refclock_jupiter.c revision 82498
1/*
2 * Copyright (c) 1997, 1998
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Lawrence Berkeley Laboratory.
17 * 4. The name of the University may not be used to endorse or promote
18 *    products derived from this software without specific prior
19 *    written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#ifdef HAVE_CONFIG_H
35# include <config.h>
36#endif
37
38#if defined(REFCLOCK) && defined(CLOCK_JUPITER) && defined(PPS)
39
40#include "ntpd.h"
41#include "ntp_io.h"
42#include "ntp_refclock.h"
43#include "ntp_unixtime.h"
44#include "ntp_stdlib.h"
45#include "ntp_calendar.h"
46
47#include <stdio.h>
48#include <ctype.h>
49
50#include "jupiter.h"
51
52#include <sys/ppsclock.h>
53
54#ifdef XNTP_BIG_ENDIAN
55#define getshort(s) ((((s) & 0xff) << 8) | (((s) >> 8) & 0xff))
56#define putshort(s) ((((s) & 0xff) << 8) | (((s) >> 8) & 0xff))
57#else
58#define getshort(s) (s)
59#define putshort(s) (s)
60#endif
61
62/* XXX */
63#ifdef sun
64char *strerror(int);
65#endif
66
67/*
68 * This driver supports the Rockwell Jupiter GPS Receiver board
69 * adapted to precision timing applications.  It requires the
70 * ppsclock line discipline or streams module described in the
71 * Line Disciplines and Streams Drivers page. It also requires a
72 * gadget box and 1-PPS level converter, such as described in the
73 * Pulse-per-second (PPS) Signal Interfacing page.
74 *
75 * It may work (with minor modifications) with other Rockwell GPS
76 * receivers such as the CityTracker.
77 */
78
79/*
80 * GPS Definitions
81 */
82#define	DEVICE		"/dev/gps%d"	/* device name and unit */
83#define	SPEED232	B9600		/* baud */
84
85/*
86 * The number of raw samples which we acquire to derive a single estimate.
87 * NSAMPLES ideally should not exceed the default poll interval 64.
88 * NKEEP must be a power of 2 to simplify the averaging process.
89 */
90#define NSAMPLES	64
91#define NKEEP		8
92#define REFCLOCKMAXDISPERSE .25	/* max sample dispersion */
93
94/*
95 * Radio interface parameters
96 */
97#define	PRECISION	(-18)	/* precision assumed (about 4 us) */
98#define	REFID	"GPS\0"		/* reference id */
99#define	DESCRIPTION	"Rockwell Jupiter GPS Receiver" /* who we are */
100#define	DEFFUDGETIME	0	/* default fudge time (ms) */
101
102/* Unix timestamp for the GPS epoch: January 6, 1980 */
103#define GPS_EPOCH 315964800
104
105/* Double short to unsigned int */
106#define DS2UI(p) ((getshort((p)[1]) << 16) | getshort((p)[0]))
107
108/* Double short to signed int */
109#define DS2I(p) ((getshort((p)[1]) << 16) | getshort((p)[0]))
110
111/* One week's worth of seconds */
112#define WEEKSECS (7 * 24 * 60 * 60)
113
114/*
115 * Jupiter unit control structure.
116 */
117struct jupiterunit {
118	u_int  pollcnt;			/* poll message counter */
119	u_int  polled;			/* Hand in a time sample? */
120	u_int  lastserial;		/* last pps serial number */
121	struct ppsclockev ppsev;	/* PPS control structure */
122	u_int gweek;			/* current GPS week number */
123	u_int32 lastsweek;		/* last seconds into GPS week */
124	u_int32 timecode;		/* current ntp timecode */
125	u_int32 stime;			/* used to detect firmware bug */
126	int wantid;			/* don't reconfig on channel id msg */
127	u_int  moving;			/* mobile platform? */
128	u_long sloppyclockflag;		/* fudge flags */
129	u_int  known;			/* position known yet? */
130	int    coderecv;		/* total received samples */
131	int    nkeep;			/* number of samples to preserve */
132	int    rshift;			/* number of rshifts for division */
133	l_fp   filter[NSAMPLES];	/* offset filter */
134	l_fp   lastref;			/* last reference timestamp */
135	u_short sbuf[512];		/* local input buffer */
136	int ssize;			/* space used in sbuf */
137};
138
139/*
140 * Function prototypes
141 */
142static	void	jupiter_canmsg	P((struct peer *, u_int));
143static	u_short	jupiter_cksum	P((u_short *, u_int));
144#ifdef QSORT_USES_VOID_P
145	int	jupiter_cmpl_fp	P((const void *, const void *));
146#else
147	int	jupiter_cmpl_fp	P((const l_fp *, const l_fp *));
148#endif /* not QSORT_USES_VOID_P */
149static	void	jupiter_config	P((struct peer *));
150static	void	jupiter_debug	P((struct peer *, char *, ...))
