refclock_irig.c revision 82498
1/*
2 * refclock_irig - audio IRIG-B/E demodulator/decoder
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#if defined(REFCLOCK) && defined(CLOCK_IRIG)
9
10#include "ntpd.h"
11#include "ntp_io.h"
12#include "ntp_refclock.h"
13#include "ntp_calendar.h"
14#include "ntp_stdlib.h"
15
16#include <stdio.h>
17#include <ctype.h>
18#include <math.h>
19#ifdef HAVE_SYS_IOCTL_H
20#include <sys/ioctl.h>
21#endif /* HAVE_SYS_IOCTL_H */
22
23#include "audio.h"
24
25/*
26 * Audio IRIG-B/E demodulator/decoder
27 *
28 * This driver receives, demodulates and decodes IRIG-B/E signals when
29 * connected to the audio codec /dev/audio. The IRIG signal format is an
30 * amplitude-modulated carrier with pulse-width modulated data bits. For
31 * IRIG-B, the carrier frequency is 1000 Hz and bit rate 100 b/s; for
32 * IRIG-E, the carrier frequenchy is 100 Hz and bit rate 10 b/s. The
33 * driver automatically recognizes which format is in use.
34 *
35 * The program processes 8000-Hz mu-law companded samples using separate
36 * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
37 * detector and automatic threshold corrector. Cycle crossings relative
38 * to the corrected slice level determine the width of each pulse and
39 * its value - zero, one or position identifier. The data encode 20 BCD
40 * digits which determine the second, minute, hour and day of the year
41 * and sometimes the year and synchronization condition. The comb filter
42 * exponentially averages the corresponding samples of successive baud
43 * intervals in order to reliably identify the reference carrier cycle.
44 * A type-II phase-lock loop (PLL) performs additional integration and
45 * interpolation to accurately determine the zero crossing of that
46 * cycle, which determines the reference timestamp. A pulse-width
47 * discriminator demodulates the data pulses, which are then encoded as
48 * the BCD digits of the timecode.
49 *
50 * The timecode and reference timestamp are updated once each second
51 * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
52 * saved for later processing. At poll intervals of 64 s, the saved
53 * samples are processed by a trimmed-mean filter and used to update the
54 * system clock.
55 *
56 * An automatic gain control feature provides protection against
57 * overdriven or underdriven input signal amplitudes. It is designed to
58 * maintain adequate demodulator signal amplitude while avoiding
59 * occasional noise spikes. In order to assure reliable capture, the
60 * decompanded input signal amplitude must be greater than 100 units and
61 * the codec sample frequency error less than 250 PPM (.025 percent).
62 *
63 * The program performs a number of error checks to protect against
64 * overdriven or underdriven input signal levels, incorrect signal
65 * format or improper hardware configuration. Specifically, if any of
66 * the following errors occur for a time measurement, the data are
67 * rejected.
68 *
69 * o The peak carrier amplitude is less than DRPOUT (100). This usually
70 *   means dead IRIG signal source, broken cable or wrong input port.
71 *
72 * o The frequency error is greater than MAXFREQ +-250 PPM (.025%). This
73 *   usually means broken codec hardware or wrong codec configuration.
74 *
75 * o The modulation index is less than MODMIN (0.5). This usually means
76 *   overdriven IRIG signal or wrong IRIG format.
77 *
78 * o A frame synchronization error has occurred. This usually means wrong
79 *   IRIG signal format or the IRIG signal source has lost
80 *   synchronization (signature control).
81 *
82 * o A data decoding error has occurred. This usually means wrong IRIG
83 *   signal format.
84 *
85 * o The current second of the day is not exactly one greater than the
86 *   previous one. This usually means a very noisy IRIG signal or
87 *   insufficient CPU resources.
88 *
89 * o An audio codec error (overrun) occurred. This usually means
90 *   insufficient CPU resources, as sometimes happens with Sun SPARC
91 *   IPCs when doing something useful.
92 *
93 * Note that additional checks are done elsewhere in the reference clock
94 * interface routines.
95 *
96 * Debugging aids
97 *
98 * The timecode format used for debugging and data recording includes
99 * data helpful in diagnosing problems with the IRIG signal and codec
100 * connections. With debugging enabled (-d -d -d on the ntpd command
101 * line), the driver produces one line for each timecode in the
102 * following format:
103 *
104 * 00 1 98 23 19:26:52 721 143 0.694 47 20 0.083 66.5 3094572411.00027
105 *
106 * The most recent line is also written to the clockstats file at 64-s
107 * intervals.
