ntp_control.c revision 293896
1/*
2 * ntp_control.c - respond to mode 6 control messages and send async
3 *		   traps.  Provides service to ntpq and others.
4 */
5
6#ifdef HAVE_CONFIG_H
7# include <config.h>
8#endif
9
10#include <stdio.h>
11#include <ctype.h>
12#include <signal.h>
13#include <sys/stat.h>
14#ifdef HAVE_NETINET_IN_H
15# include <netinet/in.h>
16#endif
17#include <arpa/inet.h>
18
19#include "ntpd.h"
20#include "ntp_io.h"
21#include "ntp_refclock.h"
22#include "ntp_control.h"
23#include "ntp_unixtime.h"
24#include "ntp_stdlib.h"
25#include "ntp_config.h"
26#include "ntp_crypto.h"
27#include "ntp_assert.h"
28#include "ntp_leapsec.h"
29#include "ntp_md5.h"	/* provides OpenSSL digest API */
30#include "lib_strbuf.h"
31#include <rc_cmdlength.h>
32#ifdef KERNEL_PLL
33# include "ntp_syscall.h"
34#endif
35
36
37/*
38 * Structure to hold request procedure information
39 */
40
41struct ctl_proc {
42	short control_code;		/* defined request code */
43#define NO_REQUEST	(-1)
44	u_short flags;			/* flags word */
45	/* Only one flag.  Authentication required or not. */
46#define NOAUTH	0
47#define AUTH	1
48	void (*handler) (struct recvbuf *, int); /* handle request */
49};
50
51
52/*
53 * Request processing routines
54 */
55static	void	ctl_error	(u_char);
56#ifdef REFCLOCK
57static	u_short ctlclkstatus	(struct refclockstat *);
58#endif
59static	void	ctl_flushpkt	(u_char);
60static	void	ctl_putdata	(const char *, unsigned int, int);
61static	void	ctl_putstr	(const char *, const char *, size_t);
62static	void	ctl_putdblf	(const char *, int, int, double);
63#define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
64#define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
65#define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
66					    FPTOD(sfp))
67static	void	ctl_putuint	(const char *, u_long);
68static	void	ctl_puthex	(const char *, u_long);
69static	void	ctl_putint	(const char *, long);
70static	void	ctl_putts	(const char *, l_fp *);
71static	void	ctl_putadr	(const char *, u_int32,
72				 sockaddr_u *);
73static	void	ctl_putrefid	(const char *, u_int32);
74static	void	ctl_putarray	(const char *, double *, int);
75static	void	ctl_putsys	(int);
76static	void	ctl_putpeer	(int, struct peer *);
77static	void	ctl_putfs	(const char *, tstamp_t);
78#ifdef REFCLOCK
79static	void	ctl_putclock	(int, struct refclockstat *, int);
80#endif	/* REFCLOCK */
81static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
82					  char **);
83static	u_short	count_var	(const struct ctl_var *);
84static	void	control_unspec	(struct recvbuf *, int);
85static	void	read_status	(struct recvbuf *, int);
86static	void	read_sysvars	(void);
87static	void	read_peervars	(void);
88static	void	read_variables	(struct recvbuf *, int);
89static	void	write_variables (struct recvbuf *, int);
90static	void	read_clockstatus(struct recvbuf *, int);
91static	void	write_clockstatus(struct recvbuf *, int);
92static	void	set_trap	(struct recvbuf *, int);
93static	void	save_config	(struct recvbuf *, int);
94static	void	configure	(struct recvbuf *, int);
95static	void	send_mru_entry	(mon_entry *, int);
96static	void	send_random_tag_value(int);
97static	void	read_mru_list	(struct recvbuf *, int);
98static	void	send_ifstats_entry(endpt *, u_int);
99static	void	read_ifstats	(struct recvbuf *);
100static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
101					  restrict_u *, int);
102static	void	send_restrict_entry(restrict_u *, int, u_int);
103static	void	send_restrict_list(restrict_u *, int, u_int *);
104static	void	read_addr_restrictions(struct recvbuf *);
105static	void	read_ordlist	(struct recvbuf *, int);
106static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
107static	void	generate_nonce	(struct recvbuf *, char *, size_t);
108static	int	validate_nonce	(const char *, struct recvbuf *);
109static	void	req_nonce	(struct recvbuf *, int);
110static	void	unset_trap	(struct recvbuf *, int);
111static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
112				     struct interface *);
113
114static const struct ctl_proc control_codes[] = {
115	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
116	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
117	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
118	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
119	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
120	{ CTL_OP_WRITECLOCK,		NOAUTH,	write_clockstatus },
121	{ CTL_OP_SETTRAP,		NOAUTH,	set_trap },
122	{ CTL_OP_CONFIGURE,		AUTH,	configure },
123	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
124	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
125	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
126	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
127	{ CTL_OP_UNSETTRAP,		NOAUTH,	unset_trap },
128	{ NO_REQUEST,			0,	NULL }
129};
130
131/*
132 * System variables we understand
133 */
134#define	CS_LEAP			1
135#define	CS_STRATUM		2
136#define	CS_PRECISION		3
137#define	CS_ROOTDELAY		4
138#define	CS_ROOTDISPERSION	5
139#define	CS_REFID		6
140#define	CS_REFTIME		7
141#define	CS_POLL			8
142#define	CS_PEERID		9
143#define	CS_OFFSET		10
144#define	CS_DRIFT		11
145#define	CS_JITTER		12
146#define	CS_ERROR		13
147#define	CS_CLOCK		14
148#define	CS_PROCESSOR		15
149#define	CS_SYSTEM		16
150#define	CS_VERSION		17
151#define	CS_STABIL		18
152#define	CS_VARLIST		19
153#define	CS_TAI			20
154#define	CS_LEAPTAB		21
155#define	CS_LEAPEND		22
156#define	CS_RATE			23
157#define	CS_MRU_ENABLED		24
158#define	CS_MRU_DEPTH		25
159#define	CS_MRU_DEEPEST		26
160#define	CS_MRU_MINDEPTH		27
161#define	CS_MRU_MAXAGE		28
162#define	CS_MRU_MAXDEPTH		29
163#define	CS_MRU_MEM		30
164#define	CS_MRU_MAXMEM		31
165#define	CS_SS_UPTIME		32
166#define	CS_SS_RESET		33
167#define	CS_SS_RECEIVED		34
168#define	CS_SS_THISVER		35
169#define	CS_SS_OLDVER		36
170#define	CS_SS_BADFORMAT		37
171#define	CS_SS_BADAUTH		38
172#define	CS_SS_DECLINED		39
173#define	CS_SS_RESTRICTED	40
174#define	CS_SS_LIMITED		41
175#define	CS_SS_KODSENT		42
176#define	CS_SS_PROCESSED		43
177#define	CS_PEERADR		44
178#define	CS_PEERMODE		45
179#define	CS_BCASTDELAY		46
180#define	CS_AUTHDELAY		47
181#define	CS_AUTHKEYS		48
182#define	CS_AUTHFREEK		49
183#define	CS_AUTHKLOOKUPS		50
184#define	CS_AUTHKNOTFOUND	51
185#define	CS_AUTHKUNCACHED	52
186#define	CS_AUTHKEXPIRED		53
187#define	CS_AUTHENCRYPTS		54
188#define	CS_AUTHDECRYPTS		55
189#define	CS_AUTHRESET		56
190#define	CS_K_OFFSET		57
191#define	CS_K_FREQ		58
192#define	CS_K_MAXERR		59
193#define	CS_K_ESTERR		60
194#define	CS_K_STFLAGS		61
195#define	CS_K_TIMECONST		62
196#define	CS_K_PRECISION		63
197#define	CS_K_FREQTOL		64
198#define	CS_K_PPS_FREQ		65
199#define	CS_K_PPS_STABIL		66
200#define	CS_K_PPS_JITTER		67
201#define	CS_K_PPS_CALIBDUR	68
202#define	CS_K_PPS_CALIBS		69
203#define	CS_K_PPS_CALIBERRS	70
204#define	CS_K_PPS_JITEXC		71
205#define	CS_K_PPS_STBEXC		72
206#define	CS_KERN_FIRST		CS_K_OFFSET
207#define	CS_KERN_LAST		CS_K_PPS_STBEXC
208#define	CS_IOSTATS_RESET	73
209#define	CS_TOTAL_RBUF		74
210#define	CS_FREE_RBUF		75
211#define	CS_USED_RBUF		76
212#define	CS_RBUF_LOWATER		77
213#define	CS_IO_DROPPED		78
214#define	CS_IO_IGNORED		79
215#define	CS_IO_RECEIVED		80
216#define	CS_IO_SENT		81
217#define	CS_IO_SENDFAILED	82
218#define	CS_IO_WAKEUPS		83
219#define	CS_IO_GOODWAKEUPS	84
220#define	CS_TIMERSTATS_RESET	85
221#define	CS_TIMER_OVERRUNS	86
222#define	CS_TIMER_XMTS		87
223#define	CS_FUZZ			88
224#define	CS_WANDER_THRESH	89
225#define	CS_LEAPSMEARINTV	90
226#define	CS_LEAPSMEAROFFS	91
227#define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
228#ifdef AUTOKEY
229#define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
230#define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
231#define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
232#define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
233#define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
234#define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
235#define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
236#define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
237#define	CS_MAXCODE		CS_DIGEST
238#else	/* !AUTOKEY follows */
239#define	CS_MAXCODE		CS_MAX_NOAUTOKEY
240#endif	/* !AUTOKEY */
241
242/*
243 * Peer variables we understand
244 */
245#define	CP_CONFIG		1
246#define	CP_AUTHENABLE		2
247#define	CP_AUTHENTIC		3
248#define	CP_SRCADR		4
249#define	CP_SRCPORT		5
250#define	CP_DSTADR		6
251#define	CP_DSTPORT		7
252#define	CP_LEAP			8
253#define	CP_HMODE		9
254#define	CP_STRATUM		10
255#define	CP_PPOLL		11
256#define	CP_HPOLL		12
257#define	CP_PRECISION		13
258#define	CP_ROOTDELAY		14
259#define	CP_ROOTDISPERSION	15
260#define	CP_REFID		16
261#define	CP_REFTIME		17
262#define	CP_ORG			18
263#define	CP_REC			19
264#define	CP_XMT			20
265#define	CP_REACH		21
266#define	CP_UNREACH		22
267#define	CP_TIMER		23
268#define	CP_DELAY		24
269#define	CP_OFFSET		25
270#define	CP_JITTER		26
271#define	CP_DISPERSION		27
