suj.c revision 221110
1/*-
2 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sbin/fsck_ffs/suj.c 221110 2011-04-27 02:55:03Z des $");
29
30#include <sys/param.h>
31#include <sys/disk.h>
32#include <sys/disklabel.h>
33#include <sys/mount.h>
34#include <sys/stat.h>
35
36#include <ufs/ufs/ufsmount.h>
37#include <ufs/ufs/dinode.h>
38#include <ufs/ufs/dir.h>
39#include <ufs/ffs/fs.h>
40
41#include <assert.h>
42#include <err.h>
43#include <setjmp.h>
44#include <stdarg.h>
45#include <stdio.h>
46#include <stdlib.h>
47#include <stdint.h>
48#include <libufs.h>
49#include <string.h>
50#include <strings.h>
51#include <sysexits.h>
52#include <time.h>
53
54#include "fsck.h"
55
56#define	DOTDOT_OFFSET	DIRECTSIZ(1)
57#define	SUJ_HASHSIZE	2048
58#define	SUJ_HASHMASK	(SUJ_HASHSIZE - 1)
59#define	SUJ_HASH(x)	((x * 2654435761) & SUJ_HASHMASK)
60
61struct suj_seg {
62	TAILQ_ENTRY(suj_seg) ss_next;
63	struct jsegrec	ss_rec;
64	uint8_t		*ss_blk;
65};
66
67struct suj_rec {
68	TAILQ_ENTRY(suj_rec) sr_next;
69	union jrec	*sr_rec;
70};
71TAILQ_HEAD(srechd, suj_rec);
72
73struct suj_ino {
74	LIST_ENTRY(suj_ino)	si_next;
75	struct srechd		si_recs;
76	struct srechd		si_newrecs;
77	struct srechd		si_movs;
78	struct jtrncrec		*si_trunc;
79	ino_t			si_ino;
80	char			si_skipparent;
81	char			si_hasrecs;
82	char			si_blkadj;
83	char			si_linkadj;
84	int			si_mode;
85	nlink_t			si_nlinkadj;
86	nlink_t			si_nlink;
87	nlink_t			si_dotlinks;
88};
89LIST_HEAD(inohd, suj_ino);
90
91struct suj_blk {
92	LIST_ENTRY(suj_blk)	sb_next;
93	struct srechd		sb_recs;
94	ufs2_daddr_t		sb_blk;
95};
96LIST_HEAD(blkhd, suj_blk);
97
98struct data_blk {
99	LIST_ENTRY(data_blk)	db_next;
100	uint8_t			*db_buf;
101	ufs2_daddr_t		db_blk;
102	int			db_size;
103	int			db_dirty;
104};
105
106struct ino_blk {
107	LIST_ENTRY(ino_blk)	ib_next;
108	uint8_t			*ib_buf;
109	int			ib_dirty;
110	ufs2_daddr_t		ib_blk;
111};
112LIST_HEAD(iblkhd, ino_blk);
113
114struct suj_cg {
115	LIST_ENTRY(suj_cg)	sc_next;
116	struct blkhd		sc_blkhash[SUJ_HASHSIZE];
117	struct inohd		sc_inohash[SUJ_HASHSIZE];
118	struct iblkhd		sc_iblkhash[SUJ_HASHSIZE];
119	struct ino_blk		*sc_lastiblk;
120	struct suj_ino		*sc_lastino;
121	struct suj_blk		*sc_lastblk;
122	uint8_t			*sc_cgbuf;
123	struct cg		*sc_cgp;
124	int			sc_dirty;
125	int			sc_cgx;
126};
127
128LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
129LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
130struct suj_cg *lastcg;
131struct data_blk *lastblk;
132
133TAILQ_HEAD(seghd, suj_seg) allsegs;
134uint64_t oldseq;
135static struct uufsd *disk = NULL;
136static struct fs *fs = NULL;
137ino_t sujino;
138
139/*
140 * Summary statistics.
141 */
142uint64_t freefrags;
143uint64_t freeblocks;
144uint64_t freeinos;
145uint64_t freedir;
146uint64_t jbytes;
147uint64_t jrecs;
148
149static jmp_buf	jmpbuf;
150
151typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
152static void err_suj(const char *, ...) __dead2;
153static void ino_trunc(ino_t, off_t);
154static void ino_decr(ino_t);
155static void ino_adjust(struct suj_ino *);
156static void ino_build(struct suj_ino *);
157static int blk_isfree(ufs2_daddr_t);
158
159static void *
160errmalloc(size_t n)
161{
162	void *a;
163
164	a = malloc(n);
165	if (a == NULL)
166		err(EX_OSERR, "malloc(%zu)", n);
167	return (a);
168}
169
170/*
171 * When hit a fatal error in journalling check, print out
172 * the error and then offer to fallback to normal fsck.
173 */
174static void
175err_suj(const char * restrict fmt, ...)
176{
177	va_list ap;
178
179	if (preen)
180		(void)fprintf(stdout, "%s: ", cdevname);
181
182	va_start(ap, fmt);
183	(void)vfprintf(stdout, fmt, ap);
184	va_end(ap);
185
186	longjmp(jmpbuf, -1);
187}
188
189/*
190 * Open the given provider, load superblock.
191 */
192static void
193opendisk(const char *devnam)
194{
195	if (disk != NULL)
196		return;
197	disk = malloc(sizeof(*disk));
198	if (disk == NULL)
199		err(EX_OSERR, "malloc(%zu)", sizeof(*disk));
200	if (ufs_disk_fillout(disk, devnam) == -1) {
201		err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam,
202		    disk->d_error);
203	}
204	fs = &disk->d_fs;
205	if (real_dev_bsize == 0 && ioctl(disk->d_fd, DIOCGSECTORSIZE,
206	    &real_dev_bsize) == -1)
207		real_dev_bsize = secsize;
208	if (debug)
209		printf("dev_bsize %ld\n", real_dev_bsize);
210}
211
212/*
213 * Mark file system as clean, write the super-block back, close the disk.
214 */
215static void
216closedisk(const char *devnam)
217{
218	struct csum *cgsum;
219	int i;
220
221	/*
222	 * Recompute the fs summary info from correct cs summaries.
223	 */
224	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
225	for (i = 0; i < fs->fs_ncg; i++) {
226		cgsum = &fs->fs_cs(fs, i);
227		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
228		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
229		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
230		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
231	}
232	fs->fs_pendinginodes = 0;
233	fs->fs_pendingblocks = 0;
234	fs->fs_clean = 1;
235	fs->fs_time = time(NULL);
236	fs->fs_mtime = time(NULL);
237	if (sbwrite(disk, 0) == -1)
238		err(EX_OSERR, "sbwrite(%s)", devnam);
239	if (ufs_disk_close(disk) == -1)
240		err(EX_OSERR, "ufs_disk_close(%s)", devnam);
241	free(disk);
242	disk = NULL;
243	fs = NULL;
244}
245
246/*
247 * Lookup a cg by number in the hash so we can keep track of which cgs
248 * need stats rebuilt.
249 */
250static struct suj_cg *
251cg_lookup(int cgx)
252{
253	struct cghd *hd;
254	struct suj_cg *sc;
255
256	if (cgx < 0 || cgx >= fs->fs_ncg)
257		err_suj("Bad cg number %d\n", cgx);
258	if (lastcg && lastcg->sc_cgx == cgx)
259		return (lastcg);
260	hd = &cghash[SUJ_HASH(cgx)];
261	LIST_FOREACH(sc, hd, sc_next)
262		if (sc->sc_cgx == cgx) {
263			lastcg = sc;
264			return (sc);
265		}
266	sc = errmalloc(sizeof(*sc));
267	bzero(sc, sizeof(*sc));
268	sc->sc_cgbuf = errmalloc(fs->fs_bsize);
269	sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
270	sc->sc_cgx = cgx;
271	LIST_INSERT_HEAD(hd, sc, sc_next);
272	if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
273	    fs->fs_bsize) == -1)
274		err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
275
276	return (sc);
277}
278
279/*
280 * Lookup an inode number in the hash and allocate a suj_ino if it does
281 * not exist.
282 */
283static struct suj_ino *
284ino_lookup(ino_t ino, int creat)
285{
286	struct suj_ino *sino;
287	struct inohd *hd;
288	struct suj_cg *sc;
289
290	sc = cg_lookup(ino_to_cg(fs, ino));
291	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
292		return (sc->sc_lastino);
293	hd = &sc->sc_inohash[SUJ_HASH(ino)];
294	LIST_FOREACH(sino, hd, si_next)
295		if (sino->si_ino == ino)
296			return (sino);
297	if (creat == 0)
298		return (NULL);
299	sino = errmalloc(sizeof(*sino));
300	bzero(sino, sizeof(*sino));
301	sino->si_ino = ino;
302	TAILQ_INIT(&sino->si_recs);
303	TAILQ_INIT(&sino->si_newrecs);
304	TAILQ_INIT(&sino->si_movs);
305	LIST_INSERT_HEAD(hd, sino, si_next);
306
307	return (sino);
308}
309
310/*
311 * Lookup a block number in the hash and allocate a suj_blk if it does
312 * not exist.
313 */
314static struct suj_blk *
315blk_lookup(ufs2_daddr_t blk, int creat)
316{
317	struct suj_blk *sblk;
318	struct suj_cg *sc;
319	struct blkhd *hd;
320
321	sc = cg_lookup(dtog(fs, blk));
322	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
323		return (sc->sc_lastblk);
324	hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
325	LIST_FOREACH(sblk, hd, sb_next)
326		if (sblk->sb_blk == blk)
327			return (sblk);
328	if (creat == 0)
329		return (NULL);
330	sblk = errmalloc(sizeof(*sblk));
331	bzero(sblk, sizeof(*sblk));
332	sblk->sb_blk = blk;
333	TAILQ_INIT(&sblk->sb_recs);
334	LIST_INSERT_HEAD(hd, sblk, sb_next);
335
336	return (sblk);
337}
338
339static struct data_blk *
340dblk_lookup(ufs2_daddr_t blk)
341{
342	struct data_blk *dblk;
343	struct dblkhd *hd;
344
345	hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
346	if (lastblk && lastblk->db_blk == blk)
347		return (lastblk);
348	LIST_FOREACH(dblk, hd, db_next)
349		if (dblk->db_blk == blk)
350			return (dblk);
351	/*
352	 * The inode block wasn't located, allocate a new one.
353	 */
354	dblk = errmalloc(sizeof(*dblk));
355	bzero(dblk, sizeof(*dblk));
356	LIST_INSERT_HEAD(hd, dblk, db_next);
357	dblk->db_blk = blk;
358	return (dblk);
359}
360
361static uint8_t *
362dblk_read(ufs2_daddr_t blk, int size)
363{
364	struct data_blk *dblk;
365
366	dblk = dblk_lookup(blk);
367	/*
368	 * I doubt size mismatches can happen in practice but it is trivial
369	 * to handle.