108 *
109 * The first field contains the error flags in hex, where the hex bits
110 * are interpreted as below. This is followed by the IRIG status
111 * indicator, year of century, day of year and time of day. The status
112 * indicator and year are not produced by some IRIG devices. Following
113 * these fields are the signal amplitude (0-8100), codec gain (0-255),
114 * field phase (0-79), time constant (2-20), modulation index (0-1),
115 * carrier phase error (0+-0.5) and carrier frequency error (PPM). The
116 * last field is the on-time timestamp in NTP format.
117 *
118 * The fraction part of the on-time timestamp is a good indicator of how
119 * well the driver is doing. With an UltrSPARC 30, this thing can keep
120 * the clock within a few tens of microseconds relative to the IRIG-B
121 * signal. Accuracy with IRIG-E is about ten times worse.
122 *
123 * Unlike other drivers, which can have multiple instantiations, this
124 * one supports only one. It does not seem likely that more than one
125 * audio codec would be useful in a single machine. More than one would
126 * probably chew up too much CPU time anyway.
127 *
128 * Fudge factors
129 *
130 * Fudge flag2 selects the audio input port, where 0 is the mike port
131 * (default) and 1 is the line-in port. It does not seem useful to
132 * select the compact disc player port. Fudge flag3 enables audio
133 * monitoring of the input signal. For this purpose, the speaker volume
134 * must be set before the driver is started. Fudge flag4 causes the
135 * debugging output described above to be recorded in the clockstats
136 * file. Any of these flags can be changed during operation with the
137 * ntpdc program.
138 */
139
140/*
141 * Interface definitions
142 */
143#define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
144#define	PRECISION	(-17)	/* precision assumed (about 10 us) */
145#define	REFID		"IRIG"	/* reference ID */
146#define	DESCRIPTION	"Generic IRIG Audio Driver" /* WRU */
147
148#define SECOND		8000	/* nominal sample rate (Hz) */
149#define BAUD		80	/* samples per baud interval */
150#define OFFSET		128	/* companded sample offset */
151#define SIZE		256	/* decompanding table size */
152#define CYCLE		8	/* samples per carrier cycle */
153#define SUBFLD		10	/* bits per subfield */
154#define FIELD		10	/* subfields per field */
155#define MINTC		2	/* min PLL time constant */
156#define MAXTC		20	/* max PLL time constant max */
157#define	MAXSIG		6000.	/* maximum signal level */
158#define DRPOUT		100.	/* dropout signal level */
159#define MODMIN		0.5	/* minimum modulation index */
160#define MAXFREQ		(250e-6 * SECOND) /* freq tolerance (.025%) */
161#define PI		3.1415926535 /* the real thing */
162
163/*
164 * Experimentally determined fudge factors
165 */
166#define IRIG_B		.0019		/* IRIG-B phase delay */
167#define IRIG_E		.0019		/* IRIG-E phase delay */
168
169/*
170 * Data bit definitions
171 */
172#define BIT0		0	/* zero */
173#define BIT1		1	/* one */
174#define BITP		2	/* position identifier */
175
176/*
177 * Error flags (up->errflg)
178 */
179#define IRIG_ERR_AMP	0x01	/* low carrier amplitude */
180#define IRIG_ERR_FREQ	0x02	/* frequency tolerance exceeded */
181#define IRIG_ERR_MOD	0x04	/* low modulation index */
182#define IRIG_ERR_SYNCH	0x08	/* frame synch error */
183#define IRIG_ERR_DECODE	0x10	/* frame decoding error */
184#define IRIG_ERR_CHECK	0x20	/* second numbering discrepancy */
185#define IRIG_ERR_ERROR	0x40	/* codec error (overrun) */
186
187/*
188 * IRIG unit control structure
189 */
190struct irigunit {
191	u_char	timecode[21];	/* timecode string */
192	l_fp	timestamp;	/* audio sample timestamp */
193	l_fp	tick;		/* audio sample increment */
194	double	comp[SIZE];	/* decompanding table */
195	double	integ[BAUD];	/* baud integrator */
196	double	phase, freq;	/* logical clock phase and frequency */
197	double	zxing;		/* phase detector integrator */
198	double	yxing;		/* phase detector display */
199	double	modndx;		/* modulation index */
200	double	irig_b;		/* IRIG-B signal amplitude */
201	double	irig_e;		/* IRIG-E signal amplitude */
202	int	errflg;		/* error flags */
203	int	bufcnt;		/* samples in buffer */
204	int	bufptr;		/* buffer index pointer */
205	int	pollcnt;	/* poll counter */
206	int	port;		/* codec port */
207	int	gain;		/* codec gain */
208	int	clipcnt;	/* sample clipped count */
