bn_exp.c revision 279265
1/* crypto/bn/bn_exp.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112
113#include "cryptlib.h"
114#include "bn_lcl.h"
115
116/* maximum precomputation table size for *variable* sliding windows */
117#define TABLE_SIZE	32
118
119/* this one works - simple but works */
120int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
121	{
122	int i,bits,ret=0;
123	BIGNUM *v,*rr;
124
125	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
126		{
127		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
128		BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
129		return -1;
130		}
131
132	BN_CTX_start(ctx);
133	if ((r == a) || (r == p))
134		rr = BN_CTX_get(ctx);
135	else
136		rr = r;
137	v = BN_CTX_get(ctx);
138	if (rr == NULL || v == NULL) goto err;
139
140	if (BN_copy(v,a) == NULL) goto err;
141	bits=BN_num_bits(p);
142
143	if (BN_is_odd(p))
144		{ if (BN_copy(rr,a) == NULL) goto err; }
145	else	{ if (!BN_one(rr)) goto err; }
146
147	for (i=1; i<bits; i++)
148		{
149		if (!BN_sqr(v,v,ctx)) goto err;
150		if (BN_is_bit_set(p,i))
151			{
152			if (!BN_mul(rr,rr,v,ctx)) goto err;
153			}
154		}
155	ret=1;
156err:
157	if (r != rr) BN_copy(r,rr);
158	BN_CTX_end(ctx);
159	bn_check_top(r);
160	return(ret);
161	}
162
163
164int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
165	       BN_CTX *ctx)
166	{
167	int ret;
168
169	bn_check_top(a);
170	bn_check_top(p);
171	bn_check_top(m);
172
173	/* For even modulus  m = 2^k*m_odd,  it might make sense to compute
174	 * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
175	 * exponentiation for the odd part), using appropriate exponent
176	 * reductions, and combine the results using the CRT.
177	 *
178	 * For now, we use Montgomery only if the modulus is odd; otherwise,
179	 * exponentiation using the reciprocal-based quick remaindering
180	 * algorithm is used.
181	 *
182	 * (Timing obtained with expspeed.c [computations  a^p mod m
183	 * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
184	 * 4096, 8192 bits], compared to the running time of the
185	 * standard algorithm:
186	 *
187	 *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
188         *                     55 .. 77 %  [UltraSparc processor, but
189	 *                                  debug-solaris-sparcv8-gcc conf.]
190	 *
191	 *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
192	 *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
193	 *
194	 * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
195	 * at 2048 and more bits, but at 512 and 1024 bits, it was
196	 * slower even than the standard algorithm!
197	 *
198	 * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
199	 * should be obtained when the new Montgomery reduction code
200	 * has been integrated into OpenSSL.)
201	 */
202
203#define MONT_MUL_MOD
204#define MONT_EXP_WORD
205#define RECP_MUL_MOD
206
207#ifdef MONT_MUL_MOD
208	/* I have finally been able to take out this pre-condition of
209	 * the top bit being set.  It was caused by an error in BN_div
210	 * with negatives.  There was also another problem when for a^b%m
211	 * a >= m.  eay 07-May-97 */
212/*	if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */
213
214	if (BN_is_odd(m))
215		{
216#  ifdef MONT_EXP_WORD
217		if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0))
218			{
219			BN_ULONG A = a->d[0];
220			ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL);
221			}
222		else
223#  endif
224			ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL);
225		}
226	else
227#endif
228#ifdef RECP_MUL_MOD
229		{ ret=BN_mod_exp_recp(r,a,p,m,ctx); }
230#else
231		{ ret=BN_mod_exp_simple(r,a,p,m,ctx); }
232#endif
233
234	bn_check_top(r);
235	return(ret);
236	}
237
238
239int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
240		    const BIGNUM *m, BN_CTX *ctx)
241	{
242	int i,j,bits,ret=0,wstart,wend,window,wvalue;
243	int start=1;
244	BIGNUM *aa;
245	/* Table of variables obtained from 'ctx' */
246	BIGNUM *val[TABLE_SIZE];
247	BN_RECP_CTX recp;
248
249	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
250		{
251		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
252		BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
253		return -1;
254		}
255
256	bits=BN_num_bits(p);
257
258	if (bits == 0)
259		{
260		ret = BN_one(r);
261		return ret;
262		}
263
264	BN_CTX_start(ctx);