370	 */
371	if (size != dblk->db_size) {
372		if (dblk->db_buf)
373			free(dblk->db_buf);
374		dblk->db_buf = errmalloc(size);
375		dblk->db_size = size;
376		if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
377			err_suj("Failed to read data block %jd\n", blk);
378	}
379	return (dblk->db_buf);
380}
381
382static void
383dblk_dirty(ufs2_daddr_t blk)
384{
385	struct data_blk *dblk;
386
387	dblk = dblk_lookup(blk);
388	dblk->db_dirty = 1;
389}
390
391static void
392dblk_write(void)
393{
394	struct data_blk *dblk;
395	int i;
396
397	for (i = 0; i < SUJ_HASHSIZE; i++) {
398		LIST_FOREACH(dblk, &dbhash[i], db_next) {
399			if (dblk->db_dirty == 0 || dblk->db_size == 0)
400				continue;
401			if (bwrite(disk, fsbtodb(fs, dblk->db_blk),
402			    dblk->db_buf, dblk->db_size) == -1)
403				err_suj("Unable to write block %jd\n",
404				    dblk->db_blk);
405		}
406	}
407}
408
409static union dinode *
410ino_read(ino_t ino)
411{
412	struct ino_blk *iblk;
413	struct iblkhd *hd;
414	struct suj_cg *sc;
415	ufs2_daddr_t blk;
416	int off;
417
418	blk = ino_to_fsba(fs, ino);
419	sc = cg_lookup(ino_to_cg(fs, ino));
420	iblk = sc->sc_lastiblk;
421	if (iblk && iblk->ib_blk == blk)
422		goto found;
423	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
424	LIST_FOREACH(iblk, hd, ib_next)
425		if (iblk->ib_blk == blk)
426			goto found;
427	/*
428	 * The inode block wasn't located, allocate a new one.
429	 */
430	iblk = errmalloc(sizeof(*iblk));
431	bzero(iblk, sizeof(*iblk));
432	iblk->ib_buf = errmalloc(fs->fs_bsize);
433	iblk->ib_blk = blk;
434	LIST_INSERT_HEAD(hd, iblk, ib_next);
435	if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
436		err_suj("Failed to read inode block %jd\n", blk);
437found:
438	sc->sc_lastiblk = iblk;
439	off = ino_to_fsbo(fs, ino);
440	if (fs->fs_magic == FS_UFS1_MAGIC)
441		return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
442	else
443		return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
444}
445
446static void
447ino_dirty(ino_t ino)
448{
449	struct ino_blk *iblk;
450	struct iblkhd *hd;
451	struct suj_cg *sc;
452	ufs2_daddr_t blk;
453
454	blk = ino_to_fsba(fs, ino);
455	sc = cg_lookup(ino_to_cg(fs, ino));
456	iblk = sc->sc_lastiblk;
457	if (iblk && iblk->ib_blk == blk) {
458		iblk->ib_dirty = 1;
459		return;
460	}
461	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
462	LIST_FOREACH(iblk, hd, ib_next) {
463		if (iblk->ib_blk == blk) {
464			iblk->ib_dirty = 1;
465			return;
466		}
467	}
468	ino_read(ino);
469	ino_dirty(ino);
470}
471
472static void
473iblk_write(struct ino_blk *iblk)
474{
475
476	if (iblk->ib_dirty == 0)
477		return;
478	if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
479	    fs->fs_bsize) == -1)
480		err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
481}
482
483static int
484blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
485{
486	ufs2_daddr_t bstart;
487	ufs2_daddr_t bend;
488	ufs2_daddr_t end;
489
490	end = start + frags;
491	bstart = brec->jb_blkno + brec->jb_oldfrags;
492	bend = bstart + brec->jb_frags;
493	if (start < bend && end > bstart)
494		return (1);
495	return (0);
496}
497
498static int
499blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
500    int frags)
501{
502
503	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
504		return (0);
505	if (brec->jb_blkno + brec->jb_oldfrags != start)
506		return (0);
507	if (brec->jb_frags != frags)
508		return (0);
509	return (1);
510}
511
512static void
513blk_setmask(struct jblkrec *brec, int *mask)
514{
515	int i;
516
517	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
518		*mask |= 1 << i;
519}
520
521/*
522 * Determine whether a given block has been reallocated to a new location.
523 * Returns a mask of overlapping bits if any frags have been reused or
524 * zero if the block has not been re-used and the contents can be trusted.
525 *
526 * This is used to ensure that an orphaned pointer due to truncate is safe
527 * to be freed.  The mask value can be used to free partial blocks.
528 */
529static int
530blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
531{
532	struct suj_blk *sblk;
533	struct suj_rec *srec;
534	struct jblkrec *brec;
535	int mask;
536	int off;
537
538	/*
539	 * To be certain we're not freeing a reallocated block we lookup
540	 * this block in the blk hash and see if there is an allocation
541	 * journal record that overlaps with any fragments in the block
542	 * we're concerned with.  If any fragments have ben reallocated
543	 * the block has already been freed and re-used for another purpose.
544	 */
545	mask = 0;
546	sblk = blk_lookup(blknum(fs, blk), 0);
547	if (sblk == NULL)
548		return (0);
549	off = blk - sblk->sb_blk;
550	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
551		brec = (struct jblkrec *)srec->sr_rec;
552		/*
553		 * If the block overlaps but does not match
554		 * exactly it's a new allocation.  If it matches
555		 * exactly this record refers to the current
556		 * location.
557		 */
558		if (blk_overlaps(brec, blk, frags) == 0)
559			continue;
560		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
561			mask = 0;
562		else
563			blk_setmask(brec, &mask);
564	}
565	if (debug)
566		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
567		    blk, sblk->sb_blk, off, mask);
568	return (mask >> off);
569}
570
571/*
572 * Determine whether it is safe to follow an indirect.  It is not safe
573 * if any part of the indirect has been reallocated or the last journal
574 * entry was an allocation.  Just allocated indirects may not have valid
575 * pointers yet and all of their children will have their own records.
576 * It is also not safe to follow an indirect if the cg bitmap has been
577 * cleared as a new allocation may write to the block prior to the journal
578 * being written.
579 *
580 * Returns 1 if it's safe to follow the indirect and 0 otherwise.
581 */
582static int
583blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
584{
585	struct suj_blk *sblk;
586	struct jblkrec *brec;
587
588	sblk = blk_lookup(blk, 0);
589	if (sblk == NULL)
590		return (1);
591	if (TAILQ_EMPTY(&sblk->sb_recs))
592		return (1);
593	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
594	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
595		if (brec->jb_op == JOP_FREEBLK)
596			return (!blk_isfree(blk));
597	return (0);
598}
599
600/*
601 * Clear an inode from the cg bitmap.  If the inode was already clear return
602 * 0 so the caller knows it does not have to check the inode contents.
603 */
604static int
605ino_free(ino_t ino, int mode)
606{
607	struct suj_cg *sc;
608	uint8_t *inosused;
609	struct cg *cgp;
610	int cg;
611
612	cg = ino_to_cg(fs, ino);
613	ino = ino % fs->fs_ipg;
614	sc = cg_lookup(cg);
615	cgp = sc->sc_cgp;
616	inosused = cg_inosused(cgp);
617	/*
618	 * The bitmap may never have made it to the disk so we have to
619	 * conditionally clear.  We can avoid writing the cg in this case.
620	 */
621	if (isclr(inosused, ino))
622		return (0);
623	freeinos++;
624	clrbit(inosused, ino);
625	if (ino < cgp->cg_irotor)
626		cgp->cg_irotor = ino;
627	cgp->cg_cs.cs_nifree++;
628	if ((mode & IFMT) == IFDIR) {
629		freedir++;
630		cgp->cg_cs.cs_ndir--;
631	}
632	sc->sc_dirty = 1;
633
634	return (1);
635}
636
637/*
638 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
639 * set in the mask.
640 */
641static void
642blk_free(ufs2_daddr_t bno, int mask, int frags)
643{
644	ufs1_daddr_t fragno, cgbno;
645	struct suj_cg *sc;
646	struct cg *cgp;
647	int i, cg;
648	uint8_t *blksfree;
649
650	if (debug)
651		printf("Freeing %d frags at blk %jd\n", frags, bno);
652	cg = dtog(fs, bno);
653	sc = cg_lookup(cg);
654	cgp = sc->sc_cgp;
655	cgbno = dtogd(fs, bno);
656	blksfree = cg_blksfree(cgp);
657
658	/*
659	 * If it's not allocated we only wrote the journal entry
660	 * and never the bitmaps.  Here we unconditionally clear and
661	 * resolve the cg summary later.
662	 */
663	if (frags == fs->fs_frag && mask == 0) {
664		fragno = fragstoblks(fs, cgbno);
665		ffs_setblock(fs, blksfree, fragno);
666		freeblocks++;
667	} else {
668		/*
669		 * deallocate the fragment
670		 */
671		for (i = 0; i < frags; i++)
672			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
673				freefrags++;
674				setbit(blksfree, cgbno + i);
675			}
676	}
677	sc->sc_dirty = 1;
678}
679
680/*
681 * Returns 1 if the whole block starting at 'bno' is marked free and 0
682 * otherwise.
683 */
684static int
685blk_isfree(ufs2_daddr_t bno)
686{
687	struct suj_cg *sc;
688
689	sc = cg_lookup(dtog(fs, bno));
690	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
691}
692
693/*
694 * Fetch an indirect block to find the block at a given lbn.  The lbn
695 * may be negative to fetch a specific indirect block pointer or positive
696 * to fetch a specific block.
697 */
698static ufs2_daddr_t
699indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
700{
701	ufs2_daddr_t *bap2;
702	ufs2_daddr_t *bap1;
703	ufs_lbn_t lbnadd;
704	ufs_lbn_t base;
705	int level;
706	int i;
707
708	if (blk == 0)
709		return (0);
710	level = lbn_level(cur);
711	if (level == -1)
712		err_suj("Invalid indir lbn %jd\n", lbn);
713	if (level == 0 && lbn < 0)
714		err_suj("Invalid lbn %jd\n", lbn);
715	bap2 = (void *)dblk_read(blk, fs->fs_bsize);
716	bap1 = (void *)bap2;
717	lbnadd = 1;
718	base = -(cur + level);
719	for (i = level; i > 0; i--)
720		lbnadd *= NINDIR(fs);
721	if (lbn > 0)
722		i = (lbn - base) / lbnadd;
723	else
724		i = (-lbn - base) / lbnadd;
725	if (i < 0 || i >= NINDIR(fs))
726		err_suj("Invalid indirect index %d produced by lbn %jd\n",
727		    i, lbn);
728	if (level == 0)
729		cur = base + (i * lbnadd);
730	else
731		cur = -(base + (i * lbnadd)) - (level - 1);
732	if (fs->fs_magic == FS_UFS1_MAGIC)
733		blk = bap1[i];
734	else
735		blk = bap2[i];
736	if (cur == lbn)
737		return (blk);
738	if (level == 0)
739		err_suj("Invalid lbn %jd at level 0\n", lbn);
740	return indir_blkatoff(blk, ino, cur, lbn);
741}
742
743/*
744 * Finds the disk block address at the specified lbn within the inode
745 * specified by ip.  This follows the whole tree and honors di_size and
746 * di_extsize so it is a true test of reachability.  The lbn may be
747 * negative if an extattr or indirect block is requested.