209	int	seccnt;		/* second interval counter */
210	int	decim;		/* sample decimation factor */
211
212	/*
213	 * RF variables
214	 */
215	double	hpf[5];		/* IRIG-B filter shift register */
216	double	lpf[5];		/* IRIG-E filter shift register */
217	double	intmin, intmax;	/* integrated envelope min and max */
218	double	envmax;		/* peak amplitude */
219	double	envmin;		/* noise amplitude */
220	double	maxsignal;	/* integrated peak amplitude */
221	double	noise;		/* integrated noise amplitude */
222	double	lastenv[CYCLE];	/* last cycle amplitudes */
223	double	lastint[CYCLE];	/* last integrated cycle amplitudes */
224	double	lastsig;	/* last carrier sample */
225	double	xxing;		/* phase detector interpolated output */
226	double	fdelay;		/* filter delay */
227	int	envphase;	/* envelope phase */
228	int	envptr;		/* envelope phase pointer */
229	int	carphase;	/* carrier phase */
230	int	envsw;		/* envelope state */
231	int	envxing;	/* envelope slice crossing */
232	int	tc;		/* time constant */
233	int	tcount;		/* time constant counter */
234	int	badcnt;		/* decimation interval counter */
235
236	/*
237	 * Decoder variables
238	 */
239	l_fp	montime;	/* reference timestamp for eyeball */
240	int	timecnt;	/* timecode counter */
241	int	pulse;		/* cycle counter */
242	int	cycles;		/* carrier cycles */
243	int	dcycles;	/* data cycles */
244	int	xptr;		/* translate table pointer */
245	int	lastbit;	/* last code element length */
246	int	second;		/* previous second */
247	int	fieldcnt;	/* subfield count in field */
248	int	bits;		/* demodulated bits */
249	int	bitcnt;		/* bit count in subfield */
250};
251
252/*
253 * Function prototypes
254 */
255static	int	irig_start	P((int, struct peer *));
256static	void	irig_shutdown	P((int, struct peer *));
257static	void	irig_receive	P((struct recvbuf *));
258static	void	irig_poll	P((int, struct peer *));
259
260/*
261 * More function prototypes
262 */
263static	void	irig_base	P((struct peer *, double));
264static	void	irig_rf		P((struct peer *, double));
265static	void	irig_decode	P((struct peer *, int));
266static	void	irig_gain	P((struct peer *));
267
268/*
269 * Transfer vector
270 */
271struct	refclock refclock_irig = {
272	irig_start,		/* start up driver */
273	irig_shutdown,		/* shut down driver */
274	irig_poll,		/* transmit poll message */
275	noentry,		/* not used (old irig_control) */
276	noentry,		/* initialize driver (not used) */
277	noentry,		/* not used (old irig_buginfo) */
278	NOFLAGS			/* not used */
279};
280
281/*
282 * Global variables
283 */
284static char	hexchar[] = {	/* really quick decoding table */
285	'0', '8', '4', 'c',		/* 0000 0001 0010 0011 */
286	'2', 'a', '6', 'e',		/* 0100 0101 0110 0111 */
287	'1', '9', '5', 'd',		/* 1000 1001 1010 1011 */
288	'3', 'b', '7', 'f'		/* 1100 1101 1110 1111 */
289};
290
291
292/*
293 * irig_start - open the devices and initialize data for processing
294 */
295static int
296irig_start(
297	int	unit,		/* instance number (not used) */
298	struct peer *peer	/* peer structure pointer */
299	)
300{
301	struct refclockproc *pp;
302	struct irigunit *up;
303
304	/*
305	 * Local variables
306	 */
307	int	fd;		/* file descriptor */
308	int	i;		/* index */
309	double	step;		/* codec adjustment */
310
311	/*
312	 * Open audio device
313	 */
314	fd = audio_init(DEVICE_AUDIO);
315	if (fd < 0)
316		return (0);
317#ifdef DEBUG
318	if (debug)
319		audio_show();
320#endif
321
322	/*
323	 * Allocate and initialize unit structure
324	 */
325	if (!(up = (struct irigunit *)
326	      emalloc(sizeof(struct irigunit)))) {
327		(void) close(fd);
328		return (0);
329	}
330	memset((char *)up, 0, sizeof(struct irigunit));
331	pp = peer->procptr;
332	pp->unitptr = (caddr_t)up;
333	pp->io.clock_recv = irig_receive;
334	pp->io.srcclock = (caddr_t)peer;
335	pp->io.datalen = 0;
336	pp->io.fd = fd;
337	if (!io_addclock(&pp->io)) {
338		(void)close(fd);
339		free(up);
340		return (0);
341	}
342
343	/*
344	 * Initialize miscellaneous variables
345	 */
346	peer->precision = PRECISION;
347	pp->clockdesc = DESCRIPTION;
348	memcpy((char *)&pp->refid, REFID, 4);
349	up->tc = MINTC;
350	up->decim = 1;
351	up->fdelay = IRIG_B;
352	up->gain = 127;
353	up->pollcnt = 2;
354
355	/*
356	 * The companded samples are encoded sign-magnitude. The table
357	 * contains all the 256 values in the interest of speed.
