arc4random.c revision 181261
1/*
2 * Copyright (c) 1996, David Mazieres <dm@uun.org>
3 * Copyright (c) 2008, Damien Miller <djm@openbsd.org>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18/*
19 * Arc4 random number generator for OpenBSD.
20 *
21 * This code is derived from section 17.1 of Applied Cryptography,
22 * second edition, which describes a stream cipher allegedly
23 * compatible with RSA Labs "RC4" cipher (the actual description of
24 * which is a trade secret).  The same algorithm is used as a stream
25 * cipher called "arcfour" in Tatu Ylonen's ssh package.
26 *
27 * Here the stream cipher has been modified always to include the time
28 * when initializing the state.  That makes it impossible to
29 * regenerate the same random sequence twice, so this can't be used
30 * for encryption, but will generate good random numbers.
31 *
32 * RC4 is a registered trademark of RSA Laboratories.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/lib/libc/gen/arc4random.c 181261 2008-08-03 20:15:22Z ache $");
37
38#include "namespace.h"
39#include <sys/types.h>
40#include <sys/time.h>
41#include <stdlib.h>
42#include <fcntl.h>
43#include <unistd.h>
44#include <pthread.h>
45
46#include "libc_private.h"
47#include "un-namespace.h"
48
49struct arc4_stream {
50	u_int8_t i;
51	u_int8_t j;
52	u_int8_t s[256];
53};
54
55static pthread_mutex_t	arc4random_mtx = PTHREAD_MUTEX_INITIALIZER;
56
57#define	RANDOMDEV	"/dev/urandom"
58#define KEYSIZE		128
59#define	THREAD_LOCK()						\
60	do {							\
61		if (__isthreaded)				\
62			_pthread_mutex_lock(&arc4random_mtx);	\
63	} while (0)
64
65#define	THREAD_UNLOCK()						\
66	do {							\
67		if (__isthreaded)				\
68			_pthread_mutex_unlock(&arc4random_mtx);	\
69	} while (0)
70
71static struct arc4_stream rs;
72static int rs_initialized;
73static int rs_stired;
74static int arc4_count;
75
76static inline u_int8_t arc4_getbyte(void);
77static void arc4_stir(void);
78
79static inline void
80arc4_init(void)
81{
82	int     n;
83
84	for (n = 0; n < 256; n++)
85		rs.s[n] = n;
86	rs.i = 0;
87	rs.j = 0;
88}
89
90static inline void
91arc4_addrandom(u_char *dat, int datlen)
92{
93	int     n;
94	u_int8_t si;
95
96	rs.i--;
97	for (n = 0; n < 256; n++) {
98		rs.i = (rs.i + 1);
99		si = rs.s[rs.i];
100		rs.j = (rs.j + si + dat[n % datlen]);
101		rs.s[rs.i] = rs.s[rs.j];
102		rs.s[rs.j] = si;
103	}
104	rs.j = rs.i;
105}
106
107static void
108arc4_stir(void)
109{
110	int done, fd, n;
111	struct {
112		struct timeval	tv;
113		pid_t 		pid;
114		u_int8_t 	rnd[KEYSIZE];
115	} rdat;
116
117	fd = _open(RANDOMDEV, O_RDONLY, 0);
118	done = 0;
119	if (fd >= 0) {
120		if (_read(fd, &rdat, KEYSIZE) == KEYSIZE)
121			done = 1;
122		(void)_close(fd);
123	}
124	if (!done) {
125		(void)gettimeofday(&rdat.tv, NULL);
126		rdat.pid = getpid();
127		/* We'll just take whatever was on the stack too... */
128	}
129
130	arc4_addrandom((u_char *)&rdat, KEYSIZE);
131
132	/*
133	 * Throw away the first N bytes of output, as suggested in the
134	 * paper "Weaknesses in the Key Scheduling Algorithm of RC4"
135	 * by Fluher, Mantin, and Shamir.  N=1024 is based on
136	 * suggestions in the paper "(Not So) Random Shuffles of RC4"
137	 * by Ilya Mironov.
