suj.c revision 217769
1/*-
2 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sbin/fsck_ffs/suj.c 217769 2011-01-24 06:17:05Z mckusick $");
29
30#include <sys/param.h>
31#include <sys/disklabel.h>
32#include <sys/mount.h>
33#include <sys/stat.h>
34
35#include <ufs/ufs/ufsmount.h>
36#include <ufs/ufs/dinode.h>
37#include <ufs/ufs/dir.h>
38#include <ufs/ffs/fs.h>
39
40#include <assert.h>
41#include <err.h>
42#include <setjmp.h>
43#include <stdarg.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <stdint.h>
47#include <libufs.h>
48#include <string.h>
49#include <strings.h>
50#include <sysexits.h>
51#include <time.h>
52
53#include "fsck.h"
54
55#define	DOTDOT_OFFSET	DIRECTSIZ(1)
56#define	SUJ_HASHSIZE	2048
57#define	SUJ_HASHMASK	(SUJ_HASHSIZE - 1)
58#define	SUJ_HASH(x)	((x * 2654435761) & SUJ_HASHMASK)
59
60struct suj_seg {
61	TAILQ_ENTRY(suj_seg) ss_next;
62	struct jsegrec	ss_rec;
63	uint8_t		*ss_blk;
64};
65
66struct suj_rec {
67	TAILQ_ENTRY(suj_rec) sr_next;
68	union jrec	*sr_rec;
69};
70TAILQ_HEAD(srechd, suj_rec);
71
72struct suj_ino {
73	LIST_ENTRY(suj_ino)	si_next;
74	struct srechd		si_recs;
75	struct srechd		si_newrecs;
76	struct srechd		si_movs;
77	struct jtrncrec		*si_trunc;
78	ino_t			si_ino;
79	char			si_skipparent;
80	char			si_hasrecs;
81	char			si_blkadj;
82	char			si_linkadj;
83	int			si_mode;
84	nlink_t			si_nlinkadj;
85	nlink_t			si_nlink;
86	nlink_t			si_dotlinks;
87};
88LIST_HEAD(inohd, suj_ino);
89
90struct suj_blk {
91	LIST_ENTRY(suj_blk)	sb_next;
92	struct srechd		sb_recs;
93	ufs2_daddr_t		sb_blk;
94};
95LIST_HEAD(blkhd, suj_blk);
96
97struct data_blk {
98	LIST_ENTRY(data_blk)	db_next;
99	uint8_t			*db_buf;
100	ufs2_daddr_t		db_blk;
101	int			db_size;
102	int			db_dirty;
103};
104
105struct ino_blk {
106	LIST_ENTRY(ino_blk)	ib_next;
107	uint8_t			*ib_buf;
108	int			ib_dirty;
109	ufs2_daddr_t		ib_blk;
110};
111LIST_HEAD(iblkhd, ino_blk);
112
113struct suj_cg {
114	LIST_ENTRY(suj_cg)	sc_next;
115	struct blkhd		sc_blkhash[SUJ_HASHSIZE];
116	struct inohd		sc_inohash[SUJ_HASHSIZE];
117	struct iblkhd		sc_iblkhash[SUJ_HASHSIZE];
118	struct ino_blk		*sc_lastiblk;
119	struct suj_ino		*sc_lastino;
120	struct suj_blk		*sc_lastblk;
121	uint8_t			*sc_cgbuf;
122	struct cg		*sc_cgp;
123	int			sc_dirty;
124	int			sc_cgx;
125};
126
127LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
128LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
129struct suj_cg *lastcg;
130struct data_blk *lastblk;
131
132TAILQ_HEAD(seghd, suj_seg) allsegs;
133uint64_t oldseq;
134static struct uufsd *disk = NULL;
135static struct fs *fs = NULL;
136ino_t sujino;
137
138/*
139 * Summary statistics.
140 */
141uint64_t freefrags;
142uint64_t freeblocks;
143uint64_t freeinos;
144uint64_t freedir;
145uint64_t jbytes;
146uint64_t jrecs;
147
148static jmp_buf	jmpbuf;
149
150typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
151static void err_suj(const char *, ...) __dead2;
152static void ino_trunc(ino_t, off_t);
153static void ino_decr(ino_t);
154static void ino_adjust(struct suj_ino *);
155static void ino_build(struct suj_ino *);
156static int blk_isfree(ufs2_daddr_t);
157
158static void *
159errmalloc(size_t n)
160{
161	void *a;
162
163	a = malloc(n);
164	if (a == NULL)
165		err(EX_OSERR, "malloc(%zu)", n);
166	return (a);
167}
168
169/*
170 * When hit a fatal error in journalling check, print out
171 * the error and then offer to fallback to normal fsck.
172 */
173static void
174err_suj(const char * restrict fmt, ...)
175{
176	va_list ap;
177
178	if (preen)
179		(void)fprintf(stdout, "%s: ", cdevname);
180
181	va_start(ap, fmt);
182	(void)vfprintf(stdout, fmt, ap);
183	va_end(ap);
184
185	longjmp(jmpbuf, -1);
186}
187
188/*
189 * Open the given provider, load superblock.
190 */
191static void
192opendisk(const char *devnam)
193{
194	if (disk != NULL)
195		return;
196	disk = malloc(sizeof(*disk));
197	if (disk == NULL)
198		err(EX_OSERR, "malloc(%zu)", sizeof(*disk));
199	if (ufs_disk_fillout(disk, devnam) == -1) {
200		err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam,
201		    disk->d_error);
202	}
203	fs = &disk->d_fs;
204}
205
206/*
207 * Mark file system as clean, write the super-block back, close the disk.
208 */
209static void
210closedisk(const char *devnam)
211{
212	struct csum *cgsum;
213	int i;
214
215	/*
216	 * Recompute the fs summary info from correct cs summaries.
217	 */
218	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
219	for (i = 0; i < fs->fs_ncg; i++) {
220		cgsum = &fs->fs_cs(fs, i);
221		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
222		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
223		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
224		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
225	}
226	fs->fs_pendinginodes = 0;
227	fs->fs_pendingblocks = 0;
228	fs->fs_clean = 1;
229	fs->fs_time = time(NULL);
230	fs->fs_mtime = time(NULL);
231	if (sbwrite(disk, 0) == -1)
232		err(EX_OSERR, "sbwrite(%s)", devnam);
233	if (ufs_disk_close(disk) == -1)
234		err(EX_OSERR, "ufs_disk_close(%s)", devnam);
235	free(disk);
236	disk = NULL;
237	fs = NULL;
238}
239
240/*
241 * Lookup a cg by number in the hash so we can keep track of which cgs
242 * need stats rebuilt.
243 */
244static struct suj_cg *
245cg_lookup(int cgx)
246{
247	struct cghd *hd;
248	struct suj_cg *sc;
249
250	if (cgx < 0 || cgx >= fs->fs_ncg)
251		err_suj("Bad cg number %d\n", cgx);
252	if (lastcg && lastcg->sc_cgx == cgx)
253		return (lastcg);
254	hd = &cghash[SUJ_HASH(cgx)];
255	LIST_FOREACH(sc, hd, sc_next)
256		if (sc->sc_cgx == cgx) {
257			lastcg = sc;
258			return (sc);
259		}
260	sc = errmalloc(sizeof(*sc));
261	bzero(sc, sizeof(*sc));
262	sc->sc_cgbuf = errmalloc(fs->fs_bsize);
263	sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
264	sc->sc_cgx = cgx;
265	LIST_INSERT_HEAD(hd, sc, sc_next);
266	if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
267	    fs->fs_bsize) == -1)
268		err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
269
270	return (sc);
271}
272
273/*
274 * Lookup an inode number in the hash and allocate a suj_ino if it does
275 * not exist.
276 */
277static struct suj_ino *
278ino_lookup(ino_t ino, int creat)
279{
280	struct suj_ino *sino;
281	struct inohd *hd;
282	struct suj_cg *sc;
283
284	sc = cg_lookup(ino_to_cg(fs, ino));
285	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
286		return (sc->sc_lastino);
287	hd = &sc->sc_inohash[SUJ_HASH(ino)];
288	LIST_FOREACH(sino, hd, si_next)
289		if (sino->si_ino == ino)
290			return (sino);
291	if (creat == 0)
292		return (NULL);
293	sino = errmalloc(sizeof(*sino));
294	bzero(sino, sizeof(*sino));
295	sino->si_ino = ino;
296	TAILQ_INIT(&sino->si_recs);
297	TAILQ_INIT(&sino->si_newrecs);
298	TAILQ_INIT(&sino->si_movs);
299	LIST_INSERT_HEAD(hd, sino, si_next);
300
301	return (sino);
302}
303
304/*
305 * Lookup a block number in the hash and allocate a suj_blk if it does
306 * not exist.
307 */
308static struct suj_blk *
309blk_lookup(ufs2_daddr_t blk, int creat)
310{
311	struct suj_blk *sblk;
312	struct suj_cg *sc;
313	struct blkhd *hd;
314
315	sc = cg_lookup(dtog(fs, blk));
316	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
317		return (sc->sc_lastblk);
318	hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
319	LIST_FOREACH(sblk, hd, sb_next)
320		if (sblk->sb_blk == blk)
321			return (sblk);
322	if (creat == 0)
323		return (NULL);
324	sblk = errmalloc(sizeof(*sblk));
325	bzero(sblk, sizeof(*sblk));
326	sblk->sb_blk = blk;
327	TAILQ_INIT(&sblk->sb_recs);
328	LIST_INSERT_HEAD(hd, sblk, sb_next);
329
330	return (sblk);
331}
332
333static struct data_blk *
334dblk_lookup(ufs2_daddr_t blk)
335{
336	struct data_blk *dblk;
337	struct dblkhd *hd;
338
339	hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
340	if (lastblk && lastblk->db_blk == blk)
341		return (lastblk);
342	LIST_FOREACH(dblk, hd, db_next)
343		if (dblk->db_blk == blk)
344			return (dblk);
345	/*
346	 * The inode block wasn't located, allocate a new one.
347	 */
348	dblk = errmalloc(sizeof(*dblk));
349	bzero(dblk, sizeof(*dblk));
350	LIST_INSERT_HEAD(hd, dblk, db_next);
351	dblk->db_blk = blk;
352	return (dblk);
353}
354
355static uint8_t *
356dblk_read(ufs2_daddr_t blk, int size)
357{
358	struct data_blk *dblk;
359
360	dblk = dblk_lookup(blk);
361	/*
362	 * I doubt size mismatches can happen in practice but it is trivial
363	 * to handle.
