ntp_loopfilter.c revision 290001
1/*
2 * ntp_loopfilter.c - implements the NTP loop filter algorithm
3 *
4 * ATTENTION: Get approval from Dave Mills on all changes to this file!
5 *
6 */
7#ifdef HAVE_CONFIG_H
8# include <config.h>
9#endif
10
11#ifdef USE_SNPRINTB
12# include <util.h>
13#endif
14#include "ntpd.h"
15#include "ntp_io.h"
16#include "ntp_unixtime.h"
17#include "ntp_stdlib.h"
18
19#include <limits.h>
20#include <stdio.h>
21#include <ctype.h>
22
23#include <signal.h>
24#include <setjmp.h>
25
26#ifdef KERNEL_PLL
27#include "ntp_syscall.h"
28#endif /* KERNEL_PLL */
29
30/*
31 * This is an implementation of the clock discipline algorithm described
32 * in UDel TR 97-4-3, as amended. It operates as an adaptive parameter,
33 * hybrid phase/frequency-lock loop. A number of sanity checks are
34 * included to protect against timewarps, timespikes and general mayhem.
35 * All units are in s and s/s, unless noted otherwise.
36 */
37#define CLOCK_MAX	.128	/* default step threshold (s) */
38#define CLOCK_MINSTEP	300.	/* default stepout threshold (s) */
39#define CLOCK_PANIC	1000.	/* default panic threshold (s) */
40#define	CLOCK_PHI	15e-6	/* max frequency error (s/s) */
41#define CLOCK_PLL	16.	/* PLL loop gain (log2) */
42#define CLOCK_AVG	8.	/* parameter averaging constant */
43#define CLOCK_FLL	.25	/* FLL loop gain */
44#define	CLOCK_FLOOR	.0005	/* startup offset floor (s) */
45#define	CLOCK_ALLAN	11	/* Allan intercept (log2 s) */
46#define CLOCK_LIMIT	30	/* poll-adjust threshold */
47#define CLOCK_PGATE	4.	/* poll-adjust gate */
48#define PPS_MAXAGE	120	/* kernel pps signal timeout (s) */
49#define	FREQTOD(x)	((x) / 65536e6) /* NTP to double */
50#define	DTOFREQ(x)	((int32)((x) * 65536e6)) /* double to NTP */
51
52/*
53 * Clock discipline state machine. This is used to control the
54 * synchronization behavior during initialization and following a
55 * timewarp.
56 *
57 *	State	< step		> step		Comments
58 *	========================================================
59 *	NSET	FREQ		step, FREQ	freq not set
60 *
61 *	FSET	SYNC		step, SYNC	freq set
62 *
63 *	FREQ	if (mu < 900)	if (mu < 900)	set freq direct
64 *		    ignore	    ignore
65 *		else		else
66 *		    freq, SYNC	    freq, step, SYNC
67 *
68 *	SYNC	SYNC		SPIK, ignore	adjust phase/freq
69 *
70 *	SPIK	SYNC		if (mu < 900)	adjust phase/freq
71 *				    ignore
72 *				step, SYNC
73 */
74/*
75 * Kernel PLL/PPS state machine. This is used with the kernel PLL
76 * modifications described in the documentation.
77 *
78 * If kernel support for the ntp_adjtime() system call is available, the
79 * ntp_control flag is set. The ntp_enable and kern_enable flags can be
80 * set at configuration time or run time using ntpdc. If ntp_enable is
81 * false, the discipline loop is unlocked and no corrections of any kind
82 * are made. If both ntp_control and kern_enable are set, the kernel
83 * support is used as described above; if false, the kernel is bypassed
84 * entirely and the daemon discipline used instead.
85 *
86 * There have been three versions of the kernel discipline code. The
87 * first (microkernel) now in Solaris discipilnes the microseconds. The
88 * second and third (nanokernel) disciplines the clock in nanoseconds.
89 * These versions are identifed if the symbol STA_PLL is present in the
90 * header file /usr/include/sys/timex.h. The third and current version
91 * includes TAI offset and is identified by the symbol NTP_API with
92 * value 4.
93 *
94 * Each PPS time/frequency discipline can be enabled by the atom driver
95 * or another driver. If enabled, the STA_PPSTIME and STA_FREQ bits are
96 * set in the kernel status word; otherwise, these bits are cleared.
97 * These bits are also cleard if the kernel reports an error.
98 *
99 * If an external clock is present, the clock driver sets STA_CLK in the
100 * status word. When the local clock driver sees this bit, it updates
101 * via this routine, which then calls ntp_adjtime() with the STA_PLL bit
102 * set to zero, in which case the system clock is not adjusted. This is
103 * also a signal for the external clock driver to discipline the system
104 * clock. Unless specified otherwise, all times are in seconds.
105 */
106/*
107 * Program variables that can be tinkered.
