ASN1_generate_nconf.3 revision 279265
Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)

Standard preamble:
========================================================================
..
..
.. Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.

If the F register is turned on, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.

Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================

Title "ASN1_generate_nconf 3"
ASN1_generate_nconf 3 "2015-01-08" "0.9.8zd" "OpenSSL"
For nroff, turn off justification. Always turn off hyphenation; it makes
way too many mistakes in technical documents.
"NAME"
ASN1_generate_nconf, ASN1_generate_v3 - ASN1 generation functions
"SYNOPSIS"
Header "SYNOPSIS" .Vb 1 #include <openssl/asn1.h> \& ASN1_TYPE *ASN1_generate_nconf(char *str, CONF *nconf); ASN1_TYPE *ASN1_generate_v3(char *str, X509V3_CTX *cnf); .Ve
"DESCRIPTION"
Header "DESCRIPTION" These functions generate the \s-1ASN1\s0 encoding of a string in an \s-1ASN1_TYPE\s0 structure.

\fBstr contains the string to encode nconf or cnf contains the optional configuration information where additional strings will be read from. nconf will typically come from a config file wherease cnf is obtained from an X509V3_CTX structure which will typically be used by X509 v3 certificate extension functions. cnf or nconf can be set to \s-1NULL\s0 if no additional configuration will be used.

"GENERATION STRING FORMAT"
Header "GENERATION STRING FORMAT" The actual data encoded is determined by the string str and the configuration information. The general format of the string is:
"[modifier,]type[:value]" 2
Item "[modifier,]type[:value]"

That is zero or more comma separated modifiers followed by a type followed by an optional colon and a value. The formats of type, \fBvalue and modifier are explained below.

