bn_gcd.c revision 296465
1/* crypto/bn/bn_gcd.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#include "cryptlib.h"
113#include "bn_lcl.h"
114
115static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116
117int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118{
119    BIGNUM *a, *b, *t;
120    int ret = 0;
121
122    bn_check_top(in_a);
123    bn_check_top(in_b);
124
125    BN_CTX_start(ctx);
126    a = BN_CTX_get(ctx);
127    b = BN_CTX_get(ctx);
128    if (a == NULL || b == NULL)
129        goto err;
130
131    if (BN_copy(a, in_a) == NULL)
132        goto err;
133    if (BN_copy(b, in_b) == NULL)
134        goto err;
135    a->neg = 0;
136    b->neg = 0;
137
138    if (BN_cmp(a, b) < 0) {
139        t = a;
140        a = b;
141        b = t;
142    }
143    t = euclid(a, b);
144    if (t == NULL)
145        goto err;
146
147    if (BN_copy(r, t) == NULL)
148        goto err;
149    ret = 1;
150 err:
151    BN_CTX_end(ctx);
152    bn_check_top(r);
153    return (ret);
154}
155
156static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
157{
158    BIGNUM *t;
159    int shifts = 0;
160
161    bn_check_top(a);
162    bn_check_top(b);
163
164    /* 0 <= b <= a */
165    while (!BN_is_zero(b)) {
166        /* 0 < b <= a */
167
168        if (BN_is_odd(a)) {
169            if (BN_is_odd(b)) {
170                if (!BN_sub(a, a, b))
171                    goto err;
172                if (!BN_rshift1(a, a))
173                    goto err;
174                if (BN_cmp(a, b) < 0) {
175                    t = a;
176                    a = b;
177                    b = t;
178                }
179            } else {            /* a odd - b even */
180
181                if (!BN_rshift1(b, b))
182                    goto err;
183                if (BN_cmp(a, b) < 0) {
184                    t = a;
185                    a = b;
186                    b = t;
187                }
188            }
189        } else {                /* a is even */
190
191            if (BN_is_odd(b)) {
192                if (!BN_rshift1(a, a))
193                    goto err;
194                if (BN_cmp(a, b) < 0) {
195                    t = a;
196                    a = b;
197                    b = t;
198                }
199            } else {            /* a even - b even */
200
201                if (!BN_rshift1(a, a))
202                    goto err;
203                if (!BN_rshift1(b, b))
204                    goto err;
205                shifts++;
206            }
207        }
208        /* 0 <= b <= a */
209    }
210
211    if (shifts) {
212        if (!BN_lshift(a, a, shifts))
213            goto err;
214    }
215    bn_check_top(a);
216    return (a);
217 err:
218    return (NULL);
219}
220
221/* solves ax == 1 (mod n) */
222static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
223                                        const BIGNUM *a, const BIGNUM *n,
224                                        BN_CTX *ctx);
225BIGNUM *BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n,
226                       BN_CTX *ctx)
227{
228    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
229    BIGNUM *ret = NULL;
230    int sign;
231
232    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
233        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
234        return BN_mod_inverse_no_branch(in, a, n, ctx);
235    }
236
237    bn_check_top(a);
238    bn_check_top(n);
239
240    BN_CTX_start(ctx);
241    A = BN_CTX_get(ctx);
242    B = BN_CTX_get(ctx);
243    X = BN_CTX_get(ctx);
244    D = BN_CTX_get(ctx);
245    M = BN_CTX_get(ctx);
246    Y = BN_CTX_get(ctx);
247    T = BN_CTX_get(ctx);
248    if (T == NULL)
249        goto err;
250
251    if (in == NULL)
252        R = BN_new();
253    else
254        R = in;
255    if (R == NULL)
256        goto err;
257
258    BN_one(X);
259    BN_zero(Y);
260    if (BN_copy(B, a) == NULL)
261        goto err;
262    if (BN_copy(A, n) == NULL)
263        goto err;
264    A->neg = 0;
265    if (B->neg || (BN_ucmp(B, A) >= 0)) {
266        if (!BN_nnmod(B, B, A, ctx))
267            goto err;
268    }
269    sign = -1;
270    /*-
271     * From  B = a mod |n|,  A = |n|  it follows that
272     *
273     *      0 <= B < A,
274     *     -sign*X*a  ==  B   (mod |n|),
275     *      sign*Y*a  ==  A   (mod |n|).