108 */
109double	clock_max_back = CLOCK_MAX;	/* step threshold */
110double	clock_max_fwd =  CLOCK_MAX;	/* step threshold */
111double	clock_minstep = CLOCK_MINSTEP; /* stepout threshold */
112double	clock_panic = CLOCK_PANIC; /* panic threshold */
113double	clock_phi = CLOCK_PHI;	/* dispersion rate (s/s) */
114u_char	allan_xpt = CLOCK_ALLAN; /* Allan intercept (log2 s) */
115
116/*
117 * Program variables
118 */
119static double clock_offset;	/* offset */
120double	clock_jitter;		/* offset jitter */
121double	drift_comp;		/* frequency (s/s) */
122static double init_drift_comp; /* initial frequency (PPM) */
123double	clock_stability;	/* frequency stability (wander) (s/s) */
124double	clock_codec;		/* audio codec frequency (samples/s) */
125static u_long clock_epoch;	/* last update */
126u_int	sys_tai;		/* TAI offset from UTC */
127static int loop_started;	/* TRUE after LOOP_DRIFTINIT */
128static void rstclock (int, double); /* transition function */
129static double direct_freq(double); /* direct set frequency */
130static void set_freq(double);	/* set frequency */
131#ifndef PATH_MAX
132# define PATH_MAX MAX_PATH
133#endif
134static char relative_path[PATH_MAX + 1]; /* relative path per recursive make */
135static char *this_file = NULL;
136
137#ifdef KERNEL_PLL
138static struct timex ntv;	/* ntp_adjtime() parameters */
139int	pll_status;		/* last kernel status bits */
140#if defined(STA_NANO) && NTP_API == 4
141static u_int loop_tai;		/* last TAI offset */
142#endif /* STA_NANO */
143static	void	start_kern_loop(void);
144static	void	stop_kern_loop(void);
145#endif /* KERNEL_PLL */
146
147/*
148 * Clock state machine control flags
149 */
150int	ntp_enable = TRUE;	/* clock discipline enabled */
151int	pll_control;		/* kernel support available */
152int	kern_enable = TRUE;	/* kernel support enabled */
153int	hardpps_enable;		/* kernel PPS discipline enabled */
154int	ext_enable;		/* external clock enabled */
155int	pps_stratum;		/* pps stratum */
156int	kernel_status;		/* from ntp_adjtime */
157int	allow_panic = FALSE;	/* allow panic correction (-g) */
158int	force_step_once = FALSE; /* always step time once at startup (-G) */
159int	mode_ntpdate = FALSE;	/* exit on first clock set (-q) */
160int	freq_cnt;		/* initial frequency clamp */
161int	freq_set;		/* initial set frequency switch */
162
163/*
164 * Clock state machine variables
165 */
166int	state = 0;		/* clock discipline state */
167u_char	sys_poll;		/* time constant/poll (log2 s) */
168int	tc_counter;		/* jiggle counter */
169double	last_offset;		/* last offset (s) */
170
171/*
172 * Huff-n'-puff filter variables
173 */
174static double *sys_huffpuff;	/* huff-n'-puff filter */
175static int sys_hufflen;		/* huff-n'-puff filter stages */
176static int sys_huffptr;		/* huff-n'-puff filter pointer */
177static double sys_mindly;	/* huff-n'-puff filter min delay */
178
179#if defined(KERNEL_PLL)
180/* Emacs cc-mode goes nuts if we split the next line... */
181#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | \
182    MOD_STATUS | MOD_TIMECONST)
183#ifdef SIGSYS
184static void pll_trap (int);	/* configuration trap */
185static struct sigaction sigsys;	/* current sigaction status */
186static struct sigaction newsigsys; /* new sigaction status */
187static sigjmp_buf env;		/* environment var. for pll_trap() */
188#endif /* SIGSYS */
189#endif /* KERNEL_PLL */
190
191static void
192sync_status(const char *what, int ostatus, int nstatus)
193{
194	char obuf[256], nbuf[256], tbuf[1024];
195#if defined(USE_SNPRINTB) && defined (STA_FMT)
196	snprintb(obuf, sizeof(obuf), STA_FMT, ostatus);
197	snprintb(nbuf, sizeof(nbuf), STA_FMT, nstatus);
198#else
199	snprintf(obuf, sizeof(obuf), "%04x", ostatus);
200	snprintf(nbuf, sizeof(nbuf), "%04x", nstatus);
201#endif
202	snprintf(tbuf, sizeof(tbuf), "%s status: %s -> %s", what, obuf, nbuf);
203	report_event(EVNT_KERN, NULL, tbuf);
204}
205
206/*
207 * file_name - return pointer to non-relative portion of this C file pathname
208 */
209static char *file_name(void)
210{
211	if (this_file == NULL) {
212	    (void)strncpy(relative_path, __FILE__, PATH_MAX);
213	    for (this_file=relative_path;
214		*this_file && ! isalnum((unsigned char)*this_file);
215		this_file++) ;
216	}
217	return this_file;
218}
219
220/*
221 * init_loopfilter - initialize loop filter data
222 */
223void
224init_loopfilter(void)
225{
226	/*
227	 * Initialize state variables.
228	 */
229	sys_poll = ntp_minpoll;
230	clock_jitter = LOGTOD(sys_precision);
231	freq_cnt = (int)clock_minstep;
232}
233
234#ifdef KERNEL_PLL
235/*
236 * ntp_adjtime_error_handler - process errors from ntp_adjtime
237 */
238static void
239ntp_adjtime_error_handler(
240	const char *caller,	/* name of calling function */
241	struct timex *ptimex,	/* pointer to struct timex */
242	int ret,		/* return value from ntp_adjtime */
243	int saved_errno,	/* value of errno when ntp_adjtime returned */
244	int pps_call,		/* ntp_adjtime call was PPS-related */
245	int tai_call,		/* ntp_adjtime call was TAI-related */
246	int line		/* line number of ntp_adjtime call */
247	)
248{
249	char des[1024] = "";	/* Decoded Error Status */
250
251	switch (ret) {
252	    case -1:
253		switch (saved_errno) {
254		    case EFAULT:
255			msyslog(LOG_ERR, "%s: %s line %d: invalid struct timex pointer: 0x%lx",
256			    caller, file_name(), line,
257			    (long)((void *)ptimex)
258			);
259		    break;
260		    case EINVAL:
261			msyslog(LOG_ERR, "%s: %s line %d: invalid struct timex \"constant\" element value: %ld",
262			    caller, file_name(), line,
263			    (long)(ptimex->constant)
264			);
265		    break;
266		    case EPERM:
267			if (tai_call) {
268			    errno = saved_errno;
269			    msyslog(LOG_ERR,
270				"%s: ntp_adjtime(TAI) failed: %m",
271				caller);
272			}
273			errno = saved_errno;
274			msyslog(LOG_ERR, "%s: %s line %d: ntp_adjtime: %m",
275			    caller, file_name(), line
276			);
277		    break;
278		    default:
279			msyslog(LOG_NOTICE, "%s: %s line %d: unhandled errno value %d after failed ntp_adjtime call",
280			    caller, file_name(), line,
281			    saved_errno
282			);
283		    break;
284		}
285	    break;
286#ifdef TIME_OK
287	    case TIME_OK: /* 0: synchronized, no leap second warning */
288		/* msyslog(LOG_INFO, "kernel reports time is synchronized normally"); */
289	    break;
290#else
291# warning TIME_OK is not defined
292#endif
293#ifdef TIME_INS
294	    case TIME_INS: /* 1: positive leap second warning */
