ia64.S revision 89837
1.explicit
2.text
3.ident	"ia64.S, Version 1.1"
4.ident	"IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
5
6//
7// ====================================================================
8// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
9// project.
10//
11// Rights for redistribution and usage in source and binary forms are
12// granted according to the OpenSSL license. Warranty of any kind is
13// disclaimed.
14// ====================================================================
15//
16
17// Q.	How much faster does it get?
18// A.	Here is the output from 'openssl speed rsa dsa' for vanilla
19//	0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
20//	Linux 7.1 2.96-81):
21//
22//	                  sign    verify    sign/s verify/s
23//	rsa  512 bits   0.0036s   0.0003s    275.3   2999.2
24//	rsa 1024 bits   0.0203s   0.0011s     49.3    894.1
25//	rsa 2048 bits   0.1331s   0.0040s      7.5    250.9
26//	rsa 4096 bits   0.9270s   0.0147s      1.1     68.1
27//	                  sign    verify    sign/s verify/s
28//	dsa  512 bits   0.0035s   0.0043s    288.3    234.8
29//	dsa 1024 bits   0.0111s   0.0135s     90.0     74.2
30//
31//	And here is similar output but for this assembler
32//	implementation:-)
33//
34//	                  sign    verify    sign/s verify/s
35//	rsa  512 bits   0.0021s   0.0001s    549.4   9638.5
36//	rsa 1024 bits   0.0055s   0.0002s    183.8   4481.1
37//	rsa 2048 bits   0.0244s   0.0006s     41.4   1726.3
38//	rsa 4096 bits   0.1295s   0.0018s      7.7    561.5
39//	                  sign    verify    sign/s verify/s
40//	dsa  512 bits   0.0012s   0.0013s    891.9    756.6
41//	dsa 1024 bits   0.0023s   0.0028s    440.4    376.2
42//
43//	Yes, you may argue that it's not fair comparison as it's
44//	possible to craft the C implementation with BN_UMULT_HIGH
45//	inline assembler macro. But of course! Here is the output
46//	with the macro:
47//
48//	                  sign    verify    sign/s verify/s
49//	rsa  512 bits   0.0020s   0.0002s    495.0   6561.0
50//	rsa 1024 bits   0.0086s   0.0004s    116.2   2235.7
51//	rsa 2048 bits   0.0519s   0.0015s     19.3    667.3
52//	rsa 4096 bits   0.3464s   0.0053s      2.9    187.7
53//	                  sign    verify    sign/s verify/s
54//	dsa  512 bits   0.0016s   0.0020s    613.1    510.5
55//	dsa 1024 bits   0.0045s   0.0054s    221.0    183.9
56//
57//	My code is still way faster, huh:-) And I believe that even
58//	higher performance can be achieved. Note that as keys get
59//	longer, performance gain is larger. Why? According to the
60//	profiler there is another player in the field, namely
61//	BN_from_montgomery consuming larger and larger portion of CPU
62//	time as keysize decreases. I therefore consider putting effort
63//	to assembler implementation of the following routine:
64//
65//	void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
66//	{
67//	int      i,j;
68//	BN_ULONG v;
69//
70//	for (i=0; i<nl; i++)
71//		{
72//		v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
73//		nrp++;
74//		rp++;
75//		if (((nrp[-1]+=v)&BN_MASK2) < v)
76//			for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
77//		}
78//	}
79//
80//	It might as well be beneficial to implement even combaX
81//	variants, as it appears as it can literally unleash the
82//	performance (see comment section to bn_mul_comba8 below).
83//
84//	And finally for your reference the output for 0.9.6a compiled
85//	with SGIcc version 0.01.0-12 (keep in mind that for the moment
86//	of this writing it's not possible to convince SGIcc to use
87//	BN_UMULT_HIGH inline assembler macro, yet the code is fast,
88//	i.e. for a compiler generated one:-):
89//
90//	                  sign    verify    sign/s verify/s
91//	rsa  512 bits   0.0022s   0.0002s    452.7   5894.3
92//	rsa 1024 bits   0.0097s   0.0005s    102.7   2002.9
93//	rsa 2048 bits   0.0578s   0.0017s     17.3    600.2
94//	rsa 4096 bits   0.3838s   0.0061s      2.6    164.5
95//	                  sign    verify    sign/s verify/s
96//	dsa  512 bits   0.0018s   0.0022s    547.3    459.6
97//	dsa 1024 bits   0.0051s   0.0062s    196.6    161.3
98//
99//	Oh! Benchmarks were performed on 733MHz Lion-class Itanium
100//	system running Redhat Linux 7.1 (very special thanks to Ray
101//	McCaffity of Williams Communications for providing an account).
102//
103// Q.	What's the heck with 'rum 1<<5' at the end of every function?
104// A.	Well, by clearing the "upper FP registers written" bit of the
105//	User Mask I want to excuse the kernel from preserving upper
106//	(f32-f128) FP register bank over process context switch, thus
107//	minimizing bus bandwidth consumption during the switch (i.e.
108//	after PKI opration completes and the program is off doing
109//	something else like bulk symmetric encryption). Having said
110//	this, I also want to point out that it might be good idea
111//	to compile the whole toolkit (as well as majority of the
112//	programs for that matter) with -mfixed-range=f32-f127 command
113//	line option. No, it doesn't prevent the compiler from writing
114//	to upper bank, but at least discourages to do so. If you don't
115//	like the idea you have the option to compile the module with
116//	-Drum=nop.m in command line.
117//
118
119#if 1
120//
121// bn_[add|sub]_words routines.
122//
123// Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the
124// data reside in L1 cache, i.e. 2 ticks away). It's possible to
125// compress the epilogue and get down to 2*n+6, but at the cost of
126// scalability (the neat feature of this implementation is that it
127// shall automagically spin in n+5 on "wider" IA-64 implementations:-)
128// I consider that the epilogue is short enough as it is to trade tiny
129// performance loss on Itanium for scalability.
130//
131// BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
132//
133.global	bn_add_words#
134.proc	bn_add_words#
135.align	64
136.skip	32	// makes the loop body aligned at 64-byte boundary
137bn_add_words:
138	.prologue
139	.fframe	0
140	.save	ar.pfs,r2
141{ .mii;	alloc		r2=ar.pfs,4,12,0,16
142	cmp4.le		p6,p0=r35,r0	};;
143{ .mfb;	mov		r8=r0			// return value
144(p6)	br.ret.spnt.many	b0	};;
145
146	.save	ar.lc,r3
147{ .mib;	sub		r10=r35,r0,1
148	mov		r3=ar.lc
149	brp.loop.imp	.L_bn_add_words_ctop,.L_bn_add_words_cend-16
150					}
151	.body
152{ .mib;	mov		r14=r32			// rp
153	mov		r9=pr		};;
154{ .mii;	mov		r15=r33			// ap
155	mov		ar.lc=r10
156	mov		ar.ec=6		}
157{ .mib;	mov		r16=r34			// bp
158	mov		pr.rot=1<<16	};;
159
160.L_bn_add_words_ctop:
161{ .mii;	(p16)	ld8		r32=[r16],8	  // b=*(bp++)
162	(p18)	add		r39=r37,r34
163	(p19)	cmp.ltu.unc	p56,p0=r40,r38	}
164{ .mfb;	(p0)	nop.m		0x0
165	(p0)	nop.f		0x0
166	(p0)	nop.b		0x0		}
167{ .mii;	(p16)	ld8		r35=[r15],8	  // a=*(ap++)
168	(p58)	cmp.eq.or	p57,p0=-1,r41	  // (p20)
169	(p58)	add		r41=1,r41	} // (p20)
170{ .mfb;	(p21)	st8		[r14]=r42,8	  // *(rp++)=r
171	(p0)	nop.f		0x0