138	 */
139	for (n = 0; n < 1024; n++)
140		(void) arc4_getbyte();
141	arc4_count = 1600000;
142}
143
144static inline u_int8_t
145arc4_getbyte(void)
146{
147	u_int8_t si, sj;
148
149	rs.i = (rs.i + 1);
150	si = rs.s[rs.i];
151	rs.j = (rs.j + si);
152	sj = rs.s[rs.j];
153	rs.s[rs.i] = sj;
154	rs.s[rs.j] = si;
155
156	return (rs.s[(si + sj) & 0xff]);
157}
158
159static inline u_int32_t
160arc4_getword(void)
161{
162	u_int32_t val;
163
164	val = arc4_getbyte() << 24;
165	val |= arc4_getbyte() << 16;
166	val |= arc4_getbyte() << 8;
167	val |= arc4_getbyte();
168
169	return (val);
170}
171
172static void
173arc4_check_init(void)
174{
175	if (!rs_initialized) {
176		arc4_init();
177		rs_initialized = 1;
178	}
179}
180
181static inline void
182arc4_check_stir(void)
183{
184	if (!rs_stired || arc4_count <= 0) {
185		arc4_stir();
186		rs_stired = 1;
187	}
188}
189
190void
191arc4random_stir(void)
192{
193	THREAD_LOCK();
194	arc4_check_init();
195	arc4_stir();
196	THREAD_UNLOCK();
197}
198
199void
200arc4random_addrandom(u_char *dat, int datlen)
201{
202	THREAD_LOCK();
203	arc4_check_init();
204	arc4_check_stir();
205	arc4_addrandom(dat, datlen);
206	THREAD_UNLOCK();
207}
208
209u_int32_t
210arc4random(void)
211{
212	u_int32_t rnd;
213
214	THREAD_LOCK();
215	arc4_check_init();
216	arc4_check_stir();
217	rnd = arc4_getword();
218	arc4_count -= 4;
219	THREAD_UNLOCK();
220
221	return (rnd);
222}
223
224void
225arc4random_buf(void *_buf, size_t n)
226{
227	u_char *buf = (u_char *)_buf;
228
229	THREAD_LOCK();
230	arc4_check_init();
231	while (n--) {
232		arc4_check_stir();
233		buf[n] = arc4_getbyte();
234		arc4_count--;
235	}
236	THREAD_UNLOCK();
237}
238
239/*
240 * Calculate a uniformly distributed random number less than upper_bound
241 * avoiding "modulo bias".
242 *
243 * Uniformity is achieved by generating new random numbers until the one
244 * returned is outside the range [0, 2**32 % upper_bound).  This
245 * guarantees the selected random number will be inside
246 * [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound)
247 * after reduction modulo upper_bound.
248 */
249u_int32_t
250arc4random_uniform(u_int32_t upper_bound)
251{
252	u_int32_t r, min;
253
254	if (upper_bound < 2)
255		return (0);
256
257#if (ULONG_MAX > 0xffffffffUL)
258	min = 0x100000000UL % upper_bound;
259#else
260	/* Calculate (2**32 % upper_bound) avoiding 64-bit math */
261	if (upper_bound > 0x80000000)
262		min = 1 + ~upper_bound;		/* 2**32 - upper_bound */
263	else {
264		/* (2**32 - (x * 2)) % x == 2**32 % x when x <= 2**31 */
265		min = ((0xffffffff - (upper_bound * 2)) + 1) % upper_bound;
266	}
267#endif
268
269	/*
270	 * This could theoretically loop forever but each retry has
271	 * p > 0.5 (worst case, usually far better) of selecting a
272	 * number inside the range we need, so it should rarely need
273	 * to re-roll.
274	 */
275	for (;;) {
276		r = arc4random();
277		if (r >= min)
278			break;
279	}
280
281	return (r % upper_bound);
282}
283
284#if 0
285/*-------- Test code for i386 --------*/
286#include <stdio.h>
287#include <machine/pctr.h>
288int
289main(int argc, char **argv)
290{
291	const int iter = 1000000;
292	int     i;
293	pctrval v;
294
295	v = rdtsc();
296	for (i = 0; i < iter; i++)
297		arc4random();
298	v = rdtsc() - v;
299	v /= iter;
300
301	printf("%qd cycles\n", v);
302}
303#endif
304