748 */
749static ufs2_daddr_t
750ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
751{
752	ufs_lbn_t tmpval;
753	ufs_lbn_t cur;
754	ufs_lbn_t next;
755	int i;
756
757	/*
758	 * Handle extattr blocks first.
759	 */
760	if (lbn < 0 && lbn >= -NXADDR) {
761		lbn = -1 - lbn;
762		if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
763			return (0);
764		*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
765		return (ip->dp2.di_extb[lbn]);
766	}
767	/*
768	 * Now direct and indirect.
769	 */
770	if (DIP(ip, di_mode) == IFLNK &&
771	    DIP(ip, di_size) < fs->fs_maxsymlinklen)
772		return (0);
773	if (lbn >= 0 && lbn < NDADDR) {
774		*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
775		return (DIP(ip, di_db[lbn]));
776	}
777	*frags = fs->fs_frag;
778
779	for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++,
780	    tmpval *= NINDIR(fs), cur = next) {
781		next = cur + tmpval;
782		if (lbn == -cur - i)
783			return (DIP(ip, di_ib[i]));
784		/*
785		 * Determine whether the lbn in question is within this tree.
786		 */
787		if (lbn < 0 && -lbn >= next)
788			continue;
789		if (lbn > 0 && lbn >= next)
790			continue;
791		return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
792	}
793	err_suj("lbn %jd not in ino\n", lbn);
794	/* NOTREACHED */
795}
796
797/*
798 * Determine whether a block exists at a particular lbn in an inode.
799 * Returns 1 if found, 0 if not.  lbn may be negative for indirects
800 * or ext blocks.
801 */
802static int
803blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
804{
805	union dinode *ip;
806	ufs2_daddr_t nblk;
807
808	ip = ino_read(ino);
809
810	if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
811		return (0);
812	nblk = ino_blkatoff(ip, ino, lbn, frags);
813
814	return (nblk == blk);
815}
816
817/*
818 * Clear the directory entry at diroff that should point to child.  Minimal
819 * checking is done and it is assumed that this path was verified with isat.
820 */
821static void
822ino_clrat(ino_t parent, off_t diroff, ino_t child)
823{
824	union dinode *dip;
825	struct direct *dp;
826	ufs2_daddr_t blk;
827	uint8_t *block;
828	ufs_lbn_t lbn;
829	int blksize;
830	int frags;
831	int doff;
832
833	if (debug)
834		printf("Clearing inode %d from parent %d at offset %jd\n",
835		    child, parent, diroff);
836
837	lbn = lblkno(fs, diroff);
838	doff = blkoff(fs, diroff);
839	dip = ino_read(parent);
840	blk = ino_blkatoff(dip, parent, lbn, &frags);
841	blksize = sblksize(fs, DIP(dip, di_size), lbn);
842	block = dblk_read(blk, blksize);
843	dp = (struct direct *)&block[doff];
844	if (dp->d_ino != child)
845		errx(1, "Inode %d does not exist in %d at %jd",
846		    child, parent, diroff);
847	dp->d_ino = 0;
848	dblk_dirty(blk);
849	/*
850	 * The actual .. reference count will already have been removed
851	 * from the parent by the .. remref record.
852	 */
853}
854
855/*
856 * Determines whether a pointer to an inode exists within a directory
857 * at a specified offset.  Returns the mode of the found entry.
858 */
859static int
860ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
861{
862	union dinode *dip;
863	struct direct *dp;
864	ufs2_daddr_t blk;
865	uint8_t *block;
866	ufs_lbn_t lbn;
867	int blksize;
868	int frags;
869	int dpoff;
870	int doff;
871
872	*isdot = 0;
873	dip = ino_read(parent);
874	*mode = DIP(dip, di_mode);
875	if ((*mode & IFMT) != IFDIR) {
876		if (debug) {
877			/*
878			 * This can happen if the parent inode
879			 * was reallocated.
880			 */
881			if (*mode != 0)
882				printf("Directory %d has bad mode %o\n",
883				    parent, *mode);
884			else
885				printf("Directory %d zero inode\n", parent);
886		}
887		return (0);
888	}
889	lbn = lblkno(fs, diroff);
890	doff = blkoff(fs, diroff);
891	blksize = sblksize(fs, DIP(dip, di_size), lbn);
892	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
893		if (debug)
894			printf("ino %d absent from %d due to offset %jd"
895			    " exceeding size %jd\n",
896			    child, parent, diroff, DIP(dip, di_size));
897		return (0);
898	}
899	blk = ino_blkatoff(dip, parent, lbn, &frags);
900	if (blk <= 0) {
901		if (debug)
902			printf("Sparse directory %d", parent);
903		return (0);
904	}
905	block = dblk_read(blk, blksize);
906	/*
907	 * Walk through the records from the start of the block to be
908	 * certain we hit a valid record and not some junk in the middle
909	 * of a file name.  Stop when we reach or pass the expected offset.
910	 */
911	dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ;
912	do {
913		dp = (struct direct *)&block[dpoff];
914		if (dpoff == doff)
915			break;
916		if (dp->d_reclen == 0)
917			break;
918		dpoff += dp->d_reclen;
919	} while (dpoff <= doff);
920	if (dpoff > fs->fs_bsize)
921		err_suj("Corrupt directory block in dir ino %d\n", parent);
922	/* Not found. */
923	if (dpoff != doff) {
924		if (debug)
925			printf("ino %d not found in %d, lbn %jd, dpoff %d\n",
926			    child, parent, lbn, dpoff);
927		return (0);
928	}
929	/*
930	 * We found the item in question.  Record the mode and whether it's
931	 * a . or .. link for the caller.
932	 */
933	if (dp->d_ino == child) {
934		if (child == parent)
935			*isdot = 1;
936		else if (dp->d_namlen == 2 &&
937		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
938			*isdot = 1;
939		*mode = DTTOIF(dp->d_type);
940		return (1);
941	}
942	if (debug)
943		printf("ino %d doesn't match dirent ino %d in parent %d\n",
944		    child, dp->d_ino, parent);
945	return (0);
946}
947
948#define	VISIT_INDIR	0x0001
949#define	VISIT_EXT	0x0002
950#define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
951
952/*
953 * Read an indirect level which may or may not be linked into an inode.
954 */
955static void
956indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
957    ino_visitor visitor, int flags)
958{
959	ufs2_daddr_t *bap2;
960	ufs1_daddr_t *bap1;
961	ufs_lbn_t lbnadd;
962	ufs2_daddr_t nblk;
963	ufs_lbn_t nlbn;
964	int level;
965	int i;
966
967	/*
968	 * Don't visit indirect blocks with contents we can't trust.  This
969	 * should only happen when indir_visit() is called to complete a
970	 * truncate that never finished and not when a pointer is found via
971	 * an inode.
972	 */
973	if (blk == 0)
974		return;
975	level = lbn_level(lbn);
976	if (level == -1)
977		err_suj("Invalid level for lbn %jd\n", lbn);
978	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
979		if (debug)
980			printf("blk %jd ino %d lbn %jd(%d) is not indir.\n",
981			    blk, ino, lbn, level);
982		goto out;
983	}
984	lbnadd = 1;
985	for (i = level; i > 0; i--)
986		lbnadd *= NINDIR(fs);
987	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
988	bap2 = (void *)bap1;
989	for (i = 0; i < NINDIR(fs); i++) {
990		if (fs->fs_magic == FS_UFS1_MAGIC)
991			nblk = *bap1++;
992		else
993			nblk = *bap2++;
994		if (nblk == 0)
995			continue;
996		if (level == 0) {
997			nlbn = -lbn + i * lbnadd;
998			(*frags) += fs->fs_frag;
999			visitor(ino, nlbn, nblk, fs->fs_frag);
1000		} else {
1001			nlbn = (lbn + 1) - (i * lbnadd);
1002			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
1003		}
1004	}
1005out:
1006	if (flags & VISIT_INDIR) {
1007		(*frags) += fs->fs_frag;
1008		visitor(ino, lbn, blk, fs->fs_frag);
1009	}
1010}
1011
1012/*
1013 * Visit each block in an inode as specified by 'flags' and call a
1014 * callback function.  The callback may inspect or free blocks.  The
1015 * count of frags found according to the size in the file is returned.
1016 * This is not valid for sparse files but may be used to determine
1017 * the correct di_blocks for a file.
1018 */
1019static uint64_t
1020ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
1021{
1022	ufs_lbn_t nextlbn;
1023	ufs_lbn_t tmpval;
1024	ufs_lbn_t lbn;
1025	uint64_t size;
1026	uint64_t fragcnt;
1027	int mode;
1028	int frags;
1029	int i;
1030
1031	size = DIP(ip, di_size);
1032	mode = DIP(ip, di_mode) & IFMT;
1033	fragcnt = 0;
1034	if ((flags & VISIT_EXT) &&
1035	    fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
1036		for (i = 0; i < NXADDR; i++) {
1037			if (ip->dp2.di_extb[i] == 0)
1038				continue;
1039			frags = sblksize(fs, ip->dp2.di_extsize, i);
1040			frags = numfrags(fs, frags);
1041			fragcnt += frags;
1042			visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
1043		}
1044	}
1045	/* Skip datablocks for short links and devices. */
1046	if (mode == IFBLK || mode == IFCHR ||
1047	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
1048		return (fragcnt);
1049	for (i = 0; i < NDADDR; i++) {
1050		if (DIP(ip, di_db[i]) == 0)
1051			continue;
1052		frags = sblksize(fs, size, i);
1053		frags = numfrags(fs, frags);
1054		fragcnt += frags;
1055		visitor(ino, i, DIP(ip, di_db[i]), frags);
1056	}
1057	/*
1058	 * We know the following indirects are real as we're following
1059	 * real pointers to them.
1060	 */
1061	flags |= VISIT_ROOT;
1062	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1063	    lbn = nextlbn) {
1064		nextlbn = lbn + tmpval;
1065		tmpval *= NINDIR(fs);
1066		if (DIP(ip, di_ib[i]) == 0)
1067			continue;
1068		indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1069		    flags);
1070	}
1071	return (fragcnt);
1072}
1073
1074/*
1075 * Null visitor function used when we just want to count blocks and
1076 * record the lbn.
1077 */
1078ufs_lbn_t visitlbn;
1079static void
1080null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1081{
1082	if (lbn > 0)
1083		visitlbn = lbn;
1084}
1085
1086/*
1087 * Recalculate di_blocks when we discover that a block allocation or
1088 * free was not successfully completed.  The kernel does not roll this back
1089 * because it would be too expensive to compute which indirects were
1090 * reachable at the time the inode was written.