172	br.ctop.sptk	.L_bn_add_words_ctop	};;
173.L_bn_add_words_cend:
174
175{ .mii;
176(p59)	add		r8=1,r8		// return value
177	mov		pr=r9,-1
178	mov		ar.lc=r3	}
179{ .mbb;	nop.b		0x0
180	br.ret.sptk.many	b0	};;
181.endp	bn_add_words#
182
183//
184// BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
185//
186.global	bn_sub_words#
187.proc	bn_sub_words#
188.align	64
189.skip	32	// makes the loop body aligned at 64-byte boundary
190bn_sub_words:
191	.prologue
192	.fframe	0
193	.save	ar.pfs,r2
194{ .mii;	alloc		r2=ar.pfs,4,12,0,16
195	cmp4.le		p6,p0=r35,r0	};;
196{ .mfb;	mov		r8=r0			// return value
197(p6)	br.ret.spnt.many	b0	};;
198
199	.save	ar.lc,r3
200{ .mib;	sub		r10=r35,r0,1
201	mov		r3=ar.lc
202	brp.loop.imp	.L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
203					}
204	.body
205{ .mib;	mov		r14=r32			// rp
206	mov		r9=pr		};;
207{ .mii;	mov		r15=r33			// ap
208	mov		ar.lc=r10
209	mov		ar.ec=6		}
210{ .mib;	mov		r16=r34			// bp
211	mov		pr.rot=1<<16	};;
212
213.L_bn_sub_words_ctop:
214{ .mii;	(p16)	ld8		r32=[r16],8	  // b=*(bp++)
215	(p18)	sub		r39=r37,r34
216	(p19)	cmp.gtu.unc	p56,p0=r40,r38	}
217{ .mfb;	(p0)	nop.m		0x0
218	(p0)	nop.f		0x0
219	(p0)	nop.b		0x0		}
220{ .mii;	(p16)	ld8		r35=[r15],8	  // a=*(ap++)
221	(p58)	cmp.eq.or	p57,p0=0,r41	  // (p20)
222	(p58)	add		r41=-1,r41	} // (p20)
223{ .mbb;	(p21)	st8		[r14]=r42,8	  // *(rp++)=r
224	(p0)	nop.b		0x0
225	br.ctop.sptk	.L_bn_sub_words_ctop	};;
226.L_bn_sub_words_cend:
227
228{ .mii;
229(p59)	add		r8=1,r8		// return value
230	mov		pr=r9,-1
231	mov		ar.lc=r3	}
232{ .mbb;	nop.b		0x0
233	br.ret.sptk.many	b0	};;
234.endp	bn_sub_words#
235#endif
236
237#if 0
238#define XMA_TEMPTATION
239#endif
240
241#if 1
242//
243// BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
244//
245.global	bn_mul_words#
246.proc	bn_mul_words#
247.align	64
248.skip	32	// makes the loop body aligned at 64-byte boundary
249bn_mul_words:
250	.prologue
251	.fframe	0
252	.save	ar.pfs,r2
253#ifdef XMA_TEMPTATION
254{ .mfi;	alloc		r2=ar.pfs,4,0,0,0	};;
255#else
256{ .mfi;	alloc		r2=ar.pfs,4,4,0,8	};;
257#endif
258{ .mib;	mov		r8=r0			// return value
259	cmp4.le		p6,p0=r34,r0
260(p6)	br.ret.spnt.many	b0		};;
261
262	.save	ar.lc,r3
263{ .mii;	sub	r10=r34,r0,1
264	mov	r3=ar.lc
265	mov	r9=pr			};;
266
267	.body
268{ .mib;	setf.sig	f8=r35	// w
269	mov		pr.rot=0x400001<<16
270			// ------^----- serves as (p48) at first (p26)
271	brp.loop.imp	.L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
272					}
273
274#ifndef XMA_TEMPTATION
275
276{ .mii;	mov		r14=r32	// rp
277	mov		r15=r33	// ap
278	mov		ar.lc=r10	}
279{ .mii;	mov		r39=0	// serves as r33 at first (p26)
280	mov		ar.ec=12	};;
281
282// This loop spins in 2*(n+11) ticks. It's scheduled for data in L2
283// cache (i.e. 9 ticks away) as floating point load/store instructions
284// bypass L1 cache and L2 latency is actually best-case scenario for
285// ldf8. The loop is not scalable and shall run in 2*(n+11) even on
286// "wider" IA-64 implementations. It's a trade-off here. n+22 loop
287// would give us ~5% in *overall* performance improvement on "wider"
288// IA-64, but would hurt Itanium for about same because of longer
289// epilogue. As it's a matter of few percents in either case I've
290// chosen to trade the scalability for development time (you can see
291// this very instruction sequence in bn_mul_add_words loop which in
292// turn is scalable).
293.L_bn_mul_words_ctop:
294{ .mfi;	(p25)	getf.sig	r36=f49			// low
295	(p21)	xmpy.lu		f45=f37,f8
296	(p27)	cmp.ltu		p52,p48=r39,r38	}
297{ .mfi;	(p16)	ldf8		f32=[r15],8
298	(p21)	xmpy.hu		f38=f37,f8
299	(p0)	nop.i		0x0		};;
300{ .mii;	(p26)	getf.sig	r32=f43			// high
301	.pred.rel	"mutex",p48,p52
302	(p48)	add		r38=r37,r33		// (p26)
303	(p52)	add		r38=r37,r33,1	}	// (p26)
304{ .mfb;	(p27)	st8		[r14]=r39,8
305	(p0)	nop.f		0x0
306	br.ctop.sptk	.L_bn_mul_words_ctop	};;
307.L_bn_mul_words_cend:
308
309{ .mii;	nop.m		0x0
310.pred.rel	"mutex",p49,p53
311(p49)	add		r8=r34,r0
312(p53)	add		r8=r34,r0,1	}
313{ .mfb;	nop.m	0x0
314	nop.f	0x0
315	nop.b	0x0			}
316
317#else	// XMA_TEMPTATION
318
319	setf.sig	f37=r0	// serves as carry at (p18) tick
320	mov		ar.lc=r10
321	mov		ar.ec=5;;
322
323// Most of you examining this code very likely wonder why in the name
324// of Intel the following loop is commented out? Indeed, it looks so
325// neat that you find it hard to believe that it's something wrong
326// with it, right? The catch is that every iteration depends on the
327// result from previous one and the latter isn't available instantly.
328// The loop therefore spins at the latency of xma minus 1, or in other
329// words at 6*(n+4) ticks:-( Compare to the "production" loop above
330// that runs in 2*(n+11) where the low latency problem is worked around
331// by moving the dependency to one-tick latent interger ALU. Note that
332// "distance" between ldf8 and xma is not latency of ldf8, but the
333// *difference* between xma and ldf8 latencies.
334.L_bn_mul_words_ctop:
335{ .mfi;	(p16)	ldf8		f32=[r33],8
336	(p18)	xma.hu		f38=f34,f8,f39	}
337{ .mfb;	(p20)	stf8		[r32]=f37,8
338	(p18)	xma.lu		f35=f34,f8,f39
339	br.ctop.sptk	.L_bn_mul_words_ctop	};;
340.L_bn_mul_words_cend:
341
342	getf.sig	r8=f41		// the return value
343
344#endif	// XMA_TEMPTATION
345
346{ .mii;	nop.m		0x0
347	mov		pr=r9,-1
348	mov		ar.lc=r3	}
349{ .mfb;	rum		1<<5		// clear um.mfh
350	nop.f		0x0
351	br.ret.sptk.many	b0	};;
352.endp	bn_mul_words#
353#endif
354
355#if 1
356//
357// BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
358//
359.global	bn_mul_add_words#
360.proc	bn_mul_add_words#
361.align	64
362//.skip	0	// makes the loop split at 64-byte boundary
363bn_mul_add_words:
364	.prologue
365	.fframe	0
366	.save	ar.pfs,r2
367{ .mii;	alloc		r2=ar.pfs,4,12,0,16
368	cmp4.le		p6,p0=r34,r0	};;
369{ .mfb;	mov		r8=r0			// return value
370(p6)	br.ret.spnt.many	b0	};;
371
372	.save	ar.lc,r3
373{ .mii;	sub	r10=r34,r0,1
374	mov	r3=ar.lc
375	mov	r9=pr			};;
376
377	.body
378{ .mib;	setf.sig	f8=r35	// w
379	mov		pr.rot=0x400001<<16
380			// ------^----- serves as (p48) at first (p26)
381	brp.loop.imp	.L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
382					}
383{ .mii;	mov		r14=r32	// rp
384	mov		r15=r33	// ap
385	mov		ar.lc=r10	}
386{ .mii;	mov		r39=0	// serves as r33 at first (p26)
387	mov		r18=r32	// rp copy
388	mov		ar.ec=14	};;
389
390// This loop spins in 3*(n+13) ticks on Itanium and should spin in
391// 2*(n+13) on "wider" IA-64 implementations (to be verified with new
392// �-architecture manuals as they become available). As usual it's
393// possible to compress the epilogue, down to 10 in this case, at the
394// cost of scalability. Compressed (and therefore non-scalable) loop
395// running at 3*(n+10) would buy you ~10% on Itanium but take ~35%
396// from "wider" IA-64 so let it be scalable! Special attention was
397// paid for having the loop body split at 64-byte boundary. ld8 is
398// scheduled for L1 cache as the data is more than likely there.