358	 */
359	up->comp[0] = up->comp[OFFSET] = 0.;
360	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
361	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
362	step = 2.;
363	for (i = 3; i < OFFSET; i++) {
364		up->comp[i] = up->comp[i - 1] + step;
365		up->comp[OFFSET + i] = -up->comp[i];
366                if (i % 16 == 0)
367		    step *= 2.;
368	}
369	DTOLFP(1. / SECOND, &up->tick);
370	return (1);
371}
372
373
374/*
375 * irig_shutdown - shut down the clock
376 */
377static void
378irig_shutdown(
379	int	unit,		/* instance number (not used) */
380	struct peer *peer	/* peer structure pointer */
381	)
382{
383	struct refclockproc *pp;
384	struct irigunit *up;
385
386	pp = peer->procptr;
387	up = (struct irigunit *)pp->unitptr;
388	io_closeclock(&pp->io);
389	free(up);
390}
391
392
393/*
394 * irig_receive - receive data from the audio device
395 *
396 * This routine reads input samples and adjusts the logical clock to
397 * track the irig clock by dropping or duplicating codec samples.
398 */
399static void
400irig_receive(
401	struct recvbuf *rbufp	/* receive buffer structure pointer */
402	)
403{
404	struct peer *peer;
405	struct refclockproc *pp;
406	struct irigunit *up;
407
408	/*
409	 * Local variables
410	 */
411	double	sample;		/* codec sample */
412	u_char	*dpt;		/* buffer pointer */
413	l_fp	ltemp;		/* l_fp temp */
414
415	peer = (struct peer *)rbufp->recv_srcclock;
416	pp = peer->procptr;
417	up = (struct irigunit *)pp->unitptr;
418
419	/*
420	 * Main loop - read until there ain't no more. Note codec
421	 * samples are bit-inverted.
422	 */
423	up->timestamp = rbufp->recv_time;
424	up->bufcnt = rbufp->recv_length;
425	DTOLFP((double)up->bufcnt / SECOND, &ltemp);
426	L_SUB(&up->timestamp, &ltemp);
427	dpt = rbufp->recv_buffer;
428	for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) {
429		sample = up->comp[~*dpt++ & 0xff];
430
431		/*
432		 * Clip noise spikes greater than MAXSIG. If no clips,
433		 * increase the gain a tad; if the clips are too high,
434		 * decrease a tad. Choose either IRIG-B or IRIG-E
435		 * according to the energy at the respective filter
436		 * output.
437		 */
438		if (sample > MAXSIG) {
439			sample = MAXSIG;
440			up->clipcnt++;
441		} else if (sample < -MAXSIG) {
442			sample = -MAXSIG;
443			up->clipcnt++;
444		}
445
446		/*
447		 * Variable frequency oscillator. A phase change of one
448		 * unit produces a change of 360 degrees; a frequency
449		 * change of one unit produces a change of 1 Hz.
450		 */
451		up->phase += up->freq / SECOND;
452		if (up->phase >= .5) {
453			up->phase -= 1.;
454		} else if (up->phase < -.5) {
455			up->phase += 1.;
456			irig_rf(peer, sample);
457			irig_rf(peer, sample);
458		} else {
459			irig_rf(peer, sample);
460		}
461		L_ADD(&up->timestamp, &up->tick);
462
463		/*
464		 * Once each second, determine the IRIG format, codec
465		 * port and gain.