"\s-1SUPPORTED TYPES\s0"
Subsection "SUPPORTED TYPES" The supported types are listed below. Unless otherwise specified only the \s-1ASCII\s0 format is permissible.
"\s-1BOOLEAN\s0, \s-1BOOL\s0" 2
Item "BOOLEAN, BOOL" This encodes a boolean type. The value string is mandatory and should be \s-1TRUE\s0 or \s-1FALSE\s0. Additionally \s-1TRUE\s0, true, Y, \fBy, \s-1YES\s0, yes, \s-1FALSE\s0, false, N, n, \s-1NO\s0 and no are acceptable.
"\s-1NULL\s0" 2
Item "NULL" Encode the \s-1NULL\s0 type, the value string must not be present.
"\s-1INTEGER\s0, \s-1INT\s0" 2
Item "INTEGER, INT" Encodes an \s-1ASN1 \s0\s-1INTEGER\s0 type. The value string represents the value of the integer, it can be preceded by a minus sign and is normally interpreted as a decimal value unless the prefix 0x is included.
"\s-1ENUMERATED\s0, \s-1ENUM\s0" 2
Item "ENUMERATED, ENUM" Encodes the \s-1ASN1 \s0\s-1ENUMERATED\s0 type, it is otherwise identical to \fB\s-1INTEGER\s0.
"\s-1OBJECT\s0, \s-1OID\s0" 2
Item "OBJECT, OID" Encodes an \s-1ASN1 \s0\s-1OBJECT IDENTIFIER\s0, the value string can be a short name, a long name or numerical format.
"\s-1UTCTIME\s0, \s-1UTC\s0" 2
Item "UTCTIME, UTC" Encodes an \s-1ASN1 \s0UTCTime structure, the value should be in the format \s-1YYMMDDHHMMSSZ\s0.
"\s-1GENERALIZEDTIME\s0, \s-1GENTIME\s0" 2
Item "GENERALIZEDTIME, GENTIME" Encodes an \s-1ASN1 \s0GeneralizedTime structure, the value should be in the format \s-1YYYYMMDDHHMMSSZ\s0.
"\s-1OCTETSTRING\s0, \s-1OCT\s0" 2
Item "OCTETSTRING, OCT" Encodes an \s-1ASN1 \s0\s-1OCTET STRING\s0. value represents the contents of this structure, the format strings \s-1ASCII\s0 and \s-1HEX\s0 can be used to specify the format of value.
"\s-1BITSTRING\s0, \s-1BITSTR\s0" 2
Item "BITSTRING, BITSTR" Encodes an \s-1ASN1 \s0\s-1BIT STRING\s0. value represents the contents of this structure, the format strings \s-1ASCII\s0, \s-1HEX\s0 and \s-1BITLIST\s0 can be used to specify the format of value. .Sp If the format is anything other than \s-1BITLIST\s0 the number of unused bits is set to zero.
"\s-1UNIVERSALSTRING\s0, \s-1UNIV\s0, \s-1IA5\s0, \s-1IA5STRING\s0, \s-1UTF8\s0, UTF8String, \s-1BMP\s0, \s-1BMPSTRING\s0, \s-1VISIBLESTRING\s0, \s-1VISIBLE\s0, \s-1PRINTABLESTRING\s0, \s-1PRINTABLE\s0, T61, T61STRING, \s-1TELETEXSTRING\s0, GeneralString, \s-1NUMERICSTRING\s0, \s-1NUMERIC\s0" 2
Item "UNIVERSALSTRING, UNIV, IA5, IA5STRING, UTF8, UTF8String, BMP, BMPSTRING, VISIBLESTRING, VISIBLE, PRINTABLESTRING, PRINTABLE, T61, T61STRING, TELETEXSTRING, GeneralString, NUMERICSTRING, NUMERIC" These encode the corresponding string types. value represents the contents of this structure. The format can be \s-1ASCII\s0 or \s-1UTF8\s0.
"\s-1SEQUENCE\s0, \s-1SEQ\s0, \s-1SET\s0" 2
Item "SEQUENCE, SEQ, SET" Formats the result as an \s-1ASN1 \s0\s-1SEQUENCE\s0 or \s-1SET\s0 type. value should be a section name which will contain the contents. The field names in the section are ignored and the values are in the generated string format. If value is absent then an empty \s-1SEQUENCE\s0 will be encoded.
"\s-1MODIFIERS\s0"
Subsection "MODIFIERS" Modifiers affect the following structure, they can be used to add \s-1EXPLICIT\s0 or \s-1IMPLICIT\s0 tagging, add wrappers or to change the string format of the final type and value. The supported formats are documented below.
"\s-1EXPLICIT\s0, \s-1EXP\s0" 2
Item "EXPLICIT, EXP" Add an explicit tag to the following structure. This string should be followed by a colon and the tag value to use as a decimal value. .Sp By following the number with U, A, P or C \s-1UNIVERSAL, APPLICATION, PRIVATE\s0 or \s-1CONTEXT SPECIFIC\s0 tagging can be used, the default is \s-1CONTEXT SPECIFIC.\s0
"\s-1IMPLICIT\s0, \s-1IMP\s0" 2
Item "IMPLICIT, IMP" This is the same as \s-1EXPLICIT\s0 except \s-1IMPLICIT\s0 tagging is used instead.
"\s-1OCTWRAP\s0, \s-1SEQWRAP\s0, \s-1SETWRAP\s0, \s-1BITWRAP\s0" 2
Item "OCTWRAP, SEQWRAP, SETWRAP, BITWRAP" The following structure is surrounded by an \s-1OCTET STRING,\s0 a \s-1SEQUENCE,\s0 a \s-1SET\s0 or a \s-1BIT STRING\s0 respectively. For a \s-1BIT STRING\s0 the number of unused bits is set to zero.
"\s-1FORMAT\s0" 2
Item "FORMAT" This specifies the format of the ultimate value. It should be followed by a colon and one of the strings \s-1ASCII\s0, \s-1UTF8\s0, \s-1HEX\s0 or \s-1BITLIST\s0. .Sp If no format specifier is included then \s-1ASCII\s0 is used. If \s-1UTF8\s0 is specified then the value string must be a valid \s-1UTF8\s0 string. For \s-1HEX\s0 the output must be a set of hex digits. \s-1BITLIST\s0 (which is only valid for a \s-1BIT STRING\s0) is a comma separated list of the indices of the set bits, all other bits are zero.
"EXAMPLES"
Header "EXAMPLES" A simple IA5String:

