v3_addr.c revision 296465
1/*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5/* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58/*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62#include <stdio.h>
63#include <stdlib.h>
64
65#include "cryptlib.h"
66#include <openssl/conf.h>
67#include <openssl/asn1.h>
68#include <openssl/asn1t.h>
69#include <openssl/buffer.h>
70#include <openssl/x509v3.h>
71
72#ifndef OPENSSL_NO_RFC3779
73
74/*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */
77
78ASN1_SEQUENCE(IPAddressRange) = {
79  ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80  ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81} ASN1_SEQUENCE_END(IPAddressRange)
82
83ASN1_CHOICE(IPAddressOrRange) = {
84  ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85  ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
86} ASN1_CHOICE_END(IPAddressOrRange)
87
88ASN1_CHOICE(IPAddressChoice) = {
89  ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
90  ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91} ASN1_CHOICE_END(IPAddressChoice)
92
93ASN1_SEQUENCE(IPAddressFamily) = {
94  ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
95  ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96} ASN1_SEQUENCE_END(IPAddressFamily)
97
98ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99  ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100                        IPAddrBlocks, IPAddressFamily)
101ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108/*
109 * How much buffer space do we need for a raw address?
110 */
111# define ADDR_RAW_BUF_LEN        16
112
113/*
114 * What's the address length associated with this AFI?
115 */
116static int length_from_afi(const unsigned afi)
117{
118    switch (afi) {
119    case IANA_AFI_IPV4:
120        return 4;
121    case IANA_AFI_IPV6:
122        return 16;
123    default:
124        return 0;
125    }
126}
127
128/*
129 * Extract the AFI from an IPAddressFamily.
130 */
131unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132{
133    return ((f != NULL &&
134             f->addressFamily != NULL && f->addressFamily->data != NULL)
135            ? ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1]))
136            : 0);
137}
138
139/*
140 * Expand the bitstring form of an address into a raw byte array.
141 * At the moment this is coded for simplicity, not speed.
142 */
143static int addr_expand(unsigned char *addr,
144                       const ASN1_BIT_STRING *bs,
145                       const int length, const unsigned char fill)
146{
147    if (bs->length < 0 || bs->length > length)
148        return 0;
149    if (bs->length > 0) {
150        memcpy(addr, bs->data, bs->length);
151        if ((bs->flags & 7) != 0) {
152            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
153            if (fill == 0)
154                addr[bs->length - 1] &= ~mask;
155            else
156                addr[bs->length - 1] |= mask;
157        }
158    }
159    memset(addr + bs->length, fill, length - bs->length);
160    return 1;
161}
162
163/*
164 * Extract the prefix length from a bitstring.
165 */
166# define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
167
168/*
169 * i2r handler for one address bitstring.
170 */
171static int i2r_address(BIO *out,
172                       const unsigned afi,
173                       const unsigned char fill, const ASN1_BIT_STRING *bs)
174{
175    unsigned char addr[ADDR_RAW_BUF_LEN];
176    int i, n;
177
178    if (bs->length < 0)
179        return 0;
180    switch (afi) {
181    case IANA_AFI_IPV4:
182        if (!addr_expand(addr, bs, 4, fill))
183            return 0;
184        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
185        break;
186    case IANA_AFI_IPV6:
187        if (!addr_expand(addr, bs, 16, fill))
188            return 0;
189        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
190             n -= 2) ;
191        for (i = 0; i < n; i += 2)
192            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
193                       (i < 14 ? ":" : ""));
194        if (i < 16)
195            BIO_puts(out, ":");
196        if (i == 0)
197            BIO_puts(out, ":");
198        break;
199    default:
200        for (i = 0; i < bs->length; i++)
201            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
202        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
203        break;
204    }
205    return 1;
206}
207
208/*
209 * i2r handler for a sequence of addresses and ranges.
210 */
211static int i2r_IPAddressOrRanges(BIO *out,
212                                 const int indent,
213                                 const IPAddressOrRanges *aors,
214                                 const unsigned afi)
215{
216    int i;
217    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
218        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
219        BIO_printf(out, "%*s", indent, "");
220        switch (aor->type) {
221        case IPAddressOrRange_addressPrefix:
222            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
223                return 0;
224            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
225            continue;
226        case IPAddressOrRange_addressRange:
227            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
228                return 0;
229            BIO_puts(out, "-");
230            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
231                return 0;
232            BIO_puts(out, "\n");
233            continue;
234        }
235    }
236    return 1;
237}
238
239/*
240 * i2r handler for an IPAddrBlocks extension.
