crypt-sha512.c revision 220497
1/*
2 * Copyright (c) 2011 The FreeBSD Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26/* Based on:
27 * SHA512-based Unix crypt implementation. Released into the Public Domain by
28 * Ulrich Drepper <drepper@redhat.com>. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/lib/libcrypt/crypt-sha512.c 220497 2011-04-09 14:02:04Z markm $");
32
33#include <sys/endian.h>
34#include <sys/param.h>
35
36#include <errno.h>
37#include <limits.h>
38#include <sha512.h>
39#include <stdbool.h>
40#include <stdint.h>
41#include <stdio.h>
42#include <stdlib.h>
43#include <string.h>
44
45#include "crypt.h"
46
47/* Define our magic string to mark salt for SHA512 "encryption" replacement. */
48static const char sha512_salt_prefix[] = "$6$";
49
50/* Prefix for optional rounds specification. */
51static const char sha512_rounds_prefix[] = "rounds=";
52
53/* Maximum salt string length. */
54#define SALT_LEN_MAX 16
55/* Default number of rounds if not explicitly specified. */
56#define ROUNDS_DEFAULT 5000
57/* Minimum number of rounds. */
58#define ROUNDS_MIN 1000
59/* Maximum number of rounds. */
60#define ROUNDS_MAX 999999999
61
62static char *
63sha512_crypt_r(const char *key, const char *salt, char *buffer, int buflen)
64{
65	u_long srounds;
66	int n;
67	uint8_t alt_result[64], temp_result[64];
68	SHA512_CTX ctx, alt_ctx;
69	size_t salt_len, key_len, cnt, rounds;
70	char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp;
71	const char *num;
72	bool rounds_custom;
73
74	copied_key = NULL;
75	copied_salt = NULL;
76
77	/* Default number of rounds. */
78	rounds = ROUNDS_DEFAULT;
79	rounds_custom = false;
80
81	/* Find beginning of salt string. The prefix should normally always
82	 * be present. Just in case it is not. */
83	if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0)
84		/* Skip salt prefix. */
85		salt += sizeof(sha512_salt_prefix) - 1;
86
87	if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1)
88	    == 0) {
89		num = salt + sizeof(sha512_rounds_prefix) - 1;
90		srounds = strtoul(num, &endp, 10);
91
92		if (*endp == '$') {
93			salt = endp + 1;
94			rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
95			rounds_custom = true;
96		}
97	}
98
99	salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
100	key_len = strlen(key);
101
102	/* Prepare for the real work. */
103	SHA512_Init(&ctx);
104
105	/* Add the key string. */
106	SHA512_Update(&ctx, key, key_len);
107
108	/* The last part is the salt string. This must be at most 8
109	 * characters and it ends at the first `$' character (for
110	 * compatibility with existing implementations). */
111	SHA512_Update(&ctx, salt, salt_len);
112
113	/* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The
114	 * final result will be added to the first context. */
115	SHA512_Init(&alt_ctx);
116
117	/* Add key. */
118	SHA512_Update(&alt_ctx, key, key_len);
119
120	/* Add salt. */
121	SHA512_Update(&alt_ctx, salt, salt_len);
122
123	/* Add key again. */
124	SHA512_Update(&alt_ctx, key, key_len);
125
126	/* Now get result of this (64 bytes) and add it to the other context. */
127	SHA512_Final(alt_result, &alt_ctx);
128
129	/* Add for any character in the key one byte of the alternate sum. */
130	for (cnt = key_len; cnt > 64; cnt -= 64)
131		SHA512_Update(&ctx, alt_result, 64);
132	SHA512_Update(&ctx, alt_result, cnt);
133
134	/* Take the binary representation of the length of the key and for
135	 * every 1 add the alternate sum, for every 0 the key. */
136	for (cnt = key_len; cnt > 0; cnt >>= 1)
137		if ((cnt & 1) != 0)
138			SHA512_Update(&ctx, alt_result, 64);
139		else
140			SHA512_Update(&ctx, key, key_len);
141
142	/* Create intermediate result. */
143	SHA512_Final(alt_result, &ctx);
144
145	/* Start computation of P byte sequence. */
146	SHA512_Init(&alt_ctx);
147
148	/* For every character in the password add the entire password. */
149	for (cnt = 0; cnt < key_len; ++cnt)
150		SHA512_Update(&alt_ctx, key, key_len);
151
152	/* Finish the digest. */
153	SHA512_Final(temp_result, &alt_ctx);
154
155	/* Create byte sequence P. */
156	cp = p_bytes = alloca(key_len);
157	for (cnt = key_len; cnt >= 64; cnt -= 64) {
158		memcpy(cp, temp_result, 64);
159		cp += 64;
160	}
161	memcpy(cp, temp_result, cnt);
162
163	/* Start computation of S byte sequence. */
164	SHA512_Init(&alt_ctx);
165
166	/* For every character in the password add the entire password. */
167	for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
168		SHA512_Update(&alt_ctx, salt, salt_len);
169
170	/* Finish the digest. */
171	SHA512_Final(temp_result, &alt_ctx);
172
173	/* Create byte sequence S. */
174	cp = s_bytes = alloca(salt_len);
175	for (cnt = salt_len; cnt >= 64; cnt -= 64) {
176		memcpy(cp, temp_result, 64);
177		cp += 64;
178	}
179	memcpy(cp, temp_result, cnt);
180
181	/* Repeatedly run the collected hash value through SHA512 to burn CPU
182	 * cycles. */
183	for (cnt = 0; cnt < rounds; ++cnt) {
184		/* New context. */
185		SHA512_Init(&ctx);
186
187		/* Add key or last result. */
188		if ((cnt & 1) != 0)
189			SHA512_Update(&ctx, p_bytes, key_len);
190		else
191			SHA512_Update(&ctx, alt_result, 64);
192
193		/* Add salt for numbers not divisible by 3. */
194		if (cnt % 3 != 0)
195			SHA512_Update(&ctx, s_bytes, salt_len);
196
197		/* Add key for numbers not divisible by 7. */
198		if (cnt % 7 != 0)
