ec_mult.c revision 296465
1/* crypto/ec/ec_mult.c */
2/*
3 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4 */
5/* ====================================================================
6 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58/* ====================================================================
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61 * and contributed to the OpenSSL project.
62 */
63
64#include <string.h>
65
66#include <openssl/err.h>
67
68#include "ec_lcl.h"
69
70/*
71 * This file implements the wNAF-based interleaving multi-exponentation method
72 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
73 * for multiplication with precomputation, we use wNAF splitting
74 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
75 */
76
77/* structure for precomputed multiples of the generator */
78typedef struct ec_pre_comp_st {
79    const EC_GROUP *group;      /* parent EC_GROUP object */
80    size_t blocksize;           /* block size for wNAF splitting */
81    size_t numblocks;           /* max. number of blocks for which we have
82                                 * precomputation */
83    size_t w;                   /* window size */
84    EC_POINT **points;          /* array with pre-calculated multiples of
85                                 * generator: 'num' pointers to EC_POINT
86                                 * objects followed by a NULL */
87    size_t num;                 /* numblocks * 2^(w-1) */
88    int references;
89} EC_PRE_COMP;
90
91/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
92static void *ec_pre_comp_dup(void *);
93static void ec_pre_comp_free(void *);
94static void ec_pre_comp_clear_free(void *);
95
96static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
97{
98    EC_PRE_COMP *ret = NULL;
99
100    if (!group)
101        return NULL;
102
103    ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
104    if (!ret) {
105        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
106        return ret;
107    }
108    ret->group = group;
109    ret->blocksize = 8;         /* default */
110    ret->numblocks = 0;
111    ret->w = 4;                 /* default */
112    ret->points = NULL;
113    ret->num = 0;
114    ret->references = 1;
115    return ret;
116}
117
118static void *ec_pre_comp_dup(void *src_)
119{
120    EC_PRE_COMP *src = src_;
121
122    /* no need to actually copy, these objects never change! */
123
124    CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
125
126    return src_;
127}
128
129static void ec_pre_comp_free(void *pre_)
130{
131    int i;
132    EC_PRE_COMP *pre = pre_;
133
134    if (!pre)
135        return;
136
137    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
138    if (i > 0)
139        return;
140
141    if (pre->points) {
142        EC_POINT **p;
143
144        for (p = pre->points; *p != NULL; p++)
145            EC_POINT_free(*p);
146        OPENSSL_free(pre->points);
147    }
148    OPENSSL_free(pre);
149}
150
151static void ec_pre_comp_clear_free(void *pre_)
152{
153    int i;
154    EC_PRE_COMP *pre = pre_;
155
156    if (!pre)
157        return;
158
159    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
160    if (i > 0)
161        return;
162
163    if (pre->points) {
164        EC_POINT **p;
165
166        for (p = pre->points; *p != NULL; p++) {
167            EC_POINT_clear_free(*p);
168            OPENSSL_cleanse(p, sizeof *p);
169        }
170        OPENSSL_free(pre->points);
171    }
172    OPENSSL_cleanse(pre, sizeof *pre);
173    OPENSSL_free(pre);
174}
175
176/*-
177 * Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
178 * This is an array  r[]  of values that are either zero or odd with an
179 * absolute value less than  2^w  satisfying
180 *     scalar = \sum_j r[j]*2^j
181 * where at most one of any  w+1  consecutive digits is non-zero
182 * with the exception that the most significant digit may be only
183 * w-1 zeros away from that next non-zero digit.