241 */
242static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method,
243                            void *ext, BIO *out, int indent)
244{
245    const IPAddrBlocks *addr = ext;
246    int i;
247    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
248        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
249        const unsigned int afi = v3_addr_get_afi(f);
250        switch (afi) {
251        case IANA_AFI_IPV4:
252            BIO_printf(out, "%*sIPv4", indent, "");
253            break;
254        case IANA_AFI_IPV6:
255            BIO_printf(out, "%*sIPv6", indent, "");
256            break;
257        default:
258            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
259            break;
260        }
261        if (f->addressFamily->length > 2) {
262            switch (f->addressFamily->data[2]) {
263            case 1:
264                BIO_puts(out, " (Unicast)");
265                break;
266            case 2:
267                BIO_puts(out, " (Multicast)");
268                break;
269            case 3:
270                BIO_puts(out, " (Unicast/Multicast)");
271                break;
272            case 4:
273                BIO_puts(out, " (MPLS)");
274                break;
275            case 64:
276                BIO_puts(out, " (Tunnel)");
277                break;
278            case 65:
279                BIO_puts(out, " (VPLS)");
280                break;
281            case 66:
282                BIO_puts(out, " (BGP MDT)");
283                break;
284            case 128:
285                BIO_puts(out, " (MPLS-labeled VPN)");
286                break;
287            default:
288                BIO_printf(out, " (Unknown SAFI %u)",
289                           (unsigned)f->addressFamily->data[2]);
290                break;
291            }
292        }
293        switch (f->ipAddressChoice->type) {
294        case IPAddressChoice_inherit:
295            BIO_puts(out, ": inherit\n");
296            break;
297        case IPAddressChoice_addressesOrRanges:
298            BIO_puts(out, ":\n");
299            if (!i2r_IPAddressOrRanges(out,
300                                       indent + 2,
301                                       f->ipAddressChoice->
302                                       u.addressesOrRanges, afi))
303                return 0;
304            break;
305        }
306    }
307    return 1;
308}
309
310/*
311 * Sort comparison function for a sequence of IPAddressOrRange
312 * elements.
313 *
314 * There's no sane answer we can give if addr_expand() fails, and an
315 * assertion failure on externally supplied data is seriously uncool,
316 * so we just arbitrarily declare that if given invalid inputs this
317 * function returns -1.  If this messes up your preferred sort order
318 * for garbage input, tough noogies.
319 */
320static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
321                                const IPAddressOrRange *b, const int length)
322{
323    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
324    int prefixlen_a = 0;
325    int prefixlen_b = 0;
326    int r;
327
328    switch (a->type) {
329    case IPAddressOrRange_addressPrefix:
330        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
331            return -1;
332        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
333        break;
334    case IPAddressOrRange_addressRange:
335        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
336            return -1;
337        prefixlen_a = length * 8;
338        break;
339    }
340
341    switch (b->type) {
342    case IPAddressOrRange_addressPrefix:
343        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
344            return -1;
345        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
346        break;
347    case IPAddressOrRange_addressRange:
348        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
349            return -1;
350        prefixlen_b = length * 8;
351        break;
352    }
353
354    if ((r = memcmp(addr_a, addr_b, length)) != 0)
355        return r;
356    else
357        return prefixlen_a - prefixlen_b;
358}
359
360/*
361 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
362 * comparision routines are only allowed two arguments.
363 */
364static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
365                                  const IPAddressOrRange *const *b)
366{
367    return IPAddressOrRange_cmp(*a, *b, 4);
368}
369
370/*
371 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
372 * comparision routines are only allowed two arguments.
373 */
374static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
375                                  const IPAddressOrRange *const *b)
376{
377    return IPAddressOrRange_cmp(*a, *b, 16);
378}
379
380/*
381 * Calculate whether a range collapses to a prefix.
382 * See last paragraph of RFC 3779 2.2.3.7.