364	 */
365	if (size != dblk->db_size) {
366		if (dblk->db_buf)
367			free(dblk->db_buf);
368		dblk->db_buf = errmalloc(size);
369		dblk->db_size = size;
370		if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
371			err_suj("Failed to read data block %jd\n", blk);
372	}
373	return (dblk->db_buf);
374}
375
376static void
377dblk_dirty(ufs2_daddr_t blk)
378{
379	struct data_blk *dblk;
380
381	dblk = dblk_lookup(blk);
382	dblk->db_dirty = 1;
383}
384
385static void
386dblk_write(void)
387{
388	struct data_blk *dblk;
389	int i;
390
391	for (i = 0; i < SUJ_HASHSIZE; i++) {
392		LIST_FOREACH(dblk, &dbhash[i], db_next) {
393			if (dblk->db_dirty == 0 || dblk->db_size == 0)
394				continue;
395			if (bwrite(disk, fsbtodb(fs, dblk->db_blk),
396			    dblk->db_buf, dblk->db_size) == -1)
397				err_suj("Unable to write block %jd\n",
398				    dblk->db_blk);
399		}
400	}
401}
402
403static union dinode *
404ino_read(ino_t ino)
405{
406	struct ino_blk *iblk;
407	struct iblkhd *hd;
408	struct suj_cg *sc;
409	ufs2_daddr_t blk;
410	int off;
411
412	blk = ino_to_fsba(fs, ino);
413	sc = cg_lookup(ino_to_cg(fs, ino));
414	iblk = sc->sc_lastiblk;
415	if (iblk && iblk->ib_blk == blk)
416		goto found;
417	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
418	LIST_FOREACH(iblk, hd, ib_next)
419		if (iblk->ib_blk == blk)
420			goto found;
421	/*
422	 * The inode block wasn't located, allocate a new one.
423	 */
424	iblk = errmalloc(sizeof(*iblk));
425	bzero(iblk, sizeof(*iblk));
426	iblk->ib_buf = errmalloc(fs->fs_bsize);
427	iblk->ib_blk = blk;
428	LIST_INSERT_HEAD(hd, iblk, ib_next);
429	if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
430		err_suj("Failed to read inode block %jd\n", blk);
431found:
432	sc->sc_lastiblk = iblk;
433	off = ino_to_fsbo(fs, ino);
434	if (fs->fs_magic == FS_UFS1_MAGIC)
435		return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
436	else
437		return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
438}
439
440static void
441ino_dirty(ino_t ino)
442{
443	struct ino_blk *iblk;
444	struct iblkhd *hd;
445	struct suj_cg *sc;
446	ufs2_daddr_t blk;
447
448	blk = ino_to_fsba(fs, ino);
449	sc = cg_lookup(ino_to_cg(fs, ino));
450	iblk = sc->sc_lastiblk;
451	if (iblk && iblk->ib_blk == blk) {
452		iblk->ib_dirty = 1;
453		return;
454	}
455	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
456	LIST_FOREACH(iblk, hd, ib_next) {
457		if (iblk->ib_blk == blk) {
458			iblk->ib_dirty = 1;
459			return;
460		}
461	}
462	ino_read(ino);
463	ino_dirty(ino);
464}
465
466static void
467iblk_write(struct ino_blk *iblk)
468{
469
470	if (iblk->ib_dirty == 0)
471		return;
472	if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
473	    fs->fs_bsize) == -1)
474		err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
475}
476
477static int
478blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
479{
480	ufs2_daddr_t bstart;
481	ufs2_daddr_t bend;
482	ufs2_daddr_t end;
483
484	end = start + frags;
485	bstart = brec->jb_blkno + brec->jb_oldfrags;
486	bend = bstart + brec->jb_frags;
487	if (start < bend && end > bstart)
488		return (1);
489	return (0);
490}
491
492static int
493blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
494    int frags)
495{
496
497	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
498		return (0);
499	if (brec->jb_blkno + brec->jb_oldfrags != start)
500		return (0);
501	if (brec->jb_frags != frags)
502		return (0);
503	return (1);
504}
505
506static void
507blk_setmask(struct jblkrec *brec, int *mask)
508{
509	int i;
510
511	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
512		*mask |= 1 << i;
513}
514
515/*
516 * Determine whether a given block has been reallocated to a new location.
517 * Returns a mask of overlapping bits if any frags have been reused or
518 * zero if the block has not been re-used and the contents can be trusted.
519 *
520 * This is used to ensure that an orphaned pointer due to truncate is safe
521 * to be freed.  The mask value can be used to free partial blocks.
522 */
523static int
524blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
525{
526	struct suj_blk *sblk;
527	struct suj_rec *srec;
528	struct jblkrec *brec;
529	int mask;
530	int off;
531
532	/*
533	 * To be certain we're not freeing a reallocated block we lookup
534	 * this block in the blk hash and see if there is an allocation
535	 * journal record that overlaps with any fragments in the block
536	 * we're concerned with.  If any fragments have ben reallocated
537	 * the block has already been freed and re-used for another purpose.
538	 */
539	mask = 0;
540	sblk = blk_lookup(blknum(fs, blk), 0);
541	if (sblk == NULL)
542		return (0);
543	off = blk - sblk->sb_blk;
544	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
545		brec = (struct jblkrec *)srec->sr_rec;
546		/*
547		 * If the block overlaps but does not match
548		 * exactly it's a new allocation.  If it matches
549		 * exactly this record refers to the current
550		 * location.
551		 */
552		if (blk_overlaps(brec, blk, frags) == 0)
553			continue;
554		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
555			mask = 0;
556		else
557			blk_setmask(brec, &mask);
558	}
559	if (debug)
560		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
561		    blk, sblk->sb_blk, off, mask);
562	return (mask >> off);
563}
564
565/*
566 * Determine whether it is safe to follow an indirect.  It is not safe
567 * if any part of the indirect has been reallocated or the last journal
568 * entry was an allocation.  Just allocated indirects may not have valid
569 * pointers yet and all of their children will have their own records.
570 * It is also not safe to follow an indirect if the cg bitmap has been
571 * cleared as a new allocation may write to the block prior to the journal
572 * being written.
573 *
574 * Returns 1 if it's safe to follow the indirect and 0 otherwise.
575 */
576static int
577blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
578{
579	struct suj_blk *sblk;
580	struct jblkrec *brec;
581
582	sblk = blk_lookup(blk, 0);
583	if (sblk == NULL)
584		return (1);
585	if (TAILQ_EMPTY(&sblk->sb_recs))
586		return (1);
587	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
588	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
589		if (brec->jb_op == JOP_FREEBLK)
590			return (!blk_isfree(blk));
591	return (0);
592}
593
594/*
595 * Clear an inode from the cg bitmap.  If the inode was already clear return
596 * 0 so the caller knows it does not have to check the inode contents.
597 */
598static int
599ino_free(ino_t ino, int mode)
600{
601	struct suj_cg *sc;
602	uint8_t *inosused;
603	struct cg *cgp;
604	int cg;
605
606	cg = ino_to_cg(fs, ino);
607	ino = ino % fs->fs_ipg;
608	sc = cg_lookup(cg);
609	cgp = sc->sc_cgp;
610	inosused = cg_inosused(cgp);
611	/*
612	 * The bitmap may never have made it to the disk so we have to
613	 * conditionally clear.  We can avoid writing the cg in this case.
614	 */
615	if (isclr(inosused, ino))
616		return (0);
617	freeinos++;
618	clrbit(inosused, ino);
619	if (ino < cgp->cg_irotor)
620		cgp->cg_irotor = ino;
621	cgp->cg_cs.cs_nifree++;
622	if ((mode & IFMT) == IFDIR) {
623		freedir++;
624		cgp->cg_cs.cs_ndir--;
625	}
626	sc->sc_dirty = 1;
627
628	return (1);
629}
630
631/*
632 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
633 * set in the mask.
634 */
635static void
636blk_free(ufs2_daddr_t bno, int mask, int frags)
637{
638	ufs1_daddr_t fragno, cgbno;
639	struct suj_cg *sc;
640	struct cg *cgp;
641	int i, cg;
642	uint8_t *blksfree;
643
644	if (debug)
645		printf("Freeing %d frags at blk %jd\n", frags, bno);
646	cg = dtog(fs, bno);
647	sc = cg_lookup(cg);
648	cgp = sc->sc_cgp;
649	cgbno = dtogd(fs, bno);
650	blksfree = cg_blksfree(cgp);
651
652	/*
653	 * If it's not allocated we only wrote the journal entry
654	 * and never the bitmaps.  Here we unconditionally clear and
655	 * resolve the cg summary later.
656	 */
657	if (frags == fs->fs_frag && mask == 0) {
658		fragno = fragstoblks(fs, cgbno);
659		ffs_setblock(fs, blksfree, fragno);
660		freeblocks++;
661	} else {
662		/*
663		 * deallocate the fragment
664		 */
665		for (i = 0; i < frags; i++)
666			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
667				freefrags++;
668				setbit(blksfree, cgbno + i);
669			}
670	}
671	sc->sc_dirty = 1;
672}
673
674/*
675 * Returns 1 if the whole block starting at 'bno' is marked free and 0
676 * otherwise.
677 */
678static int
679blk_isfree(ufs2_daddr_t bno)
680{
681	struct suj_cg *sc;
682
683	sc = cg_lookup(dtog(fs, bno));
684	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
685}
686
687/*
688 * Fetch an indirect block to find the block at a given lbn.  The lbn
689 * may be negative to fetch a specific indirect block pointer or positive
690 * to fetch a specific block.
691 */
692static ufs2_daddr_t
693indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
694{
695	ufs2_daddr_t *bap2;
696	ufs2_daddr_t *bap1;
697	ufs_lbn_t lbnadd;
698	ufs_lbn_t base;
699	int level;
700	int i;
701
702	if (blk == 0)
703		return (0);
704	level = lbn_level(cur);
705	if (level == -1)
706		err_suj("Invalid indir lbn %jd\n", lbn);
707	if (level == 0 && lbn < 0)
708		err_suj("Invalid lbn %jd\n", lbn);
709	bap2 = (void *)dblk_read(blk, fs->fs_bsize);
710	bap1 = (void *)bap2;
711	lbnadd = 1;
712	base = -(cur + level);
713	for (i = level; i > 0; i--)
714		lbnadd *= NINDIR(fs);
715	if (lbn > 0)
716		i = (lbn - base) / lbnadd;
717	else
718		i = (-lbn - base) / lbnadd;
719	if (i < 0 || i >= NINDIR(fs))
720		err_suj("Invalid indirect index %d produced by lbn %jd\n",
721		    i, lbn);
722	if (level == 0)
723		cur = base + (i * lbnadd);
724	else
725		cur = -(base + (i * lbnadd)) - (level - 1);
726	if (fs->fs_magic == FS_UFS1_MAGIC)
727		blk = bap1[i];
728	else
729		blk = bap2[i];
730	if (cur == lbn)
731		return (blk);
732	if (level == 0)
733		err_suj("Invalid lbn %jd at level 0\n", lbn);
734	return indir_blkatoff(blk, ino, cur, lbn);
735}
736
737/*
738 * Finds the disk block address at the specified lbn within the inode
739 * specified by ip.  This follows the whole tree and honors di_size and
740 * di_extsize so it is a true test of reachability.  The lbn may be
741 * negative if an extattr or indirect block is requested.
