suj.c revision 209408
1/*-
2 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sbin/fsck_ffs/suj.c 209408 2010-06-22 00:26:07Z delphij $");
29
30#include <sys/param.h>
31#include <sys/disklabel.h>
32#include <sys/mount.h>
33#include <sys/stat.h>
34
35#include <ufs/ufs/ufsmount.h>
36#include <ufs/ufs/dinode.h>
37#include <ufs/ufs/dir.h>
38#include <ufs/ffs/fs.h>
39
40#include <setjmp.h>
41#include <stdarg.h>
42#include <stdio.h>
43#include <stdlib.h>
44#include <stdint.h>
45#include <libufs.h>
46#include <string.h>
47#include <strings.h>
48#include <sysexits.h>
49#include <err.h>
50#include <assert.h>
51
52#include "fsck.h"
53
54#define	DOTDOT_OFFSET	DIRECTSIZ(1)
55#define	SUJ_HASHSIZE	2048
56#define	SUJ_HASHMASK	(SUJ_HASHSIZE - 1)
57#define	SUJ_HASH(x)	((x * 2654435761) & SUJ_HASHMASK)
58
59struct suj_seg {
60	TAILQ_ENTRY(suj_seg) ss_next;
61	struct jsegrec	ss_rec;
62	uint8_t		*ss_blk;
63};
64
65struct suj_rec {
66	TAILQ_ENTRY(suj_rec) sr_next;
67	union jrec	*sr_rec;
68};
69TAILQ_HEAD(srechd, suj_rec);
70
71struct suj_ino {
72	LIST_ENTRY(suj_ino)	si_next;
73	struct srechd		si_recs;
74	struct srechd		si_newrecs;
75	struct srechd		si_movs;
76	struct jtrncrec		*si_trunc;
77	ino_t			si_ino;
78	char			si_skipparent;
79	char			si_hasrecs;
80	char			si_blkadj;
81	char			si_linkadj;
82	int			si_mode;
83	nlink_t			si_nlinkadj;
84	nlink_t			si_nlink;
85	nlink_t			si_dotlinks;
86};
87LIST_HEAD(inohd, suj_ino);
88
89struct suj_blk {
90	LIST_ENTRY(suj_blk)	sb_next;
91	struct srechd		sb_recs;
92	ufs2_daddr_t		sb_blk;
93};
94LIST_HEAD(blkhd, suj_blk);
95
96struct data_blk {
97	LIST_ENTRY(data_blk)	db_next;
98	uint8_t			*db_buf;
99	ufs2_daddr_t		db_blk;
100	int			db_size;
101	int			db_dirty;
102};
103
104struct ino_blk {
105	LIST_ENTRY(ino_blk)	ib_next;
106	uint8_t			*ib_buf;
107	int			ib_dirty;
108	ufs2_daddr_t		ib_blk;
109};
110LIST_HEAD(iblkhd, ino_blk);
111
112struct suj_cg {
113	LIST_ENTRY(suj_cg)	sc_next;
114	struct blkhd		sc_blkhash[SUJ_HASHSIZE];
115	struct inohd		sc_inohash[SUJ_HASHSIZE];
116	struct iblkhd		sc_iblkhash[SUJ_HASHSIZE];
117	struct ino_blk		*sc_lastiblk;
118	struct suj_ino		*sc_lastino;
119	struct suj_blk		*sc_lastblk;
120	uint8_t			*sc_cgbuf;
121	struct cg		*sc_cgp;
122	int			sc_dirty;
123	int			sc_cgx;
124};
125
126LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
127LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
128struct suj_cg *lastcg;
129struct data_blk *lastblk;
130
131TAILQ_HEAD(seghd, suj_seg) allsegs;
132uint64_t oldseq;
133static struct uufsd *disk = NULL;
134static struct fs *fs = NULL;
135ino_t sujino;
136
137/*
138 * Summary statistics.
139 */
140uint64_t freefrags;
141uint64_t freeblocks;
142uint64_t freeinos;
143uint64_t freedir;
144uint64_t jbytes;
145uint64_t jrecs;
146
147static jmp_buf	jmpbuf;
148
149typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
150static void err_suj(const char *, ...) __dead2;
151static void ino_trunc(ino_t, off_t);
152static void ino_decr(ino_t);
153static void ino_adjust(struct suj_ino *);
154static void ino_build(struct suj_ino *);
155static int blk_isfree(ufs2_daddr_t);
156
157static void *
158errmalloc(size_t n)
159{
160	void *a;
161
162	a = malloc(n);
163	if (a == NULL)
164		err(EX_OSERR, "malloc(%zu)", n);
165	return (a);
166}
167
168/*
169 * When hit a fatal error in journalling check, print out
170 * the error and then offer to fallback to normal fsck.
171 */
172static void
173err_suj(const char * restrict fmt, ...)
174{
175	va_list ap;
176
177	if (preen)
178		(void)fprintf(stdout, "%s: ", cdevname);
179
180	va_start(ap, fmt);
181	(void)vfprintf(stdout, fmt, ap);
182	va_end(ap);
183
184	longjmp(jmpbuf, -1);
185}
186
187/*
188 * Open the given provider, load superblock.
189 */
190static void
191opendisk(const char *devnam)
192{
193	if (disk != NULL)
194		return;
195	disk = malloc(sizeof(*disk));
196	if (disk == NULL)
197		err(EX_OSERR, "malloc(%zu)", sizeof(*disk));
198	if (ufs_disk_fillout(disk, devnam) == -1) {
199		err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam,
200		    disk->d_error);
201	}
202	fs = &disk->d_fs;
203}
204
205/*
206 * Mark file system as clean, write the super-block back, close the disk.
207 */
208static void
209closedisk(const char *devnam)
210{
211	struct csum *cgsum;
212	int i;
213
214	/*
215	 * Recompute the fs summary info from correct cs summaries.
216	 */
217	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
218	for (i = 0; i < fs->fs_ncg; i++) {
219		cgsum = &fs->fs_cs(fs, i);
220		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
221		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
222		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
223		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
224	}
225	fs->fs_pendinginodes = 0;
226	fs->fs_pendingblocks = 0;
227	fs->fs_clean = 1;
228	fs->fs_time = time(NULL);
229	fs->fs_mtime = time(NULL);
230	if (sbwrite(disk, 0) == -1)
231		err(EX_OSERR, "sbwrite(%s)", devnam);
232	if (ufs_disk_close(disk) == -1)
233		err(EX_OSERR, "ufs_disk_close(%s)", devnam);
234	free(disk);
235	disk = NULL;
236	fs = NULL;
237}
238
239/*
240 * Lookup a cg by number in the hash so we can keep track of which cgs
241 * need stats rebuilt.
242 */
243static struct suj_cg *
244cg_lookup(int cgx)
245{
246	struct cghd *hd;
247	struct suj_cg *sc;
248
249	if (cgx < 0 || cgx >= fs->fs_ncg)
250		err_suj("Bad cg number %d\n", cgx);
251	if (lastcg && lastcg->sc_cgx == cgx)
252		return (lastcg);
253	hd = &cghash[SUJ_HASH(cgx)];
254	LIST_FOREACH(sc, hd, sc_next)
255		if (sc->sc_cgx == cgx) {
256			lastcg = sc;
257			return (sc);
258		}
259	sc = errmalloc(sizeof(*sc));
260	bzero(sc, sizeof(*sc));
261	sc->sc_cgbuf = errmalloc(fs->fs_bsize);
262	sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
263	sc->sc_cgx = cgx;
264	LIST_INSERT_HEAD(hd, sc, sc_next);
265	if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
266	    fs->fs_bsize) == -1)
267		err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
268
269	return (sc);
270}
271
272/*
273 * Lookup an inode number in the hash and allocate a suj_ino if it does
274 * not exist.
275 */
276static struct suj_ino *
277ino_lookup(ino_t ino, int creat)
278{
279	struct suj_ino *sino;
280	struct inohd *hd;
281	struct suj_cg *sc;
282
283	sc = cg_lookup(ino_to_cg(fs, ino));
284	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
285		return (sc->sc_lastino);
286	hd = &sc->sc_inohash[SUJ_HASH(ino)];
287	LIST_FOREACH(sino, hd, si_next)
288		if (sino->si_ino == ino)
289			return (sino);
290	if (creat == 0)
291		return (NULL);
292	sino = errmalloc(sizeof(*sino));
293	bzero(sino, sizeof(*sino));
294	sino->si_ino = ino;
295	TAILQ_INIT(&sino->si_recs);
296	TAILQ_INIT(&sino->si_newrecs);
297	TAILQ_INIT(&sino->si_movs);
298	LIST_INSERT_HEAD(hd, sino, si_next);
299
300	return (sino);
301}
302
303/*
304 * Lookup a block number in the hash and allocate a suj_blk if it does
305 * not exist.
306 */
307static struct suj_blk *
308blk_lookup(ufs2_daddr_t blk, int creat)
309{
310	struct suj_blk *sblk;
311	struct suj_cg *sc;
312	struct blkhd *hd;
313
314	sc = cg_lookup(dtog(fs, blk));
315	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
316		return (sc->sc_lastblk);
317	hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
318	LIST_FOREACH(sblk, hd, sb_next)
319		if (sblk->sb_blk == blk)
320			return (sblk);
321	if (creat == 0)
322		return (NULL);
323	sblk = errmalloc(sizeof(*sblk));
324	bzero(sblk, sizeof(*sblk));
325	sblk->sb_blk = blk;
326	TAILQ_INIT(&sblk->sb_recs);
327	LIST_INSERT_HEAD(hd, sblk, sb_next);
328
329	return (sblk);
330}
331
332static struct data_blk *
333dblk_lookup(ufs2_daddr_t blk)
334{
335	struct data_blk *dblk;
336	struct dblkhd *hd;
337
338	hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
339	if (lastblk && lastblk->db_blk == blk)
340		return (lastblk);
341	LIST_FOREACH(dblk, hd, db_next)
342		if (dblk->db_blk == blk)
343			return (dblk);
344	/*
345	 * The inode block wasn't located, allocate a new one.
346	 */
347	dblk = errmalloc(sizeof(*dblk));
348	bzero(dblk, sizeof(*dblk));
349	LIST_INSERT_HEAD(hd, dblk, db_next);
350	dblk->db_blk = blk;
351	return (dblk);
352}
353
354static uint8_t *
355dblk_read(ufs2_daddr_t blk, int size)
356{
357	struct data_blk *dblk;
358
359	dblk = dblk_lookup(blk);
360	/*
361	 * I doubt size mismatches can happen in practice but it is trivial
362	 * to handle.