466		 */
467		up->seccnt = (up->seccnt + 1) % SECOND;
468		if (up->seccnt == 0) {
469			if (up->irig_b > up->irig_e) {
470				up->decim = 1;
471				up->fdelay = IRIG_B;
472			} else {
473				up->decim = 10;
474				up->fdelay = IRIG_E;
475			}
476			if (pp->sloppyclockflag & CLK_FLAG2)
477			    up->port = 2;
478			else
479			    up->port = 1;
480			irig_gain(peer);
481			up->irig_b = up->irig_e = 0;
482		}
483	}
484
485	/*
486	 * Squawk to the monitor speaker if enabled.
487	 */
488	if (pp->sloppyclockflag & CLK_FLAG3)
489	    if (write(pp->io.fd, (u_char *)&rbufp->recv_space,
490		      (u_int)up->bufcnt) < 0)
491		perror("irig:");
492}
493
494/*
495 * irig_rf - RF processing
496 *
497 * This routine filters the RF signal using a highpass filter for IRIG-B
498 * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
499 * decimated by a factor of ten. The lowpass filter functions also as a
500 * decimation filter in this case. Note that the codec filters function
501 * as roofing filters to attenuate both the high and low ends of the
502 * passband. IIR filter coefficients were determined using Matlab Signal
503 * Processing Toolkit.
504 */
505static void
506irig_rf(
507	struct peer *peer,	/* peer structure pointer */
508	double	sample		/* current signal sample */
509	)
510{
511	struct refclockproc *pp;
512	struct irigunit *up;
513
514	/*
515	 * Local variables
516	 */
517	double	irig_b, irig_e;	/* irig filter outputs */
518
519	pp = peer->procptr;
520	up = (struct irigunit *)pp->unitptr;
521
522	/*
523	 * IRIG-B filter. 4th-order elliptic, 800-Hz highpass, 0.3 dB
524	 * passband ripple, -50 dB stopband ripple, phase delay -.0022
525	 * s)
526	 */
527	irig_b = (up->hpf[4] = up->hpf[3]) * 2.322484e-01;
528	irig_b += (up->hpf[3] = up->hpf[2]) * -1.103929e+00;
529	irig_b += (up->hpf[2] = up->hpf[1]) * 2.351081e+00;
530	irig_b += (up->hpf[1] = up->hpf[0]) * -2.335036e+00;
531	up->hpf[0] = sample - irig_b;
532	irig_b = up->hpf[0] * 4.335855e-01
533	    + up->hpf[1] * -1.695859e+00
534	    + up->hpf[2] * 2.525004e+00
535	    + up->hpf[3] * -1.695859e+00
536	    + up->hpf[4] * 4.335855e-01;
537	up->irig_b += irig_b * irig_b;
538
539	/*
540	 * IRIG-E filter. 4th-order elliptic, 130-Hz lowpass, 0.3 dB
541	 * passband ripple, -50 dB stopband ripple, phase delay .0219 s.
542	 */
543	irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-01;
544	irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+00;
545	irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+00;
546	irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+00;
547	up->lpf[0] = sample - irig_e;
548	irig_e = up->lpf[0] * 3.215696e-03
549	    + up->lpf[1] * -1.174951e-02
550	    + up->lpf[2] * 1.712074e-02
551	    + up->lpf[3] * -1.174951e-02
552	    + up->lpf[4] * 3.215696e-03;
553	up->irig_e += irig_e * irig_e;
554
555	/*
556	 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
557	 */
558	up->badcnt = (up->badcnt + 1) % up->decim;
559	if (up->badcnt == 0) {
560		if (up->decim == 1)
561		    irig_base(peer, irig_b);
562		else
563		    irig_base(peer, irig_e);
564	}
565}
566
567/*
568 * irig_base - baseband processing
569 *
570 * This routine processes the baseband signal and demodulates the AM
571 * carrier using a synchronous detector. It then synchronizes to the
572 * data frame at the baud rate and decodes the data pulses.
573 */
574static void
575irig_base(
576	struct peer *peer,	/* peer structure pointer */
577	double	sample		/* current signal sample */
578	)
579{
580	struct refclockproc *pp;
581	struct irigunit *up;
582
583	/*
584	 * Local variables
585	 */
586	double	lope;		/* integrator output */
587	double	env;		/* envelope detector output */
588	double	dtemp;		/* double temp */
589	int	i;		/* index temp */
590
591	pp = peer->procptr;
592	up = (struct irigunit *)pp->unitptr;
593
594	/*
595	 * Synchronous baud integrator. Corresponding samples of current
596	 * and past baud intervals are integrated to refine the envelope
597	 * amplitude and phase estimate. We keep one cycle of both the
598	 * raw and integrated data for later use.
