des.3 revision 296465
Automatically generated by Pod::Man 2.28 (Pod::Simple 3.28)

Standard preamble:
========================================================================
..
..
.. Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.

If the F register is turned on, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.

Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================

Title "des 3"
des 3 "2015-12-03" "0.9.8zh" "OpenSSL"
For nroff, turn off justification. Always turn off hyphenation; it makes
way too many mistakes in technical documents.
"NAME"
DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked, DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key, DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt, DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt, DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt, DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt, DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt, DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys, DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write - DES encryption
"SYNOPSIS"
Header "SYNOPSIS" .Vb 1 #include <openssl/des.h> \& void DES_random_key(DES_cblock *ret); \& int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule); int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule); int DES_set_key_checked(const_DES_cblock *key, DES_key_schedule *schedule); void DES_set_key_unchecked(const_DES_cblock *key, DES_key_schedule *schedule); \& void DES_set_odd_parity(DES_cblock *key); int DES_is_weak_key(const_DES_cblock *key); \& void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output, DES_key_schedule *ks, int enc); void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output, DES_key_schedule *ks1, DES_key_schedule *ks2, int enc); void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3, int enc); \& void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output, long length, DES_key_schedule *schedule, DES_cblock *ivec, int enc); void DES_cfb_encrypt(const unsigned char *in, unsigned char *out, int numbits, long length, DES_key_schedule *schedule, DES_cblock *ivec, int enc); void DES_ofb_encrypt(const unsigned char *in, unsigned char *out, int numbits, long length, DES_key_schedule *schedule, DES_cblock *ivec); void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output, long length, DES_key_schedule *schedule, DES_cblock *ivec, int enc); void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *schedule, DES_cblock *ivec, int *num, int enc); void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *schedule, DES_cblock *ivec, int *num); \& void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output, long length, DES_key_schedule *schedule, DES_cblock *ivec, const_DES_cblock *inw, const_DES_cblock *outw, int enc); \& void DES_ede2_cbc_encrypt(const unsigned char *input, unsigned char *output, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int enc); void DES_ede2_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc); void DES_ede2_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int *num); \& void DES_ede3_cbc_encrypt(const unsigned char *input, unsigned char *output, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec, int enc); void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2, int enc); void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc); void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec, int *num); \& DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output, long length, DES_key_schedule *schedule, const_DES_cblock *ivec); DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[], long length, int out_count, DES_cblock *seed); void DES_string_to_key(const char *str, DES_cblock *key); void DES_string_to_2keys(const char *str, DES_cblock *key1, DES_cblock *key2); \& char *DES_fcrypt(const char *buf, const char *salt, char *ret); char *DES_crypt(const char *buf, const char *salt); \& int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched, DES_cblock *iv); int DES_enc_write(int fd, const void *buf, int len, DES_key_schedule *sched, DES_cblock *iv); .Ve
"DESCRIPTION"
Header "DESCRIPTION" This library contains a fast implementation of the \s-1DES\s0 encryption algorithm.

There are two phases to the use of \s-1DES\s0 encryption. The first is the generation of a DES_key_schedule from a key, the second is the actual encryption. A \s-1DES\s0 key is of type DES_cblock. This type is consists of 8 bytes with odd parity. The least significant bit in each byte is the parity bit. The key schedule is an expanded form of the key; it is used to speed the encryption process.

\fIDES_random_key() generates a random key. The \s-1PRNG\s0 must be seeded prior to using this function (see rand\|(3)). If the \s-1PRNG\s0 could not generate a secure key, 0 is returned.

Before a \s-1DES\s0 key can be used, it must be converted into the architecture dependent DES_key_schedule via the \fIDES_set_key_checked() or DES_set_key_unchecked() function.

\fIDES_set_key_checked() will check that the key passed is of odd parity and is not a week or semi-weak key. If the parity is wrong, then -1 is returned. If the key is a weak key, then -2 is returned. If an error is returned, the key schedule is not generated.

\fIDES_set_key() works like \fIDES_set_key_checked() if the DES_check_key flag is non-zero, otherwise like DES_set_key_unchecked(). These functions are available for compatibility; it is recommended to use a function that does not depend on a global variable.

\fIDES_set_odd_parity() sets the parity of the passed key to odd.

\fIDES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it is ok.

The following routines mostly operate on an input and output stream of \fIDES_cblocks.

