ntp_timer.c revision 293896
1/*
2 * ntp_timer.c - event timer support routines
3 */
4#ifdef HAVE_CONFIG_H
5# include <config.h>
6#endif
7
8#include "ntp_machine.h"
9#include "ntpd.h"
10#include "ntp_stdlib.h"
11#include "ntp_calendar.h"
12#include "ntp_leapsec.h"
13
14#if defined(HAVE_IO_COMPLETION_PORT)
15# include "ntp_iocompletionport.h"
16# include "ntp_timer.h"
17#endif
18
19#include <stdio.h>
20#include <signal.h>
21#ifdef HAVE_SYS_SIGNAL_H
22# include <sys/signal.h>
23#endif
24#ifdef HAVE_UNISTD_H
25# include <unistd.h>
26#endif
27
28#ifdef KERNEL_PLL
29#include "ntp_syscall.h"
30#endif /* KERNEL_PLL */
31
32#ifdef AUTOKEY
33#include <openssl/rand.h>
34#endif	/* AUTOKEY */
35
36
37/* TC_ERR represents the timer_create() error return value. */
38#ifdef SYS_VXWORKS
39#define	TC_ERR	ERROR
40#else
41#define	TC_ERR	(-1)
42#endif
43
44
45static void check_leapsec(u_int32, const time_t*, int/*BOOL*/);
46
47/*
48 * These routines provide support for the event timer.  The timer is
49 * implemented by an interrupt routine which sets a flag once every
50 * second, and a timer routine which is called when the mainline code
51 * gets around to seeing the flag.  The timer routine dispatches the
52 * clock adjustment code if its time has come, then searches the timer
53 * queue for expiries which are dispatched to the transmit procedure.
54 * Finally, we call the hourly procedure to do cleanup and print a
55 * message.
56 */
57volatile int interface_interval;     /* init_io() sets def. 300s */
58
59/*
60 * Initializing flag.  All async routines watch this and only do their
61 * thing when it is clear.
62 */
63int initializing;
64
65/*
66 * Alarm flag. The mainline code imports this.
67 */
68volatile int alarm_flag;
69
70/*
71 * The counters and timeouts
72 */
73static  u_long interface_timer;	/* interface update timer */
74static	u_long adjust_timer;	/* second timer */
75static	u_long stats_timer;	/* stats timer */
76static	u_long leapf_timer;	/* Report leapfile problems once/day */
77static	u_long huffpuff_timer;	/* huff-n'-puff timer */
78static	u_long worker_idle_timer;/* next check for idle intres */
79u_long	leapsec;	        /* seconds to next leap (proximity class) */
80int     leapdif;                /* TAI difference step at next leap second*/
81u_long	orphwait; 		/* orphan wait time */
82#ifdef AUTOKEY
83static	u_long revoke_timer;	/* keys revoke timer */
84static	u_long keys_timer;	/* session key timer */
85u_long	sys_revoke = KEY_REVOKE; /* keys revoke timeout (log2 s) */
86u_long	sys_automax = NTP_AUTOMAX; /* key list timeout (log2 s) */
87#endif	/* AUTOKEY */
88
89/*
90 * Statistics counter for the interested.
91 */
92volatile u_long alarm_overflow;
93
94u_long current_time;		/* seconds since startup */
95
96/*
97 * Stats.  Number of overflows and number of calls to transmit().