599	 */
600	up->envphase = (up->envphase + 1) % BAUD;
601	up->carphase = (up->carphase + 1) % CYCLE;
602	up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
603	    (5 * up->tc);
604	lope = up->integ[up->envphase];
605	up->lastenv[up->carphase] = sample;
606	up->lastint[up->carphase] = lope;
607
608	/*
609	 * Phase detector. Sample amplitudes are integrated over the
610	 * baud interval. Cycle phase is determined from these
611	 * amplitudes using an eight-sample cyclic buffer. A phase
612	 * change of 360 degrees produces an output change of one unit.
613	 */
614	if (up->lastsig > 0 && lope <= 0) {
615		up->xxing = lope / (up->lastsig - lope);
616		up->zxing += (up->carphase - 4 + up->xxing) / 8.;
617	}
618	up->lastsig = lope;
619
620	/*
621	 * Update signal/noise estimates and PLL phase/frequency.
622	 */
623	if (up->envphase == 0) {
624
625		/*
626		 * Update envelope signal and noise estimates and mess
627		 * with error bits.
628		 */
629		up->maxsignal = up->intmax;
630		up->noise = up->intmin;
631		if (up->maxsignal < DRPOUT)
632		    up->errflg |= IRIG_ERR_AMP;
633		if (up->intmax > 0)
634		    up->modndx = (up->intmax - up->intmin) / up->intmax;
635 		else
636		    up->modndx = 0;
637		if (up->modndx < MODMIN)
638		    up->errflg |= IRIG_ERR_MOD;
639		up->intmin = 1e6; up->intmax = 0;
640		if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
641				  IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
642			up->tc = MINTC;
643			up->tcount = 0;
644		}
645
646		/*
647		 * Update PLL phase and frequency. The PLL time constant
648		 * is set initially to stabilize the frequency within a
649		 * minute or two, then increases to the maximum. The
650		 * frequency is clamped so that the PLL capture range
651		 * cannot be exceeded.
652		 */
653		dtemp = up->zxing * up->decim / BAUD;
654		up->yxing = dtemp;
655		up->zxing = 0.;
656		up->phase += dtemp / up->tc;
657		up->freq += dtemp / (4. * up->tc * up->tc);
658		if (up->freq > MAXFREQ) {
659			up->freq = MAXFREQ;
660			up->errflg |= IRIG_ERR_FREQ;
661		} else if (up->freq < -MAXFREQ) {
662			up->freq = -MAXFREQ;
663			up->errflg |= IRIG_ERR_FREQ;
664		}
665	}
666
667	/*
668	 * Synchronous demodulator. There are eight samples in the cycle
669	 * and ten cycles in the baud interval. The amplitude of each
670	 * cycle is determined at the last sample in the cycle. The
671	 * beginning of the data pulse is determined from the integrated
672	 * samples, while the end of the pulse is determined from the
673	 * raw samples. The raw data bits are demodulated relative to
674	 * the slice level and left-shifted in the decoding register.
675	 */
676	if (up->carphase != 7)
677	    return;
678	env = (up->lastenv[2] - up->lastenv[6]) / 2.;
679	lope = (up->lastint[2] - up->lastint[6]) / 2.;
680	if (lope > up->intmax)
681	    up->intmax = lope;
682	if (lope < up->intmin)
683	    up->intmin = lope;
684
685	/*
686	 * Pulse code demodulator and reference timestamp. The decoder
687	 * looks for a sequence of ten bits; the first two bits must be
688	 * one, the last two bits must be zero. Frame synch is asserted
689	 * when three correct frames have been found.
690	 */
691	up->pulse = (up->pulse + 1) % 10;
692	if (up->pulse == 1)
693	    up->envmax = env;
694	else if (up->pulse == 9)
695	    up->envmin = env;
696	up->dcycles <<= 1;
697	if (env >= (up->envmax + up->envmin) / 2.)
698	    up->dcycles |= 1;
699	up->cycles <<= 1;
700	if (lope >= (up->maxsignal + up->noise) / 2.)
