intprops.h revision 290001
1/* intprops.h -- properties of integer types
2
3   Copyright (C) 2001-2005, 2009-2015 Free Software Foundation, Inc.
4
5   This program is free software: you can redistribute it and/or modify
6   it under the terms of the GNU Lesser General Public License as published by
7   the Free Software Foundation; either version 2.1 of the License, or
8   (at your option) any later version.
9
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU Lesser General Public License for more details.
14
15   You should have received a copy of the GNU Lesser General Public License
16   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17
18/* Written by Paul Eggert.  */
19
20#ifndef _GL_INTPROPS_H
21#define _GL_INTPROPS_H
22
23#include <limits.h>
24
25/* Return an integer value, converted to the same type as the integer
26   expression E after integer type promotion.  V is the unconverted value.  */
27#define _GL_INT_CONVERT(e, v) (0 * (e) + (v))
28
29/* Act like _GL_INT_CONVERT (E, -V) but work around a bug in IRIX 6.5 cc; see
30   <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00406.html>.  */
31#define _GL_INT_NEGATE_CONVERT(e, v) (0 * (e) - (v))
32
33/* The extra casts in the following macros work around compiler bugs,
34   e.g., in Cray C 5.0.3.0.  */
35
36/* True if the arithmetic type T is an integer type.  bool counts as
37   an integer.  */
38#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
39
40/* True if negative values of the signed integer type T use two's
41   complement, ones' complement, or signed magnitude representation,
42   respectively.  Much GNU code assumes two's complement, but some
43   people like to be portable to all possible C hosts.  */
44#define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1)
45#define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0)
46#define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1)
47
48/* True if the signed integer expression E uses two's complement.  */
49#define _GL_INT_TWOS_COMPLEMENT(e) (~ _GL_INT_CONVERT (e, 0) == -1)
50
51/* True if the arithmetic type T is signed.  */
52#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
53
54/* Return 1 if the integer expression E, after integer promotion, has
55   a signed type.  */
56#define _GL_INT_SIGNED(e) (_GL_INT_NEGATE_CONVERT (e, 1) < 0)
57
58
59/* Minimum and maximum values for integer types and expressions.  These
60   macros have undefined behavior if T is signed and has padding bits.
61   If this is a problem for you, please let us know how to fix it for
62   your host.  */
63
64/* The maximum and minimum values for the integer type T.  */
65#define TYPE_MINIMUM(t)                                                 \
66  ((t) (! TYPE_SIGNED (t)                                               \
67        ? (t) 0                                                         \
68        : TYPE_SIGNED_MAGNITUDE (t)                                     \
69        ? ~ (t) 0                                                       \
70        : ~ TYPE_MAXIMUM (t)))
71#define TYPE_MAXIMUM(t)                                                 \
72  ((t) (! TYPE_SIGNED (t)                                               \
73        ? (t) -1                                                        \
74        : ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1)))
75
76/* The maximum and minimum values for the type of the expression E,
77   after integer promotion.  E should not have side effects.  */
78#define _GL_INT_MINIMUM(e)                                              \
79  (_GL_INT_SIGNED (e)                                                   \
80   ? - _GL_INT_TWOS_COMPLEMENT (e) - _GL_SIGNED_INT_MAXIMUM (e)         \
81   : _GL_INT_CONVERT (e, 0))
82#define _GL_INT_MAXIMUM(e)                                              \
83  (_GL_INT_SIGNED (e)                                                   \
84   ? _GL_SIGNED_INT_MAXIMUM (e)                                         \
85   : _GL_INT_NEGATE_CONVERT (e, 1))
86#define _GL_SIGNED_INT_MAXIMUM(e)                                       \
87  (((_GL_INT_CONVERT (e, 1) << (sizeof ((e) + 0) * CHAR_BIT - 2)) - 1) * 2 + 1)
88
89
90/* Return 1 if the __typeof__ keyword works.  This could be done by
91   'configure', but for now it's easier to do it by hand.  */
92#if (2 <= __GNUC__ || defined __IBM__TYPEOF__ \
93     || (0x5110 <= __SUNPRO_C && !__STDC__))
94# define _GL_HAVE___TYPEOF__ 1
95#else
96# define _GL_HAVE___TYPEOF__ 0
97#endif
98
99/* Return 1 if the integer type or expression T might be signed.  Return 0
100   if it is definitely unsigned.  This macro does not evaluate its argument,
101   and expands to an integer constant expression.  */
102#if _GL_HAVE___TYPEOF__
103# define _GL_SIGNED_TYPE_OR_EXPR(t) TYPE_SIGNED (__typeof__ (t))
104#else
105# define _GL_SIGNED_TYPE_OR_EXPR(t) 1
106#endif
107
108/* Bound on length of the string representing an unsigned integer
109   value representable in B bits.  log10 (2.0) < 146/485.  The
110   smallest value of B where this bound is not tight is 2621.  */
111#define INT_BITS_STRLEN_BOUND(b) (((b) * 146 + 484) / 485)
112
113/* Bound on length of the string representing an integer type or expression T.