363	 */
364	if (size != dblk->db_size) {
365		if (dblk->db_buf)
366			free(dblk->db_buf);
367		dblk->db_buf = errmalloc(size);
368		dblk->db_size = size;
369		if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
370			err_suj("Failed to read data block %jd\n", blk);
371	}
372	return (dblk->db_buf);
373}
374
375static void
376dblk_dirty(ufs2_daddr_t blk)
377{
378	struct data_blk *dblk;
379
380	dblk = dblk_lookup(blk);
381	dblk->db_dirty = 1;
382}
383
384static void
385dblk_write(void)
386{
387	struct data_blk *dblk;
388	int i;
389
390	for (i = 0; i < SUJ_HASHSIZE; i++) {
391		LIST_FOREACH(dblk, &dbhash[i], db_next) {
392			if (dblk->db_dirty == 0 || dblk->db_size == 0)
393				continue;
394			if (bwrite(disk, fsbtodb(fs, dblk->db_blk),
395			    dblk->db_buf, dblk->db_size) == -1)
396				err_suj("Unable to write block %jd\n",
397				    dblk->db_blk);
398		}
399	}
400}
401
402static union dinode *
403ino_read(ino_t ino)
404{
405	struct ino_blk *iblk;
406	struct iblkhd *hd;
407	struct suj_cg *sc;
408	ufs2_daddr_t blk;
409	int off;
410
411	blk = ino_to_fsba(fs, ino);
412	sc = cg_lookup(ino_to_cg(fs, ino));
413	iblk = sc->sc_lastiblk;
414	if (iblk && iblk->ib_blk == blk)
415		goto found;
416	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
417	LIST_FOREACH(iblk, hd, ib_next)
418		if (iblk->ib_blk == blk)
419			goto found;
420	/*
421	 * The inode block wasn't located, allocate a new one.
422	 */
423	iblk = errmalloc(sizeof(*iblk));
424	bzero(iblk, sizeof(*iblk));
425	iblk->ib_buf = errmalloc(fs->fs_bsize);
426	iblk->ib_blk = blk;
427	LIST_INSERT_HEAD(hd, iblk, ib_next);
428	if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
429		err_suj("Failed to read inode block %jd\n", blk);
430found:
431	sc->sc_lastiblk = iblk;
432	off = ino_to_fsbo(fs, ino);
433	if (fs->fs_magic == FS_UFS1_MAGIC)
434		return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
435	else
436		return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
437}
438
439static void
440ino_dirty(ino_t ino)
441{
442	struct ino_blk *iblk;
443	struct iblkhd *hd;
444	struct suj_cg *sc;
445	ufs2_daddr_t blk;
446
447	blk = ino_to_fsba(fs, ino);
448	sc = cg_lookup(ino_to_cg(fs, ino));
449	iblk = sc->sc_lastiblk;
450	if (iblk && iblk->ib_blk == blk) {
451		iblk->ib_dirty = 1;
452		return;
453	}
454	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
455	LIST_FOREACH(iblk, hd, ib_next) {
456		if (iblk->ib_blk == blk) {
457			iblk->ib_dirty = 1;
458			return;
459		}
460	}
461	ino_read(ino);
462	ino_dirty(ino);
463}
464
465static void
466iblk_write(struct ino_blk *iblk)
467{
468
469	if (iblk->ib_dirty == 0)
470		return;
471	if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
472	    fs->fs_bsize) == -1)
473		err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
474}
475
476static int
477blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
478{
479	ufs2_daddr_t bstart;
480	ufs2_daddr_t bend;
481	ufs2_daddr_t end;
482
483	end = start + frags;
484	bstart = brec->jb_blkno + brec->jb_oldfrags;
485	bend = bstart + brec->jb_frags;
486	if (start < bend && end > bstart)
487		return (1);
488	return (0);
489}
490
491static int
492blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
493    int frags)
494{
495
496	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
497		return (0);
498	if (brec->jb_blkno + brec->jb_oldfrags != start)
499		return (0);
500	if (brec->jb_frags != frags)
501		return (0);
502	return (1);
503}
504
505static void
506blk_setmask(struct jblkrec *brec, int *mask)
507{
508	int i;
509
510	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
511		*mask |= 1 << i;
512}
513
514/*
515 * Determine whether a given block has been reallocated to a new location.
516 * Returns a mask of overlapping bits if any frags have been reused or
517 * zero if the block has not been re-used and the contents can be trusted.
518 *
519 * This is used to ensure that an orphaned pointer due to truncate is safe
520 * to be freed.  The mask value can be used to free partial blocks.
521 */
522static int
523blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
524{
525	struct suj_blk *sblk;
526	struct suj_rec *srec;
527	struct jblkrec *brec;
528	int mask;
529	int off;
530
531	/*
532	 * To be certain we're not freeing a reallocated block we lookup
533	 * this block in the blk hash and see if there is an allocation
534	 * journal record that overlaps with any fragments in the block
535	 * we're concerned with.  If any fragments have ben reallocated
536	 * the block has already been freed and re-used for another purpose.
537	 */
538	mask = 0;
539	sblk = blk_lookup(blknum(fs, blk), 0);
540	if (sblk == NULL)
541		return (0);
542	off = blk - sblk->sb_blk;
543	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
544		brec = (struct jblkrec *)srec->sr_rec;
545		/*
546		 * If the block overlaps but does not match
547		 * exactly it's a new allocation.  If it matches
548		 * exactly this record refers to the current
549		 * location.
550		 */
551		if (blk_overlaps(brec, blk, frags) == 0)
552			continue;
553		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
554			mask = 0;
555		else
556			blk_setmask(brec, &mask);
557	}
558	if (debug)
559		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
560		    blk, sblk->sb_blk, off, mask);
561	return (mask >> off);
562}
563
564/*
565 * Determine whether it is safe to follow an indirect.  It is not safe
566 * if any part of the indirect has been reallocated or the last journal
567 * entry was an allocation.  Just allocated indirects may not have valid
568 * pointers yet and all of their children will have their own records.
569 * It is also not safe to follow an indirect if the cg bitmap has been
570 * cleared as a new allocation may write to the block prior to the journal
571 * being written.
572 *
573 * Returns 1 if it's safe to follow the indirect and 0 otherwise.
574 */
575static int
576blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
577{
578	struct suj_blk *sblk;
579	struct jblkrec *brec;
580
581	sblk = blk_lookup(blk, 0);
582	if (sblk == NULL)
583		return (1);
584	if (TAILQ_EMPTY(&sblk->sb_recs))
585		return (1);
586	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
587	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
588		if (brec->jb_op == JOP_FREEBLK)
589			return (!blk_isfree(blk));
590	return (0);
591}
592
593/*
594 * Clear an inode from the cg bitmap.  If the inode was already clear return
595 * 0 so the caller knows it does not have to check the inode contents.
596 */
597static int
598ino_free(ino_t ino, int mode)
599{
600	struct suj_cg *sc;
601	uint8_t *inosused;
602	struct cg *cgp;
603	int cg;
604
605	cg = ino_to_cg(fs, ino);
606	ino = ino % fs->fs_ipg;
607	sc = cg_lookup(cg);
608	cgp = sc->sc_cgp;
609	inosused = cg_inosused(cgp);
610	/*
611	 * The bitmap may never have made it to the disk so we have to
612	 * conditionally clear.  We can avoid writing the cg in this case.
613	 */
614	if (isclr(inosused, ino))
615		return (0);
616	freeinos++;
617	clrbit(inosused, ino);
618	if (ino < cgp->cg_irotor)
619		cgp->cg_irotor = ino;
620	cgp->cg_cs.cs_nifree++;
621	if ((mode & IFMT) == IFDIR) {
622		freedir++;
623		cgp->cg_cs.cs_ndir--;
624	}
625	sc->sc_dirty = 1;
626
627	return (1);
628}
629
630/*
631 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
632 * set in the mask.
633 */
634static void
635blk_free(ufs2_daddr_t bno, int mask, int frags)
636{
637	ufs1_daddr_t fragno, cgbno;
638	struct suj_cg *sc;
639	struct cg *cgp;
640	int i, cg;
641	uint8_t *blksfree;
642
643	if (debug)
644		printf("Freeing %d frags at blk %jd\n", frags, bno);
645	cg = dtog(fs, bno);
646	sc = cg_lookup(cg);
647	cgp = sc->sc_cgp;
648	cgbno = dtogd(fs, bno);
649	blksfree = cg_blksfree(cgp);
650
651	/*
652	 * If it's not allocated we only wrote the journal entry
653	 * and never the bitmaps.  Here we unconditionally clear and
654	 * resolve the cg summary later.
655	 */
656	if (frags == fs->fs_frag && mask == 0) {
657		fragno = fragstoblks(fs, cgbno);
658		ffs_setblock(fs, blksfree, fragno);
659		freeblocks++;
660	} else {
661		/*
662		 * deallocate the fragment
663		 */
664		for (i = 0; i < frags; i++)
665			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
666				freefrags++;
667				setbit(blksfree, cgbno + i);
668			}
669	}
670	sc->sc_dirty = 1;
671}
672
673/*
674 * Returns 1 if the whole block starting at 'bno' is marked free and 0
675 * otherwise.
676 */
677static int
678blk_isfree(ufs2_daddr_t bno)
679{
680	struct suj_cg *sc;
681
682	sc = cg_lookup(dtog(fs, bno));
683	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
684}
685
686/*
687 * Fetch an indirect block to find the block at a given lbn.  The lbn
688 * may be negative to fetch a specific indirect block pointer or positive
689 * to fetch a specific block.
690 */
691static ufs2_daddr_t
692indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
693{
694	ufs2_daddr_t *bap2;
695	ufs2_daddr_t *bap1;
696	ufs_lbn_t lbnadd;
697	ufs_lbn_t base;
698	int level;
699	int i;
700
701	if (blk == 0)
702		return (0);
703	level = lbn_level(cur);
704	if (level == -1)
705		err_suj("Invalid indir lbn %jd\n", lbn);
706	if (level == 0 && lbn < 0)
707		err_suj("Invalid lbn %jd\n", lbn);
708	bap2 = (void *)dblk_read(blk, fs->fs_bsize);
709	bap1 = (void *)bap2;
710	lbnadd = 1;
711	base = -(cur + level);
712	for (i = level; i > 0; i--)
713		lbnadd *= NINDIR(fs);
714	if (lbn > 0)
715		i = (lbn - base) / lbnadd;
716	else
717		i = (-lbn - base) / lbnadd;
718	if (i < 0 || i >= NINDIR(fs))
719		err_suj("Invalid indirect index %d produced by lbn %jd\n",
720		    i, lbn);
721	if (level == 0)
722		cur = base + (i * lbnadd);
723	else
724		cur = -(base + (i * lbnadd)) - (level - 1);
725	if (fs->fs_magic == FS_UFS1_MAGIC)
726		blk = bap1[i];
727	else
728		blk = bap2[i];
729	if (cur == lbn)
730		return (blk);
731	if (level == 0)
732		err_suj("Invalid lbn %jd at level 0\n", lbn);
733	return indir_blkatoff(blk, ino, cur, lbn);
734}
735
736/*
737 * Finds the disk block address at the specified lbn within the inode
738 * specified by ip.  This follows the whole tree and honors di_size and
739 * di_extsize so it is a true test of reachability.  The lbn may be
740 * negative if an extattr or indirect block is requested.
