bn_gf2m.c revision 279265
1/* crypto/bn/bn_gf2m.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 *  1) for code that a licensee deletes from the ECC Code;
19 *  2) separates from the ECC Code; or
20 *  3) for infringements caused by:
21 *       i) the modification of the ECC Code or
22 *      ii) the combination of the ECC Code with other software or
23 *          devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30/* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply!  In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37/* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in
49 *    the documentation and/or other materials provided with the
50 *    distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 *    software must display the following acknowledgment:
54 *    "This product includes software developed by the OpenSSL Project
55 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 *    endorse or promote products derived from this software without
59 *    prior written permission. For written permission, please contact
60 *    openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 *    nor may "OpenSSL" appear in their names without prior written
64 *    permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 *    acknowledgment:
68 *    "This product includes software developed by the OpenSSL Project
69 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com).  This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91#include <assert.h>
92#include <limits.h>
93#include <stdio.h>
94#include "cryptlib.h"
95#include "bn_lcl.h"
96
97/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
98#define MAX_ITERATIONS 50
99
100static const BN_ULONG SQR_tb[16] =
101  {     0,     1,     4,     5,    16,    17,    20,    21,
102       64,    65,    68,    69,    80,    81,    84,    85 };
103/* Platform-specific macros to accelerate squaring. */
104#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
105#define SQR1(w) \
106    SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
107    SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
108    SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
109    SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
110#define SQR0(w) \
111    SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
112    SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
113    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
114    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
115#endif
116#ifdef THIRTY_TWO_BIT
117#define SQR1(w) \
118    SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
119    SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
120#define SQR0(w) \
121    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
122    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
123#endif
124#ifdef SIXTEEN_BIT
125#define SQR1(w) \
126    SQR_tb[(w) >> 12 & 0xF] <<  8 | SQR_tb[(w) >>  8 & 0xF]
127#define SQR0(w) \
128    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
129#endif
130#ifdef EIGHT_BIT
131#define SQR1(w) \
132    SQR_tb[(w) >>  4 & 0xF]
133#define SQR0(w) \
134    SQR_tb[(w)       & 15]
135#endif
136
137/* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
138 * result is a polynomial r with degree < 2 * BN_BITS - 1
139 * The caller MUST ensure that the variables have the right amount
140 * of space allocated.
141 */
142#ifdef EIGHT_BIT
143static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
144	{
145	register BN_ULONG h, l, s;
146	BN_ULONG tab[4], top1b = a >> 7;
147	register BN_ULONG a1, a2;
148
149	a1 = a & (0x7F); a2 = a1 << 1;
150
151	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
152
153	s = tab[b      & 0x3]; l  = s;
154	s = tab[b >> 2 & 0x3]; l ^= s << 2; h  = s >> 6;
155	s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
156	s = tab[b >> 6      ]; l ^= s << 6; h ^= s >> 2;
157
158	/* compensate for the top bit of a */
159
160	if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
161
162	*r1 = h; *r0 = l;
163	}
164#endif
165#ifdef SIXTEEN_BIT
166static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167	{
168	register BN_ULONG h, l, s;
169	BN_ULONG tab[4], top1b = a >> 15;
170	register BN_ULONG a1, a2;
171
172	a1 = a & (0x7FFF); a2 = a1 << 1;
173
174	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
175
176	s = tab[b      & 0x3]; l  = s;
177	s = tab[b >> 2 & 0x3]; l ^= s <<  2; h  = s >> 14;
178	s = tab[b >> 4 & 0x3]; l ^= s <<  4; h ^= s >> 12;
179	s = tab[b >> 6 & 0x3]; l ^= s <<  6; h ^= s >> 10;
180	s = tab[b >> 8 & 0x3]; l ^= s <<  8; h ^= s >>  8;
181	s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >>  6;
182	s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >>  4;
183	s = tab[b >>14      ]; l ^= s << 14; h ^= s >>  2;
184
185	/* compensate for the top bit of a */
186
187	if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
188
189	*r1 = h; *r0 = l;
190	}
191#endif
192#ifdef THIRTY_TWO_BIT
193static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
194	{
195	register BN_ULONG h, l, s;
196	BN_ULONG tab[8], top2b = a >> 30;
197	register BN_ULONG a1, a2, a4;
198
199	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
200
201	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
202	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
203
204	s = tab[b       & 0x7]; l  = s;
205	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
206	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
207	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
208	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
209	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
210	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
211	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
212	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
213	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
214	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
215
216	/* compensate for the top two bits of a */
217
218	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
219	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
220
221	*r1 = h; *r0 = l;
222	}
223#endif
224#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
225static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
226	{
227	register BN_ULONG h, l, s;
228	BN_ULONG tab[16], top3b = a >> 61;
229	register BN_ULONG a1, a2, a4, a8;
230
231	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
232
233	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
234	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
235	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
236	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
237
238	s = tab[b       & 0xF]; l  = s;
239	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
240	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
241	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
242	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
243	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
244	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
245	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
246	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
247	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
248	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
249	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
250	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
251	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
252	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
253	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
254
255	/* compensate for the top three bits of a */
256
257	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
258	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
259	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
260
261	*r1 = h; *r0 = l;
262	}
263#endif
264
265/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
266 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
267 * The caller MUST ensure that the variables have the right amount
268 * of space allocated.