.Vb 1 IA5STRING:Hello World .Ve

An IA5String explicitly tagged:

.Vb 1 EXPLICIT:0,IA5STRING:Hello World .Ve

An IA5String explicitly tagged using \s-1APPLICATION\s0 tagging:

.Vb 1 EXPLICIT:0A,IA5STRING:Hello World .Ve

A \s-1BITSTRING\s0 with bits 1 and 5 set and all others zero:

.Vb 1 FORMAT:BITLIST,BITSTRING:1,5 .Ve

A more complex example using a config file to produce a \s-1SEQUENCE\s0 consiting of a \s-1BOOL\s0 an \s-1OID\s0 and a UTF8String:

.Vb 1 asn1 = SEQUENCE:seq_section \& [seq_section] \& field1 = BOOLEAN:TRUE field2 = OID:commonName field3 = UTF8:Third field .Ve

This example produces an RSAPrivateKey structure, this is the key contained in the file client.pem in all OpenSSL distributions (note: the field names such as 'coeff' are ignored and are present just for clarity):

.Vb 3 asn1=SEQUENCE:private_key [private_key] version=INTEGER:0 \& n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\e D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9 \& e=INTEGER:0x010001 \& d=INTEGER:0x6F05EAD2F27FFAEC84BEC360C4B928FD5F3A9865D0FCAAD291E2A52F4A\e F810DC6373278C006A0ABBA27DC8C63BF97F7E666E27C5284D7D3B1FFFE16B7A87B51D \& p=INTEGER:0xF3929B9435608F8A22C208D86795271D54EBDFB09DDEF539AB083DA912\e D4BD57 \& q=INTEGER:0xC50016F89DFF2561347ED1186A46E150E28BF2D0F539A1594BBD7FE467\e 46EC4F \& exp1=INTEGER:0x9E7D4326C924AFC1DEA40B45650134966D6F9DFA3A7F9D698CD4ABEA\e 9C0A39B9 \& exp2=INTEGER:0xBA84003BB95355AFB7C50DF140C60513D0BA51D637272E355E397779\e E7B2458F \& coeff=INTEGER:0x30B9E4F2AFA5AC679F920FC83F1F2DF1BAF1779CF989447FABC2F5\e 628657053A .Ve

This example is the corresponding public key in a SubjectPublicKeyInfo structure:

.Vb 2 # Start with a SEQUENCE asn1=SEQUENCE:pubkeyinfo \& # pubkeyinfo contains an algorithm identifier and the public key wrapped # in a BIT STRING [pubkeyinfo] algorithm=SEQUENCE:rsa_alg pubkey=BITWRAP,SEQUENCE:rsapubkey \& # algorithm ID for RSA is just an OID and a NULL [rsa_alg] algorithm=OID:rsaEncryption parameter=NULL \& # Actual public key: modulus and exponent [rsapubkey] n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\e D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9 \& e=INTEGER:0x010001 .Ve

"RETURN VALUES"
Header "RETURN VALUES" \fIASN1_generate_nconf() and ASN1_generate_v3() return the encoded data as an \s-1ASN1_TYPE\s0 structure or \s-1NULL\s0 if an error occurred.

The error codes that can be obtained by ERR_get_error\|(3).

"SEE ALSO"
Header "SEE ALSO" \fIERR_get_error\|(3)
"HISTORY"
Header "HISTORY" \fIASN1_generate_nconf() and ASN1_generate_v3() were added to OpenSSL 0.9.8