276     */
277
278    if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) {
279        /*
280         * Binary inversion algorithm; requires odd modulus. This is faster
281         * than the general algorithm if the modulus is sufficiently small
282         * (about 400 .. 500 bits on 32-bit sytems, but much more on 64-bit
283         * systems)
284         */
285        int shift;
286
287        while (!BN_is_zero(B)) {
288            /*-
289             *      0 < B < |n|,
290             *      0 < A <= |n|,
291             * (1) -sign*X*a  ==  B   (mod |n|),
292             * (2)  sign*Y*a  ==  A   (mod |n|)
293             */
294
295            /*
296             * Now divide B by the maximum possible power of two in the
297             * integers, and divide X by the same value mod |n|. When we're
298             * done, (1) still holds.
299             */
300            shift = 0;
301            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
302                shift++;
303
304                if (BN_is_odd(X)) {
305                    if (!BN_uadd(X, X, n))
306                        goto err;
307                }
308                /*
309                 * now X is even, so we can easily divide it by two
310                 */
311                if (!BN_rshift1(X, X))
312                    goto err;
313            }
314            if (shift > 0) {
315                if (!BN_rshift(B, B, shift))
316                    goto err;
317            }
318
319            /*
320             * Same for A and Y.  Afterwards, (2) still holds.
321             */
322            shift = 0;
323            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
324                shift++;
325
326                if (BN_is_odd(Y)) {
327                    if (!BN_uadd(Y, Y, n))
328                        goto err;
329                }
330                /* now Y is even */
331                if (!BN_rshift1(Y, Y))
332                    goto err;
333            }
334            if (shift > 0) {
335                if (!BN_rshift(A, A, shift))
336                    goto err;
337            }
338
339            /*-
340             * We still have (1) and (2).
341             * Both  A  and  B  are odd.
342             * The following computations ensure that
343             *
344             *     0 <= B < |n|,
345             *      0 < A < |n|,
346             * (1) -sign*X*a  ==  B   (mod |n|),
347             * (2)  sign*Y*a  ==  A   (mod |n|),
348             *
349             * and that either  A  or  B  is even in the next iteration.
350             */
351            if (BN_ucmp(B, A) >= 0) {
352                /* -sign*(X + Y)*a == B - A  (mod |n|) */
353                if (!BN_uadd(X, X, Y))
354                    goto err;
355                /*
356                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
357                 * actually makes the algorithm slower
358                 */
359                if (!BN_usub(B, B, A))
360                    goto err;
361            } else {
362                /*  sign*(X + Y)*a == A - B  (mod |n|) */
363                if (!BN_uadd(Y, Y, X))
364                    goto err;
365                /*
366                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things
367                 * down
368                 */
369                if (!BN_usub(A, A, B))
370                    goto err;
371            }
372        }
373    } else {
374        /* general inversion algorithm */
375
376        while (!BN_is_zero(B)) {
377            BIGNUM *tmp;
378
379            /*-
380             *      0 < B < A,
381             * (*) -sign*X*a  ==  B   (mod |n|),
382             *      sign*Y*a  ==  A   (mod |n|)
383             */
384
385            /* (D, M) := (A/B, A%B) ... */
386            if (BN_num_bits(A) == BN_num_bits(B)) {
387                if (!BN_one(D))
388                    goto err;
389                if (!BN_sub(M, A, B))
390                    goto err;
391            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
392                /* A/B is 1, 2, or 3 */
393                if (!BN_lshift1(T, B))
394                    goto err;
395                if (BN_ucmp(A, T) < 0) {
396                    /* A < 2*B, so D=1 */
397                    if (!BN_one(D))
398                        goto err;
399                    if (!BN_sub(M, A, B))
400                        goto err;
401                } else {
402                    /* A >= 2*B, so D=2 or D=3 */
403                    if (!BN_sub(M, A, T))
404                        goto err;
405                    if (!BN_add(D, T, B))
406                        goto err; /* use D (:= 3*B) as temp */
407                    if (BN_ucmp(A, D) < 0) {
408                        /* A < 3*B, so D=2 */
409                        if (!BN_set_word(D, 2))
410                            goto err;
411                        /*
412                         * M (= A - 2*B) already has the correct value
413                         */
414                    } else {
415                        /* only D=3 remains */
416                        if (!BN_set_word(D, 3))
417                            goto err;
418                        /*
419                         * currently M = A - 2*B, but we need M = A - 3*B
420                         */
421                        if (!BN_sub(M, M, B))
422                            goto err;
423                    }
424                }
425            } else {
426                if (!BN_div(D, M, A, B, ctx))
427                    goto err;
428            }
429
430            /*-
431             * Now
432             *      A = D*B + M;
433             * thus we have
434             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
435             */
436
437            tmp = A;            /* keep the BIGNUM object, the value does not
438                                 * matter */
439
440            /* (A, B) := (B, A mod B) ... */
441            A = B;
442            B = M;
443            /* ... so we have  0 <= B < A  again */
444
445            /*-
446             * Since the former  M  is now  B  and the former  B  is now  A,
447             * (**) translates into
448             *       sign*Y*a  ==  D*A + B    (mod |n|),
449             * i.e.