742 */
743static ufs2_daddr_t
744ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
745{
746	ufs_lbn_t tmpval;
747	ufs_lbn_t cur;
748	ufs_lbn_t next;
749	int i;
750
751	/*
752	 * Handle extattr blocks first.
753	 */
754	if (lbn < 0 && lbn >= -NXADDR) {
755		lbn = -1 - lbn;
756		if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
757			return (0);
758		*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
759		return (ip->dp2.di_extb[lbn]);
760	}
761	/*
762	 * Now direct and indirect.
763	 */
764	if (DIP(ip, di_mode) == IFLNK &&
765	    DIP(ip, di_size) < fs->fs_maxsymlinklen)
766		return (0);
767	if (lbn >= 0 && lbn < NDADDR) {
768		*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
769		return (DIP(ip, di_db[lbn]));
770	}
771	*frags = fs->fs_frag;
772
773	for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++,
774	    tmpval *= NINDIR(fs), cur = next) {
775		next = cur + tmpval;
776		if (lbn == -cur - i)
777			return (DIP(ip, di_ib[i]));
778		/*
779		 * Determine whether the lbn in question is within this tree.
780		 */
781		if (lbn < 0 && -lbn >= next)
782			continue;
783		if (lbn > 0 && lbn >= next)
784			continue;
785		return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
786	}
787	err_suj("lbn %jd not in ino\n", lbn);
788	/* NOTREACHED */
789}
790
791/*
792 * Determine whether a block exists at a particular lbn in an inode.
793 * Returns 1 if found, 0 if not.  lbn may be negative for indirects
794 * or ext blocks.
795 */
796static int
797blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
798{
799	union dinode *ip;
800	ufs2_daddr_t nblk;
801
802	ip = ino_read(ino);
803
804	if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
805		return (0);
806	nblk = ino_blkatoff(ip, ino, lbn, frags);
807
808	return (nblk == blk);
809}
810
811/*
812 * Clear the directory entry at diroff that should point to child.  Minimal
813 * checking is done and it is assumed that this path was verified with isat.
814 */
815static void
816ino_clrat(ino_t parent, off_t diroff, ino_t child)
817{
818	union dinode *dip;
819	struct direct *dp;
820	ufs2_daddr_t blk;
821	uint8_t *block;
822	ufs_lbn_t lbn;
823	int blksize;
824	int frags;
825	int doff;
826
827	if (debug)
828		printf("Clearing inode %d from parent %d at offset %jd\n",
829		    child, parent, diroff);
830
831	lbn = lblkno(fs, diroff);
832	doff = blkoff(fs, diroff);
833	dip = ino_read(parent);
834	blk = ino_blkatoff(dip, parent, lbn, &frags);
835	blksize = sblksize(fs, DIP(dip, di_size), lbn);
836	block = dblk_read(blk, blksize);
837	dp = (struct direct *)&block[doff];
838	if (dp->d_ino != child)
839		errx(1, "Inode %d does not exist in %d at %jd",
840		    child, parent, diroff);
841	dp->d_ino = 0;
842	dblk_dirty(blk);
843	/*
844	 * The actual .. reference count will already have been removed
845	 * from the parent by the .. remref record.
846	 */
847}
848
849/*
850 * Determines whether a pointer to an inode exists within a directory
851 * at a specified offset.  Returns the mode of the found entry.
852 */
853static int
854ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
855{
856	union dinode *dip;
857	struct direct *dp;
858	ufs2_daddr_t blk;
859	uint8_t *block;
860	ufs_lbn_t lbn;
861	int blksize;
862	int frags;
863	int dpoff;
864	int doff;
865
866	*isdot = 0;
867	dip = ino_read(parent);
868	*mode = DIP(dip, di_mode);
869	if ((*mode & IFMT) != IFDIR) {
870		if (debug) {
871			/*
872			 * This can happen if the parent inode
873			 * was reallocated.
874			 */
875			if (*mode != 0)
876				printf("Directory %d has bad mode %o\n",
877				    parent, *mode);
878			else
879				printf("Directory %d zero inode\n", parent);
880		}
881		return (0);
882	}
883	lbn = lblkno(fs, diroff);
884	doff = blkoff(fs, diroff);
885	blksize = sblksize(fs, DIP(dip, di_size), lbn);
886	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
887		if (debug)
888			printf("ino %d absent from %d due to offset %jd"
889			    " exceeding size %jd\n",
890			    child, parent, diroff, DIP(dip, di_size));
891		return (0);
892	}
893	blk = ino_blkatoff(dip, parent, lbn, &frags);
894	if (blk <= 0) {
895		if (debug)
896			printf("Sparse directory %d", parent);
897		return (0);
898	}
899	block = dblk_read(blk, blksize);
900	/*
901	 * Walk through the records from the start of the block to be
902	 * certain we hit a valid record and not some junk in the middle
903	 * of a file name.  Stop when we reach or pass the expected offset.
904	 */
905	dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ;
906	do {
907		dp = (struct direct *)&block[dpoff];
908		if (dpoff == doff)
909			break;
910		if (dp->d_reclen == 0)
911			break;
912		dpoff += dp->d_reclen;
913	} while (dpoff <= doff);
914	if (dpoff > fs->fs_bsize)
915		err_suj("Corrupt directory block in dir ino %d\n", parent);
916	/* Not found. */
917	if (dpoff != doff) {
918		if (debug)
919			printf("ino %d not found in %d, lbn %jd, dpoff %d\n",
920			    child, parent, lbn, dpoff);
921		return (0);
922	}
923	/*
924	 * We found the item in question.  Record the mode and whether it's
925	 * a . or .. link for the caller.
926	 */
927	if (dp->d_ino == child) {
928		if (child == parent)
929			*isdot = 1;
930		else if (dp->d_namlen == 2 &&
931		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
932			*isdot = 1;
933		*mode = DTTOIF(dp->d_type);
934		return (1);
935	}
936	if (debug)
937		printf("ino %d doesn't match dirent ino %d in parent %d\n",
938		    child, dp->d_ino, parent);
939	return (0);
940}
941
942#define	VISIT_INDIR	0x0001
943#define	VISIT_EXT	0x0002
944#define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
945
946/*
947 * Read an indirect level which may or may not be linked into an inode.
948 */
949static void
950indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
951    ino_visitor visitor, int flags)
952{
953	ufs2_daddr_t *bap2;
954	ufs1_daddr_t *bap1;
955	ufs_lbn_t lbnadd;
956	ufs2_daddr_t nblk;
957	ufs_lbn_t nlbn;
958	int level;
959	int i;
960
961	/*
962	 * Don't visit indirect blocks with contents we can't trust.  This
963	 * should only happen when indir_visit() is called to complete a
964	 * truncate that never finished and not when a pointer is found via
965	 * an inode.
966	 */
967	if (blk == 0)
968		return;
969	level = lbn_level(lbn);
970	if (level == -1)
971		err_suj("Invalid level for lbn %jd\n", lbn);
972	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
973		if (debug)
974			printf("blk %jd ino %d lbn %jd(%d) is not indir.\n",
975			    blk, ino, lbn, level);
976		goto out;
977	}
978	lbnadd = 1;
979	for (i = level; i > 0; i--)
980		lbnadd *= NINDIR(fs);
981	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
982	bap2 = (void *)bap1;
983	for (i = 0; i < NINDIR(fs); i++) {
984		if (fs->fs_magic == FS_UFS1_MAGIC)
985			nblk = *bap1++;
986		else
987			nblk = *bap2++;
988		if (nblk == 0)
989			continue;
990		if (level == 0) {
991			nlbn = -lbn + i * lbnadd;
992			(*frags) += fs->fs_frag;
993			visitor(ino, nlbn, nblk, fs->fs_frag);
994		} else {
995			nlbn = (lbn + 1) - (i * lbnadd);
996			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
997		}
998	}
999out:
1000	if (flags & VISIT_INDIR) {
1001		(*frags) += fs->fs_frag;
1002		visitor(ino, lbn, blk, fs->fs_frag);
1003	}
1004}
1005
1006/*
1007 * Visit each block in an inode as specified by 'flags' and call a
1008 * callback function.  The callback may inspect or free blocks.  The
1009 * count of frags found according to the size in the file is returned.
1010 * This is not valid for sparse files but may be used to determine
1011 * the correct di_blocks for a file.
1012 */
1013static uint64_t
1014ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
1015{
1016	ufs_lbn_t nextlbn;
1017	ufs_lbn_t tmpval;
1018	ufs_lbn_t lbn;
1019	uint64_t size;
1020	uint64_t fragcnt;
1021	int mode;
1022	int frags;
1023	int i;
1024
1025	size = DIP(ip, di_size);
1026	mode = DIP(ip, di_mode) & IFMT;
1027	fragcnt = 0;
1028	if ((flags & VISIT_EXT) &&
1029	    fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
1030		for (i = 0; i < NXADDR; i++) {
1031			if (ip->dp2.di_extb[i] == 0)
1032				continue;
1033			frags = sblksize(fs, ip->dp2.di_extsize, i);
1034			frags = numfrags(fs, frags);
1035			fragcnt += frags;
1036			visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
1037		}
1038	}
1039	/* Skip datablocks for short links and devices. */
1040	if (mode == IFBLK || mode == IFCHR ||
1041	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
1042		return (fragcnt);
1043	for (i = 0; i < NDADDR; i++) {
1044		if (DIP(ip, di_db[i]) == 0)
1045			continue;
1046		frags = sblksize(fs, size, i);
1047		frags = numfrags(fs, frags);
1048		fragcnt += frags;
1049		visitor(ino, i, DIP(ip, di_db[i]), frags);
1050	}
1051	/*
1052	 * We know the following indirects are real as we're following
1053	 * real pointers to them.
1054	 */
1055	flags |= VISIT_ROOT;
1056	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1057	    lbn = nextlbn) {
1058		nextlbn = lbn + tmpval;
1059		tmpval *= NINDIR(fs);
1060		if (DIP(ip, di_ib[i]) == 0)
1061			continue;
1062		indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1063		    flags);
1064	}
1065	return (fragcnt);
1066}
1067
1068/*
1069 * Null visitor function used when we just want to count blocks and
1070 * record the lbn.
1071 */
1072ufs_lbn_t visitlbn;
1073static void
1074null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1075{
1076	if (lbn > 0)
1077		visitlbn = lbn;
1078}
1079
1080/*
1081 * Recalculate di_blocks when we discover that a block allocation or
1082 * free was not successfully completed.  The kernel does not roll this back
1083 * because it would be too expensive to compute which indirects were
1084 * reachable at the time the inode was written.
1085 */
1086static void
1087ino_adjblks(struct suj_ino *sino)
1088{
1089	union dinode *ip;
1090	uint64_t blocks;
1091	uint64_t frags;
1092	off_t isize;
1093	off_t size;
1094	ino_t ino;
1095
1096	ino = sino->si_ino;
1097	ip = ino_read(ino);
1098	/* No need to adjust zero'd inodes. */
1099	if (DIP(ip, di_mode) == 0)
1100		return;
1101	/*
1102	 * Visit all blocks and count them as well as recording the last
1103	 * valid lbn in the file.  If the file size doesn't agree with the
1104	 * last lbn we need to truncate to fix it.  Otherwise just adjust
1105	 * the blocks count.