98 */
99u_long timer_timereset;
100u_long timer_overflows;
101u_long timer_xmtcalls;
102
103#if defined(VMS)
104static int vmstimer[2]; 	/* time for next timer AST */
105static int vmsinc[2];		/* timer increment */
106#endif /* VMS */
107
108#ifdef SYS_WINNT
109HANDLE WaitableTimerHandle;
110#else
111static	RETSIGTYPE alarming (int);
112#endif /* SYS_WINNT */
113
114#if !defined(VMS)
115# if !defined SYS_WINNT || defined(SYS_CYGWIN32)
116#  ifdef HAVE_TIMER_CREATE
117static timer_t timer_id;
118typedef struct itimerspec intervaltimer;
119#   define	itv_frac	tv_nsec
120#  else
121typedef struct itimerval intervaltimer;
122#   define	itv_frac	tv_usec
123#  endif
124intervaltimer itimer;
125# endif
126#endif
127
128#if !defined(SYS_WINNT) && !defined(VMS)
129void	set_timer_or_die(const intervaltimer *);
130#endif
131
132
133#if !defined(SYS_WINNT) && !defined(VMS)
134void
135set_timer_or_die(
136	const intervaltimer *	ptimer
137	)
138{
139	const char *	setfunc;
140	int		rc;
141
142# ifdef HAVE_TIMER_CREATE
143	setfunc = "timer_settime";
144	rc = timer_settime(timer_id, 0, &itimer, NULL);
145# else
146	setfunc = "setitimer";
147	rc = setitimer(ITIMER_REAL, &itimer, NULL);
148# endif
149	if (-1 == rc) {
150		msyslog(LOG_ERR, "interval timer %s failed, %m",
151			setfunc);
152		exit(1);
153	}
154}
155#endif	/* !SYS_WINNT && !VMS */
156
157
158/*
159 * reinit_timer - reinitialize interval timer after a clock step.
160 */
161void
162reinit_timer(void)
163{
164#if !defined(SYS_WINNT) && !defined(VMS)
165	ZERO(itimer);
166# ifdef HAVE_TIMER_CREATE
167	timer_gettime(timer_id, &itimer);
168# else
169	getitimer(ITIMER_REAL, &itimer);
170# endif
171	if (itimer.it_value.tv_sec < 0 ||
172	    itimer.it_value.tv_sec > (1 << EVENT_TIMEOUT))
173		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
174	if (itimer.it_value.itv_frac < 0)
175		itimer.it_value.itv_frac = 0;
176	if (0 == itimer.it_value.tv_sec &&
177	    0 == itimer.it_value.itv_frac)
178		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
179	itimer.it_interval.tv_sec = (1 << EVENT_TIMEOUT);
180	itimer.it_interval.itv_frac = 0;
181	set_timer_or_die(&itimer);
182# endif /* VMS */
183}
184
185
186/*
187 * init_timer - initialize the timer data structures
188 */
189void
190init_timer(void)
191{
192	/*
193	 * Initialize...
194	 */
195	alarm_flag = FALSE;
196	alarm_overflow = 0;
197	adjust_timer = 1;
198	stats_timer = SECSPERHR;
199	leapf_timer = SECSPERDAY;
200	huffpuff_timer = 0;
201	interface_timer = 0;
202	current_time = 0;
203	timer_overflows = 0;
204	timer_xmtcalls = 0;
205	timer_timereset = 0;
206
207#ifndef SYS_WINNT
208	/*
209	 * Set up the alarm interrupt.	The first comes 2**EVENT_TIMEOUT
210	 * seconds from now and they continue on every 2**EVENT_TIMEOUT
211	 * seconds.