269 */
270static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
271	{
272	BN_ULONG m1, m0;
273	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
274	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
275	bn_GF2m_mul_1x1(r+1, r, a0, b0);
276	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
277	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
278	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
279	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
280	}
281
282
283/* Add polynomials a and b and store result in r; r could be a or b, a and b
284 * could be equal; r is the bitwise XOR of a and b.
285 */
286int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
287	{
288	int i;
289	const BIGNUM *at, *bt;
290
291	bn_check_top(a);
292	bn_check_top(b);
293
294	if (a->top < b->top) { at = b; bt = a; }
295	else { at = a; bt = b; }
296
297	if(bn_wexpand(r, at->top) == NULL)
298		return 0;
299
300	for (i = 0; i < bt->top; i++)
301		{
302		r->d[i] = at->d[i] ^ bt->d[i];
303		}
304	for (; i < at->top; i++)
305		{
306		r->d[i] = at->d[i];
307		}
308
309	r->top = at->top;
310	bn_correct_top(r);
311
312	return 1;
313	}
314
315
316/* Some functions allow for representation of the irreducible polynomials
317 * as an int[], say p.  The irreducible f(t) is then of the form:
318 *     t^p[0] + t^p[1] + ... + t^p[k]
319 * where m = p[0] > p[1] > ... > p[k] = 0.
320 */
321
322
323/* Performs modular reduction of a and store result in r.  r could be a. */
324int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
325	{
326	int j, k;
327	int n, dN, d0, d1;
328	BN_ULONG zz, *z;
329
330	bn_check_top(a);
331
332	if (!p[0])
333		{
334		/* reduction mod 1 => return 0 */
335		BN_zero(r);
336		return 1;
337		}
338
339	/* Since the algorithm does reduction in the r value, if a != r, copy
340	 * the contents of a into r so we can do reduction in r.
341	 */
342	if (a != r)
343		{
344		if (!bn_wexpand(r, a->top)) return 0;
345		for (j = 0; j < a->top; j++)
346			{
347			r->d[j] = a->d[j];
348			}
349		r->top = a->top;
350		}
351	z = r->d;
352
353	/* start reduction */
354	dN = p[0] / BN_BITS2;
355	for (j = r->top - 1; j > dN;)
356		{
357		zz = z[j];
358		if (z[j] == 0) { j--; continue; }
359		z[j] = 0;
360
361		for (k = 1; p[k] != 0; k++)
362			{
363			/* reducing component t^p[k] */
364			n = p[0] - p[k];
365			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
366			n /= BN_BITS2;
367			z[j-n] ^= (zz>>d0);
368			if (d0) z[j-n-1] ^= (zz<<d1);
369			}
370
371		/* reducing component t^0 */
372		n = dN;
373		d0 = p[0] % BN_BITS2;
374		d1 = BN_BITS2 - d0;
375		z[j-n] ^= (zz >> d0);
376		if (d0) z[j-n-1] ^= (zz << d1);
377		}
378
379	/* final round of reduction */
380	while (j == dN)
381		{
382
383		d0 = p[0] % BN_BITS2;
384		zz = z[dN] >> d0;
385		if (zz == 0) break;
386		d1 = BN_BITS2 - d0;
387
388		/* clear up the top d1 bits */
389		if (d0)
390			z[dN] = (z[dN] << d1) >> d1;
391		else
392			z[dN] = 0;
393		z[0] ^= zz; /* reduction t^0 component */
394
395		for (k = 1; p[k] != 0; k++)
396			{
397			BN_ULONG tmp_ulong;
398
399			/* reducing component t^p[k]*/
400			n = p[k] / BN_BITS2;
401			d0 = p[k] % BN_BITS2;
402			d1 = BN_BITS2 - d0;
403			z[n] ^= (zz << d0);
404			tmp_ulong = zz >> d1;
405                        if (d0 && tmp_ulong)
406                                z[n+1] ^= tmp_ulong;
407			}
408
409
410		}
411
412	bn_correct_top(r);
413	return 1;
414	}
415
416/* Performs modular reduction of a by p and store result in r.  r could be a.
