sha512-sse2.pl revision 225736
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. Rights for redistribution and usage in source and binary
6# forms are granted according to the OpenSSL license.
7# ====================================================================
8#
9# SHA512_Transform_SSE2.
10#
11# As the name suggests, this is an IA-32 SSE2 implementation of
12# SHA512_Transform. Motivating factor for the undertaken effort was that
13# SHA512 was observed to *consistently* perform *significantly* poorer
14# than SHA256 [2x and slower is common] on 32-bit platforms. On 64-bit
15# platforms on the other hand SHA512 tend to outperform SHA256 [~50%
16# seem to be common improvement factor]. All this is perfectly natural,
17# as SHA512 is a 64-bit algorithm. But isn't IA-32 SSE2 essentially
18# a 64-bit instruction set? Is it rich enough to implement SHA512?
19# If answer was "no," then you wouldn't have been reading this...
20#
21# Throughput performance in MBps (larger is better):
22#
23#		2.4GHz P4	1.4GHz AMD32	1.4GHz AMD64(*)
24# SHA256/gcc(*)	54		43		59
25# SHA512/gcc	17		23		92
26# SHA512/sse2	61(**)		57(**)
27# SHA512/icc	26		28
28# SHA256/icc(*)	65		54
29#
30# (*)	AMD64 and SHA256 numbers are presented mostly for amusement or
31#	reference purposes.
32# (**)	I.e. it gives ~2-3x speed-up if compared with compiler generated
33#	code. One can argue that hand-coded *non*-SSE2 implementation
34#	would perform better than compiler generated one as well, and
35#	that comparison is therefore not exactly fair. Well, as SHA512
36#	puts enormous pressure on IA-32 GP register bank, I reckon that
37#	hand-coded version wouldn't perform significantly better than
38#	one compiled with icc, ~20% perhaps... So that this code would
39#	still outperform it with distinguishing marginal. But feel free
40#	to prove me wrong:-)
41#						<appro@fy.chalmers.se>
42push(@INC,"perlasm","../../perlasm");
43require "x86asm.pl";
44
45&asm_init($ARGV[0],"sha512-sse2.pl",$ARGV[$#ARGV] eq "386");
46
47$K512="esi";	# K512[80] table, found at the end...
48#$W512="esp";	# $W512 is not just W512[16]: it comprises *two* copies
49		# of W512[16] and a copy of A-H variables...
50$W512_SZ=8*(16+16+8);	# see above...
51#$Kidx="ebx";	# index in K512 table, advances from 0 to 80...
52$Widx="edx";	# index in W512, wraps around at 16...
53$data="edi";	# 16 qwords of input data...
54$A="mm0";	# B-D and
55$E="mm1";	# F-H are allocated dynamically...
56$Aoff=256+0;	# A-H offsets relative to $W512...
57$Boff=256+8;
58$Coff=256+16;
59$Doff=256+24;
60$Eoff=256+32;
61$Foff=256+40;
62$Goff=256+48;
63$Hoff=256+56;
64
65sub SHA2_ROUND()
66{ local ($kidx,$widx)=@_;
67
68	# One can argue that one could reorder instructions for better
69	# performance. Well, I tried and it doesn't seem to make any
70	# noticeable difference. Modern out-of-order execution cores
71	# reorder instructions to their liking in either case and they
72	# apparently do decent job. So we can keep the code more
73	# readable/regular/comprehensible:-)
74
75	# I adhere to 64-bit %mmX registers in order to avoid/not care
76	# about #GP exceptions on misaligned 128-bit access, most
77	# notably in paddq with memory operand. Not to mention that
78	# SSE2 intructions operating on %mmX can be scheduled every
79	# cycle [and not every second one if operating on %xmmN].
