hash_bigkey.c revision 111010
1/*-
2 * Copyright (c) 1990, 1993, 1994
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#if defined(LIBC_SCCS) && !defined(lint)
38static char sccsid[] = "@(#)hash_bigkey.c	8.3 (Berkeley) 5/31/94";
39#endif /* LIBC_SCCS and not lint */
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/lib/libc/db/hash/hash_bigkey.c 111010 2003-02-16 17:29:11Z nectar $");
42
43/*
44 * PACKAGE: hash
45 * DESCRIPTION:
46 *	Big key/data handling for the hashing package.
47 *
48 * ROUTINES:
49 * External
50 *	__big_keydata
51 *	__big_split
52 *	__big_insert
53 *	__big_return
54 *	__big_delete
55 *	__find_last_page
56 * Internal
57 *	collect_key
58 *	collect_data
59 */
60
61#include <sys/param.h>
62
63#include <errno.h>
64#include <stdio.h>
65#include <stdlib.h>
66#include <string.h>
67
68#ifdef DEBUG
69#include <assert.h>
70#endif
71
72#include <db.h>
73#include "hash.h"
74#include "page.h"
75#include "extern.h"
76
77static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
78static int collect_data(HTAB *, BUFHEAD *, int, int);
79
80/*
81 * Big_insert
82 *
83 * You need to do an insert and the key/data pair is too big
84 *
85 * Returns:
86 * 0 ==> OK
87 *-1 ==> ERROR
88 */
89extern int
90__big_insert(hashp, bufp, key, val)
91	HTAB *hashp;
92	BUFHEAD *bufp;
93	const DBT *key, *val;
94{
95	u_int16_t *p;
96	int key_size, n, val_size;
97	u_int16_t space, move_bytes, off;
98	char *cp, *key_data, *val_data;
99
100	cp = bufp->page;		/* Character pointer of p. */
101	p = (u_int16_t *)cp;
102
103	key_data = (char *)key->data;
104	key_size = key->size;
105	val_data = (char *)val->data;
106	val_size = val->size;
107
108	/* First move the Key */
109	for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
110	    space = FREESPACE(p) - BIGOVERHEAD) {
111		move_bytes = MIN(space, key_size);
112		off = OFFSET(p) - move_bytes;
113		memmove(cp + off, key_data, move_bytes);
114		key_size -= move_bytes;
115		key_data += move_bytes;
116		n = p[0];
117		p[++n] = off;
118		p[0] = ++n;
119		FREESPACE(p) = off - PAGE_META(n);
120		OFFSET(p) = off;
121		p[n] = PARTIAL_KEY;
122		bufp = __add_ovflpage(hashp, bufp);
123		if (!bufp)
124			return (-1);
125		n = p[0];
126		if (!key_size) {
127			if (FREESPACE(p)) {
128				move_bytes = MIN(FREESPACE(p), val_size);
129				off = OFFSET(p) - move_bytes;
130				p[n] = off;
131				memmove(cp + off, val_data, move_bytes);
132				val_data += move_bytes;
133				val_size -= move_bytes;
134				p[n - 2] = FULL_KEY_DATA;
135				FREESPACE(p) = FREESPACE(p) - move_bytes;
136				OFFSET(p) = off;
137			} else
138				p[n - 2] = FULL_KEY;
139		}
140		p = (u_int16_t *)bufp->page;
141		cp = bufp->page;
142		bufp->flags |= BUF_MOD;
143	}
144
145	/* Now move the data */
146	for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
147	    space = FREESPACE(p) - BIGOVERHEAD) {
148		move_bytes = MIN(space, val_size);
149		/*
150		 * Here's the hack to make sure that if the data ends on the
151		 * same page as the key ends, FREESPACE is at least one.
152		 */
153		if (space == val_size && val_size == val->size)
154			move_bytes--;
155		off = OFFSET(p) - move_bytes;
156		memmove(cp + off, val_data, move_bytes);
157		val_size -= move_bytes;
158		val_data += move_bytes;
159		n = p[0];
160		p[++n] = off;
161		p[0] = ++n;
162		FREESPACE(p) = off - PAGE_META(n);
163		OFFSET(p) = off;
164		if (val_size) {
165			p[n] = FULL_KEY;
166			bufp = __add_ovflpage(hashp, bufp);
167			if (!bufp)
168				return (-1);
169			cp = bufp->page;
170			p = (u_int16_t *)cp;
171		} else
172			p[n] = FULL_KEY_DATA;
173		bufp->flags |= BUF_MOD;
174	}
175	return (0);
176}
177
178/*
179 * Called when bufp's page  contains a partial key (index should be 1)
180 *
181 * All pages in the big key/data pair except bufp are freed.  We cannot
182 * free bufp because the page pointing to it is lost and we can't get rid
183 * of its pointer.