417 *
418 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
419 * function is only provided for convenience; for best performance, use the
420 * BN_GF2m_mod_arr function.
421 */
422int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
423	{
424	int ret = 0;
425	const int max = BN_num_bits(p);
426	unsigned int *arr=NULL;
427	bn_check_top(a);
428	bn_check_top(p);
429	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
430	ret = BN_GF2m_poly2arr(p, arr, max);
431	if (!ret || ret > max)
432		{
433		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
434		goto err;
435		}
436	ret = BN_GF2m_mod_arr(r, a, arr);
437	bn_check_top(r);
438err:
439	if (arr) OPENSSL_free(arr);
440	return ret;
441	}
442
443
444/* Compute the product of two polynomials a and b, reduce modulo p, and store
445 * the result in r.  r could be a or b; a could be b.
446 */
447int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
448	{
449	int zlen, i, j, k, ret = 0;
450	BIGNUM *s;
451	BN_ULONG x1, x0, y1, y0, zz[4];
452
453	bn_check_top(a);
454	bn_check_top(b);
455
456	if (a == b)
457		{
458		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
459		}
460
461	BN_CTX_start(ctx);
462	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
463
464	zlen = a->top + b->top + 4;
465	if (!bn_wexpand(s, zlen)) goto err;
466	s->top = zlen;
467
468	for (i = 0; i < zlen; i++) s->d[i] = 0;
469
470	for (j = 0; j < b->top; j += 2)
471		{
472		y0 = b->d[j];
473		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
474		for (i = 0; i < a->top; i += 2)
475			{
476			x0 = a->d[i];
477			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
478			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
479			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
480			}
481		}
482
483	bn_correct_top(s);
484	if (BN_GF2m_mod_arr(r, s, p))
485		ret = 1;
486	bn_check_top(r);
487
488err:
489	BN_CTX_end(ctx);
490	return ret;
491	}
492
493/* Compute the product of two polynomials a and b, reduce modulo p, and store
494 * the result in r.  r could be a or b; a could equal b.
495 *
496 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
497 * function is only provided for convenience; for best performance, use the
498 * BN_GF2m_mod_mul_arr function.
499 */
500int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
501	{
502	int ret = 0;
503	const int max = BN_num_bits(p);
504	unsigned int *arr=NULL;
505	bn_check_top(a);
506	bn_check_top(b);
507	bn_check_top(p);
508	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
509	ret = BN_GF2m_poly2arr(p, arr, max);
510	if (!ret || ret > max)
511		{
512		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
513		goto err;
514		}
515	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
516	bn_check_top(r);
517err:
518	if (arr) OPENSSL_free(arr);
519	return ret;
520	}
521
522
523/* Square a, reduce the result mod p, and store it in a.  r could be a. */
524int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
525	{
526	int i, ret = 0;
527	BIGNUM *s;
528
529	bn_check_top(a);
530	BN_CTX_start(ctx);
531	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
532	if (!bn_wexpand(s, 2 * a->top)) goto err;
533
534	for (i = a->top - 1; i >= 0; i--)
535		{
536		s->d[2*i+1] = SQR1(a->d[i]);
537		s->d[2*i  ] = SQR0(a->d[i]);
538		}
539
540	s->top = 2 * a->top;
541	bn_correct_top(s);
542	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
543	bn_check_top(r);
544	ret = 1;
545err:
546	BN_CTX_end(ctx);
547	return ret;
548	}
549
550/* Square a, reduce the result mod p, and store it in a.  r could be a.
