des.pod revision 279265
1=pod
2
3=head1 NAME
4
5DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
6DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
7DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
8DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
9DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
10DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
11DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
12DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
13DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write - DES encryption
14
15=head1 SYNOPSIS
16
17 #include <openssl/des.h>
18
19 void DES_random_key(DES_cblock *ret);
20
21 int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
22 int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
23 int DES_set_key_checked(const_DES_cblock *key,
24        DES_key_schedule *schedule);
25 void DES_set_key_unchecked(const_DES_cblock *key,
26        DES_key_schedule *schedule);
27
28 void DES_set_odd_parity(DES_cblock *key);
29 int DES_is_weak_key(const_DES_cblock *key);
30
31 void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output, 
32        DES_key_schedule *ks, int enc);
33 void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output, 
34        DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
35 void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output, 
36        DES_key_schedule *ks1, DES_key_schedule *ks2, 
37        DES_key_schedule *ks3, int enc);
38
39 void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output, 
40        long length, DES_key_schedule *schedule, DES_cblock *ivec, 
41        int enc);
42 void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
43        int numbits, long length, DES_key_schedule *schedule,
44        DES_cblock *ivec, int enc);
45 void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
46        int numbits, long length, DES_key_schedule *schedule,
47        DES_cblock *ivec);
48 void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output, 
49        long length, DES_key_schedule *schedule, DES_cblock *ivec, 
50        int enc);
51 void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
52        long length, DES_key_schedule *schedule, DES_cblock *ivec,
53        int *num, int enc);
54 void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
55        long length, DES_key_schedule *schedule, DES_cblock *ivec,
56        int *num);
57
58 void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output, 
59        long length, DES_key_schedule *schedule, DES_cblock *ivec, 
60        const_DES_cblock *inw, const_DES_cblock *outw, int enc);
61
62 void DES_ede2_cbc_encrypt(const unsigned char *input,
63        unsigned char *output, long length, DES_key_schedule *ks1,
64        DES_key_schedule *ks2, DES_cblock *ivec, int enc);
65 void DES_ede2_cfb64_encrypt(const unsigned char *in,
66        unsigned char *out, long length, DES_key_schedule *ks1,
67        DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
68 void DES_ede2_ofb64_encrypt(const unsigned char *in,
69        unsigned char *out, long length, DES_key_schedule *ks1,
70        DES_key_schedule *ks2, DES_cblock *ivec, int *num);
71
72 void DES_ede3_cbc_encrypt(const unsigned char *input,
73        unsigned char *output, long length, DES_key_schedule *ks1,
74        DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
75        int enc);
76 void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out, 
77        long length, DES_key_schedule *ks1, DES_key_schedule *ks2, 
78        DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2, 
79        int enc);
80 void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out, 
81        long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
82        DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
83 void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out, 
84        long length, DES_key_schedule *ks1, 
85        DES_key_schedule *ks2, DES_key_schedule *ks3, 
86        DES_cblock *ivec, int *num);
87
88 DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output, 
89        long length, DES_key_schedule *schedule, 
90        const_DES_cblock *ivec);
91 DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[], 
92        long length, int out_count, DES_cblock *seed);
93 void DES_string_to_key(const char *str, DES_cblock *key);
94 void DES_string_to_2keys(const char *str, DES_cblock *key1,
95        DES_cblock *key2);
96
97 char *DES_fcrypt(const char *buf, const char *salt, char *ret);
98 char *DES_crypt(const char *buf, const char *salt);
99
100 int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
101        DES_cblock *iv);
102 int DES_enc_write(int fd, const void *buf, int len,
103        DES_key_schedule *sched, DES_cblock *iv);
104
105=head1 DESCRIPTION
106
107This library contains a fast implementation of the DES encryption
108algorithm.
109
110There are two phases to the use of DES encryption.  The first is the
111generation of a I<DES_key_schedule> from a key, the second is the
112actual encryption.  A DES key is of type I<DES_cblock>. This type is
113consists of 8 bytes with odd parity.  The least significant bit in
114each byte is the parity bit.  The key schedule is an expanded form of
115the key; it is used to speed the encryption process.
116
117DES_random_key() generates a random key.  The PRNG must be seeded
118prior to using this function (see L<rand(3)|rand(3)>).  If the PRNG
119could not generate a secure key, 0 is returned.
120
121Before a DES key can be used, it must be converted into the
122architecture dependent I<DES_key_schedule> via the
123DES_set_key_checked() or DES_set_key_unchecked() function.
124
125DES_set_key_checked() will check that the key passed is of odd parity
126and is not a week or semi-weak key.  If the parity is wrong, then -1
127is returned.  If the key is a weak key, then -2 is returned.  If an
128error is returned, the key schedule is not generated.