265	aa = BN_CTX_get(ctx);
266	val[0] = BN_CTX_get(ctx);
267	if(!aa || !val[0]) goto err;
268
269	BN_RECP_CTX_init(&recp);
270	if (m->neg)
271		{
272		/* ignore sign of 'm' */
273		if (!BN_copy(aa, m)) goto err;
274		aa->neg = 0;
275		if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err;
276		}
277	else
278		{
279		if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err;
280		}
281
282	if (!BN_nnmod(val[0],a,m,ctx)) goto err;		/* 1 */
283	if (BN_is_zero(val[0]))
284		{
285		BN_zero(r);
286		ret = 1;
287		goto err;
288		}
289
290	window = BN_window_bits_for_exponent_size(bits);
291	if (window > 1)
292		{
293		if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx))
294			goto err;				/* 2 */
295		j=1<<(window-1);
296		for (i=1; i<j; i++)
297			{
298			if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
299					!BN_mod_mul_reciprocal(val[i],val[i-1],
300						aa,&recp,ctx))
301				goto err;
302			}
303		}
304
305	start=1;	/* This is used to avoid multiplication etc
306			 * when there is only the value '1' in the
307			 * buffer. */
308	wvalue=0;	/* The 'value' of the window */
309	wstart=bits-1;	/* The top bit of the window */
310	wend=0;		/* The bottom bit of the window */
311
312	if (!BN_one(r)) goto err;
313
314	for (;;)
315		{
316		if (BN_is_bit_set(p,wstart) == 0)
317			{
318			if (!start)
319				if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
320				goto err;
321			if (wstart == 0) break;
322			wstart--;
323			continue;
324			}
325		/* We now have wstart on a 'set' bit, we now need to work out
326		 * how bit a window to do.  To do this we need to scan
327		 * forward until the last set bit before the end of the
328		 * window */
329		j=wstart;
330		wvalue=1;
331		wend=0;
332		for (i=1; i<window; i++)
333			{
334			if (wstart-i < 0) break;
335			if (BN_is_bit_set(p,wstart-i))
336				{
337				wvalue<<=(i-wend);
338				wvalue|=1;
339				wend=i;
340				}
341			}
342
343		/* wend is the size of the current window */
344		j=wend+1;
345		/* add the 'bytes above' */
346		if (!start)
347			for (i=0; i<j; i++)
348				{
349				if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
350					goto err;
351				}
352
353		/* wvalue will be an odd number < 2^window */
354		if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx))
355			goto err;
356
357		/* move the 'window' down further */
358		wstart-=wend+1;
359		wvalue=0;
360		start=0;
361		if (wstart < 0) break;
362		}
363	ret=1;
364err:
365	BN_CTX_end(ctx);
366	BN_RECP_CTX_free(&recp);
367	bn_check_top(r);
368	return(ret);
369	}
370
371
372int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
373		    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
374	{
375	int i,j,bits,ret=0,wstart,wend,window,wvalue;
376	int start=1;
377	BIGNUM *d,*r;
378	const BIGNUM *aa;
379	/* Table of variables obtained from 'ctx' */
380	BIGNUM *val[TABLE_SIZE];
381	BN_MONT_CTX *mont=NULL;
382
383	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
384		{
385		return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
386		}
387
388	bn_check_top(a);
389	bn_check_top(p);
390	bn_check_top(m);
391
392	if (!BN_is_odd(m))
393		{
394		BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS);
395		return(0);
396		}
397	bits=BN_num_bits(p);
398	if (bits == 0)
399		{
400		ret = BN_one(rr);
401		return ret;
402		}
403
404	BN_CTX_start(ctx);
405	d = BN_CTX_get(ctx);
406	r = BN_CTX_get(ctx);
407	val[0] = BN_CTX_get(ctx);
408	if (!d || !r || !val[0]) goto err;
409
410	/* If this is not done, things will break in the montgomery
411	 * part */
412
413	if (in_mont != NULL)
414		mont=in_mont;
415	else
416		{
417		if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
418		if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
419		}
420
421	if (a->neg || BN_ucmp(a,m) >= 0)
422		{
423		if (!BN_nnmod(val[0],a,m,ctx))
424			goto err;
425		aa= val[0];
426		}
427	else
428		aa=a;
429	if (BN_is_zero(aa))
430		{
431		BN_zero(rr);
432		ret = 1;
433		goto err;
434		}
435	if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */
436
437	window = BN_window_bits_for_exponent_size(bits);
438	if (window > 1)
439		{
440		if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */
441		j=1<<(window-1);
442		for (i=1; i<j; i++)
443			{
444			if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
445					!BN_mod_mul_montgomery(val[i],val[i-1],
446						d,mont,ctx))