151    __attribute__ ((format (printf, 2, 3)));
152static	char *	jupiter_offset	P((struct peer *));
153static	char *	jupiter_parse_t	P((struct peer *, u_short *));
154static	void	jupiter_platform	P((struct peer *, u_int));
155static	void	jupiter_poll	P((int, struct peer *));
156static	int	jupiter_pps	P((struct peer *));
157static	char *	jupiter_process	P((struct peer *));
158static	int	jupiter_recv	P((struct peer *));
159static	void	jupiter_receive P((register struct recvbuf *rbufp));
160static	void	jupiter_reqmsg	P((struct peer *, u_int, u_int));
161static	void	jupiter_reqonemsg	P((struct peer *, u_int));
162static	char *	jupiter_send	P((struct peer *, struct jheader *));
163static	void	jupiter_shutdown	P((int, struct peer *));
164static	int	jupiter_start	P((int, struct peer *));
165static	int	jupiter_ttyinit	P((struct peer *, int));
166
167/*
168 * Transfer vector
169 */
170struct	refclock refclock_jupiter = {
171	jupiter_start,		/* start up driver */
172	jupiter_shutdown,	/* shut down driver */
173	jupiter_poll,		/* transmit poll message */
174	noentry,		/* (clock control) */
175	noentry,		/* (clock init) */
176	noentry,		/* (clock buginfo) */
177	NOFLAGS			/* not used */
178};
179
180/*
181 * jupiter_start - open the devices and initialize data for processing
182 */
183static int
184jupiter_start(
185	register int unit,
186	register struct peer *peer
187	)
188{
189	struct refclockproc *pp;
190	register struct jupiterunit *up;
191	register int fd;
192	char gpsdev[20];
193
194	/*
195	 * Open serial port
196	 */
197	(void)sprintf(gpsdev, DEVICE, unit);
198	fd = open(gpsdev, O_RDWR
199#ifdef O_NONBLOCK
200	    | O_NONBLOCK
201#endif
202	    , 0);
203	if (fd < 0) {
204		jupiter_debug(peer, "jupiter_start: open %s: %s\n",
205		    gpsdev, strerror(errno));
206		return (0);
207	}
208	if (!jupiter_ttyinit(peer, fd))
209		return (0);
210
211	/* Allocate unit structure */
212	if ((up = (struct jupiterunit *)
213	    emalloc(sizeof(struct jupiterunit))) == NULL) {
214		(void) close(fd);
215		return (0);
216	}
217	memset((char *)up, 0, sizeof(struct jupiterunit));
218	pp = peer->procptr;
219	pp->io.clock_recv = jupiter_receive;
220	pp->io.srcclock = (caddr_t)peer;
221	pp->io.datalen = 0;
222	pp->io.fd = fd;
223	if (!io_addclock(&pp->io)) {
224		(void) close(fd);
225		free(up);
226		return (0);
227	}
228	pp->unitptr = (caddr_t)up;
229
230	/*
231	 * Initialize miscellaneous variables
232	 */
233	peer->precision = PRECISION;
234	pp->clockdesc = DESCRIPTION;
235	memcpy((char *)&pp->refid, REFID, 4);
236
237
238	/* Ensure the receiver is properly configured */
239	jupiter_config(peer);
240
241	/* Turn on pulse gathering by requesting the first sample */
242	if (ioctl(fd, CIOGETEV, (caddr_t)&up->ppsev) < 0) {
243		jupiter_debug(peer, "jupiter_ttyinit: CIOGETEV: %s\n",
244		    strerror(errno));
245		(void) close(fd);
246		free(up);
247		return (0);
248	}
249	up->lastserial = up->ppsev.serial;
250	memset(&up->ppsev, 0, sizeof(up->ppsev));
251	return (1);
252}
253
254/*
255 * jupiter_shutdown - shut down the clock
256 */
257static void
258jupiter_shutdown(register int unit, register struct peer *peer)
259{
260	register struct jupiterunit *up;
261	struct refclockproc *pp;
262
263	pp = peer->procptr;
264	up = (struct jupiterunit *)pp->unitptr;
265	io_closeclock(&pp->io);
266	free(up);
267}
268
269/*
270 * jupiter_config - Configure the receiver
271 */
272static void
273jupiter_config(register struct peer *peer)
274{
275	register int i;
276	register struct jupiterunit *up;
277	register struct refclockproc *pp;
278
279	pp = peer->procptr;
280	up = (struct jupiterunit *)pp->unitptr;
281
282	/*
283	 * Initialize the unit variables
284	 *
285	 * STRANGE BEHAVIOUR WARNING: The fudge flags are not available
286	 * at the time jupiter_start is called.  These are set later,
287	 * and so the code must be prepared to handle changing flags.