551 *
552 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
553 * function is only provided for convenience; for best performance, use the
554 * BN_GF2m_mod_sqr_arr function.
555 */
556int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
557	{
558	int ret = 0;
559	const int max = BN_num_bits(p);
560	unsigned int *arr=NULL;
561
562	bn_check_top(a);
563	bn_check_top(p);
564	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
565	ret = BN_GF2m_poly2arr(p, arr, max);
566	if (!ret || ret > max)
567		{
568		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
569		goto err;
570		}
571	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
572	bn_check_top(r);
573err:
574	if (arr) OPENSSL_free(arr);
575	return ret;
576	}
577
578
579/* Invert a, reduce modulo p, and store the result in r. r could be a.
580 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
581 *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
582 *     of Elliptic Curve Cryptography Over Binary Fields".
583 */
584int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
585	{
586	BIGNUM *b, *c, *u, *v, *tmp;
587	int ret = 0;
588
589	bn_check_top(a);
590	bn_check_top(p);
591
592	BN_CTX_start(ctx);
593
594	b = BN_CTX_get(ctx);
595	c = BN_CTX_get(ctx);
596	u = BN_CTX_get(ctx);
597	v = BN_CTX_get(ctx);
598	if (v == NULL) goto err;
599
600	if (!BN_one(b)) goto err;
601	if (!BN_GF2m_mod(u, a, p)) goto err;
602	if (!BN_copy(v, p)) goto err;
603
604	if (BN_is_zero(u)) goto err;
605
606	while (1)
607		{
608		while (!BN_is_odd(u))
609			{
610			if (BN_is_zero(u)) goto err;
611			if (!BN_rshift1(u, u)) goto err;
612			if (BN_is_odd(b))
613				{
614				if (!BN_GF2m_add(b, b, p)) goto err;
615				}
616			if (!BN_rshift1(b, b)) goto err;
617			}
618
619		if (BN_abs_is_word(u, 1)) break;
620
621		if (BN_num_bits(u) < BN_num_bits(v))
622			{
623			tmp = u; u = v; v = tmp;
624			tmp = b; b = c; c = tmp;
625			}
626
627		if (!BN_GF2m_add(u, u, v)) goto err;
628		if (!BN_GF2m_add(b, b, c)) goto err;
629		}
630
631
632	if (!BN_copy(r, b)) goto err;
633	bn_check_top(r);
634	ret = 1;
635
636err:
637  	BN_CTX_end(ctx);
638	return ret;
639	}
640
641/* Invert xx, reduce modulo p, and store the result in r. r could be xx.
642 *
643 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
644 * function is only provided for convenience; for best performance, use the
645 * BN_GF2m_mod_inv function.
646 */
647int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
648	{
649	BIGNUM *field;
650	int ret = 0;
651
652	bn_check_top(xx);
653	BN_CTX_start(ctx);
654	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
655	if (!BN_GF2m_arr2poly(p, field)) goto err;
656
657	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
658	bn_check_top(r);
659
660err:
661	BN_CTX_end(ctx);
662	return ret;
663	}
664
665
666#ifndef OPENSSL_SUN_GF2M_DIV
667/* Divide y by x, reduce modulo p, and store the result in r. r could be x
668 * or y, x could equal y.
669 */
670int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
671	{
672	BIGNUM *xinv = NULL;
673	int ret = 0;
674
675	bn_check_top(y);
676	bn_check_top(x);
677	bn_check_top(p);
678
679	BN_CTX_start(ctx);
680	xinv = BN_CTX_get(ctx);
681	if (xinv == NULL) goto err;
682
683	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
684	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
685	bn_check_top(r);
686	ret = 1;
687
688err:
689	BN_CTX_end(ctx);
690	return ret;
691	}
692#else
693/* Divide y by x, reduce modulo p, and store the result in r. r could be x
694 * or y, x could equal y.