399// Indeed, bn_mul_words has put it there a moment ago:-)
400.L_bn_mul_add_words_ctop:
401{ .mfi;	(p25)	getf.sig	r36=f49			// low
402	(p21)	xmpy.lu		f45=f37,f8
403	(p27)	cmp.ltu		p52,p48=r39,r38	}
404{ .mfi;	(p16)	ldf8		f32=[r15],8
405	(p21)	xmpy.hu		f38=f37,f8
406	(p27)	add		r43=r43,r39	};;
407{ .mii;	(p26)	getf.sig	r32=f43			// high
408	.pred.rel	"mutex",p48,p52
409	(p48)	add		r38=r37,r33		// (p26)
410	(p52)	add		r38=r37,r33,1	}	// (p26)
411{ .mfb;	(p27)	cmp.ltu.unc	p56,p0=r43,r39
412	(p0)	nop.f		0x0
413	(p0)	nop.b		0x0		}
414{ .mii;	(p26)	ld8		r42=[r18],8
415	(p58)	cmp.eq.or	p57,p0=-1,r44
416	(p58)	add		r44=1,r44	}
417{ .mfb;	(p29)	st8		[r14]=r45,8
418	(p0)	nop.f		0x0
419	br.ctop.sptk	.L_bn_mul_add_words_ctop};;
420.L_bn_mul_add_words_cend:
421
422{ .mii;	nop.m		0x0
423.pred.rel	"mutex",p51,p55
424(p51)	add		r8=r36,r0
425(p55)	add		r8=r36,r0,1	}
426{ .mfb;	nop.m	0x0
427	nop.f	0x0
428	nop.b	0x0			};;
429{ .mii;
430(p59)	add		r8=1,r8
431	mov		pr=r9,-1
432	mov		ar.lc=r3	}
433{ .mfb;	rum		1<<5		// clear um.mfh
434	nop.f		0x0
435	br.ret.sptk.many	b0	};;
436.endp	bn_mul_add_words#
437#endif
438
439#if 1
440//
441// void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
442//
443.global	bn_sqr_words#
444.proc	bn_sqr_words#
445.align	64
446.skip	32	// makes the loop body aligned at 64-byte boundary
447bn_sqr_words:
448	.prologue
449	.fframe	0
450	.save	ar.pfs,r2
451{ .mii;	alloc		r2=ar.pfs,3,0,0,0
452	sxt4		r34=r34		};;
453{ .mii;	cmp.le		p6,p0=r34,r0
454	mov		r8=r0		}	// return value
455{ .mfb;	nop.f		0x0
456(p6)	br.ret.spnt.many	b0	};;
457
458	.save	ar.lc,r3
459{ .mii;	sub	r10=r34,r0,1
460	mov	r3=ar.lc
461	mov	r9=pr			};;
462
463	.body
464{ .mib;
465	mov		pr.rot=1<<16
466	brp.loop.imp	.L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
467					}
468{ .mii;	add		r34=8,r32
469	mov		ar.lc=r10
470	mov		ar.ec=18	};;
471
472// 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
473// possible to compress the epilogue (I'm getting tired to write this
474// comment over and over) and get down to 2*n+16 at the cost of
475// scalability. The decision will very likely be reconsidered after the
476// benchmark program is profiled. I.e. if perfomance gain on Itanium
477// will appear larger than loss on "wider" IA-64, then the loop should
478// be explicitely split and the epilogue compressed.
479.L_bn_sqr_words_ctop:
480{ .mfi;	(p16)	ldf8		f32=[r33],8
481	(p25)	xmpy.lu		f42=f41,f41
482	(p0)	nop.i		0x0		}
483{ .mib;	(p33)	stf8		[r32]=f50,16
484	(p0)	nop.i		0x0
485	(p0)	nop.b		0x0		}
486{ .mfi;	(p0)	nop.m		0x0
487	(p25)	xmpy.hu		f52=f41,f41
488	(p0)	nop.i		0x0		}
489{ .mib;	(p33)	stf8		[r34]=f60,16
490	(p0)	nop.i		0x0
491	br.ctop.sptk	.L_bn_sqr_words_ctop	};;
492.L_bn_sqr_words_cend:
493
494{ .mii;	nop.m		0x0
495	mov		pr=r9,-1
496	mov		ar.lc=r3	}
497{ .mfb;	rum		1<<5		// clear um.mfh
498	nop.f		0x0
499	br.ret.sptk.many	b0	};;
500.endp	bn_sqr_words#
501#endif
502
503#if 1
504// Apparently we win nothing by implementing special bn_sqr_comba8.
505// Yes, it is possible to reduce the number of multiplications by
506// almost factor of two, but then the amount of additions would
507// increase by factor of two (as we would have to perform those
508// otherwise performed by xma ourselves). Normally we would trade
509// anyway as multiplications are way more expensive, but not this
510// time... Multiplication kernel is fully pipelined and as we drain
511// one 128-bit multiplication result per clock cycle multiplications
512// are effectively as inexpensive as additions. Special implementation
513// might become of interest for "wider" IA-64 implementation as you'll
514// be able to get through the multiplication phase faster (there won't
515// be any stall issues as discussed in the commentary section below and
516// you therefore will be able to employ all 4 FP units)... But these
517// Itanium days it's simply too hard to justify the effort so I just
518// drop down to bn_mul_comba8 code:-)
519//
520// void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
521//
522.global	bn_sqr_comba8#
523.proc	bn_sqr_comba8#
524.align	64
525bn_sqr_comba8:
526	.prologue
527	.fframe	0
528	.save	ar.pfs,r2
529{ .mii;	alloc	r2=ar.pfs,2,1,0,0
530	mov	r34=r33
531	add	r14=8,r33		};;
532	.body
533{ .mii;	add	r17=8,r34
534	add	r15=16,r33
535	add	r18=16,r34		}
536{ .mfb;	add	r16=24,r33
537	br	.L_cheat_entry_point8	};;
538.endp	bn_sqr_comba8#
539#endif
540
541#if 1
542// I've estimated this routine to run in ~120 ticks, but in reality
543// (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
544// cycles consumed for instructions fetch? Or did I misinterpret some
545// clause in Itanium �-architecture manual? Comments are welcomed and
546// highly appreciated.
547//
548// However! It should be noted that even 160 ticks is darn good result
549// as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
550// C version (compiled with gcc with inline assembler). I really
551// kicked compiler's butt here, didn't I? Yeah! This brings us to the
552// following statement. It's damn shame that this routine isn't called
553// very often nowadays! According to the profiler most CPU time is
554// consumed by bn_mul_add_words called from BN_from_montgomery. In
555// order to estimate what we're missing, I've compared the performance
556// of this routine against "traditional" implementation, i.e. against
557// following routine:
558//
559// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
560// {	r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
561//	r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
562//	r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
563//	r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
564//	r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
565//	r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
566//	r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
567//	r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
568// }
569//
570// The one below is over 8 times faster than the one above:-( Even
571// more reasons to "combafy" bn_mul_add_mont...
572//
573// And yes, this routine really made me wish there were an optimizing
574// assembler! It also feels like it deserves a dedication.
575//
576//	To my wife for being there and to my kids...
