bn_gcd.c revision 225736
1171133Sgnn/* crypto/bn/bn_gcd.c */
2171133Sgnn/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3171133Sgnn * All rights reserved.
4171133Sgnn *
5171133Sgnn * This package is an SSL implementation written
6171133Sgnn * by Eric Young (eay@cryptsoft.com).
7171133Sgnn * The implementation was written so as to conform with Netscapes SSL.
8171133Sgnn *
9171133Sgnn * This library is free for commercial and non-commercial use as long as
10171133Sgnn * the following conditions are aheared to.  The following conditions
11171133Sgnn * apply to all code found in this distribution, be it the RC4, RSA,
12171133Sgnn * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13171133Sgnn * included with this distribution is covered by the same copyright terms
14171133Sgnn * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15171133Sgnn *
16171133Sgnn * Copyright remains Eric Young's, and as such any Copyright notices in
17171133Sgnn * the code are not to be removed.
18171133Sgnn * If this package is used in a product, Eric Young should be given attribution
19171133Sgnn * as the author of the parts of the library used.
20171133Sgnn * This can be in the form of a textual message at program startup or
21171133Sgnn * in documentation (online or textual) provided with the package.
22171133Sgnn *
23171133Sgnn * Redistribution and use in source and binary forms, with or without
24171133Sgnn * modification, are permitted provided that the following conditions
25171133Sgnn * are met:
26171133Sgnn * 1. Redistributions of source code must retain the copyright
27171133Sgnn *    notice, this list of conditions and the following disclaimer.
28171133Sgnn * 2. Redistributions in binary form must reproduce the above copyright
29171133Sgnn *    notice, this list of conditions and the following disclaimer in the
30171133Sgnn *    documentation and/or other materials provided with the distribution.
31171133Sgnn * 3. All advertising materials mentioning features or use of this software
32171133Sgnn *    must display the following acknowledgement:
33171133Sgnn *    "This product includes cryptographic software written by
34171133Sgnn *     Eric Young (eay@cryptsoft.com)"
35171732Sbz *    The word 'cryptographic' can be left out if the rouines from the library
36171133Sgnn *    being used are not cryptographic related :-).
37171133Sgnn * 4. If you include any Windows specific code (or a derivative thereof) from
38171133Sgnn *    the apps directory (application code) you must include an acknowledgement:
39174510Sobrien *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40177166Sbz *
41177166Sbz * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42171133Sgnn * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43177166Sbz * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#include "cryptlib.h"
113#include "bn_lcl.h"
114
115static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116
117int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118	{
119	BIGNUM *a,*b,*t;
120	int ret=0;
121
122	bn_check_top(in_a);
123	bn_check_top(in_b);
124
125	BN_CTX_start(ctx);
126	a = BN_CTX_get(ctx);
127	b = BN_CTX_get(ctx);
128	if (a == NULL || b == NULL) goto err;
129
130	if (BN_copy(a,in_a) == NULL) goto err;
131	if (BN_copy(b,in_b) == NULL) goto err;
132	a->neg = 0;
133	b->neg = 0;
134
135	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
136	t=euclid(a,b);
137	if (t == NULL) goto err;
138
139	if (BN_copy(r,t) == NULL) goto err;
140	ret=1;
141err:
142	BN_CTX_end(ctx);
143	bn_check_top(r);
144	return(ret);
145	}
146
147static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
148	{
149	BIGNUM *t;
150	int shifts=0;
151
152	bn_check_top(a);
153	bn_check_top(b);
154
155	/* 0 <= b <= a */
156	while (!BN_is_zero(b))
157		{
158		/* 0 < b <= a */
159
160		if (BN_is_odd(a))
161			{
162			if (BN_is_odd(b))
163				{
164				if (!BN_sub(a,a,b)) goto err;