1091 */
1092static void
1093ino_adjblks(struct suj_ino *sino)
1094{
1095	union dinode *ip;
1096	uint64_t blocks;
1097	uint64_t frags;
1098	off_t isize;
1099	off_t size;
1100	ino_t ino;
1101
1102	ino = sino->si_ino;
1103	ip = ino_read(ino);
1104	/* No need to adjust zero'd inodes. */
1105	if (DIP(ip, di_mode) == 0)
1106		return;
1107	/*
1108	 * Visit all blocks and count them as well as recording the last
1109	 * valid lbn in the file.  If the file size doesn't agree with the
1110	 * last lbn we need to truncate to fix it.  Otherwise just adjust
1111	 * the blocks count.
1112	 */
1113	visitlbn = 0;
1114	frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1115	blocks = fsbtodb(fs, frags);
1116	/*
1117	 * We assume the size and direct block list is kept coherent by
1118	 * softdep.  For files that have extended into indirects we truncate
1119	 * to the size in the inode or the maximum size permitted by
1120	 * populated indirects.
1121	 */
1122	if (visitlbn >= NDADDR) {
1123		isize = DIP(ip, di_size);
1124		size = lblktosize(fs, visitlbn + 1);
1125		if (isize > size)
1126			isize = size;
1127		/* Always truncate to free any unpopulated indirects. */
1128		ino_trunc(sino->si_ino, isize);
1129		return;
1130	}
1131	if (blocks == DIP(ip, di_blocks))
1132		return;
1133	if (debug)
1134		printf("ino %d adjusting block count from %jd to %jd\n",
1135		    ino, DIP(ip, di_blocks), blocks);
1136	DIP_SET(ip, di_blocks, blocks);
1137	ino_dirty(ino);
1138}
1139
1140static void
1141blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1142{
1143	int mask;
1144
1145	mask = blk_freemask(blk, ino, lbn, frags);
1146	if (debug)
1147		printf("blk %jd freemask 0x%X\n", blk, mask);
1148	blk_free(blk, mask, frags);
1149}
1150
1151/*
1152 * Free a block or tree of blocks that was previously rooted in ino at
1153 * the given lbn.  If the lbn is an indirect all children are freed
1154 * recursively.
1155 */
1156static void
1157blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1158{
1159	uint64_t resid;
1160	int mask;
1161
1162	mask = blk_freemask(blk, ino, lbn, frags);
1163	if (debug)
1164		printf("blk %jd freemask 0x%X\n", blk, mask);
1165	resid = 0;
1166	if (lbn <= -NDADDR && follow && mask == 0)
1167		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1168	else
1169		blk_free(blk, mask, frags);
1170}
1171
1172static void
1173ino_setskip(struct suj_ino *sino, ino_t parent)
1174{
1175	int isdot;
1176	int mode;
1177
1178	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1179		sino->si_skipparent = 1;
1180}
1181
1182static void
1183ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
1184{
1185	struct suj_ino *sino;
1186	struct suj_rec *srec;
1187	struct jrefrec *rrec;
1188
1189	/*
1190	 * Lookup this inode to see if we have a record for it.
1191	 */
1192	sino = ino_lookup(child, 0);
1193	/*
1194	 * Tell any child directories we've already removed their
1195	 * parent link cnt.  Don't try to adjust our link down again.
1196	 */
1197	if (sino != NULL && isdotdot == 0)
1198		ino_setskip(sino, parent);
1199	/*
1200	 * No valid record for this inode.  Just drop the on-disk
1201	 * link by one.
1202	 */
1203	if (sino == NULL || sino->si_hasrecs == 0) {
1204		ino_decr(child);
1205		return;
1206	}
1207	/*
1208	 * Use ino_adjust() if ino_check() has already processed this
1209	 * child.  If we lose the last non-dot reference to a
1210	 * directory it will be discarded.
1211	 */
1212	if (sino->si_linkadj) {
1213		sino->si_nlink--;
1214		if (isdotdot)
1215			sino->si_dotlinks--;
1216		ino_adjust(sino);
1217		return;
1218	}
1219	/*
1220	 * If we haven't yet processed this inode we need to make
1221	 * sure we will successfully discover the lost path.  If not
1222	 * use nlinkadj to remember.
1223	 */
1224	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1225		rrec = (struct jrefrec *)srec->sr_rec;
1226		if (rrec->jr_parent == parent &&
1227		    rrec->jr_diroff == diroff)
1228			return;
1229	}
1230	sino->si_nlinkadj++;
1231}
1232
1233/*
1234 * Free the children of a directory when the directory is discarded.
1235 */
1236static void
1237ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1238{
1239	struct suj_ino *sino;
1240	struct direct *dp;
1241	off_t diroff;
1242	uint8_t *block;
1243	int skipparent;
1244	int isdotdot;
1245	int dpoff;
1246	int size;
1247
1248	sino = ino_lookup(ino, 0);
1249	if (sino)
1250		skipparent = sino->si_skipparent;
1251	else
1252		skipparent = 0;
1253	size = lfragtosize(fs, frags);
1254	block = dblk_read(blk, size);
1255	dp = (struct direct *)&block[0];
1256	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1257		dp = (struct direct *)&block[dpoff];
1258		if (dp->d_ino == 0 || dp->d_ino == WINO)
1259			continue;
1260		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1261			continue;
1262		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1263		    dp->d_name[1] == '.';
1264		if (isdotdot && skipparent == 1)
1265			continue;
1266		if (debug)
1267			printf("Directory %d removing ino %d name %s\n",
1268			    ino, dp->d_ino, dp->d_name);
1269		diroff = lblktosize(fs, lbn) + dpoff;
1270		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1271	}
1272}
1273
1274/*
1275 * Reclaim an inode, freeing all blocks and decrementing all children's
1276 * link counts.  Free the inode back to the cg.
1277 */
1278static void
1279ino_reclaim(union dinode *ip, ino_t ino, int mode)
1280{
1281	uint32_t gen;
1282
1283	if (ino == ROOTINO)
1284		err_suj("Attempting to free ROOTINO\n");
1285	if (debug)
1286		printf("Truncating and freeing ino %d, nlink %d, mode %o\n",
1287		    ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1288
1289	/* We are freeing an inode or directory. */
1290	if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1291		ino_visit(ip, ino, ino_free_children, 0);
1292	DIP_SET(ip, di_nlink, 0);
1293	ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1294	/* Here we have to clear the inode and release any blocks it holds. */
1295	gen = DIP(ip, di_gen);
1296	if (fs->fs_magic == FS_UFS1_MAGIC)
1297		bzero(ip, sizeof(struct ufs1_dinode));
1298	else
1299		bzero(ip, sizeof(struct ufs2_dinode));
1300	DIP_SET(ip, di_gen, gen);
1301	ino_dirty(ino);
1302	ino_free(ino, mode);
1303	return;
1304}
1305
1306/*
1307 * Adjust an inode's link count down by one when a directory goes away.
1308 */
1309static void
1310ino_decr(ino_t ino)
1311{
1312	union dinode *ip;
1313	int reqlink;
1314	int nlink;
1315	int mode;
1316
1317	ip = ino_read(ino);
1318	nlink = DIP(ip, di_nlink);
1319	mode = DIP(ip, di_mode);
1320	if (nlink < 1)
1321		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1322	if (mode == 0)
1323		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1324	nlink--;
1325	if ((mode & IFMT) == IFDIR)
1326		reqlink = 2;
1327	else
1328		reqlink = 1;
1329	if (nlink < reqlink) {
1330		if (debug)
1331			printf("ino %d not enough links to live %d < %d\n",
1332			    ino, nlink, reqlink);
1333		ino_reclaim(ip, ino, mode);
1334		return;
1335	}
1336	DIP_SET(ip, di_nlink, nlink);
1337	ino_dirty(ino);
1338}
1339
1340/*
1341 * Adjust the inode link count to 'nlink'.  If the count reaches zero
1342 * free it.
1343 */
1344static void
1345ino_adjust(struct suj_ino *sino)
1346{
1347	struct jrefrec *rrec;
1348	struct suj_rec *srec;
1349	struct suj_ino *stmp;
1350	union dinode *ip;
1351	nlink_t nlink;
1352	int recmode;
1353	int reqlink;
1354	int isdot;
1355	int mode;
1356	ino_t ino;
1357
1358	nlink = sino->si_nlink;
1359	ino = sino->si_ino;
1360	mode = sino->si_mode & IFMT;
1361	/*
1362	 * If it's a directory with no dot links, it was truncated before
1363	 * the name was cleared.  We need to clear the dirent that
1364	 * points at it.
1365	 */
1366	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1367		sino->si_nlink = nlink = 0;
1368		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1369			rrec = (struct jrefrec *)srec->sr_rec;
1370			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1371			    &recmode, &isdot) == 0)
1372				continue;
1373			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1374			break;
1375		}
1376		if (srec == NULL)
1377			errx(1, "Directory %d name not found", ino);
1378	}
1379	/*
1380	 * If it's a directory with no real names pointing to it go ahead
1381	 * and truncate it.  This will free any children.
1382	 */
1383	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1384		sino->si_nlink = nlink = 0;
1385		/*
1386		 * Mark any .. links so they know not to free this inode
1387		 * when they are removed.
1388		 */
1389		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1390			rrec = (struct jrefrec *)srec->sr_rec;
1391			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1392				stmp = ino_lookup(rrec->jr_parent, 0);
1393				if (stmp)
1394					ino_setskip(stmp, ino);
1395			}
1396		}
1397	}
1398	ip = ino_read(ino);
1399	mode = DIP(ip, di_mode) & IFMT;
1400	if (nlink > LINK_MAX)
1401		err_suj(
1402		    "ino %d nlink manipulation error, new link %d, old link %d\n",
1403		    ino, nlink, DIP(ip, di_nlink));
1404	if (debug)
1405		printf("Adjusting ino %d, nlink %d, old link %d lastmode %o\n",
1406		    ino, nlink, DIP(ip, di_nlink), sino->si_mode);
1407	if (mode == 0) {
1408		if (debug)
1409			printf("ino %d, zero inode freeing bitmap\n", ino);
1410		ino_free(ino, sino->si_mode);
1411		return;
1412	}
1413	/* XXX Should be an assert? */
1414	if (mode != sino->si_mode && debug)
1415		printf("ino %d, mode %o != %o\n", ino, mode, sino->si_mode);
1416	if ((mode & IFMT) == IFDIR)
1417		reqlink = 2;
1418	else
1419		reqlink = 1;
1420	/* If the inode doesn't have enough links to live, free it. */
1421	if (nlink < reqlink) {
1422		if (debug)
1423			printf("ino %d not enough links to live %d < %d\n",
1424			    ino, nlink, reqlink);
1425		ino_reclaim(ip, ino, mode);
1426		return;
1427	}
1428	/* If required write the updated link count. */
1429	if (DIP(ip, di_nlink) == nlink) {
1430		if (debug)
1431			printf("ino %d, link matches, skipping.\n", ino);
1432		return;
1433	}
1434	DIP_SET(ip, di_nlink, nlink);
1435	ino_dirty(ino);
1436}
1437
1438/*
1439 * Truncate some or all blocks in an indirect, freeing any that are required
1440 * and zeroing the indirect.