1106	 */
1107	visitlbn = 0;
1108	frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1109	blocks = fsbtodb(fs, frags);
1110	/*
1111	 * We assume the size and direct block list is kept coherent by
1112	 * softdep.  For files that have extended into indirects we truncate
1113	 * to the size in the inode or the maximum size permitted by
1114	 * populated indirects.
1115	 */
1116	if (visitlbn >= NDADDR) {
1117		isize = DIP(ip, di_size);
1118		size = lblktosize(fs, visitlbn + 1);
1119		if (isize > size)
1120			isize = size;
1121		/* Always truncate to free any unpopulated indirects. */
1122		ino_trunc(sino->si_ino, isize);
1123		return;
1124	}
1125	if (blocks == DIP(ip, di_blocks))
1126		return;
1127	if (debug)
1128		printf("ino %d adjusting block count from %jd to %jd\n",
1129		    ino, DIP(ip, di_blocks), blocks);
1130	DIP_SET(ip, di_blocks, blocks);
1131	ino_dirty(ino);
1132}
1133
1134static void
1135blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1136{
1137	int mask;
1138
1139	mask = blk_freemask(blk, ino, lbn, frags);
1140	if (debug)
1141		printf("blk %jd freemask 0x%X\n", blk, mask);
1142	blk_free(blk, mask, frags);
1143}
1144
1145/*
1146 * Free a block or tree of blocks that was previously rooted in ino at
1147 * the given lbn.  If the lbn is an indirect all children are freed
1148 * recursively.
1149 */
1150static void
1151blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1152{
1153	uint64_t resid;
1154	int mask;
1155
1156	mask = blk_freemask(blk, ino, lbn, frags);
1157	if (debug)
1158		printf("blk %jd freemask 0x%X\n", blk, mask);
1159	resid = 0;
1160	if (lbn <= -NDADDR && follow && mask == 0)
1161		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1162	else
1163		blk_free(blk, mask, frags);
1164}
1165
1166static void
1167ino_setskip(struct suj_ino *sino, ino_t parent)
1168{
1169	int isdot;
1170	int mode;
1171
1172	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1173		sino->si_skipparent = 1;
1174}
1175
1176static void
1177ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
1178{
1179	struct suj_ino *sino;
1180	struct suj_rec *srec;
1181	struct jrefrec *rrec;
1182
1183	/*
1184	 * Lookup this inode to see if we have a record for it.
1185	 */
1186	sino = ino_lookup(child, 0);
1187	/*
1188	 * Tell any child directories we've already removed their
1189	 * parent link cnt.  Don't try to adjust our link down again.
1190	 */
1191	if (sino != NULL && isdotdot == 0)
1192		ino_setskip(sino, parent);
1193	/*
1194	 * No valid record for this inode.  Just drop the on-disk
1195	 * link by one.
1196	 */
1197	if (sino == NULL || sino->si_hasrecs == 0) {
1198		ino_decr(child);
1199		return;
1200	}
1201	/*
1202	 * Use ino_adjust() if ino_check() has already processed this
1203	 * child.  If we lose the last non-dot reference to a
1204	 * directory it will be discarded.
1205	 */
1206	if (sino->si_linkadj) {
1207		sino->si_nlink--;
1208		if (isdotdot)
1209			sino->si_dotlinks--;
1210		ino_adjust(sino);
1211		return;
1212	}
1213	/*
1214	 * If we haven't yet processed this inode we need to make
1215	 * sure we will successfully discover the lost path.  If not
1216	 * use nlinkadj to remember.
1217	 */
1218	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1219		rrec = (struct jrefrec *)srec->sr_rec;
1220		if (rrec->jr_parent == parent &&
1221		    rrec->jr_diroff == diroff)
1222			return;
1223	}
1224	sino->si_nlinkadj++;
1225}
1226
1227/*
1228 * Free the children of a directory when the directory is discarded.
1229 */
1230static void
1231ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1232{
1233	struct suj_ino *sino;
1234	struct direct *dp;
1235	off_t diroff;
1236	uint8_t *block;
1237	int skipparent;
1238	int isdotdot;
1239	int dpoff;
1240	int size;
1241
1242	sino = ino_lookup(ino, 0);
1243	if (sino)
1244		skipparent = sino->si_skipparent;
1245	else
1246		skipparent = 0;
1247	size = lfragtosize(fs, frags);
1248	block = dblk_read(blk, size);
1249	dp = (struct direct *)&block[0];
1250	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1251		dp = (struct direct *)&block[dpoff];
1252		if (dp->d_ino == 0 || dp->d_ino == WINO)
1253			continue;
1254		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1255			continue;
1256		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1257		    dp->d_name[1] == '.';
1258		if (isdotdot && skipparent == 1)
1259			continue;
1260		if (debug)
1261			printf("Directory %d removing ino %d name %s\n",
1262			    ino, dp->d_ino, dp->d_name);
1263		diroff = lblktosize(fs, lbn) + dpoff;
1264		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1265	}
1266}
1267
1268/*
1269 * Reclaim an inode, freeing all blocks and decrementing all children's
1270 * link counts.  Free the inode back to the cg.
1271 */
1272static void
1273ino_reclaim(union dinode *ip, ino_t ino, int mode)
1274{
1275	uint32_t gen;
1276
1277	if (ino == ROOTINO)
1278		err_suj("Attempting to free ROOTINO\n");
1279	if (debug)
1280		printf("Truncating and freeing ino %d, nlink %d, mode %o\n",
1281		    ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1282
1283	/* We are freeing an inode or directory. */
1284	if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1285		ino_visit(ip, ino, ino_free_children, 0);
1286	DIP_SET(ip, di_nlink, 0);
1287	ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1288	/* Here we have to clear the inode and release any blocks it holds. */
1289	gen = DIP(ip, di_gen);
1290	if (fs->fs_magic == FS_UFS1_MAGIC)
1291		bzero(ip, sizeof(struct ufs1_dinode));
1292	else
1293		bzero(ip, sizeof(struct ufs2_dinode));
1294	DIP_SET(ip, di_gen, gen);
1295	ino_dirty(ino);
1296	ino_free(ino, mode);
1297	return;
1298}
1299
1300/*
1301 * Adjust an inode's link count down by one when a directory goes away.
1302 */
1303static void
1304ino_decr(ino_t ino)
1305{
1306	union dinode *ip;
1307	int reqlink;
1308	int nlink;
1309	int mode;
1310
1311	ip = ino_read(ino);
1312	nlink = DIP(ip, di_nlink);
1313	mode = DIP(ip, di_mode);
1314	if (nlink < 1)
1315		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1316	if (mode == 0)
1317		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1318	nlink--;
1319	if ((mode & IFMT) == IFDIR)
1320		reqlink = 2;
1321	else
1322		reqlink = 1;
1323	if (nlink < reqlink) {
1324		if (debug)
1325			printf("ino %d not enough links to live %d < %d\n",
1326			    ino, nlink, reqlink);
1327		ino_reclaim(ip, ino, mode);
1328		return;
1329	}
1330	DIP_SET(ip, di_nlink, nlink);
1331	ino_dirty(ino);
1332}
1333
1334/*
1335 * Adjust the inode link count to 'nlink'.  If the count reaches zero
1336 * free it.
1337 */
1338static void
1339ino_adjust(struct suj_ino *sino)
1340{
1341	struct jrefrec *rrec;
1342	struct suj_rec *srec;
1343	struct suj_ino *stmp;
1344	union dinode *ip;
1345	nlink_t nlink;
1346	int recmode;
1347	int reqlink;
1348	int isdot;
1349	int mode;
1350	ino_t ino;
1351
1352	nlink = sino->si_nlink;
1353	ino = sino->si_ino;
1354	mode = sino->si_mode & IFMT;
1355	/*
1356	 * If it's a directory with no dot links, it was truncated before
1357	 * the name was cleared.  We need to clear the dirent that
1358	 * points at it.
1359	 */
1360	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1361		sino->si_nlink = nlink = 0;
1362		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1363			rrec = (struct jrefrec *)srec->sr_rec;
1364			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1365			    &recmode, &isdot) == 0)
1366				continue;
1367			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1368			break;
1369		}
1370		if (srec == NULL)
1371			errx(1, "Directory %d name not found", ino);
1372	}
1373	/*
1374	 * If it's a directory with no real names pointing to it go ahead
1375	 * and truncate it.  This will free any children.
1376	 */
1377	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1378		sino->si_nlink = nlink = 0;
1379		/*
1380		 * Mark any .. links so they know not to free this inode
1381		 * when they are removed.
1382		 */
1383		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1384			rrec = (struct jrefrec *)srec->sr_rec;
1385			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1386				stmp = ino_lookup(rrec->jr_parent, 0);
1387				if (stmp)
1388					ino_setskip(stmp, ino);
1389			}
1390		}
1391	}
1392	ip = ino_read(ino);
1393	mode = DIP(ip, di_mode) & IFMT;
1394	if (nlink > LINK_MAX)
1395		err_suj(
1396		    "ino %d nlink manipulation error, new link %d, old link %d\n",
1397		    ino, nlink, DIP(ip, di_nlink));
1398	if (debug)
1399		printf("Adjusting ino %d, nlink %d, old link %d lastmode %o\n",
1400		    ino, nlink, DIP(ip, di_nlink), sino->si_mode);
1401	if (mode == 0) {
1402		if (debug)
1403			printf("ino %d, zero inode freeing bitmap\n", ino);
1404		ino_free(ino, sino->si_mode);
1405		return;
1406	}
1407	/* XXX Should be an assert? */
1408	if (mode != sino->si_mode && debug)
1409		printf("ino %d, mode %o != %o\n", ino, mode, sino->si_mode);
1410	if ((mode & IFMT) == IFDIR)
1411		reqlink = 2;
1412	else
1413		reqlink = 1;
1414	/* If the inode doesn't have enough links to live, free it. */
1415	if (nlink < reqlink) {
1416		if (debug)
1417			printf("ino %d not enough links to live %d < %d\n",
1418			    ino, nlink, reqlink);
1419		ino_reclaim(ip, ino, mode);
1420		return;
1421	}
1422	/* If required write the updated link count. */
1423	if (DIP(ip, di_nlink) == nlink) {
1424		if (debug)
1425			printf("ino %d, link matches, skipping.\n", ino);
1426		return;
1427	}
1428	DIP_SET(ip, di_nlink, nlink);
1429	ino_dirty(ino);
1430}
1431
1432/*
1433 * Truncate some or all blocks in an indirect, freeing any that are required
1434 * and zeroing the indirect.