741 */
742static ufs2_daddr_t
743ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
744{
745	ufs_lbn_t tmpval;
746	ufs_lbn_t cur;
747	ufs_lbn_t next;
748	int i;
749
750	/*
751	 * Handle extattr blocks first.
752	 */
753	if (lbn < 0 && lbn >= -NXADDR) {
754		lbn = -1 - lbn;
755		if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
756			return (0);
757		*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
758		return (ip->dp2.di_extb[lbn]);
759	}
760	/*
761	 * Now direct and indirect.
762	 */
763	if (DIP(ip, di_mode) == IFLNK &&
764	    DIP(ip, di_size) < fs->fs_maxsymlinklen)
765		return (0);
766	if (lbn >= 0 && lbn < NDADDR) {
767		*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
768		return (DIP(ip, di_db[lbn]));
769	}
770	*frags = fs->fs_frag;
771
772	for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++,
773	    tmpval *= NINDIR(fs), cur = next) {
774		next = cur + tmpval;
775		if (lbn == -cur - i)
776			return (DIP(ip, di_ib[i]));
777		/*
778		 * Determine whether the lbn in question is within this tree.
779		 */
780		if (lbn < 0 && -lbn >= next)
781			continue;
782		if (lbn > 0 && lbn >= next)
783			continue;
784		return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
785	}
786	err_suj("lbn %jd not in ino\n", lbn);
787	/* NOTREACHED */
788}
789
790/*
791 * Determine whether a block exists at a particular lbn in an inode.
792 * Returns 1 if found, 0 if not.  lbn may be negative for indirects
793 * or ext blocks.
794 */
795static int
796blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
797{
798	union dinode *ip;
799	ufs2_daddr_t nblk;
800
801	ip = ino_read(ino);
802
803	if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
804		return (0);
805	nblk = ino_blkatoff(ip, ino, lbn, frags);
806
807	return (nblk == blk);
808}
809
810/*
811 * Determines whether a pointer to an inode exists within a directory
812 * at a specified offset.  Returns the mode of the found entry.
813 */
814static int
815ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
816{
817	union dinode *dip;
818	struct direct *dp;
819	ufs2_daddr_t blk;
820	uint8_t *block;
821	ufs_lbn_t lbn;
822	int blksize;
823	int frags;
824	int dpoff;
825	int doff;
826
827	*isdot = 0;
828	dip = ino_read(parent);
829	*mode = DIP(dip, di_mode);
830	if ((*mode & IFMT) != IFDIR) {
831		if (debug) {
832			/*
833			 * This can happen if the parent inode
834			 * was reallocated.
835			 */
836			if (*mode != 0)
837				printf("Directory %d has bad mode %o\n",
838				    parent, *mode);
839			else
840				printf("Directory %d zero inode\n", parent);
841		}
842		return (0);
843	}
844	lbn = lblkno(fs, diroff);
845	doff = blkoff(fs, diroff);
846	blksize = sblksize(fs, DIP(dip, di_size), lbn);
847	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
848		if (debug)
849			printf("ino %d absent from %d due to offset %jd"
850			    " exceeding size %jd\n",
851			    child, parent, diroff, DIP(dip, di_size));
852		return (0);
853	}
854	blk = ino_blkatoff(dip, parent, lbn, &frags);
855	if (blk <= 0) {
856		if (debug)
857			printf("Sparse directory %d", parent);
858		return (0);
859	}
860	block = dblk_read(blk, blksize);
861	/*
862	 * Walk through the records from the start of the block to be
863	 * certain we hit a valid record and not some junk in the middle
864	 * of a file name.  Stop when we reach or pass the expected offset.
865	 */
866	dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ;
867	do {
868		dp = (struct direct *)&block[dpoff];
869		if (dpoff == doff)
870			break;
871		if (dp->d_reclen == 0)
872			break;
873		dpoff += dp->d_reclen;
874	} while (dpoff <= doff);
875	if (dpoff > fs->fs_bsize)
876		err_suj("Corrupt directory block in dir ino %d\n", parent);
877	/* Not found. */
878	if (dpoff != doff) {
879		if (debug)
880			printf("ino %d not found in %d, lbn %jd, dpoff %d\n",
881			    child, parent, lbn, dpoff);
882		return (0);
883	}
884	/*
885	 * We found the item in question.  Record the mode and whether it's
886	 * a . or .. link for the caller.
887	 */
888	if (dp->d_ino == child) {
889		if (child == parent)
890			*isdot = 1;
891		else if (dp->d_namlen == 2 &&
892		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
893			*isdot = 1;
894		*mode = DTTOIF(dp->d_type);
895		return (1);
896	}
897	if (debug)
898		printf("ino %d doesn't match dirent ino %d in parent %d\n",
899		    child, dp->d_ino, parent);
900	return (0);
901}
902
903#define	VISIT_INDIR	0x0001
904#define	VISIT_EXT	0x0002
905#define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
906
907/*
908 * Read an indirect level which may or may not be linked into an inode.
909 */
910static void
911indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
912    ino_visitor visitor, int flags)
913{
914	ufs2_daddr_t *bap2;
915	ufs1_daddr_t *bap1;
916	ufs_lbn_t lbnadd;
917	ufs2_daddr_t nblk;
918	ufs_lbn_t nlbn;
919	int level;
920	int i;
921
922	/*
923	 * Don't visit indirect blocks with contents we can't trust.  This
924	 * should only happen when indir_visit() is called to complete a
925	 * truncate that never finished and not when a pointer is found via
926	 * an inode.
927	 */
928	if (blk == 0)
929		return;
930	level = lbn_level(lbn);
931	if (level == -1)
932		err_suj("Invalid level for lbn %jd\n", lbn);
933	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
934		if (debug)
935			printf("blk %jd ino %d lbn %jd(%d) is not indir.\n",
936			    blk, ino, lbn, level);
937		goto out;
938	}
939	lbnadd = 1;
940	for (i = level; i > 0; i--)
941		lbnadd *= NINDIR(fs);
942	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
943	bap2 = (void *)bap1;
944	for (i = 0; i < NINDIR(fs); i++) {
945		if (fs->fs_magic == FS_UFS1_MAGIC)
946			nblk = *bap1++;
947		else
948			nblk = *bap2++;
949		if (nblk == 0)
950			continue;
951		if (level == 0) {
952			nlbn = -lbn + i * lbnadd;
953			(*frags) += fs->fs_frag;
954			visitor(ino, nlbn, nblk, fs->fs_frag);
955		} else {
956			nlbn = (lbn + 1) - (i * lbnadd);
957			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
958		}
959	}
960out:
961	if (flags & VISIT_INDIR) {
962		(*frags) += fs->fs_frag;
963		visitor(ino, lbn, blk, fs->fs_frag);
964	}
965}
966
967/*
968 * Visit each block in an inode as specified by 'flags' and call a
969 * callback function.  The callback may inspect or free blocks.  The
970 * count of frags found according to the size in the file is returned.
971 * This is not valid for sparse files but may be used to determine
972 * the correct di_blocks for a file.
973 */
974static uint64_t
975ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
976{
977	ufs_lbn_t nextlbn;
978	ufs_lbn_t tmpval;
979	ufs_lbn_t lbn;
980	uint64_t size;
981	uint64_t fragcnt;
982	int mode;
983	int frags;
984	int i;
985
986	size = DIP(ip, di_size);
987	mode = DIP(ip, di_mode) & IFMT;
988	fragcnt = 0;
989	if ((flags & VISIT_EXT) &&
990	    fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
991		for (i = 0; i < NXADDR; i++) {
992			if (ip->dp2.di_extb[i] == 0)
993				continue;
994			frags = sblksize(fs, ip->dp2.di_extsize, i);
995			frags = numfrags(fs, frags);
996			fragcnt += frags;
997			visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
998		}
999	}
1000	/* Skip datablocks for short links and devices. */
1001	if (mode == IFBLK || mode == IFCHR ||
1002	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
1003		return (fragcnt);
1004	for (i = 0; i < NDADDR; i++) {
1005		if (DIP(ip, di_db[i]) == 0)
1006			continue;
1007		frags = sblksize(fs, size, i);
1008		frags = numfrags(fs, frags);
1009		fragcnt += frags;
1010		visitor(ino, i, DIP(ip, di_db[i]), frags);
1011	}
1012	/*
1013	 * We know the following indirects are real as we're following
1014	 * real pointers to them.
1015	 */
1016	flags |= VISIT_ROOT;
1017	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1018	    lbn = nextlbn) {
1019		nextlbn = lbn + tmpval;
1020		tmpval *= NINDIR(fs);
1021		if (DIP(ip, di_ib[i]) == 0)
1022			continue;
1023		indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1024		    flags);
1025	}
1026	return (fragcnt);
1027}
1028
1029/*
1030 * Null visitor function used when we just want to count blocks and
1031 * record the lbn.
1032 */
1033ufs_lbn_t visitlbn;
1034static void
1035null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1036{
1037	if (lbn > 0)
1038		visitlbn = lbn;
1039}
1040
1041/*
1042 * Recalculate di_blocks when we discover that a block allocation or
1043 * free was not successfully completed.  The kernel does not roll this back
1044 * because it would be too expensive to compute which indirects were
1045 * reachable at the time the inode was written.
1046 */
1047static void
1048ino_adjblks(struct suj_ino *sino)
1049{
1050	union dinode *ip;
1051	uint64_t blocks;
1052	uint64_t frags;
1053	off_t isize;
1054	off_t size;
1055	ino_t ino;
1056
1057	ino = sino->si_ino;
1058	ip = ino_read(ino);
1059	/* No need to adjust zero'd inodes. */
1060	if (DIP(ip, di_mode) == 0)
1061		return;
1062	/*
1063	 * Visit all blocks and count them as well as recording the last
1064	 * valid lbn in the file.  If the file size doesn't agree with the
1065	 * last lbn we need to truncate to fix it.  Otherwise just adjust
1066	 * the blocks count.
1067	 */
1068	visitlbn = 0;
1069	frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1070	blocks = fsbtodb(fs, frags);
1071	/*
1072	 * We assume the size and direct block list is kept coherent by
1073	 * softdep.  For files that have extended into indirects we truncate
1074	 * to the size in the inode or the maximum size permitted by
1075	 * populated indirects.