383 */
384static int range_should_be_prefix(const unsigned char *min,
385                                  const unsigned char *max, const int length)
386{
387    unsigned char mask;
388    int i, j;
389
390    OPENSSL_assert(memcmp(min, max, length) <= 0);
391    for (i = 0; i < length && min[i] == max[i]; i++) ;
392    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
393    if (i < j)
394        return -1;
395    if (i > j)
396        return i * 8;
397    mask = min[i] ^ max[i];
398    switch (mask) {
399    case 0x01:
400        j = 7;
401        break;
402    case 0x03:
403        j = 6;
404        break;
405    case 0x07:
406        j = 5;
407        break;
408    case 0x0F:
409        j = 4;
410        break;
411    case 0x1F:
412        j = 3;
413        break;
414    case 0x3F:
415        j = 2;
416        break;
417    case 0x7F:
418        j = 1;
419        break;
420    default:
421        return -1;
422    }
423    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
424        return -1;
425    else
426        return i * 8 + j;
427}
428
429/*
430 * Construct a prefix.
431 */
432static int make_addressPrefix(IPAddressOrRange **result,
433                              unsigned char *addr, const int prefixlen)
434{
435    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
436    IPAddressOrRange *aor = IPAddressOrRange_new();
437
438    if (aor == NULL)
439        return 0;
440    aor->type = IPAddressOrRange_addressPrefix;
441    if (aor->u.addressPrefix == NULL &&
442        (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
443        goto err;
444    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
445        goto err;
446    aor->u.addressPrefix->flags &= ~7;
447    aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
448    if (bitlen > 0) {
449        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
450        aor->u.addressPrefix->flags |= 8 - bitlen;
451    }
452
453    *result = aor;
454    return 1;
455
456 err:
457    IPAddressOrRange_free(aor);
458    return 0;
459}
460
461/*
462 * Construct a range.  If it can be expressed as a prefix,
463 * return a prefix instead.  Doing this here simplifies
464 * the rest of the code considerably.
465 */
466static int make_addressRange(IPAddressOrRange **result,
467                             unsigned char *min,
468                             unsigned char *max, const int length)
469{
470    IPAddressOrRange *aor;
471    int i, prefixlen;
472
473    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
474        return make_addressPrefix(result, min, prefixlen);
475
476    if ((aor = IPAddressOrRange_new()) == NULL)
477        return 0;
478    aor->type = IPAddressOrRange_addressRange;
479    OPENSSL_assert(aor->u.addressRange == NULL);
480    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
481        goto err;
482    if (aor->u.addressRange->min == NULL &&
483        (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
484        goto err;
485    if (aor->u.addressRange->max == NULL &&
486        (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
487        goto err;
488
489    for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
490    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
491        goto err;
492    aor->u.addressRange->min->flags &= ~7;
493    aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
494    if (i > 0) {
495        unsigned char b = min[i - 1];
496        int j = 1;
497        while ((b & (0xFFU >> j)) != 0)
498            ++j;
499        aor->u.addressRange->min->flags |= 8 - j;
500    }
501
502    for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
503    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
504        goto err;
505    aor->u.addressRange->max->flags &= ~7;
506    aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
507    if (i > 0) {
508        unsigned char b = max[i - 1];
509        int j = 1;
510        while ((b & (0xFFU >> j)) != (0xFFU >> j))
511            ++j;
512        aor->u.addressRange->max->flags |= 8 - j;
513    }
514
515    *result = aor;
516    return 1;
517
518 err:
519    IPAddressOrRange_free(aor);
520    return 0;
521}
522
523/*
524 * Construct a new address family or find an existing one.
525 */
526static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
527                                             const unsigned afi,
528                                             const unsigned *safi)
529{
530    IPAddressFamily *f;
531    unsigned char key[3];
532    unsigned keylen;
533    int i;
534
535    key[0] = (afi >> 8) & 0xFF;
536    key[1] = afi & 0xFF;
537    if (safi != NULL) {
538        key[2] = *safi & 0xFF;
539        keylen = 3;
540    } else {
541        keylen = 2;
542    }
543
544    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
545        f = sk_IPAddressFamily_value(addr, i);
546        OPENSSL_assert(f->addressFamily->data != NULL);
547        if (f->addressFamily->length == keylen &&
548            !memcmp(f->addressFamily->data, key, keylen))
549            return f;
550    }
551
552    if ((f = IPAddressFamily_new()) == NULL)
553        goto err;
554    if (f->ipAddressChoice == NULL &&
555        (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
556        goto err;
557    if (f->addressFamily == NULL &&
558        (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
559        goto err;
560    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
561        goto err;
562    if (!sk_IPAddressFamily_push(addr, f))
563        goto err;
564
565    return f;
566
567 err:
568    IPAddressFamily_free(f);
569    return NULL;
570}
571
572/*
573 * Add an inheritance element.