447				goto err;
448			}
449		}
450
451	start=1;	/* This is used to avoid multiplication etc
452			 * when there is only the value '1' in the
453			 * buffer. */
454	wvalue=0;	/* The 'value' of the window */
455	wstart=bits-1;	/* The top bit of the window */
456	wend=0;		/* The bottom bit of the window */
457
458	if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
459	for (;;)
460		{
461		if (BN_is_bit_set(p,wstart) == 0)
462			{
463			if (!start)
464				{
465				if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
466				goto err;
467				}
468			if (wstart == 0) break;
469			wstart--;
470			continue;
471			}
472		/* We now have wstart on a 'set' bit, we now need to work out
473		 * how bit a window to do.  To do this we need to scan
474		 * forward until the last set bit before the end of the
475		 * window */
476		j=wstart;
477		wvalue=1;
478		wend=0;
479		for (i=1; i<window; i++)
480			{
481			if (wstart-i < 0) break;
482			if (BN_is_bit_set(p,wstart-i))
483				{
484				wvalue<<=(i-wend);
485				wvalue|=1;
486				wend=i;
487				}
488			}
489
490		/* wend is the size of the current window */
491		j=wend+1;
492		/* add the 'bytes above' */
493		if (!start)
494			for (i=0; i<j; i++)
495				{
496				if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
497					goto err;
498				}
499
500		/* wvalue will be an odd number < 2^window */
501		if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx))
502			goto err;
503
504		/* move the 'window' down further */
505		wstart-=wend+1;
506		wvalue=0;
507		start=0;
508		if (wstart < 0) break;
509		}
510	if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
511	ret=1;
512err:
513	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
514	BN_CTX_end(ctx);
515	bn_check_top(rr);
516	return(ret);
517	}
518
519
520/* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout
521 * so that accessing any of these table values shows the same access pattern as far
522 * as cache lines are concerned.  The following functions are used to transfer a BIGNUM
523 * from/to that table. */
524
525static int MOD_EXP_CTIME_COPY_TO_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width)
526	{
527	size_t i, j;
528
529	if (bn_wexpand(b, top) == NULL)
530		return 0;
531	while (b->top < top)
532		{
533		b->d[b->top++] = 0;
534		}
535
536	for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width)
537		{
538		buf[j] = ((unsigned char*)b->d)[i];
539		}
540
541	bn_correct_top(b);
542	return 1;
543	}
544
545static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width)
546	{
547	size_t i, j;
548
549	if (bn_wexpand(b, top) == NULL)
550		return 0;
551
552	for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width)
553		{
554		((unsigned char*)b->d)[i] = buf[j];
555		}
556
557	b->top = top;
558	bn_correct_top(b);
559	return 1;
560	}
561
562/* Given a pointer value, compute the next address that is a cache line multiple. */
563#define MOD_EXP_CTIME_ALIGN(x_) \
564	((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((BN_ULONG)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
565
566/* This variant of BN_mod_exp_mont() uses fixed windows and the special
567 * precomputation memory layout to limit data-dependency to a minimum
568 * to protect secret exponents (cf. the hyper-threading timing attacks
569 * pointed out by Colin Percival,
570 * http://www.daemonology.net/hyperthreading-considered-harmful/)
571 */
572int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
573		    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
574	{
575	int i,bits,ret=0,idx,window,wvalue;
576	int top;
577 	BIGNUM *r;
578	const BIGNUM *aa;
579	BN_MONT_CTX *mont=NULL;
580
581	int numPowers;
582	unsigned char *powerbufFree=NULL;
583	int powerbufLen = 0;
584	unsigned char *powerbuf=NULL;
585	BIGNUM *computeTemp=NULL, *am=NULL;
586
587	bn_check_top(a);
588	bn_check_top(p);
589	bn_check_top(m);
590
591	top = m->top;
592
593	if (!(m->d[0] & 1))
594		{
595		BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS);
596		return(0);
597		}
598	bits=BN_num_bits(p);
599	if (bits == 0)
600		{
601		ret = BN_one(rr);
602		return ret;
603		}
604
605 	/* Initialize BIGNUM context and allocate intermediate result */
606	BN_CTX_start(ctx);
607	r = BN_CTX_get(ctx);
608	if (r == NULL) goto err;
609
610	/* Allocate a montgomery context if it was not supplied by the caller.