129
130DES_set_key() works like
131DES_set_key_checked() if the I<DES_check_key> flag is non-zero,
132otherwise like DES_set_key_unchecked().  These functions are available
133for compatibility; it is recommended to use a function that does not
134depend on a global variable.
135
136DES_set_odd_parity() sets the parity of the passed I<key> to odd.
137
138DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it
139is ok.  
140
141The following routines mostly operate on an input and output stream of
142I<DES_cblock>s.
143
144DES_ecb_encrypt() is the basic DES encryption routine that encrypts or
145decrypts a single 8-byte I<DES_cblock> in I<electronic code book>
146(ECB) mode.  It always transforms the input data, pointed to by
147I<input>, into the output data, pointed to by the I<output> argument.
148If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input>
149(cleartext) is encrypted in to the I<output> (ciphertext) using the
150key_schedule specified by the I<schedule> argument, previously set via
151I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
152ciphertext) is decrypted into the I<output> (now cleartext).  Input
153and output may overlap.  DES_ecb_encrypt() does not return a value.
154
155DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using
156three-key Triple-DES encryption in ECB mode.  This involves encrypting
157the input with I<ks1>, decrypting with the key schedule I<ks2>, and
158then encrypting with I<ks3>.  This routine greatly reduces the chances
159of brute force breaking of DES and has the advantage of if I<ks1>,
160I<ks2> and I<ks3> are the same, it is equivalent to just encryption
161using ECB mode and I<ks1> as the key.
162
163The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES
164encryption by using I<ks1> for the final encryption.
165
166DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
167(CBC) mode of DES.  If the I<encrypt> argument is non-zero, the
168routine cipher-block-chain encrypts the cleartext data pointed to by
169the I<input> argument into the ciphertext pointed to by the I<output>
170argument, using the key schedule provided by the I<schedule> argument,
171and initialization vector provided by the I<ivec> argument.  If the
172I<length> argument is not an integral multiple of eight bytes, the
173last block is copied to a temporary area and zero filled.  The output
174is always an integral multiple of eight bytes.
175
176DES_xcbc_encrypt() is RSA's DESX mode of DES.  It uses I<inw> and
177I<outw> to 'whiten' the encryption.  I<inw> and I<outw> are secret
178(unlike the iv) and are as such, part of the key.  So the key is sort
179of 24 bytes.  This is much better than CBC DES.
180
181DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
182three keys. This means that each DES operation inside the CBC mode is
183an C<C=E(ks3,D(ks2,E(ks1,M)))>.  This mode is used by SSL.
184
185The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by
186reusing I<ks1> for the final encryption.  C<C=E(ks1,D(ks2,E(ks1,M)))>.
187This form of Triple-DES is used by the RSAREF library.
188
189DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block
190chaining mode used by Kerberos v4. Its parameters are the same as
191DES_ncbc_encrypt().
192
193DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode.  This
194method takes an array of characters as input and outputs and array of
195characters.  It does not require any padding to 8 character groups.
196Note: the I<ivec> variable is changed and the new changed value needs to
197be passed to the next call to this function.  Since this function runs
198a complete DES ECB encryption per I<numbits>, this function is only
199suggested for use when sending small numbers of characters.
200
201DES_cfb64_encrypt()
202implements CFB mode of DES with 64bit feedback.  Why is this
203useful you ask?  Because this routine will allow you to encrypt an
204arbitrary number of bytes, no 8 byte padding.  Each call to this
205routine will encrypt the input bytes to output and then update ivec
206and num.  num contains 'how far' we are though ivec.  If this does
207not make much sense, read more about cfb mode of DES :-).
208
209DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as
210DES_cfb64_encrypt() except that Triple-DES is used.
211
212DES_ofb_encrypt() encrypts using output feedback mode.  This method
213takes an array of characters as input and outputs and array of
214characters.  It does not require any padding to 8 character groups.
215Note: the I<ivec> variable is changed and the new changed value needs to
216be passed to the next call to this function.  Since this function runs
217a complete DES ECB encryption per numbits, this function is only
218suggested for use when sending small numbers of characters.
219
220DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output
221Feed Back mode.
222
223DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as
224DES_ofb64_encrypt(), using Triple-DES.
225
226The following functions are included in the DES library for
227compatibility with the MIT Kerberos library.
228
229DES_cbc_cksum() produces an 8 byte checksum based on the input stream
230(via CBC encryption).  The last 4 bytes of the checksum are returned
231and the complete 8 bytes are placed in I<output>. This function is
232used by Kerberos v4.  Other applications should use
233L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead.