184 */
185static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
186{
187    int window_val;
188    int ok = 0;
189    signed char *r = NULL;
190    int sign = 1;
191    int bit, next_bit, mask;
192    size_t len = 0, j;
193
194    if (BN_is_zero(scalar)) {
195        r = OPENSSL_malloc(1);
196        if (!r) {
197            ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
198            goto err;
199        }
200        r[0] = 0;
201        *ret_len = 1;
202        return r;
203    }
204
205    if (w <= 0 || w > 7) {      /* 'signed char' can represent integers with
206                                 * absolute values less than 2^7 */
207        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
208        goto err;
209    }
210    bit = 1 << w;               /* at most 128 */
211    next_bit = bit << 1;        /* at most 256 */
212    mask = next_bit - 1;        /* at most 255 */
213
214    if (BN_is_negative(scalar)) {
215        sign = -1;
216    }
217
218    len = BN_num_bits(scalar);
219    r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer
220                                  * than binary representation (*ret_len will
221                                  * be set to the actual length, i.e. at most
222                                  * BN_num_bits(scalar) + 1) */
223    if (r == NULL) {
224        ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
225        goto err;
226    }
227
228    if (scalar->d == NULL || scalar->top == 0) {
229        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
230        goto err;
231    }
232    window_val = scalar->d[0] & mask;
233    j = 0;
234    while ((window_val != 0) || (j + w + 1 < len)) { /* if j+w+1 >= len,
235                                                      * window_val will not
236                                                      * increase */
237        int digit = 0;
238
239        /* 0 <= window_val <= 2^(w+1) */
240
241        if (window_val & 1) {
242            /* 0 < window_val < 2^(w+1) */
243
244            if (window_val & bit) {
245                digit = window_val - next_bit; /* -2^w < digit < 0 */
246
247#if 1                           /* modified wNAF */
248                if (j + w + 1 >= len) {
249                    /*
250                     * special case for generating modified wNAFs: no new
251                     * bits will be added into window_val, so using a
252                     * positive digit here will decrease the total length of
253                     * the representation
254                     */
255
256                    digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
257                }
258#endif
259            } else {
260                digit = window_val; /* 0 < digit < 2^w */
261            }
262
263            if (digit <= -bit || digit >= bit || !(digit & 1)) {
264                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
265                goto err;
266            }
267
268            window_val -= digit;
269
270            /*
271             * now window_val is 0 or 2^(w+1) in standard wNAF generation;
272             * for modified window NAFs, it may also be 2^w
273             */
274            if (window_val != 0 && window_val != next_bit
275                && window_val != bit) {
276                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
277                goto err;
278            }
279        }
280
281        r[j++] = sign * digit;
282
283        window_val >>= 1;
284        window_val += bit * BN_is_bit_set(scalar, j + w);
285
286        if (window_val > next_bit) {
287            ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
288            goto err;
289        }
290    }
291
292    if (j > len + 1) {
293        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
294        goto err;
295    }
296    len = j;
297    ok = 1;
298
299 err:
300    if (!ok) {
301        OPENSSL_free(r);
302        r = NULL;
303    }
304    if (ok)
305        *ret_len = len;
306    return r;
307}
308
309/*
310 * TODO: table should be optimised for the wNAF-based implementation,
311 * sometimes smaller windows will give better performance (thus the
312 * boundaries should be increased)
313 */
314#define EC_window_bits_for_scalar_size(b) \
315                ((size_t) \
316                 ((b) >= 2000 ? 6 : \
317                  (b) >=  800 ? 5 : \
318                  (b) >=  300 ? 4 : \
319                  (b) >=   70 ? 3 : \
320                  (b) >=   20 ? 2 : \
321                  1))
322
323/*-
324 * Compute
325 *      \sum scalars[i]*points[i],
326 * also including
327 *      scalar*generator
328 * in the addition if scalar != NULL
329 */
330int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
331                size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
332                BN_CTX *ctx)
333{
334    BN_CTX *new_ctx = NULL;
335    const EC_POINT *generator = NULL;
336    EC_POINT *tmp = NULL;
337    size_t totalnum;
338    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
339    size_t pre_points_per_block = 0;
340    size_t i, j;
341    int k;
342    int r_is_inverted = 0;
343    int r_is_at_infinity = 1;
344    size_t *wsize = NULL;       /* individual window sizes */
345    signed char **wNAF = NULL;  /* individual wNAFs */
346    size_t *wNAF_len = NULL;
347    size_t max_len = 0;
348    size_t num_val;
349    EC_POINT **val = NULL;      /* precomputation */
350    EC_POINT **v;
351    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
352                                 * 'pre_comp->points' */
353    const EC_PRE_COMP *pre_comp = NULL;
354    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
355                                 * treated like other scalars, i.e.