288	 */
289	up->sloppyclockflag = pp->sloppyclockflag;
290	if (pp->sloppyclockflag & CLK_FLAG2) {
291		up->moving = 1;		/* Receiver on mobile platform */
292		msyslog(LOG_DEBUG, "jupiter_config: mobile platform");
293	} else {
294		up->moving = 0;		/* Static Installation */
295	}
296
297	/* XXX fludge flags don't make the trip from the config to here... */
298#ifdef notdef
299	/* Configure for trailing edge triggers */
300#ifdef CIOSETTET
301	i = ((pp->sloppyclockflag & CLK_FLAG3) != 0);
302	jupiter_debug(peer, "jupiter_configure: (sloppyclockflag 0x%lx)\n",
303	    pp->sloppyclockflag);
304	if (ioctl(pp->io.fd, CIOSETTET, (char *)&i) < 0)
305		msyslog(LOG_DEBUG, "jupiter_configure: CIOSETTET %d: %m", i);
306#else
307	if (pp->sloppyclockflag & CLK_FLAG3)
308		msyslog(LOG_DEBUG, "jupiter_configure: \
309No kernel support for trailing edge trigger");
310#endif
311#endif
312
313	up->pollcnt     = 2;
314	up->polled      = 0;
315	up->known       = 0;
316	up->gweek = 0;
317	up->lastsweek = 2 * WEEKSECS;
318	up->timecode = 0;
319	up->stime = 0;
320	up->ssize = 0;
321	up->coderecv    = 0;
322	up->nkeep       = NKEEP;
323	if (up->nkeep > NSAMPLES)
324		up->nkeep = NSAMPLES;
325	if (up->nkeep >= 1)
326		up->rshift = 0;
327	if (up->nkeep >= 2)
328		up->rshift = 1;
329	if (up->nkeep >= 4)
330		up->rshift = 2;
331	if (up->nkeep >= 8)
332		up->rshift = 3;
333	if (up->nkeep >= 16)
334		up->rshift = 4;
335	if (up->nkeep >= 32)
336		up->rshift = 5;
337	if (up->nkeep >= 64)
338		up->rshift = 6;
339	up->nkeep = 1;
340	i = up->rshift;
341	while (i > 0) {
342		up->nkeep *= 2;
343		i--;
344	}
345
346	/* Stop outputting all messages */
347	jupiter_canmsg(peer, JUPITER_ALL);
348
349	/* Request the receiver id so we can syslog the firmware version */
350	jupiter_reqonemsg(peer, JUPITER_O_ID);
351
352	/* Flag that this the id was requested (so we don't get called again) */
353	up->wantid = 1;
354
355	/* Request perodic time mark pulse messages */
356	jupiter_reqmsg(peer, JUPITER_O_PULSE, 1);
357
358	/* Set application platform type */
359	if (up->moving)
360		jupiter_platform(peer, JUPITER_I_PLAT_MED);
361	else
362		jupiter_platform(peer, JUPITER_I_PLAT_LOW);
363}
364
365/*
366 * jupiter_poll - jupiter watchdog routine
367 */
368static void
369jupiter_poll(register int unit, register struct peer *peer)
370{
371	register struct jupiterunit *up;
372	register struct refclockproc *pp;
373
374	pp = peer->procptr;
375	up = (struct jupiterunit *)pp->unitptr;
376
377	/*
378	 * You don't need to poll this clock.  It puts out timecodes
379	 * once per second.  If asked for a timestamp, take note.
380	 * The next time a timecode comes in, it will be fed back.
381	 */
382
383	/*
384	 * If we haven't had a response in a while, reset the receiver.
385	 */
386	if (up->pollcnt > 0) {
387		up->pollcnt--;
388	} else {
389		refclock_report(peer, CEVNT_TIMEOUT);
390
391		/* Request the receiver id to trigger a reconfig */
392		jupiter_reqonemsg(peer, JUPITER_O_ID);
393		up->wantid = 0;
394	}
395
396	/*
397	 * polled every 64 seconds. Ask jupiter_receive to hand in
398	 * a timestamp.
399	 */
400	up->polled = 1;
401	pp->polls++;
402}
403
404/*
405 * jupiter_receive - receive gps data
406 * Gag me!
407 */
408static void
409jupiter_receive(register struct recvbuf *rbufp)
410{
411	register int bpcnt, cc, size, ppsret;
412	register u_int32 last_timecode, laststime;
413	register char *cp;
414	register u_char *bp;
415	register u_short *sp;
416	register u_long sloppyclockflag;
417	register struct jupiterunit *up;
418	register struct jid *ip;
419	register struct jheader *hp;
420	register struct refclockproc *pp;
421	register struct peer *peer;
422
423	/* Initialize pointers and read the timecode and timestamp */
424	peer = (struct peer *)rbufp->recv_srcclock;
425	pp = peer->procptr;
426	up = (struct jupiterunit *)pp->unitptr;
427
428	/*
429	 * If operating mode has been changed, then reinitialize the receiver
430	 * before doing anything else.
431	 */
432/* XXX Sloppy clock flags are broken!! */
433	sloppyclockflag = up->sloppyclockflag;
434	up->sloppyclockflag = pp->sloppyclockflag;
435	if ((pp->sloppyclockflag & CLK_FLAG2) !=
436	    (sloppyclockflag & CLK_FLAG2)) {
437		jupiter_debug(peer,
438		    "jupiter_receive: mode switch: reset receiver\n");
439		jupiter_config(peer);
440		return;
441	}
442
443	up->pollcnt = 2;
444
445	bp = (u_char *)rbufp->recv_buffer;
446	bpcnt = rbufp->recv_length;
447
448	/* This shouldn't happen */
449	if (bpcnt > sizeof(up->sbuf) - up->ssize)
450		bpcnt = sizeof(up->sbuf) - up->ssize;
451
452	/* Append to input buffer */
453	memcpy((u_char *)up->sbuf + up->ssize, bp, bpcnt);
454	up->ssize += bpcnt;
455
456	/* While there's at least a header and we parse a intact message */
457	while (up->ssize > sizeof(*hp) && (cc = jupiter_recv(peer)) > 0) {
458		hp = (struct jheader *)up->sbuf;
459		sp = (u_short *)(hp + 1);
460		size = cc - sizeof(*hp);
461		switch (getshort(hp->id)) {
462
463		case JUPITER_O_PULSE:
464			if (size != sizeof(struct jpulse)) {
465				jupiter_debug(peer,
466				    "jupiter_receive: pulse: len %d != %u\n",
467				    size, (int)sizeof(struct jpulse));
468				refclock_report(peer, CEVNT_BADREPLY);
469				break;
470			}
471
472			/*
473			 * There appears to be a firmware bug related
474			 * to the pulse message; in addition to the one
475			 * per second messages, we get an extra pulse
476			 * message once an hour (on the anniversary of
477			 * the cold start). It seems to come 200 ms
478			 * after the one requested. So if we've seen a
479			 * pulse message in the last 210 ms, we skip
480			 * this one.
