mutex.9 revision 111058

Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Berkeley Software Design Inc's name may not be used to endorse or
promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

from BSDI $Id: mutex.4,v 1.1.2.3 1998/04/27 22:53:13 ewv Exp $
$FreeBSD: head/share/man/man9/mutex.9 111058 2003-02-17 22:21:41Z chris $

.Dd February 12, 2001 .Dt MUTEX 9 .Os .Sh NAME .Nm mutex , .Nm mtx_init , .Nm mtx_lock , .Nm mtx_lock_spin , .Nm mtx_lock_flags , .Nm mtx_lock_spin_flags , .Nm mtx_trylock , .Nm mtx_trylock_flags , .Nm mtx_unlock , .Nm mtx_unlock_spin , .Nm mtx_unlock_flags , .Nm mtx_unlock_spin_flags , .Nm mtx_destroy , .Nm mtx_initialized , .Nm mtx_owned , .Nm mtx_recursed , .Nm mtx_assert, .Nm MTX_SYSINIT .Nd kernel synchronization primitives .Sh SYNOPSIS n sys/param.h n sys/lock.h n sys/mutex.h .Ft void .Fn mtx_init "struct mtx *mutex" "const char *name" "const char *type" "int opts" .Ft void .Fn mtx_lock "struct mtx *mutex" .Ft void .Fn mtx_lock_spin "struct mtx *mutex" .Ft void .Fn mtx_lock_flags "struct mtx *mutex" "int flags" .Ft void .Fn mtx_lock_spin_flags "struct mtx *mutex" "int flags" .Ft int .Fn mtx_trylock "struct mtx *mutex" .Ft int .Fn mtx_trylock_flags "struct mtx *mutex" "int flags" .Ft void .Fn mtx_unlock "struct mtx *mutex" .Ft void .Fn mtx_unlock_spin "struct mtx *mutex" .Ft void .Fn mtx_unlock_flags "struct mtx *mutex" "int flags" .Ft void .Fn mtx_unlock_spin_flags "struct mtx *mutex" "int flags" .Ft void .Fn mtx_destroy "struct mtx *mutex" .Ft int .Fn mtx_initialized "struct mtx *mutex" .Ft int .Fn mtx_owned "struct mtx *mutex" .Ft int .Fn mtx_recursed "struct mtx *mutex" .Ft void .Fn mtx_assert "struct mtx *mutex" "int what" .Fn MTX_SYSINIT "name" "struct mutex *mtx" "const char *description" "int opts" .Sh DESCRIPTION Mutexes are the most basic and primary method of process synchronization. The major design considerations for mutexes are: l -enum t Acquiring and releasing uncontested mutexes should be as cheap as possible. t They must have the information and storage space to support priority propagation. t A process must be able to recursively acquire a mutex, provided that the mutex is initialized to support recursion. .El

p There are currently two flavors of mutexes, those that context switch when they block and those that do not.

p By default, .Dv MTX_DEF mutexes will context switch when they are already held. As a machine dependent optimization they may spin for some amount of time before context switching. It is important to remember that since a process may be preempted at any time, the possible context switch introduced by acquiring a mutex is guaranteed to not break anything that isn't already broken.

p Mutexes which do not context switch are .Dv MTX_SPIN mutexes. These should only be used to protect data shared with any devices that require non-preemptive interrupts, and low level scheduling code. In most/all architectures both acquiring and releasing of a uncontested spin mutex is more expensive than the same operation on a non spin mutex. In order to protect an interrupt service routine from blocking against itself all interrupts are blocked on a processor while holding a spin lock. It is permissible to hold multiple spin mutexes. In this case it is a required that they be released in the opposite order to that which they were acquired.

p Once a spin mutex has been acquired it is not permissible to acquire a blocking mutex.

p The storage needed to implement a mutex is provided by a .Vt struct mtx . In general this should be treated as an opaque object and referenced only with the mutex primitives.

p The .Fn mtx_init function must be used to initialize a mutex before it can be passed to .Fn mtx_lock . The .Fa name option is used to identify the lock in debugging output etc. The .Fa type option is used by the witness code to classify a mutex when doing checks of lock ordering. If .Fa type is .Dv NULL , .Fa name is used in its place. The pointer passed in as .Fa name and .Fa type is saved rather than the data it points to. The data pointed to must remain stable until the mutex is destroyed. The .Fa opts argument is used to set the type of mutex. It may contain either .Dv MTX_DEF or .Dv MTX_SPIN but not both. See below for additional initialization options. It is not permissible to pass the same .Fa mutex to .Fn mtx_init multiple times without intervening calls to .Fn mtx_destroy .