1076	 */
1077	if (visitlbn >= NDADDR) {
1078		isize = DIP(ip, di_size);
1079		size = lblktosize(fs, visitlbn + 1);
1080		if (isize > size)
1081			isize = size;
1082		/* Always truncate to free any unpopulated indirects. */
1083		ino_trunc(sino->si_ino, isize);
1084		return;
1085	}
1086	if (blocks == DIP(ip, di_blocks))
1087		return;
1088	if (debug)
1089		printf("ino %d adjusting block count from %jd to %jd\n",
1090		    ino, DIP(ip, di_blocks), blocks);
1091	DIP_SET(ip, di_blocks, blocks);
1092	ino_dirty(ino);
1093}
1094
1095static void
1096blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1097{
1098	int mask;
1099
1100	mask = blk_freemask(blk, ino, lbn, frags);
1101	if (debug)
1102		printf("blk %jd freemask 0x%X\n", blk, mask);
1103	blk_free(blk, mask, frags);
1104}
1105
1106/*
1107 * Free a block or tree of blocks that was previously rooted in ino at
1108 * the given lbn.  If the lbn is an indirect all children are freed
1109 * recursively.
1110 */
1111static void
1112blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1113{
1114	uint64_t resid;
1115	int mask;
1116
1117	mask = blk_freemask(blk, ino, lbn, frags);
1118	if (debug)
1119		printf("blk %jd freemask 0x%X\n", blk, mask);
1120	resid = 0;
1121	if (lbn <= -NDADDR && follow && mask == 0)
1122		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1123	else
1124		blk_free(blk, mask, frags);
1125}
1126
1127static void
1128ino_setskip(struct suj_ino *sino, ino_t parent)
1129{
1130	int isdot;
1131	int mode;
1132
1133	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1134		sino->si_skipparent = 1;
1135}
1136
1137/*
1138 * Free the children of a directory when the directory is discarded.
1139 */
1140static void
1141ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1142{
1143	struct suj_ino *sino;
1144	struct suj_rec *srec;
1145	struct jrefrec *rrec;
1146	struct direct *dp;
1147	off_t diroff;
1148	uint8_t *block;
1149	int skipparent;
1150	int isparent;
1151	int dpoff;
1152	int size;
1153
1154	sino = ino_lookup(ino, 0);
1155	if (sino)
1156		skipparent = sino->si_skipparent;
1157	else
1158		skipparent = 0;
1159	size = lfragtosize(fs, frags);
1160	block = dblk_read(blk, size);
1161	dp = (struct direct *)&block[0];
1162	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1163		dp = (struct direct *)&block[dpoff];
1164		if (dp->d_ino == 0 || dp->d_ino == WINO)
1165			continue;
1166		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1167			continue;
1168		isparent = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1169		    dp->d_name[1] == '.';
1170		if (isparent && skipparent == 1)
1171			continue;
1172		if (debug)
1173			printf("Directory %d removing ino %d name %s\n",
1174			    ino, dp->d_ino, dp->d_name);
1175		/*
1176		 * Lookup this inode to see if we have a record for it.
1177		 * If not, we've already adjusted it assuming this path
1178		 * was valid and we have to adjust once more.
1179		 */
1180		sino = ino_lookup(dp->d_ino, 0);
1181		if (sino == NULL || sino->si_hasrecs == 0) {
1182			ino_decr(ino);
1183			continue;
1184		}
1185		/*
1186		 * Use ino_adjust() so if we lose the last non-dot reference
1187		 * to a directory it can be discarded.
1188		 */
1189		if (sino->si_linkadj) {
1190			sino->si_nlink--;
1191			if (isparent)
1192				sino->si_dotlinks--;
1193			ino_adjust(sino);
1194		}
1195		/*
1196		 * Tell any child directories we've already removed their
1197		 * parent.  Don't try to adjust our link down again.
1198		 */
1199		if (isparent == 0)
1200			ino_setskip(sino, ino);
1201		/*
1202		 * If we haven't yet processed this inode we need to make
1203		 * sure we will successfully discover the lost path.  If not
1204		 * use nlinkadj to remember.
1205		 */
1206		diroff = lblktosize(fs, lbn) + dpoff;
1207		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1208			rrec = (struct jrefrec *)srec->sr_rec;
1209			if (rrec->jr_parent == ino &&
1210			    rrec->jr_diroff == diroff)
1211				break;
1212		}
1213		if (srec == NULL)
1214			sino->si_nlinkadj++;
1215	}
1216}
1217
1218/*
1219 * Reclaim an inode, freeing all blocks and decrementing all children's
1220 * link counts.  Free the inode back to the cg.
1221 */
1222static void
1223ino_reclaim(union dinode *ip, ino_t ino, int mode)
1224{
1225	uint32_t gen;
1226
1227	if (ino == ROOTINO)
1228		err_suj("Attempting to free ROOTINO\n");
1229	if (debug)
1230		printf("Truncating and freeing ino %d, nlink %d, mode %o\n",
1231		    ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1232
1233	/* We are freeing an inode or directory. */
1234	if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1235		ino_visit(ip, ino, ino_free_children, 0);
1236	DIP_SET(ip, di_nlink, 0);
1237	ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1238	/* Here we have to clear the inode and release any blocks it holds. */
1239	gen = DIP(ip, di_gen);
1240	if (fs->fs_magic == FS_UFS1_MAGIC)
1241		bzero(ip, sizeof(struct ufs1_dinode));
1242	else
1243		bzero(ip, sizeof(struct ufs2_dinode));
1244	DIP_SET(ip, di_gen, gen);
1245	ino_dirty(ino);
1246	ino_free(ino, mode);
1247	return;
1248}
1249
1250/*
1251 * Adjust an inode's link count down by one when a directory goes away.
1252 */
1253static void
1254ino_decr(ino_t ino)
1255{
1256	union dinode *ip;
1257	int reqlink;
1258	int nlink;
1259	int mode;
1260
1261	ip = ino_read(ino);
1262	nlink = DIP(ip, di_nlink);
1263	mode = DIP(ip, di_mode);
1264	if (nlink < 1)
1265		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1266	if (mode == 0)
1267		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1268	nlink--;
1269	if ((mode & IFMT) == IFDIR)
1270		reqlink = 2;
1271	else
1272		reqlink = 1;
1273	if (nlink < reqlink) {
1274		if (debug)
1275			printf("ino %d not enough links to live %d < %d\n",
1276			    ino, nlink, reqlink);
1277		ino_reclaim(ip, ino, mode);
1278		return;
1279	}
1280	DIP_SET(ip, di_nlink, nlink);
1281	ino_dirty(ino);
1282}
1283
1284/*
1285 * Adjust the inode link count to 'nlink'.  If the count reaches zero
1286 * free it.
1287 */
1288static void
1289ino_adjust(struct suj_ino *sino)
1290{
1291	struct jrefrec *rrec;
1292	struct suj_rec *srec;
1293	struct suj_ino *stmp;
1294	union dinode *ip;
1295	nlink_t nlink;
1296	int reqlink;
1297	int mode;
1298	ino_t ino;
1299
1300	nlink = sino->si_nlink;
1301	ino = sino->si_ino;
1302	/*
1303	 * If it's a directory with no real names pointing to it go ahead
1304	 * and truncate it.  This will free any children.
1305	 */
1306	if ((sino->si_mode & IFMT) == IFDIR &&
1307	    nlink - sino->si_dotlinks == 0) {
1308		sino->si_nlink = nlink = 0;
1309		/*
1310		 * Mark any .. links so they know not to free this inode
1311		 * when they are removed.
1312		 */
1313		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1314			rrec = (struct jrefrec *)srec->sr_rec;
1315			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1316				stmp = ino_lookup(rrec->jr_parent, 0);
1317				if (stmp)
1318					ino_setskip(stmp, ino);
1319			}
1320		}
1321	}
1322	ip = ino_read(ino);
1323	mode = DIP(ip, di_mode) & IFMT;
1324	if (nlink > LINK_MAX)
1325		err_suj(
1326		    "ino %d nlink manipulation error, new link %d, old link %d\n",
1327		    ino, nlink, DIP(ip, di_nlink));
1328	if (debug)
1329		printf("Adjusting ino %d, nlink %d, old link %d lastmode %o\n",
1330		    ino, nlink, DIP(ip, di_nlink), sino->si_mode);
1331	if (mode == 0) {
1332		if (debug)
1333			printf("ino %d, zero inode freeing bitmap\n", ino);
1334		ino_free(ino, sino->si_mode);
1335		return;
1336	}
1337	/* XXX Should be an assert? */
1338	if (mode != sino->si_mode && debug)
1339		printf("ino %d, mode %o != %o\n", ino, mode, sino->si_mode);
1340	if ((mode & IFMT) == IFDIR)
1341		reqlink = 2;
1342	else
1343		reqlink = 1;
1344	/* If the inode doesn't have enough links to live, free it. */
1345	if (nlink < reqlink) {
1346		if (debug)
1347			printf("ino %d not enough links to live %d < %d\n",
1348			    ino, nlink, reqlink);
1349		ino_reclaim(ip, ino, mode);
1350		return;
1351	}
1352	/* If required write the updated link count. */
1353	if (DIP(ip, di_nlink) == nlink) {
1354		if (debug)
1355			printf("ino %d, link matches, skipping.\n", ino);
1356		return;
1357	}
1358	DIP_SET(ip, di_nlink, nlink);
1359	ino_dirty(ino);
1360}
1361
1362/*
1363 * Truncate some or all blocks in an indirect, freeing any that are required
1364 * and zeroing the indirect.
1365 */
1366static void
1367indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1368{
1369	ufs2_daddr_t *bap2;
1370	ufs1_daddr_t *bap1;
1371	ufs_lbn_t lbnadd;
1372	ufs2_daddr_t nblk;
1373	ufs_lbn_t next;
1374	ufs_lbn_t nlbn;
1375	int dirty;
1376	int level;
1377	int i;
1378
1379	if (blk == 0)
1380		return;
1381	dirty = 0;
1382	level = lbn_level(lbn);
1383	if (level == -1)
1384		err_suj("Invalid level for lbn %jd\n", lbn);
1385	lbnadd = 1;
1386	for (i = level; i > 0; i--)
1387		lbnadd *= NINDIR(fs);
1388	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1389	bap2 = (void *)bap1;
1390	for (i = 0; i < NINDIR(fs); i++) {
1391		if (fs->fs_magic == FS_UFS1_MAGIC)
1392			nblk = *bap1++;
1393		else
1394			nblk = *bap2++;
1395		if (nblk == 0)
1396			continue;
1397		if (level != 0) {
1398			nlbn = (lbn + 1) - (i * lbnadd);
1399			/*
1400			 * Calculate the lbn of the next indirect to
1401			 * determine if any of this indirect must be
1402			 * reclaimed.
