refclock_irig.c revision 182007
1/*
2 * refclock_irig - audio IRIG-B/E demodulator/decoder
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#if defined(REFCLOCK) && defined(CLOCK_IRIG)
9
10#include "ntpd.h"
11#include "ntp_io.h"
12#include "ntp_refclock.h"
13#include "ntp_calendar.h"
14#include "ntp_stdlib.h"
15
16#include <stdio.h>
17#include <ctype.h>
18#include <math.h>
19#ifdef HAVE_SYS_IOCTL_H
20#include <sys/ioctl.h>
21#endif /* HAVE_SYS_IOCTL_H */
22
23#include "audio.h"
24
25/*
26 * Audio IRIG-B/E demodulator/decoder
27 *
28 * This driver receives, demodulates and decodes IRIG-B/E signals when
29 * connected to the audio codec /dev/audio. The IRIG signal format is an
30 * amplitude-modulated carrier with pulse-width modulated data bits. For
31 * IRIG-B, the carrier frequency is 1000 Hz and bit rate 100 b/s; for
32 * IRIG-E, the carrier frequenchy is 100 Hz and bit rate 10 b/s. The
33 * driver automatically recognizes which format is in use.
34 *
35 * The program processes 8000-Hz mu-law companded samples using separate
36 * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
37 * detector and automatic threshold corrector. Cycle crossings relative
38 * to the corrected slice level determine the width of each pulse and
39 * its value - zero, one or position identifier. The data encode 20 BCD
40 * digits which determine the second, minute, hour and day of the year
41 * and sometimes the year and synchronization condition. The comb filter
42 * exponentially averages the corresponding samples of successive baud
43 * intervals in order to reliably identify the reference carrier cycle.
44 * A type-II phase-lock loop (PLL) performs additional integration and
45 * interpolation to accurately determine the zero crossing of that
46 * cycle, which determines the reference timestamp. A pulse-width
47 * discriminator demodulates the data pulses, which are then encoded as
48 * the BCD digits of the timecode.
49 *
50 * The timecode and reference timestamp are updated once each second
51 * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
52 * saved for later processing. At poll intervals of 64 s, the saved
53 * samples are processed by a trimmed-mean filter and used to update the
54 * system clock.
55 *
56 * An automatic gain control feature provides protection against
57 * overdriven or underdriven input signal amplitudes. It is designed to
58 * maintain adequate demodulator signal amplitude while avoiding
59 * occasional noise spikes. In order to assure reliable capture, the
60 * decompanded input signal amplitude must be greater than 100 units and
61 * the codec sample frequency error less than 250 PPM (.025 percent).
62 *
63 * The program performs a number of error checks to protect against
64 * overdriven or underdriven input signal levels, incorrect signal
65 * format or improper hardware configuration. Specifically, if any of
66 * the following errors occur for a time measurement, the data are
67 * rejected.
68 *
69 * o The peak carrier amplitude is less than DRPOUT (100). This usually
70 *   means dead IRIG signal source, broken cable or wrong input port.
71 *
72 * o The frequency error is greater than MAXFREQ +-250 PPM (.025%). This
73 *   usually means broken codec hardware or wrong codec configuration.
74 *
75 * o The modulation index is less than MODMIN (0.5). This usually means
76 *   overdriven IRIG signal or wrong IRIG format.
77 *
78 * o A frame synchronization error has occurred. This usually means
79 *   wrong IRIG signal format or the IRIG signal source has lost
80 *   synchronization (signature control).
81 *
82 * o A data decoding error has occurred. This usually means wrong IRIG
83 *   signal format.
84 *
85 * o The current second of the day is not exactly one greater than the
86 *   previous one. This usually means a very noisy IRIG signal or
87 *   insufficient CPU resources.
88 *
89 * o An audio codec error (overrun) occurred. This usually means
90 *   insufficient CPU resources, as sometimes happens with Sun SPARC
91 *   IPCs when doing something useful.
92 *
93 * Note that additional checks are done elsewhere in the reference clock
94 * interface routines.
95 *
96 * Debugging aids
97 *
98 * The timecode format used for debugging and data recording includes
99 * data helpful in diagnosing problems with the IRIG signal and codec
100 * connections. With debugging enabled (-d on the ntpd command line),
101 * the driver produces one line for each timecode in the following
102 * format:
103 *
104 * 00 1 98 23 19:26:52 721 143 0.694 20 0.1 66.5 3094572411.00027
105 *
106 * The most recent line is also written to the clockstats file at 64-s
107 * intervals.
108 *
109 * The first field contains the error flags in hex, where the hex bits
110 * are interpreted as below. This is followed by the IRIG status
111 * indicator, year of century, day of year and time of day. The status
112 * indicator and year are not produced by some IRIG devices. Following
113 * these fields are the signal amplitude (0-8100), codec gain (0-255),
114 * modulation index (0-1), time constant (2-20), carrier phase error
115 * (us) and carrier frequency error (PPM). The last field is the on-time
116 * timestamp in NTP format.