577//
578// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
579//
580#define	carry1	r14
581#define	carry2	r15
582#define	carry3	r34
583.global	bn_mul_comba8#
584.proc	bn_mul_comba8#
585.align	64
586bn_mul_comba8:
587	.prologue
588	.fframe	0
589	.save	ar.pfs,r2
590{ .mii;	alloc	r2=ar.pfs,3,0,0,0
591	add	r14=8,r33
592	add	r17=8,r34		}
593	.body
594{ .mii;	add	r15=16,r33
595	add	r18=16,r34
596	add	r16=24,r33		}
597.L_cheat_entry_point8:
598{ .mmi;	add	r19=24,r34
599
600	ldf8	f32=[r33],32		};;
601
602{ .mmi;	ldf8	f120=[r34],32
603	ldf8	f121=[r17],32		}
604{ .mmi;	ldf8	f122=[r18],32
605	ldf8	f123=[r19],32		};;
606{ .mmi;	ldf8	f124=[r34]
607	ldf8	f125=[r17]		}
608{ .mmi;	ldf8	f126=[r18]
609	ldf8	f127=[r19]		}
610
611{ .mmi;	ldf8	f33=[r14],32
612	ldf8	f34=[r15],32		}
613{ .mmi;	ldf8	f35=[r16],32;;
614	ldf8	f36=[r33]		}
615{ .mmi;	ldf8	f37=[r14]
616	ldf8	f38=[r15]		}
617{ .mfi;	ldf8	f39=[r16]
618// -------\ Entering multiplier's heaven /-------
619// ------------\                    /------------
620// -----------------\          /-----------------
621// ----------------------\/----------------------
622		xma.hu	f41=f32,f120,f0		}
623{ .mfi;		xma.lu	f40=f32,f120,f0		};; // (*)
624{ .mfi;		xma.hu	f51=f32,f121,f0		}
625{ .mfi;		xma.lu	f50=f32,f121,f0		};;
626{ .mfi;		xma.hu	f61=f32,f122,f0		}
627{ .mfi;		xma.lu	f60=f32,f122,f0		};;
628{ .mfi;		xma.hu	f71=f32,f123,f0		}
629{ .mfi;		xma.lu	f70=f32,f123,f0		};;
630{ .mfi;		xma.hu	f81=f32,f124,f0		}
631{ .mfi;		xma.lu	f80=f32,f124,f0		};;
632{ .mfi;		xma.hu	f91=f32,f125,f0		}
633{ .mfi;		xma.lu	f90=f32,f125,f0		};;
634{ .mfi;		xma.hu	f101=f32,f126,f0	}
635{ .mfi;		xma.lu	f100=f32,f126,f0	};;
636{ .mfi;		xma.hu	f111=f32,f127,f0	}
637{ .mfi;		xma.lu	f110=f32,f127,f0	};;//
638// (*)	You can argue that splitting at every second bundle would
639//	prevent "wider" IA-64 implementations from achieving the peak
640//	performance. Well, not really... The catch is that if you
641//	intend to keep 4 FP units busy by splitting at every fourth
642//	bundle and thus perform these 16 multiplications in 4 ticks,
643//	the first bundle *below* would stall because the result from
644//	the first xma bundle *above* won't be available for another 3
645//	ticks (if not more, being an optimist, I assume that "wider"
646//	implementation will have same latency:-). This stall will hold
647//	you back and the performance would be as if every second bundle
648//	were split *anyway*...
649{ .mfi;	getf.sig	r16=f40
650		xma.hu	f42=f33,f120,f41
651	add		r33=8,r32		}
652{ .mfi;		xma.lu	f41=f33,f120,f41	};;
653{ .mfi;	getf.sig	r24=f50
654		xma.hu	f52=f33,f121,f51	}
655{ .mfi;		xma.lu	f51=f33,f121,f51	};;
656{ .mfi;	st8		[r32]=r16,16
657		xma.hu	f62=f33,f122,f61	}
658{ .mfi;		xma.lu	f61=f33,f122,f61	};;
659{ .mfi;		xma.hu	f72=f33,f123,f71	}
660{ .mfi;		xma.lu	f71=f33,f123,f71	};;
661{ .mfi;		xma.hu	f82=f33,f124,f81	}
662{ .mfi;		xma.lu	f81=f33,f124,f81	};;
663{ .mfi;		xma.hu	f92=f33,f125,f91	}
664{ .mfi;		xma.lu	f91=f33,f125,f91	};;
665{ .mfi;		xma.hu	f102=f33,f126,f101	}
666{ .mfi;		xma.lu	f101=f33,f126,f101	};;
667{ .mfi;		xma.hu	f112=f33,f127,f111	}
668{ .mfi;		xma.lu	f111=f33,f127,f111	};;//
669//-------------------------------------------------//
670{ .mfi;	getf.sig	r25=f41
671		xma.hu	f43=f34,f120,f42	}
672{ .mfi;		xma.lu	f42=f34,f120,f42	};;
673{ .mfi;	getf.sig	r16=f60
674		xma.hu	f53=f34,f121,f52	}
675{ .mfi;		xma.lu	f52=f34,f121,f52	};;
676{ .mfi;	getf.sig	r17=f51
677		xma.hu	f63=f34,f122,f62
678	add		r25=r25,r24		}
679{ .mfi;		xma.lu	f62=f34,f122,f62
680	mov		carry1=0		};;
681{ .mfi;	cmp.ltu		p6,p0=r25,r24
682		xma.hu	f73=f34,f123,f72	}
683{ .mfi;		xma.lu	f72=f34,f123,f72	};;
684{ .mfi;	st8		[r33]=r25,16
685		xma.hu	f83=f34,f124,f82
686(p6)	add		carry1=1,carry1		}
687{ .mfi;		xma.lu	f82=f34,f124,f82	};;
688{ .mfi;		xma.hu	f93=f34,f125,f92	}
689{ .mfi;		xma.lu	f92=f34,f125,f92	};;
690{ .mfi;		xma.hu	f103=f34,f126,f102	}
691{ .mfi;		xma.lu	f102=f34,f126,f102	};;
692{ .mfi;		xma.hu	f113=f34,f127,f112	}
693{ .mfi;		xma.lu	f112=f34,f127,f112	};;//
694//-------------------------------------------------//
695{ .mfi;	getf.sig	r18=f42
696		xma.hu	f44=f35,f120,f43
697	add		r17=r17,r16		}
698{ .mfi;		xma.lu	f43=f35,f120,f43	};;
699{ .mfi;	getf.sig	r24=f70
700		xma.hu	f54=f35,f121,f53	}
701{ .mfi;	mov		carry2=0
702		xma.lu	f53=f35,f121,f53	};;
703{ .mfi;	getf.sig	r25=f61
704		xma.hu	f64=f35,f122,f63
705	cmp.ltu		p7,p0=r17,r16		}
706{ .mfi;	add		r18=r18,r17
707		xma.lu	f63=f35,f122,f63	};;
708{ .mfi;	getf.sig	r26=f52
709		xma.hu	f74=f35,f123,f73
710(p7)	add		carry2=1,carry2		}
711{ .mfi;	cmp.ltu		p7,p0=r18,r17
712		xma.lu	f73=f35,f123,f73
713	add		r18=r18,carry1		};;
714{ .mfi;
715		xma.hu	f84=f35,f124,f83
716(p7)	add		carry2=1,carry2		}
717{ .mfi;	cmp.ltu		p7,p0=r18,carry1
718		xma.lu	f83=f35,f124,f83	};;
719{ .mfi;	st8		[r32]=r18,16
720		xma.hu	f94=f35,f125,f93
721(p7)	add		carry2=1,carry2		}
722{ .mfi;		xma.lu	f93=f35,f125,f93	};;
723{ .mfi;		xma.hu	f104=f35,f126,f103	}
724{ .mfi;		xma.lu	f103=f35,f126,f103	};;
725{ .mfi;		xma.hu	f114=f35,f127,f113	}
726{ .mfi;	mov		carry1=0
727		xma.lu	f113=f35,f127,f113
728	add		r25=r25,r24		};;//
729//-------------------------------------------------//
730{ .mfi;	getf.sig	r27=f43