212	 */
213# ifndef VMS
214#  ifdef HAVE_TIMER_CREATE
215	if (TC_ERR == timer_create(CLOCK_REALTIME, NULL, &timer_id)) {
216		msyslog(LOG_ERR, "timer_create failed, %m");
217		exit(1);
218	}
219#  endif
220	signal_no_reset(SIGALRM, alarming);
221	itimer.it_interval.tv_sec =
222		itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
223	itimer.it_interval.itv_frac = itimer.it_value.itv_frac = 0;
224	set_timer_or_die(&itimer);
225# else	/* VMS follows */
226	vmsinc[0] = 10000000;		/* 1 sec */
227	vmsinc[1] = 0;
228	lib$emul(&(1<<EVENT_TIMEOUT), &vmsinc, &0, &vmsinc);
229
230	sys$gettim(&vmstimer);	/* that's "now" as abstime */
231
232	lib$addx(&vmsinc, &vmstimer, &vmstimer);
233	sys$setimr(0, &vmstimer, alarming, alarming, 0);
234# endif	/* VMS */
235#else	/* SYS_WINNT follows */
236	/*
237	 * Set up timer interrupts for every 2**EVENT_TIMEOUT seconds
238	 * Under Windows/NT,
239	 */
240
241	WaitableTimerHandle = CreateWaitableTimer(NULL, FALSE, NULL);
242	if (WaitableTimerHandle == NULL) {
243		msyslog(LOG_ERR, "CreateWaitableTimer failed: %m");
244		exit(1);
245	}
246	else {
247		DWORD		Period;
248		LARGE_INTEGER	DueTime;
249		BOOL		rc;
250
251		Period = (1 << EVENT_TIMEOUT) * 1000;
252		DueTime.QuadPart = Period * 10000i64;
253		rc = SetWaitableTimer(WaitableTimerHandle, &DueTime,
254				      Period, NULL, NULL, FALSE);
255		if (!rc) {
256			msyslog(LOG_ERR, "SetWaitableTimer failed: %m");
257			exit(1);
258		}
259	}
260
261#endif	/* SYS_WINNT */
262}
263
264
265/*
266 * intres_timeout_req(s) is invoked in the parent to schedule an idle
267 * timeout to fire in s seconds, if not reset earlier by a call to
268 * intres_timeout_req(0), which clears any pending timeout.  When the
269 * timeout expires, worker_idle_timer_fired() is invoked (again, in the
270 * parent).
271 *
272 * sntp and ntpd each provide implementations adapted to their timers.
273 */
274void
275intres_timeout_req(
276	u_int	seconds		/* 0 cancels */
277	)
278{
279	if (0 == seconds) {
280		worker_idle_timer = 0;
281		return;
282	}
283	worker_idle_timer = current_time + seconds;
284}
285
286
287/*
288 * timer - event timer
289 */
290void
291timer(void)
292{
293	struct peer *	p;
294	struct peer *	next_peer;
295	l_fp		now;
296	time_t          tnow;
297
298	/*
299	 * The basic timerevent is one second.  This is used to adjust the
300	 * system clock in time and frequency, implement the kiss-o'-death
301	 * function and the association polling function.
302	 */
303	current_time++;
304	if (adjust_timer <= current_time) {
305		adjust_timer += 1;
306		adj_host_clock();
307#ifdef REFCLOCK
308		for (p = peer_list; p != NULL; p = next_peer) {
309			next_peer = p->p_link;
310			if (FLAG_REFCLOCK & p->flags)
311				refclock_timer(p);
312		}
313#endif /* REFCLOCK */
314	}
315
316	/*
317	 * Now dispatch any peers whose event timer has expired. Be
318	 * careful here, since the peer structure might go away as the
319	 * result of the call.
320	 */
321	for (p = peer_list; p != NULL; p = next_peer) {
322		next_peer = p->p_link;
323
324		/*
325		 * Restrain the non-burst packet rate not more
326		 * than one packet every 16 seconds. This is
327		 * usually tripped using iburst and minpoll of
328		 * 128 s or less.
329		 */
330		if (p->throttle > 0)
331			p->throttle--;
332		if (p->nextdate <= current_time) {
333#ifdef REFCLOCK
334			if (FLAG_REFCLOCK & p->flags)
335				refclock_transmit(p);
336			else
337#endif	/* REFCLOCK */
338				transmit(p);
339		}
340	}
341
342	/*
343	 * Orphan mode is active when enabled and when no servers less
344	 * than the orphan stratum are available. A server with no other
345	 * synchronization source is an orphan. It shows offset zero and
346	 * reference ID the loopback address.