\fIDES_ecb_encrypt() is the basic \s-1DES\s0 encryption routine that encrypts or decrypts a single 8-byte DES_cblock in electronic code book (\s-1ECB\s0) mode. It always transforms the input data, pointed to by \fIinput, into the output data, pointed to by the output argument. If the encrypt argument is non-zero (\s-1DES_ENCRYPT\s0), the input (cleartext) is encrypted in to the output (ciphertext) using the key_schedule specified by the schedule argument, previously set via \fIDES_set_key. If encrypt is zero (\s-1DES_DECRYPT\s0), the input (now ciphertext) is decrypted into the output (now cleartext). Input and output may overlap. DES_ecb_encrypt() does not return a value.

\fIDES_ecb3_encrypt() encrypts/decrypts the input block by using three-key Triple-DES encryption in \s-1ECB\s0 mode. This involves encrypting the input with ks1, decrypting with the key schedule ks2, and then encrypting with ks3. This routine greatly reduces the chances of brute force breaking of \s-1DES\s0 and has the advantage of if ks1, \fIks2 and ks3 are the same, it is equivalent to just encryption using \s-1ECB\s0 mode and ks1 as the key.

The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES encryption by using ks1 for the final encryption.

\fIDES_ncbc_encrypt() encrypts/decrypts using the cipher-block-chaining (\s-1CBC\s0) mode of \s-1DES. \s0 If the encrypt argument is non-zero, the routine cipher-block-chain encrypts the cleartext data pointed to by the input argument into the ciphertext pointed to by the output argument, using the key schedule provided by the schedule argument, and initialization vector provided by the ivec argument. If the \fIlength argument is not an integral multiple of eight bytes, the last block is copied to a temporary area and zero filled. The output is always an integral multiple of eight bytes.

\fIDES_xcbc_encrypt() is \s-1RSA\s0's \s-1DESX\s0 mode of \s-1DES. \s0 It uses inw and \fIoutw to 'whiten' the encryption. inw and outw are secret (unlike the iv) and are as such, part of the key. So the key is sort of 24 bytes. This is much better than \s-1CBC DES.\s0

\fIDES_ede3_cbc_encrypt() implements outer triple \s-1CBC DES\s0 encryption with three keys. This means that each \s-1DES\s0 operation inside the \s-1CBC\s0 mode is an \*(C`C=E(ks3,D(ks2,E(ks1,M)))\*(C'. This mode is used by \s-1SSL.\s0

The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by reusing ks1 for the final encryption. \*(C`C=E(ks1,D(ks2,E(ks1,M)))\*(C'. This form of Triple-DES is used by the \s-1RSAREF\s0 library.

\fIDES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block chaining mode used by Kerberos v4. Its parameters are the same as \fIDES_ncbc_encrypt().

\fIDES_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This method takes an array of characters as input and outputs and array of characters. It does not require any padding to 8 character groups. Note: the ivec variable is changed and the new changed value needs to be passed to the next call to this function. Since this function runs a complete \s-1DES ECB\s0 encryption per numbits, this function is only suggested for use when sending small numbers of characters.

\fIDES_cfb64_encrypt() implements \s-1CFB\s0 mode of \s-1DES\s0 with 64bit feedback. Why is this useful you ask? Because this routine will allow you to encrypt an arbitrary number of bytes, no 8 byte padding. Each call to this routine will encrypt the input bytes to output and then update ivec and num. num contains 'how far' we are though ivec. If this does not make much sense, read more about cfb mode of \s-1DES :-\s0).

\fIDES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as \fIDES_cfb64_encrypt() except that Triple-DES is used.

\fIDES_ofb_encrypt() encrypts using output feedback mode. This method takes an array of characters as input and outputs and array of characters. It does not require any padding to 8 character groups. Note: the ivec variable is changed and the new changed value needs to be passed to the next call to this function. Since this function runs a complete \s-1DES ECB\s0 encryption per numbits, this function is only suggested for use when sending small numbers of characters.

\fIDES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output Feed Back mode.

\fIDES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as \fIDES_ofb64_encrypt(), using Triple-DES.

The following functions are included in the \s-1DES\s0 library for compatibility with the \s-1MIT\s0 Kerberos library.

\fIDES_cbc_cksum() produces an 8 byte checksum based on the input stream (via \s-1CBC\s0 encryption). The last 4 bytes of the checksum are returned and the complete 8 bytes are placed in output. This function is used by Kerberos v4. Other applications should use \fIEVP_DigestInit\|(3) etc. instead.

\fIDES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte checksum from the input bytes. The algorithm can be iterated over the input, depending on out_count, 1, 2, 3 or 4 times. If output is non-NULL, the 8 bytes generated by each pass are written into \fIoutput.