356                                 * precomputation is not available */
357    int ret = 0;
358
359    if (group->meth != r->meth) {
360        ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
361        return 0;
362    }
363
364    if ((scalar == NULL) && (num == 0)) {
365        return EC_POINT_set_to_infinity(group, r);
366    }
367
368    for (i = 0; i < num; i++) {
369        if (group->meth != points[i]->meth) {
370            ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
371            return 0;
372        }
373    }
374
375    if (ctx == NULL) {
376        ctx = new_ctx = BN_CTX_new();
377        if (ctx == NULL)
378            goto err;
379    }
380
381    if (scalar != NULL) {
382        generator = EC_GROUP_get0_generator(group);
383        if (generator == NULL) {
384            ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
385            goto err;
386        }
387
388        /* look if we can use precomputed multiples of generator */
389
390        pre_comp =
391            EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup,
392                                ec_pre_comp_free, ec_pre_comp_clear_free);
393
394        if (pre_comp && pre_comp->numblocks
395            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
396                0)) {
397            blocksize = pre_comp->blocksize;
398
399            /*
400             * determine maximum number of blocks that wNAF splitting may
401             * yield (NB: maximum wNAF length is bit length plus one)
402             */
403            numblocks = (BN_num_bits(scalar) / blocksize) + 1;
404
405            /*
406             * we cannot use more blocks than we have precomputation for
407             */
408            if (numblocks > pre_comp->numblocks)
409                numblocks = pre_comp->numblocks;
410
411            pre_points_per_block = 1u << (pre_comp->w - 1);
412
413            /* check that pre_comp looks sane */
414            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
415                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
416                goto err;
417            }
418        } else {
419            /* can't use precomputation */
420            pre_comp = NULL;
421            numblocks = 1;
422            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
423                                 * 'scalars' */
424        }
425    }
426
427    totalnum = num + numblocks;
428
429    wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
430    wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
431    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space
432                                                             * for pivot */
433    val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
434
435    if (!wsize || !wNAF_len || !wNAF || !val_sub) {
436        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
437        goto err;
438    }
439
440    wNAF[0] = NULL;             /* preliminary pivot */
441
442    /*
443     * num_val will be the total number of temporarily precomputed points
444     */
445    num_val = 0;
446
447    for (i = 0; i < num + num_scalar; i++) {
448        size_t bits;
449
450        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
451        wsize[i] = EC_window_bits_for_scalar_size(bits);
452        num_val += 1u << (wsize[i] - 1);
453        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
454        wNAF[i] =
455            compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
456                         &wNAF_len[i]);
457        if (wNAF[i] == NULL)
458            goto err;
459        if (wNAF_len[i] > max_len)
460            max_len = wNAF_len[i];
461    }
462
463    if (numblocks) {
464        /* we go here iff scalar != NULL */
465
466        if (pre_comp == NULL) {
467            if (num_scalar != 1) {
468                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
469                goto err;
470            }
471            /* we have already generated a wNAF for 'scalar' */
472        } else {
473            signed char *tmp_wNAF = NULL;
474            size_t tmp_len = 0;
475
476            if (num_scalar != 0) {
477                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
478                goto err;
479            }
480
481            /*
482             * use the window size for which we have precomputation
483             */
484            wsize[num] = pre_comp->w;
485            tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
486            if (!tmp_wNAF)
487                goto err;
488
489            if (tmp_len <= max_len) {
490                /*
491                 * One of the other wNAFs is at least as long as the wNAF
492                 * belonging to the generator, so wNAF splitting will not buy
493                 * us anything.