731		xma.hu	f45=f36,f120,f44
732	cmp.ltu		p6,p0=r25,r24		}
733{ .mfi;		xma.lu	f44=f36,f120,f44
734	add		r26=r26,r25		};;
735{ .mfi;	getf.sig	r16=f80
736		xma.hu	f55=f36,f121,f54
737(p6)	add		carry1=1,carry1		}
738{ .mfi;		xma.lu	f54=f36,f121,f54	};;
739{ .mfi;	getf.sig	r17=f71
740		xma.hu	f65=f36,f122,f64
741	cmp.ltu		p6,p0=r26,r25		}
742{ .mfi;		xma.lu	f64=f36,f122,f64
743	add		r27=r27,r26		};;
744{ .mfi;	getf.sig	r18=f62
745		xma.hu	f75=f36,f123,f74
746(p6)	add		carry1=1,carry1		}
747{ .mfi;	cmp.ltu		p6,p0=r27,r26
748		xma.lu	f74=f36,f123,f74
749	add		r27=r27,carry2		};;
750{ .mfi;	getf.sig	r19=f53
751		xma.hu	f85=f36,f124,f84
752(p6)	add		carry1=1,carry1		}
753{ .mfi;		xma.lu	f84=f36,f124,f84
754	cmp.ltu		p6,p0=r27,carry2	};;
755{ .mfi;	st8		[r33]=r27,16
756		xma.hu	f95=f36,f125,f94
757(p6)	add		carry1=1,carry1		}
758{ .mfi;		xma.lu	f94=f36,f125,f94	};;
759{ .mfi;		xma.hu	f105=f36,f126,f104	}
760{ .mfi;	mov		carry2=0
761		xma.lu	f104=f36,f126,f104
762	add		r17=r17,r16		};;
763{ .mfi;		xma.hu	f115=f36,f127,f114
764	cmp.ltu		p7,p0=r17,r16		}
765{ .mfi;		xma.lu	f114=f36,f127,f114
766	add		r18=r18,r17		};;//
767//-------------------------------------------------//
768{ .mfi;	getf.sig	r20=f44
769		xma.hu	f46=f37,f120,f45
770(p7)	add		carry2=1,carry2		}
771{ .mfi;	cmp.ltu		p7,p0=r18,r17
772		xma.lu	f45=f37,f120,f45
773	add		r19=r19,r18		};;
774{ .mfi;	getf.sig	r24=f90
775		xma.hu	f56=f37,f121,f55	}
776{ .mfi;		xma.lu	f55=f37,f121,f55	};;
777{ .mfi;	getf.sig	r25=f81
778		xma.hu	f66=f37,f122,f65
779(p7)	add		carry2=1,carry2		}
780{ .mfi;	cmp.ltu		p7,p0=r19,r18
781		xma.lu	f65=f37,f122,f65
782	add		r20=r20,r19		};;
783{ .mfi;	getf.sig	r26=f72
784		xma.hu	f76=f37,f123,f75
785(p7)	add		carry2=1,carry2		}
786{ .mfi;	cmp.ltu		p7,p0=r20,r19
787		xma.lu	f75=f37,f123,f75
788	add		r20=r20,carry1		};;
789{ .mfi;	getf.sig	r27=f63
790		xma.hu	f86=f37,f124,f85
791(p7)	add		carry2=1,carry2		}
792{ .mfi;		xma.lu	f85=f37,f124,f85
793	cmp.ltu		p7,p0=r20,carry1	};;
794{ .mfi;	getf.sig	r28=f54
795		xma.hu	f96=f37,f125,f95
796(p7)	add		carry2=1,carry2		}
797{ .mfi;	st8		[r32]=r20,16
798		xma.lu	f95=f37,f125,f95	};;
799{ .mfi;		xma.hu	f106=f37,f126,f105	}
800{ .mfi;	mov		carry1=0
801		xma.lu	f105=f37,f126,f105
802	add		r25=r25,r24		};;
803{ .mfi;		xma.hu	f116=f37,f127,f115
804	cmp.ltu		p6,p0=r25,r24		}
805{ .mfi;		xma.lu	f115=f37,f127,f115
806	add		r26=r26,r25		};;//
807//-------------------------------------------------//
808{ .mfi;	getf.sig	r29=f45
809		xma.hu	f47=f38,f120,f46
810(p6)	add		carry1=1,carry1		}
811{ .mfi;	cmp.ltu		p6,p0=r26,r25
812		xma.lu	f46=f38,f120,f46
813	add		r27=r27,r26		};;
814{ .mfi;	getf.sig	r16=f100
815		xma.hu	f57=f38,f121,f56
816(p6)	add		carry1=1,carry1		}
817{ .mfi;	cmp.ltu		p6,p0=r27,r26
818		xma.lu	f56=f38,f121,f56
819	add		r28=r28,r27		};;
820{ .mfi;	getf.sig	r17=f91
821		xma.hu	f67=f38,f122,f66
822(p6)	add		carry1=1,carry1		}
823{ .mfi;	cmp.ltu		p6,p0=r28,r27
824		xma.lu	f66=f38,f122,f66
825	add		r29=r29,r28		};;
826{ .mfi;	getf.sig	r18=f82
827		xma.hu	f77=f38,f123,f76
828(p6)	add		carry1=1,carry1		}
829{ .mfi;	cmp.ltu		p6,p0=r29,r28
830		xma.lu	f76=f38,f123,f76
831	add		r29=r29,carry2		};;
832{ .mfi;	getf.sig	r19=f73
833		xma.hu	f87=f38,f124,f86
834(p6)	add		carry1=1,carry1		}
835{ .mfi;		xma.lu	f86=f38,f124,f86
836	cmp.ltu		p6,p0=r29,carry2	};;
837{ .mfi;	getf.sig	r20=f64
838		xma.hu	f97=f38,f125,f96
839(p6)	add		carry1=1,carry1		}
840{ .mfi;	st8		[r33]=r29,16
841		xma.lu	f96=f38,f125,f96	};;
842{ .mfi;	getf.sig	r21=f55
843		xma.hu	f107=f38,f126,f106	}
844{ .mfi;	mov		carry2=0
845		xma.lu	f106=f38,f126,f106
846	add		r17=r17,r16		};;
847{ .mfi;		xma.hu	f117=f38,f127,f116
848	cmp.ltu		p7,p0=r17,r16		}
849{ .mfi;		xma.lu	f116=f38,f127,f116
850	add		r18=r18,r17		};;//
851//-------------------------------------------------//
852{ .mfi;	getf.sig	r22=f46
853		xma.hu	f48=f39,f120,f47
854(p7)	add		carry2=1,carry2		}
855{ .mfi;	cmp.ltu		p7,p0=r18,r17
856		xma.lu	f47=f39,f120,f47
857	add		r19=r19,r18		};;
858{ .mfi;	getf.sig	r24=f110
859		xma.hu	f58=f39,f121,f57
860(p7)	add		carry2=1,carry2		}
861{ .mfi;	cmp.ltu		p7,p0=r19,r18
862		xma.lu	f57=f39,f121,f57
863	add		r20=r20,r19		};;
864{ .mfi;	getf.sig	r25=f101
865		xma.hu	f68=f39,f122,f67
866(p7)	add		carry2=1,carry2		}
867{ .mfi;	cmp.ltu		p7,p0=r20,r19
868		xma.lu	f67=f39,f122,f67
869	add		r21=r21,r20		};;
870{ .mfi;	getf.sig	r26=f92
871		xma.hu	f78=f39,f123,f77
872(p7)	add		carry2=1,carry2		}
873{ .mfi;	cmp.ltu		p7,p0=r21,r20
874		xma.lu	f77=f39,f123,f77
875	add		r22=r22,r21		};;
876{ .mfi;	getf.sig	r27=f83
877		xma.hu	f88=f39,f124,f87
878(p7)	add		carry2=1,carry2		}
879{ .mfi;	cmp.ltu		p7,p0=r22,r21
880		xma.lu	f87=f39,f124,f87
881	add		r22=r22,carry1		};;
882{ .mfi;	getf.sig	r28=f74
883		xma.hu	f98=f39,f125,f97
884(p7)	add		carry2=1,carry2		}
885{ .mfi;		xma.lu	f97=f39,f125,f97
886	cmp.ltu		p7,p0=r22,carry1	};;
887{ .mfi;	getf.sig	r29=f65
888		xma.hu	f108=f39,f126,f107
889(p7)	add		carry2=1,carry2		}
890{ .mfi;	st8		[r32]=r22,16
891		xma.lu	f107=f39,f126,f107	};;
892{ .mfi;	getf.sig	r30=f56
893		xma.hu	f118=f39,f127,f117	}
894{ .mfi;		xma.lu	f117=f39,f127,f117	};;//
895//-------------------------------------------------//
896// Leaving muliplier's heaven... Quite a ride, huh?