117 *
118 * The fraction part of the on-time timestamp is a good indicator of how
119 * well the driver is doing. Once upon a time, an UltrSPARC 30 and
120 * Solaris 2.7 kept the clock within a few tens of microseconds relative
121 * to the IRIG-B signal. Accuracy with IRIG-E was about ten times worse.
122 * Unfortunately, Sun broke the 2.7 audio driver in 2.8, which has a 10-
123 * ms sawtooth modulation. The driver attempts to remove the modulation
124 * by some clever estimation techniques which mostly work. With the
125 * "mixerctl -o" command before starting the daemon, the jitter is down
126 * to about 100 microseconds. Your experience may vary.
127 *
128 * Unlike other drivers, which can have multiple instantiations, this
129 * one supports only one. It does not seem likely that more than one
130 * audio codec would be useful in a single machine. More than one would
131 * probably chew up too much CPU time anyway.
132 *
133 * Fudge factors
134 *
135 * Fudge flag4 causes the dubugging output described above to be
136 * recorded in the clockstats file. Fudge flag2 selects the audio input
137 * port, where 0 is the mike port (default) and 1 is the line-in port.
138 * It does not seem useful to select the compact disc player port. Fudge
139 * flag3 enables audio monitoring of the input signal. For this purpose,
140 * the monitor gain is set to a default value. Fudgetime2 is used as a
141 * frequency vernier for broken codec sample frequency.
142 */
143/*
144 * Interface definitions
145 */
146#define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
147#define	PRECISION	(-17)	/* precision assumed (about 10 us) */
148#define	REFID		"IRIG"	/* reference ID */
149#define	DESCRIPTION	"Generic IRIG Audio Driver" /* WRU */
150#define	AUDIO_BUFSIZ	320	/* audio buffer size (40 ms) */
151#define SECOND		8000	/* nominal sample rate (Hz) */
152#define BAUD		80	/* samples per baud interval */
153#define OFFSET		128	/* companded sample offset */
154#define SIZE		256	/* decompanding table size */
155#define CYCLE		8	/* samples per carrier cycle */
156#define SUBFLD		10	/* bits per subfield */
157#define FIELD		10	/* subfields per field */
158#define MINTC		2	/* min PLL time constant */
159#define MAXTC		20	/* max PLL time constant max */
160#define	MAXAMP		6000.	/* maximum signal level */
161#define	MAXCLP		100	/* max clips above reference per s */
162#define DRPOUT		100.	/* dropout signal level */
163#define MODMIN		0.5	/* minimum modulation index */
164#define MAXFREQ		(250e-6 * SECOND) /* freq tolerance (.025%) */
165#define PI		3.1415926535 /* the real thing */
166#ifdef IRIG_SUCKS
167#define	WIGGLE		11	/* wiggle filter length */
168#endif /* IRIG_SUCKS */
169
170/*
171 * Experimentally determined filter delays
172 */
173#define IRIG_B		.0019	/* IRIG-B filter delay */
174#define IRIG_E		.0019	/* IRIG-E filter delay */
175
176/*
177 * Data bit definitions
178 */
179#define BIT0		0	/* zero */
180#define BIT1		1	/* one */
181#define BITP		2	/* position identifier */
182
183/*
184 * Error flags (up->errflg)
185 */
186#define IRIG_ERR_AMP	0x01	/* low carrier amplitude */
187#define IRIG_ERR_FREQ	0x02	/* frequency tolerance exceeded */
188#define IRIG_ERR_MOD	0x04	/* low modulation index */
189#define IRIG_ERR_SYNCH	0x08	/* frame synch error */
190#define IRIG_ERR_DECODE	0x10	/* frame decoding error */
191#define IRIG_ERR_CHECK	0x20	/* second numbering discrepancy */
192#define IRIG_ERR_ERROR	0x40	/* codec error (overrun) */
193#define IRIG_ERR_SIGERR	0x80	/* IRIG status error (Spectracom) */
194
195/*
196 * IRIG unit control structure
197 */
198struct irigunit {
199	u_char	timecode[21];	/* timecode string */
200	l_fp	timestamp;	/* audio sample timestamp */
201	l_fp	tick;		/* audio sample increment */
202	double	integ[BAUD];	/* baud integrator */
203	double	phase, freq;	/* logical clock phase and frequency */
204	double	zxing;		/* phase detector integrator */
205	double	yxing;		/* cycle phase */
206	double	exing;		/* envelope phase */
207	double	modndx;		/* modulation index */
208	double	irig_b;		/* IRIG-B signal amplitude */
209	double	irig_e;		/* IRIG-E signal amplitude */
210	int	errflg;		/* error flags */
211	/*
212	 * Audio codec variables
213	 */
214	double	comp[SIZE];	/* decompanding table */
215	int	port;		/* codec port */
216	int	gain;		/* codec gain */
217	int	mongain;	/* codec monitor gain */
218	int	clipcnt;	/* sample clipped count */