1403			 */
1404			next = -(lbn + level) + ((i+1) * lbnadd);
1405			if (next <= lastlbn)
1406				continue;
1407			indir_trunc(ino, nlbn, nblk, lastlbn);
1408			/* If all of this indirect was reclaimed, free it. */
1409			nlbn = next - lbnadd;
1410			if (nlbn < lastlbn)
1411				continue;
1412		} else {
1413			nlbn = -lbn + i * lbnadd;
1414			if (nlbn < lastlbn)
1415				continue;
1416		}
1417		dirty = 1;
1418		blk_free(nblk, 0, fs->fs_frag);
1419		if (fs->fs_magic == FS_UFS1_MAGIC)
1420			*(bap1 - 1) = 0;
1421		else
1422			*(bap2 - 1) = 0;
1423	}
1424	if (dirty)
1425		dblk_dirty(blk);
1426}
1427
1428/*
1429 * Truncate an inode to the minimum of the given size or the last populated
1430 * block after any over size have been discarded.  The kernel would allocate
1431 * the last block in the file but fsck does not and neither do we.  This
1432 * code never extends files, only shrinks them.
1433 */
1434static void
1435ino_trunc(ino_t ino, off_t size)
1436{
1437	union dinode *ip;
1438	ufs2_daddr_t bn;
1439	uint64_t totalfrags;
1440	ufs_lbn_t nextlbn;
1441	ufs_lbn_t lastlbn;
1442	ufs_lbn_t tmpval;
1443	ufs_lbn_t lbn;
1444	ufs_lbn_t i;
1445	int frags;
1446	off_t cursize;
1447	off_t off;
1448	int mode;
1449
1450	ip = ino_read(ino);
1451	mode = DIP(ip, di_mode) & IFMT;
1452	cursize = DIP(ip, di_size);
1453	if (debug)
1454		printf("Truncating ino %d, mode %o to size %jd from size %jd\n",
1455		    ino, mode, size, cursize);
1456
1457	/* Skip datablocks for short links and devices. */
1458	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1459	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1460		return;
1461	/* Don't extend. */
1462	if (size > cursize)
1463		size = cursize;
1464	lastlbn = lblkno(fs, blkroundup(fs, size));
1465	for (i = lastlbn; i < NDADDR; i++) {
1466		if (DIP(ip, di_db[i]) == 0)
1467			continue;
1468		frags = sblksize(fs, cursize, i);
1469		frags = numfrags(fs, frags);
1470		blk_free(DIP(ip, di_db[i]), 0, frags);
1471		DIP_SET(ip, di_db[i], 0);
1472	}
1473	/*
1474	 * Follow indirect blocks, freeing anything required.
1475	 */
1476	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1477	    lbn = nextlbn) {
1478		nextlbn = lbn + tmpval;
1479		tmpval *= NINDIR(fs);
1480		/* If we're not freeing any in this indirect range skip it. */
1481		if (lastlbn >= nextlbn)
1482			continue;
1483		if (DIP(ip, di_ib[i]) == 0)
1484			continue;
1485		indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1486		/* If we freed everything in this indirect free the indir. */
1487		if (lastlbn > lbn)
1488			continue;
1489		blk_free(DIP(ip, di_ib[i]), 0, frags);
1490		DIP_SET(ip, di_ib[i], 0);
1491	}
1492	ino_dirty(ino);
1493	/*
1494	 * Now that we've freed any whole blocks that exceed the desired
1495	 * truncation size, figure out how many blocks remain and what the
1496	 * last populated lbn is.  We will set the size to this last lbn
1497	 * rather than worrying about allocating the final lbn as the kernel
1498	 * would've done.  This is consistent with normal fsck behavior.
1499	 */
1500	visitlbn = 0;
1501	totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1502	if (size > lblktosize(fs, visitlbn + 1))
1503		size = lblktosize(fs, visitlbn + 1);
1504	/*
1505	 * If we're truncating direct blocks we have to adjust frags
1506	 * accordingly.
1507	 */
1508	if (visitlbn < NDADDR && totalfrags) {
1509		long oldspace, newspace;
1510
1511		bn = DIP(ip, di_db[visitlbn]);
1512		if (bn == 0)
1513			err_suj("Bad blk at ino %d lbn %jd\n", ino, visitlbn);
1514		oldspace = sblksize(fs, cursize, visitlbn);
1515		newspace = sblksize(fs, size, visitlbn);
1516		if (oldspace != newspace) {
1517			bn += numfrags(fs, newspace);
1518			frags = numfrags(fs, oldspace - newspace);
1519			blk_free(bn, 0, frags);
1520			totalfrags -= frags;
1521		}
1522	}
1523	DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1524	DIP_SET(ip, di_size, size);
1525	/*
1526	 * If we've truncated into the middle of a block or frag we have
1527	 * to zero it here.  Otherwise the file could extend into
1528	 * uninitialized space later.
1529	 */
1530	off = blkoff(fs, size);
1531	if (off) {
1532		uint8_t *buf;
1533		long clrsize;
1534
1535		bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1536		if (bn == 0)
1537			err_suj("Block missing from ino %d at lbn %jd\n",
1538			    ino, visitlbn);
1539		clrsize = frags * fs->fs_fsize;
1540		buf = dblk_read(bn, clrsize);
1541		clrsize -= off;
1542		buf += off;
1543		bzero(buf, clrsize);
1544		dblk_dirty(bn);
1545	}
1546	return;
1547}
1548
1549/*
1550 * Process records available for one inode and determine whether the
1551 * link count is correct or needs adjusting.
1552 */
1553static void
1554ino_check(struct suj_ino *sino)
1555{
1556	struct suj_rec *srec;
1557	struct jrefrec *rrec;
1558	nlink_t dotlinks;
1559	int newlinks;
1560	int removes;
1561	int nlink;
1562	ino_t ino;
1563	int isdot;
1564	int isat;
1565	int mode;
1566
1567	if (sino->si_hasrecs == 0)
1568		return;
1569	ino = sino->si_ino;
1570	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1571	nlink = rrec->jr_nlink;
1572	newlinks = 0;
1573	dotlinks = 0;
1574	removes = sino->si_nlinkadj;
1575	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1576		rrec = (struct jrefrec *)srec->sr_rec;
1577		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1578		    rrec->jr_ino, &mode, &isdot);
1579		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1580			err_suj("Inode mode/directory type mismatch %o != %o\n",
1581			    mode, rrec->jr_mode);
1582		if (debug)
1583			printf("jrefrec: op %d ino %d, nlink %d, parent %d, "
1584			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1585			    rrec->jr_op, rrec->jr_ino, rrec->jr_nlink,
1586			    rrec->jr_parent, rrec->jr_diroff, rrec->jr_mode,
1587			    isat, isdot);
1588		mode = rrec->jr_mode & IFMT;
1589		if (rrec->jr_op == JOP_REMREF)
1590			removes++;
1591		newlinks += isat;
1592		if (isdot)
1593			dotlinks += isat;
1594	}
1595	/*
1596	 * The number of links that remain are the starting link count
1597	 * subtracted by the total number of removes with the total
1598	 * links discovered back in.  An incomplete remove thus
1599	 * makes no change to the link count but an add increases
1600	 * by one.
1601	 */
1602	if (debug)
1603		printf("ino %d nlink %d newlinks %d removes %d dotlinks %d\n",
1604		    ino, nlink, newlinks, removes, dotlinks);
1605	nlink += newlinks;
1606	nlink -= removes;
1607	sino->si_linkadj = 1;
1608	sino->si_nlink = nlink;
1609	sino->si_dotlinks = dotlinks;
1610	sino->si_mode = mode;
1611	ino_adjust(sino);
1612}
1613
1614/*
1615 * Process records available for one block and determine whether it is
1616 * still allocated and whether the owning inode needs to be updated or
1617 * a free completed.
1618 */
1619static void
1620blk_check(struct suj_blk *sblk)
1621{
1622	struct suj_rec *srec;
1623	struct jblkrec *brec;
1624	struct suj_ino *sino;
1625	ufs2_daddr_t blk;
1626	int mask;
1627	int frags;
1628	int isat;
1629
1630	/*
1631	 * Each suj_blk actually contains records for any fragments in that
1632	 * block.  As a result we must evaluate each record individually.
1633	 */
1634	sino = NULL;
1635	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1636		brec = (struct jblkrec *)srec->sr_rec;
1637		frags = brec->jb_frags;
1638		blk = brec->jb_blkno + brec->jb_oldfrags;
1639		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1640		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1641			sino = ino_lookup(brec->jb_ino, 1);
1642			sino->si_blkadj = 1;
1643		}
1644		if (debug)
1645			printf("op %d blk %jd ino %d lbn %jd frags %d isat %d (%d)\n",
1646			    brec->jb_op, blk, brec->jb_ino, brec->jb_lbn,
1647			    brec->jb_frags, isat, frags);
1648		/*
1649		 * If we found the block at this address we still have to
1650		 * determine if we need to free the tail end that was
1651		 * added by adding contiguous fragments from the same block.
1652		 */
1653		if (isat == 1) {
1654			if (frags == brec->jb_frags)
1655				continue;
1656			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1657			    brec->jb_frags);
1658			mask >>= frags;
1659			blk += frags;
1660			frags = brec->jb_frags - frags;
1661			blk_free(blk, mask, frags);
1662			continue;
1663		}
1664		/*
1665	 	 * The block wasn't found, attempt to free it.  It won't be
1666		 * freed if it was actually reallocated.  If this was an
1667		 * allocation we don't want to follow indirects as they
1668		 * may not be written yet.  Any children of the indirect will
1669		 * have their own records.  If it's a free we need to
1670		 * recursively free children.
1671		 */
1672		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1673		    brec->jb_op == JOP_FREEBLK);
1674	}
1675}
1676
1677/*
1678 * Walk the list of inode records for this cg and resolve moved and duplicate
1679 * inode references now that we have a complete picture.
1680 */
1681static void
1682cg_build(struct suj_cg *sc)
1683{
1684	struct suj_ino *sino;
1685	int i;
1686
1687	for (i = 0; i < SUJ_HASHSIZE; i++)
1688		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1689			ino_build(sino);
1690}
1691
1692/*
1693 * Handle inodes requiring truncation.  This must be done prior to
1694 * looking up any inodes in directories.
1695 */
1696static void
1697cg_trunc(struct suj_cg *sc)
1698{
1699	struct suj_ino *sino;
1700	int i;
1701
1702	for (i = 0; i < SUJ_HASHSIZE; i++)
1703		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1704			if (sino->si_trunc) {
1705				ino_trunc(sino->si_ino,
1706				    sino->si_trunc->jt_size);
1707				sino->si_trunc = NULL;
1708			}
1709}
1710
1711/*
1712 * Free any partially allocated blocks and then resolve inode block
1713 * counts.