165				if (!BN_rshift1(a,a)) goto err;
166				if (BN_cmp(a,b) < 0)
167					{ t=a; a=b; b=t; }
168				}
169			else		/* a odd - b even */
170				{
171				if (!BN_rshift1(b,b)) goto err;
172				if (BN_cmp(a,b) < 0)
173					{ t=a; a=b; b=t; }
174				}
175			}
176		else			/* a is even */
177			{
178			if (BN_is_odd(b))
179				{
180				if (!BN_rshift1(a,a)) goto err;
181				if (BN_cmp(a,b) < 0)
182					{ t=a; a=b; b=t; }
183				}
184			else		/* a even - b even */
185				{
186				if (!BN_rshift1(a,a)) goto err;
187				if (!BN_rshift1(b,b)) goto err;
188				shifts++;
189				}
190			}
191		/* 0 <= b <= a */
192		}
193
194	if (shifts)
195		{
196		if (!BN_lshift(a,a,shifts)) goto err;
197		}
198	bn_check_top(a);
199	return(a);
200err:
201	return(NULL);
202	}
203
204
205/* solves ax == 1 (mod n) */
206static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
207        const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
208BIGNUM *BN_mod_inverse(BIGNUM *in,
209	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
210	{
211	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
212	BIGNUM *ret=NULL;
213	int sign;
214
215	if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0))
216		{
217		return BN_mod_inverse_no_branch(in, a, n, ctx);
218		}
219
220	bn_check_top(a);
221	bn_check_top(n);
222
223	BN_CTX_start(ctx);
224	A = BN_CTX_get(ctx);
225	B = BN_CTX_get(ctx);
226	X = BN_CTX_get(ctx);
227	D = BN_CTX_get(ctx);
228	M = BN_CTX_get(ctx);
229	Y = BN_CTX_get(ctx);
230	T = BN_CTX_get(ctx);
231	if (T == NULL) goto err;
232
233	if (in == NULL)
234		R=BN_new();
235	else
236		R=in;
237	if (R == NULL) goto err;
238
239	BN_one(X);
240	BN_zero(Y);
241	if (BN_copy(B,a) == NULL) goto err;
242	if (BN_copy(A,n) == NULL) goto err;
243	A->neg = 0;
244	if (B->neg || (BN_ucmp(B, A) >= 0))
245		{
246		if (!BN_nnmod(B, B, A, ctx)) goto err;
247		}
248	sign = -1;
249	/* From  B = a mod |n|,  A = |n|  it follows that
250	 *
251	 *      0 <= B < A,
252	 *     -sign*X*a  ==  B   (mod |n|),
253	 *      sign*Y*a  ==  A   (mod |n|).
254	 */
255
256	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
257		{
258		/* Binary inversion algorithm; requires odd modulus.
259		 * This is faster than the general algorithm if the modulus
260		 * is sufficiently small (about 400 .. 500 bits on 32-bit
261		 * sytems, but much more on 64-bit systems) */
262		int shift;
263
264		while (!BN_is_zero(B))
265			{
266			/*
267			 *      0 < B < |n|,
268			 *      0 < A <= |n|,
269			 * (1) -sign*X*a  ==  B   (mod |n|),
270			 * (2)  sign*Y*a  ==  A   (mod |n|)
271			 */
272
273			/* Now divide  B  by the maximum possible power of two in the integers,
274			 * and divide  X  by the same value mod |n|.
275			 * When we're done, (1) still holds. */
276			shift = 0;
277			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
278				{
279				shift++;
280
281				if (BN_is_odd(X))
282					{
283					if (!BN_uadd(X, X, n)) goto err;
284					}
285				/* now X is even, so we can easily divide it by two */
286				if (!BN_rshift1(X, X)) goto err;
287				}
288			if (shift > 0)
289				{
290				if (!BN_rshift(B, B, shift)) goto err;
291				}
292
293
294			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
295			shift = 0;
296			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
297				{
298				shift++;
299
300				if (BN_is_odd(Y))
301					{
302					if (!BN_uadd(Y, Y, n)) goto err;
303					}
304				/* now Y is even */
305				if (!BN_rshift1(Y, Y)) goto err;
306				}
307			if (shift > 0)
308				{
309				if (!BN_rshift(A, A, shift)) goto err;
310				}
311
312
313			/* We still have (1) and (2).
314			 * Both  A  and  B  are odd.
315			 * The following computations ensure that
316			 *
317			 *     0 <= B < |n|,
318			 *      0 < A < |n|,
319			 * (1) -sign*X*a  ==  B   (mod |n|),
320			 * (2)  sign*Y*a  ==  A   (mod |n|),
321			 *
322			 * and that either  A  or  B  is even in the next iteration.
