1141296Sdas
2141296Sdas/* @(#)e_lgamma_r.c 1.3 95/01/18 */
32116Sjkh/*
42116Sjkh * ====================================================
52116Sjkh * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
62116Sjkh *
7141296Sdas * Developed at SunSoft, a Sun Microsystems, Inc. business.
82116Sjkh * Permission to use, copy, modify, and distribute this
9141296Sdas * software is freely granted, provided that this notice
102116Sjkh * is preserved.
112116Sjkh * ====================================================
12141296Sdas *
132116Sjkh */
142116Sjkh
15176451Sdas#include <sys/cdefs.h>
16176451Sdas__FBSDID("$FreeBSD$");
172116Sjkh
182116Sjkh/* __ieee754_lgamma_r(x, signgamp)
19141296Sdas * Reentrant version of the logarithm of the Gamma function
20141296Sdas * with user provide pointer for the sign of Gamma(x).
212116Sjkh *
222116Sjkh * Method:
232116Sjkh *   1. Argument Reduction for 0 < x <= 8
24141296Sdas * 	Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
252116Sjkh * 	reduce x to a number in [1.5,2.5] by
262116Sjkh * 		lgamma(1+s) = log(s) + lgamma(s)
272116Sjkh *	for example,
282116Sjkh *		lgamma(7.3) = log(6.3) + lgamma(6.3)
292116Sjkh *			    = log(6.3*5.3) + lgamma(5.3)
302116Sjkh *			    = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
312116Sjkh *   2. Polynomial approximation of lgamma around its
322116Sjkh *	minimun ymin=1.461632144968362245 to maintain monotonicity.
332116Sjkh *	On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
342116Sjkh *		Let z = x-ymin;
352116Sjkh *		lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
362116Sjkh *	where
372116Sjkh *		poly(z) is a 14 degree polynomial.
382116Sjkh *   2. Rational approximation in the primary interval [2,3]
392116Sjkh *	We use the following approximation:
402116Sjkh *		s = x-2.0;
412116Sjkh *		lgamma(x) = 0.5*s + s*P(s)/Q(s)
422116Sjkh *	with accuracy
432116Sjkh *		|P/Q - (lgamma(x)-0.5s)| < 2**-61.71
442116Sjkh *	Our algorithms are based on the following observation
452116Sjkh *
462116Sjkh *                             zeta(2)-1    2    zeta(3)-1    3
472116Sjkh * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
482116Sjkh *                                 2                 3
492116Sjkh *
502116Sjkh *	where Euler = 0.5771... is the Euler constant, which is very
512116Sjkh *	close to 0.5.
522116Sjkh *
532116Sjkh *   3. For x>=8, we have
542116Sjkh *	lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
552116Sjkh *	(better formula:
562116Sjkh *	   lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
572116Sjkh *	Let z = 1/x, then we approximation
582116Sjkh *		f(z) = lgamma(x) - (x-0.5)(log(x)-1)
592116Sjkh *	by
602116Sjkh *	  			    3       5             11
612116Sjkh *		w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
62141296Sdas *	where
632116Sjkh *		|w - f(z)| < 2**-58.74
64141296Sdas *
652116Sjkh *   4. For negative x, since (G is gamma function)
662116Sjkh *		-x*G(-x)*G(x) = pi/sin(pi*x),
672116Sjkh * 	we have
682116Sjkh * 		G(x) = pi/(sin(pi*x)*(-x)*G(-x))
692116Sjkh *	since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
70141296Sdas *	Hence, for x<0, signgam = sign(sin(pi*x)) and
712116Sjkh *		lgamma(x) = log(|Gamma(x)|)
722116Sjkh *			  = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
73141296Sdas *	Note: one should avoid compute pi*(-x) directly in the
742116Sjkh *	      computation of sin(pi*(-x)).
75141296Sdas *
762116Sjkh *   5. Special Cases
772116Sjkh *		lgamma(2+s) ~ s*(1-Euler) for tiny s
78169220Sbde *		lgamma(1) = lgamma(2) = 0
79169220Sbde *		lgamma(x) ~ -log(|x|) for tiny x
80169220Sbde *		lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
81169220Sbde *		lgamma(inf) = inf
82169220Sbde *		lgamma(-inf) = inf (bug for bug compatible with C99!?)