1714 */
1715static void
1716cg_check_blk(struct suj_cg *sc)
1717{
1718	struct suj_ino *sino;
1719	struct suj_blk *sblk;
1720	int i;
1721
1722
1723	for (i = 0; i < SUJ_HASHSIZE; i++)
1724		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1725			blk_check(sblk);
1726	/*
1727	 * Now that we've freed blocks which are not referenced we
1728	 * make a second pass over all inodes to adjust their block
1729	 * counts.
1730	 */
1731	for (i = 0; i < SUJ_HASHSIZE; i++)
1732		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1733			if (sino->si_blkadj)
1734				ino_adjblks(sino);
1735}
1736
1737/*
1738 * Walk the list of inode records for this cg, recovering any
1739 * changes which were not complete at the time of crash.
1740 */
1741static void
1742cg_check_ino(struct suj_cg *sc)
1743{
1744	struct suj_ino *sino;
1745	int i;
1746
1747	for (i = 0; i < SUJ_HASHSIZE; i++)
1748		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1749			ino_check(sino);
1750}
1751
1752/*
1753 * Write a potentially dirty cg.  Recalculate the summary information and
1754 * update the superblock summary.
1755 */
1756static void
1757cg_write(struct suj_cg *sc)
1758{
1759	ufs1_daddr_t fragno, cgbno, maxbno;
1760	u_int8_t *blksfree;
1761	struct cg *cgp;
1762	int blk;
1763	int i;
1764
1765	if (sc->sc_dirty == 0)
1766		return;
1767	/*
1768	 * Fix the frag and cluster summary.
1769	 */
1770	cgp = sc->sc_cgp;
1771	cgp->cg_cs.cs_nbfree = 0;
1772	cgp->cg_cs.cs_nffree = 0;
1773	bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1774	maxbno = fragstoblks(fs, fs->fs_fpg);
1775	if (fs->fs_contigsumsize > 0) {
1776		for (i = 1; i <= fs->fs_contigsumsize; i++)
1777			cg_clustersum(cgp)[i] = 0;
1778		bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1779	}
1780	blksfree = cg_blksfree(cgp);
1781	for (cgbno = 0; cgbno < maxbno; cgbno++) {
1782		if (ffs_isfreeblock(fs, blksfree, cgbno))
1783			continue;
1784		if (ffs_isblock(fs, blksfree, cgbno)) {
1785			ffs_clusteracct(fs, cgp, cgbno, 1);
1786			cgp->cg_cs.cs_nbfree++;
1787			continue;
1788		}
1789		fragno = blkstofrags(fs, cgbno);
1790		blk = blkmap(fs, blksfree, fragno);
1791		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1792		for (i = 0; i < fs->fs_frag; i++)
1793			if (isset(blksfree, fragno + i))
1794				cgp->cg_cs.cs_nffree++;
1795	}
1796	/*
1797	 * Update the superblock cg summary from our now correct values
1798	 * before writing the block.
1799	 */
1800	fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1801	if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
1802	    fs->fs_bsize) == -1)
1803		err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1804}
1805
1806/*
1807 * Write out any modified inodes.
1808 */
1809static void
1810cg_write_inos(struct suj_cg *sc)
1811{
1812	struct ino_blk *iblk;
1813	int i;
1814
1815	for (i = 0; i < SUJ_HASHSIZE; i++)
1816		LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1817			if (iblk->ib_dirty)
1818				iblk_write(iblk);
1819}
1820
1821static void
1822cg_apply(void (*apply)(struct suj_cg *))
1823{
1824	struct suj_cg *scg;
1825	int i;
1826
1827	for (i = 0; i < SUJ_HASHSIZE; i++)
1828		LIST_FOREACH(scg, &cghash[i], sc_next)
1829			apply(scg);
1830}
1831
1832/*
1833 * Process the unlinked but referenced file list.  Freeing all inodes.
1834 */
1835static void
1836ino_unlinked(void)
1837{
1838	union dinode *ip;
1839	uint16_t mode;
1840	ino_t inon;
1841	ino_t ino;
1842
1843	ino = fs->fs_sujfree;
1844	fs->fs_sujfree = 0;
1845	while (ino != 0) {
1846		ip = ino_read(ino);
1847		mode = DIP(ip, di_mode) & IFMT;
1848		inon = DIP(ip, di_freelink);
1849		DIP_SET(ip, di_freelink, 0);
1850		/*
1851		 * XXX Should this be an errx?
1852		 */
1853		if (DIP(ip, di_nlink) == 0) {
1854			if (debug)
1855				printf("Freeing unlinked ino %d mode %o\n",
1856				    ino, mode);
1857			ino_reclaim(ip, ino, mode);
1858		} else if (debug)
1859			printf("Skipping ino %d mode %o with link %d\n",
1860			    ino, mode, DIP(ip, di_nlink));
1861		ino = inon;
1862	}
1863}
1864
1865/*
1866 * Append a new record to the list of records requiring processing.
1867 */
1868static void
1869ino_append(union jrec *rec)
1870{
1871	struct jrefrec *refrec;
1872	struct jmvrec *mvrec;
1873	struct suj_ino *sino;
1874	struct suj_rec *srec;
1875
1876	mvrec = &rec->rec_jmvrec;
1877	refrec = &rec->rec_jrefrec;
1878	if (debug && mvrec->jm_op == JOP_MVREF)
1879		printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n",
1880		    mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff,
1881		    mvrec->jm_oldoff);
1882	else if (debug &&
1883	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1884		printf("ino ref: op %d, ino %d, nlink %d, "
1885		    "parent %d, diroff %jd\n",
1886		    refrec->jr_op, refrec->jr_ino, refrec->jr_nlink,
1887		    refrec->jr_parent, refrec->jr_diroff);
1888	/*
1889	 * Lookup the ino and clear truncate if one is found.  Partial
1890	 * truncates are always done synchronously so if we discover
1891	 * an operation that requires a lock the truncation has completed
1892	 * and can be discarded.
1893	 */
1894	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1895	sino->si_trunc = NULL;
1896	sino->si_hasrecs = 1;
1897	srec = errmalloc(sizeof(*srec));
1898	srec->sr_rec = rec;
1899	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1900}
1901
1902/*
1903 * Add a reference adjustment to the sino list and eliminate dups.  The
1904 * primary loop in ino_build_ref() checks for dups but new ones may be
1905 * created as a result of offset adjustments.
1906 */
1907static void
1908ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1909{
1910	struct jrefrec *refrec;
1911	struct suj_rec *srn;
1912	struct jrefrec *rrn;
1913
1914	refrec = (struct jrefrec *)srec->sr_rec;
1915	/*
1916	 * We walk backwards so that the oldest link count is preserved.  If
1917	 * an add record conflicts with a remove keep the remove.  Redundant
1918	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1919	 * oldest record at a given location.
1920	 */
1921	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
1922	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
1923		rrn = (struct jrefrec *)srn->sr_rec;
1924		if (rrn->jr_parent != refrec->jr_parent ||
1925		    rrn->jr_diroff != refrec->jr_diroff)
1926			continue;
1927		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
1928			rrn->jr_mode = refrec->jr_mode;
1929			return;
1930		}
1931		/*
1932		 * Adding a remove.
1933		 *
1934		 * Replace the record in place with the old nlink in case
1935		 * we replace the head of the list.  Abandon srec as a dup.
1936		 */
1937		refrec->jr_nlink = rrn->jr_nlink;
1938		srn->sr_rec = srec->sr_rec;
1939		return;
1940	}
1941	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
1942}
1943
1944/*
1945 * Create a duplicate of a reference at a previous location.
1946 */
1947static void
1948ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
1949{
1950	struct jrefrec *rrn;
1951	struct suj_rec *srn;
1952
1953	rrn = errmalloc(sizeof(*refrec));
1954	*rrn = *refrec;
1955	rrn->jr_op = JOP_ADDREF;
1956	rrn->jr_diroff = diroff;
1957	srn = errmalloc(sizeof(*srn));
1958	srn->sr_rec = (union jrec *)rrn;
1959	ino_add_ref(sino, srn);
1960}
1961
1962/*
1963 * Add a reference to the list at all known locations.  We follow the offset
1964 * changes for a single instance and create duplicate add refs at each so
1965 * that we can tolerate any version of the directory block.  Eliminate
1966 * removes which collide with adds that are seen in the journal.  They should
1967 * not adjust the link count down.
1968 */
1969static void
1970ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
1971{
1972	struct jrefrec *refrec;
1973	struct jmvrec *mvrec;
1974	struct suj_rec *srp;
1975	struct suj_rec *srn;
1976	struct jrefrec *rrn;
1977	off_t diroff;
1978
1979	refrec = (struct jrefrec *)srec->sr_rec;
1980	/*
1981	 * Search for a mvrec that matches this offset.  Whether it's an add
1982	 * or a remove we can delete the mvref after creating a dup record in
1983	 * the old location.
1984	 */
1985	if (!TAILQ_EMPTY(&sino->si_movs)) {
1986		diroff = refrec->jr_diroff;
1987		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
1988			srp = TAILQ_PREV(srn, srechd, sr_next);
1989			mvrec = (struct jmvrec *)srn->sr_rec;
1990			if (mvrec->jm_parent != refrec->jr_parent ||
1991			    mvrec->jm_newoff != diroff)
1992				continue;
1993			diroff = mvrec->jm_oldoff;
1994			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
1995			free(srn);
1996			ino_dup_ref(sino, refrec, diroff);
1997		}
1998	}
1999	/*
2000	 * If a remove wasn't eliminated by an earlier add just append it to
2001	 * the list.
2002	 */
2003	if (refrec->jr_op == JOP_REMREF) {
2004		ino_add_ref(sino, srec);
2005		return;
2006	}
2007	/*
2008	 * Walk the list of records waiting to be added to the list.  We
2009	 * must check for moves that apply to our current offset and remove
2010	 * them from the list.  Remove any duplicates to eliminate removes
2011	 * with corresponding adds.
2012	 */
2013	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2014		switch (srn->sr_rec->rec_jrefrec.jr_op) {
2015		case JOP_ADDREF:
2016			/*
2017			 * This should actually be an error we should
2018			 * have a remove for every add journaled.
2019			 */
2020			rrn = (struct jrefrec *)srn->sr_rec;
2021			if (rrn->jr_parent != refrec->jr_parent ||
2022			    rrn->jr_diroff != refrec->jr_diroff)
2023				break;
2024			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2025			break;
2026		case JOP_REMREF:
2027			/*
2028			 * Once we remove the current iteration of the
2029			 * record at this address we're done.
2030			 */
2031			rrn = (struct jrefrec *)srn->sr_rec;
2032			if (rrn->jr_parent != refrec->jr_parent ||
2033			    rrn->jr_diroff != refrec->jr_diroff)
2034				break;
2035			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2036			ino_add_ref(sino, srec);
2037			return;
2038		case JOP_MVREF:
2039			/*
2040			 * Update our diroff based on any moves that match
2041			 * and remove the move.