184 *
185 * Returns:
186 * 0 => OK
187 *-1 => ERROR
188 */
189extern int
190__big_delete(hashp, bufp)
191	HTAB *hashp;
192	BUFHEAD *bufp;
193{
194	BUFHEAD *last_bfp, *rbufp;
195	u_int16_t *bp, pageno;
196	int key_done, n;
197
198	rbufp = bufp;
199	last_bfp = NULL;
200	bp = (u_int16_t *)bufp->page;
201	pageno = 0;
202	key_done = 0;
203
204	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
205		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
206			key_done = 1;
207
208		/*
209		 * If there is freespace left on a FULL_KEY_DATA page, then
210		 * the data is short and fits entirely on this page, and this
211		 * is the last page.
212		 */
213		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
214			break;
215		pageno = bp[bp[0] - 1];
216		rbufp->flags |= BUF_MOD;
217		rbufp = __get_buf(hashp, pageno, rbufp, 0);
218		if (last_bfp)
219			__free_ovflpage(hashp, last_bfp);
220		last_bfp = rbufp;
221		if (!rbufp)
222			return (-1);		/* Error. */
223		bp = (u_int16_t *)rbufp->page;
224	}
225
226	/*
227	 * If we get here then rbufp points to the last page of the big
228	 * key/data pair.  Bufp points to the first one -- it should now be
229	 * empty pointing to the next page after this pair.  Can't free it
230	 * because we don't have the page pointing to it.
231	 */
232
233	/* This is information from the last page of the pair. */
234	n = bp[0];
235	pageno = bp[n - 1];
236
237	/* Now, bp is the first page of the pair. */
238	bp = (u_int16_t *)bufp->page;
239	if (n > 2) {
240		/* There is an overflow page. */
241		bp[1] = pageno;
242		bp[2] = OVFLPAGE;
243		bufp->ovfl = rbufp->ovfl;
244	} else
245		/* This is the last page. */
246		bufp->ovfl = NULL;
247	n -= 2;
248	bp[0] = n;
249	FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
250	OFFSET(bp) = hashp->BSIZE - 1;
251
252	bufp->flags |= BUF_MOD;
253	if (rbufp)
254		__free_ovflpage(hashp, rbufp);
255	if (last_bfp != rbufp)
256		__free_ovflpage(hashp, last_bfp);
257
258	hashp->NKEYS--;
259	return (0);
260}
261/*
262 * Returns:
263 *  0 = key not found
264 * -1 = get next overflow page
265 * -2 means key not found and this is big key/data
266 * -3 error
267 */
268extern int
269__find_bigpair(hashp, bufp, ndx, key, size)
270	HTAB *hashp;
271	BUFHEAD *bufp;
272	int ndx;
273	char *key;
274	int size;
275{
276	u_int16_t *bp;
277	char *p;
278	int ksize;
279	u_int16_t bytes;
280	char *kkey;
281
282	bp = (u_int16_t *)bufp->page;
283	p = bufp->page;
284	ksize = size;
285	kkey = key;
286
287	for (bytes = hashp->BSIZE - bp[ndx];
288	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
289	    bytes = hashp->BSIZE - bp[ndx]) {
290		if (memcmp(p + bp[ndx], kkey, bytes))
291			return (-2);
292		kkey += bytes;
293		ksize -= bytes;
294		bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
295		if (!bufp)
296			return (-3);
297		p = bufp->page;
298		bp = (u_int16_t *)p;
299		ndx = 1;
300	}
301
302	if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
303#ifdef HASH_STATISTICS
304		++hash_collisions;
305#endif
306		return (-2);
307	} else
308		return (ndx);
309}
310
311/*
312 * Given the buffer pointer of the first overflow page of a big pair,
313 * find the end of the big pair
314 *
315 * This will set bpp to the buffer header of the last page of the big pair.
316 * It will return the pageno of the overflow page following the last page
317 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
318 * bucket)
319 */
320extern u_int16_t
321__find_last_page(hashp, bpp)
322	HTAB *hashp;
323	BUFHEAD **bpp;
324{
325	BUFHEAD *bufp;
326	u_int16_t *bp, pageno;
327	int n;
328
329	bufp = *bpp;
330	bp = (u_int16_t *)bufp->page;
331	for (;;) {
332		n = bp[0];
333
334		/*
335		 * This is the last page if: the tag is FULL_KEY_DATA and
336		 * either only 2 entries OVFLPAGE marker is explicit there
337		 * is freespace on the page.
338		 */
339		if (bp[2] == FULL_KEY_DATA &&
340		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
341			break;
342
343		pageno = bp[n - 1];
344		bufp = __get_buf(hashp, pageno, bufp, 0);
345		if (!bufp)
346			return (0);	/* Need to indicate an error! */
347		bp = (u_int16_t *)bufp->page;
348	}
349
350	*bpp = bufp;
351	if (bp[0] > 2)
352		return (bp[3]);
353	else
354		return (0);
355}
356
357/*
358 * Return the data for the key/data pair that begins on this page at this
359 * index (index should always be 1).