494                 */
495
496                numblocks = 1;
497                totalnum = num + 1; /* don't use wNAF splitting */
498                wNAF[num] = tmp_wNAF;
499                wNAF[num + 1] = NULL;
500                wNAF_len[num] = tmp_len;
501                if (tmp_len > max_len)
502                    max_len = tmp_len;
503                /*
504                 * pre_comp->points starts with the points that we need here:
505                 */
506                val_sub[num] = pre_comp->points;
507            } else {
508                /*
509                 * don't include tmp_wNAF directly into wNAF array - use wNAF
510                 * splitting and include the blocks
511                 */
512
513                signed char *pp;
514                EC_POINT **tmp_points;
515
516                if (tmp_len < numblocks * blocksize) {
517                    /*
518                     * possibly we can do with fewer blocks than estimated
519                     */
520                    numblocks = (tmp_len + blocksize - 1) / blocksize;
521                    if (numblocks > pre_comp->numblocks) {
522                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
523                        goto err;
524                    }
525                    totalnum = num + numblocks;
526                }
527
528                /* split wNAF in 'numblocks' parts */
529                pp = tmp_wNAF;
530                tmp_points = pre_comp->points;
531
532                for (i = num; i < totalnum; i++) {
533                    if (i < totalnum - 1) {
534                        wNAF_len[i] = blocksize;
535                        if (tmp_len < blocksize) {
536                            ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
537                            goto err;
538                        }
539                        tmp_len -= blocksize;
540                    } else
541                        /*
542                         * last block gets whatever is left (this could be
543                         * more or less than 'blocksize'!)
544                         */
545                        wNAF_len[i] = tmp_len;
546
547                    wNAF[i + 1] = NULL;
548                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
549                    if (wNAF[i] == NULL) {
550                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
551                        OPENSSL_free(tmp_wNAF);
552                        goto err;
553                    }
554                    memcpy(wNAF[i], pp, wNAF_len[i]);
555                    if (wNAF_len[i] > max_len)
556                        max_len = wNAF_len[i];
557
558                    if (*tmp_points == NULL) {
559                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
560                        OPENSSL_free(tmp_wNAF);
561                        goto err;
562                    }
563                    val_sub[i] = tmp_points;
564                    tmp_points += pre_points_per_block;
565                    pp += blocksize;
566                }
567                OPENSSL_free(tmp_wNAF);
568            }
569        }
570    }
571
572    /*
573     * All points we precompute now go into a single array 'val'.
574     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
575     * subarray of 'pre_comp->points' if we already have precomputation.
576     */
577    val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
578    if (val == NULL) {
579        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
580        goto err;
581    }
582    val[num_val] = NULL;        /* pivot element */
583
584    /* allocate points for precomputation */
585    v = val;
586    for (i = 0; i < num + num_scalar; i++) {
587        val_sub[i] = v;
588        for (j = 0; j < (1u << (wsize[i] - 1)); j++) {
589            *v = EC_POINT_new(group);
590            if (*v == NULL)
591                goto err;
592            v++;
593        }
594    }
595    if (!(v == val + num_val)) {
596        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
597        goto err;
598    }
599
600    if (!(tmp = EC_POINT_new(group)))
601        goto err;
602
603    /*-
604     * prepare precomputed values:
605     *    val_sub[i][0] :=     points[i]
606     *    val_sub[i][1] := 3 * points[i]
607     *    val_sub[i][2] := 5 * points[i]
608     *    ...