450             *       sign*Y*a - D*A  ==  B    (mod |n|).
451             * Similarly, (*) translates into
452             *      -sign*X*a  ==  A          (mod |n|).
453             *
454             * Thus,
455             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
456             * i.e.
457             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
458             *
459             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
460             *      -sign*X*a  ==  B   (mod |n|),
461             *       sign*Y*a  ==  A   (mod |n|).
462             * Note that  X  and  Y  stay non-negative all the time.
463             */
464
465            /*
466             * most of the time D is very small, so we can optimize tmp :=
467             * D*X+Y
468             */
469            if (BN_is_one(D)) {
470                if (!BN_add(tmp, X, Y))
471                    goto err;
472            } else {
473                if (BN_is_word(D, 2)) {
474                    if (!BN_lshift1(tmp, X))
475                        goto err;
476                } else if (BN_is_word(D, 4)) {
477                    if (!BN_lshift(tmp, X, 2))
478                        goto err;
479                } else if (D->top == 1) {
480                    if (!BN_copy(tmp, X))
481                        goto err;
482                    if (!BN_mul_word(tmp, D->d[0]))
483                        goto err;
484                } else {
485                    if (!BN_mul(tmp, D, X, ctx))
486                        goto err;
487                }
488                if (!BN_add(tmp, tmp, Y))
489                    goto err;
490            }
491
492            M = Y;              /* keep the BIGNUM object, the value does not
493                                 * matter */
494            Y = X;
495            X = tmp;
496            sign = -sign;
497        }
498    }
499
500    /*-
501     * The while loop (Euclid's algorithm) ends when
502     *      A == gcd(a,n);
503     * we have
504     *       sign*Y*a  ==  A  (mod |n|),
505     * where  Y  is non-negative.
506     */
507
508    if (sign < 0) {
509        if (!BN_sub(Y, n, Y))
510            goto err;
511    }
512    /* Now  Y*a  ==  A  (mod |n|).  */
513
514    if (BN_is_one(A)) {
515        /* Y*a == 1  (mod |n|) */
516        if (!Y->neg && BN_ucmp(Y, n) < 0) {
517            if (!BN_copy(R, Y))
518                goto err;
519        } else {
520            if (!BN_nnmod(R, Y, n, ctx))
521                goto err;
522        }
523    } else {
524        BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
525        goto err;
526    }
527    ret = R;
528 err:
529    if ((ret == NULL) && (in == NULL))
530        BN_free(R);
531    BN_CTX_end(ctx);
532    bn_check_top(ret);
533    return (ret);
534}
535
536/*
537 * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
538 * not contain branches that may leak sensitive information.
