refclock_wwv.c revision 290001
1/*
2 * refclock_wwv - clock driver for NIST WWV/H time/frequency station
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#if defined(REFCLOCK) && defined(CLOCK_WWV)
9
10#include "ntpd.h"
11#include "ntp_io.h"
12#include "ntp_refclock.h"
13#include "ntp_calendar.h"
14#include "ntp_stdlib.h"
15#include "audio.h"
16
17#include <stdio.h>
18#include <ctype.h>
19#include <math.h>
20#ifdef HAVE_SYS_IOCTL_H
21# include <sys/ioctl.h>
22#endif /* HAVE_SYS_IOCTL_H */
23
24#define ICOM 1
25
26#ifdef ICOM
27#include "icom.h"
28#endif /* ICOM */
29
30/*
31 * Audio WWV/H demodulator/decoder
32 *
33 * This driver synchronizes the computer time using data encoded in
34 * radio transmissions from NIST time/frequency stations WWV in Boulder,
35 * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
36 * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
37 * ordinary AM shortwave receiver can be tuned manually to one of these
38 * frequencies or, in the case of ICOM receivers, the receiver can be
39 * tuned automatically using this program as propagation conditions
40 * change throughout the weasons, both day and night.
41 *
42 * The driver requires an audio codec or sound card with sampling rate 8
43 * kHz and mu-law companding. This is the same standard as used by the
44 * telephone industry and is supported by most hardware and operating
45 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
46 * implementation, only one audio driver and codec can be supported on a
47 * single machine.
48 *
49 * The demodulation and decoding algorithms used in this driver are
50 * based on those developed for the TAPR DSP93 development board and the
51 * TI 320C25 digital signal processor described in: Mills, D.L. A
52 * precision radio clock for WWV transmissions. Electrical Engineering
53 * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
54 * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
55 * in this report have been modified somewhat to improve performance
56 * under weak signal conditions and to provide an automatic station
57 * identification feature.
58 *
59 * The ICOM code is normally compiled in the driver. It isn't used,
60 * unless the mode keyword on the server configuration command specifies
61 * a nonzero ICOM ID select code. The C-IV trace is turned on if the
62 * debug level is greater than one.
63 *
64 * Fudge factors
65 *
66 * Fudge flag4 causes the debugging output described above to be
67 * recorded in the clockstats file. Fudge flag2 selects the audio input
68 * port, where 0 is the mike port (default) and 1 is the line-in port.
69 * It does not seem useful to select the compact disc player port. Fudge
70 * flag3 enables audio monitoring of the input signal. For this purpose,
71 * the monitor gain is set to a default value.
72 *
73 * CEVNT_BADTIME	invalid date or time
74 * CEVNT_PROP		propagation failure - no stations heard
75 * CEVNT_TIMEOUT	timeout (see newgame() below)
76 */
77/*
78 * General definitions. These ordinarily do not need to be changed.
79 */
80#define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
81#define	AUDIO_BUFSIZ	320	/* audio buffer size (50 ms) */
82#define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
83#define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
84#define WWV_SEC		8000	/* second epoch (sample rate) (Hz) */
85#define WWV_MIN		(WWV_SEC * 60) /* minute epoch */
86#define OFFSET		128	/* companded sample offset */
87#define SIZE		256	/* decompanding table size */
88#define	MAXAMP		6000.	/* max signal level reference */
89#define	MAXCLP		100	/* max clips above reference per s */
90#define MAXSNR		40.	/* max SNR reference */
91#define MAXFREQ		1.5	/* max frequency tolerance (187 PPM) */
92#define DATCYC		170	/* data filter cycles */
93#define DATSIZ		(DATCYC * MS) /* data filter size */
94#define SYNCYC		800	/* minute filter cycles */
95#define SYNSIZ		(SYNCYC * MS) /* minute filter size */
96#define TCKCYC		5	/* tick filter cycles */
97#define TCKSIZ		(TCKCYC * MS) /* tick filter size */
98#define NCHAN		5	/* number of radio channels */
99#define	AUDIO_PHI	5e-6	/* dispersion growth factor */
100#define	TBUF		128	/* max monitor line length */
101
102/*
103 * Tunable parameters. The DGAIN parameter can be changed to fit the
104 * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
105 * is transmitted at about 20 percent percent modulation; the matched
106 * filter boosts it by a factor of 17 and the receiver response does
107 * what it does. The compromise value works for ICOM radios. If the
108 * radio is not tunable, the DCHAN parameter can be changed to fit the
109 * expected best propagation frequency: higher if further from the
110 * transmitter, lower if nearer. The compromise value works for the US
111 * right coast.
112 */
113#define DCHAN		3	/* default radio channel (15 Mhz) */
114#define DGAIN		5.	/* subcarrier gain */
115
116/*
117 * General purpose status bits (status)
118 *
119 * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
120 * on signal loss. SSYNC is set when the second sync pulse has been
121 * acquired and cleared by signal loss. MSYNC is set when the minute
122 * sync pulse has been acquired. DSYNC is set when the units digit has
123 * has reached the threshold and INSYNC is set when all nine digits have
124 * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
125 * only by timeout, upon which the driver starts over from scratch.
126 *
127 * DGATE is lit if the data bit amplitude or SNR is below thresholds and
128 * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
129 * LEPSEC is set during the last minute of the leap day. At the end of
130 * this minute the driver inserts second 60 in the seconds state machine
131 * and the minute sync slips a second.
132 */
133#define MSYNC		0x0001	/* minute epoch sync */
134#define SSYNC		0x0002	/* second epoch sync */
135#define DSYNC		0x0004	/* minute units sync */
136#define INSYNC		0x0008	/* clock synchronized */
137#define FGATE		0x0010	/* frequency gate */
138#define DGATE		0x0020	/* data pulse amplitude error */
139#define BGATE		0x0040	/* data pulse width error */
140#define	METRIC		0x0080	/* one or more stations heard */
141#define LEPSEC		0x1000	/* leap minute */
142
143/*
144 * Station scoreboard bits
145 *
146 * These are used to establish the signal quality for each of the five
147 * frequencies and two stations.
148 */
149#define SELV		0x0100	/* WWV station select */
150#define SELH		0x0200	/* WWVH station select */
151
152/*
153 * Alarm status bits (alarm)
154 *
155 * These bits indicate various alarm conditions, which are decoded to
156 * form the quality character included in the timecode.
157 */
158#define CMPERR		0x1	/* digit or misc bit compare error */
159#define LOWERR		0x2	/* low bit or digit amplitude or SNR */
160#define NINERR		0x4	/* less than nine digits in minute */
161#define SYNERR		0x8	/* not tracking second sync */
162
163/*
164 * Watchcat timeouts (watch)
165 *
166 * If these timeouts expire, the status bits are mashed to zero and the
167 * driver starts from scratch. Suitably more refined procedures may be
168 * developed in future. All these are in minutes.
169 */
170#define ACQSN		6	/* station acquisition timeout */
171#define DATA		15	/* unit minutes timeout */
172#define SYNCH		40	/* station sync timeout */
173#define PANIC		(2 * 1440) /* panic timeout */
174
175/*
176 * Thresholds. These establish the minimum signal level, minimum SNR and
177 * maximum jitter thresholds which establish the error and false alarm
178 * rates of the driver. The values defined here may be on the
179 * adventurous side in the interest of the highest sensitivity.
180 */
181#define MTHR		13.	/* minute sync gate (percent) */
182#define TTHR		50.	/* minute sync threshold (percent) */
183#define AWND		20	/* minute sync jitter threshold (ms) */
184#define ATHR		2500.	/* QRZ minute sync threshold */
185#define ASNR		20.	/* QRZ minute sync SNR threshold (dB) */
186#define QTHR		2500.	/* QSY minute sync threshold */
187#define QSNR		20.	/* QSY minute sync SNR threshold (dB) */
188#define STHR		2500.	/* second sync threshold */
189#define	SSNR		15.	/* second sync SNR threshold (dB) */
190#define SCMP		10 	/* second sync compare threshold */
191#define DTHR		1000.	/* bit threshold */
192#define DSNR		10.	/* bit SNR threshold (dB) */
193#define AMIN		3	/* min bit count */
194#define AMAX		6	/* max bit count */
195#define BTHR		1000.	/* digit threshold */
196#define BSNR		3.	/* digit likelihood threshold (dB) */
197#define BCMP		3	/* digit compare threshold */
198#define	MAXERR		40	/* maximum error alarm */
199
200/*
201 * Tone frequency definitions. The increments are for 4.5-deg sine
202 * table.
203 */
204#define MS		(WWV_SEC / 1000) /* samples per millisecond */
205#define IN100		((100 * 80) / WWV_SEC) /* 100 Hz increment */
206#define IN1000		((1000 * 80) / WWV_SEC) /* 1000 Hz increment */
207#define IN1200		((1200 * 80) / WWV_SEC) /* 1200 Hz increment */
208
209/*
210 * Acquisition and tracking time constants
211 */
212#define MINAVG		8	/* min averaging time */
213#define MAXAVG		1024	/* max averaging time */
214#define FCONST		3	/* frequency time constant */
215#define TCONST		16	/* data bit/digit time constant */
216
217/*
218 * Miscellaneous status bits (misc)
219 *
220 * These bits correspond to designated bits in the WWV/H timecode. The
221 * bit probabilities are exponentially averaged over several minutes and
222 * processed by a integrator and threshold.
223 */
224#define DUT1		0x01	/* 56 DUT .1 */
225#define DUT2		0x02	/* 57 DUT .2 */
226#define DUT4		0x04	/* 58 DUT .4 */
227#define DUTS		0x08	/* 50 DUT sign */
228#define DST1		0x10	/* 55 DST1 leap warning */
229#define DST2		0x20	/* 2 DST2 DST1 delayed one day */
230#define SECWAR		0x40	/* 3 leap second warning */
231
232/*
233 * The on-time synchronization point is the positive-going zero crossing
234 * of the first cycle of the 5-ms second pulse. The IIR baseband filter
235 * phase delay is 0.91 ms, while the receiver delay is approximately 4.7
236 * ms at 1000 Hz. The fudge value -0.45 ms due to the codec and other
237 * causes was determined by calibrating to a PPS signal from a GPS
238 * receiver. The additional propagation delay specific to each receiver
239 * location can be  programmed in the fudge time1 and time2 values for
240 * WWV and WWVH, respectively.
241 *
242 * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
243 * generally within .02 ms short-term with .02 ms jitter. The long-term
244 * offsets vary up to 0.3 ms due to ionosperhic layer height variations.
245 * The processor load due to the driver is 5.8 percent.
246 */
247#define PDELAY	((.91 + 4.7 - 0.45) / 1000) /* system delay (s) */
248
249/*
250 * Table of sine values at 4.5-degree increments. This is used by the
251 * synchronous matched filter demodulators.
252 */
253double sintab[] = {
254 0.000000e+00,  7.845910e-02,  1.564345e-01,  2.334454e-01, /* 0-3 */
255 3.090170e-01,  3.826834e-01,  4.539905e-01,  5.224986e-01, /* 4-7 */
256 5.877853e-01,  6.494480e-01,  7.071068e-01,  7.604060e-01, /* 8-11 */
257 8.090170e-01,  8.526402e-01,  8.910065e-01,  9.238795e-01, /* 12-15 */
258 9.510565e-01,  9.723699e-01,  9.876883e-01,  9.969173e-01, /* 16-19 */
259 1.000000e+00,  9.969173e-01,  9.876883e-01,  9.723699e-01, /* 20-23 */
260 9.510565e-01,  9.238795e-01,  8.910065e-01,  8.526402e-01, /* 24-27 */
261 8.090170e-01,  7.604060e-01,  7.071068e-01,  6.494480e-01, /* 28-31 */
262 5.877853e-01,  5.224986e-01,  4.539905e-01,  3.826834e-01, /* 32-35 */
263 3.090170e-01,  2.334454e-01,  1.564345e-01,  7.845910e-02, /* 36-39 */
264-0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
265-3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
266-5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
267-8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
268-9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
269-1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
270-9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
271-8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
272-5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
273-3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
274 0.000000e+00};						    /* 80 */
275
276/*
277 * Decoder operations at the end of each second are driven by a state
278 * machine. The transition matrix consists of a dispatch table indexed
279 * by second number. Each entry in the table contains a case switch
280 * number and argument.