80
81	&movq	("mm4",&QWP($Foff,$W512));	# load f
82	&movq	("mm5",&QWP($Goff,$W512));	# load g
83	&movq	("mm6",&QWP($Hoff,$W512));	# load h
84
85	&movq	("mm2",$E);			# %mm2 is sliding right
86	&movq	("mm3",$E);			# %mm3 is sliding left
87	&psrlq	("mm2",14);
88	&psllq	("mm3",23);
89	&movq	("mm7","mm2");			# %mm7 is T1
90	&pxor	("mm7","mm3");
91	&psrlq	("mm2",4);
92	&psllq	("mm3",23);
93	&pxor	("mm7","mm2");
94	&pxor	("mm7","mm3");
95	&psrlq	("mm2",23);
96	&psllq	("mm3",4);
97	&pxor	("mm7","mm2");
98	&pxor	("mm7","mm3");			# T1=Sigma1_512(e)
99
100	&movq	(&QWP($Foff,$W512),$E);		# f = e
101	&movq	(&QWP($Goff,$W512),"mm4");	# g = f
102	&movq	(&QWP($Hoff,$W512),"mm5");	# h = g
103
104	&pxor	("mm4","mm5");			# f^=g
105	&pand	("mm4",$E);			# f&=e
106	&pxor	("mm4","mm5");			# f^=g
107	&paddq	("mm7","mm4");			# T1+=Ch(e,f,g)
108
109	&movq	("mm2",&QWP($Boff,$W512));	# load b
110	&movq	("mm3",&QWP($Coff,$W512));	# load c
111	&movq	($E,&QWP($Doff,$W512));		# e = d
112
113	&paddq	("mm7","mm6");			# T1+=h
114	&paddq	("mm7",&QWP(0,$K512,$kidx,8));	# T1+=K512[i]
115	&paddq	("mm7",&QWP(0,$W512,$widx,8));	# T1+=W512[i]
116	&paddq	($E,"mm7");			# e += T1
117
118	&movq	("mm4",$A);			# %mm4 is sliding right
119	&movq	("mm5",$A);			# %mm5 is sliding left
120	&psrlq	("mm4",28);
121	&psllq	("mm5",25);
122	&movq	("mm6","mm4");			# %mm6 is T2
123	&pxor	("mm6","mm5");
124	&psrlq	("mm4",6);
125	&psllq	("mm5",5);
126	&pxor	("mm6","mm4");
127	&pxor	("mm6","mm5");
128	&psrlq	("mm4",5);
129	&psllq	("mm5",6);
130	&pxor	("mm6","mm4");
131	&pxor	("mm6","mm5");			# T2=Sigma0_512(a)
132
133	&movq	(&QWP($Boff,$W512),$A);		# b = a
134	&movq	(&QWP($Coff,$W512),"mm2");	# c = b
135	&movq	(&QWP($Doff,$W512),"mm3");	# d = c
136
137	&movq	("mm4",$A);			# %mm4=a
138	&por	($A,"mm3");			# a=a|c
139	&pand	("mm4","mm3");			# %mm4=a&c
140	&pand	($A,"mm2");			# a=(a|c)&b
141	&por	("mm4",$A);			# %mm4=(a&c)|((a|c)&b)
142	&paddq	("mm6","mm4");			# T2+=Maj(a,b,c)
143
144	&movq	($A,"mm7");			# a=T1
145	&paddq	($A,"mm6");			# a+=T2
146}
147
148$func="sha512_block_sse2";
149
150&function_begin_B($func);
151	if (0) {# Caller is expected to check if it's appropriate to
152		# call this routine. Below 3 lines are retained for
153		# debugging purposes...
154		&picmeup("eax","OPENSSL_ia32cap");
155		&bt	(&DWP(0,"eax"),26);
156		&jnc	("SHA512_Transform");
157	}
158
159	&push	("ebp");
160	&mov	("ebp","esp");
161	&push	("ebx");
162	&push	("esi");
163	&push	("edi");
164
165	&mov	($Widx,&DWP(8,"ebp"));		# A-H state, 1st arg
166	&mov	($data,&DWP(12,"ebp"));		# input data, 2nd arg
167	&call	(&label("pic_point"));		# make it PIC!
168&set_label("pic_point");
169	&blindpop($K512);
170	&lea	($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512));
171
172	$W512 = "esp";			# start using %esp as W512
173	&sub	($W512,$W512_SZ);
174	&and	($W512,-16);		# ensure 128-bit alignment
175
176	# make private copy of A-H
177	#     v assume the worst and stick to unaligned load
178	&movdqu	("xmm0",&QWP(0,$Widx));
179	&movdqu	("xmm1",&QWP(16,$Widx));
180	&movdqu	("xmm2",&QWP(32,$Widx));
181	&movdqu	("xmm3",&QWP(48,$Widx));
182
183&align(8);
184&set_label("_chunk_loop");
185
186	&movdqa	(&QWP($Aoff,$W512),"xmm0");	# a,b
187	&movdqa	(&QWP($Coff,$W512),"xmm1");	# c,d
188	&movdqa	(&QWP($Eoff,$W512),"xmm2");	# e,f
189	&movdqa	(&QWP($Goff,$W512),"xmm3");	# g,h
190
191	&xor	($Widx,$Widx);
192
193	&movdq2q($A,"xmm0");			# load a
194	&movdq2q($E,"xmm2");			# load e
195
196	# Why aren't loops unrolled? It makes sense to unroll if
197	# execution time for loop body is comparable with branch
198	# penalties and/or if whole data-set resides in register bank.