481			 */
482			laststime = up->stime;
483			up->stime = DS2UI(((struct jpulse *)sp)->stime);
484			if (laststime != 0 && up->stime - laststime <= 21) {
485				jupiter_debug(peer, "jupiter_receive: \
486avoided firmware bug (stime %.2f, laststime %.2f)\n",
487    (double)up->stime * 0.01, (double)laststime * 0.01);
488				break;
489			}
490
491			/* Retrieve pps timestamp */
492			ppsret = jupiter_pps(peer);
493
494			/* Parse timecode (even when there's no pps) */
495			last_timecode = up->timecode;
496			if ((cp = jupiter_parse_t(peer, sp)) != NULL) {
497				jupiter_debug(peer,
498				    "jupiter_receive: pulse: %s\n", cp);
499				break;
500			}
501
502			/* Bail if we didn't get a pps timestamp */
503			if (ppsret)
504				break;
505
506			/* Bail if we don't have the last timecode yet */
507			if (last_timecode == 0)
508				break;
509
510			/* Add the new sample to a median filter */
511			if ((cp = jupiter_offset(peer)) != NULL) {
512				jupiter_debug(peer,
513				    "jupiter_receive: offset: %s\n", cp);
514				refclock_report(peer, CEVNT_BADTIME);
515				break;
516			}
517
518			/*
519			 * The clock will blurt a timecode every second
520			 * but we only want one when polled.  If we
521			 * havn't been polled, bail out.
522			 */
523			if (!up->polled)
524				break;
525
526			/*
527			 * It's a live one!  Remember this time.
528			 */
529			pp->lasttime = current_time;
530
531			/*
532			 * Determine the reference clock offset and
533			 * dispersion. NKEEP of NSAMPLE offsets are
534			 * passed through a median filter.
535			 * Save the (filtered) offset and dispersion in
536			 * pp->offset and pp->disp.
537			 */
538			if ((cp = jupiter_process(peer)) != NULL) {
539				jupiter_debug(peer,
540				    "jupiter_receive: process: %s\n", cp);
541				refclock_report(peer, CEVNT_BADTIME);
542				break;
543			}
544			/*
545			 * Return offset and dispersion to control
546			 * module. We use lastrec as both the reference
547			 * time and receive time in order to avoid
548			 * being cute, like setting the reference time
549			 * later than the receive time, which may cause
550			 * a paranoid protocol module to chuck out the
551			 * data.
552			 */
553			jupiter_debug(peer,
554			    "jupiter_receive: process time: \
555%4d-%03d %02d:%02d:%02d at %s, %s\n",
556			    pp->year, pp->day,
557			    pp->hour, pp->minute, pp->second,
558			    prettydate(&pp->lastrec), lfptoa(&pp->offset, 6));
559
560			refclock_receive(peer);
561
562			/*
563			 * We have succeeded in answering the poll.
564			 * Turn off the flag and return
565			 */
566			up->polled = 0;
567			break;
568
569		case JUPITER_O_ID:
570			if (size != sizeof(struct jid)) {
571				jupiter_debug(peer,
572				    "jupiter_receive: id: len %d != %u\n",
573				    size, (int)sizeof(struct jid));
574				refclock_report(peer, CEVNT_BADREPLY);
575				break;
576			}
577			/*
578			 * If we got this message because the Jupiter
579			 * just powered up, it needs to be reconfigured.
580			 */
581			ip = (struct jid *)sp;
582			jupiter_debug(peer,
583			    "jupiter_receive: >> %s chan ver %s, %s (%s)\n",
584			    ip->chans, ip->vers, ip->date, ip->opts);
585			msyslog(LOG_DEBUG,
586			    "jupiter_receive: %s chan ver %s, %s (%s)\n",
587			    ip->chans, ip->vers, ip->date, ip->opts);
588			if (up->wantid)
589				up->wantid = 0;
590			else {
591				jupiter_debug(peer,
592				    "jupiter_receive: reset receiver\n");
593				jupiter_config(peer);
594				/* Rese since jupiter_config() just zeroed it */
595				up->ssize = cc;
596			}
597			break;
598
599		default:
600			jupiter_debug(peer,
601			    "jupiter_receive: >> unknown message id %d\n",
602			    getshort(hp->id));
603			break;
604		}
605		up->ssize -= cc;
606		if (up->ssize < 0) {
607			fprintf(stderr, "jupiter_recv: negative ssize!\n");
608			abort();
609		} else if (up->ssize > 0)
610			memcpy(up->sbuf, (u_char *)up->sbuf + cc, up->ssize);
611	}
612	record_clock_stats(&peer->srcadr, "<timecode is binary>");
613}
614
615/*
616 * jupiter_offset - Calculate the offset, and add to the rolling filter.
617 */
618static char *
619jupiter_offset(register struct peer *peer)
620{
621	register struct jupiterunit *up;
622	register struct refclockproc *pp;
623	register int i;
624	l_fp offset;
625
626	pp = peer->procptr;
627	up = (struct jupiterunit *)pp->unitptr;
628
629	/*
630	 * Calculate the offset
631	 */
632	if (!clocktime(pp->day, pp->hour, pp->minute, pp->second, GMT,
633		pp->lastrec.l_ui, &pp->yearstart, &offset.l_ui)) {
634		return ("jupiter_process: clocktime failed");
635	}
636	if (pp->usec) {
637		TVUTOTSF(pp->usec, offset.l_uf);
638	} else {
639		MSUTOTSF(pp->msec, offset.l_uf);
640	}
641	L_ADD(&offset, &pp->fudgetime1);
642	up->lastref = offset;   /* save last reference time */
643	L_SUB(&offset, &pp->lastrec); /* form true offset */
644
645	/*
646	 * A rolling filter.  Initialize first time around.