295		msyslog(LOG_INFO, "kernel reports leap second insertion scheduled");
296	    break;
297#else
298# warning TIME_INS is not defined
299#endif
300#ifdef TIME_DEL
301	    case TIME_DEL: /* 2: negative leap second warning */
302		msyslog(LOG_INFO, "kernel reports leap second deletion scheduled");
303	    break;
304#else
305# warning TIME_DEL is not defined
306#endif
307#ifdef TIME_OOP
308	    case TIME_OOP: /* 3: leap second in progress */
309		msyslog(LOG_INFO, "kernel reports leap second in progress");
310	    break;
311#else
312# warning TIME_OOP is not defined
313#endif
314#ifdef TIME_WAIT
315	    case TIME_WAIT: /* 4: leap second has occured */
316		msyslog(LOG_INFO, "kernel reports leap second has occurred");
317	    break;
318#else
319# warning TIME_WAIT is not defined
320#endif
321#ifdef TIME_ERROR
322#if 0
323
324from the reference implementation of ntp_gettime():
325
326		// Hardware or software error
327        if ((time_status & (STA_UNSYNC | STA_CLOCKERR))
328
329	/*
330         * PPS signal lost when either time or frequency synchronization
331         * requested
332         */
333	|| (time_status & (STA_PPSFREQ | STA_PPSTIME)
334	    && !(time_status & STA_PPSSIGNAL))
335
336        /*
337         * PPS jitter exceeded when time synchronization requested
338         */
339	|| (time_status & STA_PPSTIME &&
340            time_status & STA_PPSJITTER)
341
342        /*
343         * PPS wander exceeded or calibration error when frequency
344         * synchronization requested
345         */
346	|| (time_status & STA_PPSFREQ &&
347            time_status & (STA_PPSWANDER | STA_PPSERROR)))
348                return (TIME_ERROR);
349
350or, from ntp_adjtime():
351
352	if (  (time_status & (STA_UNSYNC | STA_CLOCKERR))
353	    || (time_status & (STA_PPSFREQ | STA_PPSTIME)
354		&& !(time_status & STA_PPSSIGNAL))
355	    || (time_status & STA_PPSTIME
356		&& time_status & STA_PPSJITTER)
357	    || (time_status & STA_PPSFREQ
358		&& time_status & (STA_PPSWANDER | STA_PPSERROR))
359	   )
360		return (TIME_ERROR);
361#endif
362
363	    case TIME_ERROR: /* 5: unsynchronized, or loss of synchronization */
364				/* error (see status word) */
365
366		if (ptimex->status & STA_UNSYNC)
367			snprintf(des, sizeof(des), "%s%sClock Unsynchronized",
368				des, (*des) ? "; " : "");
369
370		if (ptimex->status & STA_CLOCKERR)
371			snprintf(des, sizeof(des), "%s%sClock Error",
372				des, (*des) ? "; " : "");
373
374		if (!(ptimex->status & STA_PPSSIGNAL)
375		    && ptimex->status & STA_PPSFREQ)
376			snprintf(des, sizeof(des), "%s%sPPS Frequency Sync wanted but no PPS",
377				des, (*des) ? "; " : "");
378
379		if (!(ptimex->status & STA_PPSSIGNAL)
380		    && ptimex->status & STA_PPSTIME)
381			snprintf(des, sizeof(des), "%s%sPPS Time Sync wanted but no PPS signal",
382				des, (*des) ? "; " : "");
383
384		if (   ptimex->status & STA_PPSTIME
385		    && ptimex->status & STA_PPSJITTER)
386			snprintf(des, sizeof(des), "%s%sPPS Time Sync wanted but PPS Jitter exceeded",
387				des, (*des) ? "; " : "");
388
389		if (   ptimex->status & STA_PPSFREQ
390		    && ptimex->status & STA_PPSWANDER)
391			snprintf(des, sizeof(des), "%s%sPPS Frequency Sync wanted but PPS Wander exceeded",
392				des, (*des) ? "; " : "");
393
394		if (   ptimex->status & STA_PPSFREQ
395		    && ptimex->status & STA_PPSERROR)
396			snprintf(des, sizeof(des), "%s%sPPS Frequency Sync wanted but Calibration error detected",
397				des, (*des) ? "; " : "");
398
399		if (pps_call && !(ptimex->status & STA_PPSSIGNAL))
400			report_event(EVNT_KERN, NULL,
401			    "no PPS signal");
402		DPRINTF(1, ("kernel loop status %#x (%s)\n",
403			ptimex->status, des));
404		/*
405		 * This code may be returned when ntp_adjtime() has just
406		 * been called for the first time, quite a while after
407		 * startup, when ntpd just starts to discipline the kernel
408		 * time. In this case the occurrence of this message
409		 * can be pretty confusing.
410		 *
411		 * HMS: How about a message when we begin kernel processing:
412		 *    Determining kernel clock state...
413		 * so an initial TIME_ERROR message is less confising,
414		 * or skipping the first message (ugh),
415		 * or ???
416		 * msyslog(LOG_INFO, "kernel reports time synchronization lost");
417		 */
418		msyslog(LOG_INFO, "kernel reports TIME_ERROR: %#x: %s",
419			ptimex->status, des);
420	    break;
421#else
422# warning TIME_ERROR is not defined
423#endif
424	    default:
425		msyslog(LOG_NOTICE, "%s: %s line %d: unhandled return value %d from ntp_adjtime() in %s at line %d",
426		    caller, file_name(), line,
427		    ret,
428		    __func__, __LINE__
429		);
430	    break;
431	}
432	return;
433}
434#endif
435
436/*
437 * local_clock - the NTP logical clock loop filter.
438 *
439 * Return codes:
440 * -1	update ignored: exceeds panic threshold
441 * 0	update ignored: popcorn or exceeds step threshold
442 * 1	clock was slewed
443 * 2	clock was stepped
444 *
445 * LOCKCLOCK: The only thing this routine does is set the
446 * sys_rootdisp variable equal to the peer dispersion.
447 */
448int
449local_clock(
450	struct	peer *peer,	/* synch source peer structure */
451	double	fp_offset	/* clock offset (s) */
452	)
453{
454	int	rval;		/* return code */
455	int	osys_poll;	/* old system poll */
456	int	ntp_adj_ret;	/* returned by ntp_adjtime */
457	double	mu;		/* interval since last update */
458	double	clock_frequency; /* clock frequency */
459	double	dtemp, etemp;	/* double temps */
460	char	tbuf[80];	/* report buffer */
461
462	/*
463	 * If the loop is opened or the NIST LOCKCLOCK is in use,
464	 * monitor and record the offsets anyway in order to determine
465	 * the open-loop response and then go home.
466	 */
467#ifdef LOCKCLOCK
468	{
469#else
470	if (!ntp_enable) {
471#endif /* LOCKCLOCK */
472		record_loop_stats(fp_offset, drift_comp, clock_jitter,
473		    clock_stability, sys_poll);
474		return (0);
475	}
476
477#ifndef LOCKCLOCK
478	/*
479	 * If the clock is way off, panic is declared. The clock_panic
480	 * defaults to 1000 s; if set to zero, the panic will never
481	 * occur. The allow_panic defaults to FALSE, so the first panic
482	 * will exit. It can be set TRUE by a command line option, in
483	 * which case the clock will be set anyway and time marches on.
484	 * But, allow_panic will be set FALSE when the update is less
485	 * than the step threshold; so, subsequent panics will exit.
