				format = dtrace_format_add(state,
10027				    (char *)(uintptr_t)arg);
10028			}
10029
10030			/*FALLTHROUGH*/
10031		case DTRACEACT_LIBACT:
10032		case DTRACEACT_DIFEXPR:
10033			if (dp == NULL)
10034				return (EINVAL);
10035
10036			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10037				break;
10038
10039			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10040				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10041					return (EINVAL);
10042
10043				size = opt[DTRACEOPT_STRSIZE];
10044			}
10045
10046			break;
10047
10048		case DTRACEACT_STACK:
10049			if ((nframes = arg) == 0) {
10050				nframes = opt[DTRACEOPT_STACKFRAMES];
10051				ASSERT(nframes > 0);
10052				arg = nframes;
10053			}
10054
10055			size = nframes * sizeof (pc_t);
10056			break;
10057
10058		case DTRACEACT_JSTACK:
10059			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10060				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10061
10062			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10063				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10064
10065			arg = DTRACE_USTACK_ARG(nframes, strsize);
10066
10067			/*FALLTHROUGH*/
10068		case DTRACEACT_USTACK:
10069			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10070			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10071				strsize = DTRACE_USTACK_STRSIZE(arg);
10072				nframes = opt[DTRACEOPT_USTACKFRAMES];
10073				ASSERT(nframes > 0);
10074				arg = DTRACE_USTACK_ARG(nframes, strsize);
10075			}
10076
10077			/*
10078			 * Save a slot for the pid.
10079			 */
10080			size = (nframes + 1) * sizeof (uint64_t);
10081			size += DTRACE_USTACK_STRSIZE(arg);
10082			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10083
10084			break;
10085
10086		case DTRACEACT_SYM:
10087		case DTRACEACT_MOD:
10088			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10089			    sizeof (uint64_t)) ||
10090			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10091				return (EINVAL);
10092			break;
10093
10094		case DTRACEACT_USYM:
10095		case DTRACEACT_UMOD:
10096		case DTRACEACT_UADDR:
10097			if (dp == NULL ||
10098			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10099			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10100				return (EINVAL);
10101
10102			/*
10103			 * We have a slot for the pid, plus a slot for the
10104			 * argument.  To keep things simple (aligned with
10105			 * bitness-neutral sizing), we store each as a 64-bit
10106			 * quantity.
10107			 */
10108			size = 2 * sizeof (uint64_t);
10109			break;
10110
10111		case DTRACEACT_STOP:
10112		case DTRACEACT_BREAKPOINT:
10113		case DTRACEACT_PANIC:
10114			break;
10115
10116		case DTRACEACT_CHILL:
10117		case DTRACEACT_DISCARD:
10118		case DTRACEACT_RAISE:
10119			if (dp == NULL)
10120				return (EINVAL);
10121			break;
10122
10123		case DTRACEACT_EXIT:
10124			if (dp == NULL ||
10125			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10126			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10127				return (EINVAL);
10128			break;
10129
10130		case DTRACEACT_SPECULATE:
10131			if (ecb->dte_size > sizeof (dtrace_epid_t))
10132				return (EINVAL);
10133
10134			if (dp == NULL)
10135				return (EINVAL);
10136
10137			state->dts_speculates = 1;
10138			break;
10139
10140		case DTRACEACT_PRINTM:
10141		    	size = dp->dtdo_rtype.dtdt_size;
10142			break;
10143
10144		case DTRACEACT_PRINTT:
10145		    	size = dp->dtdo_rtype.dtdt_size;
10146			break;
10147
10148		case DTRACEACT_COMMIT: {
10149			dtrace_action_t *act = ecb->dte_action;
10150
10151			for (; act != NULL; act = act->dta_next) {
10152				if (act->dta_kind == DTRACEACT_COMMIT)
10153					return (EINVAL);
10154			}
10155
10156			if (dp == NULL)
10157				return (EINVAL);
10158			break;
10159		}
10160
10161		default:
10162			return (EINVAL);
10163		}
10164
10165		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10166			/*
10167			 * If this is a data-storing action or a speculate,
10168			 * we must be sure that there isn't a commit on the
10169			 * action chain.
10170			 */
10171			dtrace_action_t *act = ecb->dte_action;
10172
10173			for (; act != NULL; act = act->dta_next) {
10174				if (act->dta_kind == DTRACEACT_COMMIT)
10175					return (EINVAL);
10176			}
10177		}
10178
10179		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10180		action->dta_rec.dtrd_size = size;
10181	}
10182
10183	action->dta_refcnt = 1;
10184	rec = &action->dta_rec;
10185	size = rec->dtrd_size;
10186
10187	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10188		if (!(size & mask)) {
10189			align = mask + 1;
10190			break;
10191		}
10192	}
10193
10194	action->dta_kind = desc->dtad_kind;
10195
10196	if ((action->dta_difo = dp) != NULL)
10197		dtrace_difo_hold(dp);
10198
10199	rec->dtrd_action = action->dta_kind;
10200	rec->dtrd_arg = arg;
10201	rec->dtrd_uarg = desc->dtad_uarg;
10202	rec->dtrd_alignment = (uint16_t)align;
10203	rec->dtrd_format = format;
10204
10205	if ((last = ecb->dte_action_last) != NULL) {
10206		ASSERT(ecb->dte_action != NULL);
10207		action->dta_prev = last;
10208		last->dta_next = action;
10209	} else {
10210		ASSERT(ecb->dte_action == NULL);
10211		ecb->dte_action = action;
10212	}
10213
10214	ecb->dte_action_last = action;
10215
10216	return (0);
10217}
10218
10219static void
10220dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10221{
10222	dtrace_action_t *act = ecb->dte_action, *next;
10223	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10224	dtrace_difo_t *dp;
10225	uint16_t format;
10226
10227	if (act != NULL && act->dta_refcnt > 1) {
10228		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10229		act->dta_refcnt--;
10230	} else {
10231		for (; act != NULL; act = next) {
10232			next = act->dta_next;
10233			ASSERT(next != NULL || act == ecb->dte_action_last);
10234			ASSERT(act->dta_refcnt == 1);
10235
10236			if ((format = act->dta_rec.dtrd_format) != 0)
10237				dtrace_format_remove(ecb->dte_state, format);
10238
10239			if ((dp = act->dta_difo) != NULL)
10240				dtrace_difo_release(dp, vstate);
10241
10242			if (DTRACEACT_ISAGG(act->dta_kind)) {
10243				dtrace_ecb_aggregation_destroy(ecb, act);
10244			} else {
10245				kmem_free(act, sizeof (dtrace_action_t));
10246			}
10247		}
10248	}
10249
10250	ecb->dte_action = NULL;
10251	ecb->dte_action_last = NULL;
10252	ecb->dte_size = sizeof (dtrace_epid_t);
10253}
10254
10255static void
10256dtrace_ecb_disable(dtrace_ecb_t *ecb)
10257{
10258	/*
10259	 * We disable the ECB by removing it from its probe.
10260	 */
10261	dtrace_ecb_t *pecb, *prev = NULL;
10262	dtrace_probe_t *probe = ecb->dte_probe;
10263
10264	ASSERT(MUTEX_HELD(&dtrace_lock));
10265
10266	if (probe == NULL) {
10267		/*
10268		 * This is the NULL probe; there is nothing to disable.
10269		 */
10270		return;
10271	}
10272
10273	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10274		if (pecb == ecb)
10275			break;
10276		prev = pecb;
10277	}
10278
10279	ASSERT(pecb != NULL);
10280
10281	if (prev == NULL) {
10282		probe->dtpr_ecb = ecb->dte_next;
10283	} else {
10284		prev->dte_next = ecb->dte_next;
10285	}
10286
10287	if (ecb == probe->dtpr_ecb_last) {
10288		ASSERT(ecb->dte_next == NULL);
10289		probe->dtpr_ecb_last = prev;
10290	}
10291
10292	/*
10293	 * The ECB has been disconnected from the probe; now sync to assure
10294	 * that all CPUs have seen the change before returning.
10295	 */
10296	dtrace_sync();
10297
10298	if (probe->dtpr_ecb == NULL) {
10299		/*
10300		 * That was the last ECB on the probe; clear the predicate
10301		 * cache ID for the probe, disable it and sync one more time
10302		 * to assure that we'll never hit it again.
10303		 */
10304		dtrace_provider_t *prov = probe->dtpr_provider;
10305
10306		ASSERT(ecb->dte_next == NULL);
10307		ASSERT(probe->dtpr_ecb_last == NULL);
10308		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10309		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10310		    probe->dtpr_id, probe->dtpr_arg);
10311		dtrace_sync();
10312	} else {
10313		/*
10314		 * There is at least one ECB remaining on the probe.  If there
10315		 * is _exactly_ one, set the probe's predicate cache ID to be
10316		 * the predicate cache ID of the remaining ECB.
10317		 */
10318		ASSERT(probe->dtpr_ecb_last != NULL);
10319		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10320
10321		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10322			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10323
10324			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10325
10326			if (p != NULL)
10327				probe->dtpr_predcache = p->dtp_cacheid;
10328		}
10329
10330		ecb->dte_next = NULL;
10331	}
10332}
10333
10334static void
10335dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10336{
10337	dtrace_state_t *state = ecb->dte_state;
10338	dtrace_vstate_t *vstate = &state->dts_vstate;
10339	dtrace_predicate_t *pred;
10340	dtrace_epid_t epid = ecb->dte_epid;
10341
10342	ASSERT(MUTEX_HELD(&dtrace_lock));
10343	ASSERT(ecb->dte_next == NULL);
10344	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10345
10346	if ((pred = ecb->dte_predicate) != NULL)
10347		dtrace_predicate_release(pred, vstate);
10348
10349	dtrace_ecb_action_remove(ecb);
10350
10351	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10352	state->dts_ecbs[epid - 1] = NULL;
10353
10354	kmem_free(ecb, sizeof (dtrace_ecb_t));
10355}
10356
10357static dtrace_ecb_t *
10358dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10359    dtrace_enabling_t *enab)
10360{
10361	dtrace_ecb_t *ecb;
10362	dtrace_predicate_t *pred;
10363	dtrace_actdesc_t *act;
10364	dtrace_provider_t *prov;
10365	dtrace_ecbdesc_t *desc = enab->dten_current;
10366
10367	ASSERT(MUTEX_HELD(&dtrace_lock));
10368	ASSERT(state != NULL);
10369
10370	ecb = dtrace_ecb_add(state, probe);
10371	ecb->dte_uarg = desc->dted_uarg;
10372
10373	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10374		dtrace_predicate_hold(pred);
10375		ecb->dte_predicate = pred;
10376	}
10377
10378	if (probe != NULL) {
10379		/*
10380		 * If the provider shows more leg than the consumer is old
10381		 * enough to see, we need to enable the appropriate implicit
10382		 * predicate bits to prevent the ecb from activating at
10383		 * revealing times.
10384		 *
10385		 * Providers specifying DTRACE_PRIV_USER at register time
10386		 * are stating that they need the /proc-style privilege
10387		 * model to be enforced, and this is what DTRACE_COND_OWNER
10388		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10389		 */
10390		prov = probe->dtpr_provider;
10391		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10392		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10393			ecb->dte_cond |= DTRACE_COND_OWNER;
10394
10395		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10396		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10397			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10398
10399		/*
10400		 * If the provider shows us kernel innards and the user
10401		 * is lacking sufficient privilege, enable the
10402		 * DTRACE_COND_USERMODE implicit predicate.
10403		 */
10404		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10405		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10406			ecb->dte_cond |= DTRACE_COND_USERMODE;
10407	}
10408
10409	if (dtrace_ecb_create_cache != NULL) {
10410		/*
10411		 * If we have a cached ecb, we'll use its action list instead
10412		 * of creating our own (saving both time and space).
10413		 */
10414		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10415		dtrace_action_t *act = cached->dte_action;
10416
10417		if (act != NULL) {
10418			ASSERT(act->dta_refcnt > 0);
10419			act->dta_refcnt++;
10420			ecb->dte_action = act;
10421			ecb->dte_action_last = cached->dte_action_last;
10422			ecb->dte_needed = cached->dte_needed;
10423			ecb->dte_size = cached->dte_size;
10424			ecb->dte_alignment = cached->dte_alignment;
10425		}
10426
10427		return (ecb);
10428	}
10429
10430	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10431		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10432			dtrace_ecb_destroy(ecb);
10433			return (NULL);
10434		}
10435	}
10436
10437	dtrace_ecb_resize(ecb);
10438
10439	return (dtrace_ecb_create_cache = ecb);
10440}
10441
10442static int
10443dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10444{
10445	dtrace_ecb_t *ecb;
10446	dtrace_enabling_t *enab = arg;
10447	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10448
10449	ASSERT(state != NULL);
10450
10451	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10452		/*
10453		 * This probe was created in a generation for which this
10454		 * enabling has previously created ECBs; we don't want to
10455		 * enable it again, so just kick out.
10456		 */
10457		return (DTRACE_MATCH_NEXT);
10458	}
10459
10460	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10461		return (DTRACE_MATCH_DONE);
10462
10463	dtrace_ecb_enable(ecb);
10464	return (DTRACE_MATCH_NEXT);
10465}
10466
10467static dtrace_ecb_t *
10468dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10469{
10470	dtrace_ecb_t *ecb;
10471
10472	ASSERT(MUTEX_HELD(&dtrace_lock));
10473
10474	if (id == 0 || id > state->dts_necbs)
10475		return (NULL);
10476
10477	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10478	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10479
10480	return (state->dts_ecbs[id - 1]);
10481}
10482
10483static dtrace_aggregation_t *
10484dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10485{
10486	dtrace_aggregation_t *agg;
10487
10488	ASSERT(MUTEX_HELD(&dtrace_lock));
10489
10490	if (id == 0 || id > state->dts_naggregations)
10491		return (NULL);
10492
10493	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10494	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10495	    agg->dtag_id == id);
10496
10497	return (state->dts_aggregations[id - 1]);
10498}
10499
10500/*
10501 * DTrace Buffer Functions
10502 *
10503 * The following functions manipulate DTrace buffers.  Most of these functions
10504 * are called in the context of establishing or processing consumer state;
10505 * exceptions are explicitly noted.
10506 */
10507
10508/*
10509 * Note:  called from cross call context.  This function switches the two
10510 * buffers on a given CPU.  The atomicity of this operation is assured by
10511 * disabling interrupts while the actual switch takes place; the disabling of
10512 * interrupts serializes the execution with any execution of dtrace_probe() on
10513 * the same CPU.
10514 */
10515static void
10516dtrace_buffer_switch(dtrace_buffer_t *buf)
10517{
10518	caddr_t tomax = buf->dtb_tomax;
10519	caddr_t xamot = buf->dtb_xamot;
10520	dtrace_icookie_t cookie;
10521
10522	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10523	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10524
10525	cookie = dtrace_interrupt_disable();
10526	buf->dtb_tomax = xamot;
10527	buf->dtb_xamot = tomax;
10528	buf->dtb_xamot_drops = buf->dtb_drops;
10529	buf->dtb_xamot_offset = buf->dtb_offset;
10530	buf->dtb_xamot_errors = buf->dtb_errors;
10531	buf->dtb_xamot_flags = buf->dtb_flags;
10532	buf->dtb_offset = 0;
10533	buf->dtb_drops = 0;
10534	buf->dtb_errors = 0;
10535	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10536	dtrace_interrupt_enable(cookie);
10537}
10538
10539/*
10540 * Note:  called from cross call context.  This function activates a buffer
10541 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10542 * is guaranteed by the disabling of interrupts.
10543 */
10544static void
10545dtrace_buffer_activate(dtrace_state_t *state)
10546{
10547	dtrace_buffer_t *buf;
10548	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10549
10550	buf = &state->dts_buffer[curcpu];
10551
10552	if (buf->dtb_tomax != NULL) {
10553		/*
10554		 * We might like to assert that the buffer is marked inactive,
10555		 * but this isn't necessarily true:  the buffer for the CPU
10556		 * that processes the BEGIN probe has its buffer activated
10557		 * manually.  In this case, we take the (harmless) action
10558		 * re-clearing the bit INACTIVE bit.
10559		 */
10560		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10561	}
10562
10563	dtrace_interrupt_enable(cookie);
10564}
10565
10566static int
10567dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10568    processorid_t cpu)
10569{
10570#if defined(sun)
10571	cpu_t *cp;
10572#else
10573	struct pcpu *cp;
10574#endif
10575	dtrace_buffer_t *buf;
10576
10577#if defined(sun)
10578	ASSERT(MUTEX_HELD(&cpu_lock));
10579	ASSERT(MUTEX_HELD(&dtrace_lock));
10580
10581	if (size > dtrace_nonroot_maxsize &&
10582	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10583		return (EFBIG);
10584
10585	cp = cpu_list;
10586
10587	do {
10588		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10589			continue;
10590
10591		buf = &bufs[cp->cpu_id];
10592
10593		/*
10594		 * If there is already a buffer allocated for this CPU, it
10595		 * is only possible that this is a DR event.  In this case,
10596		 * the buffer size must match our specified size.
10597		 */
10598		if (buf->dtb_tomax != NULL) {
10599			ASSERT(buf->dtb_size == size);
10600			continue;
10601		}
10602
10603		ASSERT(buf->dtb_xamot == NULL);
10604
10605		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10606			goto err;
10607
10608		buf->dtb_size = size;
10609		buf->dtb_flags = flags;
10610		buf->dtb_offset = 0;
10611		buf->dtb_drops = 0;
10612
10613		if (flags & DTRACEBUF_NOSWITCH)
10614			continue;
10615
10616		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10617			goto err;
10618	} while ((cp = cp->cpu_next) != cpu_list);
10619
10620	return (0);
10621
10622err:
10623	cp = cpu_list;
10624
10625	do {
10626		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10627			continue;
10628
10629		buf = &bufs[cp->cpu_id];
10630
10631		if (buf->dtb_xamot != NULL) {
10632			ASSERT(buf->dtb_tomax != NULL);
10633			ASSERT(buf->dtb_size == size);
10634			kmem_free(buf->dtb_xamot, size);
10635		}
10636
10637		if (buf->dtb_tomax != NULL) {
10638			ASSERT(buf->dtb_size == size);
10639			kmem_free(buf->dtb_tomax, size);
10640		}
10641
10642		buf->dtb_tomax = NULL;
10643		buf->dtb_xamot = NULL;
10644		buf->dtb_size = 0;
10645	} while ((cp = cp->cpu_next) != cpu_list);
10646
10647	return (ENOMEM);
10648#else
10649	int i;
10650
10651#if defined(__amd64__)
10652	/*
10653	 * FreeBSD isn't good at limiting the amount of memory we
10654	 * ask to malloc, so let's place a limit here before trying
10655	 * to do something that might well end in tears at bedtime.
10656	 */
10657	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10658		return(ENOMEM);
10659#endif
10660
10661	ASSERT(MUTEX_HELD(&dtrace_lock));
10662	for (i = 0; i <= mp_maxid; i++) {
10663		if ((cp = pcpu_find(i)) == NULL)
10664			continue;
10665
10666		if (cpu != DTRACE_CPUALL && cpu != i)
10667			continue;
10668
10669		buf = &bufs[i];
10670
10671		/*
10672		 * If there is already a buffer allocated for this CPU, it
10673		 * is only possible that this is a DR event.  In this case,
10674		 * the buffer size must match our specified size.
10675		 */
10676		if (buf->dtb_tomax != NULL) {
10677			ASSERT(buf->dtb_size == size);
10678			continue;
10679		}
10680
10681		ASSERT(buf->dtb_xamot == NULL);
10682
10683		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10684			goto err;
10685
10686		buf->dtb_size = size;
10687		buf->dtb_flags = flags;
10688		buf->dtb_offset = 0;
10689		buf->dtb_drops = 0;
10690
10691		if (flags & DTRACEBUF_NOSWITCH)
10692			continue;
10693
10694		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10695			goto err;
10696	}
10697
10698	return (0);
10699
10700err:
10701	/*
10702	 * Error allocating memory, so free the buffers that were
10703	 * allocated before the failed allocation.
10704	 */
10705	for (i = 0; i <= mp_maxid; i++) {
10706		if ((cp = pcpu_find(i)) == NULL)
10707			continue;
10708
10709		if (cpu != DTRACE_CPUALL && cpu != i)
10710			continue;
10711
10712		buf = &bufs[i];
10713
10714		if (buf->dtb_xamot != NULL) {
10715			ASSERT(buf->dtb_tomax != NULL);
10716			ASSERT(buf->dtb_size == size);
10717			kmem_free(buf->dtb_xamot, size);
10718		}
10719
10720		if (buf->dtb_tomax != NULL) {
10721			ASSERT(buf->dtb_size == size);
10722			kmem_free(buf->dtb_tomax, size);
10723		}
10724
10725		buf->dtb_tomax = NULL;
10726		buf->dtb_xamot = NULL;
10727		buf->dtb_size = 0;
10728
10729	}
10730
10731	return (ENOMEM);
10732#endif
10733}
10734
10735/*
10736 * Note:  called from probe context.  This function just increments the drop
10737 * count on a buffer.  It has been made a function to allow for the
10738 * possibility of understanding the source of mysterious drop counts.  (A
10739 * problem for which one may be particularly disappointed that DTrace cannot
10740 * be used to understand DTrace.)
10741 */
10742static void
10743dtrace_buffer_drop(dtrace_buffer_t *buf)
10744{
10745	buf->dtb_drops++;
10746}
10747
10748/*
10749 * Note:  called from probe context.  This function is called to reserve space
10750 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10751 * mstate.  Returns the new offset in the buffer, or a negative value if an
10752 * error has occurred.
10753 */
10754static intptr_t
10755dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10756    dtrace_state_t *state, dtrace_mstate_t *mstate)
10757{
10758	intptr_t offs = buf->dtb_offset, soffs;
10759	intptr_t woffs;
10760	caddr_t tomax;
10761	size_t total;
10762
10763	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10764		return (-1);
10765
10766	if ((tomax = buf->dtb_tomax) == NULL) {
10767		dtrace_buffer_drop(buf);
10768		return (-1);
10769	}
10770
10771	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10772		while (offs & (align - 1)) {
10773			/*
10774			 * Assert that our alignment is off by a number which
10775			 * is itself sizeof (uint32_t) aligned.
10776			 */
10777			ASSERT(!((align - (offs & (align - 1))) &
10778			    (sizeof (uint32_t) - 1)));
10779			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10780			offs += sizeof (uint32_t);
10781		}
10782
10783		if ((soffs = offs + needed) > buf->dtb_size) {
10784			dtrace_buffer_drop(buf);
10785			return (-1);
10786		}
10787
10788		if (mstate == NULL)
10789			return (offs);
10790
10791		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10792		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10793		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10794
10795		return (offs);
10796	}
10797
10798	if (buf->dtb_flags & DTRACEBUF_FILL) {
10799		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10800		    (buf->dtb_flags & DTRACEBUF_FULL))
10801			return (-1);
10802		goto out;
10803	}
10804
10805	total = needed + (offs & (align - 1));
10806
10807	/*
10808	 * For a ring buffer, life is quite a bit more complicated.  Before
10809	 * we can store any padding, we need to adjust our wrapping offset.