272#define	CP_KEYID		28
273#define	CP_FILTDELAY		29
274#define	CP_FILTOFFSET		30
275#define	CP_PMODE		31
276#define	CP_RECEIVED		32
277#define	CP_SENT			33
278#define	CP_FILTERROR		34
279#define	CP_FLASH		35
280#define	CP_TTL			36
281#define	CP_VARLIST		37
282#define	CP_IN			38
283#define	CP_OUT			39
284#define	CP_RATE			40
285#define	CP_BIAS			41
286#define	CP_SRCHOST		42
287#define	CP_TIMEREC		43
288#define	CP_TIMEREACH		44
289#define	CP_BADAUTH		45
290#define	CP_BOGUSORG		46
291#define	CP_OLDPKT		47
292#define	CP_SELDISP		48
293#define	CP_SELBROKEN		49
294#define	CP_CANDIDATE		50
295#define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
296#ifdef AUTOKEY
297#define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
298#define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
299#define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
300#define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
301#define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
302#define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
303#define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
304#define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
305#define	CP_MAXCODE		CP_IDENT
306#else	/* !AUTOKEY follows */
307#define	CP_MAXCODE		CP_MAX_NOAUTOKEY
308#endif	/* !AUTOKEY */
309
310/*
311 * Clock variables we understand
312 */
313#define	CC_TYPE		1
314#define	CC_TIMECODE	2
315#define	CC_POLL		3
316#define	CC_NOREPLY	4
317#define	CC_BADFORMAT	5
318#define	CC_BADDATA	6
319#define	CC_FUDGETIME1	7
320#define	CC_FUDGETIME2	8
321#define	CC_FUDGEVAL1	9
322#define	CC_FUDGEVAL2	10
323#define	CC_FLAGS	11
324#define	CC_DEVICE	12
325#define	CC_VARLIST	13
326#define	CC_MAXCODE	CC_VARLIST
327
328/*
329 * System variable values. The array can be indexed by the variable
330 * index to find the textual name.
331 */
332static const struct ctl_var sys_var[] = {
333	{ 0,		PADDING, "" },		/* 0 */
334	{ CS_LEAP,	RW, "leap" },		/* 1 */
335	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
336	{ CS_PRECISION, RO, "precision" },	/* 3 */
337	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
338	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
339	{ CS_REFID,	RO, "refid" },		/* 6 */
340	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
341	{ CS_POLL,	RO, "tc" },		/* 8 */
342	{ CS_PEERID,	RO, "peer" },		/* 9 */
343	{ CS_OFFSET,	RO, "offset" },		/* 10 */
344	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
345	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
346	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
347	{ CS_CLOCK,	RO, "clock" },		/* 14 */
348	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
349	{ CS_SYSTEM,	RO, "system" },		/* 16 */
350	{ CS_VERSION,	RO, "version" },	/* 17 */
351	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
352	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
353	{ CS_TAI,	RO, "tai" },		/* 20 */
354	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
355	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
356	{ CS_RATE,	RO, "mintc" },		/* 23 */
357	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
358	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
359	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
360	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
361	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
362	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
363	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
364	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
365	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
366	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
367	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
368	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
369	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
370	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
371	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
372	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
373	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
374	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
375	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
376	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
377	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
378	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
379	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
380	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
381	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
382	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
383	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
384	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
385	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
386	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
387	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
388	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
389	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
390	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
391	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
392	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
393	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
394	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
395	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
396	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
397	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
398	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
399	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
400	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
401	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
402	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
403	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
404	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
405	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
406	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
407	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
408	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
409	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
410	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
411	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
412	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
413	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
414	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
415	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
416	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
417	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
418	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
419	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
420	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
421	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
422	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
423
424	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
425	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
426
427#ifdef AUTOKEY
428	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
429	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
430	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
431	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
432	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
433	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
434	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
435	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
436#endif	/* AUTOKEY */
437	{ 0,		EOV, "" }		/* 87/95 */
438};
439
440static struct ctl_var *ext_sys_var = NULL;
441
442/*
443 * System variables we print by default (in fuzzball order,
444 * more-or-less)
445 */
446static const u_char def_sys_var[] = {
447	CS_VERSION,
448	CS_PROCESSOR,
449	CS_SYSTEM,
450	CS_LEAP,
451	CS_STRATUM,
452	CS_PRECISION,
453	CS_ROOTDELAY,
454	CS_ROOTDISPERSION,
455	CS_REFID,
456	CS_REFTIME,
457	CS_CLOCK,
458	CS_PEERID,
459	CS_POLL,
460	CS_RATE,
461	CS_OFFSET,
462	CS_DRIFT,
463	CS_JITTER,
464	CS_ERROR,
465	CS_STABIL,
466	CS_TAI,
467	CS_LEAPTAB,
468	CS_LEAPEND,
469	CS_LEAPSMEARINTV,
470	CS_LEAPSMEAROFFS,
471#ifdef AUTOKEY
472	CS_HOST,
473	CS_IDENT,
474	CS_FLAGS,
475	CS_DIGEST,
476	CS_SIGNATURE,
477	CS_PUBLIC,
478	CS_CERTIF,
479#endif	/* AUTOKEY */
480	0
481};
482
483
484/*
485 * Peer variable list
486 */
487static const struct ctl_var peer_var[] = {
488	{ 0,		PADDING, "" },		/* 0 */
489	{ CP_CONFIG,	RO, "config" },		/* 1 */
490	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
491	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
492	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
493	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
494	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
495	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
496	{ CP_LEAP,	RO, "leap" },		/* 8 */
497	{ CP_HMODE,	RO, "hmode" },		/* 9 */
498	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
499	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