219	int	seccnt;		/* second interval counter */
220
221	/*
222	 * RF variables
223	 */
224	double	hpf[5];		/* IRIG-B filter shift register */
225	double	lpf[5];		/* IRIG-E filter shift register */
226	double	intmin, intmax;	/* integrated envelope min and max */
227	double	envmax;		/* peak amplitude */
228	double	envmin;		/* noise amplitude */
229	double	maxsignal;	/* integrated peak amplitude */
230	double	noise;		/* integrated noise amplitude */
231	double	lastenv[CYCLE];	/* last cycle amplitudes */
232	double	lastint[CYCLE];	/* last integrated cycle amplitudes */
233	double	lastsig;	/* last carrier sample */
234	double	fdelay;		/* filter delay */
235	int	decim;		/* sample decimation factor */
236	int	envphase;	/* envelope phase */
237	int	envptr;		/* envelope phase pointer */
238	int	carphase;	/* carrier phase */
239	int	envsw;		/* envelope state */
240	int	envxing;	/* envelope slice crossing */
241	int	tc;		/* time constant */
242	int	tcount;		/* time constant counter */
243	int	badcnt;		/* decimation interval counter */
244
245	/*
246	 * Decoder variables
247	 */
248	int	pulse;		/* cycle counter */
249	int	cycles;		/* carrier cycles */
250	int	dcycles;	/* data cycles */
251	int	xptr;		/* translate table pointer */
252	int	lastbit;	/* last code element length */
253	int	second;		/* previous second */
254	int	fieldcnt;	/* subfield count in field */
255	int	bits;		/* demodulated bits */
256	int	bitcnt;		/* bit count in subfield */
257#ifdef IRIG_SUCKS
258	l_fp	wigwag;		/* wiggle accumulator */
259	int	wp;		/* wiggle filter pointer */
260	l_fp	wiggle[WIGGLE];	/* wiggle filter */
261	l_fp	wigbot[WIGGLE];	/* wiggle bottom fisher*/
262#endif /* IRIG_SUCKS */
263	l_fp	wuggle;
264};
265
266/*
267 * Function prototypes
268 */
269static	int	irig_start	P((int, struct peer *));
270static	void	irig_shutdown	P((int, struct peer *));
271static	void	irig_receive	P((struct recvbuf *));
272static	void	irig_poll	P((int, struct peer *));
273
274/*
275 * More function prototypes
276 */
277static	void	irig_base	P((struct peer *, double));
278static	void	irig_rf		P((struct peer *, double));
279static	void	irig_decode	P((struct peer *, int));
280static	void	irig_gain	P((struct peer *));
281
282/*
283 * Transfer vector
284 */
285struct	refclock refclock_irig = {
286	irig_start,		/* start up driver */
287	irig_shutdown,		/* shut down driver */
288	irig_poll,		/* transmit poll message */
289	noentry,		/* not used (old irig_control) */
290	noentry,		/* initialize driver (not used) */
291	noentry,		/* not used (old irig_buginfo) */
292	NOFLAGS			/* not used */
293};
294
295/*
296 * Global variables
297 */
298static char	hexchar[] = {	/* really quick decoding table */
299	'0', '8', '4', 'c',	/* 0000 0001 0010 0011 */
300	'2', 'a', '6', 'e',	/* 0100 0101 0110 0111 */
301	'1', '9', '5', 'd',	/* 1000 1001 1010 1011 */
302	'3', 'b', '7', 'f'	/* 1100 1101 1110 1111 */
303};
304
305
306/*
307 * irig_start - open the devices and initialize data for processing
308 */
309static int
310irig_start(
311	int	unit,		/* instance number (used for PCM) */
312	struct peer *peer	/* peer structure pointer */
313	)
314{
315	struct refclockproc *pp;
316	struct irigunit *up;
317
318	/*
319	 * Local variables
320	 */
321	int	fd;		/* file descriptor */
322	int	i;		/* index */
323	double	step;		/* codec adjustment */
324
325	/*
326	 * Open audio device
327	 */
328	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
329	if (fd < 0)
330		return (0);
331#ifdef DEBUG
332	if (debug)
333		audio_show();
334#endif
335
336	/*
337	 * Allocate and initialize unit structure
338	 */
339	if (!(up = (struct irigunit *)
340	      emalloc(sizeof(struct irigunit)))) {
341		(void) close(fd);
342		return (0);
343	}
344	memset((char *)up, 0, sizeof(struct irigunit));
345	pp = peer->procptr;
346	pp->unitptr = (caddr_t)up;
347	pp->io.clock_recv = irig_receive;
348	pp->io.srcclock = (caddr_t)peer;
349	pp->io.datalen = 0;
350	pp->io.fd = fd;
351	if (!io_addclock(&pp->io)) {
352		(void)close(fd);
353		free(up);
354		return (0);
355	}
356
357	/*
358	 * Initialize miscellaneous variables
359	 */
360	peer->precision = PRECISION;
361	pp->clockdesc = DESCRIPTION;
362	memcpy((char *)&pp->refid, REFID, 4);
363	up->tc = MINTC;
364	up->decim = 1;
365	up->fdelay = IRIG_B;
366	up->gain = 127;
367
368	/*
369	 * The companded samples are encoded sign-magnitude. The table
370	 * contains all the 256 values in the interest of speed.