611	 * If this is not done, things will break in the montgomery part.
612 	 */
613	if (in_mont != NULL)
614		mont=in_mont;
615	else
616		{
617		if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
618		if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
619		}
620
621	/* Get the window size to use with size of p. */
622	window = BN_window_bits_for_ctime_exponent_size(bits);
623
624	/* Allocate a buffer large enough to hold all of the pre-computed
625	 * powers of a.
626	 */
627	numPowers = 1 << window;
628	powerbufLen = sizeof(m->d[0])*top*numPowers;
629	if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL)
630		goto err;
631
632	powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
633	memset(powerbuf, 0, powerbufLen);
634
635 	/* Initialize the intermediate result. Do this early to save double conversion,
636	 * once each for a^0 and intermediate result.
637	 */
638 	if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
639	if (!MOD_EXP_CTIME_COPY_TO_PREBUF(r, top, powerbuf, 0, numPowers)) goto err;
640
641	/* Initialize computeTemp as a^1 with montgomery precalcs */
642	computeTemp = BN_CTX_get(ctx);
643	am = BN_CTX_get(ctx);
644	if (computeTemp==NULL || am==NULL) goto err;
645
646	if (a->neg || BN_ucmp(a,m) >= 0)
647		{
648		if (!BN_mod(am,a,m,ctx))
649			goto err;
650		aa= am;
651		}
652	else
653		aa=a;
654	if (!BN_to_montgomery(am,aa,mont,ctx)) goto err;
655	if (!BN_copy(computeTemp, am)) goto err;
656	if (!MOD_EXP_CTIME_COPY_TO_PREBUF(am, top, powerbuf, 1, numPowers)) goto err;
657
658	/* If the window size is greater than 1, then calculate
659	 * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
660	 * (even powers could instead be computed as (a^(i/2))^2
661	 * to use the slight performance advantage of sqr over mul).
662	 */
663	if (window > 1)
664		{
665		for (i=2; i<numPowers; i++)
666			{
667			/* Calculate a^i = a^(i-1) * a */
668			if (!BN_mod_mul_montgomery(computeTemp,am,computeTemp,mont,ctx))
669				goto err;
670			if (!MOD_EXP_CTIME_COPY_TO_PREBUF(computeTemp, top, powerbuf, i, numPowers)) goto err;
671			}
672		}
673
674 	/* Adjust the number of bits up to a multiple of the window size.
675 	 * If the exponent length is not a multiple of the window size, then
676 	 * this pads the most significant bits with zeros to normalize the
677 	 * scanning loop to there's no special cases.
678 	 *
679 	 * * NOTE: Making the window size a power of two less than the native
680	 * * word size ensures that the padded bits won't go past the last
681 	 * * word in the internal BIGNUM structure. Going past the end will
682 	 * * still produce the correct result, but causes a different branch
683 	 * * to be taken in the BN_is_bit_set function.
684 	 */
685 	bits = ((bits+window-1)/window)*window;
686 	idx=bits-1;	/* The top bit of the window */
687
688 	/* Scan the exponent one window at a time starting from the most
689 	 * significant bits.