10810	 * (If we've never before wrapped or we're not about to, no adjustment
10811	 * is required.)
10812	 */
10813	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10814	    offs + total > buf->dtb_size) {
10815		woffs = buf->dtb_xamot_offset;
10816
10817		if (offs + total > buf->dtb_size) {
10818			/*
10819			 * We can't fit in the end of the buffer.  First, a
10820			 * sanity check that we can fit in the buffer at all.
10821			 */
10822			if (total > buf->dtb_size) {
10823				dtrace_buffer_drop(buf);
10824				return (-1);
10825			}
10826
10827			/*
10828			 * We're going to be storing at the top of the buffer,
10829			 * so now we need to deal with the wrapped offset.  We
10830			 * only reset our wrapped offset to 0 if it is
10831			 * currently greater than the current offset.  If it
10832			 * is less than the current offset, it is because a
10833			 * previous allocation induced a wrap -- but the
10834			 * allocation didn't subsequently take the space due
10835			 * to an error or false predicate evaluation.  In this
10836			 * case, we'll just leave the wrapped offset alone: if
10837			 * the wrapped offset hasn't been advanced far enough
10838			 * for this allocation, it will be adjusted in the
10839			 * lower loop.
10840			 */
10841			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10842				if (woffs >= offs)
10843					woffs = 0;
10844			} else {
10845				woffs = 0;
10846			}
10847
10848			/*
10849			 * Now we know that we're going to be storing to the
10850			 * top of the buffer and that there is room for us
10851			 * there.  We need to clear the buffer from the current
10852			 * offset to the end (there may be old gunk there).
10853			 */
10854			while (offs < buf->dtb_size)
10855				tomax[offs++] = 0;
10856
10857			/*
10858			 * We need to set our offset to zero.  And because we
10859			 * are wrapping, we need to set the bit indicating as
10860			 * much.  We can also adjust our needed space back
10861			 * down to the space required by the ECB -- we know
10862			 * that the top of the buffer is aligned.
10863			 */
10864			offs = 0;
10865			total = needed;
10866			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10867		} else {
10868			/*
10869			 * There is room for us in the buffer, so we simply
10870			 * need to check the wrapped offset.
10871			 */
10872			if (woffs < offs) {
10873				/*
10874				 * The wrapped offset is less than the offset.
10875				 * This can happen if we allocated buffer space
10876				 * that induced a wrap, but then we didn't
10877				 * subsequently take the space due to an error
10878				 * or false predicate evaluation.  This is
10879				 * okay; we know that _this_ allocation isn't
10880				 * going to induce a wrap.  We still can't
10881				 * reset the wrapped offset to be zero,
10882				 * however: the space may have been trashed in
10883				 * the previous failed probe attempt.  But at
10884				 * least the wrapped offset doesn't need to
10885				 * be adjusted at all...
10886				 */
10887				goto out;
10888			}
10889		}
10890
10891		while (offs + total > woffs) {
10892			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10893			size_t size;
10894
10895			if (epid == DTRACE_EPIDNONE) {
10896				size = sizeof (uint32_t);
10897			} else {
10898				ASSERT(epid <= state->dts_necbs);
10899				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10900
10901				size = state->dts_ecbs[epid - 1]->dte_size;
10902			}
10903
10904			ASSERT(woffs + size <= buf->dtb_size);
10905			ASSERT(size != 0);
10906
10907			if (woffs + size == buf->dtb_size) {
10908				/*
10909				 * We've reached the end of the buffer; we want
10910				 * to set the wrapped offset to 0 and break
10911				 * out.  However, if the offs is 0, then we're
10912				 * in a strange edge-condition:  the amount of
10913				 * space that we want to reserve plus the size
10914				 * of the record that we're overwriting is
10915				 * greater than the size of the buffer.  This
10916				 * is problematic because if we reserve the
10917				 * space but subsequently don't consume it (due
10918				 * to a failed predicate or error) the wrapped
10919				 * offset will be 0 -- yet the EPID at offset 0
10920				 * will not be committed.  This situation is
10921				 * relatively easy to deal with:  if we're in
10922				 * this case, the buffer is indistinguishable
10923				 * from one that hasn't wrapped; we need only
10924				 * finish the job by clearing the wrapped bit,
10925				 * explicitly setting the offset to be 0, and
10926				 * zero'ing out the old data in the buffer.
10927				 */
10928				if (offs == 0) {
10929					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10930					buf->dtb_offset = 0;
10931					woffs = total;
10932
10933					while (woffs < buf->dtb_size)
10934						tomax[woffs++] = 0;
10935				}
10936
10937				woffs = 0;
10938				break;
10939			}
10940
10941			woffs += size;
10942		}
10943
10944		/*
10945		 * We have a wrapped offset.  It may be that the wrapped offset
10946		 * has become zero -- that's okay.
10947		 */
10948		buf->dtb_xamot_offset = woffs;
10949	}
10950
10951out:
10952	/*
10953	 * Now we can plow the buffer with any necessary padding.
10954	 */
10955	while (offs & (align - 1)) {
10956		/*
10957		 * Assert that our alignment is off by a number which
10958		 * is itself sizeof (uint32_t) aligned.
10959		 */
10960		ASSERT(!((align - (offs & (align - 1))) &
10961		    (sizeof (uint32_t) - 1)));
10962		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10963		offs += sizeof (uint32_t);
10964	}
10965
10966	if (buf->dtb_flags & DTRACEBUF_FILL) {
10967		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10968			buf->dtb_flags |= DTRACEBUF_FULL;
10969			return (-1);
10970		}
10971	}
10972
10973	if (mstate == NULL)
10974		return (offs);
10975
10976	/*
10977	 * For ring buffers and fill buffers, the scratch space is always
10978	 * the inactive buffer.
10979	 */
10980	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10981	mstate->dtms_scratch_size = buf->dtb_size;
10982	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10983
10984	return (offs);
10985}
10986
10987static void
10988dtrace_buffer_polish(dtrace_buffer_t *buf)
10989{
10990	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10991	ASSERT(MUTEX_HELD(&dtrace_lock));
10992
10993	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10994		return;
10995
10996	/*
10997	 * We need to polish the ring buffer.  There are three cases:
10998	 *
10999	 * - The first (and presumably most common) is that there is no gap
11000	 *   between the buffer offset and the wrapped offset.  In this case,
11001	 *   there is nothing in the buffer that isn't valid data; we can
11002	 *   mark the buffer as polished and return.
11003	 *
11004	 * - The second (less common than the first but still more common
11005	 *   than the third) is that there is a gap between the buffer offset
11006	 *   and the wrapped offset, and the wrapped offset is larger than the
11007	 *   buffer offset.  This can happen because of an alignment issue, or
11008	 *   can happen because of a call to dtrace_buffer_reserve() that
11009	 *   didn't subsequently consume the buffer space.  In this case,
11010	 *   we need to zero the data from the buffer offset to the wrapped
11011	 *   offset.
11012	 *
11013	 * - The third (and least common) is that there is a gap between the
11014	 *   buffer offset and the wrapped offset, but the wrapped offset is
11015	 *   _less_ than the buffer offset.  This can only happen because a
11016	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11017	 *   was not subsequently consumed.  In this case, we need to zero the
11018	 *   space from the offset to the end of the buffer _and_ from the
11019	 *   top of the buffer to the wrapped offset.
11020	 */
11021	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11022		bzero(buf->dtb_tomax + buf->dtb_offset,
11023		    buf->dtb_xamot_offset - buf->dtb_offset);
11024	}
11025
11026	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11027		bzero(buf->dtb_tomax + buf->dtb_offset,
11028		    buf->dtb_size - buf->dtb_offset);
11029		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11030	}
11031}
11032
11033static void
11034dtrace_buffer_free(dtrace_buffer_t *bufs)
11035{
11036	int i;
11037
11038	for (i = 0; i < NCPU; i++) {
11039		dtrace_buffer_t *buf = &bufs[i];
11040
11041		if (buf->dtb_tomax == NULL) {
11042			ASSERT(buf->dtb_xamot == NULL);
11043			ASSERT(buf->dtb_size == 0);
11044			continue;
11045		}
11046
11047		if (buf->dtb_xamot != NULL) {
11048			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11049			kmem_free(buf->dtb_xamot, buf->dtb_size);
11050		}
11051
11052		kmem_free(buf->dtb_tomax, buf->dtb_size);
11053		buf->dtb_size = 0;
11054		buf->dtb_tomax = NULL;
11055		buf->dtb_xamot = NULL;
11056	}
11057}
11058
11059/*
11060 * DTrace Enabling Functions
11061 */
11062static dtrace_enabling_t *
11063dtrace_enabling_create(dtrace_vstate_t *vstate)
11064{
11065	dtrace_enabling_t *enab;
11066
11067	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11068	enab->dten_vstate = vstate;
11069
11070	return (enab);
11071}
11072
11073static void
11074dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11075{
11076	dtrace_ecbdesc_t **ndesc;
11077	size_t osize, nsize;
11078
11079	/*
11080	 * We can't add to enablings after we've enabled them, or after we've
11081	 * retained them.
11082	 */
11083	ASSERT(enab->dten_probegen == 0);
11084	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11085
11086	if (enab->dten_ndesc < enab->dten_maxdesc) {
11087		enab->dten_desc[enab->dten_ndesc++] = ecb;
11088		return;
11089	}
11090
11091	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11092
11093	if (enab->dten_maxdesc == 0) {
11094		enab->dten_maxdesc = 1;
11095	} else {
11096		enab->dten_maxdesc <<= 1;
11097	}
11098
11099	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11100
11101	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11102	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11103	bcopy(enab->dten_desc, ndesc, osize);
11104	if (enab->dten_desc != NULL)
11105		kmem_free(enab->dten_desc, osize);
11106
11107	enab->dten_desc = ndesc;
11108	enab->dten_desc[enab->dten_ndesc++] = ecb;
11109}
11110
11111static void
11112dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11113    dtrace_probedesc_t *pd)
11114{
11115	dtrace_ecbdesc_t *new;
11116	dtrace_predicate_t *pred;
11117	dtrace_actdesc_t *act;
11118
11119	/*
11120	 * We're going to create a new ECB description that matches the
11121	 * specified ECB in every way, but has the specified probe description.
11122	 */
11123	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11124
11125	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11126		dtrace_predicate_hold(pred);
11127
11128	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11129		dtrace_actdesc_hold(act);
11130
11131	new->dted_action = ecb->dted_action;
11132	new->dted_pred = ecb->dted_pred;
11133	new->dted_probe = *pd;
11134	new->dted_uarg = ecb->dted_uarg;
11135
11136	dtrace_enabling_add(enab, new);
11137}
11138
11139static void
11140dtrace_enabling_dump(dtrace_enabling_t *enab)
11141{
11142	int i;
11143
11144	for (i = 0; i < enab->dten_ndesc; i++) {
11145		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11146
11147		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11148		    desc->dtpd_provider, desc->dtpd_mod,
11149		    desc->dtpd_func, desc->dtpd_name);
11150	}
11151}
11152
11153static void
11154dtrace_enabling_destroy(dtrace_enabling_t *enab)
11155{
11156	int i;
11157	dtrace_ecbdesc_t *ep;
11158	dtrace_vstate_t *vstate = enab->dten_vstate;
11159
11160	ASSERT(MUTEX_HELD(&dtrace_lock));
11161
11162	for (i = 0; i < enab->dten_ndesc; i++) {
11163		dtrace_actdesc_t *act, *next;
11164		dtrace_predicate_t *pred;
11165
11166		ep = enab->dten_desc[i];
11167
11168		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11169			dtrace_predicate_release(pred, vstate);
11170
11171		for (act = ep->dted_action; act != NULL; act = next) {
11172			next = act->dtad_next;
11173			dtrace_actdesc_release(act, vstate);
11174		}
11175
11176		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11177	}
11178
11179	if (enab->dten_desc != NULL)
11180		kmem_free(enab->dten_desc,
11181		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11182
11183	/*
11184	 * If this was a retained enabling, decrement the dts_nretained count
11185	 * and take it off of the dtrace_retained list.
11186	 */
11187	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11188	    dtrace_retained == enab) {
11189		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11190		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11191		enab->dten_vstate->dtvs_state->dts_nretained--;
11192	}
11193
11194	if (enab->dten_prev == NULL) {
11195		if (dtrace_retained == enab) {
11196			dtrace_retained = enab->dten_next;
11197
11198			if (dtrace_retained != NULL)
11199				dtrace_retained->dten_prev = NULL;
11200		}
11201	} else {
11202		ASSERT(enab != dtrace_retained);
11203		ASSERT(dtrace_retained != NULL);
11204		enab->dten_prev->dten_next = enab->dten_next;
11205	}
11206
11207	if (enab->dten_next != NULL) {
11208		ASSERT(dtrace_retained != NULL);
11209		enab->dten_next->dten_prev = enab->dten_prev;
11210	}
11211
11212	kmem_free(enab, sizeof (dtrace_enabling_t));
11213}
11214
11215static int
11216dtrace_enabling_retain(dtrace_enabling_t *enab)
11217{
11218	dtrace_state_t *state;
11219
11220	ASSERT(MUTEX_HELD(&dtrace_lock));
11221	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11222	ASSERT(enab->dten_vstate != NULL);
11223
11224	state = enab->dten_vstate->dtvs_state;
11225	ASSERT(state != NULL);
11226
11227	/*
11228	 * We only allow each state to retain dtrace_retain_max enablings.
11229	 */
11230	if (state->dts_nretained >= dtrace_retain_max)
11231		return (ENOSPC);
11232
11233	state->dts_nretained++;
11234
11235	if (dtrace_retained == NULL) {
11236		dtrace_retained = enab;
11237		return (0);
11238	}
11239
11240	enab->dten_next = dtrace_retained;
11241	dtrace_retained->dten_prev = enab;
11242	dtrace_retained = enab;
11243
11244	return (0);
11245}
11246
11247static int
11248dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11249    dtrace_probedesc_t *create)
11250{
11251	dtrace_enabling_t *new, *enab;
11252	int found = 0, err = ENOENT;
11253
11254	ASSERT(MUTEX_HELD(&dtrace_lock));
11255	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11256	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11257	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11258	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11259
11260	new = dtrace_enabling_create(&state->dts_vstate);
11261
11262	/*
11263	 * Iterate over all retained enablings, looking for enablings that
11264	 * match the specified state.
11265	 */
11266	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11267		int i;
11268
11269		/*
11270		 * dtvs_state can only be NULL for helper enablings -- and
11271		 * helper enablings can't be retained.
11272		 */
11273		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11274
11275		if (enab->dten_vstate->dtvs_state != state)
11276			continue;
11277
11278		/*
11279		 * Now iterate over each probe description; we're looking for
11280		 * an exact match to the specified probe description.
11281		 */
11282		for (i = 0; i < enab->dten_ndesc; i++) {
11283			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11284			dtrace_probedesc_t *pd = &ep->dted_probe;
11285
11286			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11287				continue;
11288
11289			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11290				continue;
11291
11292			if (strcmp(pd->dtpd_func, match->dtpd_func))
11293				continue;
11294
11295			if (strcmp(pd->dtpd_name, match->dtpd_name))
11296				continue;
11297
11298			/*
11299			 * We have a winning probe!  Add it to our growing
11300			 * enabling.
11301			 */
11302			found = 1;
11303			dtrace_enabling_addlike(new, ep, create);
11304		}
11305	}
11306
11307	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11308		dtrace_enabling_destroy(new);
11309		return (err);
11310	}
11311
11312	return (0);
11313}
11314
11315static void
11316dtrace_enabling_retract(dtrace_state_t *state)
11317{
11318	dtrace_enabling_t *enab, *next;
11319
11320	ASSERT(MUTEX_HELD(&dtrace_lock));
11321
11322	/*
11323	 * Iterate over all retained enablings, destroy the enablings retained
11324	 * for the specified state.
11325	 */
11326	for (enab = dtrace_retained; enab != NULL; enab = next) {
11327		next = enab->dten_next;
11328
11329		/*
11330		 * dtvs_state can only be NULL for helper enablings -- and
11331		 * helper enablings can't be retained.
11332		 */
11333		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11334
11335		if (enab->dten_vstate->dtvs_state == state) {
11336			ASSERT(state->dts_nretained > 0);
11337			dtrace_enabling_destroy(enab);
11338		}
11339	}
11340
11341	ASSERT(state->dts_nretained == 0);
11342}
11343
11344static int
11345dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11346{
11347	int i = 0;
11348	int matched = 0;
11349
11350	ASSERT(MUTEX_HELD(&cpu_lock));
11351	ASSERT(MUTEX_HELD(&dtrace_lock));
11352
11353	for (i = 0; i < enab->dten_ndesc; i++) {
11354		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11355
11356		enab->dten_current = ep;
11357		enab->dten_error = 0;
11358
11359		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11360
11361		if (enab->dten_error != 0) {
11362			/*
11363			 * If we get an error half-way through enabling the
11364			 * probes, we kick out -- perhaps with some number of
11365			 * them enabled.  Leaving enabled probes enabled may
11366			 * be slightly confusing for user-level, but we expect
11367			 * that no one will attempt to actually drive on in
11368			 * the face of such errors.  If this is an anonymous
11369			 * enabling (indicated with a NULL nmatched pointer),
11370			 * we cmn_err() a message.  We aren't expecting to
11371			 * get such an error -- such as it can exist at all,
11372			 * it would be a result of corrupted DOF in the driver
11373			 * properties.
11374			 */
11375			if (nmatched == NULL) {
11376				cmn_err(CE_WARN, "dtrace_enabling_match() "
11377				    "error on %p: %d", (void *)ep,
11378				    enab->dten_error);
11379			}
11380
11381			return (enab->dten_error);
11382		}
11383	}
11384
11385	enab->dten_probegen = dtrace_probegen;
11386	if (nmatched != NULL)
11387		*nmatched = matched;
11388
11389	return (0);
11390}
11391
11392static void
11393dtrace_enabling_matchall(void)
11394{
11395	dtrace_enabling_t *enab;
11396
11397	mutex_enter(&cpu_lock);
11398	mutex_enter(&dtrace_lock);
11399
11400	/*
11401	 * Because we can be called after dtrace_detach() has been called, we
11402	 * cannot assert that there are retained enablings.  We can safely
11403	 * load from dtrace_retained, however:  the taskq_destroy() at the
11404	 * end of dtrace_detach() will block pending our completion.
11405	 */
11406	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
11407		(void) dtrace_enabling_match(enab, NULL);
11408
11409	mutex_exit(&dtrace_lock);
11410	mutex_exit(&cpu_lock);
11411}
11412
11413/*
11414 * If an enabling is to be enabled without having matched probes (that is, if
11415 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11416 * enabling must be _primed_ by creating an ECB for every ECB description.
11417 * This must be done to assure that we know the number of speculations, the
11418 * number of aggregations, the minimum buffer size needed, etc. before we
11419 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11420 * enabling any probes, we create ECBs for every ECB decription, but with a
11421 * NULL probe -- which is exactly what this function does.
11422 */
11423static void
11424dtrace_enabling_prime(dtrace_state_t *state)
11425{
11426	dtrace_enabling_t *enab;
11427	int i;
11428
11429	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11430		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11431
11432		if (enab->dten_vstate->dtvs_state != state)
11433			continue;
11434
11435		/*
11436		 * We don't want to prime an enabling more than once, lest
11437		 * we allow a malicious user to induce resource exhaustion.
11438		 * (The ECBs that result from priming an enabling aren't
11439		 * leaked -- but they also aren't deallocated until the
11440		 * consumer state is destroyed.)
11441		 */
11442		if (enab->dten_primed)
11443			continue;
11444
11445		for (i = 0; i < enab->dten_ndesc; i++) {
11446			enab->dten_current = enab->dten_desc[i];
11447			(void) dtrace_probe_enable(NULL, enab);
11448		}
11449
11450		enab->dten_primed = 1;
11451	}
11452}
11453
11454/*
11455 * Called to indicate that probes should be provided due to retained
11456 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11457 * must take an initial lap through the enabling calling the dtps_provide()
11458 * entry point explicitly to allow for autocreated probes.
11459 */
11460static void
11461dtrace_enabling_provide(dtrace_provider_t *prv)
11462{
11463	int i, all = 0;
11464	dtrace_probedesc_t desc;
11465
11466	ASSERT(MUTEX_HELD(&dtrace_lock));
11467	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11468
11469	if (prv == NULL) {
11470		all = 1;
11471		prv = dtrace_provider;
11472	}
11473
11474	do {
11475		dtrace_enabling_t *enab = dtrace_retained;
11476		void *parg = prv->dtpv_arg;
11477
11478		for (; enab != NULL; enab = enab->dten_next) {
11479			for (i = 0; i < enab->dten_ndesc; i++) {
11480				desc = enab->dten_desc[i]->dted_probe;
11481				mutex_exit(&dtrace_lock);
11482				prv->dtpv_pops.dtps_provide(parg, &desc);
11483				mutex_enter(&dtrace_lock);
11484			}
11485		}
11486	} while (all && (prv = prv->dtpv_next) != NULL);
11487
11488	mutex_exit(&dtrace_lock);
11489	dtrace_probe_provide(NULL, all ? NULL : prv);
11490	mutex_enter(&dtrace_lock);
11491}
11492
11493/*
11494 * DTrace DOF Functions
11495 */
11496/*ARGSUSED*/
11497static void
11498dtrace_dof_error(dof_hdr_t *dof, const char *str)
11499{
11500	if (dtrace_err_verbose)
11501		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11502
11503#ifdef DTRACE_ERRDEBUG
11504	dtrace_errdebug(str);
11505#endif
11506}
11507
11508/*
11509 * Create DOF out of a currently enabled state.  Right now, we only create
11510 * DOF containing the run-time options -- but this could be expanded to create
11511 * complete DOF representing the enabled state.
11512 */
11513static dof_hdr_t *
11514dtrace_dof_create(dtrace_state_t *state)
11515{
11516	dof_hdr_t *dof;
11517	dof_sec_t *sec;
11518	dof_optdesc_t *opt;
11519	int i, len = sizeof (dof_hdr_t) +
11520	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11521	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11522
11523	ASSERT(MUTEX_HELD(&dtrace_lock));
11524
11525	dof = kmem_zalloc(len, KM_SLEEP);
11526	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11527	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11528	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11529	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11530
11531	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11532	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11533	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11534	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11535	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11536	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11537
11538	dof->dofh_flags = 0;
11539	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11540	dof->dofh_secsize = sizeof (dof_sec_t);
11541	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11542	dof->dofh_secoff = sizeof (dof_hdr_t);
11543	dof->dofh_loadsz = len;
11544	dof->dofh_filesz = len;
11545	dof->dofh_pad = 0;
11546
11547	/*
11548	 * Fill in the option section header...