486	 */
487	if (fabs(fp_offset) > clock_panic && clock_panic > 0 &&
488	    !allow_panic) {
489		snprintf(tbuf, sizeof(tbuf),
490		    "%+.0f s; set clock manually within %.0f s.",
491		    fp_offset, clock_panic);
492		report_event(EVNT_SYSFAULT, NULL, tbuf);
493		return (-1);
494	}
495
496	/*
497	 * This section simulates ntpdate. If the offset exceeds the
498	 * step threshold (128 ms), step the clock to that time and
499	 * exit. Otherwise, slew the clock to that time and exit. Note
500	 * that the slew will persist and eventually complete beyond the
501	 * life of this program. Note that while ntpdate is active, the
502	 * terminal does not detach, so the termination message prints
503	 * directly to the terminal.
504	 */
505	if (mode_ntpdate) {
506		if (  ( fp_offset > clock_max_fwd  && clock_max_fwd  > 0)
507		   || (-fp_offset > clock_max_back && clock_max_back > 0)) {
508			step_systime(fp_offset);
509			msyslog(LOG_NOTICE, "ntpd: time set %+.6f s",
510			    fp_offset);
511			printf("ntpd: time set %+.6fs\n", fp_offset);
512		} else {
513			adj_systime(fp_offset);
514			msyslog(LOG_NOTICE, "ntpd: time slew %+.6f s",
515			    fp_offset);
516			printf("ntpd: time slew %+.6fs\n", fp_offset);
517		}
518		record_loop_stats(fp_offset, drift_comp, clock_jitter,
519		    clock_stability, sys_poll);
520		exit (0);
521	}
522
523	/*
524	 * The huff-n'-puff filter finds the lowest delay in the recent
525	 * interval. This is used to correct the offset by one-half the
526	 * difference between the sample delay and minimum delay. This
527	 * is most effective if the delays are highly assymetric and
528	 * clockhopping is avoided and the clock frequency wander is
529	 * relatively small.
530	 */
531	if (sys_huffpuff != NULL) {
532		if (peer->delay < sys_huffpuff[sys_huffptr])
533			sys_huffpuff[sys_huffptr] = peer->delay;
534		if (peer->delay < sys_mindly)
535			sys_mindly = peer->delay;
536		if (fp_offset > 0)
537			dtemp = -(peer->delay - sys_mindly) / 2;
538		else
539			dtemp = (peer->delay - sys_mindly) / 2;
540		fp_offset += dtemp;
541#ifdef DEBUG
542		if (debug)
543			printf(
544		    "local_clock: size %d mindly %.6f huffpuff %.6f\n",
545			    sys_hufflen, sys_mindly, dtemp);
546#endif
547	}
548
549	/*
550	 * Clock state machine transition function which defines how the
551	 * system reacts to large phase and frequency excursion. There
552	 * are two main regimes: when the offset exceeds the step
553	 * threshold (128 ms) and when it does not. Under certain
554	 * conditions updates are suspended until the stepout theshold
555	 * (900 s) is exceeded. See the documentation on how these
556	 * thresholds interact with commands and command line options.
557	 *
558	 * Note the kernel is disabled if step is disabled or greater
559	 * than 0.5 s or in ntpdate mode.
560	 */
561	osys_poll = sys_poll;
562	if (sys_poll < peer->minpoll)
563		sys_poll = peer->minpoll;
564	if (sys_poll > peer->maxpoll)
565		sys_poll = peer->maxpoll;
566	mu = current_time - clock_epoch;
567	clock_frequency = drift_comp;
568	rval = 1;
569	if (  ( fp_offset > clock_max_fwd  && clock_max_fwd  > 0)
570	   || (-fp_offset > clock_max_back && clock_max_back > 0)
571	   || force_step_once ) {
572		if (force_step_once) {
573			force_step_once = FALSE;  /* we want this only once after startup */
574			msyslog(LOG_NOTICE, "Doing intital time step" );
575		}
576
577		switch (state) {
578
579		/*
580		 * In SYNC state we ignore the first outlier and switch
581		 * to SPIK state.
582		 */
583		case EVNT_SYNC:
584			snprintf(tbuf, sizeof(tbuf), "%+.6f s",
585			    fp_offset);
586			report_event(EVNT_SPIK, NULL, tbuf);
587			state = EVNT_SPIK;
588			return (0);
589
590		/*
591		 * In FREQ state we ignore outliers and inlyers. At the
592		 * first outlier after the stepout threshold, compute
593		 * the apparent frequency correction and step the phase.
594		 */
595		case EVNT_FREQ:
596			if (mu < clock_minstep)
597				return (0);
598
599			clock_frequency = direct_freq(fp_offset);
600
601			/* fall through to EVNT_SPIK */
602
603		/*
604		 * In SPIK state we ignore succeeding outliers until
605		 * either an inlyer is found or the stepout threshold is
606		 * exceeded.
607		 */
608		case EVNT_SPIK:
609			if (mu < clock_minstep)
610				return (0);
611
612			/* fall through to default */
613
614		/*
615		 * We get here by default in NSET and FSET states and
616		 * from above in FREQ or SPIK states.
617		 *
618		 * In NSET state an initial frequency correction is not
619		 * available, usually because the frequency file has not
620		 * yet been written. Since the time is outside the step
621		 * threshold, the clock is stepped. The frequency will
622		 * be set directly following the stepout interval.
623		 *
624		 * In FSET state the initial frequency has been set from
625		 * the frequency file. Since the time is outside the
626		 * step threshold, the clock is stepped immediately,
627		 * rather than after the stepout interval. Guys get
628		 * nervous if it takes 15 minutes to set the clock for
629		 * the first time.
630		 *
631		 * In FREQ and SPIK states the stepout threshold has
632		 * expired and the phase is still above the step
633		 * threshold. Note that a single spike greater than the
634		 * step threshold is always suppressed, even with a
635		 * long time constant.
636		 */
637		default:
638			snprintf(tbuf, sizeof(tbuf), "%+.6f s",
639			    fp_offset);
640			report_event(EVNT_CLOCKRESET, NULL, tbuf);
641			step_systime(fp_offset);
642			reinit_timer();
643			tc_counter = 0;
644			clock_jitter = LOGTOD(sys_precision);
645			rval = 2;
646			if (state == EVNT_NSET) {
647				rstclock(EVNT_FREQ, 0);
648				return (rval);
649			}
650			break;
651		}
652		rstclock(EVNT_SYNC, 0);
653	} else {
654		/*
655		 * The offset is less than the step threshold. Calculate
656		 * the jitter as the exponentially weighted offset
657		 * differences.