83141296Sdas *
842116Sjkh */
852116Sjkh
862116Sjkh#include "math.h"
872116Sjkh#include "math_private.h"
882116Sjkh
898870Srgrimesstatic const double
902116Sjkhtwo52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
912116Sjkhhalf=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
922116Sjkhone =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
932116Sjkhpi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
942116Sjkha0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
952116Sjkha1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
962116Sjkha2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
972116Sjkha3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
982116Sjkha4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
992116Sjkha5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
1002116Sjkha6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
1012116Sjkha7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
1022116Sjkha8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
1032116Sjkha9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
1042116Sjkha10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
1052116Sjkha11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
1062116Sjkhtc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
1072116Sjkhtf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
1082116Sjkh/* tt = -(tail of tf) */
1092116Sjkhtt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
1102116Sjkht0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
1112116Sjkht1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
1122116Sjkht2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
1132116Sjkht3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
1142116Sjkht4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
1152116Sjkht5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
1162116Sjkht6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
1172116Sjkht7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
1182116Sjkht8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
1192116Sjkht9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
1202116Sjkht10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
1212116Sjkht11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
1222116Sjkht12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
1232116Sjkht13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
1242116Sjkht14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
1252116Sjkhu0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
1262116Sjkhu1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
1272116Sjkhu2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
1282116Sjkhu3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
1292116Sjkhu4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
1302116Sjkhu5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
1312116Sjkhv1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
1322116Sjkhv2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
1332116Sjkhv3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
1342116Sjkhv4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
1352116Sjkhv5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
1362116Sjkhs0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
1372116Sjkhs1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
1382116Sjkhs2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
1392116Sjkhs3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
1402116Sjkhs4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
1412116Sjkhs5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
1422116Sjkhs6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
1432116Sjkhr1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
1442116Sjkhr2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
1452116Sjkhr3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
1462116Sjkhr4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
1472116Sjkhr5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
1482116Sjkhr6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
1492116Sjkhw0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
1502116Sjkhw1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
1512116Sjkhw2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
1522116Sjkhw3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
1532116Sjkhw4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
1542116Sjkhw5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
1552116Sjkhw6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
1562116Sjkh
1572116Sjkhstatic const double zero=  0.00000000000000000000e+00;
1582116Sjkh
1592116Sjkh	static double sin_pi(double x)
1602116Sjkh{
1612116Sjkh	double y,z;
1622116Sjkh	int n,ix;
1632116Sjkh
1642116Sjkh	GET_HIGH_WORD(ix,x);
1652116Sjkh	ix &= 0x7fffffff;
1662116Sjkh
1672116Sjkh	if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
1682116Sjkh	y = -x;		/* x is assume negative */
1692116Sjkh
1702116Sjkh    /*
1712116Sjkh     * argument reduction, make sure inexact flag not raised if input