360 */
361extern int
362__big_return(hashp, bufp, ndx, val, set_current)
363	HTAB *hashp;
364	BUFHEAD *bufp;
365	int ndx;
366	DBT *val;
367	int set_current;
368{
369	BUFHEAD *save_p;
370	u_int16_t *bp, len, off, save_addr;
371	char *tp;
372
373	bp = (u_int16_t *)bufp->page;
374	while (bp[ndx + 1] == PARTIAL_KEY) {
375		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
376		if (!bufp)
377			return (-1);
378		bp = (u_int16_t *)bufp->page;
379		ndx = 1;
380	}
381
382	if (bp[ndx + 1] == FULL_KEY) {
383		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
384		if (!bufp)
385			return (-1);
386		bp = (u_int16_t *)bufp->page;
387		save_p = bufp;
388		save_addr = save_p->addr;
389		off = bp[1];
390		len = 0;
391	} else
392		if (!FREESPACE(bp)) {
393			/*
394			 * This is a hack.  We can't distinguish between
395			 * FULL_KEY_DATA that contains complete data or
396			 * incomplete data, so we require that if the data
397			 * is complete, there is at least 1 byte of free
398			 * space left.
399			 */
400			off = bp[bp[0]];
401			len = bp[1] - off;
402			save_p = bufp;
403			save_addr = bufp->addr;
404			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
405			if (!bufp)
406				return (-1);
407			bp = (u_int16_t *)bufp->page;
408		} else {
409			/* The data is all on one page. */
410			tp = (char *)bp;
411			off = bp[bp[0]];
412			val->data = (u_char *)tp + off;
413			val->size = bp[1] - off;
414			if (set_current) {
415				if (bp[0] == 2) {	/* No more buckets in
416							 * chain */
417					hashp->cpage = NULL;
418					hashp->cbucket++;
419					hashp->cndx = 1;
420				} else {
421					hashp->cpage = __get_buf(hashp,
422					    bp[bp[0] - 1], bufp, 0);
423					if (!hashp->cpage)
424						return (-1);
425					hashp->cndx = 1;
426					if (!((u_int16_t *)
427					    hashp->cpage->page)[0]) {
428						hashp->cbucket++;
429						hashp->cpage = NULL;
430					}
431				}
432			}
433			return (0);
434		}
435
436	val->size = collect_data(hashp, bufp, (int)len, set_current);
437	if (val->size == -1)
438		return (-1);
439	if (save_p->addr != save_addr) {
440		/* We are pretty short on buffers. */
441		errno = EINVAL;			/* OUT OF BUFFERS */
442		return (-1);
443	}
444	memmove(hashp->tmp_buf, (save_p->page) + off, len);
445	val->data = (u_char *)hashp->tmp_buf;
446	return (0);
447}
448/*
449 * Count how big the total datasize is by recursing through the pages.  Then
450 * allocate a buffer and copy the data as you recurse up.
451 */
452static int
453collect_data(hashp, bufp, len, set)
454	HTAB *hashp;
455	BUFHEAD *bufp;
456	int len, set;
457{
458	u_int16_t *bp;
459	char *p;
460	BUFHEAD *xbp;
461	u_int16_t save_addr;
462	int mylen, totlen;
463
464	p = bufp->page;
465	bp = (u_int16_t *)p;
466	mylen = hashp->BSIZE - bp[1];
467	save_addr = bufp->addr;
468
469	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
470		totlen = len + mylen;
471		if (hashp->tmp_buf)
472			free(hashp->tmp_buf);
473		if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL)
474			return (-1);
475		if (set) {
476			hashp->cndx = 1;
477			if (bp[0] == 2) {	/* No more buckets in chain */
478				hashp->cpage = NULL;
479				hashp->cbucket++;
480			} else {
481				hashp->cpage =
482				    __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
483				if (!hashp->cpage)
484					return (-1);
485				else if (!((u_int16_t *)hashp->cpage->page)[0]) {
486					hashp->cbucket++;
487					hashp->cpage = NULL;
488				}
489			}
490		}
491	} else {
492		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
493		if (!xbp || ((totlen =
494		    collect_data(hashp, xbp, len + mylen, set)) < 1))
495			return (-1);
496	}
497	if (bufp->addr != save_addr) {
498		errno = EINVAL;			/* Out of buffers. */
499		return (-1);
500	}
501	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen);
502	return (totlen);
503}
504
505/*
506 * Fill in the key and data for this big pair.