609     */
610    for (i = 0; i < num + num_scalar; i++) {
611        if (i < num) {
612            if (!EC_POINT_copy(val_sub[i][0], points[i]))
613                goto err;
614        } else {
615            if (!EC_POINT_copy(val_sub[i][0], generator))
616                goto err;
617        }
618
619        if (wsize[i] > 1) {
620            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
621                goto err;
622            for (j = 1; j < (1u << (wsize[i] - 1)); j++) {
623                if (!EC_POINT_add
624                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
625                    goto err;
626            }
627        }
628    }
629
630#if 1                           /* optional; EC_window_bits_for_scalar_size
631                                 * assumes we do this step */
632    if (!EC_POINTs_make_affine(group, num_val, val, ctx))
633        goto err;
634#endif
635
636    r_is_at_infinity = 1;
637
638    for (k = max_len - 1; k >= 0; k--) {
639        if (!r_is_at_infinity) {
640            if (!EC_POINT_dbl(group, r, r, ctx))
641                goto err;
642        }
643
644        for (i = 0; i < totalnum; i++) {
645            if (wNAF_len[i] > (size_t)k) {
646                int digit = wNAF[i][k];
647                int is_neg;
648
649                if (digit) {
650                    is_neg = digit < 0;
651
652                    if (is_neg)
653                        digit = -digit;
654
655                    if (is_neg != r_is_inverted) {
656                        if (!r_is_at_infinity) {
657                            if (!EC_POINT_invert(group, r, ctx))
658                                goto err;
659                        }
660                        r_is_inverted = !r_is_inverted;
661                    }
662
663                    /* digit > 0 */
664
665                    if (r_is_at_infinity) {
666                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
667                            goto err;
668                        r_is_at_infinity = 0;
669                    } else {
670                        if (!EC_POINT_add
671                            (group, r, r, val_sub[i][digit >> 1], ctx))
672                            goto err;
673                    }
674                }
675            }
676        }
677    }
678
679    if (r_is_at_infinity) {
680        if (!EC_POINT_set_to_infinity(group, r))
681            goto err;
682    } else {
683        if (r_is_inverted)
684            if (!EC_POINT_invert(group, r, ctx))
685                goto err;
686    }
687
688    ret = 1;
689
690 err:
691    if (new_ctx != NULL)
692        BN_CTX_free(new_ctx);
693    if (tmp != NULL)
694        EC_POINT_free(tmp);
695    if (wsize != NULL)
696        OPENSSL_free(wsize);
697    if (wNAF_len != NULL)
698        OPENSSL_free(wNAF_len);
699    if (wNAF != NULL) {
700        signed char **w;
701
702        for (w = wNAF; *w != NULL; w++)
703            OPENSSL_free(*w);
704
705        OPENSSL_free(wNAF);
706    }
707    if (val != NULL) {
708        for (v = val; *v != NULL; v++)
709            EC_POINT_clear_free(*v);
710
711        OPENSSL_free(val);
712    }
713    if (val_sub != NULL) {
714        OPENSSL_free(val_sub);
715    }
716    return ret;
717}
718
719/*-
720 * ec_wNAF_precompute_mult()
721 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
722 * for use with wNAF splitting as implemented in ec_wNAF_mul().
723 *
724 * 'pre_comp->points' is an array of multiples of the generator
725 * of the following form:
726 * points[0] =     generator;
727 * points[1] = 3 * generator;
728 * ...
729 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
730 * points[2^(w-1)]   =     2^blocksize * generator;
731 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
732 * ...
733 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
734 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
735 * ...
736 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
737 * points[2^(w-1)*numblocks]       = NULL
738 */
739int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
740{
741    const EC_POINT *generator;
742    EC_POINT *tmp_point = NULL, *base = NULL, **var;
743    BN_CTX *new_ctx = NULL;
744    BIGNUM *order;
745    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
746    EC_POINT **points = NULL;
747    EC_PRE_COMP *pre_comp;
748    int ret = 0;
749
750    /* if there is an old EC_PRE_COMP object, throw it away */
751    EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup,
752                         ec_pre_comp_free, ec_pre_comp_clear_free);
753
754    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
755        return 0;
756
757    generator = EC_GROUP_get0_generator(group);
758    if (generator == NULL) {
759        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
760        goto err;
761    }
762
763    if (ctx == NULL) {
764        ctx = new_ctx = BN_CTX_new();
765        if (ctx == NULL)
766            goto err;
767    }
768
769    BN_CTX_start(ctx);
770    order = BN_CTX_get(ctx);
771    if (order == NULL)
772        goto err;
773
774    if (!EC_GROUP_get_order(group, order, ctx))
775        goto err;
776    if (BN_is_zero(order)) {
777        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
778        goto err;
779    }
780
781    bits = BN_num_bits(order);
782    /*
783     * The following parameters mean we precompute (approximately) one point
784     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
785     * bit lengths, other parameter combinations might provide better
786     * efficiency.