234
235DES_quad_cksum() is a Kerberos v4 function.  It returns a 4 byte
236checksum from the input bytes.  The algorithm can be iterated over the
237input, depending on I<out_count>, 1, 2, 3 or 4 times.  If I<output> is
238non-NULL, the 8 bytes generated by each pass are written into
239I<output>.
240
241The following are DES-based transformations:
242
243DES_fcrypt() is a fast version of the Unix crypt(3) function.  This
244version takes only a small amount of space relative to other fast
245crypt() implementations.  This is different to the normal crypt in
246that the third parameter is the buffer that the return value is
247written into.  It needs to be at least 14 bytes long.  This function
248is thread safe, unlike the normal crypt.
249
250DES_crypt() is a faster replacement for the normal system crypt().
251This function calls DES_fcrypt() with a static array passed as the
252third parameter.  This emulates the normal non-thread safe semantics
253of crypt(3).
254
255DES_enc_write() writes I<len> bytes to file descriptor I<fd> from
256buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
257using I<sched> for the key and I<iv> as a starting vector.  The actual
258data send down I<fd> consists of 4 bytes (in network byte order)
259containing the length of the following encrypted data.  The encrypted
260data then follows, padded with random data out to a multiple of 8
261bytes.
262
263DES_enc_read() is used to read I<len> bytes from file descriptor
264I<fd> into buffer I<buf>. The data being read from I<fd> is assumed to
265have come from DES_enc_write() and is decrypted using I<sched> for
266the key schedule and I<iv> for the initial vector.
267
268B<Warning:> The data format used by DES_enc_write() and DES_enc_read()
269has a cryptographic weakness: When asked to write more than MAXWRITE
270bytes, DES_enc_write() will split the data into several chunks that
271are all encrypted using the same IV.  So don't use these functions
272unless you are sure you know what you do (in which case you might not
273want to use them anyway).  They cannot handle non-blocking sockets.
274DES_enc_read() uses an internal state and thus cannot be used on
275multiple files.
276
277I<DES_rw_mode> is used to specify the encryption mode to use with
278DES_enc_read() and DES_end_write().  If set to I<DES_PCBC_MODE> (the
279default), DES_pcbc_encrypt is used.  If set to I<DES_CBC_MODE>
280DES_cbc_encrypt is used.
281
282=head1 NOTES
283
284Single-key DES is insecure due to its short key size.  ECB mode is
285not suitable for most applications; see L<des_modes(7)|des_modes(7)>.
286
287The L<evp(3)|evp(3)> library provides higher-level encryption functions.
288
289=head1 BUGS
290
291DES_3cbc_encrypt() is flawed and must not be used in applications.
292
293DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt()
294instead.
295
296DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits.
297What this means is that if you set numbits to 12, and length to 2, the
298first 12 bits will come from the 1st input byte and the low half of
299the second input byte.  The second 12 bits will have the low 8 bits
300taken from the 3rd input byte and the top 4 bits taken from the 4th
301input byte.  The same holds for output.  This function has been
302implemented this way because most people will be using a multiple of 8
303and because once you get into pulling bytes input bytes apart things
304get ugly!
305
306DES_string_to_key() is available for backward compatibility with the
307MIT library.  New applications should use a cryptographic hash function.
308The same applies for DES_string_to_2key().
309
310=head1 CONFORMING TO
311
312ANSI X3.106
313
314The B<des> library was written to be source code compatible with
315the MIT Kerberos library.
316
317=head1 SEE ALSO
318
319crypt(3), L<des_modes(7)|des_modes(7)>, L<evp(3)|evp(3)>, L<rand(3)|rand(3)>
320
321=head1 HISTORY
322
323In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid
324clashes with older versions of libdes.  Compatibility des_ functions
325are provided for a short while, as well as crypt().
326Declarations for these are in <openssl/des_old.h>. There is no DES_
327variant for des_random_seed().
328This will happen to other functions
329as well if they are deemed redundant (des_random_seed() just calls
330RAND_seed() and is present for backward compatibility only), buggy or
331already scheduled for removal.
332
333des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(),
334des_is_weak_key(), des_key_sched(), des_pcbc_encrypt(),
335des_quad_cksum(), des_random_key() and des_string_to_key()
336are available in the MIT Kerberos library;
337des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key()
338are available in newer versions of that library.
339
340des_set_key_checked() and des_set_key_unchecked() were added in
341OpenSSL 0.9.5.
342
343des_generate_random_block(), des_init_random_number_generator(),
344des_new_random_key(), des_set_random_generator_seed() and
345des_set_sequence_number() and des_rand_data() are used in newer
346versions of Kerberos but are not implemented here.
347
348des_random_key() generated cryptographically weak random data in
349SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
350MIT library.
351
352=head1 AUTHOR
353
354Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
355(http://www.openssl.org).
356
357=cut
358