371	 */
372	up->comp[0] = up->comp[OFFSET] = 0.;
373	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
374	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
375	step = 2.;
376	for (i = 3; i < OFFSET; i++) {
377		up->comp[i] = up->comp[i - 1] + step;
378		up->comp[OFFSET + i] = -up->comp[i];
379                if (i % 16 == 0)
380			step *= 2.;
381	}
382	DTOLFP(1. / SECOND, &up->tick);
383	return (1);
384}
385
386
387/*
388 * irig_shutdown - shut down the clock
389 */
390static void
391irig_shutdown(
392	int	unit,		/* instance number (not used) */
393	struct peer *peer	/* peer structure pointer */
394	)
395{
396	struct refclockproc *pp;
397	struct irigunit *up;
398
399	pp = peer->procptr;
400	up = (struct irigunit *)pp->unitptr;
401	io_closeclock(&pp->io);
402	free(up);
403}
404
405
406/*
407 * irig_receive - receive data from the audio device
408 *
409 * This routine reads input samples and adjusts the logical clock to
410 * track the irig clock by dropping or duplicating codec samples.
411 */
412static void
413irig_receive(
414	struct recvbuf *rbufp	/* receive buffer structure pointer */
415	)
416{
417	struct peer *peer;
418	struct refclockproc *pp;
419	struct irigunit *up;
420
421	/*
422	 * Local variables
423	 */
424	double	sample;		/* codec sample */
425	u_char	*dpt;		/* buffer pointer */
426	int	bufcnt;		/* buffer counter */
427	l_fp	ltemp;		/* l_fp temp */
428
429	peer = (struct peer *)rbufp->recv_srcclock;
430	pp = peer->procptr;
431	up = (struct irigunit *)pp->unitptr;
432
433	/*
434	 * Main loop - read until there ain't no more. Note codec
435	 * samples are bit-inverted.
436	 */
437	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
438	L_SUB(&rbufp->recv_time, &ltemp);
439	up->timestamp = rbufp->recv_time;
440	dpt = rbufp->recv_buffer;
441	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
442		sample = up->comp[~*dpt++ & 0xff];
443
444		/*
445		 * Clip noise spikes greater than MAXAMP. If no clips,
446		 * increase the gain a tad; if the clips are too high,
447		 * decrease a tad.
448		 */
449		if (sample > MAXAMP) {
450			sample = MAXAMP;
451			up->clipcnt++;
452		} else if (sample < -MAXAMP) {
453			sample = -MAXAMP;
454			up->clipcnt++;
455		}
456
457		/*
458		 * Variable frequency oscillator. The codec oscillator
459		 * runs at the nominal rate of 8000 samples per second,
460		 * or 125 us per sample. A frequency change of one unit
461		 * results in either duplicating or deleting one sample
462		 * per second, which results in a frequency change of
463		 * 125 PPM.
464		 */
465		up->phase += up->freq / SECOND;
466		up->phase += pp->fudgetime2 / 1e6;
467		if (up->phase >= .5) {
468			up->phase -= 1.;
469		} else if (up->phase < -.5) {
470			up->phase += 1.;
471			irig_rf(peer, sample);
472			irig_rf(peer, sample);
473		} else {
474			irig_rf(peer, sample);
475		}
476		L_ADD(&up->timestamp, &up->tick);
477
478		/*
479		 * Once each second, determine the IRIG format and gain.
480		 */
481		up->seccnt = (up->seccnt + 1) % SECOND;
482		if (up->seccnt == 0) {
483			if (up->irig_b > up->irig_e) {
484				up->decim = 1;
485				up->fdelay = IRIG_B;
486			} else {
487				up->decim = 10;
488				up->fdelay = IRIG_E;
489			}
490			irig_gain(peer);
491			up->irig_b = up->irig_e = 0;
492		}
493	}
494
495	/*
496	 * Set the input port and monitor gain for the next buffer.
497	 */
498	if (pp->sloppyclockflag & CLK_FLAG2)
499		up->port = 2;
500	else
501		up->port = 1;
502	if (pp->sloppyclockflag & CLK_FLAG3)
503		up->mongain = MONGAIN;
504	else
505		up->mongain = 0;
506}
507
508/*
509 * irig_rf - RF processing
510 *
511 * This routine filters the RF signal using a highpass filter for IRIG-B
512 * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
513 * decimated by a factor of ten. The lowpass filter functions also as a
514 * decimation filter in this case. Note that the codec filters function
515 * as roofing filters to attenuate both the high and low ends of the
516 * passband. IIR filter coefficients were determined using Matlab Signal
517 * Processing Toolkit.