897
898{ .mii;	getf.sig	r31=f47
899	add		r25=r25,r24
900	mov		carry1=0		};;
901{ .mii;		getf.sig	r16=f111
902	cmp.ltu		p6,p0=r25,r24
903	add		r26=r26,r25		};;
904{ .mfb;		getf.sig	r17=f102	}
905{ .mii;
906(p6)	add		carry1=1,carry1
907	cmp.ltu		p6,p0=r26,r25
908	add		r27=r27,r26		};;
909{ .mfb;	nop.m	0x0				}
910{ .mii;
911(p6)	add		carry1=1,carry1
912	cmp.ltu		p6,p0=r27,r26
913	add		r28=r28,r27		};;
914{ .mii;		getf.sig	r18=f93
915		add		r17=r17,r16
916		mov		carry3=0	}
917{ .mii;
918(p6)	add		carry1=1,carry1
919	cmp.ltu		p6,p0=r28,r27
920	add		r29=r29,r28		};;
921{ .mii;		getf.sig	r19=f84
922		cmp.ltu		p7,p0=r17,r16	}
923{ .mii;
924(p6)	add		carry1=1,carry1
925	cmp.ltu		p6,p0=r29,r28
926	add		r30=r30,r29		};;
927{ .mii;		getf.sig	r20=f75
928		add		r18=r18,r17	}
929{ .mii;
930(p6)	add		carry1=1,carry1
931	cmp.ltu		p6,p0=r30,r29
932	add		r31=r31,r30		};;
933{ .mfb;		getf.sig	r21=f66		}
934{ .mii;	(p7)	add		carry3=1,carry3
935		cmp.ltu		p7,p0=r18,r17
936		add		r19=r19,r18	}
937{ .mfb;	nop.m	0x0				}
938{ .mii;
939(p6)	add		carry1=1,carry1
940	cmp.ltu		p6,p0=r31,r30
941	add		r31=r31,carry2		};;
942{ .mfb;		getf.sig	r22=f57		}
943{ .mii;	(p7)	add		carry3=1,carry3
944		cmp.ltu		p7,p0=r19,r18
945		add		r20=r20,r19	}
946{ .mfb;	nop.m	0x0				}
947{ .mii;
948(p6)	add		carry1=1,carry1
949	cmp.ltu		p6,p0=r31,carry2	};;
950{ .mfb;		getf.sig	r23=f48		}
951{ .mii;	(p7)	add		carry3=1,carry3
952		cmp.ltu		p7,p0=r20,r19
953		add		r21=r21,r20	}
954{ .mii;
955(p6)	add		carry1=1,carry1		}
956{ .mfb;	st8		[r33]=r31,16		};;
957
958{ .mfb;	getf.sig	r24=f112		}
959{ .mii;	(p7)	add		carry3=1,carry3
960		cmp.ltu		p7,p0=r21,r20
961		add		r22=r22,r21	};;
962{ .mfb;	getf.sig	r25=f103		}
963{ .mii;	(p7)	add		carry3=1,carry3
964		cmp.ltu		p7,p0=r22,r21
965		add		r23=r23,r22	};;
966{ .mfb;	getf.sig	r26=f94			}
967{ .mii;	(p7)	add		carry3=1,carry3
968		cmp.ltu		p7,p0=r23,r22
969		add		r23=r23,carry1	};;
970{ .mfb;	getf.sig	r27=f85			}
971{ .mii;	(p7)	add		carry3=1,carry3
972		cmp.ltu		p7,p8=r23,carry1};;
973{ .mii;	getf.sig	r28=f76
974	add		r25=r25,r24
975	mov		carry1=0		}
976{ .mii;		st8		[r32]=r23,16
977	(p7)	add		carry2=1,carry3
978	(p8)	add		carry2=0,carry3	};;
979
980{ .mfb;	nop.m	0x0				}
981{ .mii;	getf.sig	r29=f67
982	cmp.ltu		p6,p0=r25,r24
983	add		r26=r26,r25		};;
984{ .mfb;	getf.sig	r30=f58			}
985{ .mii;
986(p6)	add		carry1=1,carry1
987	cmp.ltu		p6,p0=r26,r25
988	add		r27=r27,r26		};;
989{ .mfb;		getf.sig	r16=f113	}
990{ .mii;
991(p6)	add		carry1=1,carry1
992	cmp.ltu		p6,p0=r27,r26
993	add		r28=r28,r27		};;
994{ .mfb;		getf.sig	r17=f104	}
995{ .mii;
996(p6)	add		carry1=1,carry1
997	cmp.ltu		p6,p0=r28,r27
998	add		r29=r29,r28		};;
999{ .mfb;		getf.sig	r18=f95		}
1000{ .mii;
1001(p6)	add		carry1=1,carry1
1002	cmp.ltu		p6,p0=r29,r28
1003	add		r30=r30,r29		};;
1004{ .mii;		getf.sig	r19=f86
1005		add		r17=r17,r16
1006		mov		carry3=0	}
1007{ .mii;
1008(p6)	add		carry1=1,carry1
1009	cmp.ltu		p6,p0=r30,r29
1010	add		r30=r30,carry2		};;
1011{ .mii;		getf.sig	r20=f77
1012		cmp.ltu		p7,p0=r17,r16
1013		add		r18=r18,r17	}
1014{ .mii;
1015(p6)	add		carry1=1,carry1
1016	cmp.ltu		p6,p0=r30,carry2	};;
1017{ .mfb;		getf.sig	r21=f68		}
1018{ .mii;	st8		[r33]=r30,16
1019(p6)	add		carry1=1,carry1		};;
1020
1021{ .mfb;	getf.sig	r24=f114		}
1022{ .mii;	(p7)	add		carry3=1,carry3
1023		cmp.ltu		p7,p0=r18,r17
1024		add		r19=r19,r18	};;
1025{ .mfb;	getf.sig	r25=f105		}
1026{ .mii;	(p7)	add		carry3=1,carry3
1027		cmp.ltu		p7,p0=r19,r18
1028		add		r20=r20,r19	};;
1029{ .mfb;	getf.sig	r26=f96			}
1030{ .mii;	(p7)	add		carry3=1,carry3
1031		cmp.ltu		p7,p0=r20,r19
1032		add		r21=r21,r20	};;
1033{ .mfb;	getf.sig	r27=f87			}
1034{ .mii;	(p7)	add		carry3=1,carry3
1035		cmp.ltu		p7,p0=r21,r20
1036		add		r21=r21,carry1	};;
1037{ .mib;	getf.sig	r28=f78
1038	add		r25=r25,r24		}
1039{ .mib;	(p7)	add		carry3=1,carry3
1040		cmp.ltu		p7,p8=r21,carry1};;
1041{ .mii;		st8		[r32]=r21,16
1042	(p7)	add		carry2=1,carry3
1043	(p8)	add		carry2=0,carry3	}
1044
1045{ .mii;	mov		carry1=0
1046	cmp.ltu		p6,p0=r25,r24
1047	add		r26=r26,r25		};;
1048{ .mfb;		getf.sig	r16=f115	}
1049{ .mii;
1050(p6)	add		carry1=1,carry1
1051	cmp.ltu		p6,p0=r26,r25
1052	add		r27=r27,r26		};;
1053{ .mfb;		getf.sig	r17=f106	}
1054{ .mii;
1055(p6)	add		carry1=1,carry1
1056	cmp.ltu		p6,p0=r27,r26
1057	add		r28=r28,r27		};;
1058{ .mfb;		getf.sig	r18=f97		}
1059{ .mii;
1060(p6)	add		carry1=1,carry1
1061	cmp.ltu		p6,p0=r28,r27
1062	add		r28=r28,carry2		};;
1063{ .mib;		getf.sig	r19=f88
1064		add		r17=r17,r16	}
1065{ .mib;
1066(p6)	add		carry1=1,carry1
1067	cmp.ltu		p6,p0=r28,carry2	};;
1068{ .mii;	st8		[r33]=r28,16
1069(p6)	add		carry1=1,carry1		}
1070
1071{ .mii;		mov		carry2=0
1072		cmp.ltu		p7,p0=r17,r16
1073		add		r18=r18,r17	};;
1074{ .mfb;	getf.sig	r24=f116		}
1075{ .mii;	(p7)	add		carry2=1,carry2
1076		cmp.ltu		p7,p0=r18,r17
1077		add		r19=r19,r18	};;
1078{ .mfb;	getf.sig	r25=f107		}
1079{ .mii;	(p7)	add		carry2=1,carry2
1080		cmp.ltu		p7,p0=r19,r18
1081		add		r19=r19,carry1	};;
1082{ .mfb;	getf.sig	r26=f98			}
1083{ .mii;	(p7)	add		carry2=1,carry2
1084		cmp.ltu		p7,p0=r19,carry1};;
1085{ .mii;		st8		[r32]=r19,16
1086	(p7)	add		carry2=1,carry2	}
1087
1088{ .mfb;	add		r25=r25,r24		};;
1089
1090{ .mfb;		getf.sig	r16=f117	}
1091{ .mii;	mov		carry1=0
1092	cmp.ltu		p6,p0=r25,r24
1093	add		r26=r26,r25		};;
1094{ .mfb;		getf.sig	r17=f108	}
1095{ .mii;
1096(p6)	add		carry1=1,carry1
1097	cmp.ltu		p6,p0=r26,r25
1098	add		r26=r26,carry2		};;
1099{ .mfb;	nop.m	0x0				}
1100{ .mii;
1101(p6)	add		carry1=1,carry1
1102	cmp.ltu		p6,p0=r26,carry2	};;
1103{ .mii;	st8		[r33]=r26,16
1104(p6)	add		carry1=1,carry1		}
1105
1106{ .mfb;		add		r17=r17,r16	};;
1107{ .mfb;	getf.sig	r24=f118		}
1108{ .mii;		mov		carry2=0
1109		cmp.ltu		p7,p0=r17,r16
1110		add		r17=r17,carry1	};;
1111{ .mii;	(p7)	add		carry2=1,carry2
1112		cmp.ltu		p7,p0=r17,carry1};;
1113{ .mii;		st8		[r32]=r17
1114	(p7)	add		carry2=1,carry2	};;
1115{ .mfb;	add		r24=r24,carry2		};;
1116{ .mib;	st8		[r33]=r24		}
1117
1118{ .mib;	rum		1<<5		// clear um.mfh
1119	br.ret.sptk.many	b0	};;
1120.endp	bn_mul_comba8#
1121#undef	carry3
1122#undef	carry2
1123#undef	carry1
1124#endif
1125
1126#if 1
1127// It's possible to make it faster (see comment to bn_sqr_comba8), but
1128// I reckon it doesn't worth the effort. Basically because the routine
1129// (actually both of them) practically never called... So I just play
1130// same trick as with bn_sqr_comba8.
