bn_gcd.c revision 109998
1/* crypto/bn/bn_gcd.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#include "cryptlib.h"
113#include "bn_lcl.h"
114
115static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116
117int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118	{
119	BIGNUM *a,*b,*t;
120	int ret=0;
121
122	bn_check_top(in_a);
123	bn_check_top(in_b);
124
125	BN_CTX_start(ctx);
126	a = BN_CTX_get(ctx);
127	b = BN_CTX_get(ctx);
128	if (a == NULL || b == NULL) goto err;
129
130	if (BN_copy(a,in_a) == NULL) goto err;
131	if (BN_copy(b,in_b) == NULL) goto err;
132	a->neg = 0;
133	b->neg = 0;
134
135	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
136	t=euclid(a,b);
137	if (t == NULL) goto err;
138
139	if (BN_copy(r,t) == NULL) goto err;
140	ret=1;
141err:
142	BN_CTX_end(ctx);
143	return(ret);
144	}
145
146static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
147	{
148	BIGNUM *t;
149	int shifts=0;
150
151	bn_check_top(a);
152	bn_check_top(b);
153
154	/* 0 <= b <= a */
155	while (!BN_is_zero(b))
156		{
157		/* 0 < b <= a */
158
159		if (BN_is_odd(a))
160			{
161			if (BN_is_odd(b))
162				{
163				if (!BN_sub(a,a,b)) goto err;
164				if (!BN_rshift1(a,a)) goto err;
165				if (BN_cmp(a,b) < 0)
166					{ t=a; a=b; b=t; }
167				}
168			else		/* a odd - b even */
169				{
170				if (!BN_rshift1(b,b)) goto err;
171				if (BN_cmp(a,b) < 0)
172					{ t=a; a=b; b=t; }
173				}
174			}
175		else			/* a is even */
176			{
177			if (BN_is_odd(b))
178				{
179				if (!BN_rshift1(a,a)) goto err;
180				if (BN_cmp(a,b) < 0)
181					{ t=a; a=b; b=t; }
182				}
183			else		/* a even - b even */
184				{
185				if (!BN_rshift1(a,a)) goto err;
186				if (!BN_rshift1(b,b)) goto err;
187				shifts++;
188				}
189			}
190		/* 0 <= b <= a */
191		}
192
193	if (shifts)
194		{
195		if (!BN_lshift(a,a,shifts)) goto err;
196		}
197	return(a);
198err:
199	return(NULL);
200	}
201
202
203/* solves ax == 1 (mod n) */
204BIGNUM *BN_mod_inverse(BIGNUM *in,
205	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
206	{
207	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
208	BIGNUM *ret=NULL;
209	int sign;
210
211	bn_check_top(a);
212	bn_check_top(n);
213
214	BN_CTX_start(ctx);
215	A = BN_CTX_get(ctx);
216	B = BN_CTX_get(ctx);
217	X = BN_CTX_get(ctx);
218	D = BN_CTX_get(ctx);
219	M = BN_CTX_get(ctx);
220	Y = BN_CTX_get(ctx);
221	T = BN_CTX_get(ctx);
222	if (T == NULL) goto err;
223
224	if (in == NULL)
225		R=BN_new();
226	else
227		R=in;
228	if (R == NULL) goto err;
229
230	BN_one(X);
231	BN_zero(Y);
232	if (BN_copy(B,a) == NULL) goto err;
233	if (BN_copy(A,n) == NULL) goto err;
234	A->neg = 0;
235	if (B->neg || (BN_ucmp(B, A) >= 0))
236		{
237		if (!BN_nnmod(B, B, A, ctx)) goto err;
238		}
239	sign = -1;
240	/* From  B = a mod |n|,  A = |n|  it follows that
241	 *
242	 *      0 <= B < A,
243	 *     -sign*X*a  ==  B   (mod |n|),
244	 *      sign*Y*a  ==  A   (mod |n|).
245	 */
246
247	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
248		{
249		/* Binary inversion algorithm; requires odd modulus.
250		 * This is faster than the general algorithm if the modulus
251		 * is sufficiently small (about 400 .. 500 bits on 32-bit
252		 * sytems, but much more on 64-bit systems) */
253		int shift;
254
255		while (!BN_is_zero(B))
256			{
257			/*
258			 *      0 < B < |n|,
259			 *      0 < A <= |n|,
260			 * (1) -sign*X*a  ==  B   (mod |n|),
261			 * (2)  sign*Y*a  ==  A   (mod |n|)
262			 */
263
264			/* Now divide  B  by the maximum possible power of two in the integers,
265			 * and divide  X  by the same value mod |n|.
266			 * When we're done, (1) still holds. */
267			shift = 0;
268			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
269				{
270				shift++;
271
272				if (BN_is_odd(X))
273					{
274					if (!BN_uadd(X, X, n)) goto err;
275					}
276				/* now X is even, so we can easily divide it by two */
277				if (!BN_rshift1(X, X)) goto err;
278				}
279			if (shift > 0)
280				{
281				if (!BN_rshift(B, B, shift)) goto err;
282				}
283
284
285			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
286			shift = 0;
287			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
288				{
289				shift++;
290
291				if (BN_is_odd(Y))
292					{
293					if (!BN_uadd(Y, Y, n)) goto err;
294					}
295				/* now Y is even */
296				if (!BN_rshift1(Y, Y)) goto err;
297				}
298			if (shift > 0)
299				{
300				if (!BN_rshift(A, A, shift)) goto err;
301				}
302
303
304			/* We still have (1) and (2).
305			 * Both  A  and  B  are odd.