695 * Uses algorithm Modular_Division_GF(2^m) from
696 *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
697 *     the Great Divide".
698 */
699int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
700	{
701	BIGNUM *a, *b, *u, *v;
702	int ret = 0;
703
704	bn_check_top(y);
705	bn_check_top(x);
706	bn_check_top(p);
707
708	BN_CTX_start(ctx);
709
710	a = BN_CTX_get(ctx);
711	b = BN_CTX_get(ctx);
712	u = BN_CTX_get(ctx);
713	v = BN_CTX_get(ctx);
714	if (v == NULL) goto err;
715
716	/* reduce x and y mod p */
717	if (!BN_GF2m_mod(u, y, p)) goto err;
718	if (!BN_GF2m_mod(a, x, p)) goto err;
719	if (!BN_copy(b, p)) goto err;
720
721	while (!BN_is_odd(a))
722		{
723		if (!BN_rshift1(a, a)) goto err;
724		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
725		if (!BN_rshift1(u, u)) goto err;
726		}
727
728	do
729		{
730		if (BN_GF2m_cmp(b, a) > 0)
731			{
732			if (!BN_GF2m_add(b, b, a)) goto err;
733			if (!BN_GF2m_add(v, v, u)) goto err;
734			do
735				{
736				if (!BN_rshift1(b, b)) goto err;
737				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
738				if (!BN_rshift1(v, v)) goto err;
739				} while (!BN_is_odd(b));
740			}
741		else if (BN_abs_is_word(a, 1))
742			break;
743		else
744			{
745			if (!BN_GF2m_add(a, a, b)) goto err;
746			if (!BN_GF2m_add(u, u, v)) goto err;
747			do
748				{
749				if (!BN_rshift1(a, a)) goto err;
750				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
751				if (!BN_rshift1(u, u)) goto err;
752				} while (!BN_is_odd(a));
753			}
754		} while (1);
755
756	if (!BN_copy(r, u)) goto err;
757	bn_check_top(r);
758	ret = 1;
759
760err:
761  	BN_CTX_end(ctx);
762	return ret;
763	}
764#endif
765
766/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
767 * or yy, xx could equal yy.
768 *
769 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
770 * function is only provided for convenience; for best performance, use the
771 * BN_GF2m_mod_div function.
772 */
773int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
774	{
775	BIGNUM *field;
776	int ret = 0;
777
778	bn_check_top(yy);
779	bn_check_top(xx);
780
781	BN_CTX_start(ctx);
782	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
783	if (!BN_GF2m_arr2poly(p, field)) goto err;
784
785	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
786	bn_check_top(r);
787
788err:
789	BN_CTX_end(ctx);
790	return ret;
791	}
792
793
794/* Compute the bth power of a, reduce modulo p, and store
795 * the result in r.  r could be a.
796 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
797 */
798int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
799	{
800	int ret = 0, i, n;
801	BIGNUM *u;
802
803	bn_check_top(a);
804	bn_check_top(b);
805
806	if (BN_is_zero(b))
807		return(BN_one(r));
808
809	if (BN_abs_is_word(b, 1))
810		return (BN_copy(r, a) != NULL);
811
812	BN_CTX_start(ctx);
813	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
814
815	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
816
817	n = BN_num_bits(b) - 1;
818	for (i = n - 1; i >= 0; i--)
819		{
820		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
821		if (BN_is_bit_set(b, i))
822			{
823			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
824			}
825		}
826	if (!BN_copy(r, u)) goto err;
827	bn_check_top(r);
828	ret = 1;
829err:
830	BN_CTX_end(ctx);
831	return ret;
832	}
833
834/* Compute the bth power of a, reduce modulo p, and store
835 * the result in r.  r could be a.
836 *
837 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
838 * function is only provided for convenience; for best performance, use the
839 * BN_GF2m_mod_exp_arr function.
840 */
841int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
842	{
843	int ret = 0;
844	const int max = BN_num_bits(p);
845	unsigned int *arr=NULL;
846	bn_check_top(a);
847	bn_check_top(b);
848	bn_check_top(p);
849	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
850	ret = BN_GF2m_poly2arr(p, arr, max);
851	if (!ret || ret > max)
852		{
853		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
854		goto err;
855		}
856	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
857	bn_check_top(r);
858err:
859	if (arr) OPENSSL_free(arr);
860	return ret;
861	}
862
863/* Compute the square root of a, reduce modulo p, and store
864 * the result in r.  r could be a.