11549	 */
11550	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11551	sec->dofs_type = DOF_SECT_OPTDESC;
11552	sec->dofs_align = sizeof (uint64_t);
11553	sec->dofs_flags = DOF_SECF_LOAD;
11554	sec->dofs_entsize = sizeof (dof_optdesc_t);
11555
11556	opt = (dof_optdesc_t *)((uintptr_t)sec +
11557	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11558
11559	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11560	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11561
11562	for (i = 0; i < DTRACEOPT_MAX; i++) {
11563		opt[i].dofo_option = i;
11564		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11565		opt[i].dofo_value = state->dts_options[i];
11566	}
11567
11568	return (dof);
11569}
11570
11571static dof_hdr_t *
11572dtrace_dof_copyin(uintptr_t uarg, int *errp)
11573{
11574	dof_hdr_t hdr, *dof;
11575
11576	ASSERT(!MUTEX_HELD(&dtrace_lock));
11577
11578	/*
11579	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11580	 */
11581	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11582		dtrace_dof_error(NULL, "failed to copyin DOF header");
11583		*errp = EFAULT;
11584		return (NULL);
11585	}
11586
11587	/*
11588	 * Now we'll allocate the entire DOF and copy it in -- provided
11589	 * that the length isn't outrageous.
11590	 */
11591	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11592		dtrace_dof_error(&hdr, "load size exceeds maximum");
11593		*errp = E2BIG;
11594		return (NULL);
11595	}
11596
11597	if (hdr.dofh_loadsz < sizeof (hdr)) {
11598		dtrace_dof_error(&hdr, "invalid load size");
11599		*errp = EINVAL;
11600		return (NULL);
11601	}
11602
11603	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11604
11605	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11606		kmem_free(dof, hdr.dofh_loadsz);
11607		*errp = EFAULT;
11608		return (NULL);
11609	}
11610
11611	return (dof);
11612}
11613
11614#if !defined(sun)
11615static __inline uchar_t
11616dtrace_dof_char(char c) {
11617	switch (c) {
11618	case '0':
11619	case '1':
11620	case '2':
11621	case '3':
11622	case '4':
11623	case '5':
11624	case '6':
11625	case '7':
11626	case '8':
11627	case '9':
11628		return (c - '0');
11629	case 'A':
11630	case 'B':
11631	case 'C':
11632	case 'D':
11633	case 'E':
11634	case 'F':
11635		return (c - 'A' + 10);
11636	case 'a':
11637	case 'b':
11638	case 'c':
11639	case 'd':
11640	case 'e':
11641	case 'f':
11642		return (c - 'a' + 10);
11643	}
11644	/* Should not reach here. */
11645	return (0);
11646}
11647#endif
11648
11649static dof_hdr_t *
11650dtrace_dof_property(const char *name)
11651{
11652	uchar_t *buf;
11653	uint64_t loadsz;
11654	unsigned int len, i;
11655	dof_hdr_t *dof;
11656
11657#if defined(sun)
11658	/*
11659	 * Unfortunately, array of values in .conf files are always (and
11660	 * only) interpreted to be integer arrays.  We must read our DOF
11661	 * as an integer array, and then squeeze it into a byte array.
11662	 */
11663	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11664	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11665		return (NULL);
11666
11667	for (i = 0; i < len; i++)
11668		buf[i] = (uchar_t)(((int *)buf)[i]);
11669
11670	if (len < sizeof (dof_hdr_t)) {
11671		ddi_prop_free(buf);
11672		dtrace_dof_error(NULL, "truncated header");
11673		return (NULL);
11674	}
11675
11676	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11677		ddi_prop_free(buf);
11678		dtrace_dof_error(NULL, "truncated DOF");
11679		return (NULL);
11680	}
11681
11682	if (loadsz >= dtrace_dof_maxsize) {
11683		ddi_prop_free(buf);
11684		dtrace_dof_error(NULL, "oversized DOF");
11685		return (NULL);
11686	}
11687
11688	dof = kmem_alloc(loadsz, KM_SLEEP);
11689	bcopy(buf, dof, loadsz);
11690	ddi_prop_free(buf);
11691#else
11692	char *p;
11693	char *p_env;
11694
11695	if ((p_env = getenv(name)) == NULL)
11696		return (NULL);
11697
11698	len = strlen(p_env) / 2;
11699
11700	buf = kmem_alloc(len, KM_SLEEP);
11701
11702	dof = (dof_hdr_t *) buf;
11703
11704	p = p_env;
11705
11706	for (i = 0; i < len; i++) {
11707		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11708		     dtrace_dof_char(p[1]);
11709		p += 2;
11710	}
11711
11712	freeenv(p_env);
11713
11714	if (len < sizeof (dof_hdr_t)) {
11715		kmem_free(buf, 0);
11716		dtrace_dof_error(NULL, "truncated header");
11717		return (NULL);
11718	}
11719
11720	if (len < (loadsz = dof->dofh_loadsz)) {
11721		kmem_free(buf, 0);
11722		dtrace_dof_error(NULL, "truncated DOF");
11723		return (NULL);
11724	}
11725
11726	if (loadsz >= dtrace_dof_maxsize) {
11727		kmem_free(buf, 0);
11728		dtrace_dof_error(NULL, "oversized DOF");
11729		return (NULL);
11730	}
11731#endif
11732
11733	return (dof);
11734}
11735
11736static void
11737dtrace_dof_destroy(dof_hdr_t *dof)
11738{
11739	kmem_free(dof, dof->dofh_loadsz);
11740}
11741
11742/*
11743 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11744 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11745 * a type other than DOF_SECT_NONE is specified, the header is checked against
11746 * this type and NULL is returned if the types do not match.
11747 */
11748static dof_sec_t *
11749dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11750{
11751	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11752	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11753
11754	if (i >= dof->dofh_secnum) {
11755		dtrace_dof_error(dof, "referenced section index is invalid");
11756		return (NULL);
11757	}
11758
11759	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11760		dtrace_dof_error(dof, "referenced section is not loadable");
11761		return (NULL);
11762	}
11763
11764	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11765		dtrace_dof_error(dof, "referenced section is the wrong type");
11766		return (NULL);
11767	}
11768
11769	return (sec);
11770}
11771
11772static dtrace_probedesc_t *
11773dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11774{
11775	dof_probedesc_t *probe;
11776	dof_sec_t *strtab;
11777	uintptr_t daddr = (uintptr_t)dof;
11778	uintptr_t str;
11779	size_t size;
11780
11781	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11782		dtrace_dof_error(dof, "invalid probe section");
11783		return (NULL);
11784	}
11785
11786	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11787		dtrace_dof_error(dof, "bad alignment in probe description");
11788		return (NULL);
11789	}
11790
11791	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11792		dtrace_dof_error(dof, "truncated probe description");
11793		return (NULL);
11794	}
11795
11796	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11797	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11798
11799	if (strtab == NULL)
11800		return (NULL);
11801
11802	str = daddr + strtab->dofs_offset;
11803	size = strtab->dofs_size;
11804
11805	if (probe->dofp_provider >= strtab->dofs_size) {
11806		dtrace_dof_error(dof, "corrupt probe provider");
11807		return (NULL);
11808	}
11809
11810	(void) strncpy(desc->dtpd_provider,
11811	    (char *)(str + probe->dofp_provider),
11812	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11813
11814	if (probe->dofp_mod >= strtab->dofs_size) {
11815		dtrace_dof_error(dof, "corrupt probe module");
11816		return (NULL);
11817	}
11818
11819	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11820	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11821
11822	if (probe->dofp_func >= strtab->dofs_size) {
11823		dtrace_dof_error(dof, "corrupt probe function");
11824		return (NULL);
11825	}
11826
11827	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11828	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11829
11830	if (probe->dofp_name >= strtab->dofs_size) {
11831		dtrace_dof_error(dof, "corrupt probe name");
11832		return (NULL);
11833	}
11834
11835	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11836	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11837
11838	return (desc);
11839}
11840
11841static dtrace_difo_t *
11842dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11843    cred_t *cr)
11844{
11845	dtrace_difo_t *dp;
11846	size_t ttl = 0;
11847	dof_difohdr_t *dofd;
11848	uintptr_t daddr = (uintptr_t)dof;
11849	size_t max = dtrace_difo_maxsize;
11850	int i, l, n;
11851
11852	static const struct {
11853		int section;
11854		int bufoffs;
11855		int lenoffs;
11856		int entsize;
11857		int align;
11858		const char *msg;
11859	} difo[] = {
11860		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11861		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11862		sizeof (dif_instr_t), "multiple DIF sections" },
11863
11864		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11865		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11866		sizeof (uint64_t), "multiple integer tables" },
11867
11868		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11869		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11870		sizeof (char), "multiple string tables" },
11871
11872		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11873		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11874		sizeof (uint_t), "multiple variable tables" },
11875
11876		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11877	};
11878
11879	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11880		dtrace_dof_error(dof, "invalid DIFO header section");
11881		return (NULL);
11882	}
11883
11884	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11885		dtrace_dof_error(dof, "bad alignment in DIFO header");
11886		return (NULL);
11887	}
11888
11889	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11890	    sec->dofs_size % sizeof (dof_secidx_t)) {
11891		dtrace_dof_error(dof, "bad size in DIFO header");
11892		return (NULL);
11893	}
11894
11895	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11896	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11897
11898	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11899	dp->dtdo_rtype = dofd->dofd_rtype;
11900
11901	for (l = 0; l < n; l++) {
11902		dof_sec_t *subsec;
11903		void **bufp;
11904		uint32_t *lenp;
11905
11906		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11907		    dofd->dofd_links[l])) == NULL)
11908			goto err; /* invalid section link */
11909
11910		if (ttl + subsec->dofs_size > max) {
11911			dtrace_dof_error(dof, "exceeds maximum size");
11912			goto err;
11913		}
11914
11915		ttl += subsec->dofs_size;
11916
11917		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11918			if (subsec->dofs_type != difo[i].section)
11919				continue;
11920
11921			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11922				dtrace_dof_error(dof, "section not loaded");
11923				goto err;
11924			}
11925
11926			if (subsec->dofs_align != difo[i].align) {
11927				dtrace_dof_error(dof, "bad alignment");
11928				goto err;
11929			}
11930
11931			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11932			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11933
11934			if (*bufp != NULL) {
11935				dtrace_dof_error(dof, difo[i].msg);
11936				goto err;
11937			}
11938
11939			if (difo[i].entsize != subsec->dofs_entsize) {
11940				dtrace_dof_error(dof, "entry size mismatch");
11941				goto err;
11942			}
11943
11944			if (subsec->dofs_entsize != 0 &&
11945			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11946				dtrace_dof_error(dof, "corrupt entry size");
11947				goto err;
11948			}
11949
11950			*lenp = subsec->dofs_size;
11951			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11952			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11953			    *bufp, subsec->dofs_size);
11954
11955			if (subsec->dofs_entsize != 0)
11956				*lenp /= subsec->dofs_entsize;
11957
11958			break;
11959		}
11960
11961		/*
11962		 * If we encounter a loadable DIFO sub-section that is not
11963		 * known to us, assume this is a broken program and fail.
11964		 */
11965		if (difo[i].section == DOF_SECT_NONE &&
11966		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11967			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11968			goto err;
11969		}
11970	}
11971
11972	if (dp->dtdo_buf == NULL) {
11973		/*
11974		 * We can't have a DIF object without DIF text.
11975		 */
11976		dtrace_dof_error(dof, "missing DIF text");
11977		goto err;
11978	}
11979
11980	/*
11981	 * Before we validate the DIF object, run through the variable table
11982	 * looking for the strings -- if any of their size are under, we'll set
11983	 * their size to be the system-wide default string size.  Note that
11984	 * this should _not_ happen if the "strsize" option has been set --
11985	 * in this case, the compiler should have set the size to reflect the
11986	 * setting of the option.
11987	 */
11988	for (i = 0; i < dp->dtdo_varlen; i++) {
11989		dtrace_difv_t *v = &dp->dtdo_vartab[i];
11990		dtrace_diftype_t *t = &v->dtdv_type;
11991
11992		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11993			continue;
11994
11995		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11996			t->dtdt_size = dtrace_strsize_default;
11997	}
11998
11999	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12000		goto err;
12001
12002	dtrace_difo_init(dp, vstate);
12003	return (dp);
12004
12005err:
12006	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12007	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12008	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12009	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12010
12011	kmem_free(dp, sizeof (dtrace_difo_t));
12012	return (NULL);
12013}
12014
12015static dtrace_predicate_t *
12016dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12017    cred_t *cr)
12018{
12019	dtrace_difo_t *dp;
12020
12021	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12022		return (NULL);
12023
12024	return (dtrace_predicate_create(dp));
12025}
12026
12027static dtrace_actdesc_t *
12028dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12029    cred_t *cr)
12030{
12031	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12032	dof_actdesc_t *desc;
12033	dof_sec_t *difosec;
12034	size_t offs;
12035	uintptr_t daddr = (uintptr_t)dof;
12036	uint64_t arg;
12037	dtrace_actkind_t kind;
12038
12039	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12040		dtrace_dof_error(dof, "invalid action section");
12041		return (NULL);
12042	}
12043
12044	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12045		dtrace_dof_error(dof, "truncated action description");
12046		return (NULL);
12047	}
12048
12049	if (sec->dofs_align != sizeof (uint64_t)) {
12050		dtrace_dof_error(dof, "bad alignment in action description");
12051		return (NULL);
12052	}
12053
12054	if (sec->dofs_size < sec->dofs_entsize) {
12055		dtrace_dof_error(dof, "section entry size exceeds total size");
12056		return (NULL);
12057	}
12058
12059	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12060		dtrace_dof_error(dof, "bad entry size in action description");
12061		return (NULL);
12062	}
12063
12064	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12065		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12066		return (NULL);
12067	}
12068
12069	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12070		desc = (dof_actdesc_t *)(daddr +
12071		    (uintptr_t)sec->dofs_offset + offs);
12072		kind = (dtrace_actkind_t)desc->dofa_kind;
12073
12074		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12075		    (kind != DTRACEACT_PRINTA ||
12076		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12077			dof_sec_t *strtab;
12078			char *str, *fmt;
12079			uint64_t i;
12080
12081			/*
12082			 * printf()-like actions must have a format string.
12083			 */
12084			if ((strtab = dtrace_dof_sect(dof,
12085			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12086				goto err;
12087
12088			str = (char *)((uintptr_t)dof +
12089			    (uintptr_t)strtab->dofs_offset);
12090
12091			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12092				if (str[i] == '\0')
12093					break;
12094			}
12095
12096			if (i >= strtab->dofs_size) {
12097				dtrace_dof_error(dof, "bogus format string");
12098				goto err;
12099			}
12100
12101			if (i == desc->dofa_arg) {
12102				dtrace_dof_error(dof, "empty format string");
12103				goto err;
12104			}
12105
12106			i -= desc->dofa_arg;
12107			fmt = kmem_alloc(i + 1, KM_SLEEP);
12108			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12109			arg = (uint64_t)(uintptr_t)fmt;
12110		} else {
12111			if (kind == DTRACEACT_PRINTA) {
12112				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12113				arg = 0;
12114			} else {
12115				arg = desc->dofa_arg;
12116			}
12117		}
12118
12119		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12120		    desc->dofa_uarg, arg);
12121
12122		if (last != NULL) {
12123			last->dtad_next = act;
12124		} else {
12125			first = act;
12126		}
12127
12128		last = act;
12129
12130		if (desc->dofa_difo == DOF_SECIDX_NONE)
12131			continue;
12132
12133		if ((difosec = dtrace_dof_sect(dof,
12134		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12135			goto err;
12136
12137		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12138
12139		if (act->dtad_difo == NULL)
12140			goto err;
12141	}
12142
12143	ASSERT(first != NULL);
12144	return (first);
12145
12146err:
12147	for (act = first; act != NULL; act = next) {
12148		next = act->dtad_next;
12149		dtrace_actdesc_release(act, vstate);
12150	}
12151
12152	return (NULL);
12153}
12154
12155static dtrace_ecbdesc_t *
12156dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12157    cred_t *cr)
12158{
12159	dtrace_ecbdesc_t *ep;
12160	dof_ecbdesc_t *ecb;
12161	dtrace_probedesc_t *desc;
12162	dtrace_predicate_t *pred = NULL;
12163
12164	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12165		dtrace_dof_error(dof, "truncated ECB description");
12166		return (NULL);
12167	}
12168
12169	if (sec->dofs_align != sizeof (uint64_t)) {
12170		dtrace_dof_error(dof, "bad alignment in ECB description");
12171		return (NULL);
12172	}
12173
12174	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12175	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12176
12177	if (sec == NULL)
12178		return (NULL);
12179
12180	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12181	ep->dted_uarg = ecb->dofe_uarg;
12182	desc = &ep->dted_probe;
12183
12184	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12185		goto err;
12186
12187	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12188		if ((sec = dtrace_dof_sect(dof,
12189		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12190			goto err;
12191
12192		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12193			goto err;
12194
12195		ep->dted_pred.dtpdd_predicate = pred;
12196	}
12197
12198	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12199		if ((sec = dtrace_dof_sect(dof,
12200		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12201			goto err;
12202
12203		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12204
12205		if (ep->dted_action == NULL)
12206			goto err;
12207	}
12208
12209	return (ep);
12210
12211err:
12212	if (pred != NULL)
12213		dtrace_predicate_release(pred, vstate);
12214	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12215	return (NULL);
12216}
12217
12218/*
12219 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12220 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12221 * site of any user SETX relocations to account for load object base address.
12222 * In the future, if we need other relocations, this function can be extended.
12223 */
12224static int
12225dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12226{
12227	uintptr_t daddr = (uintptr_t)dof;
12228	dof_relohdr_t *dofr =
12229	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12230	dof_sec_t *ss, *rs, *ts;
12231	dof_relodesc_t *r;
12232	uint_t i, n;
12233
12234	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12235	    sec->dofs_align != sizeof (dof_secidx_t)) {
12236		dtrace_dof_error(dof, "invalid relocation header");
12237		return (-1);
12238	}
12239
12240	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12241	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12242	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12243
12244	if (ss == NULL || rs == NULL || ts == NULL)
12245		return (-1); /* dtrace_dof_error() has been called already */
12246
12247	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12248	    rs->dofs_align != sizeof (uint64_t)) {
12249		dtrace_dof_error(dof, "invalid relocation section");
12250		return (-1);
12251	}
12252
12253	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12254	n = rs->dofs_size / rs->dofs_entsize;
12255
12256	for (i = 0; i < n; i++) {
12257		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12258
12259		switch (r->dofr_type) {
12260		case DOF_RELO_NONE:
12261			break;
12262		case DOF_RELO_SETX:
12263			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12264			    sizeof (uint64_t) > ts->dofs_size) {
12265				dtrace_dof_error(dof, "bad relocation offset");
12266				return (-1);
12267			}
12268
12269			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12270				dtrace_dof_error(dof, "misaligned setx relo");
12271				return (-1);
12272			}
12273
12274			*(uint64_t *)taddr += ubase;
12275			break;
12276		default:
12277			dtrace_dof_error(dof, "invalid relocation type");
12278			return (-1);
12279		}
12280
12281		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12282	}
12283
12284	return (0);
12285}
12286
12287/*
12288 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12289 * header:  it should be at the front of a memory region that is at least
12290 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12291 * size.  It need not be validated in any other way.
12292 */
12293static int
12294dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12295    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12296{
12297	uint64_t len = dof->dofh_loadsz, seclen;
12298	uintptr_t daddr = (uintptr_t)dof;
12299	dtrace_ecbdesc_t *ep;
12300	dtrace_enabling_t *enab;
12301	uint_t i;
12302
12303	ASSERT(MUTEX_HELD(&dtrace_lock));
12304	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12305
12306	/*
12307	 * Check the DOF header identification bytes.  In addition to checking
12308	 * valid settings, we also verify that unused bits/bytes are zeroed so
12309	 * we can use them later without fear of regressing existing binaries.
12310	 */
12311	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12312	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12313		dtrace_dof_error(dof, "DOF magic string mismatch");
12314		return (-1);
12315	}
12316
12317	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12318	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12319		dtrace_dof_error(dof, "DOF has invalid data model");
12320		return (-1);
12321	}
12322
12323	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12324		dtrace_dof_error(dof, "DOF encoding mismatch");
12325		return (-1);
12326	}
12327
12328	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12329	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12330		dtrace_dof_error(dof, "DOF version mismatch");
12331		return (-1);
12332	}
12333
12334	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12335		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12336		return (-1);
12337	}
12338
12339	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12340		dtrace_dof_error(dof, "DOF uses too many integer registers");
12341		return (-1);
12342	}
12343
12344	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12345		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12346		return (-1);
12347	}
12348
12349	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12350		if (dof->dofh_ident[i] != 0) {
12351			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12352			return (-1);
12353		}
12354	}
12355
12356	if (dof->dofh_flags & ~DOF_FL_VALID) {
12357		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12358		return (-1);
12359	}
12360
12361	if (dof->dofh_secsize == 0) {
12362		dtrace_dof_error(dof, "zero section header size");
12363		return (-1);
12364	}
12365
12366	/*
12367	 * Check that the section headers don't exceed the amount of DOF
12368	 * data.  Note that we cast the section size and number of sections
12369	 * to uint64_t's to prevent possible overflow in the multiplication.
12370	 */
12371	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12372
12373	if (dof->dofh_secoff > len || seclen > len ||
12374	    dof->dofh_secoff + seclen > len) {
12375		dtrace_dof_error(dof, "truncated section headers");
12376		return (-1);
12377	}
12378
12379	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12380		dtrace_dof_error(dof, "misaligned section headers");
12381		return (-1);
12382	}
12383
12384	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12385		dtrace_dof_error(dof, "misaligned section size");
12386		return (-1);
12387	}
12388
12389	/*
12390	 * Take an initial pass through the section headers to be sure that
12391	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12392	 * set, do not permit sections relating to providers, probes, or args.