199	# Neither is case here... Well, it would be possible to
200	# eliminate few store operations, but it would hardly affect
201	# so to say stop-watch performance, as there is a lot of
202	# available memory slots to fill. It will only relieve some
203	# pressure off memory bus...
204
205	# flip input stream byte order...
206	&mov	("eax",&DWP(0,$data,$Widx,8));
207	&mov	("ebx",&DWP(4,$data,$Widx,8));
208	&bswap	("eax");
209	&bswap	("ebx");
210	&mov	(&DWP(0,$W512,$Widx,8),"ebx");		# W512[i]
211	&mov	(&DWP(4,$W512,$Widx,8),"eax");
212	&mov	(&DWP(128+0,$W512,$Widx,8),"ebx");	# copy of W512[i]
213	&mov	(&DWP(128+4,$W512,$Widx,8),"eax");
214
215&align(8);
216&set_label("_1st_loop");		# 0-15
217	# flip input stream byte order...
218	&mov	("eax",&DWP(0+8,$data,$Widx,8));
219	&mov	("ebx",&DWP(4+8,$data,$Widx,8));
220	&bswap	("eax");
221	&bswap	("ebx");
222	&mov	(&DWP(0+8,$W512,$Widx,8),"ebx");	# W512[i]
223	&mov	(&DWP(4+8,$W512,$Widx,8),"eax");
224	&mov	(&DWP(128+0+8,$W512,$Widx,8),"ebx");	# copy of W512[i]
225	&mov	(&DWP(128+4+8,$W512,$Widx,8),"eax");
226&set_label("_1st_looplet");
227	&SHA2_ROUND($Widx,$Widx); &inc($Widx);
228
229&cmp	($Widx,15)
230&jl	(&label("_1st_loop"));
231&je	(&label("_1st_looplet"));	# playing similar trick on 2nd loop
232					# does not improve performance...
233
234	$Kidx = "ebx";			# start using %ebx as Kidx
235	&mov	($Kidx,$Widx);
236
237&align(8);
238&set_label("_2nd_loop");		# 16-79
239	&and($Widx,0xf);
240
241	# 128-bit fragment! I update W512[i] and W512[i+1] in
242	# parallel:-) Note that I refer to W512[(i&0xf)+N] and not to
243	# W512[(i+N)&0xf]! This is exactly what I maintain the second
244	# copy of W512[16] for...
245	&movdqu	("xmm0",&QWP(8*1,$W512,$Widx,8));	# s0=W512[i+1]
246	&movdqa	("xmm2","xmm0");		# %xmm2 is sliding right
247	&movdqa	("xmm3","xmm0");		# %xmm3 is sliding left
248	&psrlq	("xmm2",1);
249	&psllq	("xmm3",56);
250	&movdqa	("xmm0","xmm2");
251	&pxor	("xmm0","xmm3");
252	&psrlq	("xmm2",6);
253	&psllq	("xmm3",7);
254	&pxor	("xmm0","xmm2");
255	&pxor	("xmm0","xmm3");
256	&psrlq	("xmm2",1);
257	&pxor	("xmm0","xmm2");		# s0 = sigma0_512(s0);
258
259	&movdqa	("xmm1",&QWP(8*14,$W512,$Widx,8));	# s1=W512[i+14]
260	&movdqa	("xmm4","xmm1");		# %xmm4 is sliding right
261	&movdqa	("xmm5","xmm1");		# %xmm5 is sliding left
262	&psrlq	("xmm4",6);
263	&psllq	("xmm5",3);
264	&movdqa	("xmm1","xmm4");
265	&pxor	("xmm1","xmm5");
266	&psrlq	("xmm4",13);
267	&psllq	("xmm5",42);
268	&pxor	("xmm1","xmm4");
269	&pxor	("xmm1","xmm5");
270	&psrlq	("xmm4",42);
271	&pxor	("xmm1","xmm4");		# s1 = sigma1_512(s1);
272
273	#     + have to explictly load W512[i+9] as it's not 128-bit
274	#     v	aligned and paddq would throw an exception...