701	    up->cycles |= 1;
702	if ((up->cycles & 0x303c0f03) == 0x300c0300) {
703		l_fp ltemp;
704		int bitz;
705
706		/*
707		 * The PLL time constant starts out small, in order to
708		 * sustain a frequency tolerance of 250 PPM. It
709		 * gradually increases as the loop settles down. Note
710		 * that small wiggles are not believed, unless they
711		 * persist for lots of samples.
712		 */
713		if (up->pulse != 9)
714		    up->errflg |= IRIG_ERR_SYNCH;
715		up->pulse = 9;
716		dtemp = BAUD - up->zxing;
717		i = up->envxing - up->envphase;
718		if (i < 0)
719		    i -= i;
720		if (i <= 1) {
721			up->tcount++;
722			if (up->tcount > 50 * up->tc) {
723				up->tc++;
724				if (up->tc > MAXTC)
725				    up->tc = MAXTC;
726				up->tcount = 0;
727				up->envxing = up->envphase;
728			} else {
729				dtemp -= up->envxing - up->envphase;
730			}
731		} else {
732			up->tcount = 0;
733			up->envxing = up->envphase;
734		}
735
736		/*
737		 * Determine a reference timestamp, accounting for the
738		 * codec delay and filter delay. Note the timestamp is
739		 * for the previous frame, so we have to backtrack for
740		 * this plus the delay since the last carrier positive
741		 * zero crossing.
742		 */
743		DTOLFP(up->decim * (dtemp / SECOND + 1.) + up->fdelay,
744		       &ltemp);
745		pp->lastrec = up->timestamp;
746		L_SUB(&pp->lastrec, &ltemp);
747
748		/*
749		 * The data bits are collected in ten-bit frames. The
750		 * first two and last two bits are determined by frame
751		 * sync and ignored here; the resulting patterns
752		 * represent zero (0-1 bits), one (2-4 bits) and
753		 * position identifier (5-6 bits). The remaining
754		 * patterns represent errors and are treated as zeros.
755		 */
756		bitz = up->dcycles & 0xfc;
757		switch(bitz) {
758
759		    case 0x00:
760		    case 0x80:
761			irig_decode(peer, BIT0);
762			break;
763
764		    case 0xc0:
765		    case 0xe0:
766		    case 0xf0:
767			irig_decode(peer, BIT1);
768			break;
769
770		    case 0xf8:
771		    case 0xfc:
772			irig_decode(peer, BITP);
773			break;
774
775		    default:
776			irig_decode(peer, 0);
777			up->errflg |= IRIG_ERR_DECODE;
778		}
779	}
780}
781
782
783/*
784 * irig_decode - decode the data
785 *
786 * This routine assembles bits into digits, digits into subfields and
787 * subfields into the timecode field. Bits can have values of zero, one
788 * or position identifier. There are four bits per digit, two digits per
789 * subfield and ten subfields per field. The last bit in every subfield
790 * and the first bit in the first subfield are position identifiers.
791 */
792static void
793irig_decode(
794	struct	peer *peer,	/* peer structure pointer */
795	int	bit		/* data bit (0, 1 or 2) */
796	)
797{
798	struct refclockproc *pp;
799	struct irigunit *up;
800
801	/*
802	 * Local variables
803	 */
804	char	syncchar;	/* sync character (Spectracom only) */
805	char	sbs[6];		/* binary seconds since 0h */
806	char	spare[2];	/* mulligan digits */
807
808        pp = peer->procptr;
809	up = (struct irigunit *)pp->unitptr;
810
811	/*
812	 * Assemble subfield bits.
813	 */
814	up->bits <<= 1;
815	if (bit == BIT1) {
816		up->bits |= 1;
817	} else if (bit == BITP && up->lastbit == BITP) {
818
819		/*
820		 * Frame sync - two adjacent position identifiers.
821		 * Monitor the reference timestamp and wiggle the
822		 * clock, but only if no errors have occurred.
823		 */
824		up->bitcnt = 1;
825		up->fieldcnt = 0;
826		up->lastbit = 0;
827		up->montime = pp->lastrec;
828		if (up->errflg == 0) {
829			up->timecnt++;
830			refclock_process(pp);
831		}
832		if (up->timecnt >= MAXSTAGE) {
833			refclock_receive(peer);
834			up->timecnt = 0;
835			up->pollcnt = 2;
836		}
837		up->errflg = 0;
838	}
839	up->bitcnt = (up->bitcnt + 1) % SUBFLD;
840	if (up->bitcnt == 0) {
841
842		/*
843		 * End of subfield. Encode two hexadecimal digits in
844		 * little-endian timecode field.