12393	 */
12394	for (i = 0; i < dof->dofh_secnum; i++) {
12395		dof_sec_t *sec = (dof_sec_t *)(daddr +
12396		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12397
12398		if (noprobes) {
12399			switch (sec->dofs_type) {
12400			case DOF_SECT_PROVIDER:
12401			case DOF_SECT_PROBES:
12402			case DOF_SECT_PRARGS:
12403			case DOF_SECT_PROFFS:
12404				dtrace_dof_error(dof, "illegal sections "
12405				    "for enabling");
12406				return (-1);
12407			}
12408		}
12409
12410		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12411			continue; /* just ignore non-loadable sections */
12412
12413		if (sec->dofs_align & (sec->dofs_align - 1)) {
12414			dtrace_dof_error(dof, "bad section alignment");
12415			return (-1);
12416		}
12417
12418		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12419			dtrace_dof_error(dof, "misaligned section");
12420			return (-1);
12421		}
12422
12423		if (sec->dofs_offset > len || sec->dofs_size > len ||
12424		    sec->dofs_offset + sec->dofs_size > len) {
12425			dtrace_dof_error(dof, "corrupt section header");
12426			return (-1);
12427		}
12428
12429		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12430		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12431			dtrace_dof_error(dof, "non-terminating string table");
12432			return (-1);
12433		}
12434	}
12435
12436	/*
12437	 * Take a second pass through the sections and locate and perform any
12438	 * relocations that are present.  We do this after the first pass to
12439	 * be sure that all sections have had their headers validated.
12440	 */
12441	for (i = 0; i < dof->dofh_secnum; i++) {
12442		dof_sec_t *sec = (dof_sec_t *)(daddr +
12443		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12444
12445		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12446			continue; /* skip sections that are not loadable */
12447
12448		switch (sec->dofs_type) {
12449		case DOF_SECT_URELHDR:
12450			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12451				return (-1);
12452			break;
12453		}
12454	}
12455
12456	if ((enab = *enabp) == NULL)
12457		enab = *enabp = dtrace_enabling_create(vstate);
12458
12459	for (i = 0; i < dof->dofh_secnum; i++) {
12460		dof_sec_t *sec = (dof_sec_t *)(daddr +
12461		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12462
12463		if (sec->dofs_type != DOF_SECT_ECBDESC)
12464			continue;
12465
12466		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12467			dtrace_enabling_destroy(enab);
12468			*enabp = NULL;
12469			return (-1);
12470		}
12471
12472		dtrace_enabling_add(enab, ep);
12473	}
12474
12475	return (0);
12476}
12477
12478/*
12479 * Process DOF for any options.  This routine assumes that the DOF has been
12480 * at least processed by dtrace_dof_slurp().
12481 */
12482static int
12483dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12484{
12485	int i, rval;
12486	uint32_t entsize;
12487	size_t offs;
12488	dof_optdesc_t *desc;
12489
12490	for (i = 0; i < dof->dofh_secnum; i++) {
12491		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12492		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12493
12494		if (sec->dofs_type != DOF_SECT_OPTDESC)
12495			continue;
12496
12497		if (sec->dofs_align != sizeof (uint64_t)) {
12498			dtrace_dof_error(dof, "bad alignment in "
12499			    "option description");
12500			return (EINVAL);
12501		}
12502
12503		if ((entsize = sec->dofs_entsize) == 0) {
12504			dtrace_dof_error(dof, "zeroed option entry size");
12505			return (EINVAL);
12506		}
12507
12508		if (entsize < sizeof (dof_optdesc_t)) {
12509			dtrace_dof_error(dof, "bad option entry size");
12510			return (EINVAL);
12511		}
12512
12513		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12514			desc = (dof_optdesc_t *)((uintptr_t)dof +
12515			    (uintptr_t)sec->dofs_offset + offs);
12516
12517			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12518				dtrace_dof_error(dof, "non-zero option string");
12519				return (EINVAL);
12520			}
12521
12522			if (desc->dofo_value == DTRACEOPT_UNSET) {
12523				dtrace_dof_error(dof, "unset option");
12524				return (EINVAL);
12525			}
12526
12527			if ((rval = dtrace_state_option(state,
12528			    desc->dofo_option, desc->dofo_value)) != 0) {
12529				dtrace_dof_error(dof, "rejected option");
12530				return (rval);
12531			}
12532		}
12533	}
12534
12535	return (0);
12536}
12537
12538/*
12539 * DTrace Consumer State Functions
12540 */
12541static int
12542dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12543{
12544	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12545	void *base;
12546	uintptr_t limit;
12547	dtrace_dynvar_t *dvar, *next, *start;
12548	int i;
12549
12550	ASSERT(MUTEX_HELD(&dtrace_lock));
12551	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12552
12553	bzero(dstate, sizeof (dtrace_dstate_t));
12554
12555	if ((dstate->dtds_chunksize = chunksize) == 0)
12556		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12557
12558	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12559		size = min;
12560
12561	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12562		return (ENOMEM);
12563
12564	dstate->dtds_size = size;
12565	dstate->dtds_base = base;
12566	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12567	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12568
12569	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12570
12571	if (hashsize != 1 && (hashsize & 1))
12572		hashsize--;
12573
12574	dstate->dtds_hashsize = hashsize;
12575	dstate->dtds_hash = dstate->dtds_base;
12576
12577	/*
12578	 * Set all of our hash buckets to point to the single sink, and (if
12579	 * it hasn't already been set), set the sink's hash value to be the
12580	 * sink sentinel value.  The sink is needed for dynamic variable
12581	 * lookups to know that they have iterated over an entire, valid hash
12582	 * chain.
12583	 */
12584	for (i = 0; i < hashsize; i++)
12585		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12586
12587	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12588		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12589
12590	/*
12591	 * Determine number of active CPUs.  Divide free list evenly among
12592	 * active CPUs.
12593	 */
12594	start = (dtrace_dynvar_t *)
12595	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12596	limit = (uintptr_t)base + size;
12597
12598	maxper = (limit - (uintptr_t)start) / NCPU;
12599	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12600
12601	for (i = 0; i < NCPU; i++) {
12602#if !defined(sun)
12603		if (CPU_ABSENT(i))
12604			continue;
12605#endif
12606		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12607
12608		/*
12609		 * If we don't even have enough chunks to make it once through
12610		 * NCPUs, we're just going to allocate everything to the first
12611		 * CPU.  And if we're on the last CPU, we're going to allocate
12612		 * whatever is left over.  In either case, we set the limit to
12613		 * be the limit of the dynamic variable space.
12614		 */
12615		if (maxper == 0 || i == NCPU - 1) {
12616			limit = (uintptr_t)base + size;
12617			start = NULL;
12618		} else {
12619			limit = (uintptr_t)start + maxper;
12620			start = (dtrace_dynvar_t *)limit;
12621		}
12622
12623		ASSERT(limit <= (uintptr_t)base + size);
12624
12625		for (;;) {
12626			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12627			    dstate->dtds_chunksize);
12628
12629			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12630				break;
12631
12632			dvar->dtdv_next = next;
12633			dvar = next;
12634		}
12635
12636		if (maxper == 0)
12637			break;
12638	}
12639
12640	return (0);
12641}
12642
12643static void
12644dtrace_dstate_fini(dtrace_dstate_t *dstate)
12645{
12646	ASSERT(MUTEX_HELD(&cpu_lock));
12647
12648	if (dstate->dtds_base == NULL)
12649		return;
12650
12651	kmem_free(dstate->dtds_base, dstate->dtds_size);
12652	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12653}
12654
12655static void
12656dtrace_vstate_fini(dtrace_vstate_t *vstate)
12657{
12658	/*
12659	 * Logical XOR, where are you?
12660	 */
12661	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12662
12663	if (vstate->dtvs_nglobals > 0) {
12664		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12665		    sizeof (dtrace_statvar_t *));
12666	}
12667
12668	if (vstate->dtvs_ntlocals > 0) {
12669		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12670		    sizeof (dtrace_difv_t));
12671	}
12672
12673	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12674
12675	if (vstate->dtvs_nlocals > 0) {
12676		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12677		    sizeof (dtrace_statvar_t *));
12678	}
12679}
12680
12681static void
12682dtrace_state_clean(dtrace_state_t *state)
12683{
12684	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12685		return;
12686
12687	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12688	dtrace_speculation_clean(state);
12689}
12690
12691static void
12692dtrace_state_deadman(dtrace_state_t *state)
12693{
12694	hrtime_t now;
12695
12696	dtrace_sync();
12697
12698#if !defined(sun)
12699	dtrace_debug_output();
12700#endif
12701
12702	now = dtrace_gethrtime();
12703
12704	if (state != dtrace_anon.dta_state &&
12705	    now - state->dts_laststatus >= dtrace_deadman_user)
12706		return;
12707
12708	/*
12709	 * We must be sure that dts_alive never appears to be less than the
12710	 * value upon entry to dtrace_state_deadman(), and because we lack a
12711	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12712	 * store INT64_MAX to it, followed by a memory barrier, followed by
12713	 * the new value.  This assures that dts_alive never appears to be
12714	 * less than its true value, regardless of the order in which the
12715	 * stores to the underlying storage are issued.
12716	 */
12717	state->dts_alive = INT64_MAX;
12718	dtrace_membar_producer();
12719	state->dts_alive = now;
12720}
12721
12722static dtrace_state_t *
12723#if defined(sun)
12724dtrace_state_create(dev_t *devp, cred_t *cr)
12725#else
12726dtrace_state_create(struct cdev *dev)
12727#endif
12728{
12729#if defined(sun)
12730	minor_t minor;
12731	major_t major;
12732#else
12733	cred_t *cr = NULL;
12734	int m = 0;
12735#endif
12736	char c[30];
12737	dtrace_state_t *state;
12738	dtrace_optval_t *opt;
12739	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12740
12741	ASSERT(MUTEX_HELD(&dtrace_lock));
12742	ASSERT(MUTEX_HELD(&cpu_lock));
12743
12744#if defined(sun)
12745	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12746	    VM_BESTFIT | VM_SLEEP);
12747
12748	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12749		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12750		return (NULL);
12751	}
12752
12753	state = ddi_get_soft_state(dtrace_softstate, minor);
12754#else
12755	if (dev != NULL) {
12756		cr = dev->si_cred;
12757		m = minor(dev);
12758		}
12759
12760	/* Allocate memory for the state. */
12761	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12762#endif
12763
12764	state->dts_epid = DTRACE_EPIDNONE + 1;
12765
12766	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12767#if defined(sun)
12768	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12769	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12770
12771	if (devp != NULL) {
12772		major = getemajor(*devp);
12773	} else {
12774		major = ddi_driver_major(dtrace_devi);
12775	}
12776
12777	state->dts_dev = makedevice(major, minor);
12778
12779	if (devp != NULL)
12780		*devp = state->dts_dev;
12781#else
12782	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12783	state->dts_dev = dev;
12784#endif
12785
12786	/*
12787	 * We allocate NCPU buffers.  On the one hand, this can be quite
12788	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12789	 * other hand, it saves an additional memory reference in the probe
12790	 * path.
12791	 */
12792	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12793	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12794	state->dts_cleaner = CYCLIC_NONE;
12795	state->dts_deadman = CYCLIC_NONE;
12796	state->dts_vstate.dtvs_state = state;
12797
12798	for (i = 0; i < DTRACEOPT_MAX; i++)
12799		state->dts_options[i] = DTRACEOPT_UNSET;
12800
12801	/*
12802	 * Set the default options.
12803	 */
12804	opt = state->dts_options;
12805	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12806	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12807	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12808	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12809	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12810	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12811	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12812	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12813	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12814	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12815	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12816	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12817	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12818	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12819
12820	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12821
12822	/*
12823	 * Depending on the user credentials, we set flag bits which alter probe
12824	 * visibility or the amount of destructiveness allowed.  In the case of
12825	 * actual anonymous tracing, or the possession of all privileges, all of
12826	 * the normal checks are bypassed.
12827	 */
12828	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12829		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12830		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12831	} else {
12832		/*
12833		 * Set up the credentials for this instantiation.  We take a
12834		 * hold on the credential to prevent it from disappearing on
12835		 * us; this in turn prevents the zone_t referenced by this
12836		 * credential from disappearing.  This means that we can
12837		 * examine the credential and the zone from probe context.
12838		 */
12839		crhold(cr);
12840		state->dts_cred.dcr_cred = cr;
12841
12842		/*
12843		 * CRA_PROC means "we have *some* privilege for dtrace" and
12844		 * unlocks the use of variables like pid, zonename, etc.
12845		 */
12846		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12847		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12848			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12849		}
12850
12851		/*
12852		 * dtrace_user allows use of syscall and profile providers.
12853		 * If the user also has proc_owner and/or proc_zone, we
12854		 * extend the scope to include additional visibility and
12855		 * destructive power.
12856		 */
12857		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12858			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12859				state->dts_cred.dcr_visible |=
12860				    DTRACE_CRV_ALLPROC;
12861
12862				state->dts_cred.dcr_action |=
12863				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12864			}
12865
12866			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12867				state->dts_cred.dcr_visible |=
12868				    DTRACE_CRV_ALLZONE;
12869
12870				state->dts_cred.dcr_action |=
12871				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12872			}
12873
12874			/*
12875			 * If we have all privs in whatever zone this is,
12876			 * we can do destructive things to processes which
12877			 * have altered credentials.
12878			 */
12879#if defined(sun)
12880			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12881			    cr->cr_zone->zone_privset)) {
12882				state->dts_cred.dcr_action |=
12883				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12884			}
12885#endif
12886		}
12887
12888		/*
12889		 * Holding the dtrace_kernel privilege also implies that
12890		 * the user has the dtrace_user privilege from a visibility
12891		 * perspective.  But without further privileges, some
12892		 * destructive actions are not available.
12893		 */
12894		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12895			/*
12896			 * Make all probes in all zones visible.  However,
12897			 * this doesn't mean that all actions become available
12898			 * to all zones.
12899			 */
12900			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12901			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12902
12903			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12904			    DTRACE_CRA_PROC;
12905			/*
12906			 * Holding proc_owner means that destructive actions
12907			 * for *this* zone are allowed.
12908			 */
12909			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12910				state->dts_cred.dcr_action |=
12911				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12912
12913			/*
12914			 * Holding proc_zone means that destructive actions
12915			 * for this user/group ID in all zones is allowed.
12916			 */
12917			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12918				state->dts_cred.dcr_action |=
12919				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12920
12921#if defined(sun)
12922			/*
12923			 * If we have all privs in whatever zone this is,
12924			 * we can do destructive things to processes which
12925			 * have altered credentials.
12926			 */
12927			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12928			    cr->cr_zone->zone_privset)) {
12929				state->dts_cred.dcr_action |=
12930				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12931			}
12932#endif
12933		}
12934
12935		/*
12936		 * Holding the dtrace_proc privilege gives control over fasttrap
12937		 * and pid providers.  We need to grant wider destructive
12938		 * privileges in the event that the user has proc_owner and/or
12939		 * proc_zone.
12940		 */
12941		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12942			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12943				state->dts_cred.dcr_action |=
12944				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12945
12946			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12947				state->dts_cred.dcr_action |=
12948				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12949		}
12950	}
12951
12952	return (state);
12953}
12954
12955static int
12956dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12957{
12958	dtrace_optval_t *opt = state->dts_options, size;
12959	processorid_t cpu = 0;;
12960	int flags = 0, rval;
12961
12962	ASSERT(MUTEX_HELD(&dtrace_lock));
12963	ASSERT(MUTEX_HELD(&cpu_lock));
12964	ASSERT(which < DTRACEOPT_MAX);
12965	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12966	    (state == dtrace_anon.dta_state &&
12967	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12968
12969	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12970		return (0);
12971
12972	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12973		cpu = opt[DTRACEOPT_CPU];
12974
12975	if (which == DTRACEOPT_SPECSIZE)
12976		flags |= DTRACEBUF_NOSWITCH;
12977
12978	if (which == DTRACEOPT_BUFSIZE) {
12979		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12980			flags |= DTRACEBUF_RING;
12981
12982		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12983			flags |= DTRACEBUF_FILL;
12984
12985		if (state != dtrace_anon.dta_state ||
12986		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12987			flags |= DTRACEBUF_INACTIVE;
12988	}
12989
12990	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
12991		/*
12992		 * The size must be 8-byte aligned.  If the size is not 8-byte
12993		 * aligned, drop it down by the difference.
12994		 */
12995		if (size & (sizeof (uint64_t) - 1))
12996			size -= size & (sizeof (uint64_t) - 1);
12997
12998		if (size < state->dts_reserve) {
12999			/*
13000			 * Buffers always must be large enough to accommodate
13001			 * their prereserved space.  We return E2BIG instead
13002			 * of ENOMEM in this case to allow for user-level
13003			 * software to differentiate the cases.
13004			 */
13005			return (E2BIG);
13006		}
13007
13008		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13009
13010		if (rval != ENOMEM) {
13011			opt[which] = size;
13012			return (rval);
13013		}
13014
13015		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13016			return (rval);
13017	}
13018
13019	return (ENOMEM);
13020}
13021
13022static int
13023dtrace_state_buffers(dtrace_state_t *state)
13024{
13025	dtrace_speculation_t *spec = state->dts_speculations;
13026	int rval, i;
13027
13028	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13029	    DTRACEOPT_BUFSIZE)) != 0)
13030		return (rval);
13031
13032	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13033	    DTRACEOPT_AGGSIZE)) != 0)
13034		return (rval);
13035
13036	for (i = 0; i < state->dts_nspeculations; i++) {
13037		if ((rval = dtrace_state_buffer(state,
13038		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13039			return (rval);
13040	}
13041
13042	return (0);
13043}
13044
13045static void
13046dtrace_state_prereserve(dtrace_state_t *state)
13047{
13048	dtrace_ecb_t *ecb;
13049	dtrace_probe_t *probe;
13050
13051	state->dts_reserve = 0;
13052
13053	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13054		return;
13055
13056	/*
13057	 * If our buffer policy is a "fill" buffer policy, we need to set the
13058	 * prereserved space to be the space required by the END probes.
13059	 */
13060	probe = dtrace_probes[dtrace_probeid_end - 1];
13061	ASSERT(probe != NULL);
13062
13063	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13064		if (ecb->dte_state != state)
13065			continue;
13066
13067		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13068	}
13069}
13070
13071static int
13072dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13073{
13074	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13075	dtrace_speculation_t *spec;
13076	dtrace_buffer_t *buf;
13077	cyc_handler_t hdlr;
13078	cyc_time_t when;
13079	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13080	dtrace_icookie_t cookie;
13081
13082	mutex_enter(&cpu_lock);
13083	mutex_enter(&dtrace_lock);
13084
13085	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13086		rval = EBUSY;
13087		goto out;
13088	}
13089
13090	/*
13091	 * Before we can perform any checks, we must prime all of the
13092	 * retained enablings that correspond to this state.
13093	 */
13094	dtrace_enabling_prime(state);
13095
13096	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13097		rval = EACCES;
13098		goto out;
13099	}
13100
13101	dtrace_state_prereserve(state);
13102
13103	/*
13104	 * Now we want to do is try to allocate our speculations.
13105	 * We do not automatically resize the number of speculations; if
13106	 * this fails, we will fail the operation.
13107	 */
13108	nspec = opt[DTRACEOPT_NSPEC];
13109	ASSERT(nspec != DTRACEOPT_UNSET);
13110
13111	if (nspec > INT_MAX) {
13112		rval = ENOMEM;
13113		goto out;
13114	}
13115
13116	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13117
13118	if (spec == NULL) {
13119		rval = ENOMEM;
13120		goto out;
13121	}
13122
13123	state->dts_speculations = spec;
13124	state->dts_nspeculations = (int)nspec;
13125
13126	for (i = 0; i < nspec; i++) {
13127		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13128			rval = ENOMEM;
13129			goto err;
13130		}
13131
13132		spec[i].dtsp_buffer = buf;
13133	}
13134
13135	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13136		if (dtrace_anon.dta_state == NULL) {
13137			rval = ENOENT;
13138			goto out;
13139		}
13140
13141		if (state->dts_necbs != 0) {
13142			rval = EALREADY;
13143			goto out;
13144		}
13145
13146		state->dts_anon = dtrace_anon_grab();
13147		ASSERT(state->dts_anon != NULL);
13148		state = state->dts_anon;
13149
13150		/*
13151		 * We want "grabanon" to be set in the grabbed state, so we'll
13152		 * copy that option value from the grabbing state into the
13153		 * grabbed state.
13154		 */
13155		state->dts_options[DTRACEOPT_GRABANON] =
13156		    opt[DTRACEOPT_GRABANON];
13157
13158		*cpu = dtrace_anon.dta_beganon;
13159
13160		/*
13161		 * If the anonymous state is active (as it almost certainly
13162		 * is if the anonymous enabling ultimately matched anything),
13163		 * we don't allow any further option processing -- but we
13164		 * don't return failure.
13165		 */
13166		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13167			goto out;
13168	}
13169
13170	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13171	    opt[DTRACEOPT_AGGSIZE] != 0) {
13172		if (state->dts_aggregations == NULL) {
13173			/*
13174			 * We're not going to create an aggregation buffer
13175			 * because we don't have any ECBs that contain
13176			 * aggregations -- set this option to 0.
13177			 */
13178			opt[DTRACEOPT_AGGSIZE] = 0;
13179		} else {
13180			/*
13181			 * If we have an aggregation buffer, we must also have
13182			 * a buffer to use as scratch.
13183			 */
13184			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13185			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13186				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13187			}
13188		}
13189	}
13190
13191	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13192	    opt[DTRACEOPT_SPECSIZE] != 0) {
13193		if (!state->dts_speculates) {
13194			/*
13195			 * We're not going to create speculation buffers
13196			 * because we don't have any ECBs that actually
13197			 * speculate -- set the speculation size to 0.
13198			 */
13199			opt[DTRACEOPT_SPECSIZE] = 0;
13200		}
13201	}
13202
13203	/*
13204	 * The bare minimum size for any buffer that we're actually going to
13205	 * do anything to is sizeof (uint64_t).
13206	 */
13207	sz = sizeof (uint64_t);
13208
13209	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13210	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13211	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13212		/*
13213		 * A buffer size has been explicitly set to 0 (or to a size
13214		 * that will be adjusted to 0) and we need the space -- we
13215		 * need to return failure.  We return ENOSPC to differentiate
13216		 * it from failing to allocate a buffer due to failure to meet
13217		 * the reserve (for which we return E2BIG).