114   Subtract 1 for the sign bit if T is signed, and then add 1 more for
115   a minus sign if needed.
116
117   Because _GL_SIGNED_TYPE_OR_EXPR sometimes returns 0 when its argument is
118   signed, this macro may overestimate the true bound by one byte when
119   applied to unsigned types of size 2, 4, 16, ... bytes.  */
120#define INT_STRLEN_BOUND(t)                                     \
121  (INT_BITS_STRLEN_BOUND (sizeof (t) * CHAR_BIT                 \
122                          - _GL_SIGNED_TYPE_OR_EXPR (t))        \
123   + _GL_SIGNED_TYPE_OR_EXPR (t))
124
125/* Bound on buffer size needed to represent an integer type or expression T,
126   including the terminating null.  */
127#define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1)
128
129
130/* Range overflow checks.
131
132   The INT_<op>_RANGE_OVERFLOW macros return 1 if the corresponding C
133   operators might not yield numerically correct answers due to
134   arithmetic overflow.  They do not rely on undefined or
135   implementation-defined behavior.  Their implementations are simple
136   and straightforward, but they are a bit harder to use than the
137   INT_<op>_OVERFLOW macros described below.
138
139   Example usage:
140
141     long int i = ...;
142     long int j = ...;
143     if (INT_MULTIPLY_RANGE_OVERFLOW (i, j, LONG_MIN, LONG_MAX))
144       printf ("multiply would overflow");
145     else
146       printf ("product is %ld", i * j);
147
148   Restrictions on *_RANGE_OVERFLOW macros:
149
150   These macros do not check for all possible numerical problems or
151   undefined or unspecified behavior: they do not check for division
152   by zero, for bad shift counts, or for shifting negative numbers.
153
154   These macros may evaluate their arguments zero or multiple times,
155   so the arguments should not have side effects.  The arithmetic
156   arguments (including the MIN and MAX arguments) must be of the same
157   integer type after the usual arithmetic conversions, and the type
158   must have minimum value MIN and maximum MAX.  Unsigned types should
159   use a zero MIN of the proper type.
160
161   These macros are tuned for constant MIN and MAX.  For commutative
162   operations such as A + B, they are also tuned for constant B.  */
163
164/* Return 1 if A + B would overflow in [MIN,MAX] arithmetic.
165   See above for restrictions.  */
166#define INT_ADD_RANGE_OVERFLOW(a, b, min, max)          \
167  ((b) < 0                                              \
168   ? (a) < (min) - (b)                                  \
169   : (max) - (b) < (a))
170
171/* Return 1 if A - B would overflow in [MIN,MAX] arithmetic.
172   See above for restrictions.  */
173#define INT_SUBTRACT_RANGE_OVERFLOW(a, b, min, max)     \
174  ((b) < 0                                              \
175   ? (max) + (b) < (a)                                  \
176   : (a) < (min) + (b))
177
178/* Return 1 if - A would overflow in [MIN,MAX] arithmetic.