500	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
501	{ CP_PRECISION,	RO, "precision" },	/* 13 */
502	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
503	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
504	{ CP_REFID,	RO, "refid" },		/* 16 */
505	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
506	{ CP_ORG,	RO, "org" },		/* 18 */
507	{ CP_REC,	RO, "rec" },		/* 19 */
508	{ CP_XMT,	RO, "xleave" },		/* 20 */
509	{ CP_REACH,	RO, "reach" },		/* 21 */
510	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
511	{ CP_TIMER,	RO, "timer" },		/* 23 */
512	{ CP_DELAY,	RO, "delay" },		/* 24 */
513	{ CP_OFFSET,	RO, "offset" },		/* 25 */
514	{ CP_JITTER,	RO, "jitter" },		/* 26 */
515	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
516	{ CP_KEYID,	RO, "keyid" },		/* 28 */
517	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
518	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
519	{ CP_PMODE,	RO, "pmode" },		/* 31 */
520	{ CP_RECEIVED,	RO, "received"},	/* 32 */
521	{ CP_SENT,	RO, "sent" },		/* 33 */
522	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
523	{ CP_FLASH,	RO, "flash" },		/* 35 */
524	{ CP_TTL,	RO, "ttl" },		/* 36 */
525	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
526	{ CP_IN,	RO, "in" },		/* 38 */
527	{ CP_OUT,	RO, "out" },		/* 39 */
528	{ CP_RATE,	RO, "headway" },	/* 40 */
529	{ CP_BIAS,	RO, "bias" },		/* 41 */
530	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
531	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
532	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
533	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
534	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
535	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
536	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
537	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
538	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
539#ifdef AUTOKEY
540	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
541	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
542	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
543	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
544	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
545	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
546	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
547	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
548#endif	/* AUTOKEY */
549	{ 0,		EOV, "" }		/* 50/58 */
550};
551
552
553/*
554 * Peer variables we print by default
555 */
556static const u_char def_peer_var[] = {
557	CP_SRCADR,
558	CP_SRCPORT,
559	CP_SRCHOST,
560	CP_DSTADR,
561	CP_DSTPORT,
562	CP_OUT,
563	CP_IN,
564	CP_LEAP,
565	CP_STRATUM,
566	CP_PRECISION,
567	CP_ROOTDELAY,
568	CP_ROOTDISPERSION,
569	CP_REFID,
570	CP_REFTIME,
571	CP_REC,
572	CP_REACH,
573	CP_UNREACH,
574	CP_HMODE,
575	CP_PMODE,
576	CP_HPOLL,
577	CP_PPOLL,
578	CP_RATE,
579	CP_FLASH,
580	CP_KEYID,
581	CP_TTL,
582	CP_OFFSET,
583	CP_DELAY,
584	CP_DISPERSION,
585	CP_JITTER,
586	CP_XMT,
587	CP_BIAS,
588	CP_FILTDELAY,
589	CP_FILTOFFSET,
590	CP_FILTERROR,
591#ifdef AUTOKEY
592	CP_HOST,
593	CP_FLAGS,
594	CP_SIGNATURE,
595	CP_VALID,
596	CP_INITSEQ,
597	CP_IDENT,
598#endif	/* AUTOKEY */
599	0
600};
601
602
603#ifdef REFCLOCK
604/*
605 * Clock variable list
606 */
607static const struct ctl_var clock_var[] = {
608	{ 0,		PADDING, "" },		/* 0 */
609	{ CC_TYPE,	RO, "type" },		/* 1 */
610	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
611	{ CC_POLL,	RO, "poll" },		/* 3 */
612	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
613	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
614	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
615	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
616	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
617	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
618	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
619	{ CC_FLAGS,	RO, "flags" },		/* 11 */
620	{ CC_DEVICE,	RO, "device" },		/* 12 */
621	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
622	{ 0,		EOV, ""  }		/* 14 */
623};
624
625
626/*
627 * Clock variables printed by default
628 */
629static const u_char def_clock_var[] = {
630	CC_DEVICE,
631	CC_TYPE,	/* won't be output if device = known */
632	CC_TIMECODE,
633	CC_POLL,
634	CC_NOREPLY,
635	CC_BADFORMAT,
636	CC_BADDATA,
637	CC_FUDGETIME1,
638	CC_FUDGETIME2,
639	CC_FUDGEVAL1,
640	CC_FUDGEVAL2,
641	CC_FLAGS,
642	0
643};
644#endif
645
646/*
647 * MRU string constants shared by send_mru_entry() and read_mru_list().
648 */
649static const char addr_fmt[] =		"addr.%d";
650static const char last_fmt[] =		"last.%d";
651
652/*
653 * System and processor definitions.
654 */
655#ifndef HAVE_UNAME
656# ifndef STR_SYSTEM
657#  define		STR_SYSTEM	"UNIX"
658# endif
659# ifndef STR_PROCESSOR
660#  define		STR_PROCESSOR	"unknown"
661# endif
662
663static const char str_system[] = STR_SYSTEM;
664static const char str_processor[] = STR_PROCESSOR;
665#else
666# include <sys/utsname.h>
667static struct utsname utsnamebuf;
668#endif /* HAVE_UNAME */
669
670/*
671 * Trap structures. We only allow a few of these, and send a copy of
672 * each async message to each live one. Traps time out after an hour, it
673 * is up to the trap receipient to keep resetting it to avoid being
674 * timed out.
675 */
676/* ntp_request.c */
677struct ctl_trap ctl_traps[CTL_MAXTRAPS];
678int num_ctl_traps;
679
680/*
681 * Type bits, for ctlsettrap() call.
682 */
683#define TRAP_TYPE_CONFIG	0	/* used by configuration code */
684#define TRAP_TYPE_PRIO		1	/* priority trap */
685#define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
686
687
688/*
689 * List relating reference clock types to control message time sources.
690 * Index by the reference clock type. This list will only be used iff
691 * the reference clock driver doesn't set peer->sstclktype to something
692 * different than CTL_SST_TS_UNSPEC.
693 */
694#ifdef REFCLOCK
695static const u_char clocktypes[] = {
696	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
697	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
698	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
699	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
700	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
701	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
702	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
703	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
704	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
705	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
706	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
707	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
708	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
709	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
710	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
711	CTL_SST_TS_NTP,		/* not used (15) */
712	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
713	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
714	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
715	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
716	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
717	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
718	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
719	CTL_SST_TS_NTP,		/* not used (23) */
720	CTL_SST_TS_NTP,		/* not used (24) */
721	CTL_SST_TS_NTP,		/* not used (25) */
722	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
723	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
724	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
725	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
726	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
727	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
728	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
729	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
730	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
731	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
732	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
733	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
734	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
735	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
736	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
737	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
738	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
739	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
740	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
741	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
742	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
743};
744#endif  /* REFCLOCK */
745
746
747/*
748 * Keyid used for authenticating write requests.
749 */
750keyid_t ctl_auth_keyid;
751
752/*
753 * We keep track of the last error reported by the system internally
754 */
755static	u_char ctl_sys_last_event;
756static	u_char ctl_sys_num_events;
757
758
759/*
760 * Statistic counters to keep track of requests and responses.