787     */
788    blocksize = 8;
789    w = 4;
790    if (EC_window_bits_for_scalar_size(bits) > w) {
791        /* let's not make the window too small ... */
792        w = EC_window_bits_for_scalar_size(bits);
793    }
794
795    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
796                                                     * to use for wNAF
797                                                     * splitting */
798
799    pre_points_per_block = 1u << (w - 1);
800    num = pre_points_per_block * numblocks; /* number of points to compute
801                                             * and store */
802
803    points = OPENSSL_malloc(sizeof(EC_POINT *) * (num + 1));
804    if (!points) {
805        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
806        goto err;
807    }
808
809    var = points;
810    var[num] = NULL;            /* pivot */
811    for (i = 0; i < num; i++) {
812        if ((var[i] = EC_POINT_new(group)) == NULL) {
813            ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
814            goto err;
815        }
816    }
817
818    if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) {
819        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
820        goto err;
821    }
822
823    if (!EC_POINT_copy(base, generator))
824        goto err;
825
826    /* do the precomputation */
827    for (i = 0; i < numblocks; i++) {
828        size_t j;
829
830        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
831            goto err;
832
833        if (!EC_POINT_copy(*var++, base))
834            goto err;
835
836        for (j = 1; j < pre_points_per_block; j++, var++) {
837            /*
838             * calculate odd multiples of the current base point
839             */
840            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
841                goto err;
842        }
843
844        if (i < numblocks - 1) {
845            /*
846             * get the next base (multiply current one by 2^blocksize)
847             */
848            size_t k;
849
850            if (blocksize <= 2) {
851                ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
852                goto err;
853            }
854
855            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
856                goto err;
857            for (k = 2; k < blocksize; k++) {
858                if (!EC_POINT_dbl(group, base, base, ctx))
859                    goto err;
860            }
861        }
862    }
863
864    if (!EC_POINTs_make_affine(group, num, points, ctx))
865        goto err;
866
867    pre_comp->group = group;
868    pre_comp->blocksize = blocksize;
869    pre_comp->numblocks = numblocks;
870    pre_comp->w = w;
871    pre_comp->points = points;
872    points = NULL;
873    pre_comp->num = num;
874
875    if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
876                             ec_pre_comp_dup, ec_pre_comp_free,
877                             ec_pre_comp_clear_free))
878        goto err;
879    pre_comp = NULL;
880
881    ret = 1;
882 err:
883    if (ctx != NULL)
884        BN_CTX_end(ctx);
885    if (new_ctx != NULL)
886        BN_CTX_free(new_ctx);
887    if (pre_comp)
888        ec_pre_comp_free(pre_comp);
889    if (points) {
890        EC_POINT **p;
891
892        for (p = points; *p != NULL; p++)
893            EC_POINT_free(*p);
894        OPENSSL_free(points);
895    }
896    if (tmp_point)
897        EC_POINT_free(tmp_point);
898    if (base)
899        EC_POINT_free(base);
900    return ret;
901}
902
903int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
904{
905    if (EC_EX_DATA_get_data
906        (group->extra_data, ec_pre_comp_dup, ec_pre_comp_free,
907         ec_pre_comp_clear_free) != NULL)
908        return 1;
909    else
910        return 0;
911}
912