518 */
519static void
520irig_rf(
521	struct peer *peer,	/* peer structure pointer */
522	double	sample		/* current signal sample */
523	)
524{
525	struct refclockproc *pp;
526	struct irigunit *up;
527
528	/*
529	 * Local variables
530	 */
531	double	irig_b, irig_e;	/* irig filter outputs */
532
533	pp = peer->procptr;
534	up = (struct irigunit *)pp->unitptr;
535
536	/*
537	 * IRIG-B filter. 4th-order elliptic, 800-Hz highpass, 0.3 dB
538	 * passband ripple, -50 dB stopband ripple, phase delay .0022
539	 * s)
540	 */
541	irig_b = (up->hpf[4] = up->hpf[3]) * 2.322484e-01;
542	irig_b += (up->hpf[3] = up->hpf[2]) * -1.103929e+00;
543	irig_b += (up->hpf[2] = up->hpf[1]) * 2.351081e+00;
544	irig_b += (up->hpf[1] = up->hpf[0]) * -2.335036e+00;
545	up->hpf[0] = sample - irig_b;
546	irig_b = up->hpf[0] * 4.335855e-01
547	    + up->hpf[1] * -1.695859e+00
548	    + up->hpf[2] * 2.525004e+00
549	    + up->hpf[3] * -1.695859e+00
550	    + up->hpf[4] * 4.335855e-01;
551	up->irig_b += irig_b * irig_b;
552
553	/*
554	 * IRIG-E filter. 4th-order elliptic, 130-Hz lowpass, 0.3 dB
555	 * passband ripple, -50 dB stopband ripple, phase delay .0219 s.
556	 */
557	irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-01;
558	irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+00;
559	irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+00;
560	irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+00;
561	up->lpf[0] = sample - irig_e;
562	irig_e = up->lpf[0] * 3.215696e-03
563	    + up->lpf[1] * -1.174951e-02
564	    + up->lpf[2] * 1.712074e-02
565	    + up->lpf[3] * -1.174951e-02
566	    + up->lpf[4] * 3.215696e-03;
567	up->irig_e += irig_e * irig_e;
568
569	/*
570	 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
571	 */
572	up->badcnt = (up->badcnt + 1) % up->decim;
573	if (up->badcnt == 0) {
574		if (up->decim == 1)
575			irig_base(peer, irig_b);
576		else
577			irig_base(peer, irig_e);
578	}
579}
580
581/*
582 * irig_base - baseband processing
583 *
584 * This routine processes the baseband signal and demodulates the AM
585 * carrier using a synchronous detector. It then synchronizes to the
586 * data frame at the baud rate and decodes the data pulses.
587 */
588static void
589irig_base(
590	struct peer *peer,	/* peer structure pointer */
591	double	sample		/* current signal sample */
592	)
593{
594	struct refclockproc *pp;
595	struct irigunit *up;
596
597	/*
598	 * Local variables
599	 */
600	double	xxing;		/* phase detector interpolated output */
601	double	lope;		/* integrator output */
602	double	env;		/* envelope detector output */
603	double	dtemp;		/* double temp */
604
605	pp = peer->procptr;
606	up = (struct irigunit *)pp->unitptr;
607
608	/*
609	 * Synchronous baud integrator. Corresponding samples of current
610	 * and past baud intervals are integrated to refine the envelope
611	 * amplitude and phase estimate. We keep one cycle of both the
612	 * raw and integrated data for later use.
613	 */
614	up->envphase = (up->envphase + 1) % BAUD;
615	up->carphase = (up->carphase + 1) % CYCLE;
616	up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
617	    (5 * up->tc);
618	lope = up->integ[up->envphase];
619	up->lastenv[up->carphase] = sample;
620	up->lastint[up->carphase] = lope;
621
622	/*
623	 * Phase detector. Sample amplitudes are integrated over the
624	 * baud interval. Cycle phase is determined from these
625	 * amplitudes using an eight-sample cyclic buffer. A phase
626	 * change of 360 degrees produces an output change of one unit.
627	 */
628	if (up->lastsig > 0 && lope <= 0) {
629		xxing = lope / (up->lastsig - lope);
630		up->zxing += (up->carphase - 4 + xxing) / CYCLE;
631	}
632	up->lastsig = lope;
633
634	/*
635	 * Update signal/noise estimates and PLL phase/frequency.
636	 */
637	if (up->envphase == 0) {
638
639		/*
640		 * Update envelope signal and noise estimates and mess
641		 * with error bits.