658		 */
659		etemp = SQUARE(clock_jitter);
660		dtemp = SQUARE(max(fabs(fp_offset - last_offset),
661		    LOGTOD(sys_precision)));
662		clock_jitter = SQRT(etemp + (dtemp - etemp) /
663		    CLOCK_AVG);
664		switch (state) {
665
666		/*
667		 * In NSET state this is the first update received and
668		 * the frequency has not been initialized. Adjust the
669		 * phase, but do not adjust the frequency until after
670		 * the stepout threshold.
671		 */
672		case EVNT_NSET:
673			adj_systime(fp_offset);
674			rstclock(EVNT_FREQ, fp_offset);
675			break;
676
677		/*
678		 * In FREQ state ignore updates until the stepout
679		 * threshold. After that, compute the new frequency, but
680		 * do not adjust the frequency until the holdoff counter
681		 * decrements to zero.
682		 */
683		case EVNT_FREQ:
684			if (mu < clock_minstep)
685				return (0);
686
687			clock_frequency = direct_freq(fp_offset);
688			/* fall through */
689
690		/*
691		 * We get here by default in FSET, SPIK and SYNC states.
692		 * Here compute the frequency update due to PLL and FLL
693		 * contributions. Note, we avoid frequency discipline at
694		 * startup until the initial transient has subsided.
695		 */
696		default:
697			allow_panic = FALSE;
698			if (freq_cnt == 0) {
699
700				/*
701				 * The FLL and PLL frequency gain constants
702				 * depend on the time constant and Allan
703				 * intercept. The PLL is always used, but
704				 * becomes ineffective above the Allan intercept
705				 * where the FLL becomes effective.
706				 */
707				if (sys_poll >= allan_xpt)
708					clock_frequency += (fp_offset -
709					    clock_offset) / max(ULOGTOD(sys_poll),
710					    mu) * CLOCK_FLL;
711
712				/*
713				 * The PLL frequency gain (numerator) depends on
714				 * the minimum of the update interval and Allan
715				 * intercept. This reduces the PLL gain when the
716				 * FLL becomes effective.
717				 */
718				etemp = min(ULOGTOD(allan_xpt), mu);
719				dtemp = 4 * CLOCK_PLL * ULOGTOD(sys_poll);
720				clock_frequency += fp_offset * etemp / (dtemp *
721				    dtemp);
722			}
723			rstclock(EVNT_SYNC, fp_offset);
724			if (fabs(fp_offset) < CLOCK_FLOOR)
725				freq_cnt = 0;
726			break;
727		}
728	}
729
730#ifdef KERNEL_PLL
731	/*
732	 * This code segment works when clock adjustments are made using
733	 * precision time kernel support and the ntp_adjtime() system
734	 * call. This support is available in Solaris 2.6 and later,
735	 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
736	 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
737	 * DECstation 5000/240 and Alpha AXP, additional kernel
738	 * modifications provide a true microsecond clock and nanosecond
739	 * clock, respectively.
740	 *
741	 * Important note: The kernel discipline is used only if the
742	 * step threshold is less than 0.5 s, as anything higher can
743	 * lead to overflow problems. This might occur if some misguided
744	 * lad set the step threshold to something ridiculous.
745	 */
746	if (pll_control && kern_enable && freq_cnt == 0) {
747
748		/*
749		 * We initialize the structure for the ntp_adjtime()
750		 * system call. We have to convert everything to
751		 * microseconds or nanoseconds first. Do not update the
752		 * system variables if the ext_enable flag is set. In
753		 * this case, the external clock driver will update the
754		 * variables, which will be read later by the local
755		 * clock driver. Afterwards, remember the time and
756		 * frequency offsets for jitter and stability values and
757		 * to update the frequency file.
758		 */
759		ZERO(ntv);
760		if (ext_enable) {
761			ntv.modes = MOD_STATUS;
762		} else {
763#ifdef STA_NANO
764			ntv.modes = MOD_BITS | MOD_NANO;
765#else /* STA_NANO */
766			ntv.modes = MOD_BITS;
767#endif /* STA_NANO */
768			if (clock_offset < 0)
769				dtemp = -.5;
770			else
771				dtemp = .5;
772#ifdef STA_NANO
773			ntv.offset = (int32)(clock_offset * 1e9 +
774			    dtemp);
775			ntv.constant = sys_poll;
776#else /* STA_NANO */
777			ntv.offset = (int32)(clock_offset * 1e6 +
778			    dtemp);
779			ntv.constant = sys_poll - 4;
780#endif /* STA_NANO */
781			if (ntv.constant < 0)
782				ntv.constant = 0;
783
784			ntv.esterror = (u_int32)(clock_jitter * 1e6);
785			ntv.maxerror = (u_int32)((sys_rootdelay / 2 +
786			    sys_rootdisp) * 1e6);
787			ntv.status = STA_PLL;
788
789			/*
790			 * Enable/disable the PPS if requested.
791			 */
792			if (hardpps_enable) {
793				ntv.status |= (STA_PPSTIME | STA_PPSFREQ);
794				if (!(pll_status & STA_PPSTIME))
795					sync_status("PPS enabled",
796						pll_status,
797						ntv.status);
798			} else {
799				ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ);
800				if (pll_status & STA_PPSTIME)
801					sync_status("PPS disabled",
802						pll_status,
803						ntv.status);
804			}
805			if (sys_leap == LEAP_ADDSECOND)
806				ntv.status |= STA_INS;
807			else if (sys_leap == LEAP_DELSECOND)
808				ntv.status |= STA_DEL;
809		}
810
811		/*
812		 * Pass the stuff to the kernel. If it squeals, turn off
813		 * the pps. In any case, fetch the kernel offset,
814		 * frequency and jitter.
815		 */
816		ntp_adj_ret = ntp_adjtime(&ntv);
817		/*
818		 * A squeal is a return status < 0, or a state change.
819		 */
820		if ((0 > ntp_adj_ret) || (ntp_adj_ret != kernel_status)) {
821			kernel_status = ntp_adj_ret;
822			ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, hardpps_enable, 0, __LINE__ - 1);
823		}
824		pll_status = ntv.status;
825#ifdef STA_NANO
826		clock_offset = ntv.offset / 1e9;
827#else /* STA_NANO */
828		clock_offset = ntv.offset / 1e6;
829#endif /* STA_NANO */
830		clock_frequency = FREQTOD(ntv.freq);
831
832		/*
833		 * If the kernel PPS is lit, monitor its performance.
834		 */
835		if (ntv.status & STA_PPSTIME) {
836#ifdef STA_NANO
837			clock_jitter = ntv.jitter / 1e9;
838#else /* STA_NANO */
839			clock_jitter = ntv.jitter / 1e6;
840#endif /* STA_NANO */
841		}
842
843#if defined(STA_NANO) && NTP_API == 4
844		/*
845		 * If the TAI changes, update the kernel TAI.