323			 */
324			if (BN_ucmp(B, A) >= 0)
325				{
326				/* -sign*(X + Y)*a == B - A  (mod |n|) */
327				if (!BN_uadd(X, X, Y)) goto err;
328				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
329				 * actually makes the algorithm slower */
330				if (!BN_usub(B, B, A)) goto err;
331				}
332			else
333				{
334				/*  sign*(X + Y)*a == A - B  (mod |n|) */
335				if (!BN_uadd(Y, Y, X)) goto err;
336				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
337				if (!BN_usub(A, A, B)) goto err;
338				}
339			}
340		}
341	else
342		{
343		/* general inversion algorithm */
344
345		while (!BN_is_zero(B))
346			{
347			BIGNUM *tmp;
348
349			/*
350			 *      0 < B < A,
351			 * (*) -sign*X*a  ==  B   (mod |n|),
352			 *      sign*Y*a  ==  A   (mod |n|)
353			 */
354
355			/* (D, M) := (A/B, A%B) ... */
356			if (BN_num_bits(A) == BN_num_bits(B))
357				{
358				if (!BN_one(D)) goto err;
359				if (!BN_sub(M,A,B)) goto err;
360				}
361			else if (BN_num_bits(A) == BN_num_bits(B) + 1)
362				{
363				/* A/B is 1, 2, or 3 */
364				if (!BN_lshift1(T,B)) goto err;
365				if (BN_ucmp(A,T) < 0)
366					{
367					/* A < 2*B, so D=1 */
368					if (!BN_one(D)) goto err;
369					if (!BN_sub(M,A,B)) goto err;
370					}
371				else
372					{
373					/* A >= 2*B, so D=2 or D=3 */
374					if (!BN_sub(M,A,T)) goto err;
375					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
376					if (BN_ucmp(A,D) < 0)
377						{
378						/* A < 3*B, so D=2 */
379						if (!BN_set_word(D,2)) goto err;
380						/* M (= A - 2*B) already has the correct value */
381						}
382					else
383						{
384						/* only D=3 remains */
385						if (!BN_set_word(D,3)) goto err;
386						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
387						if (!BN_sub(M,M,B)) goto err;
388						}
389					}
390				}
391			else
392				{
393				if (!BN_div(D,M,A,B,ctx)) goto err;
394				}
395
396			/* Now
397			 *      A = D*B + M;
398			 * thus we have
399			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
400			 */
401
402			tmp=A; /* keep the BIGNUM object, the value does not matter */
403
404			/* (A, B) := (B, A mod B) ... */
405			A=B;
406			B=M;
407			/* ... so we have  0 <= B < A  again */
408
409			/* Since the former  M  is now  B  and the former  B  is now  A,
410			 * (**) translates into
411			 *       sign*Y*a  ==  D*A + B    (mod |n|),
412			 * i.e.
413			 *       sign*Y*a - D*A  ==  B    (mod |n|).
414			 * Similarly, (*) translates into
415			 *      -sign*X*a  ==  A          (mod |n|).
416			 *
417			 * Thus,
418			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
419			 * i.e.
420			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
421			 *
422			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
423			 *      -sign*X*a  ==  B   (mod |n|),
424			 *       sign*Y*a  ==  A   (mod |n|).
425			 * Note that  X  and  Y  stay non-negative all the time.
426			 */
427
428			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
429			if (BN_is_one(D))
430				{
431				if (!BN_add(tmp,X,Y)) goto err;
432				}
433			else
434				{
435				if (BN_is_word(D,2))
436					{
437					if (!BN_lshift1(tmp,X)) goto err;
438					}
439				else if (BN_is_word(D,4))
440					{
441					if (!BN_lshift(tmp,X,2)) goto err;
442					}
443				else if (D->top == 1)
444					{
445					if (!BN_copy(tmp,X)) goto err;
446					if (!BN_mul_word(tmp,D->d[0])) goto err;
447					}
448				else
449					{
450					if (!BN_mul(tmp,D,X,ctx)) goto err;
451					}
452				if (!BN_add(tmp,tmp,Y)) goto err;
453				}
454
455			M=Y; /* keep the BIGNUM object, the value does not matter */
456			Y=X;
457			X=tmp;
458			sign = -sign;
459			}
460		}
461
462	/*
463	 * The while loop (Euclid's algorithm) ends when
464	 *      A == gcd(a,n);
465	 * we have
466	 *       sign*Y*a  ==  A  (mod |n|),
467	 * where  Y  is non-negative.
468	 */
469
470	if (sign < 0)
471		{
472		if (!BN_sub(Y,n,Y)) goto err;
473		}
474	/* Now  Y*a  ==  A  (mod |n|).  */
475
476
477	if (BN_is_one(A))
478		{
479		/* Y*a == 1  (mod |n|) */
480		if (!Y->neg && BN_ucmp(Y,n) < 0)
481			{
482			if (!BN_copy(R,Y)) goto err;
483			}
484		else
485			{
486			if (!BN_nnmod(R,Y,n,ctx)) goto err;
487			}
488		}
489	else
490		{
491		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
492		goto err;
493		}
494	ret=R;
495err:
496	if ((ret == NULL) && (in == NULL)) BN_free(R);
497	BN_CTX_end(ctx);
498	bn_check_top(ret);
499	return(ret);
500	}
501
502
503/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
504 * It does not contain branches that may leak sensitive information.