642		 */
643		up->maxsignal = up->intmax;
644		up->noise = up->intmin;
645		if (up->maxsignal < DRPOUT)
646			up->errflg |= IRIG_ERR_AMP;
647		if (up->maxsignal > 0)
648			up->modndx = (up->intmax - up->intmin) /
649			    up->intmax;
650 		else
651			up->modndx = 0;
652		if (up->modndx < MODMIN)
653			up->errflg |= IRIG_ERR_MOD;
654		up->intmin = 1e6; up->intmax = 0;
655		if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
656		   IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
657			up->tc = MINTC;
658			up->tcount = 0;
659		}
660
661		/*
662		 * Update PLL phase and frequency. The PLL time constant
663		 * is set initially to stabilize the frequency within a
664		 * minute or two, then increases to the maximum. The
665		 * frequency is clamped so that the PLL capture range
666		 * cannot be exceeded.
667		 */
668		dtemp = up->zxing * up->decim / BAUD;
669		up->yxing = dtemp;
670		up->zxing = 0.;
671		up->phase += dtemp / up->tc;
672		up->freq += dtemp / (4. * up->tc * up->tc);
673		if (up->freq > MAXFREQ) {
674			up->freq = MAXFREQ;
675			up->errflg |= IRIG_ERR_FREQ;
676		} else if (up->freq < -MAXFREQ) {
677			up->freq = -MAXFREQ;
678			up->errflg |= IRIG_ERR_FREQ;
679		}
680	}
681
682	/*
683	 * Synchronous demodulator. There are eight samples in the cycle
684	 * and ten cycles in the baud interval. The amplitude of each
685	 * cycle is determined at the last sample in the cycle. The
686	 * beginning of the data pulse is determined from the integrated
687	 * samples, while the end of the pulse is determined from the
688	 * raw samples. The raw data bits are demodulated relative to
689	 * the slice level and left-shifted in the decoding register.
690	 */
691	if (up->carphase != 7)
692		return;
693
694	env = (up->lastenv[2] - up->lastenv[6]) / 2.;
695	lope = (up->lastint[2] - up->lastint[6]) / 2.;
696	if (lope > up->intmax)
697		up->intmax = lope;
698	if (lope < up->intmin)
699		up->intmin = lope;
700
701	/*
702	 * Pulse code demodulator and reference timestamp. The decoder
703	 * looks for a sequence of ten bits; the first two bits must be
704	 * one, the last two bits must be zero. Frame synch is asserted
705	 * when three correct frames have been found.
706	 */
707	up->pulse = (up->pulse + 1) % 10;
708	if (up->pulse == 1)
709		up->envmax = env;
710	else if (up->pulse == 9)
711		up->envmin = env;
712	up->dcycles <<= 1;
713	if (env >= (up->envmax + up->envmin) / 2.)
714		up->dcycles |= 1;
715	up->cycles <<= 1;
716	if (lope >= (up->maxsignal + up->noise) / 2.)
717		up->cycles |= 1;
718	if ((up->cycles & 0x303c0f03) == 0x300c0300) {
719		l_fp ltemp;
720		int bitz;
721
722		/*
723		 * The PLL time constant starts out small, in order to
724		 * sustain a frequency tolerance of 250 PPM. It
725		 * gradually increases as the loop settles down. Note
726		 * that small wiggles are not believed, unless they
727		 * persist for lots of samples.
728		 */
729		if (up->pulse != 9)
730			up->errflg |= IRIG_ERR_SYNCH;
731		up->pulse = 9;
732		up->exing = -up->yxing;
733		if (fabs(up->envxing - up->envphase) <= 1) {
734			up->tcount++;
735			if (up->tcount > 50 * up->tc) {
736				up->tc++;
737				if (up->tc > MAXTC)
738					up->tc = MAXTC;
739				up->tcount = 0;
740				up->envxing = up->envphase;
741			} else {
742				up->exing -= up->envxing - up->envphase;
743			}
744		} else {
745			up->tcount = 0;
746			up->envxing = up->envphase;
747		}
748
749		/*
750		 * Determine a reference timestamp, accounting for the
751		 * codec delay and filter delay. Note the timestamp is
752		 * for the previous frame, so we have to backtrack for
753		 * this plus the delay since the last carrier positive
754		 * zero crossing.
755		 */
756		dtemp = up->decim * ((up->exing + BAUD) / SECOND + 1.) +
757		    up->fdelay;
758		DTOLFP(dtemp, &ltemp);
759		pp->lastrec = up->timestamp;
760		L_SUB(&pp->lastrec, &ltemp);
761
762		/*
763		 * The data bits are collected in ten-bit frames. The
764		 * first two and last two bits are determined by frame
765		 * sync and ignored here; the resulting patterns
766		 * represent zero (0-1 bits), one (2-4 bits) and
767		 * position identifier (5-6 bits). The remaining
768		 * patterns represent errors and are treated as zeros.