2042			 */
2043			mvrec = (struct jmvrec *)srn->sr_rec;
2044			if (mvrec->jm_parent != refrec->jr_parent ||
2045			    mvrec->jm_oldoff != refrec->jr_diroff)
2046				break;
2047			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2048			refrec->jr_diroff = mvrec->jm_newoff;
2049			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2050			break;
2051		default:
2052			err_suj("ino_build_ref: Unknown op %d\n",
2053			    srn->sr_rec->rec_jrefrec.jr_op);
2054		}
2055	}
2056	ino_add_ref(sino, srec);
2057}
2058
2059/*
2060 * Walk the list of new records and add them in-order resolving any
2061 * dups and adjusted offsets.
2062 */
2063static void
2064ino_build(struct suj_ino *sino)
2065{
2066	struct suj_rec *srec;
2067
2068	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2069		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2070		switch (srec->sr_rec->rec_jrefrec.jr_op) {
2071		case JOP_ADDREF:
2072		case JOP_REMREF:
2073			ino_build_ref(sino, srec);
2074			break;
2075		case JOP_MVREF:
2076			/*
2077			 * Add this mvrec to the queue of pending mvs.
2078			 */
2079			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2080			break;
2081		default:
2082			err_suj("ino_build: Unknown op %d\n",
2083			    srec->sr_rec->rec_jrefrec.jr_op);
2084		}
2085	}
2086	if (TAILQ_EMPTY(&sino->si_recs))
2087		sino->si_hasrecs = 0;
2088}
2089
2090/*
2091 * Modify journal records so they refer to the base block number
2092 * and a start and end frag range.  This is to facilitate the discovery
2093 * of overlapping fragment allocations.
2094 */
2095static void
2096blk_build(struct jblkrec *blkrec)
2097{
2098	struct suj_rec *srec;
2099	struct suj_blk *sblk;
2100	struct jblkrec *blkrn;
2101	struct suj_ino *sino;
2102	ufs2_daddr_t blk;
2103	off_t foff;
2104	int frag;
2105
2106	if (debug)
2107		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2108		    "ino %d lbn %jd\n",
2109		    blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags,
2110		    blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn);
2111
2112	/*
2113	 * Look up the inode and clear the truncate if any lbns after the
2114	 * truncate lbn are freed or allocated.
2115	 */
2116	sino = ino_lookup(blkrec->jb_ino, 0);
2117	if (sino && sino->si_trunc) {
2118		foff = lblktosize(fs, blkrec->jb_lbn);
2119		foff += lfragtosize(fs, blkrec->jb_frags);
2120		if (foff > sino->si_trunc->jt_size)
2121			sino->si_trunc = NULL;
2122	}
2123	blk = blknum(fs, blkrec->jb_blkno);
2124	frag = fragnum(fs, blkrec->jb_blkno);
2125	sblk = blk_lookup(blk, 1);
2126	/*
2127	 * Rewrite the record using oldfrags to indicate the offset into
2128	 * the block.  Leave jb_frags as the actual allocated count.
2129	 */
2130	blkrec->jb_blkno -= frag;
2131	blkrec->jb_oldfrags = frag;
2132	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2133		err_suj("Invalid fragment count %d oldfrags %d\n",
2134		    blkrec->jb_frags, frag);
2135	/*
2136	 * Detect dups.  If we detect a dup we always discard the oldest
2137	 * record as it is superseded by the new record.  This speeds up
2138	 * later stages but also eliminates free records which are used
2139	 * to indicate that the contents of indirects can be trusted.
2140	 */
2141	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2142		blkrn = (struct jblkrec *)srec->sr_rec;
2143		if (blkrn->jb_ino != blkrec->jb_ino ||
2144		    blkrn->jb_lbn != blkrec->jb_lbn ||
2145		    blkrn->jb_blkno != blkrec->jb_blkno ||
2146		    blkrn->jb_frags != blkrec->jb_frags ||
2147		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2148			continue;
2149		if (debug)
2150			printf("Removed dup.\n");
2151		/* Discard the free which is a dup with an alloc. */
2152		if (blkrec->jb_op == JOP_FREEBLK)
2153			return;
2154		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2155		free(srec);
2156		break;
2157	}
2158	srec = errmalloc(sizeof(*srec));
2159	srec->sr_rec = (union jrec *)blkrec;
2160	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2161}
2162
2163static void
2164ino_build_trunc(struct jtrncrec *rec)
2165{
2166	struct suj_ino *sino;
2167
2168	if (debug)
2169		printf("ino_build_trunc: ino %d, size %jd\n",
2170		    rec->jt_ino, rec->jt_size);
2171	sino = ino_lookup(rec->jt_ino, 1);
2172	sino->si_trunc = rec;
2173}
2174
2175/*
2176 * Build up tables of the operations we need to recover.
2177 */
2178static void
2179suj_build(void)
2180{
2181	struct suj_seg *seg;
2182	union jrec *rec;
2183	int off;
2184	int i;
2185
2186	TAILQ_FOREACH(seg, &allsegs, ss_next) {
2187		if (debug)
2188			printf("seg %jd has %d records, oldseq %jd.\n",
2189			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2190			    seg->ss_rec.jsr_oldest);
2191		off = 0;
2192		rec = (union jrec *)seg->ss_blk;
2193		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2194			/* skip the segrec. */
2195			if ((off % DEV_BSIZE) == 0)
2196				continue;
2197			switch (rec->rec_jrefrec.jr_op) {
2198			case JOP_ADDREF:
2199			case JOP_REMREF:
2200			case JOP_MVREF:
2201				ino_append(rec);
2202				break;
2203			case JOP_NEWBLK:
2204			case JOP_FREEBLK:
2205				blk_build((struct jblkrec *)rec);
2206				break;
2207			case JOP_TRUNC:
2208				ino_build_trunc((struct jtrncrec *)rec);
2209				break;
2210			default:
2211				err_suj("Unknown journal operation %d (%d)\n",
2212				    rec->rec_jrefrec.jr_op, off);
2213			}
2214			i++;
2215		}
2216	}
2217}
2218
2219/*
2220 * Prune the journal segments to those we care about based on the
2221 * oldest sequence in the newest segment.  Order the segment list
2222 * based on sequence number.
2223 */
2224static void
2225suj_prune(void)
2226{
2227	struct suj_seg *seg;
2228	struct suj_seg *segn;
2229	uint64_t newseq;
2230	int discard;
2231
2232	if (debug)
2233		printf("Pruning up to %jd\n", oldseq);
2234	/* First free the expired segments. */
2235	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2236		if (seg->ss_rec.jsr_seq >= oldseq)
2237			continue;
2238		TAILQ_REMOVE(&allsegs, seg, ss_next);
2239		free(seg->ss_blk);
2240		free(seg);
2241	}
2242	/* Next ensure that segments are ordered properly. */
2243	seg = TAILQ_FIRST(&allsegs);
2244	if (seg == NULL) {
2245		if (debug)
2246			printf("Empty journal\n");
2247		return;
2248	}
2249	newseq = seg->ss_rec.jsr_seq;
2250	for (;;) {
2251		seg = TAILQ_LAST(&allsegs, seghd);
2252		if (seg->ss_rec.jsr_seq >= newseq)
2253			break;
2254		TAILQ_REMOVE(&allsegs, seg, ss_next);
2255		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2256		newseq = seg->ss_rec.jsr_seq;
2257
2258	}
2259	if (newseq != oldseq) {
2260		err_suj("Journal file sequence mismatch %jd != %jd\n",
2261		    newseq, oldseq);
2262	}
2263	/*
2264	 * The kernel may asynchronously write segments which can create
2265	 * gaps in the sequence space.  Throw away any segments after the
2266	 * gap as the kernel guarantees only those that are contiguously
2267	 * reachable are marked as completed.
2268	 */
2269	discard = 0;
2270	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2271		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2272			jrecs += seg->ss_rec.jsr_cnt;
2273			jbytes += seg->ss_rec.jsr_blocks * DEV_BSIZE;
2274			continue;
2275		}
2276		discard = 1;
2277		if (debug)
2278			printf("Journal order mismatch %jd != %jd pruning\n",
2279			    newseq-1, seg->ss_rec.jsr_seq);
2280		TAILQ_REMOVE(&allsegs, seg, ss_next);
2281		free(seg->ss_blk);
2282		free(seg);
2283	}
2284	if (debug)
2285		printf("Processing journal segments from %jd to %jd\n",
2286		    oldseq, newseq-1);
2287}
2288
2289/*
2290 * Verify the journal inode before attempting to read records.
2291 */
2292static int
2293suj_verifyino(union dinode *ip)
2294{
2295
2296	if (DIP(ip, di_nlink) != 1) {
2297		printf("Invalid link count %d for journal inode %d\n",
2298		    DIP(ip, di_nlink), sujino);
2299		return (-1);
2300	}
2301
2302	if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2303	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2304		printf("Invalid flags 0x%X for journal inode %d\n",
2305		    DIP(ip, di_flags), sujino);
2306		return (-1);
2307	}
2308
2309	if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2310		printf("Invalid mode %o for journal inode %d\n",
2311		    DIP(ip, di_mode), sujino);
2312		return (-1);
2313	}
2314
2315	if (DIP(ip, di_size) < SUJ_MIN || DIP(ip, di_size) > SUJ_MAX) {
2316		printf("Invalid size %jd for journal inode %d\n",
2317		    DIP(ip, di_size), sujino);
2318		return (-1);
2319	}
2320
2321	if (DIP(ip, di_modrev) != fs->fs_mtime) {
2322		printf("Journal timestamp does not match fs mount time\n");
2323		return (-1);
2324	}
2325
2326	return (0);
2327}
2328
2329struct jblocks {
2330	struct jextent *jb_extent;	/* Extent array. */
2331	int		jb_avail;	/* Available extents. */
2332	int		jb_used;	/* Last used extent. */
2333	int		jb_head;	/* Allocator head. */
2334	int		jb_off;		/* Allocator extent offset. */
2335};
2336struct jextent {
2337	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2338	int		je_blocks;	/* Disk block count. */
2339};
2340
2341struct jblocks *suj_jblocks;
2342
2343static struct jblocks *
2344jblocks_create(void)
2345{
2346	struct jblocks *jblocks;
2347	int size;
2348
2349	jblocks = errmalloc(sizeof(*jblocks));
2350	jblocks->jb_avail = 10;
2351	jblocks->jb_used = 0;
2352	jblocks->jb_head = 0;
2353	jblocks->jb_off = 0;
2354	size = sizeof(struct jextent) * jblocks->jb_avail;
2355	jblocks->jb_extent = errmalloc(size);
2356	bzero(jblocks->jb_extent, size);
2357
2358	return (jblocks);
2359}
2360
2361/*
2362 * Return the next available disk block and the amount of contiguous
2363 * free space it contains.