281 */
282struct progx {
283	int sw;			/* case switch number */
284	int arg;		/* argument */
285};
286
287/*
288 * Case switch numbers
289 */
290#define IDLE		0	/* no operation */
291#define COEF		1	/* BCD bit */
292#define COEF1		2	/* BCD bit for minute unit */
293#define COEF2		3	/* BCD bit not used */
294#define DECIM9		4	/* BCD digit 0-9 */
295#define DECIM6		5	/* BCD digit 0-6 */
296#define DECIM3		6	/* BCD digit 0-3 */
297#define DECIM2		7	/* BCD digit 0-2 */
298#define MSCBIT		8	/* miscellaneous bit */
299#define MSC20		9	/* miscellaneous bit */
300#define MSC21		10	/* QSY probe channel */
301#define MIN1		11	/* latch time */
302#define MIN2		12	/* leap second */
303#define SYNC2		13	/* latch minute sync pulse */
304#define SYNC3		14	/* latch data pulse */
305
306/*
307 * Offsets in decoding matrix
308 */
309#define MN		0	/* minute digits (2) */
310#define HR		2	/* hour digits (2) */
311#define DA		4	/* day digits (3) */
312#define YR		7	/* year digits (2) */
313
314struct progx progx[] = {
315	{SYNC2,	0},		/* 0 latch minute sync pulse */
316	{SYNC3,	0},		/* 1 latch data pulse */
317	{MSCBIT, DST2},		/* 2 dst2 */
318	{MSCBIT, SECWAR},	/* 3 lw */
319	{COEF,	0},		/* 4 1 year units */
320	{COEF,	1},		/* 5 2 */
321	{COEF,	2},		/* 6 4 */
322	{COEF,	3},		/* 7 8 */
323	{DECIM9, YR},		/* 8 */
324	{IDLE,	0},		/* 9 p1 */
325	{COEF1,	0},		/* 10 1 minute units */
326	{COEF1,	1},		/* 11 2 */
327	{COEF1,	2},		/* 12 4 */
328	{COEF1,	3},		/* 13 8 */
329	{DECIM9, MN},		/* 14 */
330	{COEF,	0},		/* 15 10 minute tens */
331	{COEF,	1},		/* 16 20 */
332	{COEF,	2},		/* 17 40 */
333	{COEF2,	3},		/* 18 80 (not used) */
334	{DECIM6, MN + 1},	/* 19 p2 */
335	{COEF,	0},		/* 20 1 hour units */
336	{COEF,	1},		/* 21 2 */
337	{COEF,	2},		/* 22 4 */
338	{COEF,	3},		/* 23 8 */
339	{DECIM9, HR},		/* 24 */
340	{COEF,	0},		/* 25 10 hour tens */
341	{COEF,	1},		/* 26 20 */
342	{COEF2,	2},		/* 27 40 (not used) */
343	{COEF2,	3},		/* 28 80 (not used) */
344	{DECIM2, HR + 1},	/* 29 p3 */
345	{COEF,	0},		/* 30 1 day units */
346	{COEF,	1},		/* 31 2 */
347	{COEF,	2},		/* 32 4 */
348	{COEF,	3},		/* 33 8 */
349	{DECIM9, DA},		/* 34 */
350	{COEF,	0},		/* 35 10 day tens */
351	{COEF,	1},		/* 36 20 */
352	{COEF,	2},		/* 37 40 */
353	{COEF,	3},		/* 38 80 */
354	{DECIM9, DA + 1},	/* 39 p4 */
355	{COEF,	0},		/* 40 100 day hundreds */
356	{COEF,	1},		/* 41 200 */
357	{COEF2,	2},		/* 42 400 (not used) */
358	{COEF2,	3},		/* 43 800 (not used) */
359	{DECIM3, DA + 2},	/* 44 */
360	{IDLE,	0},		/* 45 */
361	{IDLE,	0},		/* 46 */
362	{IDLE,	0},		/* 47 */
363	{IDLE,	0},		/* 48 */
364	{IDLE,	0},		/* 49 p5 */
365	{MSCBIT, DUTS},		/* 50 dut+- */
366	{COEF,	0},		/* 51 10 year tens */
367	{COEF,	1},		/* 52 20 */
368	{COEF,	2},		/* 53 40 */
369	{COEF,	3},		/* 54 80 */
370	{MSC20, DST1},		/* 55 dst1 */
371	{MSCBIT, DUT1},		/* 56 0.1 dut */
372	{MSCBIT, DUT2},		/* 57 0.2 */
373	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
374	{MIN1,	0},		/* 59 p6 latch time */
375	{MIN2,	0}		/* 60 leap second */
376};
377
378/*
379 * BCD coefficients for maximum-likelihood digit decode
380 */
381#define P15	1.		/* max positive number */
382#define N15	-1.		/* max negative number */
383
384/*
385 * Digits 0-9
386 */
387#define P9	(P15 / 4)	/* mark (+1) */
388#define N9	(N15 / 4)	/* space (-1) */
389
390double bcd9[][4] = {
391	{N9, N9, N9, N9}, 	/* 0 */
392	{P9, N9, N9, N9}, 	/* 1 */
393	{N9, P9, N9, N9}, 	/* 2 */
394	{P9, P9, N9, N9}, 	/* 3 */
395	{N9, N9, P9, N9}, 	/* 4 */
396	{P9, N9, P9, N9}, 	/* 5 */
397	{N9, P9, P9, N9}, 	/* 6 */
398	{P9, P9, P9, N9}, 	/* 7 */
399	{N9, N9, N9, P9}, 	/* 8 */
400	{P9, N9, N9, P9}, 	/* 9 */
401	{0, 0, 0, 0}		/* backstop */
402};
403
404/*
405 * Digits 0-6 (minute tens)
406 */
407#define P6	(P15 / 3)	/* mark (+1) */
408#define N6	(N15 / 3)	/* space (-1) */
409
410double bcd6[][4] = {
411	{N6, N6, N6, 0}, 	/* 0 */
412	{P6, N6, N6, 0}, 	/* 1 */
413	{N6, P6, N6, 0}, 	/* 2 */
414	{P6, P6, N6, 0}, 	/* 3 */
415	{N6, N6, P6, 0}, 	/* 4 */
416	{P6, N6, P6, 0}, 	/* 5 */
417	{N6, P6, P6, 0}, 	/* 6 */
418	{0, 0, 0, 0}		/* backstop */
419};
420
421/*
422 * Digits 0-3 (day hundreds)
423 */
424#define P3	(P15 / 2)	/* mark (+1) */
425#define N3	(N15 / 2)	/* space (-1) */
426
427double bcd3[][4] = {
428	{N3, N3, 0, 0}, 	/* 0 */
429	{P3, N3, 0, 0}, 	/* 1 */
430	{N3, P3, 0, 0}, 	/* 2 */
431	{P3, P3, 0, 0}, 	/* 3 */
432	{0, 0, 0, 0}		/* backstop */
433};
434
435/*
436 * Digits 0-2 (hour tens)
437 */
438#define P2	(P15 / 2)	/* mark (+1) */
439#define N2	(N15 / 2)	/* space (-1) */
440
441double bcd2[][4] = {
442	{N2, N2, 0, 0}, 	/* 0 */
443	{P2, N2, 0, 0}, 	/* 1 */
444	{N2, P2, 0, 0}, 	/* 2 */
445	{0, 0, 0, 0}		/* backstop */
446};
447
448/*
449 * DST decode (DST2 DST1) for prettyprint
450 */
451char dstcod[] = {
452	'S',			/* 00 standard time */
453	'I',			/* 01 set clock ahead at 0200 local */
454	'O',			/* 10 set clock back at 0200 local */
455	'D'			/* 11 daylight time */
456};
457
458/*
459 * The decoding matrix consists of nine row vectors, one for each digit
460 * of the timecode. The digits are stored from least to most significant
461 * order. The maximum-likelihood timecode is formed from the digits
462 * corresponding to the maximum-likelihood values reading in the
463 * opposite order: yy ddd hh:mm.
464 */
465struct decvec {
466	int radix;		/* radix (3, 4, 6, 10) */
467	int digit;		/* current clock digit */
468	int count;		/* match count */
469	double digprb;		/* max digit probability */
470	double digsnr;		/* likelihood function (dB) */
471	double like[10];	/* likelihood integrator 0-9 */
472};
473
474/*
475 * The station structure (sp) is used to acquire the minute pulse from
476 * WWV and/or WWVH. These stations are distinguished by the frequency
477 * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
478 * Hz for WWVH. Other than frequency, the format is the same.
479 */
480struct sync {
481	double	epoch;		/* accumulated epoch differences */
482	double	maxeng;		/* sync max energy */
483	double	noieng;		/* sync noise energy */
484	long	pos;		/* max amplitude position */
485	long	lastpos;	/* last max position */
486	long	mepoch;		/* minute synch epoch */
487
488	double	amp;		/* sync signal */
489	double	syneng;		/* sync signal max */
490	double	synmax;		/* sync signal max latched at 0 s */
491	double	synsnr;		/* sync signal SNR */
492	double	metric;		/* signal quality metric */
493	int	reach;		/* reachability register */
494	int	count;		/* bit counter */
495	int	select;		/* select bits */
496	char	refid[5];	/* reference identifier */
497};
498
499/*
500 * The channel structure (cp) is used to mitigate between channels.
501 */
502struct chan {
503	int	gain;		/* audio gain */
504	struct sync wwv;	/* wwv station */
505	struct sync wwvh;	/* wwvh station */
506};
507
508/*
509 * WWV unit control structure (up)
510 */
511struct wwvunit {
512	l_fp	timestamp;	/* audio sample timestamp */
513	l_fp	tick;		/* audio sample increment */
514	double	phase, freq;	/* logical clock phase and frequency */
515	double	monitor;	/* audio monitor point */
516	double	pdelay;		/* propagation delay (s) */
517#ifdef ICOM
518	int	fd_icom;	/* ICOM file descriptor */
519#endif /* ICOM */
520	int	errflg;		/* error flags */
521	int	watch;		/* watchcat */
522
523	/*
524	 * Audio codec variables
525	 */
526	double	comp[SIZE];	/* decompanding table */
527 	int	port;		/* codec port */
528	int	gain;		/* codec gain */
529	int	mongain;	/* codec monitor gain */
530	int	clipcnt;	/* sample clipped count */
531
532	/*
533	 * Variables used to establish basic system timing
534	 */
535	int	avgint;		/* master time constant */
536	int	yepoch;		/* sync epoch */
537	int	repoch;		/* buffered sync epoch */
538	double	epomax;		/* second sync amplitude */
539	double	eposnr;		/* second sync SNR */
540	double	irig;		/* data I channel amplitude */
541	double	qrig;		/* data Q channel amplitude */
542	int	datapt;		/* 100 Hz ramp */
543	double	datpha;		/* 100 Hz VFO control */
544	int	rphase;		/* second sample counter */
545	long	mphase;		/* minute sample counter */
546
547	/*
548	 * Variables used to mitigate which channel to use
549	 */
550	struct chan mitig[NCHAN]; /* channel data */
551	struct sync *sptr;	/* station pointer */
552	int	dchan;		/* data channel */
553	int	schan;		/* probe channel */
554	int	achan;		/* active channel */
555
556	/*
557	 * Variables used by the clock state machine
558	 */
559	struct decvec decvec[9]; /* decoding matrix */
560	int	rsec;		/* seconds counter */
561	int	digcnt;		/* count of digits synchronized */
562
563	/*
564	 * Variables used to estimate signal levels and bit/digit
565	 * probabilities
566	 */
567	double	datsig;		/* data signal max */
568	double	datsnr;		/* data signal SNR (dB) */
569
570	/*
571	 * Variables used to establish status and alarm conditions
572	 */
573	int	status;		/* status bits */
574	int	alarm;		/* alarm flashers */
575	int	misc;		/* miscellaneous timecode bits */
576	int	errcnt;		/* data bit error counter */
577};
578
579/*
580 * Function prototypes
581 */
582static	int	wwv_start	(int, struct peer *);
583static	void	wwv_shutdown	(int, struct peer *);
584static	void	wwv_receive	(struct recvbuf *);
585static	void	wwv_poll	(int, struct peer *);
586
587/*
588 * More function prototypes
589 */
590static	void	wwv_epoch	(struct peer *);
591static	void	wwv_rf		(struct peer *, double);
592static	void	wwv_endpoc	(struct peer *, int);
593static	void	wwv_rsec	(struct peer *, double);
594static	void	wwv_qrz		(struct peer *, struct sync *, int);
595static	void	wwv_corr4	(struct peer *, struct decvec *,
596				    double [], double [][4]);
597static	void	wwv_gain	(struct peer *);
598static	void	wwv_tsec	(struct peer *);
599static	int	timecode	(struct wwvunit *, char *, size_t);
600static	double	wwv_snr		(double, double);
601static	int	carry		(struct decvec *);
602static	int	wwv_newchan	(struct peer *);
603static	void	wwv_newgame	(struct peer *);
604static	double	wwv_metric	(struct sync *);
605static	void	wwv_clock	(struct peer *);
606#ifdef ICOM
607static	int	wwv_qsy		(struct peer *, int);
608#endif /* ICOM */
609
610static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
611
612/*
613 * Transfer vector
614 */
615struct	refclock refclock_wwv = {
616	wwv_start,		/* start up driver */
617	wwv_shutdown,		/* shut down driver */
618	wwv_poll,		/* transmit poll message */
619	noentry,		/* not used (old wwv_control) */
620	noentry,		/* initialize driver (not used) */
621	noentry,		/* not used (old wwv_buginfo) */
622	NOFLAGS			/* not used */
623};
624
625
626/*
627 * wwv_start - open the devices and initialize data for processing
628 */
629static int
630wwv_start(
631	int	unit,		/* instance number (used by PCM) */
632	struct peer *peer	/* peer structure pointer */
633	)
634{
635	struct refclockproc *pp;
636	struct wwvunit *up;
637#ifdef ICOM
638	int	temp;
639#endif /* ICOM */
640
641	/*
642	 * Local variables
643	 */
644	int	fd;		/* file descriptor */
645	int	i;		/* index */
646	double	step;		/* codec adjustment */
647
648	/*
649	 * Open audio device
650	 */
651	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
652	if (fd < 0)
653		return (0);
654#ifdef DEBUG
655	if (debug)
656		audio_show();
657#endif /* DEBUG */
658
659	/*
660	 * Allocate and initialize unit structure
661	 */
662	up = emalloc_zero(sizeof(*up));
663	pp = peer->procptr;
664	pp->io.clock_recv = wwv_receive;
665	pp->io.srcclock = peer;
666	pp->io.datalen = 0;
667	pp->io.fd = fd;
668	if (!io_addclock(&pp->io)) {
669		close(fd);
670		free(up);
671		return (0);
672	}
673	pp->unitptr = up;
674
675	/*
676	 * Initialize miscellaneous variables
677	 */
678	peer->precision = PRECISION;
679	pp->clockdesc = DESCRIPTION;
680
681	/*
682	 * The companded samples are encoded sign-magnitude. The table
683	 * contains all the 256 values in the interest of speed.