179   See above for restrictions.  */
180#define INT_NEGATE_RANGE_OVERFLOW(a, min, max)          \
181  ((min) < 0                                            \
182   ? (a) < - (max)                                      \
183   : 0 < (a))
184
185/* Return 1 if A * B would overflow in [MIN,MAX] arithmetic.
186   See above for restrictions.  Avoid && and || as they tickle
187   bugs in Sun C 5.11 2010/08/13 and other compilers; see
188   <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00401.html>.  */
189#define INT_MULTIPLY_RANGE_OVERFLOW(a, b, min, max)     \
190  ((b) < 0                                              \
191   ? ((a) < 0                                           \
192      ? (a) < (max) / (b)                               \
193      : (b) == -1                                       \
194      ? 0                                               \
195      : (min) / (b) < (a))                              \
196   : (b) == 0                                           \
197   ? 0                                                  \
198   : ((a) < 0                                           \
199      ? (a) < (min) / (b)                               \
200      : (max) / (b) < (a)))
201
202/* Return 1 if A / B would overflow in [MIN,MAX] arithmetic.
203   See above for restrictions.  Do not check for division by zero.  */
204#define INT_DIVIDE_RANGE_OVERFLOW(a, b, min, max)       \
205  ((min) < 0 && (b) == -1 && (a) < - (max))
206
207/* Return 1 if A % B would overflow in [MIN,MAX] arithmetic.
208   See above for restrictions.  Do not check for division by zero.
209   Mathematically, % should never overflow, but on x86-like hosts
210   INT_MIN % -1 traps, and the C standard permits this, so treat this
211   as an overflow too.  */
212#define INT_REMAINDER_RANGE_OVERFLOW(a, b, min, max)    \
213  INT_DIVIDE_RANGE_OVERFLOW (a, b, min, max)
214
215/* Return 1 if A << B would overflow in [MIN,MAX] arithmetic.
216   See above for restrictions.  Here, MIN and MAX are for A only, and B need
217   not be of the same type as the other arguments.  The C standard says that
218   behavior is undefined for shifts unless 0 <= B < wordwidth, and that when
219   A is negative then A << B has undefined behavior and A >> B has
220   implementation-defined behavior, but do not check these other
221   restrictions.  */
222#define INT_LEFT_SHIFT_RANGE_OVERFLOW(a, b, min, max)   \
223  ((a) < 0                                              \
224   ? (a) < (min) >> (b)                                 \
225   : (max) >> (b) < (a))
226
227
228/* The _GL*_OVERFLOW macros have the same restrictions as the
229   *_RANGE_OVERFLOW macros, except that they do not assume that operands
230   (e.g., A and B) have the same type as MIN and MAX.  Instead, they assume
231   that the result (e.g., A + B) has that type.  */
232#define _GL_ADD_OVERFLOW(a, b, min, max)                                \
233  ((min) < 0 ? INT_ADD_RANGE_OVERFLOW (a, b, min, max)                  \
234   : (a) < 0 ? (b) <= (a) + (b)                                         \
235   : (b) < 0 ? (a) <= (a) + (b)                                         \
236   : (a) + (b) < (b))
237#define _GL_SUBTRACT_OVERFLOW(a, b, min, max)                           \
238  ((min) < 0 ? INT_SUBTRACT_RANGE_OVERFLOW (a, b, min, max)             \
239   : (a) < 0 ? 1                                                        \
240   : (b) < 0 ? (a) - (b) <= (a)                                         \
241   : (a) < (b))
242#define _GL_MULTIPLY_OVERFLOW(a, b, min, max)                           \
243  (((min) == 0 && (((a) < 0 && 0 < (b)) || ((b) < 0 && 0 < (a))))       \
244   || INT_MULTIPLY_RANGE_OVERFLOW (a, b, min, max))
245#define _GL_DIVIDE_OVERFLOW(a, b, min, max)                             \
246  ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max)  \
247   : (a) < 0 ? (b) <= (a) + (b) - 1                                     \
248   : (b) < 0 && (a) + (b) <= (a))
249#define _GL_REMAINDER_OVERFLOW(a, b, min, max)                          \
250  ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max)  \
251   : (a) < 0 ? (a) % (b) != ((max) - (b) + 1) % (b)                     \
252   : (b) < 0 && ! _GL_UNSIGNED_NEG_MULTIPLE (a, b, max))
253
254/* Return a nonzero value if A is a mathematical multiple of B, where
255   A is unsigned, B is negative, and MAX is the maximum value of A's
256   type.  A's type must be the same as (A % B)'s type.  Normally (A %
257   -B == 0) suffices, but things get tricky if -B would overflow.  */
258#define _GL_UNSIGNED_NEG_MULTIPLE(a, b, max)                            \
259  (((b) < -_GL_SIGNED_INT_MAXIMUM (b)                                   \
260    ? (_GL_SIGNED_INT_MAXIMUM (b) == (max)                              \
261       ? (a)                                                            \
262       : (a) % (_GL_INT_CONVERT (a, _GL_SIGNED_INT_MAXIMUM (b)) + 1))   \
263    : (a) % - (b))                                                      \
264   == 0)
265
266
267/* Integer overflow checks.