1441 */
1442static void
1443indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1444{
1445	ufs2_daddr_t *bap2;
1446	ufs1_daddr_t *bap1;
1447	ufs_lbn_t lbnadd;
1448	ufs2_daddr_t nblk;
1449	ufs_lbn_t next;
1450	ufs_lbn_t nlbn;
1451	int dirty;
1452	int level;
1453	int i;
1454
1455	if (blk == 0)
1456		return;
1457	dirty = 0;
1458	level = lbn_level(lbn);
1459	if (level == -1)
1460		err_suj("Invalid level for lbn %jd\n", lbn);
1461	lbnadd = 1;
1462	for (i = level; i > 0; i--)
1463		lbnadd *= NINDIR(fs);
1464	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1465	bap2 = (void *)bap1;
1466	for (i = 0; i < NINDIR(fs); i++) {
1467		if (fs->fs_magic == FS_UFS1_MAGIC)
1468			nblk = *bap1++;
1469		else
1470			nblk = *bap2++;
1471		if (nblk == 0)
1472			continue;
1473		if (level != 0) {
1474			nlbn = (lbn + 1) - (i * lbnadd);
1475			/*
1476			 * Calculate the lbn of the next indirect to
1477			 * determine if any of this indirect must be
1478			 * reclaimed.
1479			 */
1480			next = -(lbn + level) + ((i+1) * lbnadd);
1481			if (next <= lastlbn)
1482				continue;
1483			indir_trunc(ino, nlbn, nblk, lastlbn);
1484			/* If all of this indirect was reclaimed, free it. */
1485			nlbn = next - lbnadd;
1486			if (nlbn < lastlbn)
1487				continue;
1488		} else {
1489			nlbn = -lbn + i * lbnadd;
1490			if (nlbn < lastlbn)
1491				continue;
1492		}
1493		dirty = 1;
1494		blk_free(nblk, 0, fs->fs_frag);
1495		if (fs->fs_magic == FS_UFS1_MAGIC)
1496			*(bap1 - 1) = 0;
1497		else
1498			*(bap2 - 1) = 0;
1499	}
1500	if (dirty)
1501		dblk_dirty(blk);
1502}
1503
1504/*
1505 * Truncate an inode to the minimum of the given size or the last populated
1506 * block after any over size have been discarded.  The kernel would allocate
1507 * the last block in the file but fsck does not and neither do we.  This
1508 * code never extends files, only shrinks them.
1509 */
1510static void
1511ino_trunc(ino_t ino, off_t size)
1512{
1513	union dinode *ip;
1514	ufs2_daddr_t bn;
1515	uint64_t totalfrags;
1516	ufs_lbn_t nextlbn;
1517	ufs_lbn_t lastlbn;
1518	ufs_lbn_t tmpval;
1519	ufs_lbn_t lbn;
1520	ufs_lbn_t i;
1521	int frags;
1522	off_t cursize;
1523	off_t off;
1524	int mode;
1525
1526	ip = ino_read(ino);
1527	mode = DIP(ip, di_mode) & IFMT;
1528	cursize = DIP(ip, di_size);
1529	if (debug)
1530		printf("Truncating ino %d, mode %o to size %jd from size %jd\n",
1531		    ino, mode, size, cursize);
1532
1533	/* Skip datablocks for short links and devices. */
1534	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1535	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1536		return;
1537	/* Don't extend. */
1538	if (size > cursize)
1539		size = cursize;
1540	lastlbn = lblkno(fs, blkroundup(fs, size));
1541	for (i = lastlbn; i < NDADDR; i++) {
1542		if (DIP(ip, di_db[i]) == 0)
1543			continue;
1544		frags = sblksize(fs, cursize, i);
1545		frags = numfrags(fs, frags);
1546		blk_free(DIP(ip, di_db[i]), 0, frags);
1547		DIP_SET(ip, di_db[i], 0);
1548	}
1549	/*
1550	 * Follow indirect blocks, freeing anything required.
1551	 */
1552	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1553	    lbn = nextlbn) {
1554		nextlbn = lbn + tmpval;
1555		tmpval *= NINDIR(fs);
1556		/* If we're not freeing any in this indirect range skip it. */
1557		if (lastlbn >= nextlbn)
1558			continue;
1559		if (DIP(ip, di_ib[i]) == 0)
1560			continue;
1561		indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1562		/* If we freed everything in this indirect free the indir. */
1563		if (lastlbn > lbn)
1564			continue;
1565		blk_free(DIP(ip, di_ib[i]), 0, frags);
1566		DIP_SET(ip, di_ib[i], 0);
1567	}
1568	ino_dirty(ino);
1569	/*
1570	 * Now that we've freed any whole blocks that exceed the desired
1571	 * truncation size, figure out how many blocks remain and what the
1572	 * last populated lbn is.  We will set the size to this last lbn
1573	 * rather than worrying about allocating the final lbn as the kernel
1574	 * would've done.  This is consistent with normal fsck behavior.
1575	 */
1576	visitlbn = 0;
1577	totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1578	if (size > lblktosize(fs, visitlbn + 1))
1579		size = lblktosize(fs, visitlbn + 1);
1580	/*
1581	 * If we're truncating direct blocks we have to adjust frags
1582	 * accordingly.
1583	 */
1584	if (visitlbn < NDADDR && totalfrags) {
1585		long oldspace, newspace;
1586
1587		bn = DIP(ip, di_db[visitlbn]);
1588		if (bn == 0)
1589			err_suj("Bad blk at ino %d lbn %jd\n", ino, visitlbn);
1590		oldspace = sblksize(fs, cursize, visitlbn);
1591		newspace = sblksize(fs, size, visitlbn);
1592		if (oldspace != newspace) {
1593			bn += numfrags(fs, newspace);
1594			frags = numfrags(fs, oldspace - newspace);
1595			blk_free(bn, 0, frags);
1596			totalfrags -= frags;
1597		}
1598	}
1599	DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1600	DIP_SET(ip, di_size, size);
1601	/*
1602	 * If we've truncated into the middle of a block or frag we have
1603	 * to zero it here.  Otherwise the file could extend into
1604	 * uninitialized space later.
1605	 */
1606	off = blkoff(fs, size);
1607	if (off) {
1608		uint8_t *buf;
1609		long clrsize;
1610
1611		bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1612		if (bn == 0)
1613			err_suj("Block missing from ino %d at lbn %jd\n",
1614			    ino, visitlbn);
1615		clrsize = frags * fs->fs_fsize;
1616		buf = dblk_read(bn, clrsize);
1617		clrsize -= off;
1618		buf += off;
1619		bzero(buf, clrsize);
1620		dblk_dirty(bn);
1621	}
1622	return;
1623}
1624
1625/*
1626 * Process records available for one inode and determine whether the
1627 * link count is correct or needs adjusting.
1628 */
1629static void
1630ino_check(struct suj_ino *sino)
1631{
1632	struct suj_rec *srec;
1633	struct jrefrec *rrec;
1634	nlink_t dotlinks;
1635	int newlinks;
1636	int removes;
1637	int nlink;
1638	ino_t ino;
1639	int isdot;
1640	int isat;
1641	int mode;
1642
1643	if (sino->si_hasrecs == 0)
1644		return;
1645	ino = sino->si_ino;
1646	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1647	nlink = rrec->jr_nlink;
1648	newlinks = 0;
1649	dotlinks = 0;
1650	removes = sino->si_nlinkadj;
1651	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1652		rrec = (struct jrefrec *)srec->sr_rec;
1653		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1654		    rrec->jr_ino, &mode, &isdot);
1655		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1656			err_suj("Inode mode/directory type mismatch %o != %o\n",
1657			    mode, rrec->jr_mode);
1658		if (debug)
1659			printf("jrefrec: op %d ino %d, nlink %d, parent %d, "
1660			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1661			    rrec->jr_op, rrec->jr_ino, rrec->jr_nlink,
1662			    rrec->jr_parent, rrec->jr_diroff, rrec->jr_mode,
1663			    isat, isdot);
1664		mode = rrec->jr_mode & IFMT;
1665		if (rrec->jr_op == JOP_REMREF)
1666			removes++;
1667		newlinks += isat;
1668		if (isdot)
1669			dotlinks += isat;
1670	}
1671	/*
1672	 * The number of links that remain are the starting link count
1673	 * subtracted by the total number of removes with the total
1674	 * links discovered back in.  An incomplete remove thus
1675	 * makes no change to the link count but an add increases
1676	 * by one.
1677	 */
1678	if (debug)
1679		printf("ino %d nlink %d newlinks %d removes %d dotlinks %d\n",
1680		    ino, nlink, newlinks, removes, dotlinks);
1681	nlink += newlinks;
1682	nlink -= removes;
1683	sino->si_linkadj = 1;
1684	sino->si_nlink = nlink;
1685	sino->si_dotlinks = dotlinks;
1686	sino->si_mode = mode;
1687	ino_adjust(sino);
1688}
1689
1690/*
1691 * Process records available for one block and determine whether it is
1692 * still allocated and whether the owning inode needs to be updated or
1693 * a free completed.
1694 */
1695static void
1696blk_check(struct suj_blk *sblk)
1697{
1698	struct suj_rec *srec;
1699	struct jblkrec *brec;
1700	struct suj_ino *sino;
1701	ufs2_daddr_t blk;
1702	int mask;
1703	int frags;
1704	int isat;
1705
1706	/*
1707	 * Each suj_blk actually contains records for any fragments in that
1708	 * block.  As a result we must evaluate each record individually.
1709	 */
1710	sino = NULL;
1711	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1712		brec = (struct jblkrec *)srec->sr_rec;
1713		frags = brec->jb_frags;
1714		blk = brec->jb_blkno + brec->jb_oldfrags;
1715		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1716		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1717			sino = ino_lookup(brec->jb_ino, 1);
1718			sino->si_blkadj = 1;
1719		}
1720		if (debug)
1721			printf("op %d blk %jd ino %d lbn %jd frags %d isat %d (%d)\n",
1722			    brec->jb_op, blk, brec->jb_ino, brec->jb_lbn,
1723			    brec->jb_frags, isat, frags);
1724		/*
1725		 * If we found the block at this address we still have to
1726		 * determine if we need to free the tail end that was
1727		 * added by adding contiguous fragments from the same block.
1728		 */
1729		if (isat == 1) {
1730			if (frags == brec->jb_frags)
1731				continue;
1732			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1733			    brec->jb_frags);
1734			mask >>= frags;
1735			blk += frags;
1736			frags = brec->jb_frags - frags;
1737			blk_free(blk, mask, frags);
1738			continue;
1739		}
1740		/*
1741	 	 * The block wasn't found, attempt to free it.  It won't be
1742		 * freed if it was actually reallocated.  If this was an
1743		 * allocation we don't want to follow indirects as they
1744		 * may not be written yet.  Any children of the indirect will
1745		 * have their own records.  If it's a free we need to
1746		 * recursively free children.
1747		 */
1748		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1749		    brec->jb_op == JOP_FREEBLK);
1750	}
1751}
1752
1753/*
1754 * Walk the list of inode records for this cg and resolve moved and duplicate
1755 * inode references now that we have a complete picture.