865 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
866 */
867int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
868	{
869	int ret = 0;
870	BIGNUM *u;
871
872	bn_check_top(a);
873
874	if (!p[0])
875		{
876		/* reduction mod 1 => return 0 */
877		BN_zero(r);
878		return 1;
879		}
880
881	BN_CTX_start(ctx);
882	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
883
884	if (!BN_set_bit(u, p[0] - 1)) goto err;
885	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
886	bn_check_top(r);
887
888err:
889	BN_CTX_end(ctx);
890	return ret;
891	}
892
893/* Compute the square root of a, reduce modulo p, and store
894 * the result in r.  r could be a.
895 *
896 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
897 * function is only provided for convenience; for best performance, use the
898 * BN_GF2m_mod_sqrt_arr function.
899 */
900int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
901	{
902	int ret = 0;
903	const int max = BN_num_bits(p);
904	unsigned int *arr=NULL;
905	bn_check_top(a);
906	bn_check_top(p);
907	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
908	ret = BN_GF2m_poly2arr(p, arr, max);
909	if (!ret || ret > max)
910		{
911		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
912		goto err;
913		}
914	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
915	bn_check_top(r);
916err:
917	if (arr) OPENSSL_free(arr);
918	return ret;
919	}
920
921/* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
922 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
923 */
924int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
925	{
926	int ret = 0, count = 0;
927	unsigned int j;
928	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
929
930	bn_check_top(a_);
931
932	if (!p[0])
933		{
934		/* reduction mod 1 => return 0 */
935		BN_zero(r);
936		return 1;
937		}
938
939	BN_CTX_start(ctx);
940	a = BN_CTX_get(ctx);
941	z = BN_CTX_get(ctx);
942	w = BN_CTX_get(ctx);
943	if (w == NULL) goto err;
944
945	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
946
947	if (BN_is_zero(a))
948		{
949		BN_zero(r);
950		ret = 1;
951		goto err;
952		}
953
954	if (p[0] & 0x1) /* m is odd */
955		{
956		/* compute half-trace of a */
957		if (!BN_copy(z, a)) goto err;
958		for (j = 1; j <= (p[0] - 1) / 2; j++)
959			{
960			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
961			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
962			if (!BN_GF2m_add(z, z, a)) goto err;
963			}
964
965		}
966	else /* m is even */
967		{
968		rho = BN_CTX_get(ctx);
969		w2 = BN_CTX_get(ctx);
970		tmp = BN_CTX_get(ctx);
971		if (tmp == NULL) goto err;
972		do
973			{
974			if (!BN_rand(rho, p[0], 0, 0)) goto err;
975			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
976			BN_zero(z);
977			if (!BN_copy(w, rho)) goto err;
978			for (j = 1; j <= p[0] - 1; j++)
979				{
980				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
981				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
982				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
983				if (!BN_GF2m_add(z, z, tmp)) goto err;
984				if (!BN_GF2m_add(w, w2, rho)) goto err;
985				}
986			count++;
987			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
988		if (BN_is_zero(w))
989			{
990			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
991			goto err;
992			}
993		}
994
995	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
996	if (!BN_GF2m_add(w, z, w)) goto err;
997	if (BN_GF2m_cmp(w, a))
998		{
999		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1000		goto err;
1001		}
1002
1003	if (!BN_copy(r, z)) goto err;
1004	bn_check_top(r);
1005
1006	ret = 1;
1007
1008err:
1009	BN_CTX_end(ctx);
1010	return ret;
1011	}
1012
1013/* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
1014 *
1015 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1016 * function is only provided for convenience; for best performance, use the
1017 * BN_GF2m_mod_solve_quad_arr function.