1722116Sjkh     * is an integer
1732116Sjkh     */
1742116Sjkh	z = floor(y);
1752116Sjkh	if(z!=y) {				/* inexact anyway */
1762116Sjkh	    y  *= 0.5;
1772116Sjkh	    y   = 2.0*(y - floor(y));		/* y = |x| mod 2.0 */
1782116Sjkh	    n   = (int) (y*4.0);
1792116Sjkh	} else {
1802116Sjkh            if(ix>=0x43400000) {
1812116Sjkh                y = zero; n = 0;                 /* y must be even */
1822116Sjkh            } else {
1832116Sjkh                if(ix<0x43300000) z = y+two52;	/* exact */
1842116Sjkh		GET_LOW_WORD(n,z);
1852116Sjkh		n &= 1;
1862116Sjkh                y  = n;
1872116Sjkh                n<<= 2;
1882116Sjkh            }
1892116Sjkh        }
1902116Sjkh	switch (n) {
1912116Sjkh	    case 0:   y =  __kernel_sin(pi*y,zero,0); break;
192141296Sdas	    case 1:
1932116Sjkh	    case 2:   y =  __kernel_cos(pi*(0.5-y),zero); break;
194141296Sdas	    case 3:
1952116Sjkh	    case 4:   y =  __kernel_sin(pi*(one-y),zero,0); break;
1962116Sjkh	    case 5:
1972116Sjkh	    case 6:   y = -__kernel_cos(pi*(y-1.5),zero); break;
1982116Sjkh	    default:  y =  __kernel_sin(pi*(y-2.0),zero,0); break;
1992116Sjkh	    }
2002116Sjkh	return -y;
2012116Sjkh}
2022116Sjkh
2032116Sjkh
20497413Salfreddouble
20597413Salfred__ieee754_lgamma_r(double x, int *signgamp)
2062116Sjkh{
2072116Sjkh	double t,y,z,nadj,p,p1,p2,p3,q,r,w;
208169220Sbde	int32_t hx;
209169220Sbde	int i,lx,ix;
2102116Sjkh
2112116Sjkh	EXTRACT_WORDS(hx,lx,x);
2122116Sjkh
213169220Sbde    /* purge off +-inf, NaN, +-0, tiny and negative arguments */
2142116Sjkh	*signgamp = 1;
2152116Sjkh	ix = hx&0x7fffffff;
2162116Sjkh	if(ix>=0x7ff00000) return x*x;
2172116Sjkh	if((ix|lx)==0) return one/zero;
2182116Sjkh	if(ix<0x3b900000) {	/* |x|<2**-70, return -log(|x|) */
2192116Sjkh	    if(hx<0) {
2202116Sjkh	        *signgamp = -1;
2212116Sjkh	        return -__ieee754_log(-x);
2222116Sjkh	    } else return -__ieee754_log(x);
2232116Sjkh	}
2242116Sjkh	if(hx<0) {
2252116Sjkh	    if(ix>=0x43300000) 	/* |x|>=2**52, must be -integer */
2262116Sjkh		return one/zero;
2272116Sjkh	    t = sin_pi(x);
2282116Sjkh	    if(t==zero) return one/zero; /* -integer */
2292116Sjkh	    nadj = __ieee754_log(pi/fabs(t*x));
2302116Sjkh	    if(t<zero) *signgamp = -1;
2312116Sjkh	    x = -x;
2322116Sjkh	}
2332116Sjkh
2342116Sjkh    /* purge off 1 and 2 */
2352116Sjkh	if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
2362116Sjkh    /* for x < 2.0 */
2372116Sjkh	else if(ix<0x40000000) {
2382116Sjkh	    if(ix<=0x3feccccc) { 	/* lgamma(x) = lgamma(x+1)-log(x) */
2392116Sjkh		r = -__ieee754_log(x);
2402116Sjkh		if(ix>=0x3FE76944) {y = one-x; i= 0;}
2412116Sjkh		else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
2422116Sjkh	  	else {y = x; i=2;}
2432116Sjkh	    } else {
2442116Sjkh	  	r = zero;
2452116Sjkh	        if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
2462116Sjkh	        else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
2472116Sjkh		else {y=x-one;i=2;}
2482116Sjkh	    }
2492116Sjkh	    switch(i) {
2502116Sjkh	      case 0:
2512116Sjkh		z = y*y;
2522116Sjkh		p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
2532116Sjkh		p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
2542116Sjkh		p  = y*p1+p2;
2552116Sjkh		r  += (p-0.5*y); break;
2562116Sjkh	      case 1:
2572116Sjkh		z = y*y;
2582116Sjkh		w = z*y;
2592116Sjkh		p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));	/* parallel comp */
2602116Sjkh		p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
2612116Sjkh		p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
2622116Sjkh		p  = z*p1-(tt-w*(p2+y*p3));
2632116Sjkh		r += (tf + p); break;
264141296Sdas	      case 2:
2652116Sjkh		p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
2662116Sjkh		p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
2672116Sjkh		r += (-0.5*y + p1/p2);
2682116Sjkh	    }
2692116Sjkh	}
2702116Sjkh	else if(ix<0x40200000) { 			/* x < 8.0 */
2712116Sjkh	    i = (int)x;
2722116Sjkh	    t = zero;
2732116Sjkh	    y = x-(double)i;
2742116Sjkh	    p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
2752116Sjkh	    q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
2762116Sjkh	    r = half*y+p/q;
2772116Sjkh	    z = one;	/* lgamma(1+s) = log(s) + lgamma(s) */
2782116Sjkh	    switch(i) {
2792116Sjkh	    case 7: z *= (y+6.0);	/* FALLTHRU */
2802116Sjkh	    case 6: z *= (y+5.0);	/* FALLTHRU */
2812116Sjkh	    case 5: z *= (y+4.0);	/* FALLTHRU */
2822116Sjkh	    case 4: z *= (y+3.0);	/* FALLTHRU */
2832116Sjkh	    case 3: z *= (y+2.0);	/* FALLTHRU */
2842116Sjkh		    r += __ieee754_log(z); break;
2852116Sjkh	    }
2862116Sjkh    /* 8.0 <= x < 2**58 */
2872116Sjkh	} else if (ix < 0x43900000) {
2882116Sjkh	    t = __ieee754_log(x);
2892116Sjkh	    z = one/x;
2902116Sjkh	    y = z*z;
2912116Sjkh	    w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
2922116Sjkh	    r = (x-half)*(t-one)+w;
293141296Sdas	} else
2942116Sjkh    /* 2**58 <= x <= inf */
2952116Sjkh	    r =  x*(__ieee754_log(x)-one);
2962116Sjkh	if(hx<0) r = nadj - r;
2972116Sjkh	return r;
2982116Sjkh}
299