507 */
508extern int
509__big_keydata(hashp, bufp, key, val, set)
510	HTAB *hashp;
511	BUFHEAD *bufp;
512	DBT *key, *val;
513	int set;
514{
515	key->size = collect_key(hashp, bufp, 0, val, set);
516	if (key->size == -1)
517		return (-1);
518	key->data = (u_char *)hashp->tmp_key;
519	return (0);
520}
521
522/*
523 * Count how big the total key size is by recursing through the pages.  Then
524 * collect the data, allocate a buffer and copy the key as you recurse up.
525 */
526static int
527collect_key(hashp, bufp, len, val, set)
528	HTAB *hashp;
529	BUFHEAD *bufp;
530	int len;
531	DBT *val;
532	int set;
533{
534	BUFHEAD *xbp;
535	char *p;
536	int mylen, totlen;
537	u_int16_t *bp, save_addr;
538
539	p = bufp->page;
540	bp = (u_int16_t *)p;
541	mylen = hashp->BSIZE - bp[1];
542
543	save_addr = bufp->addr;
544	totlen = len + mylen;
545	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
546		if (hashp->tmp_key != NULL)
547			free(hashp->tmp_key);
548		if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL)
549			return (-1);
550		if (__big_return(hashp, bufp, 1, val, set))
551			return (-1);
552	} else {
553		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
554		if (!xbp || ((totlen =
555		    collect_key(hashp, xbp, totlen, val, set)) < 1))
556			return (-1);
557	}
558	if (bufp->addr != save_addr) {
559		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
560		return (-1);
561	}
562	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen);
563	return (totlen);
564}
565
566/*
567 * Returns:
568 *  0 => OK
569 * -1 => error
570 */
571extern int
572__big_split(hashp, op, np, big_keyp, addr, obucket, ret)
573	HTAB *hashp;
574	BUFHEAD *op;	/* Pointer to where to put keys that go in old bucket */
575	BUFHEAD *np;	/* Pointer to new bucket page */
576			/* Pointer to first page containing the big key/data */
577	BUFHEAD *big_keyp;
578	int addr;	/* Address of big_keyp */
579	u_int32_t   obucket;/* Old Bucket */
580	SPLIT_RETURN *ret;
581{
582	BUFHEAD *tmpp;
583	u_int16_t *tp;
584	BUFHEAD *bp;
585	DBT key, val;
586	u_int32_t change;
587	u_int16_t free_space, n, off;
588
589	bp = big_keyp;
590
591	/* Now figure out where the big key/data goes */
592	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
593		return (-1);
594	change = (__call_hash(hashp, key.data, key.size) != obucket);
595
596	if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) {
597		if (!(ret->nextp =
598		    __get_buf(hashp, ret->next_addr, big_keyp, 0)))
599			return (-1);;
600	} else
601		ret->nextp = NULL;
602
603	/* Now make one of np/op point to the big key/data pair */
604#ifdef DEBUG
605	assert(np->ovfl == NULL);
606#endif
607	if (change)
608		tmpp = np;
609	else
610		tmpp = op;
611
612	tmpp->flags |= BUF_MOD;
613#ifdef DEBUG1
614	(void)fprintf(stderr,
615	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
616	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
617#endif
618	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
619	tp = (u_int16_t *)tmpp->page;
620#ifdef DEBUG
621	assert(FREESPACE(tp) >= OVFLSIZE);
622#endif
623	n = tp[0];
624	off = OFFSET(tp);
625	free_space = FREESPACE(tp);
626	tp[++n] = (u_int16_t)addr;
627	tp[++n] = OVFLPAGE;
628	tp[0] = n;
629	OFFSET(tp) = off;
630	FREESPACE(tp) = free_space - OVFLSIZE;
631
632	/*
633	 * Finally, set the new and old return values. BIG_KEYP contains a
634	 * pointer to the last page of the big key_data pair. Make sure that
635	 * big_keyp has no following page (2 elements) or create an empty
636	 * following page.
637	 */
638
639	ret->newp = np;
640	ret->oldp = op;
641
642	tp = (u_int16_t *)big_keyp->page;
643	big_keyp->flags |= BUF_MOD;
644	if (tp[0] > 2) {
645		/*
646		 * There may be either one or two offsets on this page.  If
647		 * there is one, then the overflow page is linked on normally
648		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
649		 * the second offset and needs to get stuffed in after the
650		 * next overflow page is added.
651		 */
652		n = tp[4];
653		free_space = FREESPACE(tp);
654		off = OFFSET(tp);
655		tp[0] -= 2;
656		FREESPACE(tp) = free_space + OVFLSIZE;
657		OFFSET(tp) = off;
658		tmpp = __add_ovflpage(hashp, big_keyp);
659		if (!tmpp)
660			return (-1);
661		tp[4] = n;
662	} else
663		tmpp = big_keyp;
664
665	if (change)
666		ret->newp = tmpp;
667	else
668		ret->oldp = tmpp;
669	return (0);
670}
671