761 */
762u_long ctltimereset;		/* time stats reset */
763u_long numctlreq;		/* number of requests we've received */
764u_long numctlbadpkts;		/* number of bad control packets */
765u_long numctlresponses;		/* number of resp packets sent with data */
766u_long numctlfrags;		/* number of fragments sent */
767u_long numctlerrors;		/* number of error responses sent */
768u_long numctltooshort;		/* number of too short input packets */
769u_long numctlinputresp;		/* number of responses on input */
770u_long numctlinputfrag;		/* number of fragments on input */
771u_long numctlinputerr;		/* number of input pkts with err bit set */
772u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
773u_long numctlbadversion;	/* number of input pkts with unknown version */
774u_long numctldatatooshort;	/* data too short for count */
775u_long numctlbadop;		/* bad op code found in packet */
776u_long numasyncmsgs;		/* number of async messages we've sent */
777
778/*
779 * Response packet used by these routines. Also some state information
780 * so that we can handle packet formatting within a common set of
781 * subroutines.  Note we try to enter data in place whenever possible,
782 * but the need to set the more bit correctly means we occasionally
783 * use the extra buffer and copy.
784 */
785static struct ntp_control rpkt;
786static u_char	res_version;
787static u_char	res_opcode;
788static associd_t res_associd;
789static u_short	res_frags;	/* datagrams in this response */
790static int	res_offset;	/* offset of payload in response */
791static u_char * datapt;
792static u_char * dataend;
793static int	datalinelen;
794static int	datasent;	/* flag to avoid initial ", " */
795static int	datanotbinflag;
796static sockaddr_u *rmt_addr;
797static struct interface *lcl_inter;
798
799static u_char	res_authenticate;
800static u_char	res_authokay;
801static keyid_t	res_keyid;
802
803#define MAXDATALINELEN	(72)
804
805static u_char	res_async;	/* sending async trap response? */
806
807/*
808 * Pointers for saving state when decoding request packets
809 */
810static	char *reqpt;
811static	char *reqend;
812
813#ifndef MIN
814#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
815#endif
816
817/*
818 * init_control - initialize request data
819 */
820void
821init_control(void)
822{
823	size_t i;
824
825#ifdef HAVE_UNAME
826	uname(&utsnamebuf);
827#endif /* HAVE_UNAME */
828
829	ctl_clr_stats();
830
831	ctl_auth_keyid = 0;
832	ctl_sys_last_event = EVNT_UNSPEC;
833	ctl_sys_num_events = 0;
834
835	num_ctl_traps = 0;
836	for (i = 0; i < COUNTOF(ctl_traps); i++)
837		ctl_traps[i].tr_flags = 0;
838}
839
840
841/*
842 * ctl_error - send an error response for the current request
843 */
844static void
845ctl_error(
846	u_char errcode
847	)
848{
849	size_t		maclen;
850
851	numctlerrors++;
852	DPRINTF(3, ("sending control error %u\n", errcode));
853
854	/*
855	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
856	 * have already been filled in.
857	 */
858	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
859			(res_opcode & CTL_OP_MASK);
860	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
861	rpkt.count = 0;
862
863	/*
864	 * send packet and bump counters
865	 */
866	if (res_authenticate && sys_authenticate) {
867		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
868				     CTL_HEADER_LEN);
869		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
870			CTL_HEADER_LEN + maclen);
871	} else
872		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
873			CTL_HEADER_LEN);
874}
875
876/*
877 * save_config - Implements ntpq -c "saveconfig <filename>"
878 *		 Writes current configuration including any runtime
879 *		 changes by ntpq's :config or config-from-file
880 */
881void
882save_config(
883	struct recvbuf *rbufp,
884	int restrict_mask
885	)
886{
887	/* block directory traversal by searching for characters that
888	 * indicate directory components in a file path.
889	 *
890	 * Conceptually we should be searching for DIRSEP in filename,
891	 * however Windows actually recognizes both forward and
892	 * backslashes as equivalent directory separators at the API
893	 * level.  On POSIX systems we could allow '\\' but such
894	 * filenames are tricky to manipulate from a shell, so just
895	 * reject both types of slashes on all platforms.
896	 */
897	/* TALOS-CAN-0062: block directory traversal for VMS, too */
898	static const char * illegal_in_filename =
899#if defined(VMS)
900	    ":[]"	/* do not allow drive and path components here */
901#elif defined(SYS_WINNT)
902	    ":\\/"	/* path and drive separators */
903#else
904	    "\\/"	/* separator and critical char for POSIX */
905#endif
906	    ;
907
908
909	char reply[128];
910#ifdef SAVECONFIG
911	char filespec[128];
912	char filename[128];
913	char fullpath[512];
914	const char savedconfig_eq[] = "savedconfig=";
915	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
916	time_t now;
917	int fd;
918	FILE *fptr;
919#endif
920
921	if (RES_NOMODIFY & restrict_mask) {
922		snprintf(reply, sizeof(reply),
923			 "saveconfig prohibited by restrict ... nomodify");
924		ctl_putdata(reply, strlen(reply), 0);
925		ctl_flushpkt(0);
926		NLOG(NLOG_SYSINFO)
927			msyslog(LOG_NOTICE,
928				"saveconfig from %s rejected due to nomodify restriction",
929				stoa(&rbufp->recv_srcadr));
930		sys_restricted++;
931		return;
932	}
933
934#ifdef SAVECONFIG
935	if (NULL == saveconfigdir) {
936		snprintf(reply, sizeof(reply),
937			 "saveconfig prohibited, no saveconfigdir configured");
938		ctl_putdata(reply, strlen(reply), 0);
939		ctl_flushpkt(0);
940		NLOG(NLOG_SYSINFO)
941			msyslog(LOG_NOTICE,
942				"saveconfig from %s rejected, no saveconfigdir",
943				stoa(&rbufp->recv_srcadr));
944		return;
945	}
946
947	if (0 == reqend - reqpt)
948		return;
949
950	strlcpy(filespec, reqpt, sizeof(filespec));
951	time(&now);
952
953	/*
954	 * allow timestamping of the saved config filename with
955	 * strftime() format such as:
956	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
957	 * XXX: Nice feature, but not too safe.
958	 */
959	if (0 == strftime(filename, sizeof(filename), filespec,
960			       localtime(&now)))
961		strlcpy(filename, filespec, sizeof(filename));
962
963	/* block directory/drive traversal */
964	/* TALOS-CAN-0062: block directory traversal for VMS, too */
965	if (NULL != strpbrk(filename, illegal_in_filename)) {
966		snprintf(reply, sizeof(reply),
967			 "saveconfig does not allow directory in filename");
968		ctl_putdata(reply, strlen(reply), 0);
969		ctl_flushpkt(0);
970		msyslog(LOG_NOTICE,
971			"saveconfig with path from %s rejected",
972			stoa(&rbufp->recv_srcadr));
973		return;
974	}
975
976	snprintf(fullpath, sizeof(fullpath), "%s%s",
977		 saveconfigdir, filename);
978
979	fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
980		  S_IRUSR | S_IWUSR);
981	if (-1 == fd)
982		fptr = NULL;
983	else
984		fptr = fdopen(fd, "w");
985
986	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
987		snprintf(reply, sizeof(reply),
988			 "Unable to save configuration to file %s",
989			 filename);
990		msyslog(LOG_ERR,
991			"saveconfig %s from %s failed", filename,
992			stoa(&rbufp->recv_srcadr));
993	} else {
994		snprintf(reply, sizeof(reply),
995			 "Configuration saved to %s", filename);
996		msyslog(LOG_NOTICE,
997			"Configuration saved to %s (requested by %s)",
998			fullpath, stoa(&rbufp->recv_srcadr));
999		/*
1000		 * save the output filename in system variable
1001		 * savedconfig, retrieved with:
1002		 *   ntpq -c "rv 0 savedconfig"
1003		 */
1004		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1005			 savedconfig_eq, filename);
1006		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1007	}
1008
1009	if (NULL != fptr)
1010		fclose(fptr);
1011#else	/* !SAVECONFIG follows */
1012	snprintf(reply, sizeof(reply),
1013		 "saveconfig unavailable, configured with --disable-saveconfig");
1014#endif
1015
1016	ctl_putdata(reply, strlen(reply), 0);
1017	ctl_flushpkt(0);
1018}
1019
1020
1021/*
1022 * process_control - process an incoming control message
1023 */
1024void
1025process_control(
1026	struct recvbuf *rbufp,
1027	int restrict_mask
1028	)
1029{
1030	struct ntp_control *pkt;
1031	int req_count;
1032	int req_data;
1033	const struct ctl_proc *cc;
1034	keyid_t *pkid;
1035	int properlen;
1036	size_t maclen;
1037
1038	DPRINTF(3, ("in process_control()\n"));
1039
1040	/*
1041	 * Save the addresses for error responses
1042	 */
1043	numctlreq++;
1044	rmt_addr = &rbufp->recv_srcadr;
1045	lcl_inter = rbufp->dstadr;
1046	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1047
1048	/*
1049	 * If the length is less than required for the header, or
1050	 * it is a response or a fragment, ignore this.