p The .Fn mtx_lock function acquires a .Dv MTX_DEF mutual exclusion lock on behalf of the currently running kernel thread. If another kernel thread is holding the mutex, the caller will be disconnected from the CPU until the mutex is available (i.e. it will sleep).

p The .Fn mtx_lock_spin function acquires a .Dv MTX_SPIN mutual exclusion lock on behalf of the currently running kernel thread. If another kernel thread is holding the mutex, the caller will spin until the mutex becomes available. Interrupts are disabled during the spin and remain disabled following the acquiring of the lock.

p It is possible for the same thread to recursively acquire a mutex with no ill effects, provided that the .Dv MTX_RECURSE bit was passed to .Fn mtx_init during the initialization of the mutex.

p The .Fn mtx_lock_flags and .Fn mtx_lock_spin_flags functions acquire a .Dv MTX_DEF or .Dv MTX_SPIN lock, respectively, and also accept a .Fa flags argument. In both cases, the only flag presently available for lock acquires is .Dv MTX_QUIET . If the .Dv MTX_QUIET bit is turned on in the .Fa flags argument, then if .Dv KTR_LOCK tracing is being done, it will be silenced during the lock acquire.

p The .Fn mtx_trylock function is used to acquire exclusive access to those objects protected by the mutex pointed to by .Fa mutex . If the mutex cannot be immediately acquired .Fn mtx_trylock will return 0, otherwise the mutex will be acquired and a non-zero value will be returned.

p The .Fn mtx_trylock_flags function has the same behavior as .Fn mtx_trylock but should be used when the caller desires to pass in a .Fa flags value. Presently, the only valid value in the .Fn mtx_trylock case is .Dv MTX_QUIET , and its effects are identical to those described for .Fn mtx_lock and .Fn mtx_lock_spin above.

p The .Fn mtx_unlock function releases a .Dv MTX_DEF mutual exclusion lock; if a higher priority thread is waiting for the mutex, the releasing thread will be disconnected to allow the higher priority thread to acquire the mutex and run unless the current thread is executing in a critical section.

p The .Fn mtx_unlock_spin function releases a .Dv MTX_SPIN mutual exclusion lock; interrupt state prior to the acquiring of the lock is restored.

p The .Fn mtx_unlock_flags and .Fn mtx_unlock_spin_flags functions behave in exactly the same way as do the standard mutex unlock routines above, while also allowing a .Fa flags argument which may specify .Dv MTX_QUIET . The behavior of .Dv MTX_QUIET is identical to its behavior in the mutex lock routines.

p The .Fn mtx_destroy function is used to destroy .Fa mutex so the data associated with it may be freed or otherwise overwritten. Any mutex which is destroyed must previously have been initialized with .Fn mtx_init . It is permissible to have a single hold count on a mutex when it is destroyed. It is not permissible to hold the mutex recursively, or have another process blocked on the mutex when it is destroyed.

p The .Fn mtx_initialized function returns non-zero if .Fa mutex has been initialized and zero otherwise.

p The .Fn mtx_owned function returns non-zero if the current process holds .Fa mutex . If the current process does not hold .Fa mutex zero is returned.

p The .Fn mtx_recursed function returns non-zero if the .Fa mutex is recursed. This check should only be made if the running thread already owns .Fa mutex .

p The .Fn mtx_assert function allows assertions to be made about .Fa mutex . If the assertions are not true and the kernel is compiled with .Dv INVARIANTS then the kernel will panic. Currently the following assertions are supported: l -tag -width MA_NOTRECURSED t Dv MA_OWNED Assert that the current thread holds the mutex pointed to by the first argument. t Dv MA_NOTOWNED Assert that the current thread does not hold the mutex pointed to by the first argument. t Dv MA_RECURSED Assert that the current thread has recursed on the mutex pointed to by the first argument. This assertion is only valid in conjunction with .Dv MA_OWNED . t Dv MA_NOTRECURSED Assert that the current thread has not recursed on the mutex pointed to by the first argument. This assertion is only valid in conjunction with .Dv MA_OWNED . .El

p The .Fn MTX_SYSINIT macro is used to generate a call to the .Fn mtx_sysinit routine at system startup in order to initialize a given mutex lock. The parameters are the same as .Fn mtx_init but with an additional argument, .Fa name , that is used in generating unique variable names for the related structures associated with the lock and the sysinit routine. .Ss The Default Mutex Type Most kernel code should use the default lock type, .Dv MTX_DEF ; the default lock type will allow the thread to be disconnected from the CPU if it cannot get the lock. The machine dependent implementation may treat the lock as a short term spin lock under some circumstances. However, it is always safe to use these forms of locks in an interrupt thread without fear of deadlock against an interrupted thread on the same CPU. .Ss The Spin Mutex Type A .Dv MTX_SPIN mutex will not relinquish the CPU when it cannot immediately get the requested lock, but will loop, waiting for the mutex to be released by another CPU. This could result in deadlock if a thread interrupted the thread which held a mutex and then tried to acquire the mutex; for this reason spin locks will disable all interrupts (on the local CPU only).