The following are DES-based transformations:

\fIDES_fcrypt() is a fast version of the Unix crypt\|(3) function. This version takes only a small amount of space relative to other fast \fIcrypt() implementations. This is different to the normal crypt in that the third parameter is the buffer that the return value is written into. It needs to be at least 14 bytes long. This function is thread safe, unlike the normal crypt.

\fIDES_crypt() is a faster replacement for the normal system crypt(). This function calls DES_fcrypt() with a static array passed as the third parameter. This emulates the normal non-thread safe semantics of crypt\|(3).

\fIDES_enc_write() writes len bytes to file descriptor fd from buffer buf. The data is encrypted via pcbc_encrypt (default) using sched for the key and iv as a starting vector. The actual data send down fd consists of 4 bytes (in network byte order) containing the length of the following encrypted data. The encrypted data then follows, padded with random data out to a multiple of 8 bytes.

\fIDES_enc_read() is used to read len bytes from file descriptor \fIfd into buffer buf. The data being read from fd is assumed to have come from DES_enc_write() and is decrypted using sched for the key schedule and iv for the initial vector.

\fBWarning: The data format used by DES_enc_write() and DES_enc_read() has a cryptographic weakness: When asked to write more than \s-1MAXWRITE\s0 bytes, DES_enc_write() will split the data into several chunks that are all encrypted using the same \s-1IV. \s0 So don't use these functions unless you are sure you know what you do (in which case you might not want to use them anyway). They cannot handle non-blocking sockets. \fIDES_enc_read() uses an internal state and thus cannot be used on multiple files.

\fIDES_rw_mode is used to specify the encryption mode to use with \fIDES_enc_read() and DES_end_write(). If set to \s-1DES_PCBC_MODE\s0 (the default), DES_pcbc_encrypt is used. If set to \s-1DES_CBC_MODE\s0 DES_cbc_encrypt is used.

"NOTES"
Header "NOTES" Single-key \s-1DES\s0 is insecure due to its short key size. \s-1ECB\s0 mode is not suitable for most applications; see des_modes\|(7).

The evp\|(3) library provides higher-level encryption functions.

"BUGS"
Header "BUGS" \fIDES_3cbc_encrypt() is flawed and must not be used in applications.

\fIDES_cbc_encrypt() does not modify ivec; use DES_ncbc_encrypt() instead.

\fIDES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits. What this means is that if you set numbits to 12, and length to 2, the first 12 bits will come from the 1st input byte and the low half of the second input byte. The second 12 bits will have the low 8 bits taken from the 3rd input byte and the top 4 bits taken from the 4th input byte. The same holds for output. This function has been implemented this way because most people will be using a multiple of 8 and because once you get into pulling bytes input bytes apart things get ugly!

\fIDES_string_to_key() is available for backward compatibility with the \s-1MIT\s0 library. New applications should use a cryptographic hash function. The same applies for DES_string_to_2key().

"CONFORMING TO"
Header "CONFORMING TO" \s-1ANSI X3.106\s0

The des library was written to be source code compatible with the \s-1MIT\s0 Kerberos library.

"SEE ALSO"
Header "SEE ALSO" \fIcrypt\|(3), des_modes\|(7), evp\|(3), rand\|(3)
"HISTORY"
Header "HISTORY" In OpenSSL 0.9.7, all des_ functions were renamed to \s-1DES_\s0 to avoid clashes with older versions of libdes. Compatibility des_ functions are provided for a short while, as well as crypt(). Declarations for these are in <openssl/des_old.h>. There is no \s-1DES_\s0 variant for des_random_seed(). This will happen to other functions as well if they are deemed redundant (des_random_seed() just calls \fIRAND_seed() and is present for backward compatibility only), buggy or already scheduled for removal.

\fIdes_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(), \fIdes_is_weak_key(), des_key_sched(), des_pcbc_encrypt(), \fIdes_quad_cksum(), des_random_key() and des_string_to_key() are available in the \s-1MIT\s0 Kerberos library; \fIdes_check_key_parity(), des_fixup_key_parity() and des_is_weak_key() are available in newer versions of that library.

\fIdes_set_key_checked() and des_set_key_unchecked() were added in OpenSSL 0.9.5.

\fIdes_generate_random_block(), des_init_random_number_generator(), \fIdes_new_random_key(), des_set_random_generator_seed() and \fIdes_set_sequence_number() and des_rand_data() are used in newer versions of Kerberos but are not implemented here.

\fIdes_random_key() generated cryptographically weak random data in SSLeay and in OpenSSL prior version 0.9.5, as well as in the original \s-1MIT\s0 library.

"AUTHOR"
Header "AUTHOR" Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project (http://www.openssl.org).