846		 */
847		if (loop_tai != sys_tai) {
848			loop_tai = sys_tai;
849			ntv.modes = MOD_TAI;
850			ntv.constant = sys_tai;
851			if ((ntp_adj_ret = ntp_adjtime(&ntv)) != 0) {
852			    ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, 0, 1, __LINE__ - 1);
853			}
854		}
855#endif /* STA_NANO */
856	}
857#endif /* KERNEL_PLL */
858
859	/*
860	 * Clamp the frequency within the tolerance range and calculate
861	 * the frequency difference since the last update.
862	 */
863	if (fabs(clock_frequency) > NTP_MAXFREQ)
864		msyslog(LOG_NOTICE,
865		    "frequency error %.0f PPM exceeds tolerance %.0f PPM",
866		    clock_frequency * 1e6, NTP_MAXFREQ * 1e6);
867	dtemp = SQUARE(clock_frequency - drift_comp);
868	if (clock_frequency > NTP_MAXFREQ)
869		drift_comp = NTP_MAXFREQ;
870	else if (clock_frequency < -NTP_MAXFREQ)
871		drift_comp = -NTP_MAXFREQ;
872	else
873		drift_comp = clock_frequency;
874
875	/*
876	 * Calculate the wander as the exponentially weighted RMS
877	 * frequency differences. Record the change for the frequency
878	 * file update.
879	 */
880	etemp = SQUARE(clock_stability);
881	clock_stability = SQRT(etemp + (dtemp - etemp) / CLOCK_AVG);
882
883	/*
884	 * Here we adjust the time constant by comparing the current
885	 * offset with the clock jitter. If the offset is less than the
886	 * clock jitter times a constant, then the averaging interval is
887	 * increased, otherwise it is decreased. A bit of hysteresis
888	 * helps calm the dance. Works best using burst mode. Don't
889	 * fiddle with the poll during the startup clamp period.
890	 */
891	if (freq_cnt > 0) {
892		tc_counter = 0;
893	} else if (fabs(clock_offset) < CLOCK_PGATE * clock_jitter) {
894		tc_counter += sys_poll;
895		if (tc_counter > CLOCK_LIMIT) {
896			tc_counter = CLOCK_LIMIT;
897			if (sys_poll < peer->maxpoll) {
898				tc_counter = 0;
899				sys_poll++;
900			}
901		}
902	} else {
903		tc_counter -= sys_poll << 1;
904		if (tc_counter < -CLOCK_LIMIT) {
905			tc_counter = -CLOCK_LIMIT;
906			if (sys_poll > peer->minpoll) {
907				tc_counter = 0;
908				sys_poll--;
909			}
910		}
911	}
912
913	/*
914	 * If the time constant has changed, update the poll variables.
915	 */
916	if (osys_poll != sys_poll)
917		poll_update(peer, sys_poll);
918
919	/*
920	 * Yibbidy, yibbbidy, yibbidy; that'h all folks.
921	 */
922	record_loop_stats(clock_offset, drift_comp, clock_jitter,
923	    clock_stability, sys_poll);
924#ifdef DEBUG
925	if (debug)
926		printf(
927		    "local_clock: offset %.9f jit %.9f freq %.3f stab %.3f poll %d\n",
928		    clock_offset, clock_jitter, drift_comp * 1e6,
929		    clock_stability * 1e6, sys_poll);
930#endif /* DEBUG */
931	return (rval);
932#endif /* LOCKCLOCK */
933}
934
935
936/*
937 * adj_host_clock - Called once every second to update the local clock.
938 *
939 * LOCKCLOCK: The only thing this routine does is increment the
940 * sys_rootdisp variable.
941 */
942void
943adj_host_clock(
944	void
945	)
946{
947	double	offset_adj;
948	double	freq_adj;
949
950	/*
951	 * Update the dispersion since the last update. In contrast to
952	 * NTPv3, NTPv4 does not declare unsynchronized after one day,
953	 * since the dispersion check serves this function. Also,
954	 * since the poll interval can exceed one day, the old test
955	 * would be counterproductive. During the startup clamp period, the
956	 * time constant is clamped at 2.
957	 */
958	sys_rootdisp += clock_phi;
959#ifndef LOCKCLOCK
960	if (!ntp_enable || mode_ntpdate)
961		return;
962	/*
963	 * Determine the phase adjustment. The gain factor (denominator)
964	 * increases with poll interval, so is dominated by the FLL
965	 * above the Allan intercept. Note the reduced time constant at
966	 * startup.
967	 */
968	if (state != EVNT_SYNC) {
969		offset_adj = 0.;
970	} else if (freq_cnt > 0) {
971		offset_adj = clock_offset / (CLOCK_PLL * ULOGTOD(1));
972		freq_cnt--;
973#ifdef KERNEL_PLL
974	} else if (pll_control && kern_enable) {
975		offset_adj = 0.;
976#endif /* KERNEL_PLL */
977	} else {
978		offset_adj = clock_offset / (CLOCK_PLL * ULOGTOD(sys_poll));
979	}
980
981	/*
982	 * If the kernel discipline is enabled the frequency correction
983	 * drift_comp has already been engaged via ntp_adjtime() in
984	 * set_freq().  Otherwise it is a component of the adj_systime()
985	 * offset.
986	 */
987#ifdef KERNEL_PLL
988	if (pll_control && kern_enable)
989		freq_adj = 0.;
990	else
991#endif /* KERNEL_PLL */
992		freq_adj = drift_comp;
993
994	/* Bound absolute value of total adjustment to NTP_MAXFREQ. */
995	if (offset_adj + freq_adj > NTP_MAXFREQ)
996		offset_adj = NTP_MAXFREQ - freq_adj;
997	else if (offset_adj + freq_adj < -NTP_MAXFREQ)
998		offset_adj = -NTP_MAXFREQ - freq_adj;
999
1000	clock_offset -= offset_adj;
1001	/*
1002	 * Windows port adj_systime() must be called each second,
1003	 * even if the argument is zero, to ease emulation of
1004	 * adjtime() using Windows' slew API which controls the rate
1005	 * but does not automatically stop slewing when an offset
1006	 * has decayed to zero.
1007	 */
1008	adj_systime(offset_adj + freq_adj);
1009#endif /* LOCKCLOCK */
1010}
1011
1012
1013/*
1014 * Clock state machine. Enter new state and set state variables.