275	&movdqu	("xmm6",&QWP(8*9,$W512,$Widx,8));
276	&paddq	("xmm0","xmm1");		# s0 += s1
277	&paddq	("xmm0","xmm6");		# s0 += W512[i+9]
278	&paddq	("xmm0",&QWP(0,$W512,$Widx,8));	# s0 += W512[i]
279
280	&movdqa	(&QWP(0,$W512,$Widx,8),"xmm0");		# W512[i] = s0
281	&movdqa	(&QWP(16*8,$W512,$Widx,8),"xmm0");	# copy of W512[i]
282
283	# as the above fragment was 128-bit, we "owe" 2 rounds...
284	&SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
285	&SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
286
287&cmp	($Kidx,80);
288&jl	(&label("_2nd_loop"));
289
290	# update A-H state
291	&mov	($Widx,&DWP(8,"ebp"));		# A-H state, 1st arg
292	&movq	(&QWP($Aoff,$W512),$A);		# write out a
293	&movq	(&QWP($Eoff,$W512),$E);		# write out e
294	&movdqu	("xmm0",&QWP(0,$Widx));
295	&movdqu	("xmm1",&QWP(16,$Widx));
296	&movdqu	("xmm2",&QWP(32,$Widx));
297	&movdqu	("xmm3",&QWP(48,$Widx));
298	&paddq	("xmm0",&QWP($Aoff,$W512));	# 128-bit additions...
299	&paddq	("xmm1",&QWP($Coff,$W512));
300	&paddq	("xmm2",&QWP($Eoff,$W512));
301	&paddq	("xmm3",&QWP($Goff,$W512));
302	&movdqu	(&QWP(0,$Widx),"xmm0");
303	&movdqu	(&QWP(16,$Widx),"xmm1");
304	&movdqu	(&QWP(32,$Widx),"xmm2");
305	&movdqu	(&QWP(48,$Widx),"xmm3");
306
307&add	($data,16*8);				# advance input data pointer
308&dec	(&DWP(16,"ebp"));			# decrement 3rd arg
309&jnz	(&label("_chunk_loop"));
310
311	# epilogue
312	&emms	();	# required for at least ELF and Win32 ABIs
313	&mov	("edi",&DWP(-12,"ebp"));
314	&mov	("esi",&DWP(-8,"ebp"));
315	&mov	("ebx",&DWP(-4,"ebp"));
316	&leave	();
317&ret	();
318
319&align(64);
320&set_label("K512");	# Yes! I keep it in the code segment!
321	&data_word(0xd728ae22,0x428a2f98);	# u64
322	&data_word(0x23ef65cd,0x71374491);	# u64
323	&data_word(0xec4d3b2f,0xb5c0fbcf);	# u64
324	&data_word(0x8189dbbc,0xe9b5dba5);	# u64
325	&data_word(0xf348b538,0x3956c25b);	# u64
326	&data_word(0xb605d019,0x59f111f1);	# u64
327	&data_word(0xaf194f9b,0x923f82a4);	# u64
328	&data_word(0xda6d8118,0xab1c5ed5);	# u64
329	&data_word(0xa3030242,0xd807aa98);	# u64
330	&data_word(0x45706fbe,0x12835b01);	# u64
331	&data_word(0x4ee4b28c,0x243185be);	# u64
332	&data_word(0xd5ffb4e2,0x550c7dc3);	# u64
333	&data_word(0xf27b896f,0x72be5d74);	# u64
334	&data_word(0x3b1696b1,0x80deb1fe);	# u64
335	&data_word(0x25c71235,0x9bdc06a7);	# u64
336	&data_word(0xcf692694,0xc19bf174);	# u64
337	&data_word(0x9ef14ad2,0xe49b69c1);	# u64
338	&data_word(0x384f25e3,0xefbe4786);	# u64
339	&data_word(0x8b8cd5b5,0x0fc19dc6);	# u64
340	&data_word(0x77ac9c65,0x240ca1cc);	# u64
341	&data_word(0x592b0275,0x2de92c6f);	# u64
342	&data_word(0x6ea6e483,0x4a7484aa);	# u64