p Spin locks are fairly specialized locks that are intended to be held for very short periods of time; their primary purpose is to protect portions of the code that implement default (i.e. sleep) locks. .Ss Initialization Options The options passed in the .Fa opts argument of .Fn mtx_init specify the mutex type. The possibilities are: l -tag -width MTX_NOWITNESS t Dv MTX_DEF Default lock type; will always allow the current thread to be suspended to avoid deadlock conditions against interrupt threads. The machine dependent implementation of this lock type may spin for a while before suspending the current thread. If this flag is specified, clearly .Dv MTX_SPIN must NOT be specified. t Dv MTX_SPIN Spin lock type; will never relinquish the CPU. All interrupts are disabled on the local CPU while any spin lock is held. t Dv MTX_RECURSE Recursion option bit; specifies that the initialized mutex is allowed to recurse. This bit must be present if the mutex is going to be permitted to recurse. t Dv MTX_QUIET Do not log any mutex operations for this lock. t Dv MTX_NOWITNESS Instruct .Xr witness 4 to ignore this lock. t Dv MTX_DUPOK Witness should not log messages about duplicate locks being acquired. .El .Ss Lock and Unlock Flags The flags passed to the .Fn mtx_lock_flags , .Fn mtx_lock_spin_flags , .Fn mtx_unlock_flags , and .Fn mtx_unlock_spin_flags functions provide some basic options to the caller, and are often used only under special circumstances to modify lock or unlock behavior. Standard locking and unlocking should be performed with the .Fn mtx_lock , .Fn mtx_lock_spin , .Fn mtx_unlock , and .Fn mtx_unlock_spin functions. Only if a flag is required should the corresponding flags-accepting routines be used.

p Options that modify mutex behavior: l -tag -width MTX_QUIET t Dv MTX_QUIET This option is used to quiet logging messages during individual mutex operations. This can be used to trim superfluous logging messages for debugging purposes. .El .Ss Giant If Giant must be acquired, it must be acquired prior to acquiring other mutexes. Put another way: it is impossible to acquire Giant non-recursively while holding another mutex. It is possible to acquire other mutexes while holding Giant, and it is possible to acquire Giant recursively while holding other mutexes. .Ss Sleeping Sleeping while holding a mutex (except for Giant) is almost never safe and should be avoided. There are numerous assertions which will fail if this is attempted. .Ss Functions Which Access Memory in Userspace No mutexes should be held (except for Giant) across functions which access memory in userspace, such as .Xr copyin 9 , .Xr copyout 9 , .Xr uiomove 9 , .Xr fuword 9 , etc. No locks are needed when calling these functions. .Ss Giant Lock Manipulation Macros The following macros are useful when dealing with the Giant lock: l -tag -width GIANT_REQUIRED t Dv GIANT_REQUIRED Macro used for a routine that wants to assert the Giant lock. t Dv PICKUP_GIANT Allows a routine to hold the Giant lock and save it's .Xr witness 4 lock order. t Dv DROP_GIANT Allows a routine to drop the Giant lock and restore it's .Xr witness 4 lock order. .El

p It should be noted that .Dv PICKUP_GIANT and .Dv DROP_GIANT have to be paired together and cannot operate on seperate levels, i.e. the following is incorrect and not possible: d -literal void incorrect() { initialization; PICKUP_GIANT; if (condition) { /* stuff ... */ DROP_GIANT; } } .Ed

p A correct way of calling .Dv PICKUP_GIANT and .Dv DROP_GIANT : d -literal void correct() { initialization; PICKUP_GIANT; if (condition) { /* stuff ... */ /* more stuff ... */ } DROP_GIANT; } .Ed .Sh SEE ALSO .Xr ddb 4 , .Xr witness 4 , .Xr condvar 9 , .Xr msleep 9 , .Xr mtx_pool 9 , .Xr sema 9 , .Xr sx 9 .Sh HISTORY These functions appeared in sx 4.1 and .Fx 5.0 . .Sh AUTHORS This manual page is partially derived from its sx counterpart with parts written by Jason Evans and improvements from Chuck Paterson, Doug Rabson, Matthew Dillon, Greg Lehey, Jake Burkholder and Sheldon Hearn.