1435 */
1436static void
1437indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1438{
1439	ufs2_daddr_t *bap2;
1440	ufs1_daddr_t *bap1;
1441	ufs_lbn_t lbnadd;
1442	ufs2_daddr_t nblk;
1443	ufs_lbn_t next;
1444	ufs_lbn_t nlbn;
1445	int dirty;
1446	int level;
1447	int i;
1448
1449	if (blk == 0)
1450		return;
1451	dirty = 0;
1452	level = lbn_level(lbn);
1453	if (level == -1)
1454		err_suj("Invalid level for lbn %jd\n", lbn);
1455	lbnadd = 1;
1456	for (i = level; i > 0; i--)
1457		lbnadd *= NINDIR(fs);
1458	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1459	bap2 = (void *)bap1;
1460	for (i = 0; i < NINDIR(fs); i++) {
1461		if (fs->fs_magic == FS_UFS1_MAGIC)
1462			nblk = *bap1++;
1463		else
1464			nblk = *bap2++;
1465		if (nblk == 0)
1466			continue;
1467		if (level != 0) {
1468			nlbn = (lbn + 1) - (i * lbnadd);
1469			/*
1470			 * Calculate the lbn of the next indirect to
1471			 * determine if any of this indirect must be
1472			 * reclaimed.
1473			 */
1474			next = -(lbn + level) + ((i+1) * lbnadd);
1475			if (next <= lastlbn)
1476				continue;
1477			indir_trunc(ino, nlbn, nblk, lastlbn);
1478			/* If all of this indirect was reclaimed, free it. */
1479			nlbn = next - lbnadd;
1480			if (nlbn < lastlbn)
1481				continue;
1482		} else {
1483			nlbn = -lbn + i * lbnadd;
1484			if (nlbn < lastlbn)
1485				continue;
1486		}
1487		dirty = 1;
1488		blk_free(nblk, 0, fs->fs_frag);
1489		if (fs->fs_magic == FS_UFS1_MAGIC)
1490			*(bap1 - 1) = 0;
1491		else
1492			*(bap2 - 1) = 0;
1493	}
1494	if (dirty)
1495		dblk_dirty(blk);
1496}
1497
1498/*
1499 * Truncate an inode to the minimum of the given size or the last populated
1500 * block after any over size have been discarded.  The kernel would allocate
1501 * the last block in the file but fsck does not and neither do we.  This
1502 * code never extends files, only shrinks them.
1503 */
1504static void
1505ino_trunc(ino_t ino, off_t size)
1506{
1507	union dinode *ip;
1508	ufs2_daddr_t bn;
1509	uint64_t totalfrags;
1510	ufs_lbn_t nextlbn;
1511	ufs_lbn_t lastlbn;
1512	ufs_lbn_t tmpval;
1513	ufs_lbn_t lbn;
1514	ufs_lbn_t i;
1515	int frags;
1516	off_t cursize;
1517	off_t off;
1518	int mode;
1519
1520	ip = ino_read(ino);
1521	mode = DIP(ip, di_mode) & IFMT;
1522	cursize = DIP(ip, di_size);
1523	if (debug)
1524		printf("Truncating ino %d, mode %o to size %jd from size %jd\n",
1525		    ino, mode, size, cursize);
1526
1527	/* Skip datablocks for short links and devices. */
1528	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1529	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1530		return;
1531	/* Don't extend. */
1532	if (size > cursize)
1533		size = cursize;
1534	lastlbn = lblkno(fs, blkroundup(fs, size));
1535	for (i = lastlbn; i < NDADDR; i++) {
1536		if (DIP(ip, di_db[i]) == 0)
1537			continue;
1538		frags = sblksize(fs, cursize, i);
1539		frags = numfrags(fs, frags);
1540		blk_free(DIP(ip, di_db[i]), 0, frags);
1541		DIP_SET(ip, di_db[i], 0);
1542	}
1543	/*
1544	 * Follow indirect blocks, freeing anything required.
1545	 */
1546	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1547	    lbn = nextlbn) {
1548		nextlbn = lbn + tmpval;
1549		tmpval *= NINDIR(fs);
1550		/* If we're not freeing any in this indirect range skip it. */
1551		if (lastlbn >= nextlbn)
1552			continue;
1553		if (DIP(ip, di_ib[i]) == 0)
1554			continue;
1555		indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1556		/* If we freed everything in this indirect free the indir. */
1557		if (lastlbn > lbn)
1558			continue;
1559		blk_free(DIP(ip, di_ib[i]), 0, frags);
1560		DIP_SET(ip, di_ib[i], 0);
1561	}
1562	ino_dirty(ino);
1563	/*
1564	 * Now that we've freed any whole blocks that exceed the desired
1565	 * truncation size, figure out how many blocks remain and what the
1566	 * last populated lbn is.  We will set the size to this last lbn
1567	 * rather than worrying about allocating the final lbn as the kernel
1568	 * would've done.  This is consistent with normal fsck behavior.
1569	 */
1570	visitlbn = 0;
1571	totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1572	if (size > lblktosize(fs, visitlbn + 1))
1573		size = lblktosize(fs, visitlbn + 1);
1574	/*
1575	 * If we're truncating direct blocks we have to adjust frags
1576	 * accordingly.
1577	 */
1578	if (visitlbn < NDADDR && totalfrags) {
1579		long oldspace, newspace;
1580
1581		bn = DIP(ip, di_db[visitlbn]);
1582		if (bn == 0)
1583			err_suj("Bad blk at ino %d lbn %jd\n", ino, visitlbn);
1584		oldspace = sblksize(fs, cursize, visitlbn);
1585		newspace = sblksize(fs, size, visitlbn);
1586		if (oldspace != newspace) {
1587			bn += numfrags(fs, newspace);
1588			frags = numfrags(fs, oldspace - newspace);
1589			blk_free(bn, 0, frags);
1590			totalfrags -= frags;
1591		}
1592	}
1593	DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1594	DIP_SET(ip, di_size, size);
1595	/*
1596	 * If we've truncated into the middle of a block or frag we have
1597	 * to zero it here.  Otherwise the file could extend into
1598	 * uninitialized space later.
1599	 */
1600	off = blkoff(fs, size);
1601	if (off) {
1602		uint8_t *buf;
1603		long clrsize;
1604
1605		bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1606		if (bn == 0)
1607			err_suj("Block missing from ino %d at lbn %jd\n",
1608			    ino, visitlbn);
1609		clrsize = frags * fs->fs_fsize;
1610		buf = dblk_read(bn, clrsize);
1611		clrsize -= off;
1612		buf += off;
1613		bzero(buf, clrsize);
1614		dblk_dirty(bn);
1615	}
1616	return;
1617}
1618
1619/*
1620 * Process records available for one inode and determine whether the
1621 * link count is correct or needs adjusting.
1622 */
1623static void
1624ino_check(struct suj_ino *sino)
1625{
1626	struct suj_rec *srec;
1627	struct jrefrec *rrec;
1628	nlink_t dotlinks;
1629	int newlinks;
1630	int removes;
1631	int nlink;
1632	ino_t ino;
1633	int isdot;
1634	int isat;
1635	int mode;
1636
1637	if (sino->si_hasrecs == 0)
1638		return;
1639	ino = sino->si_ino;
1640	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1641	nlink = rrec->jr_nlink;
1642	newlinks = 0;
1643	dotlinks = 0;
1644	removes = sino->si_nlinkadj;
1645	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1646		rrec = (struct jrefrec *)srec->sr_rec;
1647		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1648		    rrec->jr_ino, &mode, &isdot);
1649		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1650			err_suj("Inode mode/directory type mismatch %o != %o\n",
1651			    mode, rrec->jr_mode);
1652		if (debug)
1653			printf("jrefrec: op %d ino %d, nlink %d, parent %d, "
1654			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1655			    rrec->jr_op, rrec->jr_ino, rrec->jr_nlink,
1656			    rrec->jr_parent, rrec->jr_diroff, rrec->jr_mode,
1657			    isat, isdot);
1658		mode = rrec->jr_mode & IFMT;
1659		if (rrec->jr_op == JOP_REMREF)
1660			removes++;
1661		newlinks += isat;
1662		if (isdot)
1663			dotlinks += isat;
1664	}
1665	/*
1666	 * The number of links that remain are the starting link count
1667	 * subtracted by the total number of removes with the total
1668	 * links discovered back in.  An incomplete remove thus
1669	 * makes no change to the link count but an add increases
1670	 * by one.
1671	 */
1672	if (debug)
1673		printf("ino %d nlink %d newlinks %d removes %d dotlinks %d\n",
1674		    ino, nlink, newlinks, removes, dotlinks);
1675	nlink += newlinks;
1676	nlink -= removes;
1677	sino->si_linkadj = 1;
1678	sino->si_nlink = nlink;
1679	sino->si_dotlinks = dotlinks;
1680	sino->si_mode = mode;
1681	ino_adjust(sino);
1682}
1683
1684/*
1685 * Process records available for one block and determine whether it is
1686 * still allocated and whether the owning inode needs to be updated or
1687 * a free completed.
1688 */
1689static void
1690blk_check(struct suj_blk *sblk)
1691{
1692	struct suj_rec *srec;
1693	struct jblkrec *brec;
1694	struct suj_ino *sino;
1695	ufs2_daddr_t blk;
1696	int mask;
1697	int frags;
1698	int isat;
1699
1700	/*
1701	 * Each suj_blk actually contains records for any fragments in that
1702	 * block.  As a result we must evaluate each record individually.
1703	 */
1704	sino = NULL;
1705	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1706		brec = (struct jblkrec *)srec->sr_rec;
1707		frags = brec->jb_frags;
1708		blk = brec->jb_blkno + brec->jb_oldfrags;
1709		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1710		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1711			sino = ino_lookup(brec->jb_ino, 1);
1712			sino->si_blkadj = 1;
1713		}
1714		if (debug)
1715			printf("op %d blk %jd ino %d lbn %jd frags %d isat %d (%d)\n",
1716			    brec->jb_op, blk, brec->jb_ino, brec->jb_lbn,
1717			    brec->jb_frags, isat, frags);
1718		/*
1719		 * If we found the block at this address we still have to
1720		 * determine if we need to free the tail end that was
1721		 * added by adding contiguous fragments from the same block.
1722		 */
1723		if (isat == 1) {
1724			if (frags == brec->jb_frags)
1725				continue;
1726			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1727			    brec->jb_frags);
1728			mask >>= frags;
1729			blk += frags;
1730			frags = brec->jb_frags - frags;
1731			blk_free(blk, mask, frags);
1732			continue;
1733		}
1734		/*
1735	 	 * The block wasn't found, attempt to free it.  It won't be
1736		 * freed if it was actually reallocated.  If this was an
1737		 * allocation we don't want to follow indirects as they
1738		 * may not be written yet.  Any children of the indirect will
1739		 * have their own records.  If it's a free we need to
1740		 * recursively free children.
1741		 */
1742		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1743		    brec->jb_op == JOP_FREEBLK);
1744	}
1745}
1746
1747/*
1748 * Walk the list of inode records for this cg and resolve moved and duplicate
1749 * inode references now that we have a complete picture.
1750 */
1751static void
1752cg_build(struct suj_cg *sc)
1753{
1754	struct suj_ino *sino;
1755	int i;
1756
1757	for (i = 0; i < SUJ_HASHSIZE; i++)
1758		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1759			ino_build(sino);
1760}
1761
1762/*
1763 * Handle inodes requiring truncation.  This must be done prior to
1764 * looking up any inodes in directories.