347	 */
348	if (sys_orphan < STRATUM_UNSPEC && sys_peer == NULL &&
349	    current_time > orphwait) {
350		if (sys_leap == LEAP_NOTINSYNC) {
351			set_sys_leap(LEAP_NOWARNING);
352#ifdef AUTOKEY
353			if (crypto_flags)
354				crypto_update();
355#endif	/* AUTOKEY */
356		}
357		sys_stratum = (u_char)sys_orphan;
358		if (sys_stratum > 1)
359			sys_refid = htonl(LOOPBACKADR);
360		else
361			memcpy(&sys_refid, "LOOP", 4);
362		sys_offset = 0;
363		sys_rootdelay = 0;
364		sys_rootdisp = 0;
365	}
366
367	get_systime(&now);
368	time(&tnow);
369
370	/*
371	 * Leapseconds. Get time and defer to worker if either something
372	 * is imminent or every 8th second.
373	 */
374	if (leapsec > LSPROX_NOWARN || 0 == (current_time & 7))
375		check_leapsec(now.l_ui, &tnow,
376                                (sys_leap == LEAP_NOTINSYNC));
377        if (sys_leap != LEAP_NOTINSYNC) {
378                if (leapsec >= LSPROX_ANNOUNCE && leapdif) {
379		        if (leapdif > 0)
380			        set_sys_leap(LEAP_ADDSECOND);
381		        else
382			        set_sys_leap(LEAP_DELSECOND);
383                } else {
384                        set_sys_leap(LEAP_NOWARNING);
385                }
386	}
387
388	/*
389	 * Update huff-n'-puff filter.
390	 */
391	if (huffpuff_timer <= current_time) {
392		huffpuff_timer += HUFFPUFF;
393		huffpuff();
394	}
395
396#ifdef AUTOKEY
397	/*
398	 * Garbage collect expired keys.
399	 */
400	if (keys_timer <= current_time) {
401		keys_timer += 1 << sys_automax;
402		auth_agekeys();
403	}
404
405	/*
406	 * Generate new private value. This causes all associations
407	 * to regenerate cookies.
408	 */
409	if (revoke_timer && revoke_timer <= current_time) {
410		revoke_timer += 1 << sys_revoke;
411		RAND_bytes((u_char *)&sys_private, 4);
412	}
413#endif	/* AUTOKEY */
414
415	/*
416	 * Interface update timer
417	 */
418	if (interface_interval && interface_timer <= current_time) {
419		timer_interfacetimeout(current_time +
420		    interface_interval);
421		DPRINTF(2, ("timer: interface update\n"));
422		interface_update(NULL, NULL);
423	}
424
425	if (worker_idle_timer && worker_idle_timer <= current_time)
426		worker_idle_timer_fired();
427
428	/*
429	 * Finally, write hourly stats and do the hourly
430	 * and daily leapfile checks.
431	 */
432	if (stats_timer <= current_time) {
433		stats_timer += SECSPERHR;
434		write_stats();
435		if (leapf_timer <= current_time) {
436			leapf_timer += SECSPERDAY;
437			check_leap_file(TRUE, now.l_ui, &tnow);
438		} else {
439			check_leap_file(FALSE, now.l_ui, &tnow);
440		}
441	}
442}
443
444
445#ifndef SYS_WINNT
446/*
447 * alarming - tell the world we've been alarmed
448 */
449static RETSIGTYPE
450alarming(
451	int sig
452	)
453{
454# ifdef DEBUG
455	const char *msg = "alarming: initializing TRUE\n";
456# endif
457
458	if (!initializing) {
459		if (alarm_flag) {
460			alarm_overflow++;
461# ifdef DEBUG
462			msg = "alarming: overflow\n";
463# endif
464		} else {
465# ifndef VMS
466			alarm_flag++;
467# else
468			/* VMS AST routine, increment is no good */
469			alarm_flag = 1;
470# endif
471# ifdef DEBUG
472			msg = "alarming: normal\n";
473# endif
474		}
475	}
476# ifdef VMS
477	lib$addx(&vmsinc, &vmstimer, &vmstimer);
478	sys$setimr(0, &vmstimer, alarming, alarming, 0);
479# endif
480# ifdef DEBUG
481	if (debug >= 4)
482		(void)(-1 == write(1, msg, strlen(msg)));
483# endif
484}
485#endif /* SYS_WINNT */
486
487
488void
489timer_interfacetimeout(u_long timeout)
490{
491	interface_timer = timeout;
492}
493
494
495/*
496 * timer_clr_stats - clear timer module stat counters
497 */
498void
499timer_clr_stats(void)
500{
501	timer_overflows = 0;
502	timer_xmtcalls = 0;
503	timer_timereset = current_time;
504}
505
506
507static void
508check_leap_sec_in_progress( const leap_result_t *lsdata ) {