647	 */
648	i = ((up->coderecv)) % NSAMPLES;
649
650	up->filter[i] = offset;
651	if (up->coderecv == 0)
652		for (i = 1; (u_int) i < NSAMPLES; i++)
653			up->filter[i] = up->filter[0];
654	up->coderecv++;
655
656	return (NULL);
657}
658
659/*
660 * jupiter_process - process the sample from the clock,
661 * passing it through a median filter and optionally averaging
662 * the samples.  Returns offset and dispersion in "up" structure.
663 */
664static char *
665jupiter_process(register struct peer *peer)
666{
667	register struct jupiterunit *up;
668	register struct refclockproc *pp;
669	register int i, n;
670	register int j, k;
671	l_fp offset, median, lftmp;
672	u_fp disp;
673	l_fp off[NSAMPLES];
674
675	pp = peer->procptr;
676	up = (struct jupiterunit *)pp->unitptr;
677
678	/*
679	 * Copy the raw offsets and sort into ascending order
680	 */
681	for (i = 0; i < NSAMPLES; i++)
682		off[i] = up->filter[i];
683	qsort((char *)off, (size_t)NSAMPLES, sizeof(l_fp), jupiter_cmpl_fp);
684
685	/*
686	 * Reject the furthest from the median of NSAMPLES samples until
687	 * NKEEP samples remain.
688	 */
689	i = 0;
690	n = NSAMPLES;
691	while ((n - i) > up->nkeep) {
692		lftmp = off[n - 1];
693		median = off[(n + i) / 2];
694		L_SUB(&lftmp, &median);
695		L_SUB(&median, &off[i]);
696		if (L_ISHIS(&median, &lftmp)) {
697			/* reject low end */
698			i++;
699		} else {
700			/* reject high end */
701			n--;
702		}
703	}
704
705	/*
706	 * Copy key values to the billboard to measure performance.
707	 */
708	pp->lastref = up->lastref;
709	pp->coderecv = up->coderecv;
710	pp->filter[0] = off[0];			/* smallest offset */
711	pp->filter[1] = off[NSAMPLES-1];	/* largest offset */
712	for (j = 2, k = i; k < n; j++, k++)
713		pp->filter[j] = off[k];		/* offsets actually examined */
714
715	/*
716	 * Compute the dispersion based on the difference between the
717	 * extremes of the remaining offsets. Add to this the time since
718	 * the last clock update, which represents the dispersion
719	 * increase with time. We know that NTP_MAXSKEW is 16. If the
720	 * sum is greater than the allowed sample dispersion, bail out.
721	 * If the loop is unlocked, return the most recent offset;
722	 * otherwise, return the median offset.
723	 */
724	lftmp = off[n - 1];
725	L_SUB(&lftmp, &off[i]);
726	disp = LFPTOFP(&lftmp);
727	if (disp > REFCLOCKMAXDISPERSE)
728		return ("Maximum dispersion exceeded");
729
730	/*
731	 * Now compute the offset estimate.  If fudge flag 1
732	 * is set, average the remainder, otherwise pick the
733	 * median.
734	 */
735	if (pp->sloppyclockflag & CLK_FLAG1) {
736		L_CLR(&lftmp);
737		while (i < n) {
738			L_ADD(&lftmp, &off[i]);
739			i++;
740		}
741		i = up->rshift;
742		while (i > 0) {
743			L_RSHIFT(&lftmp);
744			i--;
745		}
746		offset = lftmp;
747	} else {
748		i = (n + i) / 2;
749		offset = off[i];
750	}
751
752	/*
753	 * The payload: filtered offset and dispersion.
754	 */
755
756	pp->offset = offset;
757	pp->disp = disp;
758
759	return (NULL);
760
761}
762
763/* Compare two l_fp's, used with qsort() */
764#ifdef QSORT_USES_VOID_P
765int
766jupiter_cmpl_fp(register const void *p1, register const void *p2)
767#else
768int
769jupiter_cmpl_fp(register const l_fp *fp1, register const l_fp *fp2)
770#endif
771{
772#ifdef QSORT_USES_VOID_P
773	register const l_fp *fp1 = (const l_fp *)p1;
774	register const l_fp *fp2 = (const l_fp *)p2;
775#endif
776
777	if (!L_ISGEQ(fp1, fp2))
778		return (-1);
779	if (L_ISEQU(fp1, fp2))
780		return (0);
781	return (1);
782}
783
784static char *
785jupiter_parse_t(register struct peer *peer, register u_short *sp)
786{
787	register struct refclockproc *pp;
788	register struct jupiterunit *up;
789	register struct tm *tm;
790	register char *cp;
791	register struct jpulse *jp;
792	register struct calendar *jt;
793	register u_int32 sweek;
794	register u_int32 last_timecode;
795	register u_short flags;
796	time_t t;
797	struct calendar cal;
798
799	pp = peer->procptr;
800	up = (struct jupiterunit *)pp->unitptr;
801	jp = (struct jpulse *)sp;
802
803	/* The timecode is presented as seconds into the current GPS week */
804	sweek = DS2UI(jp->sweek);
805
806	/*
807	 * If we don't know the current GPS week, calculate it from the
808	 * current time. (It's too bad they didn't include this
809	 * important value in the pulse message). We'd like to pick it
810	 * up from one of the other messages like gpos or chan but they
811	 * don't appear to be synchronous with time keeping and changes
812	 * too soon (something like 10 seconds before the new GPS
813	 * week).