1018 */
1019int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1020	{
1021	int ret = 0;
1022	const int max = BN_num_bits(p);
1023	unsigned int *arr=NULL;
1024	bn_check_top(a);
1025	bn_check_top(p);
1026	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) *
1027						max)) == NULL) goto err;
1028	ret = BN_GF2m_poly2arr(p, arr, max);
1029	if (!ret || ret > max)
1030		{
1031		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1032		goto err;
1033		}
1034	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1035	bn_check_top(r);
1036err:
1037	if (arr) OPENSSL_free(arr);
1038	return ret;
1039	}
1040
1041/* Convert the bit-string representation of a polynomial
1042 * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
1043 * of integers corresponding to the bits with non-zero coefficient.
1044 * Up to max elements of the array will be filled.  Return value is total
1045 * number of coefficients that would be extracted if array was large enough.
1046 */
1047int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
1048	{
1049	int i, j, k = 0;
1050	BN_ULONG mask;
1051
1052	if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
1053		/* a_0 == 0 => return error (the unsigned int array
1054		 * must be terminated by 0)
1055		 */
1056		return 0;
1057
1058	for (i = a->top - 1; i >= 0; i--)
1059		{
1060		if (!a->d[i])
1061			/* skip word if a->d[i] == 0 */
1062			continue;
1063		mask = BN_TBIT;
1064		for (j = BN_BITS2 - 1; j >= 0; j--)
1065			{
1066			if (a->d[i] & mask)
1067				{
1068				if (k < max) p[k] = BN_BITS2 * i + j;
1069				k++;
1070				}
1071			mask >>= 1;
1072			}
1073		}
1074
1075	return k;
1076	}
1077
1078/* Convert the coefficient array representation of a polynomial to a
1079 * bit-string.  The array must be terminated by 0.
1080 */
1081int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
1082	{
1083	int i;
1084
1085	bn_check_top(a);
1086	BN_zero(a);
1087	for (i = 0; p[i] != 0; i++)
1088		{
1089		if (BN_set_bit(a, p[i]) == 0)
1090			return 0;
1091		}
1092	BN_set_bit(a, 0);
1093	bn_check_top(a);
1094
1095	return 1;
1096	}
1097
1098/*
1099 * Constant-time conditional swap of a and b.
1100 * a and b are swapped if condition is not 0.  The code assumes that at most one bit of condition is set.
1101 * nwords is the number of words to swap.  The code assumes that at least nwords are allocated in both a and b,
1102 * and that no more than nwords are used by either a or b.
1103 * a and b cannot be the same number
1104 */
1105void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
1106	{
1107	BN_ULONG t;
1108	int i;
1109
1110	bn_wcheck_size(a, nwords);
1111	bn_wcheck_size(b, nwords);
1112
1113	assert(a != b);
1114	assert((condition & (condition - 1)) == 0);
1115	assert(sizeof(BN_ULONG) >= sizeof(int));
1116
1117	condition = ((condition - 1) >> (BN_BITS2 - 1)) - 1;
1118
1119	t = (a->top^b->top) & condition;
1120	a->top ^= t;
1121	b->top ^= t;
1122
1123#define BN_CONSTTIME_SWAP(ind) \
1124	do { \
1125		t = (a->d[ind] ^ b->d[ind]) & condition; \
1126		a->d[ind] ^= t; \
1127		b->d[ind] ^= t; \
1128	} while (0)
1129
1130
1131	switch (nwords) {
1132	default:
1133		for (i = 10; i < nwords; i++)
1134			BN_CONSTTIME_SWAP(i);
1135		/* Fallthrough */
1136	case 10: BN_CONSTTIME_SWAP(9); /* Fallthrough */
1137	case 9: BN_CONSTTIME_SWAP(8); /* Fallthrough */
1138	case 8: BN_CONSTTIME_SWAP(7); /* Fallthrough */
1139	case 7: BN_CONSTTIME_SWAP(6); /* Fallthrough */
1140	case 6: BN_CONSTTIME_SWAP(5); /* Fallthrough */
1141	case 5: BN_CONSTTIME_SWAP(4); /* Fallthrough */
1142	case 4: BN_CONSTTIME_SWAP(3); /* Fallthrough */
1143	case 3: BN_CONSTTIME_SWAP(2); /* Fallthrough */
1144	case 2: BN_CONSTTIME_SWAP(1); /* Fallthrough */
1145	case 1: BN_CONSTTIME_SWAP(0);
1146	}
1147#undef BN_CONSTTIME_SWAP
1148}
1149