690 	 */
691 	while (idx >= 0)
692  		{
693 		wvalue=0; /* The 'value' of the window */
694
695 		/* Scan the window, squaring the result as we go */
696 		for (i=0; i<window; i++,idx--)
697 			{
698			if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))	goto err;
699			wvalue = (wvalue<<1)+BN_is_bit_set(p,idx);
700  			}
701
702		/* Fetch the appropriate pre-computed value from the pre-buf */
703		if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(computeTemp, top, powerbuf, wvalue, numPowers)) goto err;
704
705 		/* Multiply the result into the intermediate result */
706 		if (!BN_mod_mul_montgomery(r,r,computeTemp,mont,ctx)) goto err;
707  		}
708
709 	/* Convert the final result from montgomery to standard format */
710	if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
711	ret=1;
712err:
713	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
714	if (powerbuf!=NULL)
715		{
716		OPENSSL_cleanse(powerbuf,powerbufLen);
717		OPENSSL_free(powerbufFree);
718		}
719 	if (am!=NULL) BN_clear(am);
720 	if (computeTemp!=NULL) BN_clear(computeTemp);
721	BN_CTX_end(ctx);
722	return(ret);
723	}
724
725int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
726                         const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
727	{
728	BN_MONT_CTX *mont = NULL;
729	int b, bits, ret=0;
730	int r_is_one;
731	BN_ULONG w, next_w;
732	BIGNUM *d, *r, *t;
733	BIGNUM *swap_tmp;
734#define BN_MOD_MUL_WORD(r, w, m) \
735		(BN_mul_word(r, (w)) && \
736		(/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
737			(BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
738		/* BN_MOD_MUL_WORD is only used with 'w' large,
739		 * so the BN_ucmp test is probably more overhead
740		 * than always using BN_mod (which uses BN_copy if
741		 * a similar test returns true). */
742		/* We can use BN_mod and do not need BN_nnmod because our
743		 * accumulator is never negative (the result of BN_mod does
744		 * not depend on the sign of the modulus).
745		 */
746#define BN_TO_MONTGOMERY_WORD(r, w, mont) \
747		(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
748
749	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
750		{
751		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
752		BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
753		return -1;
754		}
755
756	bn_check_top(p);
757	bn_check_top(m);
758
759	if (!BN_is_odd(m))
760		{
761		BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS);
762		return(0);
763		}
764	if (m->top == 1)
765		a %= m->d[0]; /* make sure that 'a' is reduced */
766
767	bits = BN_num_bits(p);
768	if (bits == 0)
769		{
770		/* x**0 mod 1 is still zero. */
771		if (BN_is_one(m))
772			{
773			ret = 1;
774			BN_zero(rr);
775			}
776		else
777			ret = BN_one(rr);
778		return ret;
779		}
780	if (a == 0)
781		{
782		BN_zero(rr);
783		ret = 1;
784		return ret;
785		}
786
787	BN_CTX_start(ctx);
788	d = BN_CTX_get(ctx);
789	r = BN_CTX_get(ctx);
790	t = BN_CTX_get(ctx);
791	if (d == NULL || r == NULL || t == NULL) goto err;
792
793	if (in_mont != NULL)
794		mont=in_mont;
795	else
796		{
797		if ((mont = BN_MONT_CTX_new()) == NULL) goto err;
798		if (!BN_MONT_CTX_set(mont, m, ctx)) goto err;
799		}
800
801	r_is_one = 1; /* except for Montgomery factor */
802
803	/* bits-1 >= 0 */
804
805	/* The result is accumulated in the product r*w. */
806	w = a; /* bit 'bits-1' of 'p' is always set */
807	for (b = bits-2; b >= 0; b--)
808		{
809		/* First, square r*w. */
810		next_w = w*w;
811		if ((next_w/w) != w) /* overflow */
812			{
813			if (r_is_one)
814				{
815				if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
816				r_is_one = 0;
817				}
818			else
819				{
820				if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
821				}
822			next_w = 1;
823			}
824		w = next_w;
825		if (!r_is_one)
826			{
827			if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err;