769		 */
770		bitz = up->dcycles & 0xfc;
771		switch(bitz) {
772
773		case 0x00:
774		case 0x80:
775			irig_decode(peer, BIT0);
776			break;
777
778		case 0xc0:
779		case 0xe0:
780		case 0xf0:
781			irig_decode(peer, BIT1);
782			break;
783
784		case 0xf8:
785		case 0xfc:
786			irig_decode(peer, BITP);
787			break;
788
789		default:
790			irig_decode(peer, 0);
791			up->errflg |= IRIG_ERR_DECODE;
792		}
793	}
794}
795
796
797/*
798 * irig_decode - decode the data
799 *
800 * This routine assembles bits into digits, digits into subfields and
801 * subfields into the timecode field. Bits can have values of zero, one
802 * or position identifier. There are four bits per digit, two digits per
803 * subfield and ten subfields per field. The last bit in every subfield
804 * and the first bit in the first subfield are position identifiers.
805 */
806static void
807irig_decode(
808	struct	peer *peer,	/* peer structure pointer */
809	int	bit		/* data bit (0, 1 or 2) */
810	)
811{
812	struct refclockproc *pp;
813	struct irigunit *up;
814#ifdef IRIG_SUCKS
815	int	i;
816#endif /* IRIG_SUCKS */
817
818	/*
819	 * Local variables
820	 */
821	char	syncchar;	/* sync character (Spectracom) */
822	char	sbs[6];		/* binary seconds since 0h */
823	char	spare[2];	/* mulligan digits */
824
825        pp = peer->procptr;
826	up = (struct irigunit *)pp->unitptr;
827
828	/*
829	 * Assemble subfield bits.
830	 */
831	up->bits <<= 1;
832	if (bit == BIT1) {
833		up->bits |= 1;
834	} else if (bit == BITP && up->lastbit == BITP) {
835
836		/*
837		 * Frame sync - two adjacent position identifiers.
838		 * Monitor the reference timestamp and wiggle the
839		 * clock, but only if no errors have occurred.
840		 */
841		up->bitcnt = 1;
842		up->fieldcnt = 0;
843		up->lastbit = 0;
844		if (up->errflg == 0) {
845#ifdef IRIG_SUCKS
846			l_fp	ltemp;
847
848			/*
849			 * You really don't wanna know what comes down
850			 * here. Leave it to say Solaris 2.8 broke the
851			 * nice clean audio stream, apparently affected
852			 * by a 5-ms sawtooth jitter. Sundown on
853			 * Solaris. This leaves a little twilight.
854			 *
855			 * The scheme involves differentiation, forward
856			 * learning and integration. The sawtooth has a
857			 * period of 11 seconds. The timestamp
858			 * differences are integrated and subtracted
859			 * from the signal.
860			 */
861			ltemp = pp->lastrec;
862			L_SUB(&ltemp, &pp->lastref);
863			if (ltemp.l_f < 0)
864				ltemp.l_i = -1;
865			else
866				ltemp.l_i = 0;
867			pp->lastref = pp->lastrec;
868			if (!L_ISNEG(&ltemp))
869				L_CLR(&up->wigwag);
870			else
871				L_ADD(&up->wigwag, &ltemp);
872			L_SUB(&pp->lastrec, &up->wigwag);
873			up->wiggle[up->wp] = ltemp;
874
875			/*
876			 * Bottom fisher. To understand this, you have
877			 * to know about velocity microphones and AM
878			 * transmitters. No further explanation is
879			 * offered, as this is truly a black art.
880			 */
881			up->wigbot[up->wp] = pp->lastrec;
882			for (i = 0; i < WIGGLE; i++) {
883				if (i != up->wp)
884					up->wigbot[i].l_ui++;
885				L_SUB(&pp->lastrec, &up->wigbot[i]);
886				if (L_ISNEG(&pp->lastrec))
887					L_ADD(&pp->lastrec,
888					    &up->wigbot[i]);
889				else
890					pp->lastrec = up->wigbot[i];
891			}
892			up->wp++;
893			up->wp %= WIGGLE;
894			up->wuggle = pp->lastrec;
895			refclock_process(pp);
896#else /* IRIG_SUCKS */
897			pp->lastref = pp->lastrec;
898			up->wuggle = pp->lastrec;
899			refclock_process(pp);
900#endif /* IRIG_SUCKS */
901		}
902		up->errflg = 0;
903	}
904	up->bitcnt = (up->bitcnt + 1) % SUBFLD;
905	if (up->bitcnt == 0) {
906
907		/*
908		 * End of subfield. Encode two hexadecimal digits in
909		 * little-endian timecode field.