13218		 */
13219		rval = ENOSPC;
13220		goto out;
13221	}
13222
13223	if ((rval = dtrace_state_buffers(state)) != 0)
13224		goto err;
13225
13226	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13227		sz = dtrace_dstate_defsize;
13228
13229	do {
13230		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13231
13232		if (rval == 0)
13233			break;
13234
13235		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13236			goto err;
13237	} while (sz >>= 1);
13238
13239	opt[DTRACEOPT_DYNVARSIZE] = sz;
13240
13241	if (rval != 0)
13242		goto err;
13243
13244	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13245		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13246
13247	if (opt[DTRACEOPT_CLEANRATE] == 0)
13248		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13249
13250	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13251		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13252
13253	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13254		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13255
13256	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13257	hdlr.cyh_arg = state;
13258#if defined(sun)
13259	hdlr.cyh_level = CY_LOW_LEVEL;
13260#endif
13261
13262	when.cyt_when = 0;
13263	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13264
13265	state->dts_cleaner = cyclic_add(&hdlr, &when);
13266
13267	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13268	hdlr.cyh_arg = state;
13269#if defined(sun)
13270	hdlr.cyh_level = CY_LOW_LEVEL;
13271#endif
13272
13273	when.cyt_when = 0;
13274	when.cyt_interval = dtrace_deadman_interval;
13275
13276	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13277	state->dts_deadman = cyclic_add(&hdlr, &when);
13278
13279	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13280
13281	/*
13282	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13283	 * interrupts here both to record the CPU on which we fired the BEGIN
13284	 * probe (the data from this CPU will be processed first at user
13285	 * level) and to manually activate the buffer for this CPU.
13286	 */
13287	cookie = dtrace_interrupt_disable();
13288	*cpu = curcpu;
13289	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13290	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13291
13292	dtrace_probe(dtrace_probeid_begin,
13293	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13294	dtrace_interrupt_enable(cookie);
13295	/*
13296	 * We may have had an exit action from a BEGIN probe; only change our
13297	 * state to ACTIVE if we're still in WARMUP.
13298	 */
13299	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13300	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13301
13302	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13303		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13304
13305	/*
13306	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13307	 * want each CPU to transition its principal buffer out of the
13308	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13309	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13310	 * atomically transition from processing none of a state's ECBs to
13311	 * processing all of them.
13312	 */
13313	dtrace_xcall(DTRACE_CPUALL,
13314	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13315	goto out;
13316
13317err:
13318	dtrace_buffer_free(state->dts_buffer);
13319	dtrace_buffer_free(state->dts_aggbuffer);
13320
13321	if ((nspec = state->dts_nspeculations) == 0) {
13322		ASSERT(state->dts_speculations == NULL);
13323		goto out;
13324	}
13325
13326	spec = state->dts_speculations;
13327	ASSERT(spec != NULL);
13328
13329	for (i = 0; i < state->dts_nspeculations; i++) {
13330		if ((buf = spec[i].dtsp_buffer) == NULL)
13331			break;
13332
13333		dtrace_buffer_free(buf);
13334		kmem_free(buf, bufsize);
13335	}
13336
13337	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13338	state->dts_nspeculations = 0;
13339	state->dts_speculations = NULL;
13340
13341out:
13342	mutex_exit(&dtrace_lock);
13343	mutex_exit(&cpu_lock);
13344
13345	return (rval);
13346}
13347
13348static int
13349dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13350{
13351	dtrace_icookie_t cookie;
13352
13353	ASSERT(MUTEX_HELD(&dtrace_lock));
13354
13355	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13356	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13357		return (EINVAL);
13358
13359	/*
13360	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13361	 * to be sure that every CPU has seen it.  See below for the details
13362	 * on why this is done.
13363	 */
13364	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13365	dtrace_sync();
13366
13367	/*
13368	 * By this point, it is impossible for any CPU to be still processing
13369	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13370	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13371	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13372	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13373	 * iff we're in the END probe.
13374	 */
13375	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13376	dtrace_sync();
13377	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13378
13379	/*
13380	 * Finally, we can release the reserve and call the END probe.  We
13381	 * disable interrupts across calling the END probe to allow us to
13382	 * return the CPU on which we actually called the END probe.  This
13383	 * allows user-land to be sure that this CPU's principal buffer is
13384	 * processed last.
13385	 */
13386	state->dts_reserve = 0;
13387
13388	cookie = dtrace_interrupt_disable();
13389	*cpu = curcpu;
13390	dtrace_probe(dtrace_probeid_end,
13391	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13392	dtrace_interrupt_enable(cookie);
13393
13394	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13395	dtrace_sync();
13396
13397	return (0);
13398}
13399
13400static int
13401dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13402    dtrace_optval_t val)
13403{
13404	ASSERT(MUTEX_HELD(&dtrace_lock));
13405
13406	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13407		return (EBUSY);
13408
13409	if (option >= DTRACEOPT_MAX)
13410		return (EINVAL);
13411
13412	if (option != DTRACEOPT_CPU && val < 0)
13413		return (EINVAL);
13414
13415	switch (option) {
13416	case DTRACEOPT_DESTRUCTIVE:
13417		if (dtrace_destructive_disallow)
13418			return (EACCES);
13419
13420		state->dts_cred.dcr_destructive = 1;
13421		break;
13422
13423	case DTRACEOPT_BUFSIZE:
13424	case DTRACEOPT_DYNVARSIZE:
13425	case DTRACEOPT_AGGSIZE:
13426	case DTRACEOPT_SPECSIZE:
13427	case DTRACEOPT_STRSIZE:
13428		if (val < 0)
13429			return (EINVAL);
13430
13431		if (val >= LONG_MAX) {
13432			/*
13433			 * If this is an otherwise negative value, set it to
13434			 * the highest multiple of 128m less than LONG_MAX.
13435			 * Technically, we're adjusting the size without
13436			 * regard to the buffer resizing policy, but in fact,
13437			 * this has no effect -- if we set the buffer size to
13438			 * ~LONG_MAX and the buffer policy is ultimately set to
13439			 * be "manual", the buffer allocation is guaranteed to
13440			 * fail, if only because the allocation requires two
13441			 * buffers.  (We set the the size to the highest
13442			 * multiple of 128m because it ensures that the size
13443			 * will remain a multiple of a megabyte when
13444			 * repeatedly halved -- all the way down to 15m.)
13445			 */
13446			val = LONG_MAX - (1 << 27) + 1;
13447		}
13448	}
13449
13450	state->dts_options[option] = val;
13451
13452	return (0);
13453}
13454
13455static void
13456dtrace_state_destroy(dtrace_state_t *state)
13457{
13458	dtrace_ecb_t *ecb;
13459	dtrace_vstate_t *vstate = &state->dts_vstate;
13460#if defined(sun)
13461	minor_t minor = getminor(state->dts_dev);
13462#endif
13463	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13464	dtrace_speculation_t *spec = state->dts_speculations;
13465	int nspec = state->dts_nspeculations;
13466	uint32_t match;
13467
13468	ASSERT(MUTEX_HELD(&dtrace_lock));
13469	ASSERT(MUTEX_HELD(&cpu_lock));
13470
13471	/*
13472	 * First, retract any retained enablings for this state.
13473	 */
13474	dtrace_enabling_retract(state);
13475	ASSERT(state->dts_nretained == 0);
13476
13477	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13478	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13479		/*
13480		 * We have managed to come into dtrace_state_destroy() on a
13481		 * hot enabling -- almost certainly because of a disorderly
13482		 * shutdown of a consumer.  (That is, a consumer that is
13483		 * exiting without having called dtrace_stop().) In this case,
13484		 * we're going to set our activity to be KILLED, and then
13485		 * issue a sync to be sure that everyone is out of probe
13486		 * context before we start blowing away ECBs.
13487		 */
13488		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13489		dtrace_sync();
13490	}
13491
13492	/*
13493	 * Release the credential hold we took in dtrace_state_create().
13494	 */
13495	if (state->dts_cred.dcr_cred != NULL)
13496		crfree(state->dts_cred.dcr_cred);
13497
13498	/*
13499	 * Now we can safely disable and destroy any enabled probes.  Because
13500	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13501	 * (especially if they're all enabled), we take two passes through the
13502	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13503	 * in the second we disable whatever is left over.
13504	 */
13505	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13506		for (i = 0; i < state->dts_necbs; i++) {
13507			if ((ecb = state->dts_ecbs[i]) == NULL)
13508				continue;
13509
13510			if (match && ecb->dte_probe != NULL) {
13511				dtrace_probe_t *probe = ecb->dte_probe;
13512				dtrace_provider_t *prov = probe->dtpr_provider;
13513
13514				if (!(prov->dtpv_priv.dtpp_flags & match))
13515					continue;
13516			}
13517
13518			dtrace_ecb_disable(ecb);
13519			dtrace_ecb_destroy(ecb);
13520		}
13521
13522		if (!match)
13523			break;
13524	}
13525
13526	/*
13527	 * Before we free the buffers, perform one more sync to assure that
13528	 * every CPU is out of probe context.
13529	 */
13530	dtrace_sync();
13531
13532	dtrace_buffer_free(state->dts_buffer);
13533	dtrace_buffer_free(state->dts_aggbuffer);
13534
13535	for (i = 0; i < nspec; i++)
13536		dtrace_buffer_free(spec[i].dtsp_buffer);
13537
13538	if (state->dts_cleaner != CYCLIC_NONE)
13539		cyclic_remove(state->dts_cleaner);
13540
13541	if (state->dts_deadman != CYCLIC_NONE)
13542		cyclic_remove(state->dts_deadman);
13543
13544	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13545	dtrace_vstate_fini(vstate);
13546	if (state->dts_ecbs != NULL)
13547		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13548
13549	if (state->dts_aggregations != NULL) {
13550#ifdef DEBUG
13551		for (i = 0; i < state->dts_naggregations; i++)
13552			ASSERT(state->dts_aggregations[i] == NULL);
13553#endif
13554		ASSERT(state->dts_naggregations > 0);
13555		kmem_free(state->dts_aggregations,
13556		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13557	}
13558
13559	kmem_free(state->dts_buffer, bufsize);
13560	kmem_free(state->dts_aggbuffer, bufsize);
13561
13562	for (i = 0; i < nspec; i++)
13563		kmem_free(spec[i].dtsp_buffer, bufsize);
13564
13565	if (spec != NULL)
13566		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13567
13568	dtrace_format_destroy(state);
13569
13570	if (state->dts_aggid_arena != NULL) {
13571#if defined(sun)
13572		vmem_destroy(state->dts_aggid_arena);
13573#else
13574		delete_unrhdr(state->dts_aggid_arena);
13575#endif
13576		state->dts_aggid_arena = NULL;
13577	}
13578#if defined(sun)
13579	ddi_soft_state_free(dtrace_softstate, minor);
13580	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13581#endif
13582}
13583
13584/*
13585 * DTrace Anonymous Enabling Functions
13586 */
13587static dtrace_state_t *
13588dtrace_anon_grab(void)
13589{
13590	dtrace_state_t *state;
13591
13592	ASSERT(MUTEX_HELD(&dtrace_lock));
13593
13594	if ((state = dtrace_anon.dta_state) == NULL) {
13595		ASSERT(dtrace_anon.dta_enabling == NULL);
13596		return (NULL);
13597	}
13598
13599	ASSERT(dtrace_anon.dta_enabling != NULL);
13600	ASSERT(dtrace_retained != NULL);
13601
13602	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13603	dtrace_anon.dta_enabling = NULL;
13604	dtrace_anon.dta_state = NULL;
13605
13606	return (state);
13607}
13608
13609static void
13610dtrace_anon_property(void)
13611{
13612	int i, rv;
13613	dtrace_state_t *state;
13614	dof_hdr_t *dof;
13615	char c[32];		/* enough for "dof-data-" + digits */
13616
13617	ASSERT(MUTEX_HELD(&dtrace_lock));
13618	ASSERT(MUTEX_HELD(&cpu_lock));
13619
13620	for (i = 0; ; i++) {
13621		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13622
13623		dtrace_err_verbose = 1;
13624
13625		if ((dof = dtrace_dof_property(c)) == NULL) {
13626			dtrace_err_verbose = 0;
13627			break;
13628		}
13629
13630#if defined(sun)
13631		/*
13632		 * We want to create anonymous state, so we need to transition
13633		 * the kernel debugger to indicate that DTrace is active.  If
13634		 * this fails (e.g. because the debugger has modified text in
13635		 * some way), we won't continue with the processing.
13636		 */
13637		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13638			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13639			    "enabling ignored.");
13640			dtrace_dof_destroy(dof);
13641			break;
13642		}
13643#endif
13644
13645		/*
13646		 * If we haven't allocated an anonymous state, we'll do so now.
13647		 */
13648		if ((state = dtrace_anon.dta_state) == NULL) {
13649#if defined(sun)
13650			state = dtrace_state_create(NULL, NULL);
13651#else
13652			state = dtrace_state_create(NULL);
13653#endif
13654			dtrace_anon.dta_state = state;
13655
13656			if (state == NULL) {
13657				/*
13658				 * This basically shouldn't happen:  the only
13659				 * failure mode from dtrace_state_create() is a
13660				 * failure of ddi_soft_state_zalloc() that
13661				 * itself should never happen.  Still, the
13662				 * interface allows for a failure mode, and
13663				 * we want to fail as gracefully as possible:
13664				 * we'll emit an error message and cease
13665				 * processing anonymous state in this case.
13666				 */
13667				cmn_err(CE_WARN, "failed to create "
13668				    "anonymous state");
13669				dtrace_dof_destroy(dof);
13670				break;
13671			}
13672		}
13673
13674		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13675		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13676
13677		if (rv == 0)
13678			rv = dtrace_dof_options(dof, state);
13679
13680		dtrace_err_verbose = 0;
13681		dtrace_dof_destroy(dof);
13682
13683		if (rv != 0) {
13684			/*
13685			 * This is malformed DOF; chuck any anonymous state
13686			 * that we created.
13687			 */
13688			ASSERT(dtrace_anon.dta_enabling == NULL);
13689			dtrace_state_destroy(state);
13690			dtrace_anon.dta_state = NULL;
13691			break;
13692		}
13693
13694		ASSERT(dtrace_anon.dta_enabling != NULL);
13695	}
13696
13697	if (dtrace_anon.dta_enabling != NULL) {
13698		int rval;
13699
13700		/*
13701		 * dtrace_enabling_retain() can only fail because we are
13702		 * trying to retain more enablings than are allowed -- but
13703		 * we only have one anonymous enabling, and we are guaranteed
13704		 * to be allowed at least one retained enabling; we assert
13705		 * that dtrace_enabling_retain() returns success.
13706		 */
13707		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13708		ASSERT(rval == 0);
13709
13710		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13711	}
13712}
13713
13714#if defined(sun)
13715/*
13716 * DTrace Helper Functions
13717 */
13718static void
13719dtrace_helper_trace(dtrace_helper_action_t *helper,
13720    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13721{
13722	uint32_t size, next, nnext, i;
13723	dtrace_helptrace_t *ent;
13724	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13725
13726	if (!dtrace_helptrace_enabled)
13727		return;
13728
13729	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13730
13731	/*
13732	 * What would a tracing framework be without its own tracing
13733	 * framework?  (Well, a hell of a lot simpler, for starters...)
13734	 */
13735	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13736	    sizeof (uint64_t) - sizeof (uint64_t);
13737
13738	/*
13739	 * Iterate until we can allocate a slot in the trace buffer.
13740	 */
13741	do {
13742		next = dtrace_helptrace_next;
13743
13744		if (next + size < dtrace_helptrace_bufsize) {
13745			nnext = next + size;
13746		} else {
13747			nnext = size;
13748		}
13749	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13750
13751	/*
13752	 * We have our slot; fill it in.
13753	 */
13754	if (nnext == size)
13755		next = 0;
13756
13757	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13758	ent->dtht_helper = helper;
13759	ent->dtht_where = where;
13760	ent->dtht_nlocals = vstate->dtvs_nlocals;
13761
13762	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13763	    mstate->dtms_fltoffs : -1;
13764	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13765	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13766
13767	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13768		dtrace_statvar_t *svar;
13769
13770		if ((svar = vstate->dtvs_locals[i]) == NULL)
13771			continue;
13772
13773		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13774		ent->dtht_locals[i] =
13775		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13776	}
13777}
13778#endif
13779
13780#if defined(sun)
13781static uint64_t
13782dtrace_helper(int which, dtrace_mstate_t *mstate,
13783    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13784{
13785	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13786	uint64_t sarg0 = mstate->dtms_arg[0];
13787	uint64_t sarg1 = mstate->dtms_arg[1];
13788	uint64_t rval;
13789	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13790	dtrace_helper_action_t *helper;
13791	dtrace_vstate_t *vstate;
13792	dtrace_difo_t *pred;
13793	int i, trace = dtrace_helptrace_enabled;
13794
13795	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13796
13797	if (helpers == NULL)
13798		return (0);
13799
13800	if ((helper = helpers->dthps_actions[which]) == NULL)
13801		return (0);
13802
13803	vstate = &helpers->dthps_vstate;
13804	mstate->dtms_arg[0] = arg0;
13805	mstate->dtms_arg[1] = arg1;
13806
13807	/*
13808	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13809	 * we'll call the corresponding actions.  Note that the below calls
13810	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13811	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13812	 * the stored DIF offset with its own (which is the desired behavior).
13813	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13814	 * from machine state; this is okay, too.
13815	 */
13816	for (; helper != NULL; helper = helper->dtha_next) {
13817		if ((pred = helper->dtha_predicate) != NULL) {
13818			if (trace)
13819				dtrace_helper_trace(helper, mstate, vstate, 0);
13820
13821			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13822				goto next;
13823
13824			if (*flags & CPU_DTRACE_FAULT)
13825				goto err;
13826		}
13827
13828		for (i = 0; i < helper->dtha_nactions; i++) {
13829			if (trace)
13830				dtrace_helper_trace(helper,
13831				    mstate, vstate, i + 1);
13832
13833			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13834			    mstate, vstate, state);
13835
13836			if (*flags & CPU_DTRACE_FAULT)
13837				goto err;
13838		}
13839
13840next:
13841		if (trace)
13842			dtrace_helper_trace(helper, mstate, vstate,
13843			    DTRACE_HELPTRACE_NEXT);
13844	}
13845
13846	if (trace)
13847		dtrace_helper_trace(helper, mstate, vstate,
13848		    DTRACE_HELPTRACE_DONE);
13849
13850	/*
13851	 * Restore the arg0 that we saved upon entry.
13852	 */
13853	mstate->dtms_arg[0] = sarg0;
13854	mstate->dtms_arg[1] = sarg1;
13855
13856	return (rval);
13857
13858err:
13859	if (trace)
13860		dtrace_helper_trace(helper, mstate, vstate,
13861		    DTRACE_HELPTRACE_ERR);
13862
13863	/*
13864	 * Restore the arg0 that we saved upon entry.
13865	 */
13866	mstate->dtms_arg[0] = sarg0;
13867	mstate->dtms_arg[1] = sarg1;
13868
13869	return (0);
13870}
13871
13872static void
13873dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13874    dtrace_vstate_t *vstate)
13875{
13876	int i;
13877
13878	if (helper->dtha_predicate != NULL)
13879		dtrace_difo_release(helper->dtha_predicate, vstate);
13880
13881	for (i = 0; i < helper->dtha_nactions; i++) {
13882		ASSERT(helper->dtha_actions[i] != NULL);
13883		dtrace_difo_release(helper->dtha_actions[i], vstate);
13884	}
13885
13886	kmem_free(helper->dtha_actions,
13887	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13888	kmem_free(helper, sizeof (dtrace_helper_action_t));
13889}
13890
13891static int
13892dtrace_helper_destroygen(int gen)
13893{
13894	proc_t *p = curproc;
13895	dtrace_helpers_t *help = p->p_dtrace_helpers;
13896	dtrace_vstate_t *vstate;
13897	int i;
13898
13899	ASSERT(MUTEX_HELD(&dtrace_lock));
13900
13901	if (help == NULL || gen > help->dthps_generation)
13902		return (EINVAL);
13903
13904	vstate = &help->dthps_vstate;
13905
13906	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13907		dtrace_helper_action_t *last = NULL, *h, *next;
13908
13909		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13910			next = h->dtha_next;
13911
13912			if (h->dtha_generation == gen) {
13913				if (last != NULL) {
13914					last->dtha_next = next;
13915				} else {
13916					help->dthps_actions[i] = next;
13917				}
13918
13919				dtrace_helper_action_destroy(h, vstate);
13920			} else {
13921				last = h;
13922			}
13923		}
13924	}
13925
13926	/*
13927	 * Interate until we've cleared out all helper providers with the
13928	 * given generation number.
13929	 */
13930	for (;;) {
13931		dtrace_helper_provider_t *prov;
13932
13933		/*
13934		 * Look for a helper provider with the right generation. We
13935		 * have to start back at the beginning of the list each time
13936		 * because we drop dtrace_lock. It's unlikely that we'll make
13937		 * more than two passes.
13938		 */
13939		for (i = 0; i < help->dthps_nprovs; i++) {
13940			prov = help->dthps_provs[i];
13941
13942			if (prov->dthp_generation == gen)
13943				break;
13944		}
13945
13946		/*
13947		 * If there were no matches, we're done.
13948		 */
13949		if (i == help->dthps_nprovs)
13950			break;
13951
13952		/*
13953		 * Move the last helper provider into this slot.
13954		 */
13955		help->dthps_nprovs--;
13956		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13957		help->dthps_provs[help->dthps_nprovs] = NULL;
13958
13959		mutex_exit(&dtrace_lock);
13960
13961		/*
13962		 * If we have a meta provider, remove this helper provider.
13963		 */
13964		mutex_enter(&dtrace_meta_lock);
13965		if (dtrace_meta_pid != NULL) {
13966			ASSERT(dtrace_deferred_pid == NULL);
13967			dtrace_helper_provider_remove(&prov->dthp_prov,
13968			    p->p_pid);
13969		}
13970		mutex_exit(&dtrace_meta_lock);
13971
13972		dtrace_helper_provider_destroy(prov);
13973
13974		mutex_enter(&dtrace_lock);
13975	}
13976
13977	return (0);
13978}
13979#endif
13980
13981#if defined(sun)
13982static int
13983dtrace_helper_validate(dtrace_helper_action_t *helper)
13984{
13985	int err = 0, i;
13986	dtrace_difo_t *dp;
13987
13988	if ((dp = helper->dtha_predicate) != NULL)
13989		err += dtrace_difo_validate_helper(dp);
13990
13991	for (i = 0; i < helper->dtha_nactions; i++)
13992		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13993
13994	return (err == 0);
13995}
13996#endif
13997
13998#if defined(sun)
13999static int
14000dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14001{
14002	dtrace_helpers_t *help;
14003	dtrace_helper_action_t *helper, *last;
14004	dtrace_actdesc_t *act;
14005	dtrace_vstate_t *vstate;
14006	dtrace_predicate_t *pred;
14007	int count = 0, nactions = 0, i;
14008
14009	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14010		return (EINVAL);
14011
14012	help = curproc->p_dtrace_helpers;
14013	last = help->dthps_actions[which];
14014	vstate = &help->dthps_vstate;
14015
14016	for (count = 0; last != NULL; last = last->dtha_next) {
14017		count++;
14018		if (last->dtha_next == NULL)
14019			break;
14020	}
14021
14022	/*
14023	 * If we already have dtrace_helper_actions_max helper actions for this
14024	 * helper action type, we'll refuse to add a new one.