1756 */
1757static void
1758cg_build(struct suj_cg *sc)
1759{
1760	struct suj_ino *sino;
1761	int i;
1762
1763	for (i = 0; i < SUJ_HASHSIZE; i++)
1764		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1765			ino_build(sino);
1766}
1767
1768/*
1769 * Handle inodes requiring truncation.  This must be done prior to
1770 * looking up any inodes in directories.
1771 */
1772static void
1773cg_trunc(struct suj_cg *sc)
1774{
1775	struct suj_ino *sino;
1776	int i;
1777
1778	for (i = 0; i < SUJ_HASHSIZE; i++)
1779		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1780			if (sino->si_trunc) {
1781				ino_trunc(sino->si_ino,
1782				    sino->si_trunc->jt_size);
1783				sino->si_trunc = NULL;
1784			}
1785}
1786
1787/*
1788 * Free any partially allocated blocks and then resolve inode block
1789 * counts.
1790 */
1791static void
1792cg_check_blk(struct suj_cg *sc)
1793{
1794	struct suj_ino *sino;
1795	struct suj_blk *sblk;
1796	int i;
1797
1798
1799	for (i = 0; i < SUJ_HASHSIZE; i++)
1800		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1801			blk_check(sblk);
1802	/*
1803	 * Now that we've freed blocks which are not referenced we
1804	 * make a second pass over all inodes to adjust their block
1805	 * counts.
1806	 */
1807	for (i = 0; i < SUJ_HASHSIZE; i++)
1808		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1809			if (sino->si_blkadj)
1810				ino_adjblks(sino);
1811}
1812
1813/*
1814 * Walk the list of inode records for this cg, recovering any
1815 * changes which were not complete at the time of crash.
1816 */
1817static void
1818cg_check_ino(struct suj_cg *sc)
1819{
1820	struct suj_ino *sino;
1821	int i;
1822
1823	for (i = 0; i < SUJ_HASHSIZE; i++)
1824		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1825			ino_check(sino);
1826}
1827
1828/*
1829 * Write a potentially dirty cg.  Recalculate the summary information and
1830 * update the superblock summary.
1831 */
1832static void
1833cg_write(struct suj_cg *sc)
1834{
1835	ufs1_daddr_t fragno, cgbno, maxbno;
1836	u_int8_t *blksfree;
1837	struct cg *cgp;
1838	int blk;
1839	int i;
1840
1841	if (sc->sc_dirty == 0)
1842		return;
1843	/*
1844	 * Fix the frag and cluster summary.
1845	 */
1846	cgp = sc->sc_cgp;
1847	cgp->cg_cs.cs_nbfree = 0;
1848	cgp->cg_cs.cs_nffree = 0;
1849	bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1850	maxbno = fragstoblks(fs, fs->fs_fpg);
1851	if (fs->fs_contigsumsize > 0) {
1852		for (i = 1; i <= fs->fs_contigsumsize; i++)
1853			cg_clustersum(cgp)[i] = 0;
1854		bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1855	}
1856	blksfree = cg_blksfree(cgp);
1857	for (cgbno = 0; cgbno < maxbno; cgbno++) {
1858		if (ffs_isfreeblock(fs, blksfree, cgbno))
1859			continue;
1860		if (ffs_isblock(fs, blksfree, cgbno)) {
1861			ffs_clusteracct(fs, cgp, cgbno, 1);
1862			cgp->cg_cs.cs_nbfree++;
1863			continue;
1864		}
1865		fragno = blkstofrags(fs, cgbno);
1866		blk = blkmap(fs, blksfree, fragno);
1867		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1868		for (i = 0; i < fs->fs_frag; i++)
1869			if (isset(blksfree, fragno + i))
1870				cgp->cg_cs.cs_nffree++;
1871	}
1872	/*
1873	 * Update the superblock cg summary from our now correct values
1874	 * before writing the block.
1875	 */
1876	fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1877	if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
1878	    fs->fs_bsize) == -1)
1879		err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1880}
1881
1882/*
1883 * Write out any modified inodes.
1884 */
1885static void
1886cg_write_inos(struct suj_cg *sc)
1887{
1888	struct ino_blk *iblk;
1889	int i;
1890
1891	for (i = 0; i < SUJ_HASHSIZE; i++)
1892		LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1893			if (iblk->ib_dirty)
1894				iblk_write(iblk);
1895}
1896
1897static void
1898cg_apply(void (*apply)(struct suj_cg *))
1899{
1900	struct suj_cg *scg;
1901	int i;
1902
1903	for (i = 0; i < SUJ_HASHSIZE; i++)
1904		LIST_FOREACH(scg, &cghash[i], sc_next)
1905			apply(scg);
1906}
1907
1908/*
1909 * Process the unlinked but referenced file list.  Freeing all inodes.
1910 */
1911static void
1912ino_unlinked(void)
1913{
1914	union dinode *ip;
1915	uint16_t mode;
1916	ino_t inon;
1917	ino_t ino;
1918
1919	ino = fs->fs_sujfree;
1920	fs->fs_sujfree = 0;
1921	while (ino != 0) {
1922		ip = ino_read(ino);
1923		mode = DIP(ip, di_mode) & IFMT;
1924		inon = DIP(ip, di_freelink);
1925		DIP_SET(ip, di_freelink, 0);
1926		/*
1927		 * XXX Should this be an errx?
1928		 */
1929		if (DIP(ip, di_nlink) == 0) {
1930			if (debug)
1931				printf("Freeing unlinked ino %d mode %o\n",
1932				    ino, mode);
1933			ino_reclaim(ip, ino, mode);
1934		} else if (debug)
1935			printf("Skipping ino %d mode %o with link %d\n",
1936			    ino, mode, DIP(ip, di_nlink));
1937		ino = inon;
1938	}
1939}
1940
1941/*
1942 * Append a new record to the list of records requiring processing.
1943 */
1944static void
1945ino_append(union jrec *rec)
1946{
1947	struct jrefrec *refrec;
1948	struct jmvrec *mvrec;
1949	struct suj_ino *sino;
1950	struct suj_rec *srec;
1951
1952	mvrec = &rec->rec_jmvrec;
1953	refrec = &rec->rec_jrefrec;
1954	if (debug && mvrec->jm_op == JOP_MVREF)
1955		printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n",
1956		    mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff,
1957		    mvrec->jm_oldoff);
1958	else if (debug &&
1959	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1960		printf("ino ref: op %d, ino %d, nlink %d, "
1961		    "parent %d, diroff %jd\n",
1962		    refrec->jr_op, refrec->jr_ino, refrec->jr_nlink,
1963		    refrec->jr_parent, refrec->jr_diroff);
1964	/*
1965	 * Lookup the ino and clear truncate if one is found.  Partial
1966	 * truncates are always done synchronously so if we discover
1967	 * an operation that requires a lock the truncation has completed
1968	 * and can be discarded.
1969	 */
1970	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1971	sino->si_trunc = NULL;
1972	sino->si_hasrecs = 1;
1973	srec = errmalloc(sizeof(*srec));
1974	srec->sr_rec = rec;
1975	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1976}
1977
1978/*
1979 * Add a reference adjustment to the sino list and eliminate dups.  The
1980 * primary loop in ino_build_ref() checks for dups but new ones may be
1981 * created as a result of offset adjustments.
1982 */
1983static void
1984ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1985{
1986	struct jrefrec *refrec;
1987	struct suj_rec *srn;
1988	struct jrefrec *rrn;
1989
1990	refrec = (struct jrefrec *)srec->sr_rec;
1991	/*
1992	 * We walk backwards so that the oldest link count is preserved.  If
1993	 * an add record conflicts with a remove keep the remove.  Redundant
1994	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1995	 * oldest record at a given location.
1996	 */
1997	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
1998	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
1999		rrn = (struct jrefrec *)srn->sr_rec;
2000		if (rrn->jr_parent != refrec->jr_parent ||
2001		    rrn->jr_diroff != refrec->jr_diroff)
2002			continue;
2003		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
2004			rrn->jr_mode = refrec->jr_mode;
2005			return;
2006		}
2007		/*
2008		 * Adding a remove.
2009		 *
2010		 * Replace the record in place with the old nlink in case
2011		 * we replace the head of the list.  Abandon srec as a dup.
2012		 */
2013		refrec->jr_nlink = rrn->jr_nlink;
2014		srn->sr_rec = srec->sr_rec;
2015		return;
2016	}
2017	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
2018}
2019
2020/*
2021 * Create a duplicate of a reference at a previous location.
2022 */
2023static void
2024ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
2025{
2026	struct jrefrec *rrn;
2027	struct suj_rec *srn;
2028
2029	rrn = errmalloc(sizeof(*refrec));
2030	*rrn = *refrec;
2031	rrn->jr_op = JOP_ADDREF;
2032	rrn->jr_diroff = diroff;
2033	srn = errmalloc(sizeof(*srn));
2034	srn->sr_rec = (union jrec *)rrn;
2035	ino_add_ref(sino, srn);
2036}
2037
2038/*
2039 * Add a reference to the list at all known locations.  We follow the offset
2040 * changes for a single instance and create duplicate add refs at each so
2041 * that we can tolerate any version of the directory block.  Eliminate
2042 * removes which collide with adds that are seen in the journal.  They should
2043 * not adjust the link count down.
2044 */
2045static void
2046ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
2047{
2048	struct jrefrec *refrec;
2049	struct jmvrec *mvrec;
2050	struct suj_rec *srp;
2051	struct suj_rec *srn;
2052	struct jrefrec *rrn;
2053	off_t diroff;
2054
2055	refrec = (struct jrefrec *)srec->sr_rec;
2056	/*
2057	 * Search for a mvrec that matches this offset.  Whether it's an add
2058	 * or a remove we can delete the mvref after creating a dup record in
2059	 * the old location.
2060	 */
2061	if (!TAILQ_EMPTY(&sino->si_movs)) {
2062		diroff = refrec->jr_diroff;
2063		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
2064			srp = TAILQ_PREV(srn, srechd, sr_next);
2065			mvrec = (struct jmvrec *)srn->sr_rec;
2066			if (mvrec->jm_parent != refrec->jr_parent ||
2067			    mvrec->jm_newoff != diroff)
2068				continue;
2069			diroff = mvrec->jm_oldoff;
2070			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
2071			free(srn);
2072			ino_dup_ref(sino, refrec, diroff);
2073		}
2074	}
2075	/*
2076	 * If a remove wasn't eliminated by an earlier add just append it to
2077	 * the list.
2078	 */
2079	if (refrec->jr_op == JOP_REMREF) {
2080		ino_add_ref(sino, srec);
2081		return;
2082	}
2083	/*
2084	 * Walk the list of records waiting to be added to the list.  We
2085	 * must check for moves that apply to our current offset and remove
2086	 * them from the list.  Remove any duplicates to eliminate removes
2087	 * with corresponding adds.
2088	 */
2089	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2090		switch (srn->sr_rec->rec_jrefrec.jr_op) {
2091		case JOP_ADDREF:
2092			/*
2093			 * This should actually be an error we should
2094			 * have a remove for every add journaled.