505 */
506static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
507	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
508	{
509	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
510	BIGNUM local_A, local_B;
511	BIGNUM *pA, *pB;
512	BIGNUM *ret=NULL;
513	int sign;
514
515	bn_check_top(a);
516	bn_check_top(n);
517
518	BN_CTX_start(ctx);
519	A = BN_CTX_get(ctx);
520	B = BN_CTX_get(ctx);
521	X = BN_CTX_get(ctx);
522	D = BN_CTX_get(ctx);
523	M = BN_CTX_get(ctx);
524	Y = BN_CTX_get(ctx);
525	T = BN_CTX_get(ctx);
526	if (T == NULL) goto err;
527
528	if (in == NULL)
529		R=BN_new();
530	else
531		R=in;
532	if (R == NULL) goto err;
533
534	BN_one(X);
535	BN_zero(Y);
536	if (BN_copy(B,a) == NULL) goto err;
537	if (BN_copy(A,n) == NULL) goto err;
538	A->neg = 0;
539
540	if (B->neg || (BN_ucmp(B, A) >= 0))
541		{
542		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
543	 	 * BN_div_no_branch will be called eventually.
544	 	 */
545		pB = &local_B;
546		BN_with_flags(pB, B, BN_FLG_CONSTTIME);
547		if (!BN_nnmod(B, pB, A, ctx)) goto err;
548		}
549	sign = -1;
550	/* From  B = a mod |n|,  A = |n|  it follows that
551	 *
552	 *      0 <= B < A,
553	 *     -sign*X*a  ==  B   (mod |n|),
554	 *      sign*Y*a  ==  A   (mod |n|).
555	 */
556
557	while (!BN_is_zero(B))
558		{
559		BIGNUM *tmp;
560
561		/*
562		 *      0 < B < A,
563		 * (*) -sign*X*a  ==  B   (mod |n|),
564		 *      sign*Y*a  ==  A   (mod |n|)
565		 */
566
567		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
568	 	 * BN_div_no_branch will be called eventually.
569	 	 */
570		pA = &local_A;
571		BN_with_flags(pA, A, BN_FLG_CONSTTIME);
572
573		/* (D, M) := (A/B, A%B) ... */
574		if (!BN_div(D,M,pA,B,ctx)) goto err;
575
576		/* Now
577		 *      A = D*B + M;
578		 * thus we have
579		 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
580		 */
581
582		tmp=A; /* keep the BIGNUM object, the value does not matter */
583
584		/* (A, B) := (B, A mod B) ... */
585		A=B;
586		B=M;
587		/* ... so we have  0 <= B < A  again */
588
589		/* Since the former  M  is now  B  and the former  B  is now  A,
590		 * (**) translates into
591		 *       sign*Y*a  ==  D*A + B    (mod |n|),
592		 * i.e.
593		 *       sign*Y*a - D*A  ==  B    (mod |n|).
594		 * Similarly, (*) translates into
595		 *      -sign*X*a  ==  A          (mod |n|).
596		 *
597		 * Thus,
598		 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
599		 * i.e.
600		 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
601		 *
602		 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
603		 *      -sign*X*a  ==  B   (mod |n|),
604		 *       sign*Y*a  ==  A   (mod |n|).
605		 * Note that  X  and  Y  stay non-negative all the time.
606		 */
607
608		if (!BN_mul(tmp,D,X,ctx)) goto err;
609		if (!BN_add(tmp,tmp,Y)) goto err;
610
611		M=Y; /* keep the BIGNUM object, the value does not matter */
612		Y=X;
613		X=tmp;
614		sign = -sign;
615		}
616
617	/*
618	 * The while loop (Euclid's algorithm) ends when
619	 *      A == gcd(a,n);
620	 * we have
621	 *       sign*Y*a  ==  A  (mod |n|),
622	 * where  Y  is non-negative.
623	 */
624
625	if (sign < 0)
626		{
627		if (!BN_sub(Y,n,Y)) goto err;
628		}
629	/* Now  Y*a  ==  A  (mod |n|).  */
630
631	if (BN_is_one(A))
632		{
633		/* Y*a == 1  (mod |n|) */
634		if (!Y->neg && BN_ucmp(Y,n) < 0)
635			{
636			if (!BN_copy(R,Y)) goto err;
637			}
638		else
639			{
640			if (!BN_nnmod(R,Y,n,ctx)) goto err;
641			}
642		}
643	else
644		{
645		BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE);
646		goto err;
647		}
648	ret=R;
649err:
650	if ((ret == NULL) && (in == NULL)) BN_free(R);
651	BN_CTX_end(ctx);
652	bn_check_top(ret);
653	return(ret);
654	}
655