1051	 */
1052	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1053	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1054	    || pkt->offset != 0) {
1055		DPRINTF(1, ("invalid format in control packet\n"));
1056		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1057			numctltooshort++;
1058		if (CTL_RESPONSE & pkt->r_m_e_op)
1059			numctlinputresp++;
1060		if (CTL_MORE & pkt->r_m_e_op)
1061			numctlinputfrag++;
1062		if (CTL_ERROR & pkt->r_m_e_op)
1063			numctlinputerr++;
1064		if (pkt->offset != 0)
1065			numctlbadoffset++;
1066		return;
1067	}
1068	res_version = PKT_VERSION(pkt->li_vn_mode);
1069	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1070		DPRINTF(1, ("unknown version %d in control packet\n",
1071			    res_version));
1072		numctlbadversion++;
1073		return;
1074	}
1075
1076	/*
1077	 * Pull enough data from the packet to make intelligent
1078	 * responses
1079	 */
1080	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1081					 MODE_CONTROL);
1082	res_opcode = pkt->r_m_e_op;
1083	rpkt.sequence = pkt->sequence;
1084	rpkt.associd = pkt->associd;
1085	rpkt.status = 0;
1086	res_frags = 1;
1087	res_offset = 0;
1088	res_associd = htons(pkt->associd);
1089	res_async = FALSE;
1090	res_authenticate = FALSE;
1091	res_keyid = 0;
1092	res_authokay = FALSE;
1093	req_count = (int)ntohs(pkt->count);
1094	datanotbinflag = FALSE;
1095	datalinelen = 0;
1096	datasent = 0;
1097	datapt = rpkt.u.data;
1098	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1099
1100	if ((rbufp->recv_length & 0x3) != 0)
1101		DPRINTF(3, ("Control packet length %d unrounded\n",
1102			    rbufp->recv_length));
1103
1104	/*
1105	 * We're set up now. Make sure we've got at least enough
1106	 * incoming data space to match the count.
1107	 */
1108	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1109	if (req_data < req_count || rbufp->recv_length & 0x3) {
1110		ctl_error(CERR_BADFMT);
1111		numctldatatooshort++;
1112		return;
1113	}
1114
1115	properlen = req_count + CTL_HEADER_LEN;
1116	/* round up proper len to a 8 octet boundary */
1117
1118	properlen = (properlen + 7) & ~7;
1119	maclen = rbufp->recv_length - properlen;
1120	if ((rbufp->recv_length & 3) == 0 &&
1121	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1122	    sys_authenticate) {
1123		res_authenticate = TRUE;
1124		pkid = (void *)((char *)pkt + properlen);
1125		res_keyid = ntohl(*pkid);
1126		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1127			    rbufp->recv_length, properlen, res_keyid,
1128			    maclen));
1129
1130		if (!authistrusted(res_keyid))
1131			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1132		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1133				     rbufp->recv_length - maclen,
1134				     maclen)) {
1135			res_authokay = TRUE;
1136			DPRINTF(3, ("authenticated okay\n"));
1137		} else {
1138			res_keyid = 0;
1139			DPRINTF(3, ("authentication failed\n"));
1140		}
1141	}
1142
1143	/*
1144	 * Set up translate pointers
1145	 */
1146	reqpt = (char *)pkt->u.data;
1147	reqend = reqpt + req_count;
1148
1149	/*
1150	 * Look for the opcode processor
1151	 */
1152	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1153		if (cc->control_code == res_opcode) {
1154			DPRINTF(3, ("opcode %d, found command handler\n",
1155				    res_opcode));
1156			if (cc->flags == AUTH
1157			    && (!res_authokay
1158				|| res_keyid != ctl_auth_keyid)) {
1159				ctl_error(CERR_PERMISSION);
1160				return;
1161			}
1162			(cc->handler)(rbufp, restrict_mask);
1163			return;
1164		}
1165	}
1166
1167	/*
1168	 * Can't find this one, return an error.
1169	 */
1170	numctlbadop++;
1171	ctl_error(CERR_BADOP);
1172	return;
1173}
1174
1175
1176/*
1177 * ctlpeerstatus - return a status word for this peer
1178 */
1179u_short
1180ctlpeerstatus(
1181	register struct peer *p
1182	)
1183{
1184	u_short status;
1185
1186	status = p->status;
1187	if (FLAG_CONFIG & p->flags)
1188		status |= CTL_PST_CONFIG;
1189	if (p->keyid)
1190		status |= CTL_PST_AUTHENABLE;
1191	if (FLAG_AUTHENTIC & p->flags)
1192		status |= CTL_PST_AUTHENTIC;
1193	if (p->reach)
1194		status |= CTL_PST_REACH;
1195	if (MDF_TXONLY_MASK & p->cast_flags)
1196		status |= CTL_PST_BCAST;
1197
1198	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1199}
1200
1201
1202/*
1203 * ctlclkstatus - return a status word for this clock
1204 */
1205#ifdef REFCLOCK
1206static u_short
1207ctlclkstatus(
1208	struct refclockstat *pcs
1209	)
1210{
1211	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1212}
1213#endif
1214
1215
1216/*
1217 * ctlsysstatus - return the system status word
1218 */
1219u_short
1220ctlsysstatus(void)
1221{
1222	register u_char this_clock;
1223
1224	this_clock = CTL_SST_TS_UNSPEC;
1225#ifdef REFCLOCK
1226	if (sys_peer != NULL) {
1227		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1228			this_clock = sys_peer->sstclktype;
1229		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1230			this_clock = clocktypes[sys_peer->refclktype];
1231	}
1232#else /* REFCLOCK */
1233	if (sys_peer != 0)
1234		this_clock = CTL_SST_TS_NTP;
1235#endif /* REFCLOCK */
1236	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1237			      ctl_sys_last_event);
1238}
1239
1240
1241/*
1242 * ctl_flushpkt - write out the current packet and prepare
1243 *		  another if necessary.
1244 */
1245static void
1246ctl_flushpkt(
1247	u_char more
1248	)
1249{
1250	size_t i;
1251	size_t dlen;
1252	size_t sendlen;
1253	size_t maclen;
1254	size_t totlen;
1255	keyid_t keyid;
1256
1257	dlen = datapt - rpkt.u.data;
1258	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1259		/*
1260		 * Big hack, output a trailing \r\n
1261		 */
1262		*datapt++ = '\r';
1263		*datapt++ = '\n';
1264		dlen += 2;
1265	}
1266	sendlen = dlen + CTL_HEADER_LEN;
1267
1268	/*
1269	 * Pad to a multiple of 32 bits
1270	 */
1271	while (sendlen & 0x3) {
1272		*datapt++ = '\0';
1273		sendlen++;
1274	}
1275
1276	/*
1277	 * Fill in the packet with the current info
1278	 */
1279	rpkt.r_m_e_op = CTL_RESPONSE | more |
1280			(res_opcode & CTL_OP_MASK);
1281	rpkt.count = htons((u_short)dlen);
1282	rpkt.offset = htons((u_short)res_offset);
1283	if (res_async) {
1284		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1285			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1286				rpkt.li_vn_mode =
1287				    PKT_LI_VN_MODE(
1288					sys_leap,
1289					ctl_traps[i].tr_version,
1290					MODE_CONTROL);
1291				rpkt.sequence =
1292				    htons(ctl_traps[i].tr_sequence);
1293				sendpkt(&ctl_traps[i].tr_addr,
1294					ctl_traps[i].tr_localaddr, -4,
1295					(struct pkt *)&rpkt, sendlen);
1296				if (!more)
1297					ctl_traps[i].tr_sequence++;
1298				numasyncmsgs++;
1299			}
1300		}
1301	} else {
1302		if (res_authenticate && sys_authenticate) {
1303			totlen = sendlen;
1304			/*
1305			 * If we are going to authenticate, then there
1306			 * is an additional requirement that the MAC
1307			 * begin on a 64 bit boundary.