1765 */
1766static void
1767cg_trunc(struct suj_cg *sc)
1768{
1769	struct suj_ino *sino;
1770	int i;
1771
1772	for (i = 0; i < SUJ_HASHSIZE; i++)
1773		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1774			if (sino->si_trunc) {
1775				ino_trunc(sino->si_ino,
1776				    sino->si_trunc->jt_size);
1777				sino->si_trunc = NULL;
1778			}
1779}
1780
1781/*
1782 * Free any partially allocated blocks and then resolve inode block
1783 * counts.
1784 */
1785static void
1786cg_check_blk(struct suj_cg *sc)
1787{
1788	struct suj_ino *sino;
1789	struct suj_blk *sblk;
1790	int i;
1791
1792
1793	for (i = 0; i < SUJ_HASHSIZE; i++)
1794		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1795			blk_check(sblk);
1796	/*
1797	 * Now that we've freed blocks which are not referenced we
1798	 * make a second pass over all inodes to adjust their block
1799	 * counts.
1800	 */
1801	for (i = 0; i < SUJ_HASHSIZE; i++)
1802		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1803			if (sino->si_blkadj)
1804				ino_adjblks(sino);
1805}
1806
1807/*
1808 * Walk the list of inode records for this cg, recovering any
1809 * changes which were not complete at the time of crash.
1810 */
1811static void
1812cg_check_ino(struct suj_cg *sc)
1813{
1814	struct suj_ino *sino;
1815	int i;
1816
1817	for (i = 0; i < SUJ_HASHSIZE; i++)
1818		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1819			ino_check(sino);
1820}
1821
1822/*
1823 * Write a potentially dirty cg.  Recalculate the summary information and
1824 * update the superblock summary.
1825 */
1826static void
1827cg_write(struct suj_cg *sc)
1828{
1829	ufs1_daddr_t fragno, cgbno, maxbno;
1830	u_int8_t *blksfree;
1831	struct cg *cgp;
1832	int blk;
1833	int i;
1834
1835	if (sc->sc_dirty == 0)
1836		return;
1837	/*
1838	 * Fix the frag and cluster summary.
1839	 */
1840	cgp = sc->sc_cgp;
1841	cgp->cg_cs.cs_nbfree = 0;
1842	cgp->cg_cs.cs_nffree = 0;
1843	bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1844	maxbno = fragstoblks(fs, fs->fs_fpg);
1845	if (fs->fs_contigsumsize > 0) {
1846		for (i = 1; i <= fs->fs_contigsumsize; i++)
1847			cg_clustersum(cgp)[i] = 0;
1848		bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1849	}
1850	blksfree = cg_blksfree(cgp);
1851	for (cgbno = 0; cgbno < maxbno; cgbno++) {
1852		if (ffs_isfreeblock(fs, blksfree, cgbno))
1853			continue;
1854		if (ffs_isblock(fs, blksfree, cgbno)) {
1855			ffs_clusteracct(fs, cgp, cgbno, 1);
1856			cgp->cg_cs.cs_nbfree++;
1857			continue;
1858		}
1859		fragno = blkstofrags(fs, cgbno);
1860		blk = blkmap(fs, blksfree, fragno);
1861		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1862		for (i = 0; i < fs->fs_frag; i++)
1863			if (isset(blksfree, fragno + i))
1864				cgp->cg_cs.cs_nffree++;
1865	}
1866	/*
1867	 * Update the superblock cg summary from our now correct values
1868	 * before writing the block.
1869	 */
1870	fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1871	if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
1872	    fs->fs_bsize) == -1)
1873		err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1874}
1875
1876/*
1877 * Write out any modified inodes.
1878 */
1879static void
1880cg_write_inos(struct suj_cg *sc)
1881{
1882	struct ino_blk *iblk;
1883	int i;
1884
1885	for (i = 0; i < SUJ_HASHSIZE; i++)
1886		LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1887			if (iblk->ib_dirty)
1888				iblk_write(iblk);
1889}
1890
1891static void
1892cg_apply(void (*apply)(struct suj_cg *))
1893{
1894	struct suj_cg *scg;
1895	int i;
1896
1897	for (i = 0; i < SUJ_HASHSIZE; i++)
1898		LIST_FOREACH(scg, &cghash[i], sc_next)
1899			apply(scg);
1900}
1901
1902/*
1903 * Process the unlinked but referenced file list.  Freeing all inodes.
1904 */
1905static void
1906ino_unlinked(void)
1907{
1908	union dinode *ip;
1909	uint16_t mode;
1910	ino_t inon;
1911	ino_t ino;
1912
1913	ino = fs->fs_sujfree;
1914	fs->fs_sujfree = 0;
1915	while (ino != 0) {
1916		ip = ino_read(ino);
1917		mode = DIP(ip, di_mode) & IFMT;
1918		inon = DIP(ip, di_freelink);
1919		DIP_SET(ip, di_freelink, 0);
1920		/*
1921		 * XXX Should this be an errx?
1922		 */
1923		if (DIP(ip, di_nlink) == 0) {
1924			if (debug)
1925				printf("Freeing unlinked ino %d mode %o\n",
1926				    ino, mode);
1927			ino_reclaim(ip, ino, mode);
1928		} else if (debug)
1929			printf("Skipping ino %d mode %o with link %d\n",
1930			    ino, mode, DIP(ip, di_nlink));
1931		ino = inon;
1932	}
1933}
1934
1935/*
1936 * Append a new record to the list of records requiring processing.
1937 */
1938static void
1939ino_append(union jrec *rec)
1940{
1941	struct jrefrec *refrec;
1942	struct jmvrec *mvrec;
1943	struct suj_ino *sino;
1944	struct suj_rec *srec;
1945
1946	mvrec = &rec->rec_jmvrec;
1947	refrec = &rec->rec_jrefrec;
1948	if (debug && mvrec->jm_op == JOP_MVREF)
1949		printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n",
1950		    mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff,
1951		    mvrec->jm_oldoff);
1952	else if (debug &&
1953	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1954		printf("ino ref: op %d, ino %d, nlink %d, "
1955		    "parent %d, diroff %jd\n",
1956		    refrec->jr_op, refrec->jr_ino, refrec->jr_nlink,
1957		    refrec->jr_parent, refrec->jr_diroff);
1958	/*
1959	 * Lookup the ino and clear truncate if one is found.  Partial
1960	 * truncates are always done synchronously so if we discover
1961	 * an operation that requires a lock the truncation has completed
1962	 * and can be discarded.
1963	 */
1964	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1965	sino->si_trunc = NULL;
1966	sino->si_hasrecs = 1;
1967	srec = errmalloc(sizeof(*srec));
1968	srec->sr_rec = rec;
1969	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1970}
1971
1972/*
1973 * Add a reference adjustment to the sino list and eliminate dups.  The
1974 * primary loop in ino_build_ref() checks for dups but new ones may be
1975 * created as a result of offset adjustments.
1976 */
1977static void
1978ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1979{
1980	struct jrefrec *refrec;
1981	struct suj_rec *srn;
1982	struct jrefrec *rrn;
1983
1984	refrec = (struct jrefrec *)srec->sr_rec;
1985	/*
1986	 * We walk backwards so that the oldest link count is preserved.  If
1987	 * an add record conflicts with a remove keep the remove.  Redundant
1988	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1989	 * oldest record at a given location.
1990	 */
1991	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
1992	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
1993		rrn = (struct jrefrec *)srn->sr_rec;
1994		if (rrn->jr_parent != refrec->jr_parent ||
1995		    rrn->jr_diroff != refrec->jr_diroff)
1996			continue;
1997		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
1998			rrn->jr_mode = refrec->jr_mode;
1999			return;
2000		}
2001		/*
2002		 * Adding a remove.
2003		 *
2004		 * Replace the record in place with the old nlink in case
2005		 * we replace the head of the list.  Abandon srec as a dup.
2006		 */
2007		refrec->jr_nlink = rrn->jr_nlink;
2008		srn->sr_rec = srec->sr_rec;
2009		return;
2010	}
2011	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
2012}
2013
2014/*
2015 * Create a duplicate of a reference at a previous location.
2016 */
2017static void
2018ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
2019{
2020	struct jrefrec *rrn;
2021	struct suj_rec *srn;
2022
2023	rrn = errmalloc(sizeof(*refrec));
2024	*rrn = *refrec;
2025	rrn->jr_op = JOP_ADDREF;
2026	rrn->jr_diroff = diroff;
2027	srn = errmalloc(sizeof(*srn));
2028	srn->sr_rec = (union jrec *)rrn;
2029	ino_add_ref(sino, srn);
2030}
2031
2032/*
2033 * Add a reference to the list at all known locations.  We follow the offset
2034 * changes for a single instance and create duplicate add refs at each so
2035 * that we can tolerate any version of the directory block.  Eliminate
2036 * removes which collide with adds that are seen in the journal.  They should
2037 * not adjust the link count down.
2038 */
2039static void
2040ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
2041{
2042	struct jrefrec *refrec;
2043	struct jmvrec *mvrec;
2044	struct suj_rec *srp;
2045	struct suj_rec *srn;
2046	struct jrefrec *rrn;
2047	off_t diroff;
2048
2049	refrec = (struct jrefrec *)srec->sr_rec;
2050	/*
2051	 * Search for a mvrec that matches this offset.  Whether it's an add
2052	 * or a remove we can delete the mvref after creating a dup record in
2053	 * the old location.
2054	 */
2055	if (!TAILQ_EMPTY(&sino->si_movs)) {
2056		diroff = refrec->jr_diroff;
2057		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
2058			srp = TAILQ_PREV(srn, srechd, sr_next);
2059			mvrec = (struct jmvrec *)srn->sr_rec;
2060			if (mvrec->jm_parent != refrec->jr_parent ||
2061			    mvrec->jm_newoff != diroff)
2062				continue;
2063			diroff = mvrec->jm_oldoff;
2064			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
2065			free(srn);
2066			ino_dup_ref(sino, refrec, diroff);
2067		}
2068	}
2069	/*
2070	 * If a remove wasn't eliminated by an earlier add just append it to
2071	 * the list.
2072	 */
2073	if (refrec->jr_op == JOP_REMREF) {
2074		ino_add_ref(sino, srec);
2075		return;
2076	}
2077	/*
2078	 * Walk the list of records waiting to be added to the list.  We
2079	 * must check for moves that apply to our current offset and remove
2080	 * them from the list.  Remove any duplicates to eliminate removes
2081	 * with corresponding adds.
2082	 */
2083	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2084		switch (srn->sr_rec->rec_jrefrec.jr_op) {
2085		case JOP_ADDREF:
2086			/*
2087			 * This should actually be an error we should
2088			 * have a remove for every add journaled.