343	&data_word(0xbd41fbd4,0x5cb0a9dc);	# u64
344	&data_word(0x831153b5,0x76f988da);	# u64
345	&data_word(0xee66dfab,0x983e5152);	# u64
346	&data_word(0x2db43210,0xa831c66d);	# u64
347	&data_word(0x98fb213f,0xb00327c8);	# u64
348	&data_word(0xbeef0ee4,0xbf597fc7);	# u64
349	&data_word(0x3da88fc2,0xc6e00bf3);	# u64
350	&data_word(0x930aa725,0xd5a79147);	# u64
351	&data_word(0xe003826f,0x06ca6351);	# u64
352	&data_word(0x0a0e6e70,0x14292967);	# u64
353	&data_word(0x46d22ffc,0x27b70a85);	# u64
354	&data_word(0x5c26c926,0x2e1b2138);	# u64
355	&data_word(0x5ac42aed,0x4d2c6dfc);	# u64
356	&data_word(0x9d95b3df,0x53380d13);	# u64
357	&data_word(0x8baf63de,0x650a7354);	# u64
358	&data_word(0x3c77b2a8,0x766a0abb);	# u64
359	&data_word(0x47edaee6,0x81c2c92e);	# u64
360	&data_word(0x1482353b,0x92722c85);	# u64
361	&data_word(0x4cf10364,0xa2bfe8a1);	# u64
362	&data_word(0xbc423001,0xa81a664b);	# u64
363	&data_word(0xd0f89791,0xc24b8b70);	# u64
364	&data_word(0x0654be30,0xc76c51a3);	# u64
365	&data_word(0xd6ef5218,0xd192e819);	# u64
366	&data_word(0x5565a910,0xd6990624);	# u64
367	&data_word(0x5771202a,0xf40e3585);	# u64
368	&data_word(0x32bbd1b8,0x106aa070);	# u64
369	&data_word(0xb8d2d0c8,0x19a4c116);	# u64
370	&data_word(0x5141ab53,0x1e376c08);	# u64
371	&data_word(0xdf8eeb99,0x2748774c);	# u64
372	&data_word(0xe19b48a8,0x34b0bcb5);	# u64
373	&data_word(0xc5c95a63,0x391c0cb3);	# u64
374	&data_word(0xe3418acb,0x4ed8aa4a);	# u64
375	&data_word(0x7763e373,0x5b9cca4f);	# u64
376	&data_word(0xd6b2b8a3,0x682e6ff3);	# u64
377	&data_word(0x5defb2fc,0x748f82ee);	# u64
378	&data_word(0x43172f60,0x78a5636f);	# u64
379	&data_word(0xa1f0ab72,0x84c87814);	# u64
380	&data_word(0x1a6439ec,0x8cc70208);	# u64
381	&data_word(0x23631e28,0x90befffa);	# u64
382	&data_word(0xde82bde9,0xa4506ceb);	# u64
383	&data_word(0xb2c67915,0xbef9a3f7);	# u64
384	&data_word(0xe372532b,0xc67178f2);	# u64
385	&data_word(0xea26619c,0xca273ece);	# u64
386	&data_word(0x21c0c207,0xd186b8c7);	# u64
387	&data_word(0xcde0eb1e,0xeada7dd6);	# u64
388	&data_word(0xee6ed178,0xf57d4f7f);	# u64
389	&data_word(0x72176fba,0x06f067aa);	# u64
390	&data_word(0xa2c898a6,0x0a637dc5);	# u64
391	&data_word(0xbef90dae,0x113f9804);	# u64
392	&data_word(0x131c471b,0x1b710b35);	# u64
393	&data_word(0x23047d84,0x28db77f5);	# u64
394	&data_word(0x40c72493,0x32caab7b);	# u64
395	&data_word(0x15c9bebc,0x3c9ebe0a);	# u64
396	&data_word(0x9c100d4c,0x431d67c4);	# u64
397	&data_word(0xcb3e42b6,0x4cc5d4be);	# u64
398	&data_word(0xfc657e2a,0x597f299c);	# u64
399	&data_word(0x3ad6faec,0x5fcb6fab);	# u64
400	&data_word(0x4a475817,0x6c44198c);	# u64
401
402&function_end_B($func);
403
404&asm_finish();
405