684	 */
685	up->comp[0] = up->comp[OFFSET] = 0.;
686	up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
687	up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
688	step = 2.;
689	for (i = 3; i < OFFSET; i++) {
690		up->comp[i] = up->comp[i - 1] + step;
691		up->comp[OFFSET + i] = -up->comp[i];
692		if (i % 16 == 0)
693			step *= 2.;
694	}
695	DTOLFP(1. / WWV_SEC, &up->tick);
696
697	/*
698	 * Initialize the decoding matrix with the radix for each digit
699	 * position.
700	 */
701	up->decvec[MN].radix = 10;	/* minutes */
702	up->decvec[MN + 1].radix = 6;
703	up->decvec[HR].radix = 10;	/* hours */
704	up->decvec[HR + 1].radix = 3;
705	up->decvec[DA].radix = 10;	/* days */
706	up->decvec[DA + 1].radix = 10;
707	up->decvec[DA + 2].radix = 4;
708	up->decvec[YR].radix = 10;	/* years */
709	up->decvec[YR + 1].radix = 10;
710
711#ifdef ICOM
712	/*
713	 * Initialize autotune if available. Note that the ICOM select
714	 * code must be less than 128, so the high order bit can be used
715	 * to select the line speed 0 (9600 bps) or 1 (1200 bps). Note
716	 * we don't complain if the ICOM device is not there; but, if it
717	 * is, the radio better be working.
718	 */
719	temp = 0;
720#ifdef DEBUG
721	if (debug > 1)
722		temp = P_TRACE;
723#endif /* DEBUG */
724	if (peer->ttl != 0) {
725		if (peer->ttl & 0x80)
726			up->fd_icom = icom_init("/dev/icom", B1200,
727			    temp);
728		else
729			up->fd_icom = icom_init("/dev/icom", B9600,
730			    temp);
731	}
732	if (up->fd_icom > 0) {
733		if (wwv_qsy(peer, DCHAN) != 0) {
734			msyslog(LOG_NOTICE, "icom: radio not found");
735			close(up->fd_icom);
736			up->fd_icom = 0;
737		} else {
738			msyslog(LOG_NOTICE, "icom: autotune enabled");
739		}
740	}
741#endif /* ICOM */
742
743	/*
744	 * Let the games begin.
745	 */
746	wwv_newgame(peer);
747	return (1);
748}
749
750
751/*
752 * wwv_shutdown - shut down the clock
753 */
754static void
755wwv_shutdown(
756	int	unit,		/* instance number (not used) */
757	struct peer *peer	/* peer structure pointer */
758	)
759{
760	struct refclockproc *pp;
761	struct wwvunit *up;
762
763	pp = peer->procptr;
764	up = pp->unitptr;
765	if (up == NULL)
766		return;
767
768	io_closeclock(&pp->io);
769#ifdef ICOM
770	if (up->fd_icom > 0)
771		close(up->fd_icom);
772#endif /* ICOM */
773	free(up);
774}
775
776
777/*
778 * wwv_receive - receive data from the audio device
779 *
780 * This routine reads input samples and adjusts the logical clock to
781 * track the A/D sample clock by dropping or duplicating codec samples.
782 * It also controls the A/D signal level with an AGC loop to mimimize
783 * quantization noise and avoid overload.
784 */
785static void
786wwv_receive(
787	struct recvbuf *rbufp	/* receive buffer structure pointer */
788	)
789{
790	struct peer *peer;
791	struct refclockproc *pp;
792	struct wwvunit *up;
793
794	/*
795	 * Local variables
796	 */
797	double	sample;		/* codec sample */
798	u_char	*dpt;		/* buffer pointer */
799	int	bufcnt;		/* buffer counter */
800	l_fp	ltemp;
801
802	peer = rbufp->recv_peer;
803	pp = peer->procptr;
804	up = pp->unitptr;
805
806	/*
807	 * Main loop - read until there ain't no more. Note codec
808	 * samples are bit-inverted.
809	 */
810	DTOLFP((double)rbufp->recv_length / WWV_SEC, &ltemp);
811	L_SUB(&rbufp->recv_time, &ltemp);
812	up->timestamp = rbufp->recv_time;
813	dpt = rbufp->recv_buffer;
814	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
815		sample = up->comp[~*dpt++ & 0xff];
816
817		/*
818		 * Clip noise spikes greater than MAXAMP (6000) and
819		 * record the number of clips to be used later by the
820		 * AGC.
821		 */
822		if (sample > MAXAMP) {
823			sample = MAXAMP;
824			up->clipcnt++;
825		} else if (sample < -MAXAMP) {
826			sample = -MAXAMP;
827			up->clipcnt++;
828		}
829
830		/*
831		 * Variable frequency oscillator. The codec oscillator
832		 * runs at the nominal rate of 8000 samples per second,
833		 * or 125 us per sample. A frequency change of one unit
834		 * results in either duplicating or deleting one sample
835		 * per second, which results in a frequency change of
836		 * 125 PPM.
837		 */
838		up->phase += (up->freq + clock_codec) / WWV_SEC;
839		if (up->phase >= .5) {
840			up->phase -= 1.;
841		} else if (up->phase < -.5) {
842			up->phase += 1.;
843			wwv_rf(peer, sample);
844			wwv_rf(peer, sample);
845		} else {
846			wwv_rf(peer, sample);
847		}
848		L_ADD(&up->timestamp, &up->tick);
849	}
850
851	/*
852	 * Set the input port and monitor gain for the next buffer.
853	 */
854	if (pp->sloppyclockflag & CLK_FLAG2)
855		up->port = 2;
856	else
857		up->port = 1;
858	if (pp->sloppyclockflag & CLK_FLAG3)
859		up->mongain = MONGAIN;
860	else
861		up->mongain = 0;
862}
863
864
865/*
866 * wwv_poll - called by the transmit procedure
867 *
868 * This routine keeps track of status. If no offset samples have been
869 * processed during a poll interval, a timeout event is declared. If
870 * errors have have occurred during the interval, they are reported as
871 * well.
872 */
873static void
874wwv_poll(
875	int	unit,		/* instance number (not used) */
876	struct peer *peer	/* peer structure pointer */
877	)
878{
879	struct refclockproc *pp;
880	struct wwvunit *up;
881
882	pp = peer->procptr;
883	up = pp->unitptr;
884	if (up->errflg)
885		refclock_report(peer, up->errflg);
886	up->errflg = 0;
887	pp->polls++;
888}
889
890
891/*
892 * wwv_rf - process signals and demodulate to baseband
893 *
894 * This routine grooms and filters decompanded raw audio samples. The
895 * output signal is the 100-Hz filtered baseband data signal in
896 * quadrature phase. The routine also determines the minute synch epoch,
897 * as well as certain signal maxima, minima and related values.
898 *
899 * There are two 1-s ramps used by this program. Both count the 8000
900 * logical clock samples spanning exactly one second. The epoch ramp
901 * counts the samples starting at an arbitrary time. The rphase ramp
902 * counts the samples starting at the 5-ms second sync pulse found
903 * during the epoch ramp.
904 *
905 * There are two 1-m ramps used by this program. The mphase ramp counts
906 * the 480,000 logical clock samples spanning exactly one minute and
907 * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
908 * the minute starting at the 800-ms minute sync pulse found during the
909 * mphase ramp. The rsec ramp drives the seconds state machine to
910 * determine the bits and digits of the timecode.
911 *
912 * Demodulation operations are based on three synthesized quadrature
913 * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
914 * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
915 * matched filters for the data signal (170 ms at 100 Hz), WWV minute
916 * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
917 * at 1200 Hz). Two additional matched filters are switched in
918 * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
919 * WWVH second sync signal (6 cycles at 1200 Hz).
920 */
921static void
922wwv_rf(
923	struct peer *peer,	/* peerstructure pointer */
924	double isig		/* input signal */
925	)
926{
927	struct refclockproc *pp;
928	struct wwvunit *up;
929	struct sync *sp, *rp;
930
931	static double lpf[5];	/* 150-Hz lpf delay line */
932	double data;		/* lpf output */
933	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
934	double syncx;		/* bpf output */
935	static double mf[41];	/* 1000/1200-Hz mf delay line */
936	double mfsync;		/* mf output */
937
938	static int iptr;	/* data channel pointer */
939	static double ibuf[DATSIZ]; /* data I channel delay line */
940	static double qbuf[DATSIZ]; /* data Q channel delay line */
941
942	static int jptr;	/* sync channel pointer */
943	static int kptr;	/* tick channel pointer */
944
945	static int csinptr;	/* wwv channel phase */
946	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
947	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
948	static double ciamp;	/* wwv I channel amplitude */
949	static double cqamp;	/* wwv Q channel amplitude */
950
951	static double csibuf[TCKSIZ]; /* wwv I tick delay line */
952	static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
953	static double csiamp;	/* wwv I tick amplitude */
954	static double csqamp;	/* wwv Q tick amplitude */
955
956	static int hsinptr;	/* wwvh channel phase */
957	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
958	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
959	static double hiamp;	/* wwvh I channel amplitude */
960	static double hqamp;	/* wwvh Q channel amplitude */
961
962	static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
963	static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
964	static double hsiamp;	/* wwvh I tick amplitude */
965	static double hsqamp;	/* wwvh Q tick amplitude */
966
967	static double epobuf[WWV_SEC]; /* second sync comb filter */
968	static double epomax, nxtmax; /* second sync amplitude buffer */
969	static int epopos;	/* epoch second sync position buffer */
970
971	static int iniflg;	/* initialization flag */
972	int	epoch;		/* comb filter index */
973	double	dtemp;
974	int	i;
975
976	pp = peer->procptr;
977	up = pp->unitptr;
978
979	if (!iniflg) {
980		iniflg = 1;
981		memset((char *)lpf, 0, sizeof(lpf));
982		memset((char *)bpf, 0, sizeof(bpf));
983		memset((char *)mf, 0, sizeof(mf));
984		memset((char *)ibuf, 0, sizeof(ibuf));
985		memset((char *)qbuf, 0, sizeof(qbuf));
986		memset((char *)cibuf, 0, sizeof(cibuf));
987		memset((char *)cqbuf, 0, sizeof(cqbuf));
988		memset((char *)csibuf, 0, sizeof(csibuf));
989		memset((char *)csqbuf, 0, sizeof(csqbuf));
990		memset((char *)hibuf, 0, sizeof(hibuf));
991		memset((char *)hqbuf, 0, sizeof(hqbuf));
992		memset((char *)hsibuf, 0, sizeof(hsibuf));
993		memset((char *)hsqbuf, 0, sizeof(hsqbuf));
994		memset((char *)epobuf, 0, sizeof(epobuf));
995	}
996
997	/*
998	 * Baseband data demodulation. The 100-Hz subcarrier is
999	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1000	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1001	 * 600-Hz tones and most of the noise and voice modulation
1002	 * components.