2095			 */
2096			rrn = (struct jrefrec *)srn->sr_rec;
2097			if (rrn->jr_parent != refrec->jr_parent ||
2098			    rrn->jr_diroff != refrec->jr_diroff)
2099				break;
2100			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2101			break;
2102		case JOP_REMREF:
2103			/*
2104			 * Once we remove the current iteration of the
2105			 * record at this address we're done.
2106			 */
2107			rrn = (struct jrefrec *)srn->sr_rec;
2108			if (rrn->jr_parent != refrec->jr_parent ||
2109			    rrn->jr_diroff != refrec->jr_diroff)
2110				break;
2111			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2112			ino_add_ref(sino, srec);
2113			return;
2114		case JOP_MVREF:
2115			/*
2116			 * Update our diroff based on any moves that match
2117			 * and remove the move.
2118			 */
2119			mvrec = (struct jmvrec *)srn->sr_rec;
2120			if (mvrec->jm_parent != refrec->jr_parent ||
2121			    mvrec->jm_oldoff != refrec->jr_diroff)
2122				break;
2123			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2124			refrec->jr_diroff = mvrec->jm_newoff;
2125			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2126			break;
2127		default:
2128			err_suj("ino_build_ref: Unknown op %d\n",
2129			    srn->sr_rec->rec_jrefrec.jr_op);
2130		}
2131	}
2132	ino_add_ref(sino, srec);
2133}
2134
2135/*
2136 * Walk the list of new records and add them in-order resolving any
2137 * dups and adjusted offsets.
2138 */
2139static void
2140ino_build(struct suj_ino *sino)
2141{
2142	struct suj_rec *srec;
2143
2144	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2145		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2146		switch (srec->sr_rec->rec_jrefrec.jr_op) {
2147		case JOP_ADDREF:
2148		case JOP_REMREF:
2149			ino_build_ref(sino, srec);
2150			break;
2151		case JOP_MVREF:
2152			/*
2153			 * Add this mvrec to the queue of pending mvs.
2154			 */
2155			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2156			break;
2157		default:
2158			err_suj("ino_build: Unknown op %d\n",
2159			    srec->sr_rec->rec_jrefrec.jr_op);
2160		}
2161	}
2162	if (TAILQ_EMPTY(&sino->si_recs))
2163		sino->si_hasrecs = 0;
2164}
2165
2166/*
2167 * Modify journal records so they refer to the base block number
2168 * and a start and end frag range.  This is to facilitate the discovery
2169 * of overlapping fragment allocations.
2170 */
2171static void
2172blk_build(struct jblkrec *blkrec)
2173{
2174	struct suj_rec *srec;
2175	struct suj_blk *sblk;
2176	struct jblkrec *blkrn;
2177	struct suj_ino *sino;
2178	ufs2_daddr_t blk;
2179	off_t foff;
2180	int frag;
2181
2182	if (debug)
2183		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2184		    "ino %d lbn %jd\n",
2185		    blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags,
2186		    blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn);
2187
2188	/*
2189	 * Look up the inode and clear the truncate if any lbns after the
2190	 * truncate lbn are freed or allocated.
2191	 */
2192	sino = ino_lookup(blkrec->jb_ino, 0);
2193	if (sino && sino->si_trunc) {
2194		foff = lblktosize(fs, blkrec->jb_lbn);
2195		foff += lfragtosize(fs, blkrec->jb_frags);
2196		if (foff > sino->si_trunc->jt_size)
2197			sino->si_trunc = NULL;
2198	}
2199	blk = blknum(fs, blkrec->jb_blkno);
2200	frag = fragnum(fs, blkrec->jb_blkno);
2201	sblk = blk_lookup(blk, 1);
2202	/*
2203	 * Rewrite the record using oldfrags to indicate the offset into
2204	 * the block.  Leave jb_frags as the actual allocated count.
2205	 */
2206	blkrec->jb_blkno -= frag;
2207	blkrec->jb_oldfrags = frag;
2208	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2209		err_suj("Invalid fragment count %d oldfrags %d\n",
2210		    blkrec->jb_frags, frag);
2211	/*
2212	 * Detect dups.  If we detect a dup we always discard the oldest
2213	 * record as it is superseded by the new record.  This speeds up
2214	 * later stages but also eliminates free records which are used
2215	 * to indicate that the contents of indirects can be trusted.
2216	 */
2217	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2218		blkrn = (struct jblkrec *)srec->sr_rec;
2219		if (blkrn->jb_ino != blkrec->jb_ino ||
2220		    blkrn->jb_lbn != blkrec->jb_lbn ||
2221		    blkrn->jb_blkno != blkrec->jb_blkno ||
2222		    blkrn->jb_frags != blkrec->jb_frags ||
2223		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2224			continue;
2225		if (debug)
2226			printf("Removed dup.\n");
2227		/* Discard the free which is a dup with an alloc. */
2228		if (blkrec->jb_op == JOP_FREEBLK)
2229			return;
2230		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2231		free(srec);
2232		break;
2233	}
2234	srec = errmalloc(sizeof(*srec));
2235	srec->sr_rec = (union jrec *)blkrec;
2236	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2237}
2238
2239static void
2240ino_build_trunc(struct jtrncrec *rec)
2241{
2242	struct suj_ino *sino;
2243
2244	if (debug)
2245		printf("ino_build_trunc: ino %d, size %jd\n",
2246		    rec->jt_ino, rec->jt_size);
2247	sino = ino_lookup(rec->jt_ino, 1);
2248	sino->si_trunc = rec;
2249}
2250
2251/*
2252 * Build up tables of the operations we need to recover.
2253 */
2254static void
2255suj_build(void)
2256{
2257	struct suj_seg *seg;
2258	union jrec *rec;
2259	int off;
2260	int i;
2261
2262	TAILQ_FOREACH(seg, &allsegs, ss_next) {
2263		if (debug)
2264			printf("seg %jd has %d records, oldseq %jd.\n",
2265			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2266			    seg->ss_rec.jsr_oldest);
2267		off = 0;
2268		rec = (union jrec *)seg->ss_blk;
2269		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2270			/* skip the segrec. */
2271			if ((off % real_dev_bsize) == 0)
2272				continue;
2273			switch (rec->rec_jrefrec.jr_op) {
2274			case JOP_ADDREF:
2275			case JOP_REMREF:
2276			case JOP_MVREF:
2277				ino_append(rec);
2278				break;
2279			case JOP_NEWBLK:
2280			case JOP_FREEBLK:
2281				blk_build((struct jblkrec *)rec);
2282				break;
2283			case JOP_TRUNC:
2284				ino_build_trunc((struct jtrncrec *)rec);
2285				break;
2286			default:
2287				err_suj("Unknown journal operation %d (%d)\n",
2288				    rec->rec_jrefrec.jr_op, off);
2289			}
2290			i++;
2291		}
2292	}
2293}
2294
2295/*
2296 * Prune the journal segments to those we care about based on the
2297 * oldest sequence in the newest segment.  Order the segment list
2298 * based on sequence number.
2299 */
2300static void
2301suj_prune(void)
2302{
2303	struct suj_seg *seg;
2304	struct suj_seg *segn;
2305	uint64_t newseq;
2306	int discard;
2307
2308	if (debug)
2309		printf("Pruning up to %jd\n", oldseq);
2310	/* First free the expired segments. */
2311	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2312		if (seg->ss_rec.jsr_seq >= oldseq)
2313			continue;
2314		TAILQ_REMOVE(&allsegs, seg, ss_next);
2315		free(seg->ss_blk);
2316		free(seg);
2317	}
2318	/* Next ensure that segments are ordered properly. */
2319	seg = TAILQ_FIRST(&allsegs);
2320	if (seg == NULL) {
2321		if (debug)
2322			printf("Empty journal\n");
2323		return;
2324	}
2325	newseq = seg->ss_rec.jsr_seq;
2326	for (;;) {
2327		seg = TAILQ_LAST(&allsegs, seghd);
2328		if (seg->ss_rec.jsr_seq >= newseq)
2329			break;
2330		TAILQ_REMOVE(&allsegs, seg, ss_next);
2331		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2332		newseq = seg->ss_rec.jsr_seq;
2333
2334	}
2335	if (newseq != oldseq) {
2336		err_suj("Journal file sequence mismatch %jd != %jd\n",
2337		    newseq, oldseq);
2338	}
2339	/*
2340	 * The kernel may asynchronously write segments which can create
2341	 * gaps in the sequence space.  Throw away any segments after the
2342	 * gap as the kernel guarantees only those that are contiguously
2343	 * reachable are marked as completed.
2344	 */
2345	discard = 0;
2346	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2347		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2348			jrecs += seg->ss_rec.jsr_cnt;
2349			jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2350			continue;
2351		}
2352		discard = 1;
2353		if (debug)
2354			printf("Journal order mismatch %jd != %jd pruning\n",
2355			    newseq-1, seg->ss_rec.jsr_seq);
2356		TAILQ_REMOVE(&allsegs, seg, ss_next);
2357		free(seg->ss_blk);
2358		free(seg);
2359	}
2360	if (debug)
2361		printf("Processing journal segments from %jd to %jd\n",
2362		    oldseq, newseq-1);
2363}
2364
2365/*
2366 * Verify the journal inode before attempting to read records.
2367 */
2368static int
2369suj_verifyino(union dinode *ip)
2370{
2371
2372	if (DIP(ip, di_nlink) != 1) {
2373		printf("Invalid link count %d for journal inode %d\n",
2374		    DIP(ip, di_nlink), sujino);
2375		return (-1);
2376	}
2377
2378	if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2379	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2380		printf("Invalid flags 0x%X for journal inode %d\n",
2381		    DIP(ip, di_flags), sujino);
2382		return (-1);
2383	}
2384
2385	if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2386		printf("Invalid mode %o for journal inode %d\n",
2387		    DIP(ip, di_mode), sujino);
2388		return (-1);
2389	}
2390
2391	if (DIP(ip, di_size) < SUJ_MIN || DIP(ip, di_size) > SUJ_MAX) {
2392		printf("Invalid size %jd for journal inode %d\n",
2393		    DIP(ip, di_size), sujino);
2394		return (-1);
2395	}
2396
2397	if (DIP(ip, di_modrev) != fs->fs_mtime) {
2398		printf("Journal timestamp does not match fs mount time\n");
2399		return (-1);
2400	}
2401
2402	return (0);
2403}
2404
2405struct jblocks {
2406	struct jextent *jb_extent;	/* Extent array. */
2407	int		jb_avail;	/* Available extents. */
2408	int		jb_used;	/* Last used extent. */
2409	int		jb_head;	/* Allocator head. */
2410	int		jb_off;		/* Allocator extent offset. */
2411};
2412struct jextent {
2413	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2414	int		je_blocks;	/* Disk block count. */
2415};
2416
2417struct jblocks *suj_jblocks;
2418
2419static struct jblocks *
2420jblocks_create(void)
2421{
2422	struct jblocks *jblocks;
2423	int size;
2424
2425	jblocks = errmalloc(sizeof(*jblocks));
2426	jblocks->jb_avail = 10;
2427	jblocks->jb_used = 0;
2428	jblocks->jb_head = 0;
2429	jblocks->jb_off = 0;
2430	size = sizeof(struct jextent) * jblocks->jb_avail;
2431	jblocks->jb_extent = errmalloc(size);
2432	bzero(jblocks->jb_extent, size);
2433
2434	return (jblocks);
2435}
2436
2437/*
2438 * Return the next available disk block and the amount of contiguous
2439 * free space it contains.