828			}
829
830		/* Second, multiply r*w by 'a' if exponent bit is set. */
831		if (BN_is_bit_set(p, b))
832			{
833			next_w = w*a;
834			if ((next_w/a) != w) /* overflow */
835				{
836				if (r_is_one)
837					{
838					if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
839					r_is_one = 0;
840					}
841				else
842					{
843					if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
844					}
845				next_w = a;
846				}
847			w = next_w;
848			}
849		}
850
851	/* Finally, set r:=r*w. */
852	if (w != 1)
853		{
854		if (r_is_one)
855			{
856			if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
857			r_is_one = 0;
858			}
859		else
860			{
861			if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
862			}
863		}
864
865	if (r_is_one) /* can happen only if a == 1*/
866		{
867		if (!BN_one(rr)) goto err;
868		}
869	else
870		{
871		if (!BN_from_montgomery(rr, r, mont, ctx)) goto err;
872		}
873	ret = 1;
874err:
875	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
876	BN_CTX_end(ctx);
877	bn_check_top(rr);
878	return(ret);
879	}
880
881
882/* The old fallback, simple version :-) */
883int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
884		const BIGNUM *m, BN_CTX *ctx)
885	{
886	int i,j,bits,ret=0,wstart,wend,window,wvalue;
887	int start=1;
888	BIGNUM *d;
889	/* Table of variables obtained from 'ctx' */
890	BIGNUM *val[TABLE_SIZE];
891
892	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
893		{
894		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
895		BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
896		return -1;
897		}
898
899	bits=BN_num_bits(p);
900
901	if (bits == 0)
902		{
903		ret = BN_one(r);
904		return ret;
905		}
906
907	BN_CTX_start(ctx);
908	d = BN_CTX_get(ctx);
909	val[0] = BN_CTX_get(ctx);
910	if(!d || !val[0]) goto err;
911
912	if (!BN_nnmod(val[0],a,m,ctx)) goto err;		/* 1 */
913	if (BN_is_zero(val[0]))
914		{
915		BN_zero(r);
916		ret = 1;
917		goto err;
918		}
919
920	window = BN_window_bits_for_exponent_size(bits);
921	if (window > 1)
922		{
923		if (!BN_mod_mul(d,val[0],val[0],m,ctx))
924			goto err;				/* 2 */
925		j=1<<(window-1);
926		for (i=1; i<j; i++)
927			{
928			if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
929					!BN_mod_mul(val[i],val[i-1],d,m,ctx))
930				goto err;
931			}
932		}
933
934	start=1;	/* This is used to avoid multiplication etc
935			 * when there is only the value '1' in the
936			 * buffer. */
937	wvalue=0;	/* The 'value' of the window */
938	wstart=bits-1;	/* The top bit of the window */
939	wend=0;		/* The bottom bit of the window */
940
941	if (!BN_one(r)) goto err;
942
943	for (;;)
944		{
945		if (BN_is_bit_set(p,wstart) == 0)
946			{
947			if (!start)
948				if (!BN_mod_mul(r,r,r,m,ctx))
949				goto err;
950			if (wstart == 0) break;
951			wstart--;
952			continue;
953			}
954		/* We now have wstart on a 'set' bit, we now need to work out
955		 * how bit a window to do.  To do this we need to scan
956		 * forward until the last set bit before the end of the
957		 * window */
958		j=wstart;
959		wvalue=1;
960		wend=0;
961		for (i=1; i<window; i++)
962			{
963			if (wstart-i < 0) break;
964			if (BN_is_bit_set(p,wstart-i))
965				{
966				wvalue<<=(i-wend);
967				wvalue|=1;
968				wend=i;
969				}
970			}
971
972		/* wend is the size of the current window */
973		j=wend+1;
974		/* add the 'bytes above' */
975		if (!start)
976			for (i=0; i<j; i++)
977				{
978				if (!BN_mod_mul(r,r,r,m,ctx))
979					goto err;
980				}
981
982		/* wvalue will be an odd number < 2^window */
983		if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx))
984			goto err;
985
986		/* move the 'window' down further */
987		wstart-=wend+1;
988		wvalue=0;
989		start=0;
990		if (wstart < 0) break;
991		}
992	ret=1;
993err:
994	BN_CTX_end(ctx);
995	bn_check_top(r);
996	return(ret);
997	}
998
999