574 */
575int v3_addr_add_inherit(IPAddrBlocks *addr,
576                        const unsigned afi, const unsigned *safi)
577{
578    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
579    if (f == NULL ||
580        f->ipAddressChoice == NULL ||
581        (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
582         f->ipAddressChoice->u.addressesOrRanges != NULL))
583        return 0;
584    if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
585        f->ipAddressChoice->u.inherit != NULL)
586        return 1;
587    if (f->ipAddressChoice->u.inherit == NULL &&
588        (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
589        return 0;
590    f->ipAddressChoice->type = IPAddressChoice_inherit;
591    return 1;
592}
593
594/*
595 * Construct an IPAddressOrRange sequence, or return an existing one.
596 */
597static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
598                                               const unsigned afi,
599                                               const unsigned *safi)
600{
601    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
602    IPAddressOrRanges *aors = NULL;
603
604    if (f == NULL ||
605        f->ipAddressChoice == NULL ||
606        (f->ipAddressChoice->type == IPAddressChoice_inherit &&
607         f->ipAddressChoice->u.inherit != NULL))
608        return NULL;
609    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
610        aors = f->ipAddressChoice->u.addressesOrRanges;
611    if (aors != NULL)
612        return aors;
613    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
614        return NULL;
615    switch (afi) {
616    case IANA_AFI_IPV4:
617        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
618        break;
619    case IANA_AFI_IPV6:
620        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
621        break;
622    }
623    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
624    f->ipAddressChoice->u.addressesOrRanges = aors;
625    return aors;
626}
627
628/*
629 * Add a prefix.
630 */
631int v3_addr_add_prefix(IPAddrBlocks *addr,
632                       const unsigned afi,
633                       const unsigned *safi,
634                       unsigned char *a, const int prefixlen)
635{
636    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
637    IPAddressOrRange *aor;
638    if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
639        return 0;
640    if (sk_IPAddressOrRange_push(aors, aor))
641        return 1;
642    IPAddressOrRange_free(aor);
643    return 0;
644}
645
646/*
647 * Add a range.
648 */
649int v3_addr_add_range(IPAddrBlocks *addr,
650                      const unsigned afi,
651                      const unsigned *safi,
652                      unsigned char *min, unsigned char *max)
653{
654    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
655    IPAddressOrRange *aor;
656    int length = length_from_afi(afi);
657    if (aors == NULL)
658        return 0;
659    if (!make_addressRange(&aor, min, max, length))
660        return 0;
661    if (sk_IPAddressOrRange_push(aors, aor))
662        return 1;
663    IPAddressOrRange_free(aor);
664    return 0;
665}
666
667/*
668 * Extract min and max values from an IPAddressOrRange.
669 */
670static int extract_min_max(IPAddressOrRange *aor,
671                           unsigned char *min, unsigned char *max, int length)
672{
673    if (aor == NULL || min == NULL || max == NULL)
674        return 0;
675    switch (aor->type) {
676    case IPAddressOrRange_addressPrefix:
677        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
678                addr_expand(max, aor->u.addressPrefix, length, 0xFF));
679    case IPAddressOrRange_addressRange:
680        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
681                addr_expand(max, aor->u.addressRange->max, length, 0xFF));
682    }
683    return 0;
684}
685
686/*
687 * Public wrapper for extract_min_max().
688 */
689int v3_addr_get_range(IPAddressOrRange *aor,
690                      const unsigned afi,
691                      unsigned char *min,
692                      unsigned char *max, const int length)
693{
694    int afi_length = length_from_afi(afi);
695    if (aor == NULL || min == NULL || max == NULL ||
696        afi_length == 0 || length < afi_length ||
697        (aor->type != IPAddressOrRange_addressPrefix &&
698         aor->type != IPAddressOrRange_addressRange) ||
699        !extract_min_max(aor, min, max, afi_length))
700        return 0;
701
702    return afi_length;
703}
704
705/*
706 * Sort comparision function for a sequence of IPAddressFamily.
707 *
708 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
709 * the ordering: I can read it as meaning that IPv6 without a SAFI
710 * comes before IPv4 with a SAFI, which seems pretty weird.  The
711 * examples in appendix B suggest that the author intended the
712 * null-SAFI rule to apply only within a single AFI, which is what I
713 * would have expected and is what the following code implements.