814	 *
815	 * If we already know the current GPS week, increment it when
816	 * we wrap into a new week.
817	 */
818	if (up->gweek == 0)
819		up->gweek = (time(NULL) - GPS_EPOCH) / WEEKSECS;
820	else if (sweek == 0 && up->lastsweek == WEEKSECS - 1) {
821		++up->gweek;
822		jupiter_debug(peer,
823		    "jupiter_parse_t: NEW gps week %u\n", up->gweek);
824	}
825
826	/*
827	 * See if the sweek stayed the same (this happens when there is
828	 * no pps pulse).
829	 *
830	 * Otherwise, look for time warps:
831	 *
832	 *   - we have stored at least one lastsweek and
833	 *   - the sweek didn't increase by one and
834	 *   - we didn't wrap to a new GPS week
835	 *
836	 * Then we warped.
837	 */
838	if (up->lastsweek == sweek)
839		jupiter_debug(peer,
840		    "jupiter_parse_t: gps sweek not incrementing (%d)\n",
841		    sweek);
842	else if (up->lastsweek != 2 * WEEKSECS &&
843	    up->lastsweek + 1 != sweek &&
844	    !(sweek == 0 && up->lastsweek == WEEKSECS - 1))
845		jupiter_debug(peer,
846		    "jupiter_parse_t: gps sweek jumped (was %d, now %d)\n",
847		    up->lastsweek, sweek);
848	up->lastsweek = sweek;
849
850	/* This timecode describes next pulse */
851	last_timecode = up->timecode;
852	up->timecode = (u_int32)JAN_1970 +
853	    GPS_EPOCH + (up->gweek * WEEKSECS) + sweek;
854
855	if (last_timecode == 0)
856		/* XXX debugging */
857		jupiter_debug(peer,
858		    "jupiter_parse_t: UTC <none> (gweek/sweek %u/%u)\n",
859		    up->gweek, sweek);
860	else {
861		/* XXX debugging */
862		t = last_timecode - (u_int32)JAN_1970;
863		tm = gmtime(&t);
864		cp = asctime(tm);
865
866		jupiter_debug(peer,
867		    "jupiter_parse_t: UTC %.24s (gweek/sweek %u/%u)\n",
868		    cp, up->gweek, sweek);
869
870		/* Billboard last_timecode (which is now the current time) */
871		jt = &cal;
872		caljulian(last_timecode, jt);
873		pp = peer->procptr;
874		pp->year = jt->year;
875		pp->day = jt->yearday;
876		pp->hour = jt->hour;
877		pp->minute = jt->minute;
878		pp->second = jt->second;
879		pp->msec = 0;
880		pp->usec = 0;
881	}
882
883	/* XXX debugging */
884	tm = gmtime(&up->ppsev.tv.tv_sec);
885	cp = asctime(tm);
886	flags = getshort(jp->flags);
887	jupiter_debug(peer,
888	    "jupiter_parse_t: PPS %.19s.%06lu %.4s (serial %u)%s\n",
889	    cp, up->ppsev.tv.tv_usec, cp + 20, up->ppsev.serial,
890	    (flags & JUPITER_O_PULSE_VALID) == 0 ?
891	    " NOT VALID" : "");
892
893	/* Toss if not designated "valid" by the gps */
894	if ((flags & JUPITER_O_PULSE_VALID) == 0) {
895		refclock_report(peer, CEVNT_BADTIME);
896		return ("time mark not valid");
897	}
898
899	/* We better be sync'ed to UTC... */
900	if ((flags & JUPITER_O_PULSE_UTC) == 0) {
901		refclock_report(peer, CEVNT_BADTIME);
902		return ("time mark not sync'ed to UTC");
903	}
904
905	return (NULL);
906}
907
908/*
909 * Process a PPS signal, returning a timestamp.
910 */
911static int
912jupiter_pps(register struct peer *peer)
913{
914	register struct refclockproc *pp;
915	register struct jupiterunit *up;
916	register int firsttime;
917	struct timeval ntp_tv;
918
919	pp = peer->procptr;
920	up = (struct jupiterunit *)pp->unitptr;
921
922	/*
923	 * Grab the timestamp of the PPS signal.
924	 */
925	firsttime = (up->ppsev.tv.tv_sec == 0);
926	if (ioctl(pp->io.fd, CIOGETEV, (caddr_t)&up->ppsev) < 0) {
927		/* XXX Actually, if this fails, we're pretty much screwed */
928		jupiter_debug(peer, "jupiter_pps: CIOGETEV: %s\n",
929		    strerror(errno));
930		refclock_report(peer, CEVNT_FAULT);
931		return (1);
932	}
933
934	/*
935	 * Check pps serial number against last one
936	 */
937	if (!firsttime && up->lastserial + 1 != up->ppsev.serial) {
938		if (up->ppsev.serial == up->lastserial)
939			jupiter_debug(peer, "jupiter_pps: no new pps event\n");
940		else
941			jupiter_debug(peer,
942			    "jupiter_pps: missed %d pps events\n",
943				up->ppsev.serial - up->lastserial - 1);
944		up->lastserial = up->ppsev.serial;
945		refclock_report(peer, CEVNT_FAULT);
946		return (1);
947	}
948	up->lastserial = up->ppsev.serial;
949
950	/*
951	 * Return the timestamp in pp->lastrec
952	 */
953	ntp_tv = up->ppsev.tv;
954	ntp_tv.tv_sec += (u_int32)JAN_1970;
955	TVTOTS(&ntp_tv, &pp->lastrec);
956
957	return (0);
958}
959
960/*
961 * jupiter_debug - print debug messages
962 */
963#if defined(__STDC__)
964static void
965jupiter_debug(struct peer *peer, char *fmt, ...)