1131//
1132// void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
1133//
1134.global	bn_sqr_comba4#
1135.proc	bn_sqr_comba4#
1136.align	64
1137bn_sqr_comba4:
1138	.prologue
1139	.fframe	0
1140	.save	ar.pfs,r2
1141{ .mii;	alloc	r2=ar.pfs,2,1,0,0
1142	mov	r34=r33
1143	add	r14=8,r33		};;
1144	.body
1145{ .mii;	add	r17=8,r34
1146	add	r15=16,r33
1147	add	r18=16,r34		}
1148{ .mfb;	add	r16=24,r33
1149	br	.L_cheat_entry_point4	};;
1150.endp	bn_sqr_comba4#
1151#endif
1152
1153#if 1
1154// Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
1155//
1156// void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
1157//
1158#define	carry1	r14
1159#define	carry2	r15
1160.global	bn_mul_comba4#
1161.proc	bn_mul_comba4#
1162.align	64
1163bn_mul_comba4:
1164	.prologue
1165	.fframe	0
1166	.save	ar.pfs,r2
1167{ .mii;	alloc	r2=ar.pfs,3,0,0,0
1168	add	r14=8,r33
1169	add	r17=8,r34		}
1170	.body
1171{ .mii;	add	r15=16,r33
1172	add	r18=16,r34
1173	add	r16=24,r33		};;
1174.L_cheat_entry_point4:
1175{ .mmi;	add	r19=24,r34
1176
1177	ldf8	f32=[r33]		}
1178
1179{ .mmi;	ldf8	f120=[r34]
1180	ldf8	f121=[r17]		};;
1181{ .mmi;	ldf8	f122=[r18]
1182	ldf8	f123=[r19]		}
1183
1184{ .mmi;	ldf8	f33=[r14]
1185	ldf8	f34=[r15]		}
1186{ .mfi;	ldf8	f35=[r16]
1187
1188		xma.hu	f41=f32,f120,f0		}
1189{ .mfi;		xma.lu	f40=f32,f120,f0		};;
1190{ .mfi;		xma.hu	f51=f32,f121,f0		}
1191{ .mfi;		xma.lu	f50=f32,f121,f0		};;
1192{ .mfi;		xma.hu	f61=f32,f122,f0		}
1193{ .mfi;		xma.lu	f60=f32,f122,f0		};;
1194{ .mfi;		xma.hu	f71=f32,f123,f0		}
1195{ .mfi;		xma.lu	f70=f32,f123,f0		};;//
1196// Major stall takes place here, and 3 more places below. Result from
1197// first xma is not available for another 3 ticks.
1198{ .mfi;	getf.sig	r16=f40
1199		xma.hu	f42=f33,f120,f41
1200	add		r33=8,r32		}
1201{ .mfi;		xma.lu	f41=f33,f120,f41	};;
1202{ .mfi;	getf.sig	r24=f50
1203		xma.hu	f52=f33,f121,f51	}
1204{ .mfi;		xma.lu	f51=f33,f121,f51	};;
1205{ .mfi;	st8		[r32]=r16,16
1206		xma.hu	f62=f33,f122,f61	}
1207{ .mfi;		xma.lu	f61=f33,f122,f61	};;
1208{ .mfi;		xma.hu	f72=f33,f123,f71	}
1209{ .mfi;		xma.lu	f71=f33,f123,f71	};;//
1210//-------------------------------------------------//
1211{ .mfi;	getf.sig	r25=f41
1212		xma.hu	f43=f34,f120,f42	}
1213{ .mfi;		xma.lu	f42=f34,f120,f42	};;
1214{ .mfi;	getf.sig	r16=f60
1215		xma.hu	f53=f34,f121,f52	}
1216{ .mfi;		xma.lu	f52=f34,f121,f52	};;
1217{ .mfi;	getf.sig	r17=f51
1218		xma.hu	f63=f34,f122,f62
1219	add		r25=r25,r24		}
1220{ .mfi;	mov		carry1=0
1221		xma.lu	f62=f34,f122,f62	};;
1222{ .mfi;	st8		[r33]=r25,16
1223		xma.hu	f73=f34,f123,f72
1224	cmp.ltu		p6,p0=r25,r24		}
1225{ .mfi;		xma.lu	f72=f34,f123,f72	};;//
1226//-------------------------------------------------//
1227{ .mfi;	getf.sig	r18=f42
1228		xma.hu	f44=f35,f120,f43
1229(p6)	add		carry1=1,carry1		}
1230{ .mfi;	add		r17=r17,r16
1231		xma.lu	f43=f35,f120,f43
1232	mov		carry2=0		};;
1233{ .mfi;	getf.sig	r24=f70
1234		xma.hu	f54=f35,f121,f53
1235	cmp.ltu		p7,p0=r17,r16		}
1236{ .mfi;		xma.lu	f53=f35,f121,f53	};;
1237{ .mfi;	getf.sig	r25=f61
1238		xma.hu	f64=f35,f122,f63
1239	add		r18=r18,r17		}
1240{ .mfi;		xma.lu	f63=f35,f122,f63
1241(p7)	add		carry2=1,carry2		};;
1242{ .mfi;	getf.sig	r26=f52
1243		xma.hu	f74=f35,f123,f73
1244	cmp.ltu		p7,p0=r18,r17		}
1245{ .mfi;		xma.lu	f73=f35,f123,f73
1246	add		r18=r18,carry1		};;
1247//-------------------------------------------------//
1248{ .mii;	st8		[r32]=r18,16
1249(p7)	add		carry2=1,carry2
1250	cmp.ltu		p7,p0=r18,carry1	};;
1251
1252{ .mfi;	getf.sig	r27=f43	// last major stall
1253(p7)	add		carry2=1,carry2		};;
1254{ .mii;		getf.sig	r16=f71
1255	add		r25=r25,r24
1256	mov		carry1=0		};;
1257{ .mii;		getf.sig	r17=f62
1258	cmp.ltu		p6,p0=r25,r24
1259	add		r26=r26,r25		};;
1260{ .mii;
1261(p6)	add		carry1=1,carry1
1262	cmp.ltu		p6,p0=r26,r25
1263	add		r27=r27,r26		};;
1264{ .mii;
1265(p6)	add		carry1=1,carry1
1266	cmp.ltu		p6,p0=r27,r26
1267	add		r27=r27,carry2		};;
1268{ .mii;		getf.sig	r18=f53
1269(p6)	add		carry1=1,carry1
1270	cmp.ltu		p6,p0=r27,carry2	};;
1271{ .mfi;	st8		[r33]=r27,16
1272(p6)	add		carry1=1,carry1		}
1273
1274{ .mii;		getf.sig	r19=f44
1275		add		r17=r17,r16
1276		mov		carry2=0	};;
1277{ .mii;	getf.sig	r24=f72
1278		cmp.ltu		p7,p0=r17,r16
1279		add		r18=r18,r17	};;
1280{ .mii;	(p7)	add		carry2=1,carry2
1281		cmp.ltu		p7,p0=r18,r17
1282		add		r19=r19,r18	};;
1283{ .mii;	(p7)	add		carry2=1,carry2
1284		cmp.ltu		p7,p0=r19,r18
1285		add		r19=r19,carry1	};;
1286{ .mii;	getf.sig	r25=f63
1287	(p7)	add		carry2=1,carry2
1288		cmp.ltu		p7,p0=r19,carry1};;
1289{ .mii;		st8		[r32]=r19,16
1290	(p7)	add		carry2=1,carry2	}
1291
1292{ .mii;	getf.sig	r26=f54
1293	add		r25=r25,r24
1294	mov		carry1=0		};;
1295{ .mii;		getf.sig	r16=f73
1296	cmp.ltu		p6,p0=r25,r24
1297	add		r26=r26,r25		};;
1298{ .mii;
1299(p6)	add		carry1=1,carry1
1300	cmp.ltu		p6,p0=r26,r25
1301	add		r26=r26,carry2		};;
1302{ .mii;		getf.sig	r17=f64
1303(p6)	add		carry1=1,carry1
1304	cmp.ltu		p6,p0=r26,carry2	};;
1305{ .mii;	st8		[r33]=r26,16
1306(p6)	add		carry1=1,carry1		}
1307
1308{ .mii;	getf.sig	r24=f74
1309		add		r17=r17,r16
1310		mov		carry2=0	};;
1311{ .mii;		cmp.ltu		p7,p0=r17,r16
1312		add		r17=r17,carry1	};;
1313
1314{ .mii;	(p7)	add		carry2=1,carry2
1315		cmp.ltu		p7,p0=r17,carry1};;
1316{ .mii;		st8		[r32]=r17,16
1317	(p7)	add		carry2=1,carry2	};;
1318
1319{ .mii;	add		r24=r24,carry2		};;
1320{ .mii;	st8		[r33]=r24		}
1321
1322{ .mib;	rum		1<<5		// clear um.mfh
1323	br.ret.sptk.many	b0	};;
1324.endp	bn_mul_comba4#
1325#undef	carry2
1326#undef	carry1
1327#endif
1328
1329#if 1
1330//
1331// BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
1332//
1333// In the nutshell it's a port of my MIPS III/IV implementation.