2440 */
2441static ufs2_daddr_t
2442jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2443{
2444	struct jextent *jext;
2445	ufs2_daddr_t daddr;
2446	int freecnt;
2447	int blocks;
2448
2449	blocks = bytes / disk->d_bsize;
2450	jext = &jblocks->jb_extent[jblocks->jb_head];
2451	freecnt = jext->je_blocks - jblocks->jb_off;
2452	if (freecnt == 0) {
2453		jblocks->jb_off = 0;
2454		if (++jblocks->jb_head > jblocks->jb_used)
2455			return (0);
2456		jext = &jblocks->jb_extent[jblocks->jb_head];
2457		freecnt = jext->je_blocks;
2458	}
2459	if (freecnt > blocks)
2460		freecnt = blocks;
2461	*actual = freecnt * disk->d_bsize;
2462	daddr = jext->je_daddr + jblocks->jb_off;
2463
2464	return (daddr);
2465}
2466
2467/*
2468 * Advance the allocation head by a specified number of bytes, consuming
2469 * one journal segment.
2470 */
2471static void
2472jblocks_advance(struct jblocks *jblocks, int bytes)
2473{
2474
2475	jblocks->jb_off += bytes / disk->d_bsize;
2476}
2477
2478static void
2479jblocks_destroy(struct jblocks *jblocks)
2480{
2481
2482	free(jblocks->jb_extent);
2483	free(jblocks);
2484}
2485
2486static void
2487jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2488{
2489	struct jextent *jext;
2490	int size;
2491
2492	jext = &jblocks->jb_extent[jblocks->jb_used];
2493	/* Adding the first block. */
2494	if (jext->je_daddr == 0) {
2495		jext->je_daddr = daddr;
2496		jext->je_blocks = blocks;
2497		return;
2498	}
2499	/* Extending the last extent. */
2500	if (jext->je_daddr + jext->je_blocks == daddr) {
2501		jext->je_blocks += blocks;
2502		return;
2503	}
2504	/* Adding a new extent. */
2505	if (++jblocks->jb_used == jblocks->jb_avail) {
2506		jblocks->jb_avail *= 2;
2507		size = sizeof(struct jextent) * jblocks->jb_avail;
2508		jext = errmalloc(size);
2509		bzero(jext, size);
2510		bcopy(jblocks->jb_extent, jext,
2511		    sizeof(struct jextent) * jblocks->jb_used);
2512		free(jblocks->jb_extent);
2513		jblocks->jb_extent = jext;
2514	}
2515	jext = &jblocks->jb_extent[jblocks->jb_used];
2516	jext->je_daddr = daddr;
2517	jext->je_blocks = blocks;
2518
2519	return;
2520}
2521
2522/*
2523 * Add a file block from the journal to the extent map.  We can't read
2524 * each file block individually because the kernel treats it as a circular
2525 * buffer and segments may span mutliple contiguous blocks.
2526 */
2527static void
2528suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2529{
2530
2531	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2532}
2533
2534static void
2535suj_read(void)
2536{
2537	uint8_t block[1 * 1024 * 1024];
2538	struct suj_seg *seg;
2539	struct jsegrec *recn;
2540	struct jsegrec *rec;
2541	ufs2_daddr_t blk;
2542	int readsize;
2543	int blocks;
2544	int recsize;
2545	int size;
2546	int i;
2547
2548	/*
2549	 * Read records until we exhaust the journal space.  If we find
2550	 * an invalid record we start searching for a valid segment header
2551	 * at the next block.  This is because we don't have a head/tail
2552	 * pointer and must recover the information indirectly.  At the gap
2553	 * between the head and tail we won't necessarily have a valid
2554	 * segment.
2555	 */
2556restart:
2557	for (;;) {
2558		size = sizeof(block);
2559		blk = jblocks_next(suj_jblocks, size, &readsize);
2560		if (blk == 0)
2561			return;
2562		size = readsize;
2563		/*
2564		 * Read 1MB at a time and scan for records within this block.
2565		 */
2566		if (bread(disk, blk, &block, size) == -1) {
2567			err_suj("Error reading journal block %jd\n",
2568			    (intmax_t)blk);
2569		}
2570		for (rec = (void *)block; size; size -= recsize,
2571		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2572			recsize = real_dev_bsize;
2573			if (rec->jsr_time != fs->fs_mtime) {
2574				if (debug)
2575					printf("Rec time %jd != fs mtime %jd\n",
2576					    rec->jsr_time, fs->fs_mtime);
2577				jblocks_advance(suj_jblocks, recsize);
2578				continue;
2579			}
2580			if (rec->jsr_cnt == 0) {
2581				if (debug)
2582					printf("Found illegal count %d\n",
2583					    rec->jsr_cnt);
2584				jblocks_advance(suj_jblocks, recsize);
2585				continue;
2586			}
2587			blocks = rec->jsr_blocks;
2588			recsize = blocks * real_dev_bsize;
2589			if (recsize > size) {
2590				/*
2591				 * We may just have run out of buffer, restart
2592				 * the loop to re-read from this spot.
2593				 */
2594				if (size < fs->fs_bsize &&
2595				    size != readsize &&
2596				    recsize <= fs->fs_bsize)
2597					goto restart;
2598				if (debug)
2599					printf("Found invalid segsize %d > %d\n",
2600					    recsize, size);
2601				recsize = real_dev_bsize;
2602				jblocks_advance(suj_jblocks, recsize);
2603				continue;
2604			}
2605			/*
2606			 * Verify that all blocks in the segment are present.
2607			 */
2608			for (i = 1; i < blocks; i++) {
2609				recn = (void *)((uintptr_t)rec) + i *
2610				    real_dev_bsize;
2611				if (recn->jsr_seq == rec->jsr_seq &&
2612				    recn->jsr_time == rec->jsr_time)
2613					continue;
2614				if (debug)
2615					printf("Incomplete record %jd (%d)\n",
2616					    rec->jsr_seq, i);
2617				recsize = i * real_dev_bsize;
2618				jblocks_advance(suj_jblocks, recsize);
2619				goto restart;
2620			}
2621			seg = errmalloc(sizeof(*seg));
2622			seg->ss_blk = errmalloc(recsize);
2623			seg->ss_rec = *rec;
2624			bcopy((void *)rec, seg->ss_blk, recsize);
2625			if (rec->jsr_oldest > oldseq)
2626				oldseq = rec->jsr_oldest;
2627			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2628			jblocks_advance(suj_jblocks, recsize);
2629		}
2630	}
2631}
2632
2633/*
2634 * Search a directory block for the SUJ_FILE.
2635 */
2636static void
2637suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2638{
2639	char block[MAXBSIZE];
2640	struct direct *dp;
2641	int bytes;
2642	int off;
2643
2644	if (sujino)
2645		return;
2646	bytes = lfragtosize(fs, frags);
2647	if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0)
2648		err_suj("Failed to read ROOTINO directory block %jd\n", blk);
2649	for (off = 0; off < bytes; off += dp->d_reclen) {
2650		dp = (struct direct *)&block[off];
2651		if (dp->d_reclen == 0)
2652			break;
2653		if (dp->d_ino == 0)
2654			continue;
2655		if (dp->d_namlen != strlen(SUJ_FILE))
2656			continue;
2657		if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2658			continue;
2659		sujino = dp->d_ino;
2660		return;
2661	}
2662}
2663
2664/*
2665 * Orchestrate the verification of a filesystem via the softupdates journal.
2666 */
2667int
2668suj_check(const char *filesys)
2669{
2670	union dinode *jip;
2671	union dinode *ip;
2672	uint64_t blocks;
2673	int retval;
2674	struct suj_seg *seg;
2675	struct suj_seg *segn;
2676
2677	opendisk(filesys);
2678	TAILQ_INIT(&allsegs);
2679
2680	/*
2681	 * Set an exit point when SUJ check failed
2682	 */
2683	retval = setjmp(jmpbuf);
2684	if (retval != 0) {
2685		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2686		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2687			TAILQ_REMOVE(&allsegs, seg, ss_next);
2688				free(seg->ss_blk);
2689				free(seg);
2690		}
2691		if (reply("FALLBACK TO FULL FSCK") == 0) {
2692			ckfini(0);
2693			exit(EEXIT);
2694		} else
2695			return (-1);
2696	}
2697
2698	/*
2699	 * Find the journal inode.
2700	 */
2701	ip = ino_read(ROOTINO);
2702	sujino = 0;
2703	ino_visit(ip, ROOTINO, suj_find, 0);
2704	if (sujino == 0) {
2705		printf("Journal inode removed.  Use tunefs to re-create.\n");
2706		sblock.fs_flags &= ~FS_SUJ;
2707		sblock.fs_sujfree = 0;
2708		return (-1);
2709	}
2710	/*
2711	 * Fetch the journal inode and verify it.
2712	 */
2713	jip = ino_read(sujino);
2714	printf("** SU+J Recovering %s\n", filesys);
2715	if (suj_verifyino(jip) != 0)
2716		return (-1);
2717	/*
2718	 * Build a list of journal blocks in jblocks before parsing the
2719	 * available journal blocks in with suj_read().
2720	 */
2721	printf("** Reading %jd byte journal from inode %d.\n",
2722	    DIP(jip, di_size), sujino);
2723	suj_jblocks = jblocks_create();
2724	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2725	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2726		printf("Sparse journal inode %d.\n", sujino);
2727		return (-1);
2728	}
2729	suj_read();
2730	jblocks_destroy(suj_jblocks);
2731	suj_jblocks = NULL;
2732	if (preen || reply("RECOVER")) {
2733		printf("** Building recovery table.\n");
2734		suj_prune();
2735		suj_build();
2736		cg_apply(cg_build);
2737		printf("** Resolving unreferenced inode list.\n");
2738		ino_unlinked();
2739		printf("** Processing journal entries.\n");
2740		cg_apply(cg_trunc);
2741		cg_apply(cg_check_blk);
2742		cg_apply(cg_check_ino);
2743	}
2744	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2745		return (0);
2746	/*
2747	 * To remain idempotent with partial truncations the free bitmaps
2748	 * must be written followed by indirect blocks and lastly inode
2749	 * blocks.  This preserves access to the modified pointers until
2750	 * they are freed.
2751	 */
2752	cg_apply(cg_write);
2753	dblk_write();
2754	cg_apply(cg_write_inos);
2755	/* Write back superblock. */
2756	closedisk(filesys);
2757	if (jrecs > 0 || jbytes > 0) {
2758		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2759		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2760		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2761		    freeinos, freedir, freeblocks, freefrags);
2762	}
2763
2764	return (0);
2765}
2766