199			SHA512_Update(&ctx, p_bytes, key_len);
200
201		/* Add key or last result. */
202		if ((cnt & 1) != 0)
203			SHA512_Update(&ctx, alt_result, 64);
204		else
205			SHA512_Update(&ctx, p_bytes, key_len);
206
207		/* Create intermediate result. */
208		SHA512_Final(alt_result, &ctx);
209	}
210
211	/* Now we can construct the result string. It consists of three
212	 * parts. */
213	cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen));
214	buflen -= sizeof(sha512_salt_prefix) - 1;
215
216	if (rounds_custom) {
217		n = snprintf(cp, MAX(0, buflen), "%s%zu$",
218			 sha512_rounds_prefix, rounds);
219
220		cp += n;
221		buflen -= n;
222	}
223
224	cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len));
225	buflen -= MIN((size_t)MAX(0, buflen), salt_len);
226
227	if (buflen > 0) {
228		*cp++ = '$';
229		--buflen;
230	}
231
232	b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4, &buflen, &cp);
233	b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4, &buflen, &cp);
234	b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4, &buflen, &cp);
235	b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4, &buflen, &cp);
236	b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4, &buflen, &cp);
237	b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4, &buflen, &cp);
238	b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4, &buflen, &cp);
239	b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4, &buflen, &cp);
240	b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4, &buflen, &cp);
241	b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4, &buflen, &cp);
242	b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4, &buflen, &cp);
243	b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4, &buflen, &cp);
244	b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4, &buflen, &cp);
245	b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4, &buflen, &cp);
246	b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4, &buflen, &cp);
247	b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4, &buflen, &cp);
248	b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4, &buflen, &cp);
249	b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4, &buflen, &cp);
250	b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4, &buflen, &cp);
251	b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4, &buflen, &cp);
252	b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4, &buflen, &cp);
253	b64_from_24bit(0, 0, alt_result[63], 2, &buflen, &cp);
254
255	if (buflen <= 0) {
256		errno = ERANGE;
257		buffer = NULL;
258	}
259	else
260		*cp = '\0';	/* Terminate the string. */
261
262	/* Clear the buffer for the intermediate result so that people
263	 * attaching to processes or reading core dumps cannot get any
264	 * information. We do it in this way to clear correct_words[] inside
265	 * the SHA512 implementation as well. */
266	SHA512_Init(&ctx);
267	SHA512_Final(alt_result, &ctx);
268	memset(temp_result, '\0', sizeof(temp_result));
269	memset(p_bytes, '\0', key_len);
270	memset(s_bytes, '\0', salt_len);
271	memset(&ctx, '\0', sizeof(ctx));
272	memset(&alt_ctx, '\0', sizeof(alt_ctx));
273	if (copied_key != NULL)
274		memset(copied_key, '\0', key_len);
275	if (copied_salt != NULL)
276		memset(copied_salt, '\0', salt_len);
277
278	return buffer;
279}
280
281/* This entry point is equivalent to crypt(3). */
282char *
283sha512_crypt(const char *key, const char *salt)
284{
285	/* We don't want to have an arbitrary limit in the size of the
286	 * password. We can compute an upper bound for the size of the
287	 * result in advance and so we can prepare the buffer we pass to
288	 * `sha512_crypt_r'. */
289	static char *buffer;
290	static int buflen;
291	int needed;
292	char *new_buffer;
293
294	needed = (sizeof(sha512_salt_prefix) - 1
295	      + sizeof(sha512_rounds_prefix) + 9 + 1
296	      + strlen(salt) + 1 + 86 + 1);
297
298	if (buflen < needed) {
299		new_buffer = (char *)realloc(buffer, needed);
300
301		if (new_buffer == NULL)
302			return NULL;
303
304		buffer = new_buffer;
305		buflen = needed;
306	}
307
308	return sha512_crypt_r(key, salt, buffer, buflen);
309}
310
311#ifdef TEST
312
313static const struct {
314	const char *input;
315	const char result[64];
316} tests[] =
317{
318	/* Test vectors from FIPS 180-2: appendix C.1. */
319	{
320		"abc",
321		"\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31"
322		"\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a"
323		"\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd"
324		"\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f"
325	},
326	/* Test vectors from FIPS 180-2: appendix C.2. */
327	{
328		"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
329		"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
330		"\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f"
331		"\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18"
332		"\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a"
333		"\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09"
334	},
335	/* Test vectors from the NESSIE project. */
336	{
337		"",
338		"\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07"
339		"\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce"
340		"\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f"
341		"\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e"
342	},
343	{