2089			 */
2090			rrn = (struct jrefrec *)srn->sr_rec;
2091			if (rrn->jr_parent != refrec->jr_parent ||
2092			    rrn->jr_diroff != refrec->jr_diroff)
2093				break;
2094			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2095			break;
2096		case JOP_REMREF:
2097			/*
2098			 * Once we remove the current iteration of the
2099			 * record at this address we're done.
2100			 */
2101			rrn = (struct jrefrec *)srn->sr_rec;
2102			if (rrn->jr_parent != refrec->jr_parent ||
2103			    rrn->jr_diroff != refrec->jr_diroff)
2104				break;
2105			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2106			ino_add_ref(sino, srec);
2107			return;
2108		case JOP_MVREF:
2109			/*
2110			 * Update our diroff based on any moves that match
2111			 * and remove the move.
2112			 */
2113			mvrec = (struct jmvrec *)srn->sr_rec;
2114			if (mvrec->jm_parent != refrec->jr_parent ||
2115			    mvrec->jm_oldoff != refrec->jr_diroff)
2116				break;
2117			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2118			refrec->jr_diroff = mvrec->jm_newoff;
2119			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2120			break;
2121		default:
2122			err_suj("ino_build_ref: Unknown op %d\n",
2123			    srn->sr_rec->rec_jrefrec.jr_op);
2124		}
2125	}
2126	ino_add_ref(sino, srec);
2127}
2128
2129/*
2130 * Walk the list of new records and add them in-order resolving any
2131 * dups and adjusted offsets.
2132 */
2133static void
2134ino_build(struct suj_ino *sino)
2135{
2136	struct suj_rec *srec;
2137
2138	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2139		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2140		switch (srec->sr_rec->rec_jrefrec.jr_op) {
2141		case JOP_ADDREF:
2142		case JOP_REMREF:
2143			ino_build_ref(sino, srec);
2144			break;
2145		case JOP_MVREF:
2146			/*
2147			 * Add this mvrec to the queue of pending mvs.
2148			 */
2149			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2150			break;
2151		default:
2152			err_suj("ino_build: Unknown op %d\n",
2153			    srec->sr_rec->rec_jrefrec.jr_op);
2154		}
2155	}
2156	if (TAILQ_EMPTY(&sino->si_recs))
2157		sino->si_hasrecs = 0;
2158}
2159
2160/*
2161 * Modify journal records so they refer to the base block number
2162 * and a start and end frag range.  This is to facilitate the discovery
2163 * of overlapping fragment allocations.
2164 */
2165static void
2166blk_build(struct jblkrec *blkrec)
2167{
2168	struct suj_rec *srec;
2169	struct suj_blk *sblk;
2170	struct jblkrec *blkrn;
2171	struct suj_ino *sino;
2172	ufs2_daddr_t blk;
2173	off_t foff;
2174	int frag;
2175
2176	if (debug)
2177		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2178		    "ino %d lbn %jd\n",
2179		    blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags,
2180		    blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn);
2181
2182	/*
2183	 * Look up the inode and clear the truncate if any lbns after the
2184	 * truncate lbn are freed or allocated.
2185	 */
2186	sino = ino_lookup(blkrec->jb_ino, 0);
2187	if (sino && sino->si_trunc) {
2188		foff = lblktosize(fs, blkrec->jb_lbn);
2189		foff += lfragtosize(fs, blkrec->jb_frags);
2190		if (foff > sino->si_trunc->jt_size)
2191			sino->si_trunc = NULL;
2192	}
2193	blk = blknum(fs, blkrec->jb_blkno);
2194	frag = fragnum(fs, blkrec->jb_blkno);
2195	sblk = blk_lookup(blk, 1);
2196	/*
2197	 * Rewrite the record using oldfrags to indicate the offset into
2198	 * the block.  Leave jb_frags as the actual allocated count.
2199	 */
2200	blkrec->jb_blkno -= frag;
2201	blkrec->jb_oldfrags = frag;
2202	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2203		err_suj("Invalid fragment count %d oldfrags %d\n",
2204		    blkrec->jb_frags, frag);
2205	/*
2206	 * Detect dups.  If we detect a dup we always discard the oldest
2207	 * record as it is superseded by the new record.  This speeds up
2208	 * later stages but also eliminates free records which are used
2209	 * to indicate that the contents of indirects can be trusted.
2210	 */
2211	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2212		blkrn = (struct jblkrec *)srec->sr_rec;
2213		if (blkrn->jb_ino != blkrec->jb_ino ||
2214		    blkrn->jb_lbn != blkrec->jb_lbn ||
2215		    blkrn->jb_blkno != blkrec->jb_blkno ||
2216		    blkrn->jb_frags != blkrec->jb_frags ||
2217		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2218			continue;
2219		if (debug)
2220			printf("Removed dup.\n");
2221		/* Discard the free which is a dup with an alloc. */
2222		if (blkrec->jb_op == JOP_FREEBLK)
2223			return;
2224		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2225		free(srec);
2226		break;
2227	}
2228	srec = errmalloc(sizeof(*srec));
2229	srec->sr_rec = (union jrec *)blkrec;
2230	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2231}
2232
2233static void
2234ino_build_trunc(struct jtrncrec *rec)
2235{
2236	struct suj_ino *sino;
2237
2238	if (debug)
2239		printf("ino_build_trunc: ino %d, size %jd\n",
2240		    rec->jt_ino, rec->jt_size);
2241	sino = ino_lookup(rec->jt_ino, 1);
2242	sino->si_trunc = rec;
2243}
2244
2245/*
2246 * Build up tables of the operations we need to recover.
2247 */
2248static void
2249suj_build(void)
2250{
2251	struct suj_seg *seg;
2252	union jrec *rec;
2253	int off;
2254	int i;
2255
2256	TAILQ_FOREACH(seg, &allsegs, ss_next) {
2257		if (debug)
2258			printf("seg %jd has %d records, oldseq %jd.\n",
2259			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2260			    seg->ss_rec.jsr_oldest);
2261		off = 0;
2262		rec = (union jrec *)seg->ss_blk;
2263		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2264			/* skip the segrec. */
2265			if ((off % DEV_BSIZE) == 0)
2266				continue;
2267			switch (rec->rec_jrefrec.jr_op) {
2268			case JOP_ADDREF:
2269			case JOP_REMREF:
2270			case JOP_MVREF:
2271				ino_append(rec);
2272				break;
2273			case JOP_NEWBLK:
2274			case JOP_FREEBLK:
2275				blk_build((struct jblkrec *)rec);
2276				break;
2277			case JOP_TRUNC:
2278				ino_build_trunc((struct jtrncrec *)rec);
2279				break;
2280			default:
2281				err_suj("Unknown journal operation %d (%d)\n",
2282				    rec->rec_jrefrec.jr_op, off);
2283			}
2284			i++;
2285		}
2286	}
2287}
2288
2289/*
2290 * Prune the journal segments to those we care about based on the
2291 * oldest sequence in the newest segment.  Order the segment list
2292 * based on sequence number.
2293 */
2294static void
2295suj_prune(void)
2296{
2297	struct suj_seg *seg;
2298	struct suj_seg *segn;
2299	uint64_t newseq;
2300	int discard;
2301
2302	if (debug)
2303		printf("Pruning up to %jd\n", oldseq);
2304	/* First free the expired segments. */
2305	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2306		if (seg->ss_rec.jsr_seq >= oldseq)
2307			continue;
2308		TAILQ_REMOVE(&allsegs, seg, ss_next);
2309		free(seg->ss_blk);
2310		free(seg);
2311	}
2312	/* Next ensure that segments are ordered properly. */
2313	seg = TAILQ_FIRST(&allsegs);
2314	if (seg == NULL) {
2315		if (debug)
2316			printf("Empty journal\n");
2317		return;
2318	}
2319	newseq = seg->ss_rec.jsr_seq;
2320	for (;;) {
2321		seg = TAILQ_LAST(&allsegs, seghd);
2322		if (seg->ss_rec.jsr_seq >= newseq)
2323			break;
2324		TAILQ_REMOVE(&allsegs, seg, ss_next);
2325		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2326		newseq = seg->ss_rec.jsr_seq;
2327
2328	}
2329	if (newseq != oldseq) {
2330		err_suj("Journal file sequence mismatch %jd != %jd\n",
2331		    newseq, oldseq);
2332	}
2333	/*
2334	 * The kernel may asynchronously write segments which can create
2335	 * gaps in the sequence space.  Throw away any segments after the
2336	 * gap as the kernel guarantees only those that are contiguously
2337	 * reachable are marked as completed.
2338	 */
2339	discard = 0;
2340	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2341		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2342			jrecs += seg->ss_rec.jsr_cnt;
2343			jbytes += seg->ss_rec.jsr_blocks * DEV_BSIZE;
2344			continue;
2345		}
2346		discard = 1;
2347		if (debug)
2348			printf("Journal order mismatch %jd != %jd pruning\n",
2349			    newseq-1, seg->ss_rec.jsr_seq);
2350		TAILQ_REMOVE(&allsegs, seg, ss_next);
2351		free(seg->ss_blk);
2352		free(seg);
2353	}
2354	if (debug)
2355		printf("Processing journal segments from %jd to %jd\n",
2356		    oldseq, newseq-1);
2357}
2358
2359/*
2360 * Verify the journal inode before attempting to read records.
2361 */
2362static int
2363suj_verifyino(union dinode *ip)
2364{
2365
2366	if (DIP(ip, di_nlink) != 1) {
2367		printf("Invalid link count %d for journal inode %d\n",
2368		    DIP(ip, di_nlink), sujino);
2369		return (-1);
2370	}
2371
2372	if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2373	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2374		printf("Invalid flags 0x%X for journal inode %d\n",
2375		    DIP(ip, di_flags), sujino);
2376		return (-1);
2377	}
2378
2379	if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2380		printf("Invalid mode %o for journal inode %d\n",
2381		    DIP(ip, di_mode), sujino);
2382		return (-1);
2383	}
2384
2385	if (DIP(ip, di_size) < SUJ_MIN || DIP(ip, di_size) > SUJ_MAX) {
2386		printf("Invalid size %jd for journal inode %d\n",
2387		    DIP(ip, di_size), sujino);
2388		return (-1);
2389	}
2390
2391	if (DIP(ip, di_modrev) != fs->fs_mtime) {
2392		printf("Journal timestamp does not match fs mount time\n");
2393		return (-1);
2394	}
2395
2396	return (0);
2397}
2398
2399struct jblocks {
2400	struct jextent *jb_extent;	/* Extent array. */
2401	int		jb_avail;	/* Available extents. */
2402	int		jb_used;	/* Last used extent. */
2403	int		jb_head;	/* Allocator head. */
2404	int		jb_off;		/* Allocator extent offset. */
2405};
2406struct jextent {
2407	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2408	int		je_blocks;	/* Disk block count. */
2409};
2410
2411struct jblocks *suj_jblocks;
2412
2413static struct jblocks *
2414jblocks_create(void)
2415{
2416	struct jblocks *jblocks;
2417	int size;
2418
2419	jblocks = errmalloc(sizeof(*jblocks));
2420	jblocks->jb_avail = 10;
2421	jblocks->jb_used = 0;
2422	jblocks->jb_head = 0;
2423	jblocks->jb_off = 0;
2424	size = sizeof(struct jextent) * jblocks->jb_avail;
2425	jblocks->jb_extent = errmalloc(size);
2426	bzero(jblocks->jb_extent, size);
2427
2428	return (jblocks);
2429}
2430
2431/*
2432 * Return the next available disk block and the amount of contiguous
2433 * free space it contains.