14025	 */
14026	if (count >= dtrace_helper_actions_max)
14027		return (ENOSPC);
14028
14029	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14030	helper->dtha_generation = help->dthps_generation;
14031
14032	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14033		ASSERT(pred->dtp_difo != NULL);
14034		dtrace_difo_hold(pred->dtp_difo);
14035		helper->dtha_predicate = pred->dtp_difo;
14036	}
14037
14038	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14039		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14040			goto err;
14041
14042		if (act->dtad_difo == NULL)
14043			goto err;
14044
14045		nactions++;
14046	}
14047
14048	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14049	    (helper->dtha_nactions = nactions), KM_SLEEP);
14050
14051	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14052		dtrace_difo_hold(act->dtad_difo);
14053		helper->dtha_actions[i++] = act->dtad_difo;
14054	}
14055
14056	if (!dtrace_helper_validate(helper))
14057		goto err;
14058
14059	if (last == NULL) {
14060		help->dthps_actions[which] = helper;
14061	} else {
14062		last->dtha_next = helper;
14063	}
14064
14065	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14066		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14067		dtrace_helptrace_next = 0;
14068	}
14069
14070	return (0);
14071err:
14072	dtrace_helper_action_destroy(helper, vstate);
14073	return (EINVAL);
14074}
14075
14076static void
14077dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14078    dof_helper_t *dofhp)
14079{
14080	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14081
14082	mutex_enter(&dtrace_meta_lock);
14083	mutex_enter(&dtrace_lock);
14084
14085	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14086		/*
14087		 * If the dtrace module is loaded but not attached, or if
14088		 * there aren't isn't a meta provider registered to deal with
14089		 * these provider descriptions, we need to postpone creating
14090		 * the actual providers until later.
14091		 */
14092
14093		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14094		    dtrace_deferred_pid != help) {
14095			help->dthps_deferred = 1;
14096			help->dthps_pid = p->p_pid;
14097			help->dthps_next = dtrace_deferred_pid;
14098			help->dthps_prev = NULL;
14099			if (dtrace_deferred_pid != NULL)
14100				dtrace_deferred_pid->dthps_prev = help;
14101			dtrace_deferred_pid = help;
14102		}
14103
14104		mutex_exit(&dtrace_lock);
14105
14106	} else if (dofhp != NULL) {
14107		/*
14108		 * If the dtrace module is loaded and we have a particular
14109		 * helper provider description, pass that off to the
14110		 * meta provider.
14111		 */
14112
14113		mutex_exit(&dtrace_lock);
14114
14115		dtrace_helper_provide(dofhp, p->p_pid);
14116
14117	} else {
14118		/*
14119		 * Otherwise, just pass all the helper provider descriptions
14120		 * off to the meta provider.
14121		 */
14122
14123		int i;
14124		mutex_exit(&dtrace_lock);
14125
14126		for (i = 0; i < help->dthps_nprovs; i++) {
14127			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14128			    p->p_pid);
14129		}
14130	}
14131
14132	mutex_exit(&dtrace_meta_lock);
14133}
14134
14135static int
14136dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14137{
14138	dtrace_helpers_t *help;
14139	dtrace_helper_provider_t *hprov, **tmp_provs;
14140	uint_t tmp_maxprovs, i;
14141
14142	ASSERT(MUTEX_HELD(&dtrace_lock));
14143
14144	help = curproc->p_dtrace_helpers;
14145	ASSERT(help != NULL);
14146
14147	/*
14148	 * If we already have dtrace_helper_providers_max helper providers,
14149	 * we're refuse to add a new one.
14150	 */
14151	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14152		return (ENOSPC);
14153
14154	/*
14155	 * Check to make sure this isn't a duplicate.
14156	 */
14157	for (i = 0; i < help->dthps_nprovs; i++) {
14158		if (dofhp->dofhp_addr ==
14159		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14160			return (EALREADY);
14161	}
14162
14163	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14164	hprov->dthp_prov = *dofhp;
14165	hprov->dthp_ref = 1;
14166	hprov->dthp_generation = gen;
14167
14168	/*
14169	 * Allocate a bigger table for helper providers if it's already full.
14170	 */
14171	if (help->dthps_maxprovs == help->dthps_nprovs) {
14172		tmp_maxprovs = help->dthps_maxprovs;
14173		tmp_provs = help->dthps_provs;
14174
14175		if (help->dthps_maxprovs == 0)
14176			help->dthps_maxprovs = 2;
14177		else
14178			help->dthps_maxprovs *= 2;
14179		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14180			help->dthps_maxprovs = dtrace_helper_providers_max;
14181
14182		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14183
14184		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14185		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14186
14187		if (tmp_provs != NULL) {
14188			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14189			    sizeof (dtrace_helper_provider_t *));
14190			kmem_free(tmp_provs, tmp_maxprovs *
14191			    sizeof (dtrace_helper_provider_t *));
14192		}
14193	}
14194
14195	help->dthps_provs[help->dthps_nprovs] = hprov;
14196	help->dthps_nprovs++;
14197
14198	return (0);
14199}
14200
14201static void
14202dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14203{
14204	mutex_enter(&dtrace_lock);
14205
14206	if (--hprov->dthp_ref == 0) {
14207		dof_hdr_t *dof;
14208		mutex_exit(&dtrace_lock);
14209		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14210		dtrace_dof_destroy(dof);
14211		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14212	} else {
14213		mutex_exit(&dtrace_lock);
14214	}
14215}
14216
14217static int
14218dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14219{
14220	uintptr_t daddr = (uintptr_t)dof;
14221	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14222	dof_provider_t *provider;
14223	dof_probe_t *probe;
14224	uint8_t *arg;
14225	char *strtab, *typestr;
14226	dof_stridx_t typeidx;
14227	size_t typesz;
14228	uint_t nprobes, j, k;
14229
14230	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14231
14232	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14233		dtrace_dof_error(dof, "misaligned section offset");
14234		return (-1);
14235	}
14236
14237	/*
14238	 * The section needs to be large enough to contain the DOF provider
14239	 * structure appropriate for the given version.
14240	 */
14241	if (sec->dofs_size <
14242	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14243	    offsetof(dof_provider_t, dofpv_prenoffs) :
14244	    sizeof (dof_provider_t))) {
14245		dtrace_dof_error(dof, "provider section too small");
14246		return (-1);
14247	}
14248
14249	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14250	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14251	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14252	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14253	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14254
14255	if (str_sec == NULL || prb_sec == NULL ||
14256	    arg_sec == NULL || off_sec == NULL)
14257		return (-1);
14258
14259	enoff_sec = NULL;
14260
14261	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14262	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14263	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14264	    provider->dofpv_prenoffs)) == NULL)
14265		return (-1);
14266
14267	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14268
14269	if (provider->dofpv_name >= str_sec->dofs_size ||
14270	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14271		dtrace_dof_error(dof, "invalid provider name");
14272		return (-1);
14273	}
14274
14275	if (prb_sec->dofs_entsize == 0 ||
14276	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14277		dtrace_dof_error(dof, "invalid entry size");
14278		return (-1);
14279	}
14280
14281	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14282		dtrace_dof_error(dof, "misaligned entry size");
14283		return (-1);
14284	}
14285
14286	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14287		dtrace_dof_error(dof, "invalid entry size");
14288		return (-1);
14289	}
14290
14291	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14292		dtrace_dof_error(dof, "misaligned section offset");
14293		return (-1);
14294	}
14295
14296	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14297		dtrace_dof_error(dof, "invalid entry size");
14298		return (-1);
14299	}
14300
14301	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14302
14303	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14304
14305	/*
14306	 * Take a pass through the probes to check for errors.
14307	 */
14308	for (j = 0; j < nprobes; j++) {
14309		probe = (dof_probe_t *)(uintptr_t)(daddr +
14310		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14311
14312		if (probe->dofpr_func >= str_sec->dofs_size) {
14313			dtrace_dof_error(dof, "invalid function name");
14314			return (-1);
14315		}
14316
14317		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14318			dtrace_dof_error(dof, "function name too long");
14319			return (-1);
14320		}
14321
14322		if (probe->dofpr_name >= str_sec->dofs_size ||
14323		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14324			dtrace_dof_error(dof, "invalid probe name");
14325			return (-1);
14326		}
14327
14328		/*
14329		 * The offset count must not wrap the index, and the offsets
14330		 * must also not overflow the section's data.
14331		 */
14332		if (probe->dofpr_offidx + probe->dofpr_noffs <
14333		    probe->dofpr_offidx ||
14334		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14335		    off_sec->dofs_entsize > off_sec->dofs_size) {
14336			dtrace_dof_error(dof, "invalid probe offset");
14337			return (-1);
14338		}
14339
14340		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14341			/*
14342			 * If there's no is-enabled offset section, make sure
14343			 * there aren't any is-enabled offsets. Otherwise
14344			 * perform the same checks as for probe offsets
14345			 * (immediately above).
14346			 */
14347			if (enoff_sec == NULL) {
14348				if (probe->dofpr_enoffidx != 0 ||
14349				    probe->dofpr_nenoffs != 0) {
14350					dtrace_dof_error(dof, "is-enabled "
14351					    "offsets with null section");
14352					return (-1);
14353				}
14354			} else if (probe->dofpr_enoffidx +
14355			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14356			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14357			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14358				dtrace_dof_error(dof, "invalid is-enabled "
14359				    "offset");
14360				return (-1);
14361			}
14362
14363			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14364				dtrace_dof_error(dof, "zero probe and "
14365				    "is-enabled offsets");
14366				return (-1);
14367			}
14368		} else if (probe->dofpr_noffs == 0) {
14369			dtrace_dof_error(dof, "zero probe offsets");
14370			return (-1);
14371		}
14372
14373		if (probe->dofpr_argidx + probe->dofpr_xargc <
14374		    probe->dofpr_argidx ||
14375		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14376		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14377			dtrace_dof_error(dof, "invalid args");
14378			return (-1);
14379		}
14380
14381		typeidx = probe->dofpr_nargv;
14382		typestr = strtab + probe->dofpr_nargv;
14383		for (k = 0; k < probe->dofpr_nargc; k++) {
14384			if (typeidx >= str_sec->dofs_size) {
14385				dtrace_dof_error(dof, "bad "
14386				    "native argument type");
14387				return (-1);
14388			}
14389
14390			typesz = strlen(typestr) + 1;
14391			if (typesz > DTRACE_ARGTYPELEN) {
14392				dtrace_dof_error(dof, "native "
14393				    "argument type too long");
14394				return (-1);
14395			}
14396			typeidx += typesz;
14397			typestr += typesz;
14398		}
14399
14400		typeidx = probe->dofpr_xargv;
14401		typestr = strtab + probe->dofpr_xargv;
14402		for (k = 0; k < probe->dofpr_xargc; k++) {
14403			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14404				dtrace_dof_error(dof, "bad "
14405				    "native argument index");
14406				return (-1);
14407			}
14408
14409			if (typeidx >= str_sec->dofs_size) {
14410				dtrace_dof_error(dof, "bad "
14411				    "translated argument type");
14412				return (-1);
14413			}
14414
14415			typesz = strlen(typestr) + 1;
14416			if (typesz > DTRACE_ARGTYPELEN) {
14417				dtrace_dof_error(dof, "translated argument "
14418				    "type too long");
14419				return (-1);
14420			}
14421
14422			typeidx += typesz;
14423			typestr += typesz;
14424		}
14425	}
14426
14427	return (0);
14428}
14429
14430static int
14431dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14432{
14433	dtrace_helpers_t *help;
14434	dtrace_vstate_t *vstate;
14435	dtrace_enabling_t *enab = NULL;
14436	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14437	uintptr_t daddr = (uintptr_t)dof;
14438
14439	ASSERT(MUTEX_HELD(&dtrace_lock));
14440
14441	if ((help = curproc->p_dtrace_helpers) == NULL)
14442		help = dtrace_helpers_create(curproc);
14443
14444	vstate = &help->dthps_vstate;
14445
14446	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14447	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14448		dtrace_dof_destroy(dof);
14449		return (rv);
14450	}
14451
14452	/*
14453	 * Look for helper providers and validate their descriptions.
14454	 */
14455	if (dhp != NULL) {
14456		for (i = 0; i < dof->dofh_secnum; i++) {
14457			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14458			    dof->dofh_secoff + i * dof->dofh_secsize);
14459
14460			if (sec->dofs_type != DOF_SECT_PROVIDER)
14461				continue;
14462
14463			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14464				dtrace_enabling_destroy(enab);
14465				dtrace_dof_destroy(dof);
14466				return (-1);
14467			}
14468
14469			nprovs++;
14470		}
14471	}
14472
14473	/*
14474	 * Now we need to walk through the ECB descriptions in the enabling.
14475	 */
14476	for (i = 0; i < enab->dten_ndesc; i++) {
14477		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14478		dtrace_probedesc_t *desc = &ep->dted_probe;
14479
14480		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14481			continue;
14482
14483		if (strcmp(desc->dtpd_mod, "helper") != 0)
14484			continue;
14485
14486		if (strcmp(desc->dtpd_func, "ustack") != 0)
14487			continue;
14488
14489		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14490		    ep)) != 0) {
14491			/*
14492			 * Adding this helper action failed -- we are now going
14493			 * to rip out the entire generation and return failure.
14494			 */
14495			(void) dtrace_helper_destroygen(help->dthps_generation);
14496			dtrace_enabling_destroy(enab);
14497			dtrace_dof_destroy(dof);
14498			return (-1);
14499		}
14500
14501		nhelpers++;
14502	}
14503
14504	if (nhelpers < enab->dten_ndesc)
14505		dtrace_dof_error(dof, "unmatched helpers");
14506
14507	gen = help->dthps_generation++;
14508	dtrace_enabling_destroy(enab);
14509
14510	if (dhp != NULL && nprovs > 0) {
14511		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14512		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14513			mutex_exit(&dtrace_lock);
14514			dtrace_helper_provider_register(curproc, help, dhp);
14515			mutex_enter(&dtrace_lock);
14516
14517			destroy = 0;
14518		}
14519	}
14520
14521	if (destroy)
14522		dtrace_dof_destroy(dof);
14523
14524	return (gen);
14525}
14526
14527static dtrace_helpers_t *
14528dtrace_helpers_create(proc_t *p)
14529{
14530	dtrace_helpers_t *help;
14531
14532	ASSERT(MUTEX_HELD(&dtrace_lock));
14533	ASSERT(p->p_dtrace_helpers == NULL);
14534
14535	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14536	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14537	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14538
14539	p->p_dtrace_helpers = help;
14540	dtrace_helpers++;
14541
14542	return (help);
14543}
14544
14545static void
14546dtrace_helpers_destroy(void)
14547{
14548	dtrace_helpers_t *help;
14549	dtrace_vstate_t *vstate;
14550	proc_t *p = curproc;
14551	int i;
14552
14553	mutex_enter(&dtrace_lock);
14554
14555	ASSERT(p->p_dtrace_helpers != NULL);
14556	ASSERT(dtrace_helpers > 0);
14557
14558	help = p->p_dtrace_helpers;
14559	vstate = &help->dthps_vstate;
14560
14561	/*
14562	 * We're now going to lose the help from this process.
14563	 */
14564	p->p_dtrace_helpers = NULL;
14565	dtrace_sync();
14566
14567	/*
14568	 * Destory the helper actions.
14569	 */
14570	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14571		dtrace_helper_action_t *h, *next;
14572
14573		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14574			next = h->dtha_next;
14575			dtrace_helper_action_destroy(h, vstate);
14576			h = next;
14577		}
14578	}
14579
14580	mutex_exit(&dtrace_lock);
14581
14582	/*
14583	 * Destroy the helper providers.
14584	 */
14585	if (help->dthps_maxprovs > 0) {
14586		mutex_enter(&dtrace_meta_lock);
14587		if (dtrace_meta_pid != NULL) {
14588			ASSERT(dtrace_deferred_pid == NULL);
14589
14590			for (i = 0; i < help->dthps_nprovs; i++) {
14591				dtrace_helper_provider_remove(
14592				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14593			}
14594		} else {
14595			mutex_enter(&dtrace_lock);
14596			ASSERT(help->dthps_deferred == 0 ||
14597			    help->dthps_next != NULL ||
14598			    help->dthps_prev != NULL ||
14599			    help == dtrace_deferred_pid);
14600
14601			/*
14602			 * Remove the helper from the deferred list.
14603			 */
14604			if (help->dthps_next != NULL)
14605				help->dthps_next->dthps_prev = help->dthps_prev;
14606			if (help->dthps_prev != NULL)
14607				help->dthps_prev->dthps_next = help->dthps_next;
14608			if (dtrace_deferred_pid == help) {
14609				dtrace_deferred_pid = help->dthps_next;
14610				ASSERT(help->dthps_prev == NULL);
14611			}
14612
14613			mutex_exit(&dtrace_lock);
14614		}
14615
14616		mutex_exit(&dtrace_meta_lock);
14617
14618		for (i = 0; i < help->dthps_nprovs; i++) {
14619			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14620		}
14621
14622		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14623		    sizeof (dtrace_helper_provider_t *));
14624	}
14625
14626	mutex_enter(&dtrace_lock);
14627
14628	dtrace_vstate_fini(&help->dthps_vstate);
14629	kmem_free(help->dthps_actions,
14630	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14631	kmem_free(help, sizeof (dtrace_helpers_t));
14632
14633	--dtrace_helpers;
14634	mutex_exit(&dtrace_lock);
14635}
14636
14637static void
14638dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14639{
14640	dtrace_helpers_t *help, *newhelp;
14641	dtrace_helper_action_t *helper, *new, *last;
14642	dtrace_difo_t *dp;
14643	dtrace_vstate_t *vstate;
14644	int i, j, sz, hasprovs = 0;
14645
14646	mutex_enter(&dtrace_lock);
14647	ASSERT(from->p_dtrace_helpers != NULL);
14648	ASSERT(dtrace_helpers > 0);
14649
14650	help = from->p_dtrace_helpers;
14651	newhelp = dtrace_helpers_create(to);
14652	ASSERT(to->p_dtrace_helpers != NULL);
14653
14654	newhelp->dthps_generation = help->dthps_generation;
14655	vstate = &newhelp->dthps_vstate;
14656
14657	/*
14658	 * Duplicate the helper actions.
14659	 */
14660	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14661		if ((helper = help->dthps_actions[i]) == NULL)
14662			continue;
14663
14664		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14665			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14666			    KM_SLEEP);
14667			new->dtha_generation = helper->dtha_generation;
14668
14669			if ((dp = helper->dtha_predicate) != NULL) {
14670				dp = dtrace_difo_duplicate(dp, vstate);
14671				new->dtha_predicate = dp;
14672			}
14673
14674			new->dtha_nactions = helper->dtha_nactions;
14675			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14676			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14677
14678			for (j = 0; j < new->dtha_nactions; j++) {
14679				dtrace_difo_t *dp = helper->dtha_actions[j];
14680
14681				ASSERT(dp != NULL);
14682				dp = dtrace_difo_duplicate(dp, vstate);
14683				new->dtha_actions[j] = dp;
14684			}
14685
14686			if (last != NULL) {
14687				last->dtha_next = new;
14688			} else {
14689				newhelp->dthps_actions[i] = new;
14690			}
14691
14692			last = new;
14693		}
14694	}
14695
14696	/*
14697	 * Duplicate the helper providers and register them with the
14698	 * DTrace framework.
14699	 */
14700	if (help->dthps_nprovs > 0) {
14701		newhelp->dthps_nprovs = help->dthps_nprovs;
14702		newhelp->dthps_maxprovs = help->dthps_nprovs;
14703		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14704		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14705		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14706			newhelp->dthps_provs[i] = help->dthps_provs[i];
14707			newhelp->dthps_provs[i]->dthp_ref++;
14708		}
14709
14710		hasprovs = 1;
14711	}
14712
14713	mutex_exit(&dtrace_lock);
14714
14715	if (hasprovs)
14716		dtrace_helper_provider_register(to, newhelp, NULL);
14717}
14718#endif
14719
14720#if defined(sun)
14721/*
14722 * DTrace Hook Functions
14723 */
14724static void
14725dtrace_module_loaded(modctl_t *ctl)
14726{
14727	dtrace_provider_t *prv;
14728
14729	mutex_enter(&dtrace_provider_lock);
14730	mutex_enter(&mod_lock);
14731
14732	ASSERT(ctl->mod_busy);
14733
14734	/*
14735	 * We're going to call each providers per-module provide operation
14736	 * specifying only this module.
14737	 */
14738	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14739		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14740
14741	mutex_exit(&mod_lock);
14742	mutex_exit(&dtrace_provider_lock);
14743
14744	/*
14745	 * If we have any retained enablings, we need to match against them.
14746	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14747	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14748	 * module.  (In particular, this happens when loading scheduling
14749	 * classes.)  So if we have any retained enablings, we need to dispatch
14750	 * our task queue to do the match for us.
14751	 */
14752	mutex_enter(&dtrace_lock);
14753
14754	if (dtrace_retained == NULL) {
14755		mutex_exit(&dtrace_lock);
14756		return;
14757	}
14758
14759	(void) taskq_dispatch(dtrace_taskq,
14760	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14761
14762	mutex_exit(&dtrace_lock);
14763
14764	/*
14765	 * And now, for a little heuristic sleaze:  in general, we want to
14766	 * match modules as soon as they load.  However, we cannot guarantee
14767	 * this, because it would lead us to the lock ordering violation
14768	 * outlined above.  The common case, of course, is that cpu_lock is
14769	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14770	 * long enough for the task queue to do its work.  If it's not, it's
14771	 * not a serious problem -- it just means that the module that we
14772	 * just loaded may not be immediately instrumentable.
14773	 */
14774	delay(1);
14775}
14776
14777static void
14778dtrace_module_unloaded(modctl_t *ctl)
14779{
14780	dtrace_probe_t template, *probe, *first, *next;
14781	dtrace_provider_t *prov;
14782
14783	template.dtpr_mod = ctl->mod_modname;
14784
14785	mutex_enter(&dtrace_provider_lock);
14786	mutex_enter(&mod_lock);
14787	mutex_enter(&dtrace_lock);
14788
14789	if (dtrace_bymod == NULL) {
14790		/*
14791		 * The DTrace module is loaded (obviously) but not attached;
14792		 * we don't have any work to do.
14793		 */
14794		mutex_exit(&dtrace_provider_lock);
14795		mutex_exit(&mod_lock);
14796		mutex_exit(&dtrace_lock);
14797		return;
14798	}
14799
14800	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14801	    probe != NULL; probe = probe->dtpr_nextmod) {
14802		if (probe->dtpr_ecb != NULL) {
14803			mutex_exit(&dtrace_provider_lock);
14804			mutex_exit(&mod_lock);
14805			mutex_exit(&dtrace_lock);
14806
14807			/*
14808			 * This shouldn't _actually_ be possible -- we're
14809			 * unloading a module that has an enabled probe in it.