1308			 */
1309			while (totlen & 7) {
1310				*datapt++ = '\0';
1311				totlen++;
1312			}
1313			keyid = htonl(res_keyid);
1314			memcpy(datapt, &keyid, sizeof(keyid));
1315			maclen = authencrypt(res_keyid,
1316					     (u_int32 *)&rpkt, totlen);
1317			sendpkt(rmt_addr, lcl_inter, -5,
1318				(struct pkt *)&rpkt, totlen + maclen);
1319		} else {
1320			sendpkt(rmt_addr, lcl_inter, -6,
1321				(struct pkt *)&rpkt, sendlen);
1322		}
1323		if (more)
1324			numctlfrags++;
1325		else
1326			numctlresponses++;
1327	}
1328
1329	/*
1330	 * Set us up for another go around.
1331	 */
1332	res_frags++;
1333	res_offset += dlen;
1334	datapt = rpkt.u.data;
1335}
1336
1337
1338/*
1339 * ctl_putdata - write data into the packet, fragmenting and starting
1340 * another if this one is full.
1341 */
1342static void
1343ctl_putdata(
1344	const char *dp,
1345	unsigned int dlen,
1346	int bin			/* set to 1 when data is binary */
1347	)
1348{
1349	int overhead;
1350	unsigned int currentlen;
1351
1352	overhead = 0;
1353	if (!bin) {
1354		datanotbinflag = TRUE;
1355		overhead = 3;
1356		if (datasent) {
1357			*datapt++ = ',';
1358			datalinelen++;
1359			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1360				*datapt++ = '\r';
1361				*datapt++ = '\n';
1362				datalinelen = 0;
1363			} else {
1364				*datapt++ = ' ';
1365				datalinelen++;
1366			}
1367		}
1368	}
1369
1370	/*
1371	 * Save room for trailing junk
1372	 */
1373	while (dlen + overhead + datapt > dataend) {
1374		/*
1375		 * Not enough room in this one, flush it out.
1376		 */
1377		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1378
1379		memcpy(datapt, dp, currentlen);
1380
1381		datapt += currentlen;
1382		dp += currentlen;
1383		dlen -= currentlen;
1384		datalinelen += currentlen;
1385
1386		ctl_flushpkt(CTL_MORE);
1387	}
1388
1389	memcpy(datapt, dp, dlen);
1390	datapt += dlen;
1391	datalinelen += dlen;
1392	datasent = TRUE;
1393}
1394
1395
1396/*
1397 * ctl_putstr - write a tagged string into the response packet
1398 *		in the form:
1399 *
1400 *		tag="data"
1401 *
1402 *		len is the data length excluding the NUL terminator,
1403 *		as in ctl_putstr("var", "value", strlen("value"));
1404 */
1405static void
1406ctl_putstr(
1407	const char *	tag,
1408	const char *	data,
1409	size_t		len
1410	)
1411{
1412	char buffer[512];
1413	char *cp;
1414	size_t tl;
1415
1416	tl = strlen(tag);
1417	memcpy(buffer, tag, tl);
1418	cp = buffer + tl;
1419	if (len > 0) {
1420		INSIST(tl + 3 + len <= sizeof(buffer));
1421		*cp++ = '=';
1422		*cp++ = '"';
1423		memcpy(cp, data, len);
1424		cp += len;
1425		*cp++ = '"';
1426	}
1427	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1428}
1429
1430
1431/*
1432 * ctl_putunqstr - write a tagged string into the response packet
1433 *		   in the form:
1434 *
1435 *		   tag=data
1436 *
1437 *	len is the data length excluding the NUL terminator.
1438 *	data must not contain a comma or whitespace.
1439 */
1440static void
1441ctl_putunqstr(
1442	const char *	tag,
1443	const char *	data,
1444	size_t		len
1445	)
1446{
1447	char buffer[512];
1448	char *cp;
1449	size_t tl;
1450
1451	tl = strlen(tag);
1452	memcpy(buffer, tag, tl);
1453	cp = buffer + tl;
1454	if (len > 0) {
1455		INSIST(tl + 1 + len <= sizeof(buffer));
1456		*cp++ = '=';
1457		memcpy(cp, data, len);
1458		cp += len;
1459	}
1460	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1461}
1462
1463
1464/*
1465 * ctl_putdblf - write a tagged, signed double into the response packet
1466 */
1467static void
1468ctl_putdblf(
1469	const char *	tag,
1470	int		use_f,
1471	int		precision,
1472	double		d
1473	)
1474{
1475	char *cp;
1476	const char *cq;
1477	char buffer[200];
1478
1479	cp = buffer;
1480	cq = tag;
1481	while (*cq != '\0')
1482		*cp++ = *cq++;
1483	*cp++ = '=';
1484	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1485	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1486	    precision, d);
1487	cp += strlen(cp);
1488	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1489}
1490
1491/*
1492 * ctl_putuint - write a tagged unsigned integer into the response
1493 */
1494static void
1495ctl_putuint(
1496	const char *tag,
1497	u_long uval
1498	)
1499{
1500	register char *cp;
1501	register const char *cq;
1502	char buffer[200];
1503
1504	cp = buffer;
1505	cq = tag;
1506	while (*cq != '\0')
1507		*cp++ = *cq++;
1508
1509	*cp++ = '=';
1510	INSIST((cp - buffer) < (int)sizeof(buffer));
1511	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1512	cp += strlen(cp);
1513	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1514}
1515
1516/*
1517 * ctl_putcal - write a decoded calendar data into the response
1518 */
1519static void
1520ctl_putcal(
1521	const char *tag,
1522	const struct calendar *pcal
1523	)
1524{
1525	char buffer[100];
1526	unsigned numch;
1527
1528	numch = snprintf(buffer, sizeof(buffer),
1529			"%s=%04d%02d%02d%02d%02d",
1530			tag,
1531			pcal->year,
1532			pcal->month,
1533			pcal->monthday,
1534			pcal->hour,
1535			pcal->minute
1536			);
1537	INSIST(numch < sizeof(buffer));
1538	ctl_putdata(buffer, numch, 0);
1539
1540	return;
1541}
1542
1543/*
1544 * ctl_putfs - write a decoded filestamp into the response
1545 */
1546static void
1547ctl_putfs(
1548	const char *tag,
1549	tstamp_t uval
1550	)
1551{
1552	register char *cp;
1553	register const char *cq;
1554	char buffer[200];
1555	struct tm *tm = NULL;
1556	time_t fstamp;
1557
1558	cp = buffer;
1559	cq = tag;
1560	while (*cq != '\0')
1561		*cp++ = *cq++;
1562
1563	*cp++ = '=';
1564	fstamp = uval - JAN_1970;
1565	tm = gmtime(&fstamp);
1566	if (NULL ==  tm)
1567		return;
1568	INSIST((cp - buffer) < (int)sizeof(buffer));
1569	snprintf(cp, sizeof(buffer) - (cp - buffer),
1570		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1571		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1572	cp += strlen(cp);
1573	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1574}
1575
1576
1577/*
1578 * ctl_puthex - write a tagged unsigned integer, in hex, into the
1579 * response
1580 */
1581static void
1582ctl_puthex(
1583	const char *tag,
1584	u_long uval
1585	)
1586{
1587	register char *cp;
1588	register const char *cq;
1589	char buffer[200];
1590
1591	cp = buffer;
1592	cq = tag;
1593	while (*cq != '\0')
1594		*cp++ = *cq++;
1595
1596	*cp++ = '=';
1597	INSIST((cp - buffer) < (int)sizeof(buffer));
1598	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1599	cp += strlen(cp);
1600	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1601}
1602
1603
1604/*
1605 * ctl_putint - write a tagged signed integer into the response
1606 */
1607static void
1608ctl_putint(
1609	const char *tag,
1610	long ival
1611	)
1612{
1613	register char *cp;
1614	register const char *cq;
1615	char buffer[200];
1616
1617	cp = buffer;