714 */
715static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
716                               const IPAddressFamily *const *b_)
717{
718    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
719    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
720    int len = ((a->length <= b->length) ? a->length : b->length);
721    int cmp = memcmp(a->data, b->data, len);
722    return cmp ? cmp : a->length - b->length;
723}
724
725/*
726 * Check whether an IPAddrBLocks is in canonical form.
727 */
728int v3_addr_is_canonical(IPAddrBlocks *addr)
729{
730    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
731    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
732    IPAddressOrRanges *aors;
733    int i, j, k;
734
735    /*
736     * Empty extension is cannonical.
737     */
738    if (addr == NULL)
739        return 1;
740
741    /*
742     * Check whether the top-level list is in order.
743     */
744    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
745        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
746        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
747        if (IPAddressFamily_cmp(&a, &b) >= 0)
748            return 0;
749    }
750
751    /*
752     * Top level's ok, now check each address family.
753     */
754    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
755        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
756        int length = length_from_afi(v3_addr_get_afi(f));
757
758        /*
759         * Inheritance is canonical.  Anything other than inheritance or
760         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
761         */
762        if (f == NULL || f->ipAddressChoice == NULL)
763            return 0;
764        switch (f->ipAddressChoice->type) {
765        case IPAddressChoice_inherit:
766            continue;
767        case IPAddressChoice_addressesOrRanges:
768            break;
769        default:
770            return 0;
771        }
772
773        /*
774         * It's an IPAddressOrRanges sequence, check it.
775         */
776        aors = f->ipAddressChoice->u.addressesOrRanges;
777        if (sk_IPAddressOrRange_num(aors) == 0)
778            return 0;
779        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
780            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
781            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
782
783            if (!extract_min_max(a, a_min, a_max, length) ||
784                !extract_min_max(b, b_min, b_max, length))
785                return 0;
786
787            /*
788             * Punt misordered list, overlapping start, or inverted range.
789             */
790            if (memcmp(a_min, b_min, length) >= 0 ||
791                memcmp(a_min, a_max, length) > 0 ||
792                memcmp(b_min, b_max, length) > 0)
793                return 0;
794
795            /*
796             * Punt if adjacent or overlapping.  Check for adjacency by
797             * subtracting one from b_min first.
798             */
799            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
800            if (memcmp(a_max, b_min, length) >= 0)
801                return 0;
802
803            /*
804             * Check for range that should be expressed as a prefix.
805             */
806            if (a->type == IPAddressOrRange_addressRange &&
807                range_should_be_prefix(a_min, a_max, length) >= 0)
808                return 0;
809        }
810
811        /*
812         * Check range to see if it's inverted or should be a
813         * prefix.
814         */
815        j = sk_IPAddressOrRange_num(aors) - 1;
816        {
817            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
818            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
819                if (!extract_min_max(a, a_min, a_max, length))
820                    return 0;
821                if (memcmp(a_min, a_max, length) > 0 ||
822                    range_should_be_prefix(a_min, a_max, length) >= 0)
823                    return 0;
824            }
825        }
826    }
827
828    /*
829     * If we made it through all that, we're happy.
830     */
831    return 1;
832}
833
834/*
835 * Whack an IPAddressOrRanges into canonical form.
836 */
837static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
838                                      const unsigned afi)
839{
840    int i, j, length = length_from_afi(afi);
841
842    /*
843     * Sort the IPAddressOrRanges sequence.
844     */
845    sk_IPAddressOrRange_sort(aors);
846
847    /*
848     * Clean up representation issues, punt on duplicates or overlaps.
849     */
850    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
851        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
852        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
853        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
854        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
855
856        if (!extract_min_max(a, a_min, a_max, length) ||
857            !extract_min_max(b, b_min, b_max, length))
858            return 0;
859
860        /*
861         * Punt inverted ranges.
862         */
863        if (memcmp(a_min, a_max, length) > 0 ||
864            memcmp(b_min, b_max, length) > 0)
865            return 0;
866
867        /*
868         * Punt overlaps.
869         */
870        if (memcmp(a_max, b_min, length) >= 0)
871            return 0;
872
873        /*
874         * Merge if a and b are adjacent.  We check for
875         * adjacency by subtracting one from b_min first.