14810			 * (It's normally up to the provider to make sure that
14811			 * this can't happen.)  However, because dtps_enable()
14812			 * doesn't have a failure mode, there can be an
14813			 * enable/unload race.  Upshot:  we don't want to
14814			 * assert, but we're not going to disable the
14815			 * probe, either.
14816			 */
14817			if (dtrace_err_verbose) {
14818				cmn_err(CE_WARN, "unloaded module '%s' had "
14819				    "enabled probes", ctl->mod_modname);
14820			}
14821
14822			return;
14823		}
14824	}
14825
14826	probe = first;
14827
14828	for (first = NULL; probe != NULL; probe = next) {
14829		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14830
14831		dtrace_probes[probe->dtpr_id - 1] = NULL;
14832
14833		next = probe->dtpr_nextmod;
14834		dtrace_hash_remove(dtrace_bymod, probe);
14835		dtrace_hash_remove(dtrace_byfunc, probe);
14836		dtrace_hash_remove(dtrace_byname, probe);
14837
14838		if (first == NULL) {
14839			first = probe;
14840			probe->dtpr_nextmod = NULL;
14841		} else {
14842			probe->dtpr_nextmod = first;
14843			first = probe;
14844		}
14845	}
14846
14847	/*
14848	 * We've removed all of the module's probes from the hash chains and
14849	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14850	 * everyone has cleared out from any probe array processing.
14851	 */
14852	dtrace_sync();
14853
14854	for (probe = first; probe != NULL; probe = first) {
14855		first = probe->dtpr_nextmod;
14856		prov = probe->dtpr_provider;
14857		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14858		    probe->dtpr_arg);
14859		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14860		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14861		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14862		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14863		kmem_free(probe, sizeof (dtrace_probe_t));
14864	}
14865
14866	mutex_exit(&dtrace_lock);
14867	mutex_exit(&mod_lock);
14868	mutex_exit(&dtrace_provider_lock);
14869}
14870
14871static void
14872dtrace_suspend(void)
14873{
14874	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14875}
14876
14877static void
14878dtrace_resume(void)
14879{
14880	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14881}
14882#endif
14883
14884static int
14885dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14886{
14887	ASSERT(MUTEX_HELD(&cpu_lock));
14888	mutex_enter(&dtrace_lock);
14889
14890	switch (what) {
14891	case CPU_CONFIG: {
14892		dtrace_state_t *state;
14893		dtrace_optval_t *opt, rs, c;
14894
14895		/*
14896		 * For now, we only allocate a new buffer for anonymous state.
14897		 */
14898		if ((state = dtrace_anon.dta_state) == NULL)
14899			break;
14900
14901		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14902			break;
14903
14904		opt = state->dts_options;
14905		c = opt[DTRACEOPT_CPU];
14906
14907		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14908			break;
14909
14910		/*
14911		 * Regardless of what the actual policy is, we're going to
14912		 * temporarily set our resize policy to be manual.  We're
14913		 * also going to temporarily set our CPU option to denote
14914		 * the newly configured CPU.
14915		 */
14916		rs = opt[DTRACEOPT_BUFRESIZE];
14917		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14918		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14919
14920		(void) dtrace_state_buffers(state);
14921
14922		opt[DTRACEOPT_BUFRESIZE] = rs;
14923		opt[DTRACEOPT_CPU] = c;
14924
14925		break;
14926	}
14927
14928	case CPU_UNCONFIG:
14929		/*
14930		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
14931		 * buffer will be freed when the consumer exits.)
14932		 */
14933		break;
14934
14935	default:
14936		break;
14937	}
14938
14939	mutex_exit(&dtrace_lock);
14940	return (0);
14941}
14942
14943#if defined(sun)
14944static void
14945dtrace_cpu_setup_initial(processorid_t cpu)
14946{
14947	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14948}
14949#endif
14950
14951static void
14952dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14953{
14954	if (dtrace_toxranges >= dtrace_toxranges_max) {
14955		int osize, nsize;
14956		dtrace_toxrange_t *range;
14957
14958		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14959
14960		if (osize == 0) {
14961			ASSERT(dtrace_toxrange == NULL);
14962			ASSERT(dtrace_toxranges_max == 0);
14963			dtrace_toxranges_max = 1;
14964		} else {
14965			dtrace_toxranges_max <<= 1;
14966		}
14967
14968		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14969		range = kmem_zalloc(nsize, KM_SLEEP);
14970
14971		if (dtrace_toxrange != NULL) {
14972			ASSERT(osize != 0);
14973			bcopy(dtrace_toxrange, range, osize);
14974			kmem_free(dtrace_toxrange, osize);
14975		}
14976
14977		dtrace_toxrange = range;
14978	}
14979
14980	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
14981	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
14982
14983	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14984	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14985	dtrace_toxranges++;
14986}
14987
14988/*
14989 * DTrace Driver Cookbook Functions
14990 */
14991#if defined(sun)
14992/*ARGSUSED*/
14993static int
14994dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14995{
14996	dtrace_provider_id_t id;
14997	dtrace_state_t *state = NULL;
14998	dtrace_enabling_t *enab;
14999
15000	mutex_enter(&cpu_lock);
15001	mutex_enter(&dtrace_provider_lock);
15002	mutex_enter(&dtrace_lock);
15003
15004	if (ddi_soft_state_init(&dtrace_softstate,
15005	    sizeof (dtrace_state_t), 0) != 0) {
15006		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15007		mutex_exit(&cpu_lock);
15008		mutex_exit(&dtrace_provider_lock);
15009		mutex_exit(&dtrace_lock);
15010		return (DDI_FAILURE);
15011	}
15012
15013	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15014	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15015	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15016	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15017		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15018		ddi_remove_minor_node(devi, NULL);
15019		ddi_soft_state_fini(&dtrace_softstate);
15020		mutex_exit(&cpu_lock);
15021		mutex_exit(&dtrace_provider_lock);
15022		mutex_exit(&dtrace_lock);
15023		return (DDI_FAILURE);
15024	}
15025
15026	ddi_report_dev(devi);
15027	dtrace_devi = devi;
15028
15029	dtrace_modload = dtrace_module_loaded;
15030	dtrace_modunload = dtrace_module_unloaded;
15031	dtrace_cpu_init = dtrace_cpu_setup_initial;
15032	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15033	dtrace_helpers_fork = dtrace_helpers_duplicate;
15034	dtrace_cpustart_init = dtrace_suspend;
15035	dtrace_cpustart_fini = dtrace_resume;
15036	dtrace_debugger_init = dtrace_suspend;
15037	dtrace_debugger_fini = dtrace_resume;
15038
15039	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15040
15041	ASSERT(MUTEX_HELD(&cpu_lock));
15042
15043	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15044	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15045	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15046	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15047	    VM_SLEEP | VMC_IDENTIFIER);
15048	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15049	    1, INT_MAX, 0);
15050
15051	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15052	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15053	    NULL, NULL, NULL, NULL, NULL, 0);
15054
15055	ASSERT(MUTEX_HELD(&cpu_lock));
15056	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15057	    offsetof(dtrace_probe_t, dtpr_nextmod),
15058	    offsetof(dtrace_probe_t, dtpr_prevmod));
15059
15060	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15061	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15062	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15063
15064	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15065	    offsetof(dtrace_probe_t, dtpr_nextname),
15066	    offsetof(dtrace_probe_t, dtpr_prevname));
15067
15068	if (dtrace_retain_max < 1) {
15069		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15070		    "setting to 1", dtrace_retain_max);
15071		dtrace_retain_max = 1;
15072	}
15073
15074	/*
15075	 * Now discover our toxic ranges.
15076	 */
15077	dtrace_toxic_ranges(dtrace_toxrange_add);
15078
15079	/*
15080	 * Before we register ourselves as a provider to our own framework,
15081	 * we would like to assert that dtrace_provider is NULL -- but that's
15082	 * not true if we were loaded as a dependency of a DTrace provider.
15083	 * Once we've registered, we can assert that dtrace_provider is our
15084	 * pseudo provider.
15085	 */
15086	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15087	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15088
15089	ASSERT(dtrace_provider != NULL);
15090	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15091
15092	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15093	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15094	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15095	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15096	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15097	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15098
15099	dtrace_anon_property();
15100	mutex_exit(&cpu_lock);
15101
15102	/*
15103	 * If DTrace helper tracing is enabled, we need to allocate the
15104	 * trace buffer and initialize the values.
15105	 */
15106	if (dtrace_helptrace_enabled) {
15107		ASSERT(dtrace_helptrace_buffer == NULL);
15108		dtrace_helptrace_buffer =
15109		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15110		dtrace_helptrace_next = 0;
15111	}
15112
15113	/*
15114	 * If there are already providers, we must ask them to provide their
15115	 * probes, and then match any anonymous enabling against them.  Note
15116	 * that there should be no other retained enablings at this time:
15117	 * the only retained enablings at this time should be the anonymous
15118	 * enabling.
15119	 */
15120	if (dtrace_anon.dta_enabling != NULL) {
15121		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15122
15123		dtrace_enabling_provide(NULL);
15124		state = dtrace_anon.dta_state;
15125
15126		/*
15127		 * We couldn't hold cpu_lock across the above call to
15128		 * dtrace_enabling_provide(), but we must hold it to actually
15129		 * enable the probes.  We have to drop all of our locks, pick
15130		 * up cpu_lock, and regain our locks before matching the
15131		 * retained anonymous enabling.
15132		 */
15133		mutex_exit(&dtrace_lock);
15134		mutex_exit(&dtrace_provider_lock);
15135
15136		mutex_enter(&cpu_lock);
15137		mutex_enter(&dtrace_provider_lock);
15138		mutex_enter(&dtrace_lock);
15139
15140		if ((enab = dtrace_anon.dta_enabling) != NULL)
15141			(void) dtrace_enabling_match(enab, NULL);
15142
15143		mutex_exit(&cpu_lock);
15144	}
15145
15146	mutex_exit(&dtrace_lock);
15147	mutex_exit(&dtrace_provider_lock);
15148
15149	if (state != NULL) {
15150		/*
15151		 * If we created any anonymous state, set it going now.
15152		 */
15153		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15154	}
15155
15156	return (DDI_SUCCESS);
15157}
15158#endif
15159
15160/*ARGSUSED*/
15161static int
15162#if defined(sun)
15163dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15164#else
15165dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15166#endif
15167{
15168	dtrace_state_t *state;
15169	uint32_t priv;
15170	uid_t uid;
15171	zoneid_t zoneid;
15172
15173#if defined(sun)
15174	if (getminor(*devp) == DTRACEMNRN_HELPER)
15175		return (0);
15176
15177	/*
15178	 * If this wasn't an open with the "helper" minor, then it must be
15179	 * the "dtrace" minor.
15180	 */
15181	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15182#else
15183	cred_t *cred_p = NULL;
15184
15185	/*
15186	 * The first minor device is the one that is cloned so there is
15187	 * nothing more to do here.
15188	 */
15189	if (minor(dev) == 0)
15190		return 0;
15191
15192	/*
15193	 * Devices are cloned, so if the DTrace state has already
15194	 * been allocated, that means this device belongs to a
15195	 * different client. Each client should open '/dev/dtrace'
15196	 * to get a cloned device.
15197	 */
15198	if (dev->si_drv1 != NULL)
15199		return (EBUSY);
15200
15201	cred_p = dev->si_cred;
15202#endif
15203
15204	/*
15205	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15206	 * caller lacks sufficient permission to do anything with DTrace.
15207	 */
15208	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15209	if (priv == DTRACE_PRIV_NONE) {
15210#if !defined(sun)
15211		/* Destroy the cloned device. */
15212                destroy_dev(dev);
15213#endif
15214
15215		return (EACCES);
15216	}
15217
15218	/*
15219	 * Ask all providers to provide all their probes.
15220	 */
15221	mutex_enter(&dtrace_provider_lock);
15222	dtrace_probe_provide(NULL, NULL);
15223	mutex_exit(&dtrace_provider_lock);
15224
15225	mutex_enter(&cpu_lock);
15226	mutex_enter(&dtrace_lock);
15227	dtrace_opens++;
15228	dtrace_membar_producer();
15229
15230#if defined(sun)
15231	/*
15232	 * If the kernel debugger is active (that is, if the kernel debugger
15233	 * modified text in some way), we won't allow the open.
15234	 */
15235	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15236		dtrace_opens--;
15237		mutex_exit(&cpu_lock);
15238		mutex_exit(&dtrace_lock);
15239		return (EBUSY);
15240	}
15241
15242	state = dtrace_state_create(devp, cred_p);
15243#else
15244	state = dtrace_state_create(dev);
15245	dev->si_drv1 = state;
15246#endif
15247
15248	mutex_exit(&cpu_lock);
15249
15250	if (state == NULL) {
15251#if defined(sun)
15252		if (--dtrace_opens == 0)
15253			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15254#else
15255		--dtrace_opens;
15256#endif
15257		mutex_exit(&dtrace_lock);
15258#if !defined(sun)
15259		/* Destroy the cloned device. */
15260                destroy_dev(dev);
15261#endif
15262		return (EAGAIN);
15263	}
15264
15265	mutex_exit(&dtrace_lock);
15266
15267	return (0);
15268}
15269
15270/*ARGSUSED*/
15271static int
15272#if defined(sun)
15273dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15274#else
15275dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15276#endif
15277{
15278#if defined(sun)
15279	minor_t minor = getminor(dev);
15280	dtrace_state_t *state;
15281
15282	if (minor == DTRACEMNRN_HELPER)
15283		return (0);
15284
15285	state = ddi_get_soft_state(dtrace_softstate, minor);
15286#else
15287	dtrace_state_t *state = dev->si_drv1;
15288
15289	/* Check if this is not a cloned device. */
15290	if (minor(dev) == 0)
15291		return (0);
15292
15293#endif
15294
15295	mutex_enter(&cpu_lock);
15296	mutex_enter(&dtrace_lock);
15297
15298	if (state != NULL) {
15299		if (state->dts_anon) {
15300			/*
15301			 * There is anonymous state. Destroy that first.
15302			 */
15303			ASSERT(dtrace_anon.dta_state == NULL);
15304			dtrace_state_destroy(state->dts_anon);
15305		}
15306
15307		dtrace_state_destroy(state);
15308
15309#if !defined(sun)
15310		kmem_free(state, 0);
15311		dev->si_drv1 = NULL;
15312#endif
15313	}
15314
15315	ASSERT(dtrace_opens > 0);
15316#if defined(sun)
15317	if (--dtrace_opens == 0)
15318		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15319#else
15320	--dtrace_opens;
15321#endif
15322
15323	mutex_exit(&dtrace_lock);
15324	mutex_exit(&cpu_lock);
15325
15326	/* Schedule this cloned device to be destroyed. */
15327	destroy_dev_sched(dev);
15328
15329	return (0);
15330}
15331
15332#if defined(sun)
15333/*ARGSUSED*/
15334static int
15335dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15336{
15337	int rval;
15338	dof_helper_t help, *dhp = NULL;
15339
15340	switch (cmd) {
15341	case DTRACEHIOC_ADDDOF:
15342		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15343			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15344			return (EFAULT);
15345		}
15346
15347		dhp = &help;
15348		arg = (intptr_t)help.dofhp_dof;
15349		/*FALLTHROUGH*/
15350
15351	case DTRACEHIOC_ADD: {
15352		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15353
15354		if (dof == NULL)
15355			return (rval);
15356
15357		mutex_enter(&dtrace_lock);
15358
15359		/*
15360		 * dtrace_helper_slurp() takes responsibility for the dof --
15361		 * it may free it now or it may save it and free it later.
15362		 */
15363		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15364			*rv = rval;
15365			rval = 0;
15366		} else {
15367			rval = EINVAL;
15368		}
15369
15370		mutex_exit(&dtrace_lock);
15371		return (rval);
15372	}
15373
15374	case DTRACEHIOC_REMOVE: {
15375		mutex_enter(&dtrace_lock);
15376		rval = dtrace_helper_destroygen(arg);
15377		mutex_exit(&dtrace_lock);
15378
15379		return (rval);
15380	}
15381
15382	default:
15383		break;
15384	}
15385
15386	return (ENOTTY);
15387}
15388
15389/*ARGSUSED*/
15390static int
15391dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15392{
15393	minor_t minor = getminor(dev);
15394	dtrace_state_t *state;
15395	int rval;
15396
15397	if (minor == DTRACEMNRN_HELPER)
15398		return (dtrace_ioctl_helper(cmd, arg, rv));
15399
15400	state = ddi_get_soft_state(dtrace_softstate, minor);
15401
15402	if (state->dts_anon) {
15403		ASSERT(dtrace_anon.dta_state == NULL);
15404		state = state->dts_anon;
15405	}
15406
15407	switch (cmd) {
15408	case DTRACEIOC_PROVIDER: {
15409		dtrace_providerdesc_t pvd;
15410		dtrace_provider_t *pvp;
15411
15412		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15413			return (EFAULT);
15414
15415		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15416		mutex_enter(&dtrace_provider_lock);
15417
15418		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15419			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15420				break;
15421		}
15422
15423		mutex_exit(&dtrace_provider_lock);
15424
15425		if (pvp == NULL)
15426			return (ESRCH);
15427
15428		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15429		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15430
15431		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15432			return (EFAULT);
15433
15434		return (0);
15435	}
15436
15437	case DTRACEIOC_EPROBE: {
15438		dtrace_eprobedesc_t epdesc;
15439		dtrace_ecb_t *ecb;
15440		dtrace_action_t *act;
15441		void *buf;
15442		size_t size;
15443		uintptr_t dest;
15444		int nrecs;
15445
15446		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15447			return (EFAULT);
15448
15449		mutex_enter(&dtrace_lock);
15450
15451		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15452			mutex_exit(&dtrace_lock);
15453			return (EINVAL);
15454		}
15455
15456		if (ecb->dte_probe == NULL) {
15457			mutex_exit(&dtrace_lock);
15458			return (EINVAL);
15459		}
15460
15461		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15462		epdesc.dtepd_uarg = ecb->dte_uarg;
15463		epdesc.dtepd_size = ecb->dte_size;
15464
15465		nrecs = epdesc.dtepd_nrecs;
15466		epdesc.dtepd_nrecs = 0;
15467		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15468			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15469				continue;
15470
15471			epdesc.dtepd_nrecs++;
15472		}
15473
15474		/*
15475		 * Now that we have the size, we need to allocate a temporary
15476		 * buffer in which to store the complete description.  We need
15477		 * the temporary buffer to be able to drop dtrace_lock()
15478		 * across the copyout(), below.
15479		 */
15480		size = sizeof (dtrace_eprobedesc_t) +
15481		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15482
15483		buf = kmem_alloc(size, KM_SLEEP);
15484		dest = (uintptr_t)buf;
15485
15486		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15487		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15488
15489		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15490			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15491				continue;
15492
15493			if (nrecs-- == 0)
15494				break;
15495
15496			bcopy(&act->dta_rec, (void *)dest,
15497			    sizeof (dtrace_recdesc_t));
15498			dest += sizeof (dtrace_recdesc_t);
15499		}
15500
15501		mutex_exit(&dtrace_lock);
15502
15503		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15504			kmem_free(buf, size);
15505			return (EFAULT);
15506		}
15507
15508		kmem_free(buf, size);
15509		return (0);
15510	}
15511
15512	case DTRACEIOC_AGGDESC: {
15513		dtrace_aggdesc_t aggdesc;
15514		dtrace_action_t *act;
15515		dtrace_aggregation_t *agg;
15516		int nrecs;
15517		uint32_t offs;
15518		dtrace_recdesc_t *lrec;
15519		void *buf;
15520		size_t size;
15521		uintptr_t dest;
15522
15523		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15524			return (EFAULT);
15525
15526		mutex_enter(&dtrace_lock);
15527
15528		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15529			mutex_exit(&dtrace_lock);
15530			return (EINVAL);
15531		}
15532
15533		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15534
15535		nrecs = aggdesc.dtagd_nrecs;
15536		aggdesc.dtagd_nrecs = 0;
15537
15538		offs = agg->dtag_base;
15539		lrec = &agg->dtag_action.dta_rec;
15540		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15541
15542		for (act = agg->dtag_first; ; act = act->dta_next) {
15543			ASSERT(act->dta_intuple ||
15544			    DTRACEACT_ISAGG(act->dta_kind));
15545
15546			/*
15547			 * If this action has a record size of zero, it
15548			 * denotes an argument to the aggregating action.
15549			 * Because the presence of this record doesn't (or
15550			 * shouldn't) affect the way the data is interpreted,
15551			 * we don't copy it out to save user-level the
15552			 * confusion of dealing with a zero-length record.
15553			 */
15554			if (act->dta_rec.dtrd_size == 0) {
15555				ASSERT(agg->dtag_hasarg);
15556				continue;
15557			}
15558
15559			aggdesc.dtagd_nrecs++;
15560
15561			if (act == &agg->dtag_action)
15562				break;
15563		}
15564
15565		/*
15566		 * Now that we have the size, we need to allocate a temporary
15567		 * buffer in which to store the complete description.  We need
15568		 * the temporary buffer to be able to drop dtrace_lock()
15569		 * across the copyout(), below.
15570		 */
15571		size = sizeof (dtrace_aggdesc_t) +
15572		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15573
15574		buf = kmem_alloc(size, KM_SLEEP);
15575		dest = (uintptr_t)buf;
15576
15577		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15578		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15579
15580		for (act = agg->dtag_first; ; act = act->dta_next) {
15581			dtrace_recdesc_t rec = act->dta_rec;
15582
15583			/*
15584			 * See the comment in the above loop for why we pass
15585			 * over zero-length records.
15586			 */
15587			if (rec.dtrd_size == 0) {
15588				ASSERT(agg->dtag_hasarg);
15589				continue;
15590			}
15591
15592			if (nrecs-- == 0)
15593				break;
15594
15595			rec.dtrd_offset -= offs;
15596			bcopy(&rec, (void *)dest, sizeof (rec));
15597			dest += sizeof (dtrace_recdesc_t);
15598
15599			if (act == &agg->dtag_action)
15600				break;
15601		}
15602
15603		mutex_exit(&dtrace_lock);
15604
15605		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15606			kmem_free(buf, size);
15607			return (EFAULT);
15608		}
15609
15610		kmem_free(buf, size);
15611		return (0);
15612	}
15613
15614	case DTRACEIOC_ENABLE: {
15615		dof_hdr_t *dof;
15616		dtrace_enabling_t *enab = NULL;
15617		dtrace_vstate_t *vstate;
15618		int err = 0;
15619
15620		*rv = 0;
15621
15622		/*
15623		 * If a NULL argument has been passed, we take this as our
15624		 * cue to reevaluate our enablings.