268
269   The INT_<op>_OVERFLOW macros return 1 if the corresponding C operators
270   might not yield numerically correct answers due to arithmetic overflow.
271   They work correctly on all known practical hosts, and do not rely
272   on undefined behavior due to signed arithmetic overflow.
273
274   Example usage:
275
276     long int i = ...;
277     long int j = ...;
278     if (INT_MULTIPLY_OVERFLOW (i, j))
279       printf ("multiply would overflow");
280     else
281       printf ("product is %ld", i * j);
282
283   These macros do not check for all possible numerical problems or
284   undefined or unspecified behavior: they do not check for division
285   by zero, for bad shift counts, or for shifting negative numbers.
286
287   These macros may evaluate their arguments zero or multiple times, so the
288   arguments should not have side effects.
289
290   These macros are tuned for their last argument being a constant.
291
292   Return 1 if the integer expressions A * B, A - B, -A, A * B, A / B,
293   A % B, and A << B would overflow, respectively.  */
294
295#define INT_ADD_OVERFLOW(a, b) \
296  _GL_BINARY_OP_OVERFLOW (a, b, _GL_ADD_OVERFLOW)
297#define INT_SUBTRACT_OVERFLOW(a, b) \
298  _GL_BINARY_OP_OVERFLOW (a, b, _GL_SUBTRACT_OVERFLOW)
299#define INT_NEGATE_OVERFLOW(a) \
300  INT_NEGATE_RANGE_OVERFLOW (a, _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
301#define INT_MULTIPLY_OVERFLOW(a, b) \
302  _GL_BINARY_OP_OVERFLOW (a, b, _GL_MULTIPLY_OVERFLOW)
303#define INT_DIVIDE_OVERFLOW(a, b) \
304  _GL_BINARY_OP_OVERFLOW (a, b, _GL_DIVIDE_OVERFLOW)
305#define INT_REMAINDER_OVERFLOW(a, b) \
306  _GL_BINARY_OP_OVERFLOW (a, b, _GL_REMAINDER_OVERFLOW)
307#define INT_LEFT_SHIFT_OVERFLOW(a, b) \
308  INT_LEFT_SHIFT_RANGE_OVERFLOW (a, b, \
309                                 _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
310
311/* Return 1 if the expression A <op> B would overflow,
312   where OP_RESULT_OVERFLOW (A, B, MIN, MAX) does the actual test,
313   assuming MIN and MAX are the minimum and maximum for the result type.
314   Arguments should be free of side effects.  */
315#define _GL_BINARY_OP_OVERFLOW(a, b, op_result_overflow)        \
316  op_result_overflow (a, b,                                     \
317                      _GL_INT_MINIMUM (0 * (b) + (a)),          \
318                      _GL_INT_MAXIMUM (0 * (b) + (a)))
319
320#endif /* _GL_INTPROPS_H */
321