344		"a",
345		"\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2"
346		"\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53"
347		"\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46"
348		"\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75"
349	},
350	{
351		"message digest",
352		"\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51"
353		"\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33"
354		"\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20"
355		"\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c"
356	},
357	{
358		"abcdefghijklmnopqrstuvwxyz",
359		"\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81"
360		"\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29"
361		"\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59"
362		"\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1"
363	},
364	{
365		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
366		"\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16"
367		"\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35"
368		"\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0"
369		"\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45"
370	},
371	{
372		"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
373		"\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93"
374		"\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4"
375		"\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab"
376		"\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94"
377	},
378	{
379		"123456789012345678901234567890123456789012345678901234567890"
380		"12345678901234567890",
381		"\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95"
382		"\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a"
383		"\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1"
384		"\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43"
385	}
386};
387
388#define ntests (sizeof (tests) / sizeof (tests[0]))
389
390static const struct {
391	const char *salt;
392	const char *input;
393	const char *expected;
394} tests2[] =
395{
396	{
397		"$6$saltstring", "Hello world!",
398		"$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu"
399		"esI68u4OTLiBFdcbYEdFCoEOfaS35inz1"
400	},
401	{
402		"$6$rounds=10000$saltstringsaltstring", "Hello world!",
403		"$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb"
404		"HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v."
405	},
406	{
407		"$6$rounds=5000$toolongsaltstring", "This is just a test",
408		"$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ"
409		"zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0"
410	},
411	{
412		"$6$rounds=1400$anotherlongsaltstring",
413		"a very much longer text to encrypt.  This one even stretches over more"
414		"than one line.",
415		"$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP"
416		"vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1"
417	},
418	{
419		"$6$rounds=77777$short",
420		"we have a short salt string but not a short password",
421		"$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g"
422		"ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0"
423	},
424	{
425		"$6$rounds=123456$asaltof16chars..", "a short string",
426		"$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc"
427		"elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1"
428	},
429	{
430		"$6$rounds=10$roundstoolow", "the minimum number is still observed",
431		"$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x"
432		"hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX."
433	},
434};
435
436#define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
437
438int
439main(void)
440{
441	SHA512_CTX ctx;
442	uint8_t sum[64];
443	int result = 0;
444	int i, cnt;
445
446	for (cnt = 0; cnt < (int)ntests; ++cnt) {
447		SHA512_Init(&ctx);
448		SHA512_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
449		SHA512_Final(sum, &ctx);
450		if (memcmp(tests[cnt].result, sum, 64) != 0) {
451			printf("test %d run %d failed\n", cnt, 1);
452			result = 1;
453		}
454
455		SHA512_Init(&ctx);
456		for (i = 0; tests[cnt].input[i] != '\0'; ++i)
457			SHA512_Update(&ctx, &tests[cnt].input[i], 1);
458		SHA512_Final(sum, &ctx);
459		if (memcmp(tests[cnt].result, sum, 64) != 0) {
460			printf("test %d run %d failed\n", cnt, 2);
461			result = 1;
462		}
463	}
464
465	/* Test vector from FIPS 180-2: appendix C.3. */
466	char buf[1000];
467
468	memset(buf, 'a', sizeof(buf));
469	SHA512_Init(&ctx);
470	for (i = 0; i < 1000; ++i)
471		SHA512_Update(&ctx, buf, sizeof(buf));
472	SHA512_Final(sum, &ctx);
473	static const char expected[64] =
474	"\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63"
475	"\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb"
476	"\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b"
477	"\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b";
478
479	if (memcmp(expected, sum, 64) != 0) {
480		printf("test %d failed\n", cnt);
481		result = 1;
482	}
483
484	for (cnt = 0; cnt < ntests2; ++cnt) {
485		char *cp = sha512_crypt(tests2[cnt].input, tests2[cnt].salt);
486
487		if (strcmp(cp, tests2[cnt].expected) != 0) {
488			printf("test %d: expected \"%s\", got \"%s\"\n",
489			       cnt, tests2[cnt].expected, cp);
490			result = 1;
491		}
492	}
493
494	if (result == 0)
495		puts("all tests OK");
496
497	return result;
498}
499
500#endif /* TEST */
501