1003	 *
1004	 * The subcarrier is transmitted 10 dB down from the carrier.
1005	 * The DGAIN parameter can be adjusted for this and to
1006	 * compensate for the radio audio response at 100 Hz.
1007	 *
1008	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
1009	 * passband ripple, -50 dB stopband ripple, phase delay 0.97 ms.
1010	 */
1011	data = (lpf[4] = lpf[3]) * 8.360961e-01;
1012	data += (lpf[3] = lpf[2]) * -3.481740e+00;
1013	data += (lpf[2] = lpf[1]) * 5.452988e+00;
1014	data += (lpf[1] = lpf[0]) * -3.807229e+00;
1015	lpf[0] = isig * DGAIN - data;
1016	data = lpf[0] * 3.281435e-03
1017	    + lpf[1] * -1.149947e-02
1018	    + lpf[2] * 1.654858e-02
1019	    + lpf[3] * -1.149947e-02
1020	    + lpf[4] * 3.281435e-03;
1021
1022	/*
1023	 * The 100-Hz data signal is demodulated using a pair of
1024	 * quadrature multipliers, matched filters and a phase lock
1025	 * loop. The I and Q quadrature data signals are produced by
1026	 * multiplying the filtered signal by 100-Hz sine and cosine
1027	 * signals, respectively. The signals are processed by 170-ms
1028	 * synchronous matched filters to produce the amplitude and
1029	 * phase signals used by the demodulator. The signals are scaled
1030	 * to produce unit energy at the maximum value.
1031	 */
1032	i = up->datapt;
1033	up->datapt = (up->datapt + IN100) % 80;
1034	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1035	up->irig -= ibuf[iptr];
1036	ibuf[iptr] = dtemp;
1037	up->irig += dtemp;
1038
1039	i = (i + 20) % 80;
1040	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1041	up->qrig -= qbuf[iptr];
1042	qbuf[iptr] = dtemp;
1043	up->qrig += dtemp;
1044	iptr = (iptr + 1) % DATSIZ;
1045
1046	/*
1047	 * Baseband sync demodulation. The 1000/1200 sync signals are
1048	 * extracted using a 600-Hz IIR bandpass filter. This removes
1049	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1050	 * tones and most of the noise and voice modulation components.
1051	 *
1052	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
1053	 * passband ripple, -50 dB stopband ripple, phase delay 0.91 ms.
1054	 */
1055	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
1056	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
1057	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
1058	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
1059	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
1060	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
1061	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
1062	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
1063	bpf[0] = isig - syncx;
1064	syncx = bpf[0] * 8.203628e-03
1065	    + bpf[1] * -2.375732e-02
1066	    + bpf[2] * 3.353214e-02
1067	    + bpf[3] * -4.080258e-02
1068	    + bpf[4] * 4.605479e-02
1069	    + bpf[5] * -4.080258e-02
1070	    + bpf[6] * 3.353214e-02
1071	    + bpf[7] * -2.375732e-02
1072	    + bpf[8] * 8.203628e-03;
1073
1074	/*
1075	 * The 1000/1200 sync signals are demodulated using a pair of
1076	 * quadrature multipliers and matched filters. However,
1077	 * synchronous demodulation at these frequencies is impractical,
1078	 * so only the signal amplitude is used. The I and Q quadrature
1079	 * sync signals are produced by multiplying the filtered signal
1080	 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
1081	 * respectively. The WWV and WWVH signals are processed by 800-
1082	 * ms synchronous matched filters and combined to produce the
1083	 * minute sync signal and detect which one (or both) the WWV or
1084	 * WWVH signal is present. The WWV and WWVH signals are also
1085	 * processed by 5-ms synchronous matched filters and combined to
1086	 * produce the second sync signal. The signals are scaled to
1087	 * produce unit energy at the maximum value.
1088	 *
1089	 * Note the master timing ramps, which run continuously. The
1090	 * minute counter (mphase) counts the samples in the minute,
1091	 * while the second counter (epoch) counts the samples in the
1092	 * second.
1093	 */
1094	up->mphase = (up->mphase + 1) % WWV_MIN;
1095	epoch = up->mphase % WWV_SEC;
1096
1097	/*
1098	 * WWV
1099	 */
1100	i = csinptr;
1101	csinptr = (csinptr + IN1000) % 80;
1102
1103	dtemp = sintab[i] * syncx / (MS / 2.);
1104	ciamp -= cibuf[jptr];
1105	cibuf[jptr] = dtemp;
1106	ciamp += dtemp;
1107	csiamp -= csibuf[kptr];
1108	csibuf[kptr] = dtemp;
1109	csiamp += dtemp;
1110
1111	i = (i + 20) % 80;
1112	dtemp = sintab[i] * syncx / (MS / 2.);
1113	cqamp -= cqbuf[jptr];
1114	cqbuf[jptr] = dtemp;
1115	cqamp += dtemp;
1116	csqamp -= csqbuf[kptr];
1117	csqbuf[kptr] = dtemp;
1118	csqamp += dtemp;
1119
1120	sp = &up->mitig[up->achan].wwv;
1121	sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
1122	if (!(up->status & MSYNC))
1123		wwv_qrz(peer, sp, (int)(pp->fudgetime1 * WWV_SEC));
1124
1125	/*
1126	 * WWVH
1127	 */
1128	i = hsinptr;
1129	hsinptr = (hsinptr + IN1200) % 80;
1130
1131	dtemp = sintab[i] * syncx / (MS / 2.);
1132	hiamp -= hibuf[jptr];
1133	hibuf[jptr] = dtemp;
1134	hiamp += dtemp;
1135	hsiamp -= hsibuf[kptr];
1136	hsibuf[kptr] = dtemp;
1137	hsiamp += dtemp;
1138
1139	i = (i + 20) % 80;
1140	dtemp = sintab[i] * syncx / (MS / 2.);
1141	hqamp -= hqbuf[jptr];
1142	hqbuf[jptr] = dtemp;
1143	hqamp += dtemp;
1144	hsqamp -= hsqbuf[kptr];
1145	hsqbuf[kptr] = dtemp;
1146	hsqamp += dtemp;
1147
1148	rp = &up->mitig[up->achan].wwvh;
1149	rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
1150	if (!(up->status & MSYNC))
1151		wwv_qrz(peer, rp, (int)(pp->fudgetime2 * WWV_SEC));
1152	jptr = (jptr + 1) % SYNSIZ;
1153	kptr = (kptr + 1) % TCKSIZ;
1154
1155	/*
1156	 * The following section is called once per minute. It does
1157	 * housekeeping and timeout functions and empties the dustbins.
1158	 */
1159	if (up->mphase == 0) {
1160		up->watch++;
1161		if (!(up->status & MSYNC)) {
1162
1163			/*
1164			 * If minute sync has not been acquired before
1165			 * ACQSN timeout (6 min), or if no signal is
1166			 * heard, the program cycles to the next
1167			 * frequency and tries again.
1168			 */
1169			if (!wwv_newchan(peer))
1170				up->watch = 0;
1171		} else {
1172
1173			/*
1174			 * If the leap bit is set, set the minute epoch
1175			 * back one second so the station processes
1176			 * don't miss a beat.
1177			 */
1178			if (up->status & LEPSEC) {
1179				up->mphase -= WWV_SEC;
1180				if (up->mphase < 0)
1181					up->mphase += WWV_MIN;
1182			}
1183		}
1184	}
1185
1186	/*
1187	 * When the channel metric reaches threshold and the second
1188	 * counter matches the minute epoch within the second, the
1189	 * driver has synchronized to the station. The second number is
1190	 * the remaining seconds until the next minute epoch, while the
1191	 * sync epoch is zero. Watch out for the first second; if
1192	 * already synchronized to the second, the buffered sync epoch
1193	 * must be set.
1194	 *
1195	 * Note the guard interval is 200 ms; if for some reason the
1196	 * clock drifts more than that, it might wind up in the wrong
1197	 * second. If the maximum frequency error is not more than about
1198	 * 1 PPM, the clock can go as much as two days while still in
1199	 * the same second.
1200	 */
1201	if (up->status & MSYNC) {
1202		wwv_epoch(peer);
1203	} else if (up->sptr != NULL) {
1204		sp = up->sptr;
1205		if (sp->metric >= TTHR && epoch == sp->mepoch % WWV_SEC)
1206 		    {
1207			up->rsec = (60 - sp->mepoch / WWV_SEC) % 60;
1208			up->rphase = 0;
1209			up->status |= MSYNC;
1210			up->watch = 0;
1211			if (!(up->status & SSYNC))
1212				up->repoch = up->yepoch = epoch;
1213			else
1214				up->repoch = up->yepoch;
1215
1216		}
1217	}
1218
1219	/*
1220	 * The second sync pulse is extracted using 5-ms (40 sample) FIR
1221	 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
1222	 * pulse is used for the most precise synchronization, since if
1223	 * provides a resolution of one sample (125 us). The filters run
1224	 * only if the station has been reliably determined.
1225	 */
1226	if (up->status & SELV)
1227		mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
1228		    TCKCYC;
1229	else if (up->status & SELH)
1230		mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
1231		    TCKCYC;
1232	else
1233		mfsync = 0;
1234
1235	/*
1236	 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
1237	 * filter. Correct for the FIR matched filter delay, which is 5
1238	 * ms for both the WWV and WWVH filters, and also for the
1239	 * propagation delay. Once each second look for second sync. If
1240	 * not in minute sync, fiddle the codec gain. Note the SNR is
1241	 * computed from the maximum sample and the envelope of the
1242	 * sample 6 ms before it, so if we slip more than a cycle the
1243	 * SNR should plummet. The signal is scaled to produce unit
1244	 * energy at the maximum value.
1245	 */
1246	dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
1247	    up->avgint);
1248	if (dtemp > epomax) {
1249		int	j;
1250
1251		epomax = dtemp;
1252		epopos = epoch;
1253		j = epoch - 6 * MS;
1254		if (j < 0)
1255			j += WWV_SEC;
1256		nxtmax = fabs(epobuf[j]);
1257	}
1258	if (epoch == 0) {
1259		up->epomax = epomax;
1260		up->eposnr = wwv_snr(epomax, nxtmax);
1261		epopos -= TCKCYC * MS;
1262		if (epopos < 0)
1263			epopos += WWV_SEC;
1264		wwv_endpoc(peer, epopos);
1265		if (!(up->status & SSYNC))
1266			up->alarm |= SYNERR;
1267		epomax = 0;
1268		if (!(up->status & MSYNC))
1269			wwv_gain(peer);
1270	}
1271}
1272
1273
1274/*
1275 * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1276 *
1277 * This routine implements a virtual station process used to acquire
1278 * minute sync and to mitigate among the ten frequency and station
1279 * combinations. During minute sync acquisition the process probes each
1280 * frequency and station in turn for the minute pulse, which
1281 * involves searching through the entire 480,000-sample minute. The
1282 * process finds the maximum signal and RMS noise plus signal. Then, the
1283 * actual noise is determined by subtracting the energy of the matched
1284 * filter.
1285 *
1286 * Students of radar receiver technology will discover this algorithm
1287 * amounts to a range-gate discriminator. A valid pulse must have peak
1288 * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
1289 * difference between the current and previous epoch must be less than
1290 * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
1291 * into the second, so the timing is retarded to the previous second
1292 * epoch.
1293 */
1294static void
1295wwv_qrz(
1296	struct peer *peer,	/* peer structure pointer */
1297	struct sync *sp,	/* sync channel structure */
1298	int	pdelay		/* propagation delay (samples) */
1299	)
1300{
1301	struct refclockproc *pp;
1302	struct wwvunit *up;
1303	char	tbuf[TBUF];	/* monitor buffer */
1304	long	epoch;
1305
1306	pp = peer->procptr;
1307	up = pp->unitptr;
1308
1309	/*
1310	 * Find the sample with peak amplitude, which defines the minute
1311	 * epoch. Accumulate all samples to determine the total noise
1312	 * energy.
1313	 */
1314	epoch = up->mphase - pdelay - SYNSIZ;
1315	if (epoch < 0)
1316		epoch += WWV_MIN;
1317	if (sp->amp > sp->maxeng) {
1318		sp->maxeng = sp->amp;
1319		sp->pos = epoch;
1320	}
1321	sp->noieng += sp->amp;
1322
1323	/*
1324	 * At the end of the minute, determine the epoch of the minute
1325	 * sync pulse, as well as the difference between the current and
1326	 * previous epoches due to the intrinsic frequency error plus
1327	 * jitter. When calculating the SNR, subtract the pulse energy
1328	 * from the total noise energy and then normalize.