15625		 */
15626		if (arg == NULL) {
15627			dtrace_enabling_matchall();
15628
15629			return (0);
15630		}
15631
15632		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15633			return (rval);
15634
15635		mutex_enter(&cpu_lock);
15636		mutex_enter(&dtrace_lock);
15637		vstate = &state->dts_vstate;
15638
15639		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15640			mutex_exit(&dtrace_lock);
15641			mutex_exit(&cpu_lock);
15642			dtrace_dof_destroy(dof);
15643			return (EBUSY);
15644		}
15645
15646		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15647			mutex_exit(&dtrace_lock);
15648			mutex_exit(&cpu_lock);
15649			dtrace_dof_destroy(dof);
15650			return (EINVAL);
15651		}
15652
15653		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15654			dtrace_enabling_destroy(enab);
15655			mutex_exit(&dtrace_lock);
15656			mutex_exit(&cpu_lock);
15657			dtrace_dof_destroy(dof);
15658			return (rval);
15659		}
15660
15661		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15662			err = dtrace_enabling_retain(enab);
15663		} else {
15664			dtrace_enabling_destroy(enab);
15665		}
15666
15667		mutex_exit(&cpu_lock);
15668		mutex_exit(&dtrace_lock);
15669		dtrace_dof_destroy(dof);
15670
15671		return (err);
15672	}
15673
15674	case DTRACEIOC_REPLICATE: {
15675		dtrace_repldesc_t desc;
15676		dtrace_probedesc_t *match = &desc.dtrpd_match;
15677		dtrace_probedesc_t *create = &desc.dtrpd_create;
15678		int err;
15679
15680		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15681			return (EFAULT);
15682
15683		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15684		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15685		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15686		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15687
15688		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15689		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15690		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15691		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15692
15693		mutex_enter(&dtrace_lock);
15694		err = dtrace_enabling_replicate(state, match, create);
15695		mutex_exit(&dtrace_lock);
15696
15697		return (err);
15698	}
15699
15700	case DTRACEIOC_PROBEMATCH:
15701	case DTRACEIOC_PROBES: {
15702		dtrace_probe_t *probe = NULL;
15703		dtrace_probedesc_t desc;
15704		dtrace_probekey_t pkey;
15705		dtrace_id_t i;
15706		int m = 0;
15707		uint32_t priv;
15708		uid_t uid;
15709		zoneid_t zoneid;
15710
15711		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15712			return (EFAULT);
15713
15714		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15715		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15716		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15717		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15718
15719		/*
15720		 * Before we attempt to match this probe, we want to give
15721		 * all providers the opportunity to provide it.
15722		 */
15723		if (desc.dtpd_id == DTRACE_IDNONE) {
15724			mutex_enter(&dtrace_provider_lock);
15725			dtrace_probe_provide(&desc, NULL);
15726			mutex_exit(&dtrace_provider_lock);
15727			desc.dtpd_id++;
15728		}
15729
15730		if (cmd == DTRACEIOC_PROBEMATCH)  {
15731			dtrace_probekey(&desc, &pkey);
15732			pkey.dtpk_id = DTRACE_IDNONE;
15733		}
15734
15735		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15736
15737		mutex_enter(&dtrace_lock);
15738
15739		if (cmd == DTRACEIOC_PROBEMATCH) {
15740			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15741				if ((probe = dtrace_probes[i - 1]) != NULL &&
15742				    (m = dtrace_match_probe(probe, &pkey,
15743				    priv, uid, zoneid)) != 0)
15744					break;
15745			}
15746
15747			if (m < 0) {
15748				mutex_exit(&dtrace_lock);
15749				return (EINVAL);
15750			}
15751
15752		} else {
15753			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15754				if ((probe = dtrace_probes[i - 1]) != NULL &&
15755				    dtrace_match_priv(probe, priv, uid, zoneid))
15756					break;
15757			}
15758		}
15759
15760		if (probe == NULL) {
15761			mutex_exit(&dtrace_lock);
15762			return (ESRCH);
15763		}
15764
15765		dtrace_probe_description(probe, &desc);
15766		mutex_exit(&dtrace_lock);
15767
15768		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15769			return (EFAULT);
15770
15771		return (0);
15772	}
15773
15774	case DTRACEIOC_PROBEARG: {
15775		dtrace_argdesc_t desc;
15776		dtrace_probe_t *probe;
15777		dtrace_provider_t *prov;
15778
15779		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15780			return (EFAULT);
15781
15782		if (desc.dtargd_id == DTRACE_IDNONE)
15783			return (EINVAL);
15784
15785		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15786			return (EINVAL);
15787
15788		mutex_enter(&dtrace_provider_lock);
15789		mutex_enter(&mod_lock);
15790		mutex_enter(&dtrace_lock);
15791
15792		if (desc.dtargd_id > dtrace_nprobes) {
15793			mutex_exit(&dtrace_lock);
15794			mutex_exit(&mod_lock);
15795			mutex_exit(&dtrace_provider_lock);
15796			return (EINVAL);
15797		}
15798
15799		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15800			mutex_exit(&dtrace_lock);
15801			mutex_exit(&mod_lock);
15802			mutex_exit(&dtrace_provider_lock);
15803			return (EINVAL);
15804		}
15805
15806		mutex_exit(&dtrace_lock);
15807
15808		prov = probe->dtpr_provider;
15809
15810		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15811			/*
15812			 * There isn't any typed information for this probe.
15813			 * Set the argument number to DTRACE_ARGNONE.
15814			 */
15815			desc.dtargd_ndx = DTRACE_ARGNONE;
15816		} else {
15817			desc.dtargd_native[0] = '\0';
15818			desc.dtargd_xlate[0] = '\0';
15819			desc.dtargd_mapping = desc.dtargd_ndx;
15820
15821			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15822			    probe->dtpr_id, probe->dtpr_arg, &desc);
15823		}
15824
15825		mutex_exit(&mod_lock);
15826		mutex_exit(&dtrace_provider_lock);
15827
15828		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15829			return (EFAULT);
15830
15831		return (0);
15832	}
15833
15834	case DTRACEIOC_GO: {
15835		processorid_t cpuid;
15836		rval = dtrace_state_go(state, &cpuid);
15837
15838		if (rval != 0)
15839			return (rval);
15840
15841		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15842			return (EFAULT);
15843
15844		return (0);
15845	}
15846
15847	case DTRACEIOC_STOP: {
15848		processorid_t cpuid;
15849
15850		mutex_enter(&dtrace_lock);
15851		rval = dtrace_state_stop(state, &cpuid);
15852		mutex_exit(&dtrace_lock);
15853
15854		if (rval != 0)
15855			return (rval);
15856
15857		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15858			return (EFAULT);
15859
15860		return (0);
15861	}
15862
15863	case DTRACEIOC_DOFGET: {
15864		dof_hdr_t hdr, *dof;
15865		uint64_t len;
15866
15867		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15868			return (EFAULT);
15869
15870		mutex_enter(&dtrace_lock);
15871		dof = dtrace_dof_create(state);
15872		mutex_exit(&dtrace_lock);
15873
15874		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15875		rval = copyout(dof, (void *)arg, len);
15876		dtrace_dof_destroy(dof);
15877
15878		return (rval == 0 ? 0 : EFAULT);
15879	}
15880
15881	case DTRACEIOC_AGGSNAP:
15882	case DTRACEIOC_BUFSNAP: {
15883		dtrace_bufdesc_t desc;
15884		caddr_t cached;
15885		dtrace_buffer_t *buf;
15886
15887		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15888			return (EFAULT);
15889
15890		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15891			return (EINVAL);
15892
15893		mutex_enter(&dtrace_lock);
15894
15895		if (cmd == DTRACEIOC_BUFSNAP) {
15896			buf = &state->dts_buffer[desc.dtbd_cpu];
15897		} else {
15898			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15899		}
15900
15901		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15902			size_t sz = buf->dtb_offset;
15903
15904			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15905				mutex_exit(&dtrace_lock);
15906				return (EBUSY);
15907			}
15908
15909			/*
15910			 * If this buffer has already been consumed, we're
15911			 * going to indicate that there's nothing left here
15912			 * to consume.
15913			 */
15914			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15915				mutex_exit(&dtrace_lock);
15916
15917				desc.dtbd_size = 0;
15918				desc.dtbd_drops = 0;
15919				desc.dtbd_errors = 0;
15920				desc.dtbd_oldest = 0;
15921				sz = sizeof (desc);
15922
15923				if (copyout(&desc, (void *)arg, sz) != 0)
15924					return (EFAULT);
15925
15926				return (0);
15927			}
15928
15929			/*
15930			 * If this is a ring buffer that has wrapped, we want
15931			 * to copy the whole thing out.
15932			 */
15933			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15934				dtrace_buffer_polish(buf);
15935				sz = buf->dtb_size;
15936			}
15937
15938			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15939				mutex_exit(&dtrace_lock);
15940				return (EFAULT);
15941			}
15942
15943			desc.dtbd_size = sz;
15944			desc.dtbd_drops = buf->dtb_drops;
15945			desc.dtbd_errors = buf->dtb_errors;
15946			desc.dtbd_oldest = buf->dtb_xamot_offset;
15947
15948			mutex_exit(&dtrace_lock);
15949
15950			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15951				return (EFAULT);
15952
15953			buf->dtb_flags |= DTRACEBUF_CONSUMED;
15954
15955			return (0);
15956		}
15957
15958		if (buf->dtb_tomax == NULL) {
15959			ASSERT(buf->dtb_xamot == NULL);
15960			mutex_exit(&dtrace_lock);
15961			return (ENOENT);
15962		}
15963
15964		cached = buf->dtb_tomax;
15965		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15966
15967		dtrace_xcall(desc.dtbd_cpu,
15968		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
15969
15970		state->dts_errors += buf->dtb_xamot_errors;
15971
15972		/*
15973		 * If the buffers did not actually switch, then the cross call
15974		 * did not take place -- presumably because the given CPU is
15975		 * not in the ready set.  If this is the case, we'll return
15976		 * ENOENT.
15977		 */
15978		if (buf->dtb_tomax == cached) {
15979			ASSERT(buf->dtb_xamot != cached);
15980			mutex_exit(&dtrace_lock);
15981			return (ENOENT);
15982		}
15983
15984		ASSERT(cached == buf->dtb_xamot);
15985
15986		/*
15987		 * We have our snapshot; now copy it out.
15988		 */
15989		if (copyout(buf->dtb_xamot, desc.dtbd_data,
15990		    buf->dtb_xamot_offset) != 0) {
15991			mutex_exit(&dtrace_lock);
15992			return (EFAULT);
15993		}
15994
15995		desc.dtbd_size = buf->dtb_xamot_offset;
15996		desc.dtbd_drops = buf->dtb_xamot_drops;
15997		desc.dtbd_errors = buf->dtb_xamot_errors;
15998		desc.dtbd_oldest = 0;
15999
16000		mutex_exit(&dtrace_lock);
16001
16002		/*
16003		 * Finally, copy out the buffer description.
16004		 */
16005		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16006			return (EFAULT);
16007
16008		return (0);
16009	}
16010
16011	case DTRACEIOC_CONF: {
16012		dtrace_conf_t conf;
16013
16014		bzero(&conf, sizeof (conf));
16015		conf.dtc_difversion = DIF_VERSION;
16016		conf.dtc_difintregs = DIF_DIR_NREGS;
16017		conf.dtc_diftupregs = DIF_DTR_NREGS;
16018		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16019
16020		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16021			return (EFAULT);
16022
16023		return (0);
16024	}
16025
16026	case DTRACEIOC_STATUS: {
16027		dtrace_status_t stat;
16028		dtrace_dstate_t *dstate;
16029		int i, j;
16030		uint64_t nerrs;
16031
16032		/*
16033		 * See the comment in dtrace_state_deadman() for the reason
16034		 * for setting dts_laststatus to INT64_MAX before setting
16035		 * it to the correct value.
16036		 */
16037		state->dts_laststatus = INT64_MAX;
16038		dtrace_membar_producer();
16039		state->dts_laststatus = dtrace_gethrtime();
16040
16041		bzero(&stat, sizeof (stat));
16042
16043		mutex_enter(&dtrace_lock);
16044
16045		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16046			mutex_exit(&dtrace_lock);
16047			return (ENOENT);
16048		}
16049
16050		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16051			stat.dtst_exiting = 1;
16052
16053		nerrs = state->dts_errors;
16054		dstate = &state->dts_vstate.dtvs_dynvars;
16055
16056		for (i = 0; i < NCPU; i++) {
16057			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16058
16059			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16060			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16061			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16062
16063			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16064				stat.dtst_filled++;
16065
16066			nerrs += state->dts_buffer[i].dtb_errors;
16067
16068			for (j = 0; j < state->dts_nspeculations; j++) {
16069				dtrace_speculation_t *spec;
16070				dtrace_buffer_t *buf;
16071
16072				spec = &state->dts_speculations[j];
16073				buf = &spec->dtsp_buffer[i];
16074				stat.dtst_specdrops += buf->dtb_xamot_drops;
16075			}
16076		}
16077
16078		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16079		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16080		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16081		stat.dtst_dblerrors = state->dts_dblerrors;
16082		stat.dtst_killed =
16083		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16084		stat.dtst_errors = nerrs;
16085
16086		mutex_exit(&dtrace_lock);
16087
16088		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16089			return (EFAULT);
16090
16091		return (0);
16092	}
16093
16094	case DTRACEIOC_FORMAT: {
16095		dtrace_fmtdesc_t fmt;
16096		char *str;
16097		int len;
16098
16099		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16100			return (EFAULT);
16101
16102		mutex_enter(&dtrace_lock);
16103
16104		if (fmt.dtfd_format == 0 ||
16105		    fmt.dtfd_format > state->dts_nformats) {
16106			mutex_exit(&dtrace_lock);
16107			return (EINVAL);
16108		}
16109
16110		/*
16111		 * Format strings are allocated contiguously and they are
16112		 * never freed; if a format index is less than the number
16113		 * of formats, we can assert that the format map is non-NULL
16114		 * and that the format for the specified index is non-NULL.
16115		 */
16116		ASSERT(state->dts_formats != NULL);
16117		str = state->dts_formats[fmt.dtfd_format - 1];
16118		ASSERT(str != NULL);
16119
16120		len = strlen(str) + 1;
16121
16122		if (len > fmt.dtfd_length) {
16123			fmt.dtfd_length = len;
16124
16125			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16126				mutex_exit(&dtrace_lock);
16127				return (EINVAL);
16128			}
16129		} else {
16130			if (copyout(str, fmt.dtfd_string, len) != 0) {
16131				mutex_exit(&dtrace_lock);
16132				return (EINVAL);
16133			}
16134		}
16135
16136		mutex_exit(&dtrace_lock);
16137		return (0);
16138	}
16139
16140	default:
16141		break;
16142	}
16143
16144	return (ENOTTY);
16145}
16146
16147/*ARGSUSED*/
16148static int
16149dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16150{
16151	dtrace_state_t *state;
16152
16153	switch (cmd) {
16154	case DDI_DETACH:
16155		break;
16156
16157	case DDI_SUSPEND:
16158		return (DDI_SUCCESS);
16159
16160	default:
16161		return (DDI_FAILURE);
16162	}
16163
16164	mutex_enter(&cpu_lock);
16165	mutex_enter(&dtrace_provider_lock);
16166	mutex_enter(&dtrace_lock);
16167
16168	ASSERT(dtrace_opens == 0);
16169
16170	if (dtrace_helpers > 0) {
16171		mutex_exit(&dtrace_provider_lock);
16172		mutex_exit(&dtrace_lock);
16173		mutex_exit(&cpu_lock);
16174		return (DDI_FAILURE);
16175	}
16176
16177	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16178		mutex_exit(&dtrace_provider_lock);
16179		mutex_exit(&dtrace_lock);
16180		mutex_exit(&cpu_lock);
16181		return (DDI_FAILURE);
16182	}
16183
16184	dtrace_provider = NULL;
16185
16186	if ((state = dtrace_anon_grab()) != NULL) {
16187		/*
16188		 * If there were ECBs on this state, the provider should
16189		 * have not been allowed to detach; assert that there is
16190		 * none.
16191		 */
16192		ASSERT(state->dts_necbs == 0);
16193		dtrace_state_destroy(state);
16194
16195		/*
16196		 * If we're being detached with anonymous state, we need to
16197		 * indicate to the kernel debugger that DTrace is now inactive.
16198		 */
16199		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16200	}
16201
16202	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16203	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16204	dtrace_cpu_init = NULL;
16205	dtrace_helpers_cleanup = NULL;
16206	dtrace_helpers_fork = NULL;
16207	dtrace_cpustart_init = NULL;
16208	dtrace_cpustart_fini = NULL;
16209	dtrace_debugger_init = NULL;
16210	dtrace_debugger_fini = NULL;
16211	dtrace_modload = NULL;
16212	dtrace_modunload = NULL;
16213
16214	mutex_exit(&cpu_lock);
16215
16216	if (dtrace_helptrace_enabled) {
16217		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16218		dtrace_helptrace_buffer = NULL;
16219	}
16220
16221	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16222	dtrace_probes = NULL;
16223	dtrace_nprobes = 0;
16224
16225	dtrace_hash_destroy(dtrace_bymod);
16226	dtrace_hash_destroy(dtrace_byfunc);
16227	dtrace_hash_destroy(dtrace_byname);
16228	dtrace_bymod = NULL;
16229	dtrace_byfunc = NULL;
16230	dtrace_byname = NULL;
16231
16232	kmem_cache_destroy(dtrace_state_cache);
16233	vmem_destroy(dtrace_minor);
16234	vmem_destroy(dtrace_arena);
16235
16236	if (dtrace_toxrange != NULL) {
16237		kmem_free(dtrace_toxrange,
16238		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16239		dtrace_toxrange = NULL;
16240		dtrace_toxranges = 0;
16241		dtrace_toxranges_max = 0;
16242	}
16243
16244	ddi_remove_minor_node(dtrace_devi, NULL);
16245	dtrace_devi = NULL;
16246
16247	ddi_soft_state_fini(&dtrace_softstate);
16248
16249	ASSERT(dtrace_vtime_references == 0);
16250	ASSERT(dtrace_opens == 0);
16251	ASSERT(dtrace_retained == NULL);
16252
16253	mutex_exit(&dtrace_lock);
16254	mutex_exit(&dtrace_provider_lock);
16255
16256	/*
16257	 * We don't destroy the task queue until after we have dropped our
16258	 * locks (taskq_destroy() may block on running tasks).  To prevent
16259	 * attempting to do work after we have effectively detached but before
16260	 * the task queue has been destroyed, all tasks dispatched via the
16261	 * task queue must check that DTrace is still attached before
16262	 * performing any operation.
16263	 */
16264	taskq_destroy(dtrace_taskq);
16265	dtrace_taskq = NULL;
16266
16267	return (DDI_SUCCESS);
16268}
16269#endif
16270
16271#if defined(sun)
16272/*ARGSUSED*/
16273static int
16274dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16275{
16276	int error;
16277
16278	switch (infocmd) {
16279	case DDI_INFO_DEVT2DEVINFO:
16280		*result = (void *)dtrace_devi;
16281		error = DDI_SUCCESS;
16282		break;
16283	case DDI_INFO_DEVT2INSTANCE:
16284		*result = (void *)0;
16285		error = DDI_SUCCESS;
16286		break;
16287	default:
16288		error = DDI_FAILURE;
16289	}
16290	return (error);
16291}
16292#endif
16293
16294#if defined(sun)
16295static struct cb_ops dtrace_cb_ops = {
16296	dtrace_open,		/* open */
16297	dtrace_close,		/* close */
16298	nulldev,		/* strategy */
16299	nulldev,		/* print */
16300	nodev,			/* dump */
16301	nodev,			/* read */
16302	nodev,			/* write */
16303	dtrace_ioctl,		/* ioctl */
16304	nodev,			/* devmap */
16305	nodev,			/* mmap */
16306	nodev,			/* segmap */
16307	nochpoll,		/* poll */
16308	ddi_prop_op,		/* cb_prop_op */
16309	0,			/* streamtab  */
16310	D_NEW | D_MP		/* Driver compatibility flag */
16311};
16312
16313static struct dev_ops dtrace_ops = {
16314	DEVO_REV,		/* devo_rev */
16315	0,			/* refcnt */
16316	dtrace_info,		/* get_dev_info */
16317	nulldev,		/* identify */
16318	nulldev,		/* probe */
16319	dtrace_attach,		/* attach */
16320	dtrace_detach,		/* detach */
16321	nodev,			/* reset */
16322	&dtrace_cb_ops,		/* driver operations */
16323	NULL,			/* bus operations */
16324	nodev			/* dev power */
16325};
16326
16327static struct modldrv modldrv = {
16328	&mod_driverops,		/* module type (this is a pseudo driver) */
16329	"Dynamic Tracing",	/* name of module */
16330	&dtrace_ops,		/* driver ops */
16331};
16332
16333static struct modlinkage modlinkage = {
16334	MODREV_1,
16335	(void *)&modldrv,
16336	NULL
16337};
16338
16339int
16340_init(void)
16341{
16342	return (mod_install(&modlinkage));
16343}
16344
16345int
16346_info(struct modinfo *modinfop)
16347{
16348	return (mod_info(&modlinkage, modinfop));
16349}
16350
16351int
16352_fini(void)
16353{
16354	return (mod_remove(&modlinkage));
16355}
16356#else
16357
16358static d_ioctl_t	dtrace_ioctl;
16359static void		dtrace_load(void *);
16360static int		dtrace_unload(void);
16361static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16362static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16363static eventhandler_tag	eh_tag;			/* Event handler tag. */
16364
16365void dtrace_invop_init(void);
16366void dtrace_invop_uninit(void);
16367
16368static struct cdevsw dtrace_cdevsw = {
16369	.d_version	= D_VERSION,
16370	.d_close	= dtrace_close,
16371	.d_ioctl	= dtrace_ioctl,
16372	.d_open		= dtrace_open,
16373	.d_name		= "dtrace",
16374};
16375
16376#include <dtrace_anon.c>
16377#include <dtrace_clone.c>
16378#include <dtrace_ioctl.c>
16379#include <dtrace_load.c>
16380#include <dtrace_modevent.c>
16381#include <dtrace_sysctl.c>
16382#include <dtrace_unload.c>
16383#include <dtrace_vtime.c>
16384#include <dtrace_hacks.c>
16385#include <dtrace_isa.c>
16386
16387SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16388SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16389SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16390
16391DEV_MODULE(dtrace, dtrace_modevent, NULL);
16392MODULE_VERSION(dtrace, 1);
16393MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16394MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16395#endif
16396