2364 */
2365static ufs2_daddr_t
2366jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2367{
2368	struct jextent *jext;
2369	ufs2_daddr_t daddr;
2370	int freecnt;
2371	int blocks;
2372
2373	blocks = bytes / DEV_BSIZE;
2374	jext = &jblocks->jb_extent[jblocks->jb_head];
2375	freecnt = jext->je_blocks - jblocks->jb_off;
2376	if (freecnt == 0) {
2377		jblocks->jb_off = 0;
2378		if (++jblocks->jb_head > jblocks->jb_used)
2379			return (0);
2380		jext = &jblocks->jb_extent[jblocks->jb_head];
2381		freecnt = jext->je_blocks;
2382	}
2383	if (freecnt > blocks)
2384		freecnt = blocks;
2385	*actual = freecnt * DEV_BSIZE;
2386	daddr = jext->je_daddr + jblocks->jb_off;
2387
2388	return (daddr);
2389}
2390
2391/*
2392 * Advance the allocation head by a specified number of bytes, consuming
2393 * one journal segment.
2394 */
2395static void
2396jblocks_advance(struct jblocks *jblocks, int bytes)
2397{
2398
2399	jblocks->jb_off += bytes / DEV_BSIZE;
2400}
2401
2402static void
2403jblocks_destroy(struct jblocks *jblocks)
2404{
2405
2406	free(jblocks->jb_extent);
2407	free(jblocks);
2408}
2409
2410static void
2411jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2412{
2413	struct jextent *jext;
2414	int size;
2415
2416	jext = &jblocks->jb_extent[jblocks->jb_used];
2417	/* Adding the first block. */
2418	if (jext->je_daddr == 0) {
2419		jext->je_daddr = daddr;
2420		jext->je_blocks = blocks;
2421		return;
2422	}
2423	/* Extending the last extent. */
2424	if (jext->je_daddr + jext->je_blocks == daddr) {
2425		jext->je_blocks += blocks;
2426		return;
2427	}
2428	/* Adding a new extent. */
2429	if (++jblocks->jb_used == jblocks->jb_avail) {
2430		jblocks->jb_avail *= 2;
2431		size = sizeof(struct jextent) * jblocks->jb_avail;
2432		jext = errmalloc(size);
2433		bzero(jext, size);
2434		bcopy(jblocks->jb_extent, jext,
2435		    sizeof(struct jextent) * jblocks->jb_used);
2436		free(jblocks->jb_extent);
2437		jblocks->jb_extent = jext;
2438	}
2439	jext = &jblocks->jb_extent[jblocks->jb_used];
2440	jext->je_daddr = daddr;
2441	jext->je_blocks = blocks;
2442
2443	return;
2444}
2445
2446/*
2447 * Add a file block from the journal to the extent map.  We can't read
2448 * each file block individually because the kernel treats it as a circular
2449 * buffer and segments may span mutliple contiguous blocks.
2450 */
2451static void
2452suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2453{
2454
2455	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2456}
2457
2458static void
2459suj_read(void)
2460{
2461	uint8_t block[1 * 1024 * 1024];
2462	struct suj_seg *seg;
2463	struct jsegrec *recn;
2464	struct jsegrec *rec;
2465	ufs2_daddr_t blk;
2466	int readsize;
2467	int blocks;
2468	int recsize;
2469	int size;
2470	int i;
2471
2472	/*
2473	 * Read records until we exhaust the journal space.  If we find
2474	 * an invalid record we start searching for a valid segment header
2475	 * at the next block.  This is because we don't have a head/tail
2476	 * pointer and must recover the information indirectly.  At the gap
2477	 * between the head and tail we won't necessarily have a valid
2478	 * segment.
2479	 */
2480restart:
2481	for (;;) {
2482		size = sizeof(block);
2483		blk = jblocks_next(suj_jblocks, size, &readsize);
2484		if (blk == 0)
2485			return;
2486		size = readsize;
2487		/*
2488		 * Read 1MB at a time and scan for records within this block.
2489		 */
2490		if (bread(disk, blk, &block, size) == -1) {
2491			err_suj("Error reading journal block %jd\n",
2492			    (intmax_t)blk);
2493		}
2494		for (rec = (void *)block; size; size -= recsize,
2495		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2496			recsize = DEV_BSIZE;
2497			if (rec->jsr_time != fs->fs_mtime) {
2498				if (debug)
2499					printf("Rec time %jd != fs mtime %jd\n",
2500					    rec->jsr_time, fs->fs_mtime);
2501				jblocks_advance(suj_jblocks, recsize);
2502				continue;
2503			}
2504			if (rec->jsr_cnt == 0) {
2505				if (debug)
2506					printf("Found illegal count %d\n",
2507					    rec->jsr_cnt);
2508				jblocks_advance(suj_jblocks, recsize);
2509				continue;
2510			}
2511			blocks = rec->jsr_blocks;
2512			recsize = blocks * DEV_BSIZE;
2513			if (recsize > size) {
2514				/*
2515				 * We may just have run out of buffer, restart
2516				 * the loop to re-read from this spot.
2517				 */
2518				if (size < fs->fs_bsize &&
2519				    size != readsize &&
2520				    recsize <= fs->fs_bsize)
2521					goto restart;
2522				if (debug)
2523					printf("Found invalid segsize %d > %d\n",
2524					    recsize, size);
2525				recsize = DEV_BSIZE;
2526				jblocks_advance(suj_jblocks, recsize);
2527				continue;
2528			}
2529			/*
2530			 * Verify that all blocks in the segment are present.
2531			 */
2532			for (i = 1; i < blocks; i++) {
2533				recn = (void *)
2534				    ((uintptr_t)rec) + i * DEV_BSIZE;
2535				if (recn->jsr_seq == rec->jsr_seq &&
2536				    recn->jsr_time == rec->jsr_time)
2537					continue;
2538				if (debug)
2539					printf("Incomplete record %jd (%d)\n",
2540					    rec->jsr_seq, i);
2541				recsize = i * DEV_BSIZE;
2542				jblocks_advance(suj_jblocks, recsize);
2543				goto restart;
2544			}
2545			seg = errmalloc(sizeof(*seg));
2546			seg->ss_blk = errmalloc(recsize);
2547			seg->ss_rec = *rec;
2548			bcopy((void *)rec, seg->ss_blk, recsize);
2549			if (rec->jsr_oldest > oldseq)
2550				oldseq = rec->jsr_oldest;
2551			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2552			jblocks_advance(suj_jblocks, recsize);
2553		}
2554	}
2555}
2556
2557/*
2558 * Search a directory block for the SUJ_FILE.
2559 */
2560static void
2561suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2562{
2563	char block[MAXBSIZE];
2564	struct direct *dp;
2565	int bytes;
2566	int off;
2567
2568	if (sujino)
2569		return;
2570	bytes = lfragtosize(fs, frags);
2571	if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0)
2572		err_suj("Failed to read ROOTINO directory block %jd\n", blk);
2573	for (off = 0; off < bytes; off += dp->d_reclen) {
2574		dp = (struct direct *)&block[off];
2575		if (dp->d_reclen == 0)
2576			break;
2577		if (dp->d_ino == 0)
2578			continue;
2579		if (dp->d_namlen != strlen(SUJ_FILE))
2580			continue;
2581		if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2582			continue;
2583		sujino = dp->d_ino;
2584		return;
2585	}
2586}
2587
2588/*
2589 * Orchestrate the verification of a filesystem via the softupdates journal.
2590 */
2591int
2592suj_check(const char *filesys)
2593{
2594	union dinode *jip;
2595	union dinode *ip;
2596	uint64_t blocks;
2597	int retval;
2598	struct suj_seg *seg;
2599	struct suj_seg *segn;
2600
2601	opendisk(filesys);
2602	TAILQ_INIT(&allsegs);
2603
2604	/*
2605	 * Set an exit point when SUJ check failed
2606	 */
2607	retval = setjmp(jmpbuf);
2608	if (retval != 0) {
2609		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2610		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2611			TAILQ_REMOVE(&allsegs, seg, ss_next);
2612				free(seg->ss_blk);
2613				free(seg);
2614		}
2615		if (reply("FALLBACK TO FULL FSCK") == 0) {
2616			ckfini(0);
2617			exit(EEXIT);
2618		} else
2619			return (-1);
2620	}
2621
2622	/*
2623	 * Find the journal inode.
2624	 */
2625	ip = ino_read(ROOTINO);
2626	sujino = 0;
2627	ino_visit(ip, ROOTINO, suj_find, 0);
2628	if (sujino == 0) {
2629		printf("Journal inode removed.  Use tunefs to re-create.\n");
2630		sblock.fs_flags &= ~FS_SUJ;
2631		sblock.fs_sujfree = 0;
2632		return (-1);
2633	}
2634	/*
2635	 * Fetch the journal inode and verify it.
2636	 */
2637	jip = ino_read(sujino);
2638	printf("** SU+J Recovering %s\n", filesys);
2639	if (suj_verifyino(jip) != 0)
2640		return (-1);
2641	/*
2642	 * Build a list of journal blocks in jblocks before parsing the
2643	 * available journal blocks in with suj_read().
2644	 */
2645	printf("** Reading %jd byte journal from inode %d.\n",
2646	    DIP(jip, di_size), sujino);
2647	suj_jblocks = jblocks_create();
2648	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2649	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2650		printf("Sparse journal inode %d.\n", sujino);
2651		return (-1);
2652	}
2653	suj_read();
2654	jblocks_destroy(suj_jblocks);
2655	suj_jblocks = NULL;
2656	if (preen || reply("RECOVER")) {
2657		printf("** Building recovery table.\n");
2658		suj_prune();
2659		suj_build();
2660		cg_apply(cg_build);
2661		printf("** Resolving unreferenced inode list.\n");
2662		ino_unlinked();
2663		printf("** Processing journal entries.\n");
2664		cg_apply(cg_trunc);
2665		cg_apply(cg_check_blk);
2666		cg_apply(cg_check_ino);
2667	}
2668	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2669		return (0);
2670	/*
2671	 * To remain idempotent with partial truncations the free bitmaps
2672	 * must be written followed by indirect blocks and lastly inode
2673	 * blocks.  This preserves access to the modified pointers until
2674	 * they are freed.
2675	 */
2676	cg_apply(cg_write);
2677	dblk_write();
2678	cg_apply(cg_write_inos);
2679	/* Write back superblock. */
2680	closedisk(filesys);
2681	if (jrecs > 0 || jbytes > 0) {
2682		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2683		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2684		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2685		    freeinos, freedir, freeblocks, freefrags);
2686	}
2687
2688	return (0);
2689}
2690