509	int prv_leap_sec_in_progress = leap_sec_in_progress;
510	leap_sec_in_progress = lsdata->tai_diff && (lsdata->ddist < 3);
511
512	/* if changed we may have to update the leap status sent to clients */
513	if (leap_sec_in_progress != prv_leap_sec_in_progress)
514		set_sys_leap(sys_leap);
515}
516
517
518static void
519check_leapsec(
520	u_int32        now  ,
521	const time_t * tpiv ,
522        int/*BOOL*/    reset)
523{
524	static const char leapmsg_p_step[] =
525	    "Positive leap second, stepped backward.";
526	static const char leapmsg_p_slew[] =
527	    "Positive leap second, no step correction. "
528	    "System clock will be inaccurate for a long time.";
529
530	static const char leapmsg_n_step[] =
531	    "Negative leap second, stepped forward.";
532	static const char leapmsg_n_slew[] =
533	    "Negative leap second, no step correction. "
534	    "System clock will be inaccurate for a long time.";
535
536	leap_result_t lsdata;
537	u_int32       lsprox;
538#ifdef AUTOKEY
539	int/*BOOL*/   update_autokey = FALSE;
540#endif
541
542#ifndef SYS_WINNT  /* WinNT port has its own leap second handling */
543# ifdef KERNEL_PLL
544	leapsec_electric(pll_control && kern_enable);
545# else
546	leapsec_electric(0);
547# endif
548#endif
549#ifdef LEAP_SMEAR
550	leap_smear.enabled = leap_smear_intv != 0;
551#endif
552	if (reset)	{
553		lsprox = LSPROX_NOWARN;
554		leapsec_reset_frame();
555		memset(&lsdata, 0, sizeof(lsdata));
556	} else {
557	  int fired = leapsec_query(&lsdata, now, tpiv);
558
559	  DPRINTF(1, ("*** leapsec_query: fired %i, now %u (0x%08X), tai_diff %i, ddist %u\n",
560		  fired, now, now, lsdata.tai_diff, lsdata.ddist));
561
562#ifdef LEAP_SMEAR
563	  leap_smear.in_progress = 0;
564	  leap_smear.doffset = 0.0;
565
566	  if (leap_smear.enabled) {
567		if (lsdata.tai_diff) {
568			if (leap_smear.interval == 0) {
569				leap_smear.interval = leap_smear_intv;
570				leap_smear.intv_end = lsdata.ttime.Q_s;
571				leap_smear.intv_start = leap_smear.intv_end - leap_smear.interval;
572				DPRINTF(1, ("*** leapsec_query: setting leap_smear interval %li, begin %.0f, end %.0f\n",
573					leap_smear.interval, leap_smear.intv_start, leap_smear.intv_end));
574			}
575		}
576		else {
577			if (leap_smear.interval)
578				DPRINTF(1, ("*** leapsec_query: clearing leap_smear interval\n"));
579			leap_smear.interval = 0;
580		}
581
582		if (leap_smear.interval) {
583			double dtemp = now;
584			if (dtemp >= leap_smear.intv_start && dtemp <= leap_smear.intv_end) {
585				double leap_smear_time = dtemp - leap_smear.intv_start;
586				/*
587				 * For now we just do a linear interpolation over the smear interval
588				 */
589#if 0
590				// linear interpolation
591				leap_smear.doffset = -(leap_smear_time * lsdata.tai_diff / leap_smear.interval);
592#else
593				// Google approach: lie(t) = (1.0 - cos(pi * t / w)) / 2.0
594				leap_smear.doffset = -((double) lsdata.tai_diff - cos( M_PI * leap_smear_time / leap_smear.interval)) / 2.0;
595#endif
596				/*
597				 * TODO see if we're inside an inserted leap second, so we need to compute
598				 * leap_smear.doffset = 1.0 - leap_smear.doffset
599				 */
600				leap_smear.in_progress = 1;
601#if 0 && defined( DEBUG )
602				msyslog(LOG_NOTICE, "*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
603					leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
604					now, leap_smear_time, leap_smear.doffset);
605#else
606				DPRINTF(1, ("*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
607					leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
608					now, leap_smear_time, leap_smear.doffset));
609#endif
610
611			}
612		}
613	  }
614	  else
615		leap_smear.interval = 0;
616
617	  /*
618	   * Update the current leap smear offset, eventually 0.0 if outside smear interval.