1329	 */
1330	if (up->mphase == 0) {
1331		sp->synmax = sp->maxeng;
1332		sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
1333		    sp->synmax) / WWV_MIN);
1334		if (sp->count == 0)
1335			sp->lastpos = sp->pos;
1336		epoch = (sp->pos - sp->lastpos) % WWV_MIN;
1337		sp->reach <<= 1;
1338		if (sp->reach & (1 << AMAX))
1339			sp->count--;
1340		if (sp->synmax > ATHR && sp->synsnr > ASNR) {
1341			if (labs(epoch) < AWND * MS) {
1342				sp->reach |= 1;
1343				sp->count++;
1344				sp->mepoch = sp->lastpos = sp->pos;
1345			} else if (sp->count == 1) {
1346				sp->lastpos = sp->pos;
1347			}
1348		}
1349		if (up->watch > ACQSN)
1350			sp->metric = 0;
1351		else
1352			sp->metric = wwv_metric(sp);
1353		if (pp->sloppyclockflag & CLK_FLAG4) {
1354			snprintf(tbuf, sizeof(tbuf),
1355			    "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %ld %ld",
1356			    up->status, up->gain, sp->refid,
1357			    sp->reach & 0xffff, sp->metric, sp->synmax,
1358			    sp->synsnr, sp->pos % WWV_SEC, epoch);
1359			record_clock_stats(&peer->srcadr, tbuf);
1360#ifdef DEBUG
1361			if (debug)
1362				printf("%s\n", tbuf);
1363#endif /* DEBUG */
1364		}
1365		sp->maxeng = sp->noieng = 0;
1366	}
1367}
1368
1369
1370/*
1371 * wwv_endpoc - identify and acquire second sync pulse
1372 *
1373 * This routine is called at the end of the second sync interval. It
1374 * determines the second sync epoch position within the second and
1375 * disciplines the sample clock using a frequency-lock loop (FLL).
1376 *
1377 * Second sync is determined in the RF input routine as the maximum
1378 * over all 8000 samples in the second comb filter. To assure accurate
1379 * and reliable time and frequency discipline, this routine performs a
1380 * great deal of heavy-handed heuristic data filtering and grooming.
1381 */
1382static void
1383wwv_endpoc(
1384	struct peer *peer,	/* peer structure pointer */
1385	int epopos		/* epoch max position */
1386	)
1387{
1388	struct refclockproc *pp;
1389	struct wwvunit *up;
1390	static int epoch_mf[3]; /* epoch median filter */
1391	static int tepoch;	/* current second epoch */
1392 	static int xepoch;	/* last second epoch */
1393 	static int zepoch;	/* last run epoch */
1394	static int zcount;	/* last run end time */
1395	static int scount;	/* seconds counter */
1396	static int syncnt;	/* run length counter */
1397	static int maxrun;	/* longest run length */
1398	static int mepoch;	/* longest run end epoch */
1399	static int mcount;	/* longest run end time */
1400	static int avgcnt;	/* averaging interval counter */
1401	static int avginc;	/* averaging ratchet */
1402	static int iniflg;	/* initialization flag */
1403	char tbuf[TBUF];		/* monitor buffer */
1404	double dtemp;
1405	int tmp2;
1406
1407	pp = peer->procptr;
1408	up = pp->unitptr;
1409	if (!iniflg) {
1410		iniflg = 1;
1411		ZERO(epoch_mf);
1412	}
1413
1414	/*
1415	 * If the signal amplitude or SNR fall below thresholds, dim the
1416	 * second sync lamp and wait for hotter ions. If no stations are
1417	 * heard, we are either in a probe cycle or the ions are really
1418	 * cold.
1419	 */
1420	scount++;
1421	if (up->epomax < STHR || up->eposnr < SSNR) {
1422		up->status &= ~(SSYNC | FGATE);
1423		avgcnt = syncnt = maxrun = 0;
1424		return;
1425	}
1426	if (!(up->status & (SELV | SELH)))
1427		return;
1428
1429	/*
1430	 * A three-stage median filter is used to help denoise the
1431	 * second sync pulse. The median sample becomes the candidate
1432	 * epoch.
1433	 */
1434	epoch_mf[2] = epoch_mf[1];
1435	epoch_mf[1] = epoch_mf[0];
1436	epoch_mf[0] = epopos;
1437	if (epoch_mf[0] > epoch_mf[1]) {
1438		if (epoch_mf[1] > epoch_mf[2])
1439			tepoch = epoch_mf[1];	/* 0 1 2 */
1440		else if (epoch_mf[2] > epoch_mf[0])
1441			tepoch = epoch_mf[0];	/* 2 0 1 */
1442		else
1443			tepoch = epoch_mf[2];	/* 0 2 1 */
1444	} else {
1445		if (epoch_mf[1] < epoch_mf[2])
1446			tepoch = epoch_mf[1];	/* 2 1 0 */
1447		else if (epoch_mf[2] < epoch_mf[0])
1448			tepoch = epoch_mf[0];	/* 1 0 2 */
1449		else
1450			tepoch = epoch_mf[2];	/* 1 2 0 */
1451	}
1452
1453
1454	/*
1455	 * If the epoch candidate is the same as the last one, increment
1456	 * the run counter. If not, save the length, epoch and end
1457	 * time of the current run for use later and reset the counter.
1458	 * The epoch is considered valid if the run is at least SCMP
1459	 * (10) s, the minute is synchronized and the interval since the
1460	 * last epoch  is not greater than the averaging interval. Thus,
1461	 * after a long absence, the program will wait a full averaging
1462	 * interval while the comb filter charges up and noise
1463	 * dissapates..
1464	 */
1465	tmp2 = (tepoch - xepoch) % WWV_SEC;
1466	if (tmp2 == 0) {
1467		syncnt++;
1468		if (syncnt > SCMP && up->status & MSYNC && (up->status &
1469		    FGATE || scount - zcount <= up->avgint)) {
1470			up->status |= SSYNC;
1471			up->yepoch = tepoch;
1472		}
1473	} else if (syncnt >= maxrun) {
1474		maxrun = syncnt;
1475		mcount = scount;
1476		mepoch = xepoch;
1477		syncnt = 0;
1478	}
1479	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
1480	    MSYNC)) {
1481		snprintf(tbuf, sizeof(tbuf),
1482		    "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
1483		    up->status, up->gain, tepoch, up->epomax,
1484		    up->eposnr, tmp2, avgcnt, syncnt,
1485		    maxrun);
1486		record_clock_stats(&peer->srcadr, tbuf);
1487#ifdef DEBUG
1488		if (debug)
1489			printf("%s\n", tbuf);
1490#endif /* DEBUG */
1491	}
1492	avgcnt++;
1493	if (avgcnt < up->avgint) {
1494		xepoch = tepoch;
1495		return;
1496	}
1497
1498	/*
1499	 * The sample clock frequency is disciplined using a first-order
1500	 * feedback loop with time constant consistent with the Allan
1501	 * intercept of typical computer clocks. During each averaging
1502	 * interval the candidate epoch at the end of the longest run is
1503	 * determined. If the longest run is zero, all epoches in the
1504	 * interval are different, so the candidate epoch is the current
1505	 * epoch. The frequency update is computed from the candidate
1506	 * epoch difference (125-us units) and time difference (seconds)
1507	 * between updates.
1508	 */
1509	if (syncnt >= maxrun) {
1510		maxrun = syncnt;
1511		mcount = scount;
1512		mepoch = xepoch;
1513	}
1514	xepoch = tepoch;
1515	if (maxrun == 0) {
1516		mepoch = tepoch;
1517		mcount = scount;
1518	}
1519
1520	/*
1521	 * The master clock runs at the codec sample frequency of 8000
1522	 * Hz, so the intrinsic time resolution is 125 us. The frequency
1523	 * resolution ranges from 18 PPM at the minimum averaging
1524	 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
1525	 * s. An offset update is determined at the end of the longest
1526	 * run in each averaging interval. The frequency adjustment is
1527	 * computed from the difference between offset updates and the
1528	 * interval between them.
1529	 *
1530	 * The maximum frequency adjustment ranges from 187 PPM at the
1531	 * minimum interval to 1.5 PPM at the maximum. If the adjustment
1532	 * exceeds the maximum, the update is discarded and the
1533	 * hysteresis counter is decremented. Otherwise, the frequency
1534	 * is incremented by the adjustment, but clamped to the maximum
1535	 * 187.5 PPM. If the update is less than half the maximum, the
1536	 * hysteresis counter is incremented. If the counter increments
1537	 * to +3, the averaging interval is doubled and the counter set
1538	 * to zero; if it decrements to -3, the interval is halved and
1539	 * the counter set to zero.
1540	 */
1541	dtemp = (mepoch - zepoch) % WWV_SEC;
1542	if (up->status & FGATE) {
1543		if (fabs(dtemp) < MAXFREQ * MINAVG) {
1544			up->freq += (dtemp / 2.) / ((mcount - zcount) *
1545			    FCONST);
1546			if (up->freq > MAXFREQ)
1547				up->freq = MAXFREQ;
1548			else if (up->freq < -MAXFREQ)
1549				up->freq = -MAXFREQ;
1550			if (fabs(dtemp) < MAXFREQ * MINAVG / 2.) {
1551				if (avginc < 3) {
1552					avginc++;
1553				} else {
1554					if (up->avgint < MAXAVG) {
1555						up->avgint <<= 1;
1556						avginc = 0;
1557					}
1558				}
1559			}
1560		} else {
1561			if (avginc > -3) {
1562				avginc--;
1563			} else {
1564				if (up->avgint > MINAVG) {
1565					up->avgint >>= 1;
1566					avginc = 0;
1567				}
1568			}
1569		}
1570	}
1571	if (pp->sloppyclockflag & CLK_FLAG4) {
1572		snprintf(tbuf, sizeof(tbuf),
1573		    "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
1574		    up->status, up->epomax, up->eposnr, mepoch,
1575		    up->avgint, maxrun, mcount - zcount, dtemp,
1576		    up->freq * 1e6 / WWV_SEC);
1577		record_clock_stats(&peer->srcadr, tbuf);
1578#ifdef DEBUG
1579		if (debug)
1580			printf("%s\n", tbuf);
1581#endif /* DEBUG */
1582	}
1583
1584	/*
1585	 * This is a valid update; set up for the next interval.
1586	 */
1587	up->status |= FGATE;
1588	zepoch = mepoch;
1589	zcount = mcount;
1590	avgcnt = syncnt = maxrun = 0;
1591}
1592
1593
1594/*
1595 * wwv_epoch - epoch scanner
1596 *
1597 * This routine extracts data signals from the 100-Hz subcarrier. It
1598 * scans the receiver second epoch to determine the signal amplitudes
1599 * and pulse timings. Receiver synchronization is determined by the
1600 * minute sync pulse detected in the wwv_rf() routine and the second
1601 * sync pulse detected in the wwv_epoch() routine. The transmitted
1602 * signals are delayed by the propagation delay, receiver delay and
1603 * filter delay of this program. Delay corrections are introduced
1604 * separately for WWV and WWVH.
1605 *
1606 * Most communications radios use a highpass filter in the audio stages,
1607 * which can do nasty things to the subcarrier phase relative to the
1608 * sync pulses. Therefore, the data subcarrier reference phase is
1609 * disciplined using the hardlimited quadrature-phase signal sampled at
1610 * the same time as the in-phase signal. The phase tracking loop uses
1611 * phase adjustments of plus-minus one sample (125 us).
1612 */
1613static void
1614wwv_epoch(
1615	struct peer *peer	/* peer structure pointer */
1616	)
1617{
1618	struct refclockproc *pp;
1619	struct wwvunit *up;
1620	struct chan *cp;
1621	static double sigmin, sigzer, sigone, engmax, engmin;
1622
1623	pp = peer->procptr;
1624	up = pp->unitptr;
1625
1626	/*
1627	 * Find the maximum minute sync pulse energy for both the
1628	 * WWV and WWVH stations. This will be used later for channel
1629	 * and station mitigation. Also set the seconds epoch at 800 ms
1630	 * well before the end of the second to make sure we never set
1631	 * the epoch backwards.
1632	 */
1633	cp = &up->mitig[up->achan];
1634	if (cp->wwv.amp > cp->wwv.syneng)
1635		cp->wwv.syneng = cp->wwv.amp;
1636	if (cp->wwvh.amp > cp->wwvh.syneng)
1637		cp->wwvh.syneng = cp->wwvh.amp;
1638	if (up->rphase == 800 * MS)
1639		up->repoch = up->yepoch;
1640
1641	/*
1642	 * Use the signal amplitude at epoch 15 ms as the noise floor.