1618	cq = tag;
1619	while (*cq != '\0')
1620		*cp++ = *cq++;
1621
1622	*cp++ = '=';
1623	INSIST((cp - buffer) < (int)sizeof(buffer));
1624	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1625	cp += strlen(cp);
1626	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1627}
1628
1629
1630/*
1631 * ctl_putts - write a tagged timestamp, in hex, into the response
1632 */
1633static void
1634ctl_putts(
1635	const char *tag,
1636	l_fp *ts
1637	)
1638{
1639	register char *cp;
1640	register const char *cq;
1641	char buffer[200];
1642
1643	cp = buffer;
1644	cq = tag;
1645	while (*cq != '\0')
1646		*cp++ = *cq++;
1647
1648	*cp++ = '=';
1649	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1650	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1651		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1652	cp += strlen(cp);
1653	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1654}
1655
1656
1657/*
1658 * ctl_putadr - write an IP address into the response
1659 */
1660static void
1661ctl_putadr(
1662	const char *tag,
1663	u_int32 addr32,
1664	sockaddr_u *addr
1665	)
1666{
1667	register char *cp;
1668	register const char *cq;
1669	char buffer[200];
1670
1671	cp = buffer;
1672	cq = tag;
1673	while (*cq != '\0')
1674		*cp++ = *cq++;
1675
1676	*cp++ = '=';
1677	if (NULL == addr)
1678		cq = numtoa(addr32);
1679	else
1680		cq = stoa(addr);
1681	INSIST((cp - buffer) < (int)sizeof(buffer));
1682	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1683	cp += strlen(cp);
1684	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1685}
1686
1687
1688/*
1689 * ctl_putrefid - send a u_int32 refid as printable text
1690 */
1691static void
1692ctl_putrefid(
1693	const char *	tag,
1694	u_int32		refid
1695	)
1696{
1697	char	output[16];
1698	char *	optr;
1699	char *	oplim;
1700	char *	iptr;
1701	char *	iplim;
1702	char *	past_eq;
1703
1704	optr = output;
1705	oplim = output + sizeof(output);
1706	while (optr < oplim && '\0' != *tag)
1707		*optr++ = *tag++;
1708	if (optr < oplim) {
1709		*optr++ = '=';
1710		past_eq = optr;
1711	}
1712	if (!(optr < oplim))
1713		return;
1714	iptr = (char *)&refid;
1715	iplim = iptr + sizeof(refid);
1716	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1717	     iptr++, optr++)
1718		if (isprint((int)*iptr))
1719			*optr = *iptr;
1720		else
1721			*optr = '.';
1722	if (!(optr <= oplim))
1723		optr = past_eq;
1724	ctl_putdata(output, (u_int)(optr - output), FALSE);
1725}
1726
1727
1728/*
1729 * ctl_putarray - write a tagged eight element double array into the response
1730 */
1731static void
1732ctl_putarray(
1733	const char *tag,
1734	double *arr,
1735	int start
1736	)
1737{
1738	register char *cp;
1739	register const char *cq;
1740	char buffer[200];
1741	int i;
1742	cp = buffer;
1743	cq = tag;
1744	while (*cq != '\0')
1745		*cp++ = *cq++;
1746	*cp++ = '=';
1747	i = start;
1748	do {
1749		if (i == 0)
1750			i = NTP_SHIFT;
1751		i--;
1752		INSIST((cp - buffer) < (int)sizeof(buffer));
1753		snprintf(cp, sizeof(buffer) - (cp - buffer),
1754			 " %.2f", arr[i] * 1e3);
1755		cp += strlen(cp);
1756	} while (i != start);
1757	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1758}
1759
1760
1761/*
1762 * ctl_putsys - output a system variable
1763 */
1764static void
1765ctl_putsys(
1766	int varid
1767	)
1768{
1769	l_fp tmp;
1770	char str[256];
1771	u_int u;
1772	double kb;
1773	double dtemp;
1774	const char *ss;
1775#ifdef AUTOKEY
1776	struct cert_info *cp;
1777#endif	/* AUTOKEY */
1778#ifdef KERNEL_PLL
1779	static struct timex ntx;
1780	static u_long ntp_adjtime_time;
1781
1782	static const double to_ms =
1783# ifdef STA_NANO
1784		1.0e-6; /* nsec to msec */
1785# else
1786		1.0e-3; /* usec to msec */
1787# endif
1788
1789	/*
1790	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1791	 */
1792	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1793	    current_time != ntp_adjtime_time) {
1794		ZERO(ntx);
1795		if (ntp_adjtime(&ntx) < 0)
1796			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1797		else
1798			ntp_adjtime_time = current_time;
1799	}
1800#endif	/* KERNEL_PLL */
1801
1802	switch (varid) {
1803
1804	case CS_LEAP:
1805		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1806		break;
1807
1808	case CS_STRATUM:
1809		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1810		break;
1811
1812	case CS_PRECISION:
1813		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1814		break;
1815
1816	case CS_ROOTDELAY:
1817		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1818			   1e3);
1819		break;
1820
1821	case CS_ROOTDISPERSION:
1822		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1823			   sys_rootdisp * 1e3);
1824		break;
1825
1826	case CS_REFID:
1827		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1828			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1829		else
1830			ctl_putrefid(sys_var[varid].text, sys_refid);
1831		break;
1832
1833	case CS_REFTIME:
1834		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1835		break;
1836
1837	case CS_POLL:
1838		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1839		break;
1840
1841	case CS_PEERID:
1842		if (sys_peer == NULL)
1843			ctl_putuint(sys_var[CS_PEERID].text, 0);
1844		else
1845			ctl_putuint(sys_var[CS_PEERID].text,
1846				    sys_peer->associd);
1847		break;
1848
1849	case CS_PEERADR:
1850		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1851			ss = sptoa(&sys_peer->srcadr);
1852		else
1853			ss = "0.0.0.0:0";
1854		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1855		break;
1856
1857	case CS_PEERMODE:
1858		u = (sys_peer != NULL)
1859			? sys_peer->hmode
1860			: MODE_UNSPEC;
1861		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1862		break;
1863
1864	case CS_OFFSET:
1865		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1866		break;
1867
1868	case CS_DRIFT:
1869		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1870		break;
1871
1872	case CS_JITTER:
1873		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1874		break;
1875
1876	case CS_ERROR:
1877		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1878		break;
1879
1880	case CS_CLOCK:
1881		get_systime(&tmp);
1882		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1883		break;
1884
1885	case CS_PROCESSOR:
1886#ifndef HAVE_UNAME
1887		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1888			   sizeof(str_processor) - 1);
1889#else
1890		ctl_putstr(sys_var[CS_PROCESSOR].text,
1891			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1892#endif /* HAVE_UNAME */
1893		break;
1894
1895	case CS_SYSTEM:
1896#ifndef HAVE_UNAME
1897		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1898			   sizeof(str_system) - 1);
1899#else
1900		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1901			 utsnamebuf.release);