845		 */
846		if (up->fieldcnt == 0)
847		    up->bits <<= 1;
848		if (up->xptr < 2)
849		    up->xptr = 2 * FIELD;
850		up->timecode[--up->xptr] = hexchar[(up->bits >> 5) &
851						  0xf];
852		up->timecode[--up->xptr] = hexchar[up->bits & 0xf];
853		up->fieldcnt = (up->fieldcnt + 1) % FIELD;
854		if (up->fieldcnt == 0) {
855
856			/*
857			 * End of field. Decode the timecode, adjust the
858			 * gain and set the input port. Set the port
859			 * here on the assumption somebody might even
860			 * change it on-wing.
861			 */
862			up->xptr = 2 * FIELD;
863			if (sscanf((char *)up->timecode,
864				   "%6s%2d%c%2s%3d%2d%2d%2d",
865				   sbs, &pp->year, &syncchar, spare, &pp->day,
866				   &pp->hour, &pp->minute, &pp->second) != 8)
867			    pp->leap = LEAP_NOTINSYNC;
868			else
869			    pp->leap = LEAP_NOWARNING;
870			up->second = (up->second + up->decim) % 60;
871			if (pp->second != up->second)
872			    up->errflg |= IRIG_ERR_CHECK;
873			up->second = pp->second;
874			sprintf(pp->a_lastcode,
875				"%02x %c %2d %3d %02d:%02d:%02d %4.0f %3d %6.3f %2d %2d %6.3f %6.1f %s",
876				up->errflg, syncchar, pp->year, pp->day,
877				pp->hour, pp->minute, pp->second,
878				up->maxsignal, up->gain, up->modndx,
879				up->envxing, up->tc, up->yxing, up->freq *
880				1e6 / SECOND, ulfptoa(&up->montime, 6));
881			pp->lencode = strlen(pp->a_lastcode);
882			if (up->timecnt == 0 || pp->sloppyclockflag &
883			    CLK_FLAG4)
884			    record_clock_stats(&peer->srcadr,
885					       pp->a_lastcode);
886#ifdef DEBUG
887			if (debug > 2)
888			    printf("irig: %s\n", pp->a_lastcode);
889#endif /* DEBUG */
890		}
891	}
892	up->lastbit = bit;
893}
894
895
896/*
897 * irig_poll - called by the transmit procedure
898 *
899 * This routine keeps track of status. If nothing is heard for two
900 * successive poll intervals, a timeout event is declared and any
901 * orphaned timecode updates are sent to foster care.
902 */
903static void
904irig_poll(
905	int	unit,		/* instance number (not used) */
906	struct peer *peer	/* peer structure pointer */
907	)
908{
909	struct refclockproc *pp;
910	struct irigunit *up;
911
912	pp = peer->procptr;
913	up = (struct irigunit *)pp->unitptr;
914
915	/*
916	 * Keep book for tattletales
917	 */
918	if (up->pollcnt == 0) {
919		refclock_report(peer, CEVNT_TIMEOUT);
920		up->timecnt = 0;
921		return;
922	}
923	up->pollcnt--;
924	pp->polls++;
925
926}
927
928
929/*
930 * irig_gain - adjust codec gain
931 *
932 * This routine is called once each second. If the signal envelope
933 * amplitude is too low, the codec gain is bumped up by four units; if
934 * too high, it is bumped down. The decoder is relatively insensitive to
935 * amplitude, so this crudity works just fine. The input port is set and
936 * the error flag is cleared, mostly to be ornery.
937 */
938static void
939irig_gain(
940	struct peer *peer	/* peer structure pointer */
941	)
942{
943	struct refclockproc *pp;
944	struct irigunit *up;
945
946	pp = peer->procptr;
947	up = (struct irigunit *)pp->unitptr;
948
949	/*
950	 * Apparently, the codec uses only the high order bits of the
951	 * gain control field. Thus, it may take awhile for changes to
952	 * wiggle the hardware bits.
953	 */
954	if (up->clipcnt == 0) {
955		up->gain += 4;
956		if (up->gain > 255)
957			up->gain = 255;
958	} else if (up->clipcnt > SECOND / 100) {
959		up->gain -= 4;
960		if (up->gain < 0)
961			up->gain = 0;
962	}
963	audio_gain(up->gain, up->port);
964	up->clipcnt = 0;
965}
966
967
968#else
969int refclock_irig_bs;
970#endif /* REFCLOCK */
971