1643	 * This gives a guard time of +-15 ms from the beginning of the
1644	 * second until the second pulse rises at 30 ms. There is a
1645	 * compromise here; we want to delay the sample as long as
1646	 * possible to give the radio time to change frequency and the
1647	 * AGC to stabilize, but as early as possible if the second
1648	 * epoch is not exact.
1649	 */
1650	if (up->rphase == 15 * MS)
1651		sigmin = sigzer = sigone = up->irig;
1652
1653	/*
1654	 * Latch the data signal at 200 ms. Keep this around until the
1655	 * end of the second. Use the signal energy as the peak to
1656	 * compute the SNR. Use the Q sample to adjust the 100-Hz
1657	 * reference oscillator phase.
1658	 */
1659	if (up->rphase == 200 * MS) {
1660		sigzer = up->irig;
1661		engmax = sqrt(up->irig * up->irig + up->qrig *
1662		    up->qrig);
1663		up->datpha = up->qrig / up->avgint;
1664		if (up->datpha >= 0) {
1665			up->datapt++;
1666			if (up->datapt >= 80)
1667				up->datapt -= 80;
1668		} else {
1669			up->datapt--;
1670			if (up->datapt < 0)
1671				up->datapt += 80;
1672		}
1673	}
1674
1675
1676	/*
1677	 * Latch the data signal at 500 ms. Keep this around until the
1678	 * end of the second.
1679	 */
1680	else if (up->rphase == 500 * MS)
1681		sigone = up->irig;
1682
1683	/*
1684	 * At the end of the second crank the clock state machine and
1685	 * adjust the codec gain. Note the epoch is buffered from the
1686	 * center of the second in order to avoid jitter while the
1687	 * seconds synch is diddling the epoch. Then, determine the true
1688	 * offset and update the median filter in the driver interface.
1689	 *
1690	 * Use the energy at the end of the second as the noise to
1691	 * compute the SNR for the data pulse. This gives a better
1692	 * measurement than the beginning of the second, especially when
1693	 * returning from the probe channel. This gives a guard time of
1694	 * 30 ms from the decay of the longest pulse to the rise of the
1695	 * next pulse.
1696	 */
1697	up->rphase++;
1698	if (up->mphase % WWV_SEC == up->repoch) {
1699		up->status &= ~(DGATE | BGATE);
1700		engmin = sqrt(up->irig * up->irig + up->qrig *
1701		    up->qrig);
1702		up->datsig = engmax;
1703		up->datsnr = wwv_snr(engmax, engmin);
1704
1705		/*
1706		 * If the amplitude or SNR is below threshold, average a
1707		 * 0 in the the integrators; otherwise, average the
1708		 * bipolar signal. This is done to avoid noise polution.
1709		 */
1710		if (engmax < DTHR || up->datsnr < DSNR) {
1711			up->status |= DGATE;
1712			wwv_rsec(peer, 0);
1713		} else {
1714			sigzer -= sigone;
1715			sigone -= sigmin;
1716			wwv_rsec(peer, sigone - sigzer);
1717		}
1718		if (up->status & (DGATE | BGATE))
1719			up->errcnt++;
1720		if (up->errcnt > MAXERR)
1721			up->alarm |= LOWERR;
1722		wwv_gain(peer);
1723		cp = &up->mitig[up->achan];
1724		cp->wwv.syneng = 0;
1725		cp->wwvh.syneng = 0;
1726		up->rphase = 0;
1727	}
1728}
1729
1730
1731/*
1732 * wwv_rsec - process receiver second
1733 *
1734 * This routine is called at the end of each receiver second to
1735 * implement the per-second state machine. The machine assembles BCD
1736 * digit bits, decodes miscellaneous bits and dances the leap seconds.
1737 *
1738 * Normally, the minute has 60 seconds numbered 0-59. If the leap
1739 * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1740 * for leap years) or 31 December (day 365 or 366 for leap years) is
1741 * augmented by one second numbered 60. This is accomplished by
1742 * extending the minute interval by one second and teaching the state
1743 * machine to ignore it.
1744 */
1745static void
1746wwv_rsec(
1747	struct peer *peer,	/* peer structure pointer */
1748	double bit
1749	)
1750{
1751	static int iniflg;	/* initialization flag */
1752	static double bcddld[4]; /* BCD data bits */
1753	static double bitvec[61]; /* bit integrator for misc bits */
1754	struct refclockproc *pp;
1755	struct wwvunit *up;
1756	struct chan *cp;
1757	struct sync *sp, *rp;
1758	char	tbuf[TBUF];	/* monitor buffer */
1759	int	sw, arg, nsec;
1760
1761	pp = peer->procptr;
1762	up = pp->unitptr;
1763	if (!iniflg) {
1764		iniflg = 1;
1765		ZERO(bitvec);
1766	}
1767
1768	/*
1769	 * The bit represents the probability of a hit on zero (negative
1770	 * values), a hit on one (positive values) or a miss (zero
1771	 * value). The likelihood vector is the exponential average of
1772	 * these probabilities. Only the bits of this vector
1773	 * corresponding to the miscellaneous bits of the timecode are
1774	 * used, but it's easier to do them all. After that, crank the
1775	 * seconds state machine.
1776	 */
1777	nsec = up->rsec;
1778	up->rsec++;
1779	bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
1780	sw = progx[nsec].sw;
1781	arg = progx[nsec].arg;
1782
1783	/*
1784	 * The minute state machine. Fly off to a particular section as
1785	 * directed by the transition matrix and second number.
1786	 */
1787	switch (sw) {
1788
1789	/*
1790	 * Ignore this second.
1791	 */
1792	case IDLE:			/* 9, 45-49 */
1793		break;
1794
1795	/*
1796	 * Probe channel stuff
1797	 *
1798	 * The WWV/H format contains data pulses in second 59 (position
1799	 * identifier) and second 1, but not in second 0. The minute
1800	 * sync pulse is contained in second 0. At the end of second 58
1801	 * QSY to the probe channel, which rotates in turn over all
1802	 * WWV/H frequencies. At the end of second 0 measure the minute
1803	 * sync pulse. At the end of second 1 measure the data pulse and
1804	 * QSY back to the data channel. Note that the actions commented
1805	 * here happen at the end of the second numbered as shown.
1806	 *
1807	 * At the end of second 0 save the minute sync amplitude latched
1808	 * at 800 ms as the signal later used to calculate the SNR.
1809	 */
1810	case SYNC2:			/* 0 */
1811		cp = &up->mitig[up->achan];
1812		cp->wwv.synmax = cp->wwv.syneng;
1813		cp->wwvh.synmax = cp->wwvh.syneng;
1814		break;
1815
1816	/*
1817	 * At the end of second 1 use the minute sync amplitude latched
1818	 * at 800 ms as the noise to calculate the SNR. If the minute
1819	 * sync pulse and SNR are above thresholds and the data pulse
1820	 * amplitude and SNR are above thresolds, shift a 1 into the
1821	 * station reachability register; otherwise, shift a 0. The
1822	 * number of 1 bits in the last six intervals is a component of
1823	 * the channel metric computed by the wwv_metric() routine.
1824	 * Finally, QSY back to the data channel.
1825	 */
1826	case SYNC3:			/* 1 */
1827		cp = &up->mitig[up->achan];
1828
1829		/*
1830		 * WWV station
1831		 */
1832		sp = &cp->wwv;
1833		sp->synsnr = wwv_snr(sp->synmax, sp->amp);
1834		sp->reach <<= 1;
1835		if (sp->reach & (1 << AMAX))
1836			sp->count--;
1837		if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
1838		    !(up->status & (DGATE | BGATE))) {
1839			sp->reach |= 1;
1840			sp->count++;
1841		}
1842		sp->metric = wwv_metric(sp);
1843
1844		/*
1845		 * WWVH station
1846		 */
1847		rp = &cp->wwvh;
1848		rp->synsnr = wwv_snr(rp->synmax, rp->amp);
1849		rp->reach <<= 1;
1850		if (rp->reach & (1 << AMAX))
1851			rp->count--;
1852		if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
1853		    !(up->status & (DGATE | BGATE))) {
1854			rp->reach |= 1;
1855			rp->count++;
1856		}
1857		rp->metric = wwv_metric(rp);
1858		if (pp->sloppyclockflag & CLK_FLAG4) {
1859			snprintf(tbuf, sizeof(tbuf),
1860			    "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
1861			    up->status, up->gain, up->yepoch,
1862			    up->epomax, up->eposnr, up->datsig,
1863			    up->datsnr,
1864			    sp->refid, sp->reach & 0xffff,
1865			    sp->metric, sp->synmax, sp->synsnr,
1866			    rp->refid, rp->reach & 0xffff,
1867			    rp->metric, rp->synmax, rp->synsnr);
1868			record_clock_stats(&peer->srcadr, tbuf);
1869#ifdef DEBUG
1870			if (debug)
1871				printf("%s\n", tbuf);
1872#endif /* DEBUG */
1873		}
1874		up->errcnt = up->digcnt = up->alarm = 0;
1875
1876		/*
1877		 * If synchronized to a station, restart if no stations
1878		 * have been heard within the PANIC timeout (2 days). If
1879		 * not and the minute digit has been found, restart if
1880		 * not synchronized withing the SYNCH timeout (40 m). If
1881		 * not, restart if the unit digit has not been found
1882		 * within the DATA timeout (15 m).
1883		 */
1884		if (up->status & INSYNC) {
1885			if (up->watch > PANIC) {
1886				wwv_newgame(peer);
1887				return;
1888			}
1889		} else if (up->status & DSYNC) {
1890			if (up->watch > SYNCH) {
1891				wwv_newgame(peer);
1892				return;
1893			}
1894		} else if (up->watch > DATA) {
1895			wwv_newgame(peer);
1896			return;
1897		}
1898		wwv_newchan(peer);
1899		break;
1900
1901	/*
1902	 * Save the bit probability in the BCD data vector at the index
1903	 * given by the argument. Bits not used in the digit are forced
1904	 * to zero.
1905	 */
1906	case COEF1:			/* 4-7 */
1907		bcddld[arg] = bit;
1908		break;
1909
1910	case COEF:			/* 10-13, 15-17, 20-23, 25-26,
1911					   30-33, 35-38, 40-41, 51-54 */
1912		if (up->status & DSYNC)
1913			bcddld[arg] = bit;
1914		else
1915			bcddld[arg] = 0;
1916		break;
1917
1918	case COEF2:			/* 18, 27-28, 42-43 */
1919		bcddld[arg] = 0;
1920		break;
1921
1922	/*
1923	 * Correlate coefficient vector with each valid digit vector and
1924	 * save in decoding matrix. We step through the decoding matrix
1925	 * digits correlating each with the coefficients and saving the
1926	 * greatest and the next lower for later SNR calculation.
1927	 */
1928	case DECIM2:			/* 29 */
1929		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
1930		break;
1931
1932	case DECIM3:			/* 44 */
1933		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
1934		break;
1935
1936	case DECIM6:			/* 19 */
1937		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
1938		break;
1939
1940	case DECIM9:			/* 8, 14, 24, 34, 39 */
1941		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
1942		break;
1943
1944	/*
1945	 * Miscellaneous bits. If above the positive threshold, declare
1946	 * 1; if below the negative threshold, declare 0; otherwise
1947	 * raise the BGATE bit. The design is intended to avoid
1948	 * integrating noise under low SNR conditions.
1949	 */
1950	case MSC20:			/* 55 */
1951		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
1952		/* fall through */
1953
1954	case MSCBIT:			/* 2-3, 50, 56-57 */
1955		if (bitvec[nsec] > BTHR) {
1956			if (!(up->misc & arg))
1957				up->alarm |= CMPERR;
1958			up->misc |= arg;
1959		} else if (bitvec[nsec] < -BTHR) {
1960			if (up->misc & arg)
1961				up->alarm |= CMPERR;
1962			up->misc &= ~arg;
1963		} else {
1964			up->status |= BGATE;
1965		}
1966		break;
1967
1968	/*
1969	 * Save the data channel gain, then QSY to the probe channel and
1970	 * dim the seconds comb filters. The www_newchan() routine will
1971	 * light them back up.