910		 */
911		if (up->fieldcnt == 0)
912		    up->bits <<= 1;
913		if (up->xptr < 2)
914		    up->xptr = 2 * FIELD;
915		up->timecode[--up->xptr] = hexchar[(up->bits >> 5) &
916		    0xf];
917		up->timecode[--up->xptr] = hexchar[up->bits & 0xf];
918		up->fieldcnt = (up->fieldcnt + 1) % FIELD;
919		if (up->fieldcnt == 0) {
920
921			/*
922			 * End of field. Decode the timecode and wind
923			 * the clock. Not all IRIG generators have the
924			 * year; if so, it is nonzero after year 2000.
925			 * Not all have the hardware status bit; if so,
926			 * it is lit when the source is okay and dim
927			 * when bad. We watch this only if the year is
928			 * nonzero. Not all are configured for signature
929			 * control. If so, all BCD digits are set to
930			 * zero if the source is bad. In this case the
931			 * refclock_process() will reject the timecode
932			 * as invalid.
933			 */
934			up->xptr = 2 * FIELD;
935			if (sscanf((char *)up->timecode,
936			   "%6s%2d%c%2s%3d%2d%2d%2d", sbs, &pp->year,
937			    &syncchar, spare, &pp->day, &pp->hour,
938			    &pp->minute, &pp->second) != 8)
939				pp->leap = LEAP_NOTINSYNC;
940			else
941				pp->leap = LEAP_NOWARNING;
942			up->second = (up->second + up->decim) % 60;
943			if (pp->year > 0)
944				pp->year += 2000;
945			if (pp->second != up->second)
946				up->errflg |= IRIG_ERR_CHECK;
947			up->second = pp->second;
948			sprintf(pp->a_lastcode,
949			    "%02x %c %2d %3d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.1f %6.1f %s",
950			    up->errflg, syncchar, pp->year, pp->day,
951			    pp->hour, pp->minute, pp->second,
952			    up->maxsignal, up->gain, up->modndx,
953			    up->tc, up->exing * 1e6 / SECOND, up->freq *
954			    1e6 / SECOND, ulfptoa(&up->wuggle, 6));
955			pp->lencode = strlen(pp->a_lastcode);
956			if (pp->sloppyclockflag & CLK_FLAG4) {
957				record_clock_stats(&peer->srcadr,
958				    pp->a_lastcode);
959#ifdef DEBUG
960				if (debug)
961					printf("irig: %s\n",
962					    pp->a_lastcode);
963#endif /* DEBUG */
964			}
965		}
966	}
967	up->lastbit = bit;
968}
969
970
971/*
972 * irig_poll - called by the transmit procedure
973 *
974 * This routine sweeps up the timecode updates since the last poll. For
975 * IRIG-B there should be at least 60 updates; for IRIG-E there should
976 * be at least 6. If nothing is heard, a timeout event is declared and
977 * any orphaned timecode updates are sent to foster care.
978 */
979static void
980irig_poll(
981	int	unit,		/* instance number (not used) */
982	struct peer *peer	/* peer structure pointer */
983	)
984{
985	struct refclockproc *pp;
986	struct irigunit *up;
987
988	pp = peer->procptr;
989	up = (struct irigunit *)pp->unitptr;
990
991	if (pp->coderecv == pp->codeproc) {
992		refclock_report(peer, CEVNT_TIMEOUT);
993		return;
994
995	} else {
996		refclock_receive(peer);
997		record_clock_stats(&peer->srcadr, pp->a_lastcode);
998#ifdef DEBUG
999		if (debug)
1000			printf("irig: %s\n", pp->a_lastcode);
1001#endif /* DEBUG */
1002	}
1003	pp->polls++;
1004
1005}
1006
1007
1008/*
1009 * irig_gain - adjust codec gain
1010 *
1011 * This routine is called once each second. If the signal envelope
1012 * amplitude is too low, the codec gain is bumped up by four units; if
1013 * too high, it is bumped down. The decoder is relatively insensitive to
1014 * amplitude, so this crudity works just fine. The input port is set and
1015 * the error flag is cleared, mostly to be ornery.
1016 */
1017static void
1018irig_gain(
1019	struct peer *peer	/* peer structure pointer */
1020	)
1021{
1022	struct refclockproc *pp;
1023	struct irigunit *up;
1024
1025	pp = peer->procptr;
1026	up = (struct irigunit *)pp->unitptr;
1027
1028	/*
1029	 * Apparently, the codec uses only the high order bits of the
1030	 * gain control field. Thus, it may take awhile for changes to
1031	 * wiggle the hardware bits.
1032	 */
1033	if (up->clipcnt == 0) {
1034		up->gain += 4;
1035		if (up->gain > MAXGAIN)
1036			up->gain = MAXGAIN;
1037	} else if (up->clipcnt > MAXCLP) {
1038		up->gain -= 4;
1039		if (up->gain < 0)
1040			up->gain = 0;
1041	}
1042	audio_gain(up->gain, up->mongain, up->port);
1043	up->clipcnt = 0;
1044}
1045
1046#else
1047int refclock_irig_bs;
1048#endif /* REFCLOCK */
1049