1015 */
1016static void
1017rstclock(
1018	int	trans,		/* new state */
1019	double	offset		/* new offset */
1020	)
1021{
1022#ifdef DEBUG
1023	if (debug > 1)
1024		printf("local_clock: mu %lu state %d poll %d count %d\n",
1025		    current_time - clock_epoch, trans, sys_poll,
1026		    tc_counter);
1027#endif
1028	if (trans != state && trans != EVNT_FSET)
1029		report_event(trans, NULL, NULL);
1030	state = trans;
1031	last_offset = clock_offset = offset;
1032	clock_epoch = current_time;
1033}
1034
1035
1036/*
1037 * calc_freq - calculate frequency directly
1038 *
1039 * This is very carefully done. When the offset is first computed at the
1040 * first update, a residual frequency component results. Subsequently,
1041 * updates are suppresed until the end of the measurement interval while
1042 * the offset is amortized. At the end of the interval the frequency is
1043 * calculated from the current offset, residual offset, length of the
1044 * interval and residual frequency component. At the same time the
1045 * frequenchy file is armed for update at the next hourly stats.
1046 */
1047static double
1048direct_freq(
1049	double	fp_offset
1050	)
1051{
1052	set_freq(fp_offset / (current_time - clock_epoch));
1053
1054	return drift_comp;
1055}
1056
1057
1058/*
1059 * set_freq - set clock frequency correction
1060 *
1061 * Used to step the frequency correction at startup, possibly again once
1062 * the frequency is measured (that is, transitioning from EVNT_NSET to
1063 * EVNT_FSET), and finally to switch between daemon and kernel loop
1064 * discipline at runtime.
1065 *
1066 * When the kernel loop discipline is available but the daemon loop is
1067 * in use, the kernel frequency correction is disabled (set to 0) to
1068 * ensure drift_comp is applied by only one of the loops.
1069 */
1070static void
1071set_freq(
1072	double	freq		/* frequency update */
1073	)
1074{
1075	const char *	loop_desc;
1076	int ntp_adj_ret;
1077
1078	drift_comp = freq;
1079	loop_desc = "ntpd";
1080#ifdef KERNEL_PLL
1081	if (pll_control) {
1082		ZERO(ntv);
1083		ntv.modes = MOD_FREQUENCY;
1084		if (kern_enable) {
1085			loop_desc = "kernel";
1086			ntv.freq = DTOFREQ(drift_comp);
1087		}
1088		if ((ntp_adj_ret = ntp_adjtime(&ntv)) != 0) {
1089		    ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, 0, 0, __LINE__ - 1);
1090		}
1091	}
1092#endif /* KERNEL_PLL */
1093	mprintf_event(EVNT_FSET, NULL, "%s %.3f PPM", loop_desc,
1094	    drift_comp * 1e6);
1095}
1096
1097
1098#ifdef KERNEL_PLL
1099static void
1100start_kern_loop(void)
1101{
1102	static int atexit_done;
1103	int ntp_adj_ret;
1104
1105	pll_control = TRUE;
1106	ZERO(ntv);
1107	ntv.modes = MOD_BITS;
1108	ntv.status = STA_PLL;
1109	ntv.maxerror = MAXDISPERSE;
1110	ntv.esterror = MAXDISPERSE;
1111	ntv.constant = sys_poll; /* why is it that here constant is unconditionally set to sys_poll, whereas elsewhere is is modified depending on nanosecond vs. microsecond kernel? */
1112#ifdef SIGSYS
1113	/*
1114	 * Use sigsetjmp() to save state and then call ntp_adjtime(); if
1115	 * it fails, then pll_trap() will set pll_control FALSE before
1116	 * returning control using siglogjmp().
1117	 */
1118	newsigsys.sa_handler = pll_trap;
1119	newsigsys.sa_flags = 0;
1120	if (sigaction(SIGSYS, &newsigsys, &sigsys)) {
1121		msyslog(LOG_ERR, "sigaction() trap SIGSYS: %m");
1122		pll_control = FALSE;
1123	} else {
1124		if (sigsetjmp(env, 1) == 0) {
1125			if ((ntp_adj_ret = ntp_adjtime(&ntv)) != 0) {
1126			    ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, 0, 0, __LINE__ - 1);
1127			}
1128		}
1129		if (sigaction(SIGSYS, &sigsys, NULL)) {
1130			msyslog(LOG_ERR,
1131			    "sigaction() restore SIGSYS: %m");
1132			pll_control = FALSE;
1133		}
1134	}
1135#else /* SIGSYS */
1136	if ((ntp_adj_ret = ntp_adjtime(&ntv)) != 0) {
1137	    ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, 0, 0, __LINE__ - 1);
1138	}
1139#endif /* SIGSYS */
1140
1141	/*
1142	 * Save the result status and light up an external clock
1143	 * if available.
1144	 */
1145	pll_status = ntv.status;
1146	if (pll_control) {
1147		if (!atexit_done) {
1148			atexit_done = TRUE;
1149			atexit(&stop_kern_loop);
1150		}
1151#ifdef STA_NANO
1152		if (pll_status & STA_CLK)
1153			ext_enable = TRUE;
1154#endif /* STA_NANO */
1155		report_event(EVNT_KERN, NULL,
1156	  	    "kernel time sync enabled");
1157	}
1158}
1159#endif	/* KERNEL_PLL */
1160
1161
1162#ifdef KERNEL_PLL
1163static void
1164stop_kern_loop(void)
1165{
1166	if (pll_control && kern_enable)
1167		report_event(EVNT_KERN, NULL,
1168		    "kernel time sync disabled");
1169}
1170#endif	/* KERNEL_PLL */
1171
1172
1173/*
1174 * select_loop() - choose kernel or daemon loop discipline.
1175 */
1176void
1177select_loop(
1178	int	use_kern_loop
1179	)
1180{
1181	if (kern_enable == use_kern_loop)
1182		return;
1183#ifdef KERNEL_PLL
1184	if (pll_control && !use_kern_loop)
1185		stop_kern_loop();
1186#endif
1187	kern_enable = use_kern_loop;
1188#ifdef KERNEL_PLL
1189	if (pll_control && use_kern_loop)
1190		start_kern_loop();
1191#endif
1192	/*
1193	 * If this loop selection change occurs after initial startup,
1194	 * call set_freq() to switch the frequency compensation to or
1195	 * from the kernel loop.