1972	 */
1973	case MSC21:			/* 58 */
1974		if (bitvec[nsec] > BTHR) {
1975			if (!(up->misc & arg))
1976				up->alarm |= CMPERR;
1977			up->misc |= arg;
1978		} else if (bitvec[nsec] < -BTHR) {
1979			if (up->misc & arg)
1980				up->alarm |= CMPERR;
1981			up->misc &= ~arg;
1982		} else {
1983			up->status |= BGATE;
1984		}
1985		up->status &= ~(SELV | SELH);
1986#ifdef ICOM
1987		if (up->fd_icom > 0) {
1988			up->schan = (up->schan + 1) % NCHAN;
1989			wwv_qsy(peer, up->schan);
1990		} else {
1991			up->mitig[up->achan].gain = up->gain;
1992		}
1993#else
1994		up->mitig[up->achan].gain = up->gain;
1995#endif /* ICOM */
1996		break;
1997
1998	/*
1999	 * The endgames
2000	 *
2001	 * During second 59 the receiver and codec AGC are settling
2002	 * down, so the data pulse is unusable as quality metric. If
2003	 * LEPSEC is set on the last minute of 30 June or 31 December,
2004	 * the transmitter and receiver insert an extra second (60) in
2005	 * the timescale and the minute sync repeats the second. Once
2006	 * leaps occurred at intervals of about 18 months, but the last
2007	 * leap before the most recent leap in 1995 was in  1998.
2008	 */
2009	case MIN1:			/* 59 */
2010		if (up->status & LEPSEC)
2011			break;
2012
2013		/* fall through */
2014
2015	case MIN2:			/* 60 */
2016		up->status &= ~LEPSEC;
2017		wwv_tsec(peer);
2018		up->rsec = 0;
2019		wwv_clock(peer);
2020		break;
2021	}
2022	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2023	    DSYNC)) {
2024		snprintf(tbuf, sizeof(tbuf),
2025		    "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
2026		    nsec, up->status, up->gain, up->yepoch, up->epomax,
2027		    up->eposnr, up->datsig, up->datsnr, bit);
2028		record_clock_stats(&peer->srcadr, tbuf);
2029#ifdef DEBUG
2030		if (debug)
2031			printf("%s\n", tbuf);
2032#endif /* DEBUG */
2033	}
2034	pp->disp += AUDIO_PHI;
2035}
2036
2037/*
2038 * The radio clock is set if the alarm bits are all zero. After that,
2039 * the time is considered valid if the second sync bit is lit. It should
2040 * not be a surprise, especially if the radio is not tunable, that
2041 * sometimes no stations are above the noise and the integrators
2042 * discharge below the thresholds. We assume that, after a day of signal
2043 * loss, the minute sync epoch will be in the same second. This requires
2044 * the codec frequency be accurate within 6 PPM. Practical experience
2045 * shows the frequency typically within 0.1 PPM, so after a day of
2046 * signal loss, the time should be within 8.6 ms..
2047 */
2048static void
2049wwv_clock(
2050	struct peer *peer	/* peer unit pointer */
2051	)
2052{
2053	struct refclockproc *pp;
2054	struct wwvunit *up;
2055	l_fp	offset;		/* offset in NTP seconds */
2056
2057	pp = peer->procptr;
2058	up = pp->unitptr;
2059	if (!(up->status & SSYNC))
2060		up->alarm |= SYNERR;
2061	if (up->digcnt < 9)
2062		up->alarm |= NINERR;
2063	if (!(up->alarm))
2064		up->status |= INSYNC;
2065	if (up->status & INSYNC && up->status & SSYNC) {
2066		if (up->misc & SECWAR)
2067			pp->leap = LEAP_ADDSECOND;
2068		else
2069			pp->leap = LEAP_NOWARNING;
2070		pp->second = up->rsec;
2071		pp->minute = up->decvec[MN].digit + up->decvec[MN +
2072		    1].digit * 10;
2073		pp->hour = up->decvec[HR].digit + up->decvec[HR +
2074		    1].digit * 10;
2075		pp->day = up->decvec[DA].digit + up->decvec[DA +
2076		    1].digit * 10 + up->decvec[DA + 2].digit * 100;
2077		pp->year = up->decvec[YR].digit + up->decvec[YR +
2078		    1].digit * 10;
2079		pp->year += 2000;
2080		L_CLR(&offset);
2081		if (!clocktime(pp->day, pp->hour, pp->minute,
2082		    pp->second, GMT, up->timestamp.l_ui,
2083		    &pp->yearstart, &offset.l_ui)) {
2084			up->errflg = CEVNT_BADTIME;
2085		} else {
2086			up->watch = 0;
2087			pp->disp = 0;
2088			pp->lastref = up->timestamp;
2089			refclock_process_offset(pp, offset,
2090			    up->timestamp, PDELAY + up->pdelay);
2091			refclock_receive(peer);
2092		}
2093	}
2094	pp->lencode = timecode(up, pp->a_lastcode,
2095			       sizeof(pp->a_lastcode));
2096	record_clock_stats(&peer->srcadr, pp->a_lastcode);
2097#ifdef DEBUG
2098	if (debug)
2099		printf("wwv: timecode %d %s\n", pp->lencode,
2100		    pp->a_lastcode);
2101#endif /* DEBUG */
2102}
2103
2104
2105/*
2106 * wwv_corr4 - determine maximum-likelihood digit
2107 *
2108 * This routine correlates the received digit vector with the BCD
2109 * coefficient vectors corresponding to all valid digits at the given
2110 * position in the decoding matrix. The maximum value corresponds to the
2111 * maximum-likelihood digit, while the ratio of this value to the next
2112 * lower value determines the likelihood function. Note that, if the
2113 * digit is invalid, the likelihood vector is averaged toward a miss.
2114 */
2115static void
2116wwv_corr4(
2117	struct peer *peer,	/* peer unit pointer */
2118	struct decvec *vp,	/* decoding table pointer */
2119	double	data[],		/* received data vector */
2120	double	tab[][4]	/* correlation vector array */
2121	)
2122{
2123	struct refclockproc *pp;
2124	struct wwvunit *up;
2125	double	topmax, nxtmax;	/* metrics */
2126	double	acc;		/* accumulator */
2127	char	tbuf[TBUF];	/* monitor buffer */
2128	int	mldigit;	/* max likelihood digit */
2129	int	i, j;
2130
2131	pp = peer->procptr;
2132	up = pp->unitptr;
2133
2134	/*
2135	 * Correlate digit vector with each BCD coefficient vector. If
2136	 * any BCD digit bit is bad, consider all bits a miss. Until the
2137	 * minute units digit has been resolved, don't to anything else.
2138	 * Note the SNR is calculated as the ratio of the largest
2139	 * likelihood value to the next largest likelihood value.
2140 	 */
2141	mldigit = 0;
2142	topmax = nxtmax = -MAXAMP;
2143	for (i = 0; tab[i][0] != 0; i++) {
2144		acc = 0;
2145		for (j = 0; j < 4; j++)
2146			acc += data[j] * tab[i][j];
2147		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
2148		if (acc > topmax) {
2149			nxtmax = topmax;
2150			topmax = acc;
2151			mldigit = i;
2152		} else if (acc > nxtmax) {
2153			nxtmax = acc;
2154		}
2155	}
2156	vp->digprb = topmax;
2157	vp->digsnr = wwv_snr(topmax, nxtmax);
2158
2159	/*
2160	 * The current maximum-likelihood digit is compared to the last
2161	 * maximum-likelihood digit. If different, the compare counter
2162	 * and maximum-likelihood digit are reset.  When the compare
2163	 * counter reaches the BCMP threshold (3), the digit is assumed
2164	 * correct. When the compare counter of all nine digits have
2165	 * reached threshold, the clock is assumed correct.
2166	 *
2167	 * Note that the clock display digit is set before the compare
2168	 * counter has reached threshold; however, the clock display is
2169	 * not considered correct until all nine clock digits have
2170	 * reached threshold. This is intended as eye candy, but avoids
2171	 * mistakes when the signal is low and the SNR is very marginal.
2172	 */
2173	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
2174		up->status |= BGATE;
2175	} else {
2176		if (vp->digit != mldigit) {
2177			up->alarm |= CMPERR;
2178			if (vp->count > 0)
2179				vp->count--;
2180			if (vp->count == 0)
2181				vp->digit = mldigit;
2182		} else {
2183			if (vp->count < BCMP)
2184				vp->count++;
2185			if (vp->count == BCMP) {
2186				up->status |= DSYNC;
2187				up->digcnt++;
2188			}
2189		}
2190	}
2191	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2192	    INSYNC)) {
2193		snprintf(tbuf, sizeof(tbuf),
2194		    "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
2195		    up->rsec - 1, up->status, up->gain, up->yepoch,
2196		    up->epomax, vp->radix, vp->digit, mldigit,
2197		    vp->count, vp->digprb, vp->digsnr);
2198		record_clock_stats(&peer->srcadr, tbuf);
2199#ifdef DEBUG
2200		if (debug)
2201			printf("%s\n", tbuf);
2202#endif /* DEBUG */
2203	}
2204}
2205
2206
2207/*
2208 * wwv_tsec - transmitter minute processing
2209 *
2210 * This routine is called at the end of the transmitter minute. It
2211 * implements a state machine that advances the logical clock subject to
2212 * the funny rules that govern the conventional clock and calendar.
2213 */
2214static void
2215wwv_tsec(
2216	struct peer *peer	/* driver structure pointer */
2217	)
2218{
2219	struct refclockproc *pp;
2220	struct wwvunit *up;
2221	int minute, day, isleap;
2222	int temp;
2223
2224	pp = peer->procptr;
2225	up = pp->unitptr;
2226
2227	/*
2228	 * Advance minute unit of the day. Don't propagate carries until
2229	 * the unit minute digit has been found.
2230	 */
2231	temp = carry(&up->decvec[MN]);	/* minute units */
2232	if (!(up->status & DSYNC))
2233		return;
2234
2235	/*
2236	 * Propagate carries through the day.
2237	 */
2238	if (temp == 0)			/* carry minutes */
2239		temp = carry(&up->decvec[MN + 1]);
2240	if (temp == 0)			/* carry hours */
2241		temp = carry(&up->decvec[HR]);
2242	if (temp == 0)
2243		temp = carry(&up->decvec[HR + 1]);
2244	// XXX: Does temp have an expected value here?
2245
2246	/*
2247	 * Decode the current minute and day. Set leap day if the
2248	 * timecode leap bit is set on 30 June or 31 December. Set leap
2249	 * minute if the last minute on leap day, but only if the clock
2250	 * is syncrhronized. This code fails in 2400 AD.
2251	 */
2252	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
2253	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
2254	    1].digit * 600;
2255	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2256	    up->decvec[DA + 2].digit * 100;
2257
2258	/*
2259	 * Set the leap bit on the last minute of the leap day.
2260	 */
2261	isleap = up->decvec[YR].digit & 0x3;
2262	if (up->misc & SECWAR && up->status & INSYNC) {
2263		if ((day == (isleap ? 182 : 183) || day == (isleap ?
2264		    365 : 366)) && minute == 1439)
2265			up->status |= LEPSEC;
2266	}
2267
2268	/*
2269	 * Roll the day if this the first minute and propagate carries
2270	 * through the year.
2271	 */
2272	if (minute != 1440)
2273		return;
2274
2275	// minute = 0;
2276	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
2277	while (carry(&up->decvec[HR + 1]) != 0);
2278	day++;
2279	temp = carry(&up->decvec[DA]);	/* carry days */
2280	if (temp == 0)
2281		temp = carry(&up->decvec[DA + 1]);
2282	if (temp == 0)
2283		temp = carry(&up->decvec[DA + 2]);
2284	// XXX: Is there an expected value of temp here?
2285
2286	/*
2287	 * Roll the year if this the first day and propagate carries
2288	 * through the century.
2289	 */
2290	if (day != (isleap ? 365 : 366))
2291		return;
2292
2293	// day = 1;
2294	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
2295	while (carry(&up->decvec[DA + 1]) != 0);
2296	while (carry(&up->decvec[DA + 2]) != 0);
2297	temp = carry(&up->decvec[YR]);	/* carry years */
2298	if (temp == 0)
2299		carry(&up->decvec[YR + 1]);
2300}
2301
2302
2303/*
2304 * carry - process digit
2305 *
2306 * This routine rotates a likelihood vector one position and increments
2307 * the clock digit modulo the radix. It returns the new clock digit or
2308 * zero if a carry occurred. Once synchronized, the clock digit will
2309 * match the maximum-likelihood digit corresponding to that position.
2310 */
2311static int
2312carry(
2313	struct decvec *dp	/* decoding table pointer */
2314	)
2315{
2316	int temp;
2317	int j;
2318
2319	dp->digit++;
2320	if (dp->digit == dp->radix)
2321		dp->digit = 0;
2322	temp = dp->like[dp->radix - 1];
2323	for (j = dp->radix - 1; j > 0; j--)
2324		dp->like[j] = dp->like[j - 1];
2325	dp->like[0] = temp;
2326	return (dp->digit);
2327}
2328
2329
2330/*
2331 * wwv_snr - compute SNR or likelihood function
2332 */
2333static double
2334wwv_snr(
2335	double signal,		/* signal */
2336	double noise		/* noise */
2337	)
2338{
2339	double rval;
2340
2341	/*
2342	 * This is a little tricky. Due to the way things are measured,
2343	 * either or both the signal or noise amplitude can be negative
2344	 * or zero. The intent is that, if the signal is negative or
2345	 * zero, the SNR must always be zero. This can happen with the
2346	 * subcarrier SNR before the phase has been aligned. On the
2347	 * other hand, in the likelihood function the "noise" is the
2348	 * next maximum down from the peak and this could be negative.
