RAND_add.3 revision 296465
Automatically generated by Pod::Man 2.28 (Pod::Simple 3.28)

Standard preamble:
========================================================================
..
..
.. Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.

If the F register is turned on, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.

Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================

Title "RAND_add 3"
RAND_add 3 "2015-12-03" "0.9.8zh" "OpenSSL"
For nroff, turn off justification. Always turn off hyphenation; it makes
way too many mistakes in technical documents.
"NAME"
RAND_add, RAND_seed, RAND_status, RAND_event, RAND_screen - add entropy to the PRNG
"SYNOPSIS"
Header "SYNOPSIS" .Vb 1 #include <openssl/rand.h> \& void RAND_seed(const void *buf, int num); \& void RAND_add(const void *buf, int num, double entropy); \& int RAND_status(void); \& int RAND_event(UINT iMsg, WPARAM wParam, LPARAM lParam); void RAND_screen(void); .Ve
"DESCRIPTION"
Header "DESCRIPTION" \fIRAND_add() mixes the num bytes at buf into the \s-1PRNG\s0 state. Thus, if the data at buf are unpredictable to an adversary, this increases the uncertainty about the state and makes the \s-1PRNG\s0 output less predictable. Suitable input comes from user interaction (random key presses, mouse movements) and certain hardware events. The \fBentropy argument is (the lower bound of) an estimate of how much randomness is contained in buf, measured in bytes. Details about sources of randomness and how to estimate their entropy can be found in the literature, e.g. \s-1RFC 1750.\s0

\fIRAND_add() may be called with sensitive data such as user entered passwords. The seed values cannot be recovered from the \s-1PRNG\s0 output.

OpenSSL makes sure that the \s-1PRNG\s0 state is unique for each thread. On systems that provide \*(C`/dev/urandom\*(C', the randomness device is used to seed the \s-1PRNG\s0 transparently. However, on all other systems, the application is responsible for seeding the \s-1PRNG\s0 by calling RAND_add(), \fIRAND_egd\|(3) or RAND_load_file\|(3).

\fIRAND_seed() is equivalent to RAND_add() when num == entropy.

\fIRAND_event() collects the entropy from Windows events such as mouse movements and other user interaction. It should be called with the \fBiMsg, wParam and lParam arguments of all messages sent to the window procedure. It will estimate the entropy contained in the event message (if any), and add it to the \s-1PRNG.\s0 The program can then process the messages as usual.

The RAND_screen() function is available for the convenience of Windows programmers. It adds the current contents of the screen to the \s-1PRNG.\s0 For applications that can catch Windows events, seeding the \s-1PRNG\s0 by calling RAND_event() is a significantly better source of randomness. It should be noted that both methods cannot be used on servers that run without user interaction.

"RETURN VALUES"
Header "RETURN VALUES" \fIRAND_status() and RAND_event() return 1 if the \s-1PRNG\s0 has been seeded with enough data, 0 otherwise.

The other functions do not return values.

"SEE ALSO"
Header "SEE ALSO" \fIrand\|(3), RAND_egd\|(3), \fIRAND_load_file\|(3), RAND_cleanup\|(3)
"HISTORY"
Header "HISTORY" \fIRAND_seed() and RAND_screen() are available in all versions of SSLeay and OpenSSL. RAND_add() and RAND_status() have been added in OpenSSL 0.9.5, RAND_event() in OpenSSL 0.9.5a.