1334//
1335#define	AT	r14
1336#define	H	r16
1337#define	HH	r20
1338#define	L	r17
1339#define	D	r18
1340#define	DH	r22
1341#define	I	r21
1342
1343#if 0
1344// Some preprocessors (most notably HP-UX) apper to be allergic to
1345// macros enclosed to parenthesis as these three will be.
1346#define	cont	p16
1347#define	break	p0	// p20
1348#define	equ	p24
1349#else
1350cont=p16
1351break=p0
1352equ=p24
1353#endif
1354
1355.global	abort#
1356.global	bn_div_words#
1357.proc	bn_div_words#
1358.align	64
1359bn_div_words:
1360	.prologue
1361	.fframe	0
1362	.save	ar.pfs,r2
1363	.save	b0,r3
1364{ .mii;	alloc		r2=ar.pfs,3,5,0,8
1365	mov		r3=b0
1366	mov		r10=pr		};;
1367{ .mmb;	cmp.eq		p6,p0=r34,r0
1368	mov		r8=-1
1369(p6)	br.ret.spnt.many	b0	};;
1370
1371	.body
1372{ .mii;	mov		H=r32		// save h
1373	mov		ar.ec=0		// don't rotate at exit
1374	mov		pr.rot=0	}
1375{ .mii;	mov		L=r33		// save l
1376	mov		r36=r0		};;
1377
1378.L_divw_shift:	// -vv- note signed comparison
1379{ .mfi;	(p0)	cmp.lt		p16,p0=r0,r34	// d
1380	(p0)	shladd		r33=r34,1,r0	}
1381{ .mfb;	(p0)	add		r35=1,r36
1382	(p0)	nop.f		0x0
1383(p16)	br.wtop.dpnt		.L_divw_shift	};;
1384
1385{ .mii;	mov		D=r34
1386	shr.u		DH=r34,32
1387	sub		r35=64,r36		};;
1388{ .mii;	setf.sig	f7=DH
1389	shr.u		AT=H,r35
1390	mov		I=r36			};;
1391{ .mib;	cmp.ne		p6,p0=r0,AT
1392	shl		H=H,r36
1393(p6)	br.call.spnt.clr	b0=abort	};;	// overflow, die...
1394
1395{ .mfi;	fcvt.xuf.s1	f7=f7
1396	shr.u		AT=L,r35		};;
1397{ .mii;	shl		L=L,r36
1398	or		H=H,AT			};;
1399
1400{ .mii;	nop.m		0x0
1401	cmp.leu		p6,p0=D,H;;
1402(p6)	sub		H=H,D			}
1403
1404{ .mlx;	setf.sig	f14=D
1405	movl		AT=0xffffffff		};;
1406///////////////////////////////////////////////////////////
1407{ .mii;	setf.sig	f6=H
1408	shr.u		HH=H,32;;
1409	cmp.eq		p6,p7=HH,DH		};;
1410{ .mfb;
1411(p6)	setf.sig	f8=AT
1412(p7)	fcvt.xuf.s1	f6=f6
1413(p7)	br.call.sptk	b6=.L_udiv64_32_b6	};;
1414
1415{ .mfi;	getf.sig	r33=f8				// q
1416	xmpy.lu		f9=f8,f14		}
1417{ .mfi;	xmpy.hu		f10=f8,f14
1418	shrp		H=H,L,32		};;
1419
1420{ .mmi;	getf.sig	r35=f9				// tl
1421	getf.sig	r31=f10			};;	// th
1422
1423.L_divw_1st_iter:
1424{ .mii;	(p0)	add		r32=-1,r33
1425	(p0)	cmp.eq		equ,cont=HH,r31		};;
1426{ .mii;	(p0)	cmp.ltu		p8,p0=r35,D
1427	(p0)	sub		r34=r35,D
1428	(equ)	cmp.leu		break,cont=r35,H	};;
1429{ .mib;	(cont)	cmp.leu		cont,break=HH,r31
1430	(p8)	add		r31=-1,r31
1431(cont)	br.wtop.spnt		.L_divw_1st_iter	};;
1432///////////////////////////////////////////////////////////
1433{ .mii;	sub		H=H,r35
1434	shl		r8=r33,32
1435	shl		L=L,32			};;
1436///////////////////////////////////////////////////////////
1437{ .mii;	setf.sig	f6=H
1438	shr.u		HH=H,32;;
1439	cmp.eq		p6,p7=HH,DH		};;
1440{ .mfb;
1441(p6)	setf.sig	f8=AT
1442(p7)	fcvt.xuf.s1	f6=f6
1443(p7)	br.call.sptk	b6=.L_udiv64_32_b6	};;
1444
1445{ .mfi;	getf.sig	r33=f8				// q
1446	xmpy.lu		f9=f8,f14		}
1447{ .mfi;	xmpy.hu		f10=f8,f14
1448	shrp		H=H,L,32		};;
1449
1450{ .mmi;	getf.sig	r35=f9				// tl
1451	getf.sig	r31=f10			};;	// th
1452
1453.L_divw_2nd_iter:
1454{ .mii;	(p0)	add		r32=-1,r33
1455	(p0)	cmp.eq		equ,cont=HH,r31		};;
1456{ .mii;	(p0)	cmp.ltu		p8,p0=r35,D
1457	(p0)	sub		r34=r35,D
1458	(equ)	cmp.leu		break,cont=r35,H	};;
1459{ .mib;	(cont)	cmp.leu		cont,break=HH,r31
1460	(p8)	add		r31=-1,r31
1461(cont)	br.wtop.spnt		.L_divw_2nd_iter	};;
1462///////////////////////////////////////////////////////////
1463{ .mii;	sub	H=H,r35
1464	or	r8=r8,r33
1465	mov	ar.pfs=r2		};;
1466{ .mii;	shr.u	r9=H,I			// remainder if anybody wants it
1467	mov	pr=r10,-1		}
1468{ .mfb;	br.ret.sptk.many	b0	};;
1469
1470// Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
1471// procedure.
1472//
1473// inputs:	f6 = (double)a, f7 = (double)b
1474// output:	f8 = (int)(a/b)
1475// clobbered:	f8,f9,f10,f11,pred
1476pred=p15
1477// This procedure is essentially Intel code and therefore is
1478// copyrighted to Intel Corporation (I suppose...). It's sligtly
1479// modified for specific needs.
1480.align	32
1481.skip	16
1482.L_udiv64_32_b6:
1483	frcpa.s1	f8,pred=f6,f7;;		// [0]  y0 = 1 / b
1484
1485(pred)	fnma.s1		f9=f7,f8,f1		// [5]  e0 = 1 - b * y0
1486(pred)	fmpy.s1		f10=f6,f8;;		// [5]  q0 = a * y0
1487(pred)	fmpy.s1		f11=f9,f9		// [10] e1 = e0 * e0
1488(pred)	fma.s1		f10=f9,f10,f10;;	// [10] q1 = q0 + e0 * q0
1489(pred)	fma.s1		f8=f9,f8,f8	//;;	// [15] y1 = y0 + e0 * y0
1490(pred)	fma.s1		f9=f11,f10,f10;;	// [15] q2 = q1 + e1 * q1
1491(pred)	fma.s1		f8=f11,f8,f8	//;;	// [20] y2 = y1 + e1 * y1
1492(pred)	fnma.s1		f10=f7,f9,f6;;		// [20] r2 = a - b * q2
1493(pred)	fma.s1		f8=f10,f8,f9;;		// [25] q3 = q2 + r2 * y2
1494
1495	fcvt.fxu.trunc.s1	f8=f8		// [30] q = trunc(q3)
1496	br.ret.sptk.many	b6;;
1497.endp	bn_div_words#
1498#endif
1499