539 */
540static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
541                                        const BIGNUM *a, const BIGNUM *n,
542                                        BN_CTX *ctx)
543{
544    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
545    BIGNUM local_A, local_B;
546    BIGNUM *pA, *pB;
547    BIGNUM *ret = NULL;
548    int sign;
549
550    bn_check_top(a);
551    bn_check_top(n);
552
553    BN_CTX_start(ctx);
554    A = BN_CTX_get(ctx);
555    B = BN_CTX_get(ctx);
556    X = BN_CTX_get(ctx);
557    D = BN_CTX_get(ctx);
558    M = BN_CTX_get(ctx);
559    Y = BN_CTX_get(ctx);
560    T = BN_CTX_get(ctx);
561    if (T == NULL)
562        goto err;
563
564    if (in == NULL)
565        R = BN_new();
566    else
567        R = in;
568    if (R == NULL)
569        goto err;
570
571    BN_one(X);
572    BN_zero(Y);
573    if (BN_copy(B, a) == NULL)
574        goto err;
575    if (BN_copy(A, n) == NULL)
576        goto err;
577    A->neg = 0;
578
579    if (B->neg || (BN_ucmp(B, A) >= 0)) {
580        /*
581         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
582         * BN_div_no_branch will be called eventually.
583         */
584        pB = &local_B;
585        BN_with_flags(pB, B, BN_FLG_CONSTTIME);
586        if (!BN_nnmod(B, pB, A, ctx))
587            goto err;
588    }
589    sign = -1;
590    /*-
591     * From  B = a mod |n|,  A = |n|  it follows that
592     *
593     *      0 <= B < A,
594     *     -sign*X*a  ==  B   (mod |n|),
595     *      sign*Y*a  ==  A   (mod |n|).
596     */
597
598    while (!BN_is_zero(B)) {
599        BIGNUM *tmp;
600
601        /*-
602         *      0 < B < A,
603         * (*) -sign*X*a  ==  B   (mod |n|),
604         *      sign*Y*a  ==  A   (mod |n|)
605         */
606
607        /*
608         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
609         * BN_div_no_branch will be called eventually.
610         */
611        pA = &local_A;
612        BN_with_flags(pA, A, BN_FLG_CONSTTIME);
613
614        /* (D, M) := (A/B, A%B) ... */
615        if (!BN_div(D, M, pA, B, ctx))
616            goto err;
617
618        /*-
619         * Now
620         *      A = D*B + M;
621         * thus we have
622         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
623         */
624
625        tmp = A;                /* keep the BIGNUM object, the value does not
626                                 * matter */
627
628        /* (A, B) := (B, A mod B) ... */
629        A = B;
630        B = M;
631        /* ... so we have  0 <= B < A  again */
632
633        /*-
634         * Since the former  M  is now  B  and the former  B  is now  A,
635         * (**) translates into
636         *       sign*Y*a  ==  D*A + B    (mod |n|),
637         * i.e.
638         *       sign*Y*a - D*A  ==  B    (mod |n|).
639         * Similarly, (*) translates into
640         *      -sign*X*a  ==  A          (mod |n|).
641         *
642         * Thus,
643         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
644         * i.e.
645         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
646         *
647         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
648         *      -sign*X*a  ==  B   (mod |n|),
649         *       sign*Y*a  ==  A   (mod |n|).
650         * Note that  X  and  Y  stay non-negative all the time.
651         */
652
653        if (!BN_mul(tmp, D, X, ctx))
654            goto err;
655        if (!BN_add(tmp, tmp, Y))
656            goto err;
657
658        M = Y;                  /* keep the BIGNUM object, the value does not
659                                 * matter */
660        Y = X;
661        X = tmp;
662        sign = -sign;
663    }
664
665    /*-
666     * The while loop (Euclid's algorithm) ends when
667     *      A == gcd(a,n);
668     * we have
669     *       sign*Y*a  ==  A  (mod |n|),
670     * where  Y  is non-negative.
671     */
672
673    if (sign < 0) {
674        if (!BN_sub(Y, n, Y))
675            goto err;
676    }
677    /* Now  Y*a  ==  A  (mod |n|).  */
678
679    if (BN_is_one(A)) {
680        /* Y*a == 1  (mod |n|) */
681        if (!Y->neg && BN_ucmp(Y, n) < 0) {
682            if (!BN_copy(R, Y))
683                goto err;
684        } else {
685            if (!BN_nnmod(R, Y, n, ctx))
686                goto err;
687        }
688    } else {
689        BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
690        goto err;
691    }
692    ret = R;
693 err:
694    if ((ret == NULL) && (in == NULL))
695        BN_free(R);
696    BN_CTX_end(ctx);
697    bn_check_top(ret);
698    return (ret);
699}
700