966#else
967static void
968jupiter_debug(peer, fmt, va_alist)
969	struct peer *peer;
970	char *fmt;
971#endif /* __STDC__ */
972{
973	va_list ap;
974
975	if (debug) {
976
977#if defined(__STDC__)
978		va_start(ap, fmt);
979#else
980		va_start(ap);
981#endif /* __STDC__ */
982		/*
983		 * Print debug message to stdout
984		 * In the future, we may want to get get more creative...
985		 */
986		vfprintf(stderr, fmt, ap);
987
988		va_end(ap);
989	}
990}
991
992/* Checksum and transmit a message to the Jupiter */
993static char *
994jupiter_send(register struct peer *peer, register struct jheader *hp)
995{
996	register u_int len, size;
997	register int cc;
998	register u_short *sp;
999	static char errstr[132];
1000
1001	size = sizeof(*hp);
1002	hp->hsum = putshort(jupiter_cksum((u_short *)hp,
1003	    (size / sizeof(u_short)) - 1));
1004	len = getshort(hp->len);
1005	if (len > 0) {
1006		sp = (u_short *)(hp + 1);
1007		sp[len] = putshort(jupiter_cksum(sp, len));
1008		size += (len + 1) * sizeof(u_short);
1009	}
1010
1011	if ((cc = write(peer->procptr->io.fd, (char *)hp, size)) < 0) {
1012		(void)sprintf(errstr, "write: %s", strerror(errno));
1013		return (errstr);
1014	} else if (cc != size) {
1015		(void)sprintf(errstr, "short write (%d != %d)", cc, size);
1016		return (errstr);
1017	}
1018	return (NULL);
1019}
1020
1021/* Request periodic message output */
1022static struct {
1023	struct jheader jheader;
1024	struct jrequest jrequest;
1025} reqmsg = {
1026	{ putshort(JUPITER_SYNC), 0,
1027	    putshort((sizeof(struct jrequest) / sizeof(u_short)) - 1),
1028	    0, putshort(JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK |
1029	    JUPITER_FLAG_CONN | JUPITER_FLAG_LOG), 0 },
1030	{ 0, 0, 0, 0 }
1031};
1032
1033/* An interval of zero means to output on trigger */
1034static void
1035jupiter_reqmsg(register struct peer *peer, register u_int id,
1036    register u_int interval)
1037{
1038	register struct jheader *hp;
1039	register struct jrequest *rp;
1040	register char *cp;
1041
1042	hp = &reqmsg.jheader;
1043	hp->id = putshort(id);
1044	rp = &reqmsg.jrequest;
1045	rp->trigger = putshort(interval == 0);
1046	rp->interval = putshort(interval);
1047	if ((cp = jupiter_send(peer, hp)) != NULL)
1048		jupiter_debug(peer, "jupiter_reqmsg: %u: %s\n", id, cp);
1049}
1050
1051/* Cancel periodic message output */
1052static struct jheader canmsg = {
1053	putshort(JUPITER_SYNC), 0, 0, 0,
1054	putshort(JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK | JUPITER_FLAG_DISC),
1055	0
1056};
1057
1058static void
1059jupiter_canmsg(register struct peer *peer, register u_int id)
1060{
1061	register struct jheader *hp;
1062	register char *cp;
1063
1064	hp = &canmsg;
1065	hp->id = putshort(id);
1066	if ((cp = jupiter_send(peer, hp)) != NULL)
1067		jupiter_debug(peer, "jupiter_canmsg: %u: %s\n", id, cp);
1068}
1069
1070/* Request a single message output */
1071static struct jheader reqonemsg = {
1072	putshort(JUPITER_SYNC), 0, 0, 0,
1073	putshort(JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK | JUPITER_FLAG_QUERY),
1074	0
1075};
1076
1077static void
1078jupiter_reqonemsg(register struct peer *peer, register u_int id)
1079{
1080	register struct jheader *hp;
1081	register char *cp;
1082
1083	hp = &reqonemsg;
1084	hp->id = putshort(id);
1085	if ((cp = jupiter_send(peer, hp)) != NULL)
1086		jupiter_debug(peer, "jupiter_reqonemsg: %u: %s\n", id, cp);
1087}
1088
1089/* Set the platform dynamics */
1090static struct {
1091	struct jheader jheader;
1092	struct jplat jplat;
1093} platmsg = {
1094	{ putshort(JUPITER_SYNC), putshort(JUPITER_I_PLAT),
1095	    putshort((sizeof(struct jplat) / sizeof(u_short)) - 1), 0,
1096	    putshort(JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK), 0 },
1097	{ 0, 0, 0 }
1098};
1099
1100static void
1101jupiter_platform(register struct peer *peer, register u_int platform)
1102{
1103	register struct jheader *hp;
1104	register struct jplat *pp;
1105	register char *cp;
1106
1107	hp = &platmsg.jheader;
1108	pp = &platmsg.jplat;
1109	pp->platform = putshort(platform);
1110	if ((cp = jupiter_send(peer, hp)) != NULL)
1111		jupiter_debug(peer, "jupiter_platform: %u: %s\n", platform, cp);
1112}
1113