876         */
877        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
878        if (memcmp(a_max, b_min, length) == 0) {
879            IPAddressOrRange *merged;
880            if (!make_addressRange(&merged, a_min, b_max, length))
881                return 0;
882            sk_IPAddressOrRange_set(aors, i, merged);
883            (void)sk_IPAddressOrRange_delete(aors, i + 1);
884            IPAddressOrRange_free(a);
885            IPAddressOrRange_free(b);
886            --i;
887            continue;
888        }
889    }
890
891    /*
892     * Check for inverted final range.
893     */
894    j = sk_IPAddressOrRange_num(aors) - 1;
895    {
896        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
897        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
898            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
899            extract_min_max(a, a_min, a_max, length);
900            if (memcmp(a_min, a_max, length) > 0)
901                return 0;
902        }
903    }
904
905    return 1;
906}
907
908/*
909 * Whack an IPAddrBlocks extension into canonical form.
910 */
911int v3_addr_canonize(IPAddrBlocks *addr)
912{
913    int i;
914    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
915        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
916        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
917            !IPAddressOrRanges_canonize(f->ipAddressChoice->
918                                        u.addressesOrRanges,
919                                        v3_addr_get_afi(f)))
920            return 0;
921    }
922    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
923    sk_IPAddressFamily_sort(addr);
924    OPENSSL_assert(v3_addr_is_canonical(addr));
925    return 1;
926}
927
928/*
929 * v2i handler for the IPAddrBlocks extension.
930 */
931static void *v2i_IPAddrBlocks(struct v3_ext_method *method,
932                              struct v3_ext_ctx *ctx,
933                              STACK_OF(CONF_VALUE) *values)
934{
935    static const char v4addr_chars[] = "0123456789.";
936    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
937    IPAddrBlocks *addr = NULL;
938    char *s = NULL, *t;
939    int i;
940
941    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
942        X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
943        return NULL;
944    }
945
946    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
947        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
948        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
949        unsigned afi, *safi = NULL, safi_;
950        const char *addr_chars;
951        int prefixlen, i1, i2, delim, length;
952
953        if (!name_cmp(val->name, "IPv4")) {
954            afi = IANA_AFI_IPV4;
955        } else if (!name_cmp(val->name, "IPv6")) {
956            afi = IANA_AFI_IPV6;
957        } else if (!name_cmp(val->name, "IPv4-SAFI")) {
958            afi = IANA_AFI_IPV4;
959            safi = &safi_;
960        } else if (!name_cmp(val->name, "IPv6-SAFI")) {
961            afi = IANA_AFI_IPV6;
962            safi = &safi_;
963        } else {
964            X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
965                      X509V3_R_EXTENSION_NAME_ERROR);
966            X509V3_conf_err(val);
967            goto err;
968        }
969
970        switch (afi) {
971        case IANA_AFI_IPV4:
972            addr_chars = v4addr_chars;
973            break;
974        case IANA_AFI_IPV6:
975            addr_chars = v6addr_chars;
976            break;
977        }
978
979        length = length_from_afi(afi);
980
981        /*
982         * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
983         * the other input values.
984         */
985        if (safi != NULL) {
986            *safi = strtoul(val->value, &t, 0);
987            t += strspn(t, " \t");
988            if (*safi > 0xFF || *t++ != ':') {
989                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
990                X509V3_conf_err(val);
991                goto err;
992            }
993            t += strspn(t, " \t");
994            s = BUF_strdup(t);
995        } else {
996            s = BUF_strdup(val->value);
997        }
998        if (s == NULL) {
999            X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1000            goto err;
1001        }
1002
1003        /*
1004         * Check for inheritance.  Not worth additional complexity to
1005         * optimize this (seldom-used) case.