619	   */
620	  DTOLFP(leap_smear.doffset, &leap_smear.offset);
621
622#endif	/* LEAP_SMEAR */
623
624	  if (fired) {
625		/* Full hit. Eventually step the clock, but always
626		 * announce the leap event has happened.
627		 */
628		const char *leapmsg = NULL;
629		double      lswarp  = lsdata.warped;
630		if (lswarp < 0.0) {
631			if (clock_max_back > 0.0 &&
632			    clock_max_back < -lswarp) {
633				step_systime(lswarp);
634				leapmsg = leapmsg_p_step;
635			} else {
636				leapmsg = leapmsg_p_slew;
637			}
638		} else 	if (lswarp > 0.0) {
639			if (clock_max_fwd > 0.0 &&
640			    clock_max_fwd < lswarp) {
641				step_systime(lswarp);
642				leapmsg = leapmsg_n_step;
643			} else {
644				leapmsg = leapmsg_n_slew;
645			}
646		}
647		if (leapmsg)
648			msyslog(LOG_NOTICE, "%s", leapmsg);
649		report_event(EVNT_LEAP, NULL, NULL);
650#ifdef AUTOKEY
651		update_autokey = TRUE;
652#endif
653		lsprox  = LSPROX_NOWARN;
654		leapsec = LSPROX_NOWARN;
655		sys_tai = lsdata.tai_offs;
656	  } else {
657#ifdef AUTOKEY
658		update_autokey = (sys_tai != lsdata.tai_offs);
659#endif
660		lsprox  = lsdata.proximity;
661		sys_tai = lsdata.tai_offs;
662	  }
663	}
664
665	/* We guard against panic alarming during the red alert phase.
666	 * Strange and evil things might happen if we go from stone cold
667	 * to piping hot in one step. If things are already that wobbly,
668	 * we let the normal clock correction take over, even if a jump
669	 * is involved.
670         * Also make sure the alarming events are edge-triggered, that is,
671         * ceated only when the threshold is crossed.
672         */
673	if (  (leapsec > 0 || lsprox < LSPROX_ALERT)
674	    && leapsec < lsprox                     ) {
675		if (  leapsec < LSPROX_SCHEDULE
676                   && lsprox >= LSPROX_SCHEDULE) {
677			if (lsdata.dynamic)
678				report_event(PEVNT_ARMED, sys_peer, NULL);
679			else
680				report_event(EVNT_ARMED, NULL, NULL);
681		}
682		leapsec = lsprox;
683	}
684	if (leapsec > lsprox) {
685		if (  leapsec >= LSPROX_SCHEDULE
686                   && lsprox   < LSPROX_SCHEDULE) {
687			report_event(EVNT_DISARMED, NULL, NULL);
688		}
689		leapsec = lsprox;
690	}
691
692	if (leapsec >= LSPROX_SCHEDULE)
693		leapdif = lsdata.tai_diff;
694	else
695		leapdif = 0;
696
697	check_leap_sec_in_progress(&lsdata);
698
699#ifdef AUTOKEY
700	if (update_autokey)
701		crypto_update_taichange();
702#endif
703}
704