1114/* Checksum "len" shorts */
1115static u_short
1116jupiter_cksum(register u_short *sp, register u_int len)
1117{
1118	register u_short sum, x;
1119
1120	sum = 0;
1121	while (len-- > 0) {
1122		x = *sp++;
1123		sum += getshort(x);
1124	}
1125	return (~sum + 1);
1126}
1127
1128/* Return the size of the next message (or zero if we don't have it all yet) */
1129static int
1130jupiter_recv(register struct peer *peer)
1131{
1132	register int n, len, size, cc;
1133	register struct refclockproc *pp;
1134	register struct jupiterunit *up;
1135	register struct jheader *hp;
1136	register u_char *bp;
1137	register u_short *sp;
1138
1139	pp = peer->procptr;
1140	up = (struct jupiterunit *)pp->unitptr;
1141
1142	/* Must have at least a header's worth */
1143	cc = sizeof(*hp);
1144	size = up->ssize;
1145	if (size < cc)
1146		return (0);
1147
1148	/* Search for the sync short if missing */
1149	sp = up->sbuf;
1150	hp = (struct jheader *)sp;
1151	if (getshort(hp->sync) != JUPITER_SYNC) {
1152		/* Wasn't at the front, sync up */
1153		jupiter_debug(peer, "syncing");
1154		bp = (u_char *)sp;
1155		n = size;
1156		while (n >= 2) {
1157			if (bp[0] != (JUPITER_SYNC & 0xff)) {
1158				jupiter_debug(peer, "{0x%x}", bp[0]);
1159				++bp;
1160				--n;
1161				continue;
1162			}
1163			if (bp[1] == ((JUPITER_SYNC >> 8) & 0xff))
1164				break;
1165			jupiter_debug(peer, "{0x%x 0x%x}", bp[0], bp[1]);
1166			bp += 2;
1167			n -= 2;
1168		}
1169		jupiter_debug(peer, "\n");
1170		/* Shuffle data to front of input buffer */
1171		if (n > 0)
1172			memcpy(sp, bp, n);
1173		size = n;
1174		up->ssize = size;
1175		if (size < cc || hp->sync != JUPITER_SYNC)
1176			return (0);
1177	}
1178
1179	if (jupiter_cksum(sp, (cc / sizeof(u_short) - 1)) !=
1180	    getshort(hp->hsum)) {
1181	    jupiter_debug(peer, "jupiter_recv: bad header checksum!\n");
1182		/* This is drastic but checksum errors should be rare */
1183		up->ssize = 0;
1184		return (0);
1185	}
1186
1187	/* Check for a payload */
1188	len = getshort(hp->len);
1189	if (len > 0) {
1190		n = (len + 1) * sizeof(u_short);
1191		/* Not enough data yet */
1192		if (size < cc + n)
1193			return (0);
1194
1195		/* Check payload checksum */
1196		sp = (u_short *)(hp + 1);
1197		if (jupiter_cksum(sp, len) != getshort(sp[len])) {
1198			jupiter_debug(peer,
1199			    "jupiter_recv: bad payload checksum!\n");
1200			/* This is drastic but checksum errors should be rare */
1201			up->ssize = 0;
1202			return (0);
1203		}
1204		cc += n;
1205	}
1206	return (cc);
1207}
1208
1209static int
1210jupiter_ttyinit(register struct peer *peer, register int fd)
1211{
1212	struct termios termios;
1213
1214	memset((char *)&termios, 0, sizeof(termios));
1215	if (cfsetispeed(&termios, B9600) < 0 ||
1216	    cfsetospeed(&termios, B9600) < 0) {
1217		jupiter_debug(peer,
1218		    "jupiter_ttyinit: cfsetispeed/cfgetospeed: %s\n",
1219		    strerror(errno));
1220		return (0);
1221	}
1222#ifdef HAVE_CFMAKERAW
1223	cfmakeraw(&termios);
1224#else
1225	termios.c_iflag &= ~(IMAXBEL | IXOFF | INPCK | BRKINT | PARMRK |
1226	    ISTRIP | INLCR | IGNCR | ICRNL | IXON | IGNPAR);
1227	termios.c_iflag |= IGNBRK;
1228	termios.c_oflag &= ~OPOST;
1229	termios.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL | ICANON | ISIG |
1230	    IEXTEN | NOFLSH | TOSTOP | PENDIN);
1231	termios.c_cflag &= ~(CSIZE | PARENB);
1232	termios.c_cflag |= CS8 | CREAD;
1233	termios.c_cc[VMIN] = 1;
1234#endif
1235	termios.c_cflag |= CLOCAL;
1236	if (tcsetattr(fd, TCSANOW, &termios) < 0) {
1237		jupiter_debug(peer, "jupiter_ttyinit: tcsetattr: %s\n",
1238		    strerror(errno));
1239		return (0);
1240	}
1241
1242#ifdef TIOCSPPS
1243	if (ioctl(fd, TIOCSPPS, (char *)&fdpps) < 0) {
1244		jupiter_debug(peer, "jupiter_ttyinit: TIOCSPPS: %s\n",
1245		    strerror(errno));
1246		return (0);
1247	}
1248#endif
1249#ifdef I_PUSH
1250	if (ioctl(fd, I_PUSH, "ppsclock") < 0) {
1251		jupiter_debug(peer, "jupiter_ttyinit: push ppsclock: %s\n",
1252		    strerror(errno));
1253		return (0);
1254	}
1255#endif
1256
1257	return (1);
1258}
1259
1260#else /* not (REFCLOCK && CLOCK_JUPITER && PPS) */
1261int refclock_jupiter_bs;
1262#endif /* not (REFCLOCK && CLOCK_JUPITER && PPS) */
1263