1006         */
1007        if (!strcmp(s, "inherit")) {
1008            if (!v3_addr_add_inherit(addr, afi, safi)) {
1009                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1010                          X509V3_R_INVALID_INHERITANCE);
1011                X509V3_conf_err(val);
1012                goto err;
1013            }
1014            OPENSSL_free(s);
1015            s = NULL;
1016            continue;
1017        }
1018
1019        i1 = strspn(s, addr_chars);
1020        i2 = i1 + strspn(s + i1, " \t");
1021        delim = s[i2++];
1022        s[i1] = '\0';
1023
1024        if (a2i_ipadd(min, s) != length) {
1025            X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1026            X509V3_conf_err(val);
1027            goto err;
1028        }
1029
1030        switch (delim) {
1031        case '/':
1032            prefixlen = (int)strtoul(s + i2, &t, 10);
1033            if (t == s + i2 || *t != '\0') {
1034                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1035                          X509V3_R_EXTENSION_VALUE_ERROR);
1036                X509V3_conf_err(val);
1037                goto err;
1038            }
1039            if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1040                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1041                goto err;
1042            }
1043            break;
1044        case '-':
1045            i1 = i2 + strspn(s + i2, " \t");
1046            i2 = i1 + strspn(s + i1, addr_chars);
1047            if (i1 == i2 || s[i2] != '\0') {
1048                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1049                          X509V3_R_EXTENSION_VALUE_ERROR);
1050                X509V3_conf_err(val);
1051                goto err;
1052            }
1053            if (a2i_ipadd(max, s + i1) != length) {
1054                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1055                          X509V3_R_INVALID_IPADDRESS);
1056                X509V3_conf_err(val);
1057                goto err;
1058            }
1059            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1060                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1061                          X509V3_R_EXTENSION_VALUE_ERROR);
1062                X509V3_conf_err(val);
1063                goto err;
1064            }
1065            if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1066                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1067                goto err;
1068            }
1069            break;
1070        case '\0':
1071            if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1072                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1073                goto err;
1074            }
1075            break;
1076        default:
1077            X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1078                      X509V3_R_EXTENSION_VALUE_ERROR);
1079            X509V3_conf_err(val);
1080            goto err;
1081        }
1082
1083        OPENSSL_free(s);
1084        s = NULL;
1085    }
1086
1087    /*
1088     * Canonize the result, then we're done.
1089     */
1090    if (!v3_addr_canonize(addr))
1091        goto err;
1092    return addr;
1093
1094 err:
1095    OPENSSL_free(s);
1096    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1097    return NULL;
1098}
1099
1100/*
1101 * OpenSSL dispatch
1102 */
1103const X509V3_EXT_METHOD v3_addr = {
1104    NID_sbgp_ipAddrBlock,       /* nid */
1105    0,                          /* flags */
1106    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1107    0, 0, 0, 0,                 /* old functions, ignored */
1108    0,                          /* i2s */
1109    0,                          /* s2i */
1110    0,                          /* i2v */
1111    v2i_IPAddrBlocks,           /* v2i */
1112    i2r_IPAddrBlocks,           /* i2r */
1113    0,                          /* r2i */
1114    NULL                        /* extension-specific data */
1115};
1116
1117/*
1118 * Figure out whether extension sues inheritance.
1119 */
1120int v3_addr_inherits(IPAddrBlocks *addr)
1121{
1122    int i;
1123    if (addr == NULL)
1124        return 0;
1125    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1126        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1127        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1128            return 1;
1129    }
1130    return 0;
1131}
1132
1133/*
1134 * Figure out whether parent contains child.
1135 */
1136static int addr_contains(IPAddressOrRanges *parent,
1137                         IPAddressOrRanges *child, int length)
1138{
1139    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1140    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1141    int p, c;
1142
1143    if (child == NULL || parent == child)
1144        return 1;
1145    if (parent == NULL)
1146        return 0;
1147
1148    p = 0;
1149    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1150        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1151                             c_min, c_max, length))
1152            return -1;
1153        for (;; p++) {
1154            if (p >= sk_IPAddressOrRange_num(parent))
1155                return 0;
1156            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1157                                 p_min, p_max, length))
1158                return 0;
1159            if (memcmp(p_max, c_max, length) < 0)
1160                continue;
1161            if (memcmp(p_min, c_min, length) > 0)
1162                return 0;
1163            break;
1164        }
1165    }
1166
1167    return 1;
1168}
1169
1170/*
1171 * Test whether a is a subset of b.
1172 */
1173int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1174{
1175    int i;
1176    if (a == NULL || a == b)
1177        return 1;
1178    if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1179        return 0;
1180    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1181    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1182        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1183        int j = sk_IPAddressFamily_find(b, fa);
1184        IPAddressFamily *fb;
1185        fb = sk_IPAddressFamily_value(b, j);
1186        if (fb == NULL)
1187            return 0;
1188        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1189                           fa->ipAddressChoice->u.addressesOrRanges,
1190                           length_from_afi(v3_addr_get_afi(fb))))
1191            return 0;
1192    }
1193    return 1;
1194}
1195
1196/*
1197 * Validation error handling via callback.