2349	 * However, in this case the SNR is truly stupendous, so we
2350	 * simply cap at MAXSNR dB (40).
2351	 */
2352	if (signal <= 0) {
2353		rval = 0;
2354	} else if (noise <= 0) {
2355		rval = MAXSNR;
2356	} else {
2357		rval = 20. * log10(signal / noise);
2358		if (rval > MAXSNR)
2359			rval = MAXSNR;
2360	}
2361	return (rval);
2362}
2363
2364
2365/*
2366 * wwv_newchan - change to new data channel
2367 *
2368 * The radio actually appears to have ten channels, one channel for each
2369 * of five frequencies and each of two stations (WWV and WWVH), although
2370 * if not tunable only the DCHAN channel appears live. While the radio
2371 * is tuned to the working data channel frequency and station for most
2372 * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
2373 * probe frequency in order to search for minute sync pulse and data
2374 * subcarrier from other transmitters.
2375 *
2376 * The search for WWV and WWVH operates simultaneously, with WWV minute
2377 * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
2378 * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
2379 * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
2380 * on 25 MHz.
2381 *
2382 * This routine selects the best channel using a metric computed from
2383 * the reachability register and minute pulse amplitude. Normally, the
2384 * award goes to the the channel with the highest metric; but, in case
2385 * of ties, the award goes to the channel with the highest minute sync
2386 * pulse amplitude and then to the highest frequency.
2387 *
2388 * The routine performs an important squelch function to keep dirty data
2389 * from polluting the integrators. In order to consider a station valid,
2390 * the metric must be at least MTHR (13); otherwise, the station select
2391 * bits are cleared so the second sync is disabled and the data bit
2392 * integrators averaged to a miss.
2393 */
2394static int
2395wwv_newchan(
2396	struct peer *peer	/* peer structure pointer */
2397	)
2398{
2399	struct refclockproc *pp;
2400	struct wwvunit *up;
2401	struct sync *sp, *rp;
2402	double rank, dtemp;
2403	int i, j, rval;
2404
2405	pp = peer->procptr;
2406	up = pp->unitptr;
2407
2408	/*
2409	 * Search all five station pairs looking for the channel with
2410	 * maximum metric.
2411	 */
2412	sp = NULL;
2413	j = 0;
2414	rank = 0;
2415	for (i = 0; i < NCHAN; i++) {
2416		rp = &up->mitig[i].wwvh;
2417		dtemp = rp->metric;
2418		if (dtemp >= rank) {
2419			rank = dtemp;
2420			sp = rp;
2421			j = i;
2422		}
2423		rp = &up->mitig[i].wwv;
2424		dtemp = rp->metric;
2425		if (dtemp >= rank) {
2426			rank = dtemp;
2427			sp = rp;
2428			j = i;
2429		}
2430	}
2431
2432	/*
2433	 * If the strongest signal is less than the MTHR threshold (13),
2434	 * we are beneath the waves, so squelch the second sync and
2435	 * advance to the next station. This makes sure all stations are
2436	 * scanned when the ions grow dim. If the strongest signal is
2437	 * greater than the threshold, tune to that frequency and
2438	 * transmitter QTH.
2439	 */
2440	up->status &= ~(SELV | SELH);
2441	if (rank < MTHR) {
2442		up->dchan = (up->dchan + 1) % NCHAN;
2443		if (up->status & METRIC) {
2444			up->status &= ~METRIC;
2445			refclock_report(peer, CEVNT_PROP);
2446		}
2447		rval = FALSE;
2448	} else {
2449		up->dchan = j;
2450		up->sptr = sp;
2451		memcpy(&pp->refid, sp->refid, 4);
2452		peer->refid = pp->refid;
2453		up->status |= METRIC;
2454		if (sp->select & SELV) {
2455			up->status |= SELV;
2456			up->pdelay = pp->fudgetime1;
2457		} else if (sp->select & SELH) {
2458			up->status |= SELH;
2459			up->pdelay = pp->fudgetime2;
2460		} else {
2461			up->pdelay = 0;
2462		}
2463		rval = TRUE;
2464	}
2465#ifdef ICOM
2466	if (up->fd_icom > 0)
2467		wwv_qsy(peer, up->dchan);
2468#endif /* ICOM */
2469	return (rval);
2470}
2471
2472
2473/*
2474 * wwv_newgame - reset and start over
2475 *
2476 * There are three conditions resulting in a new game:
2477 *
2478 * 1	After finding the minute pulse (MSYNC lit), going 15 minutes
2479 *	(DATA) without finding the unit seconds digit.
2480 *
2481 * 2	After finding good data (DSYNC lit), going more than 40 minutes
2482 *	(SYNCH) without finding station sync (INSYNC lit).
2483 *
2484 * 3	After finding station sync (INSYNC lit), going more than 2 days
2485 *	(PANIC) without finding any station.
2486 */
2487static void
2488wwv_newgame(
2489	struct peer *peer	/* peer structure pointer */
2490	)
2491{
2492	struct refclockproc *pp;
2493	struct wwvunit *up;
2494	struct chan *cp;
2495	int i;
2496
2497	pp = peer->procptr;
2498	up = pp->unitptr;
2499
2500	/*
2501	 * Initialize strategic values. Note we set the leap bits
2502	 * NOTINSYNC and the refid "NONE".
2503	 */
2504	if (up->status)
2505		up->errflg = CEVNT_TIMEOUT;
2506	peer->leap = LEAP_NOTINSYNC;
2507	up->watch = up->status = up->alarm = 0;
2508	up->avgint = MINAVG;
2509	up->freq = 0;
2510	up->gain = MAXGAIN / 2;
2511
2512	/*
2513	 * Initialize the station processes for audio gain, select bit,
2514	 * station/frequency identifier and reference identifier. Start
2515	 * probing at the strongest channel or the default channel if
2516	 * nothing heard.
2517	 */
2518	memset(up->mitig, 0, sizeof(up->mitig));
2519	for (i = 0; i < NCHAN; i++) {
2520		cp = &up->mitig[i];
2521		cp->gain = up->gain;
2522		cp->wwv.select = SELV;
2523		snprintf(cp->wwv.refid, sizeof(cp->wwv.refid), "WV%.0f",
2524		    floor(qsy[i]));
2525		cp->wwvh.select = SELH;
2526		snprintf(cp->wwvh.refid, sizeof(cp->wwvh.refid), "WH%.0f",
2527		    floor(qsy[i]));
2528	}
2529	up->dchan = (DCHAN + NCHAN - 1) % NCHAN;
2530	wwv_newchan(peer);
2531	up->schan = up->dchan;
2532}
2533
2534/*
2535 * wwv_metric - compute station metric
2536 *
2537 * The most significant bits represent the number of ones in the
2538 * station reachability register. The least significant bits represent
2539 * the minute sync pulse amplitude. The combined value is scaled 0-100.
2540 */
2541double
2542wwv_metric(
2543	struct sync *sp		/* station pointer */
2544	)
2545{
2546	double	dtemp;
2547
2548	dtemp = sp->count * MAXAMP;
2549	if (sp->synmax < MAXAMP)
2550		dtemp += sp->synmax;
2551	else
2552		dtemp += MAXAMP - 1;
2553	dtemp /= (AMAX + 1) * MAXAMP;
2554	return (dtemp * 100.);
2555}
2556
2557
2558#ifdef ICOM
2559/*
2560 * wwv_qsy - Tune ICOM receiver
2561 *
2562 * This routine saves the AGC for the current channel, switches to a new
2563 * channel and restores the AGC for that channel. If a tunable receiver
2564 * is not available, just fake it.
2565 */
2566static int
2567wwv_qsy(
2568	struct peer *peer,	/* peer structure pointer */
2569	int	chan		/* channel */
2570	)
2571{
2572	int rval = 0;
2573	struct refclockproc *pp;
2574	struct wwvunit *up;
2575
2576	pp = peer->procptr;
2577	up = pp->unitptr;
2578	if (up->fd_icom > 0) {
2579		up->mitig[up->achan].gain = up->gain;
2580		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
2581		    qsy[chan]);
2582		up->achan = chan;
2583		up->gain = up->mitig[up->achan].gain;
2584	}
2585	return (rval);
2586}
2587#endif /* ICOM */
2588
2589
2590/*
2591 * timecode - assemble timecode string and length
2592 *
2593 * Prettytime format - similar to Spectracom
2594 *
2595 * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
2596 *
2597 * s	sync indicator ('?' or ' ')
2598 * q	error bits (hex 0-F)
2599 * yyyy	year of century
2600 * ddd	day of year
2601 * hh	hour of day
2602 * mm	minute of hour
2603 * ss	second of minute)
2604 * l	leap second warning (' ' or 'L')
2605 * d	DST state ('S', 'D', 'I', or 'O')
2606 * dut	DUT sign and magnitude (0.1 s)
2607 * lset	minutes since last clock update
2608 * agc	audio gain (0-255)
2609 * iden	reference identifier (station and frequency)
2610 * sig	signal quality (0-100)
2611 * errs	bit errors in last minute
2612 * freq	frequency offset (PPM)
2613 * avgt	averaging time (s)
2614 */
2615static int
2616timecode(
2617	struct wwvunit *up,	/* driver structure pointer */
2618	char *		tc,	/* target string */
2619	size_t		tcsiz	/* target max chars */
2620	)
2621{
2622	struct sync *sp;
2623	int year, day, hour, minute, second, dut;
2624	char synchar, leapchar, dst;
2625	char cptr[50];
2626
2627
2628	/*
2629	 * Common fixed-format fields
2630	 */
2631	synchar = (up->status & INSYNC) ? ' ' : '?';
2632	year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
2633	    2000;
2634	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2635	    up->decvec[DA + 2].digit * 100;
2636	hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
2637	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
2638	second = 0;
2639	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
2640	dst = dstcod[(up->misc >> 4) & 0x3];
2641	dut = up->misc & 0x7;
2642	if (!(up->misc & DUTS))
2643		dut = -dut;
2644	snprintf(tc, tcsiz, "%c%1X", synchar, up->alarm);
2645	snprintf(cptr, sizeof(cptr),
2646		 " %4d %03d %02d:%02d:%02d %c%c %+d",
2647		 year, day, hour, minute, second, leapchar, dst, dut);
2648	strlcat(tc, cptr, tcsiz);
2649
2650	/*
2651	 * Specific variable-format fields
2652	 */
2653	sp = up->sptr;
2654	snprintf(cptr, sizeof(cptr), " %d %d %s %.0f %d %.1f %d",
2655		 up->watch, up->mitig[up->dchan].gain, sp->refid,
2656		 sp->metric, up->errcnt, up->freq / WWV_SEC * 1e6,
2657		 up->avgint);
2658	strlcat(tc, cptr, tcsiz);
2659
2660	return strlen(tc);
2661}
2662
2663
2664/*
2665 * wwv_gain - adjust codec gain
2666 *
2667 * This routine is called at the end of each second. During the second
2668 * the number of signal clips above the MAXAMP threshold (6000). If
2669 * there are no clips, the gain is bumped up; if there are more than
2670 * MAXCLP clips (100), it is bumped down. The decoder is relatively
2671 * insensitive to amplitude, so this crudity works just peachy. The
2672 * routine also jiggles the input port and selectively mutes the
2673 * monitor.
2674 */
2675static void
2676wwv_gain(
2677	struct peer *peer	/* peer structure pointer */
2678	)
2679{
2680	struct refclockproc *pp;
2681	struct wwvunit *up;
2682
2683	pp = peer->procptr;
2684	up = pp->unitptr;
2685
2686	/*
2687	 * Apparently, the codec uses only the high order bits of the
2688	 * gain control field. Thus, it may take awhile for changes to
2689	 * wiggle the hardware bits.
2690	 */
2691	if (up->clipcnt == 0) {
2692		up->gain += 4;
2693		if (up->gain > MAXGAIN)
2694			up->gain = MAXGAIN;
2695	} else if (up->clipcnt > MAXCLP) {
2696		up->gain -= 4;
2697		if (up->gain < 0)
2698			up->gain = 0;
2699	}
2700	audio_gain(up->gain, up->mongain, up->port);
2701	up->clipcnt = 0;
2702#if DEBUG
2703	if (debug > 1)
2704		audio_show();
2705#endif
2706}
2707
2708
2709#else
2710int refclock_wwv_bs;
2711#endif /* REFCLOCK */
2712