1196	 */
1197#ifdef KERNEL_PLL
1198	if (pll_control && loop_started)
1199		set_freq(drift_comp);
1200#endif
1201}
1202
1203
1204/*
1205 * huff-n'-puff filter
1206 */
1207void
1208huffpuff(void)
1209{
1210	int i;
1211
1212	if (sys_huffpuff == NULL)
1213		return;
1214
1215	sys_huffptr = (sys_huffptr + 1) % sys_hufflen;
1216	sys_huffpuff[sys_huffptr] = 1e9;
1217	sys_mindly = 1e9;
1218	for (i = 0; i < sys_hufflen; i++) {
1219		if (sys_huffpuff[i] < sys_mindly)
1220			sys_mindly = sys_huffpuff[i];
1221	}
1222}
1223
1224
1225/*
1226 * loop_config - configure the loop filter
1227 *
1228 * LOCKCLOCK: The LOOP_DRIFTINIT and LOOP_DRIFTCOMP cases are no-ops.
1229 */
1230void
1231loop_config(
1232	int	item,
1233	double	freq
1234	)
1235{
1236	int	i;
1237	double	ftemp;
1238
1239#ifdef DEBUG
1240	if (debug > 1)
1241		printf("loop_config: item %d freq %f\n", item, freq);
1242#endif
1243	switch (item) {
1244
1245	/*
1246	 * We first assume the kernel supports the ntp_adjtime()
1247	 * syscall. If that syscall works, initialize the kernel time
1248	 * variables. Otherwise, continue leaving no harm behind.
1249	 */
1250	case LOOP_DRIFTINIT:
1251#ifndef LOCKCLOCK
1252#ifdef KERNEL_PLL
1253		if (mode_ntpdate)
1254			break;
1255
1256		start_kern_loop();
1257#endif /* KERNEL_PLL */
1258
1259		/*
1260		 * Initialize frequency if given; otherwise, begin frequency
1261		 * calibration phase.
1262		 */
1263		ftemp = init_drift_comp / 1e6;
1264		if (ftemp > NTP_MAXFREQ)
1265			ftemp = NTP_MAXFREQ;
1266		else if (ftemp < -NTP_MAXFREQ)
1267			ftemp = -NTP_MAXFREQ;
1268		set_freq(ftemp);
1269		if (freq_set)
1270			rstclock(EVNT_FSET, 0);
1271		else
1272			rstclock(EVNT_NSET, 0);
1273		loop_started = TRUE;
1274#endif /* LOCKCLOCK */
1275		break;
1276
1277	case LOOP_KERN_CLEAR:
1278#if 0		/* XXX: needs more review, and how can we get here? */
1279#ifndef LOCKCLOCK
1280# ifdef KERNEL_PLL
1281		if (pll_control && kern_enable) {
1282			memset((char *)&ntv, 0, sizeof(ntv));
1283			ntv.modes = MOD_STATUS;
1284			ntv.status = STA_UNSYNC;
1285			ntp_adjtime(&ntv);
1286			sync_status("kernel time sync disabled",
1287				pll_status,
1288				ntv.status);
1289		   }
1290# endif /* KERNEL_PLL */
1291#endif /* LOCKCLOCK */
1292#endif
1293		break;
1294
1295	/*
1296	 * Tinker command variables for Ulrich Windl. Very dangerous.
1297	 */
1298	case LOOP_ALLAN:	/* Allan intercept (log2) (allan) */
1299		allan_xpt = (u_char)freq;
1300		break;
1301
1302	case LOOP_CODEC:	/* audio codec frequency (codec) */
1303		clock_codec = freq / 1e6;
1304		break;
1305
1306	case LOOP_PHI:		/* dispersion threshold (dispersion) */
1307		clock_phi = freq / 1e6;
1308		break;
1309
1310	case LOOP_FREQ:		/* initial frequency (freq) */
1311		init_drift_comp = freq;
1312		freq_set++;
1313		break;
1314
1315	case LOOP_HUFFPUFF:	/* huff-n'-puff length (huffpuff) */
1316		if (freq < HUFFPUFF)
1317			freq = HUFFPUFF;
1318		sys_hufflen = (int)(freq / HUFFPUFF);
1319		sys_huffpuff = emalloc(sizeof(sys_huffpuff[0]) *
1320		    sys_hufflen);
1321		for (i = 0; i < sys_hufflen; i++)
1322			sys_huffpuff[i] = 1e9;
1323		sys_mindly = 1e9;
1324		break;
1325
1326	case LOOP_PANIC:	/* panic threshold (panic) */
1327		clock_panic = freq;
1328		break;
1329
1330	case LOOP_MAX:		/* step threshold (step) */
1331		clock_max_fwd = clock_max_back = freq;
1332		if (freq == 0 || freq > 0.5)
1333			select_loop(FALSE);
1334		break;
1335
1336	case LOOP_MAX_BACK:	/* step threshold (step) */
1337		clock_max_back = freq;
1338		/*
1339		 * Leave using the kernel discipline code unless both
1340		 * limits are massive.  This assumes the reason to stop
1341		 * using it is that it's pointless, not that it goes wrong.
1342		 */
1343		if (  (clock_max_back == 0 || clock_max_back > 0.5)
1344		   || (clock_max_fwd  == 0 || clock_max_fwd  > 0.5))
1345			select_loop(FALSE);
1346		break;
1347
1348	case LOOP_MAX_FWD:	/* step threshold (step) */
1349		clock_max_fwd = freq;
1350		if (  (clock_max_back == 0 || clock_max_back > 0.5)
1351		   || (clock_max_fwd  == 0 || clock_max_fwd  > 0.5))
1352			select_loop(FALSE);
1353		break;
1354
1355	case LOOP_MINSTEP:	/* stepout threshold (stepout) */
1356		if (freq < CLOCK_MINSTEP)
1357			clock_minstep = CLOCK_MINSTEP;
1358		else
1359			clock_minstep = freq;
1360		break;
1361
1362	case LOOP_TICK:		/* tick increment (tick) */
1363		set_sys_tick_precision(freq);
1364		break;
1365
1366	case LOOP_LEAP:		/* not used, fall through */
1367	default:
1368		msyslog(LOG_NOTICE,
1369		    "loop_config: unsupported option %d", item);
1370	}
1371}
1372
1373
1374#if defined(KERNEL_PLL) && defined(SIGSYS)
1375/*
1376 * _trap - trap processor for undefined syscalls
1377 *
1378 * This nugget is called by the kernel when the SYS_ntp_adjtime()
1379 * syscall bombs because the silly thing has not been implemented in
1380 * the kernel. In this case the phase-lock loop is emulated by
1381 * the stock adjtime() syscall and a lot of indelicate abuse.
1382 */
1383static RETSIGTYPE
1384pll_trap(
1385	int arg
1386	)
1387{
1388	pll_control = FALSE;
1389	siglongjmp(env, 1);
1390}
1391#endif /* KERNEL_PLL && SIGSYS */
1392