1198 */
1199# define validation_err(_err_)           \
1200  do {                                  \
1201    if (ctx != NULL) {                  \
1202      ctx->error = _err_;               \
1203      ctx->error_depth = i;             \
1204      ctx->current_cert = x;            \
1205      ret = ctx->verify_cb(0, ctx);     \
1206    } else {                            \
1207      ret = 0;                          \
1208    }                                   \
1209    if (!ret)                           \
1210      goto done;                        \
1211  } while (0)
1212
1213/*
1214 * Core code for RFC 3779 2.3 path validation.
1215 */
1216static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1217                                          STACK_OF(X509) *chain,
1218                                          IPAddrBlocks *ext)
1219{
1220    IPAddrBlocks *child = NULL;
1221    int i, j, ret = 1;
1222    X509 *x = NULL;
1223
1224    OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1225    OPENSSL_assert(ctx != NULL || ext != NULL);
1226    OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1227
1228    /*
1229     * Figure out where to start.  If we don't have an extension to
1230     * check, we're done.  Otherwise, check canonical form and
1231     * set up for walking up the chain.
1232     */
1233    if (ext != NULL) {
1234        i = -1;
1235    } else {
1236        i = 0;
1237        x = sk_X509_value(chain, i);
1238        OPENSSL_assert(x != NULL);
1239        if ((ext = x->rfc3779_addr) == NULL)
1240            goto done;
1241    }
1242    if (!v3_addr_is_canonical(ext))
1243        validation_err(X509_V_ERR_INVALID_EXTENSION);
1244    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1245    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1246        X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
1247                  ERR_R_MALLOC_FAILURE);
1248        ret = 0;
1249        goto done;
1250    }
1251
1252    /*
1253     * Now walk up the chain.  No cert may list resources that its
1254     * parent doesn't list.
1255     */
1256    for (i++; i < sk_X509_num(chain); i++) {
1257        x = sk_X509_value(chain, i);
1258        OPENSSL_assert(x != NULL);
1259        if (!v3_addr_is_canonical(x->rfc3779_addr))
1260            validation_err(X509_V_ERR_INVALID_EXTENSION);
1261        if (x->rfc3779_addr == NULL) {
1262            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1263                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1264                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1265                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1266                    break;
1267                }
1268            }
1269            continue;
1270        }
1271        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1272                                              IPAddressFamily_cmp);
1273        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1274            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1275            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1276            IPAddressFamily *fp =
1277                sk_IPAddressFamily_value(x->rfc3779_addr, k);
1278            if (fp == NULL) {
1279                if (fc->ipAddressChoice->type ==
1280                    IPAddressChoice_addressesOrRanges) {
1281                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1282                    break;
1283                }
1284                continue;
1285            }
1286            if (fp->ipAddressChoice->type ==
1287                IPAddressChoice_addressesOrRanges) {
1288                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1289                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1290                                     fc->ipAddressChoice->u.addressesOrRanges,
1291                                     length_from_afi(v3_addr_get_afi(fc))))
1292                    sk_IPAddressFamily_set(child, j, fp);
1293                else
1294                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1295            }
1296        }
1297    }
1298
1299    /*
1300     * Trust anchor can't inherit.
1301     */
1302    if (x->rfc3779_addr != NULL) {
1303        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1304            IPAddressFamily *fp =
1305                sk_IPAddressFamily_value(x->rfc3779_addr, j);
1306            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1307                && sk_IPAddressFamily_find(child, fp) >= 0)
1308                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1309        }
1310    }
1311
1312 done:
1313    sk_IPAddressFamily_free(child);
1314    return ret;
1315}
1316
1317# undef validation_err
1318
1319/*
1320 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1321 */
1322int v3_addr_validate_path(X509_STORE_CTX *ctx)
1323{
1324    return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1325}
1326
1327/*
1328 * RFC 3779 2.3 path validation of an extension.
1329 * Test whether chain covers extension.
1330 */
1331int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1332                                  IPAddrBlocks *ext, int allow_inheritance)
1333{
1334    if (ext == NULL)
1335        return 1;
1336    if (chain == NULL || sk_X509_num(chain) == 0)
1337        return 0;
1338    if (!allow_inheritance && v3_addr_inherits(ext))
1339        return 0;
1340    return v3_addr_validate_path_internal(NULL, chain, ext);
1341}
1342
1343#endif                          /* OPENSSL_NO_RFC3779 */
1344