2434 */
2435static ufs2_daddr_t
2436jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2437{
2438	struct jextent *jext;
2439	ufs2_daddr_t daddr;
2440	int freecnt;
2441	int blocks;
2442
2443	blocks = bytes / DEV_BSIZE;
2444	jext = &jblocks->jb_extent[jblocks->jb_head];
2445	freecnt = jext->je_blocks - jblocks->jb_off;
2446	if (freecnt == 0) {
2447		jblocks->jb_off = 0;
2448		if (++jblocks->jb_head > jblocks->jb_used)
2449			return (0);
2450		jext = &jblocks->jb_extent[jblocks->jb_head];
2451		freecnt = jext->je_blocks;
2452	}
2453	if (freecnt > blocks)
2454		freecnt = blocks;
2455	*actual = freecnt * DEV_BSIZE;
2456	daddr = jext->je_daddr + jblocks->jb_off;
2457
2458	return (daddr);
2459}
2460
2461/*
2462 * Advance the allocation head by a specified number of bytes, consuming
2463 * one journal segment.
2464 */
2465static void
2466jblocks_advance(struct jblocks *jblocks, int bytes)
2467{
2468
2469	jblocks->jb_off += bytes / DEV_BSIZE;
2470}
2471
2472static void
2473jblocks_destroy(struct jblocks *jblocks)
2474{
2475
2476	free(jblocks->jb_extent);
2477	free(jblocks);
2478}
2479
2480static void
2481jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2482{
2483	struct jextent *jext;
2484	int size;
2485
2486	jext = &jblocks->jb_extent[jblocks->jb_used];
2487	/* Adding the first block. */
2488	if (jext->je_daddr == 0) {
2489		jext->je_daddr = daddr;
2490		jext->je_blocks = blocks;
2491		return;
2492	}
2493	/* Extending the last extent. */
2494	if (jext->je_daddr + jext->je_blocks == daddr) {
2495		jext->je_blocks += blocks;
2496		return;
2497	}
2498	/* Adding a new extent. */
2499	if (++jblocks->jb_used == jblocks->jb_avail) {
2500		jblocks->jb_avail *= 2;
2501		size = sizeof(struct jextent) * jblocks->jb_avail;
2502		jext = errmalloc(size);
2503		bzero(jext, size);
2504		bcopy(jblocks->jb_extent, jext,
2505		    sizeof(struct jextent) * jblocks->jb_used);
2506		free(jblocks->jb_extent);
2507		jblocks->jb_extent = jext;
2508	}
2509	jext = &jblocks->jb_extent[jblocks->jb_used];
2510	jext->je_daddr = daddr;
2511	jext->je_blocks = blocks;
2512
2513	return;
2514}
2515
2516/*
2517 * Add a file block from the journal to the extent map.  We can't read
2518 * each file block individually because the kernel treats it as a circular
2519 * buffer and segments may span mutliple contiguous blocks.
2520 */
2521static void
2522suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2523{
2524
2525	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2526}
2527
2528static void
2529suj_read(void)
2530{
2531	uint8_t block[1 * 1024 * 1024];
2532	struct suj_seg *seg;
2533	struct jsegrec *recn;
2534	struct jsegrec *rec;
2535	ufs2_daddr_t blk;
2536	int readsize;
2537	int blocks;
2538	int recsize;
2539	int size;
2540	int i;
2541
2542	/*
2543	 * Read records until we exhaust the journal space.  If we find
2544	 * an invalid record we start searching for a valid segment header
2545	 * at the next block.  This is because we don't have a head/tail
2546	 * pointer and must recover the information indirectly.  At the gap
2547	 * between the head and tail we won't necessarily have a valid
2548	 * segment.
2549	 */
2550restart:
2551	for (;;) {
2552		size = sizeof(block);
2553		blk = jblocks_next(suj_jblocks, size, &readsize);
2554		if (blk == 0)
2555			return;
2556		size = readsize;
2557		/*
2558		 * Read 1MB at a time and scan for records within this block.
2559		 */
2560		if (bread(disk, blk, &block, size) == -1) {
2561			err_suj("Error reading journal block %jd\n",
2562			    (intmax_t)blk);
2563		}
2564		for (rec = (void *)block; size; size -= recsize,
2565		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2566			recsize = DEV_BSIZE;
2567			if (rec->jsr_time != fs->fs_mtime) {
2568				if (debug)
2569					printf("Rec time %jd != fs mtime %jd\n",
2570					    rec->jsr_time, fs->fs_mtime);
2571				jblocks_advance(suj_jblocks, recsize);
2572				continue;
2573			}
2574			if (rec->jsr_cnt == 0) {
2575				if (debug)
2576					printf("Found illegal count %d\n",
2577					    rec->jsr_cnt);
2578				jblocks_advance(suj_jblocks, recsize);
2579				continue;
2580			}
2581			blocks = rec->jsr_blocks;
2582			recsize = blocks * DEV_BSIZE;
2583			if (recsize > size) {
2584				/*
2585				 * We may just have run out of buffer, restart
2586				 * the loop to re-read from this spot.
2587				 */
2588				if (size < fs->fs_bsize &&
2589				    size != readsize &&
2590				    recsize <= fs->fs_bsize)
2591					goto restart;
2592				if (debug)
2593					printf("Found invalid segsize %d > %d\n",
2594					    recsize, size);
2595				recsize = DEV_BSIZE;
2596				jblocks_advance(suj_jblocks, recsize);
2597				continue;
2598			}
2599			/*
2600			 * Verify that all blocks in the segment are present.
2601			 */
2602			for (i = 1; i < blocks; i++) {
2603				recn = (void *)
2604				    ((uintptr_t)rec) + i * DEV_BSIZE;
2605				if (recn->jsr_seq == rec->jsr_seq &&
2606				    recn->jsr_time == rec->jsr_time)
2607					continue;
2608				if (debug)
2609					printf("Incomplete record %jd (%d)\n",
2610					    rec->jsr_seq, i);
2611				recsize = i * DEV_BSIZE;
2612				jblocks_advance(suj_jblocks, recsize);
2613				goto restart;
2614			}
2615			seg = errmalloc(sizeof(*seg));
2616			seg->ss_blk = errmalloc(recsize);
2617			seg->ss_rec = *rec;
2618			bcopy((void *)rec, seg->ss_blk, recsize);
2619			if (rec->jsr_oldest > oldseq)
2620				oldseq = rec->jsr_oldest;
2621			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2622			jblocks_advance(suj_jblocks, recsize);
2623		}
2624	}
2625}
2626
2627/*
2628 * Search a directory block for the SUJ_FILE.
2629 */
2630static void
2631suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2632{
2633	char block[MAXBSIZE];
2634	struct direct *dp;
2635	int bytes;
2636	int off;
2637
2638	if (sujino)
2639		return;
2640	bytes = lfragtosize(fs, frags);
2641	if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0)
2642		err_suj("Failed to read ROOTINO directory block %jd\n", blk);
2643	for (off = 0; off < bytes; off += dp->d_reclen) {
2644		dp = (struct direct *)&block[off];
2645		if (dp->d_reclen == 0)
2646			break;
2647		if (dp->d_ino == 0)
2648			continue;
2649		if (dp->d_namlen != strlen(SUJ_FILE))
2650			continue;
2651		if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2652			continue;
2653		sujino = dp->d_ino;
2654		return;
2655	}
2656}
2657
2658/*
2659 * Orchestrate the verification of a filesystem via the softupdates journal.
2660 */
2661int
2662suj_check(const char *filesys)
2663{
2664	union dinode *jip;
2665	union dinode *ip;
2666	uint64_t blocks;
2667	int retval;
2668	struct suj_seg *seg;
2669	struct suj_seg *segn;
2670
2671	opendisk(filesys);
2672	TAILQ_INIT(&allsegs);
2673
2674	/*
2675	 * Set an exit point when SUJ check failed
2676	 */
2677	retval = setjmp(jmpbuf);
2678	if (retval != 0) {
2679		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2680		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2681			TAILQ_REMOVE(&allsegs, seg, ss_next);
2682				free(seg->ss_blk);
2683				free(seg);
2684		}
2685		if (reply("FALLBACK TO FULL FSCK") == 0) {
2686			ckfini(0);
2687			exit(EEXIT);
2688		} else
2689			return (-1);
2690	}
2691
2692	/*
2693	 * Find the journal inode.
2694	 */
2695	ip = ino_read(ROOTINO);
2696	sujino = 0;
2697	ino_visit(ip, ROOTINO, suj_find, 0);
2698	if (sujino == 0) {
2699		printf("Journal inode removed.  Use tunefs to re-create.\n");
2700		sblock.fs_flags &= ~FS_SUJ;
2701		sblock.fs_sujfree = 0;
2702		return (-1);
2703	}
2704	/*
2705	 * Fetch the journal inode and verify it.
2706	 */
2707	jip = ino_read(sujino);
2708	printf("** SU+J Recovering %s\n", filesys);
2709	if (suj_verifyino(jip) != 0)
2710		return (-1);
2711	/*
2712	 * Build a list of journal blocks in jblocks before parsing the
2713	 * available journal blocks in with suj_read().
2714	 */
2715	printf("** Reading %jd byte journal from inode %d.\n",
2716	    DIP(jip, di_size), sujino);
2717	suj_jblocks = jblocks_create();
2718	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2719	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2720		printf("Sparse journal inode %d.\n", sujino);
2721		return (-1);
2722	}
2723	suj_read();
2724	jblocks_destroy(suj_jblocks);
2725	suj_jblocks = NULL;
2726	if (preen || reply("RECOVER")) {
2727		printf("** Building recovery table.\n");
2728		suj_prune();
2729		suj_build();
2730		cg_apply(cg_build);
2731		printf("** Resolving unreferenced inode list.\n");
2732		ino_unlinked();
2733		printf("** Processing journal entries.\n");
2734		cg_apply(cg_trunc);
2735		cg_apply(cg_check_blk);
2736		cg_apply(cg_check_ino);
2737	}
2738	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2739		return (0);
2740	/*
2741	 * To remain idempotent with partial truncations the free bitmaps
2742	 * must be written followed by indirect blocks and lastly inode
2743	 * blocks.  This preserves access to the modified pointers until
2744	 * they are freed.
2745	 */
2746	cg_apply(cg_write);
2747	dblk_write();
2748	cg_apply(cg_write_inos);
2749	/* Write back superblock. */
2750	closedisk(filesys);
2751	if (jrecs > 0 || jbytes > 0) {
2752		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2753		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2754		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2755		    freeinos, freedir, freeblocks, freefrags);
2756	}
2757
2758	return (0);
2759}
2760