306			 * The following computations ensure that
307			 *
308			 *     0 <= B < |n|,
309			 *      0 < A < |n|,
310			 * (1) -sign*X*a  ==  B   (mod |n|),
311			 * (2)  sign*Y*a  ==  A   (mod |n|),
312			 *
313			 * and that either  A  or  B  is even in the next iteration.
314			 */
315			if (BN_ucmp(B, A) >= 0)
316				{
317				/* -sign*(X + Y)*a == B - A  (mod |n|) */
318				if (!BN_uadd(X, X, Y)) goto err;
319				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
320				 * actually makes the algorithm slower */
321				if (!BN_usub(B, B, A)) goto err;
322				}
323			else
324				{
325				/*  sign*(X + Y)*a == A - B  (mod |n|) */
326				if (!BN_uadd(Y, Y, X)) goto err;
327				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
328				if (!BN_usub(A, A, B)) goto err;
329				}
330			}
331		}
332	else
333		{
334		/* general inversion algorithm */
335
336		while (!BN_is_zero(B))
337			{
338			BIGNUM *tmp;
339
340			/*
341			 *      0 < B < A,
342			 * (*) -sign*X*a  ==  B   (mod |n|),
343			 *      sign*Y*a  ==  A   (mod |n|)
344			 */
345
346			/* (D, M) := (A/B, A%B) ... */
347			if (BN_num_bits(A) == BN_num_bits(B))
348				{
349				if (!BN_one(D)) goto err;
350				if (!BN_sub(M,A,B)) goto err;
351				}
352			else if (BN_num_bits(A) == BN_num_bits(B) + 1)
353				{
354				/* A/B is 1, 2, or 3 */
355				if (!BN_lshift1(T,B)) goto err;
356				if (BN_ucmp(A,T) < 0)
357					{
358					/* A < 2*B, so D=1 */
359					if (!BN_one(D)) goto err;
360					if (!BN_sub(M,A,B)) goto err;
361					}
362				else
363					{
364					/* A >= 2*B, so D=2 or D=3 */
365					if (!BN_sub(M,A,T)) goto err;
366					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
367					if (BN_ucmp(A,D) < 0)
368						{
369						/* A < 3*B, so D=2 */
370						if (!BN_set_word(D,2)) goto err;
371						/* M (= A - 2*B) already has the correct value */
372						}
373					else
374						{
375						/* only D=3 remains */
376						if (!BN_set_word(D,3)) goto err;
377						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
378						if (!BN_sub(M,M,B)) goto err;
379						}
380					}
381				}
382			else
383				{
384				if (!BN_div(D,M,A,B,ctx)) goto err;
385				}
386
387			/* Now
388			 *      A = D*B + M;
389			 * thus we have
390			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
391			 */
392
393			tmp=A; /* keep the BIGNUM object, the value does not matter */
394
395			/* (A, B) := (B, A mod B) ... */
396			A=B;
397			B=M;
398			/* ... so we have  0 <= B < A  again */
399
400			/* Since the former  M  is now  B  and the former  B  is now  A,
401			 * (**) translates into
402			 *       sign*Y*a  ==  D*A + B    (mod |n|),
403			 * i.e.
404			 *       sign*Y*a - D*A  ==  B    (mod |n|).
405			 * Similarly, (*) translates into
406			 *      -sign*X*a  ==  A          (mod |n|).
407			 *
408			 * Thus,
409			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
410			 * i.e.
411			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
412			 *
413			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
414			 *      -sign*X*a  ==  B   (mod |n|),
415			 *       sign*Y*a  ==  A   (mod |n|).
416			 * Note that  X  and  Y  stay non-negative all the time.
417			 */
418
419			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
420			if (BN_is_one(D))
421				{
422				if (!BN_add(tmp,X,Y)) goto err;
423				}
424			else
425				{
426				if (BN_is_word(D,2))
427					{
428					if (!BN_lshift1(tmp,X)) goto err;
429					}
430				else if (BN_is_word(D,4))
431					{
432					if (!BN_lshift(tmp,X,2)) goto err;
433					}
434				else if (D->top == 1)
435					{
436					if (!BN_copy(tmp,X)) goto err;
437					if (!BN_mul_word(tmp,D->d[0])) goto err;
438					}
439				else
440					{
441					if (!BN_mul(tmp,D,X,ctx)) goto err;
442					}
443				if (!BN_add(tmp,tmp,Y)) goto err;
444				}
445
446			M=Y; /* keep the BIGNUM object, the value does not matter */
447			Y=X;
448			X=tmp;
449			sign = -sign;
450			}
451		}
452
453	/*
454	 * The while loop (Euclid's algorithm) ends when
455	 *      A == gcd(a,n);
456	 * we have
457	 *       sign*Y*a  ==  A  (mod |n|),
458	 * where  Y  is non-negative.
459	 */
460
461	if (sign < 0)
462		{
463		if (!BN_sub(Y,n,Y)) goto err;
464		}
465	/* Now  Y*a  ==  A  (mod |n|).  */
466
467
468	if (BN_is_one(A))
469		{
470		/* Y*a == 1  (mod |n|) */
471		if (!Y->neg && BN_ucmp(Y,n) < 0)
472			{
473			if (!BN_copy(R,Y)) goto err;
474			}
475		else
476			{
477			if (!BN_nnmod(R,Y,n,ctx)) goto err;
478			}
479		}
480	else
481		{
482		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
483		goto err;
484		}
485	ret=R;
486err:
487	if ((ret == NULL) && (in == NULL)) BN_free(R);
488	BN_CTX_end(ctx);
489	return(ret);
490	}
491