1902		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1903#endif /* HAVE_UNAME */
1904		break;
1905
1906	case CS_VERSION:
1907		ctl_putstr(sys_var[CS_VERSION].text, Version,
1908			   strlen(Version));
1909		break;
1910
1911	case CS_STABIL:
1912		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1913			   1e6);
1914		break;
1915
1916	case CS_VARLIST:
1917	{
1918		char buf[CTL_MAX_DATA_LEN];
1919		//buffPointer, firstElementPointer, buffEndPointer
1920		char *buffp, *buffend;
1921		int firstVarName;
1922		const char *ss1;
1923		int len;
1924		const struct ctl_var *k;
1925
1926		buffp = buf;
1927		buffend = buf + sizeof(buf);
1928		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1929			break;	/* really long var name */
1930
1931		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1932		buffp += strlen(buffp);
1933		firstVarName = TRUE;
1934		for (k = sys_var; !(k->flags & EOV); k++) {
1935			if (k->flags & PADDING)
1936				continue;
1937			len = strlen(k->text);
1938			if (buffp + len + 1 >= buffend)
1939				break;
1940			if (!firstVarName)
1941				*buffp++ = ',';
1942			else
1943				firstVarName = FALSE;
1944			memcpy(buffp, k->text, len);
1945			buffp += len;
1946		}
1947
1948		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1949			if (k->flags & PADDING)
1950				continue;
1951			if (NULL == k->text)
1952				continue;
1953			ss1 = strchr(k->text, '=');
1954			if (NULL == ss1)
1955				len = strlen(k->text);
1956			else
1957				len = ss1 - k->text;
1958			if (buffp + len + 1 >= buffend)
1959				break;
1960			if (firstVarName) {
1961				*buffp++ = ',';
1962				firstVarName = FALSE;
1963			}
1964			memcpy(buffp, k->text,(unsigned)len);
1965			buffp += len;
1966		}
1967		if (buffp + 2 >= buffend)
1968			break;
1969
1970		*buffp++ = '"';
1971		*buffp = '\0';
1972
1973		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1974		break;
1975	}
1976
1977	case CS_TAI:
1978		if (sys_tai > 0)
1979			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1980		break;
1981
1982	case CS_LEAPTAB:
1983	{
1984		leap_signature_t lsig;
1985		leapsec_getsig(&lsig);
1986		if (lsig.ttime > 0)
1987			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1988		break;
1989	}
1990
1991	case CS_LEAPEND:
1992	{
1993		leap_signature_t lsig;
1994		leapsec_getsig(&lsig);
1995		if (lsig.etime > 0)
1996			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
1997		break;
1998	}
1999
2000#ifdef LEAP_SMEAR
2001	case CS_LEAPSMEARINTV:
2002		if (leap_smear_intv > 0)
2003			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2004		break;
2005
2006	case CS_LEAPSMEAROFFS:
2007		if (leap_smear_intv > 0)
2008			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2009				   leap_smear.doffset * 1e3);
2010		break;
2011#endif	/* LEAP_SMEAR */
2012
2013	case CS_RATE:
2014		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2015		break;
2016
2017	case CS_MRU_ENABLED:
2018		ctl_puthex(sys_var[varid].text, mon_enabled);
2019		break;
2020
2021	case CS_MRU_DEPTH:
2022		ctl_putuint(sys_var[varid].text, mru_entries);
2023		break;
2024
2025	case CS_MRU_MEM:
2026		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2027		u = (u_int)kb;
2028		if (kb - u >= 0.5)
2029			u++;
2030		ctl_putuint(sys_var[varid].text, u);
2031		break;
2032
2033	case CS_MRU_DEEPEST:
2034		ctl_putuint(sys_var[varid].text, mru_peakentries);
2035		break;
2036
2037	case CS_MRU_MINDEPTH:
2038		ctl_putuint(sys_var[varid].text, mru_mindepth);
2039		break;
2040
2041	case CS_MRU_MAXAGE:
2042		ctl_putint(sys_var[varid].text, mru_maxage);
2043		break;
2044
2045	case CS_MRU_MAXDEPTH:
2046		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2047		break;
2048
2049	case CS_MRU_MAXMEM:
2050		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2051		u = (u_int)kb;
2052		if (kb - u >= 0.5)
2053			u++;
2054		ctl_putuint(sys_var[varid].text, u);
2055		break;
2056
2057	case CS_SS_UPTIME:
2058		ctl_putuint(sys_var[varid].text, current_time);
2059		break;
2060
2061	case CS_SS_RESET:
2062		ctl_putuint(sys_var[varid].text,
2063			    current_time - sys_stattime);
2064		break;
2065
2066	case CS_SS_RECEIVED:
2067		ctl_putuint(sys_var[varid].text, sys_received);
2068		break;
2069
2070	case CS_SS_THISVER:
2071		ctl_putuint(sys_var[varid].text, sys_newversion);
2072		break;
2073
2074	case CS_SS_OLDVER:
2075		ctl_putuint(sys_var[varid].text, sys_oldversion);
2076		break;
2077
2078	case CS_SS_BADFORMAT:
2079		ctl_putuint(sys_var[varid].text, sys_badlength);
2080		break;
2081
2082	case CS_SS_BADAUTH:
2083		ctl_putuint(sys_var[varid].text, sys_badauth);
2084		break;
2085
2086	case CS_SS_DECLINED:
2087		ctl_putuint(sys_var[varid].text, sys_declined);
2088		break;
2089
2090	case CS_SS_RESTRICTED:
2091		ctl_putuint(sys_var[varid].text, sys_restricted);
2092		break;
2093
2094	case CS_SS_LIMITED:
2095		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2096		break;
2097
2098	case CS_SS_KODSENT:
2099		ctl_putuint(sys_var[varid].text, sys_kodsent);
2100		break;
2101
2102	case CS_SS_PROCESSED:
2103		ctl_putuint(sys_var[varid].text, sys_processed);
2104		break;
2105
2106	case CS_BCASTDELAY:
2107		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2108		break;
2109
2110	case CS_AUTHDELAY:
2111		LFPTOD(&sys_authdelay, dtemp);
2112		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2113		break;
2114
2115	case CS_AUTHKEYS:
2116		ctl_putuint(sys_var[varid].text, authnumkeys);
2117		break;
2118
2119	case CS_AUTHFREEK:
2120		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2121		break;
2122
2123	case CS_AUTHKLOOKUPS:
2124		ctl_putuint(sys_var[varid].text, authkeylookups);
2125		break;
2126
2127	case CS_AUTHKNOTFOUND:
2128		ctl_putuint(sys_var[varid].text, authkeynotfound);
2129		break;
2130
2131	case CS_AUTHKUNCACHED:
2132		ctl_putuint(sys_var[varid].text, authkeyuncached);
2133		break;
2134
2135	case CS_AUTHKEXPIRED:
2136		ctl_putuint(sys_var[varid].text, authkeyexpired);
2137		break;
2138
2139	case CS_AUTHENCRYPTS:
2140		ctl_putuint(sys_var[varid].text, authencryptions);
2141		break;
2142
2143	case CS_AUTHDECRYPTS:
2144		ctl_putuint(sys_var[varid].text, authdecryptions);
2145		break;
2146
2147	case CS_AUTHRESET:
2148		ctl_putuint(sys_var[varid].text,
2149			    current_time - auth_timereset);
2150		break;
2151
2152		/*
2153		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2154		 * unavailable, otherwise calls putfunc with args.
2155		 */
2156#ifndef KERNEL_PLL
2157# define	CTL_IF_KERNLOOP(putfunc, args)	\
2158		ctl_putint(sys_var[varid].text, 0)
2159#else
2160# define	CTL_IF_KERNLOOP(putfunc, args)	\
2161		putfunc args
2162#endif
2163
2164		/*
2165		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2166		 * loop is unavailable, or kernel hard PPS is not
2167		 * active, otherwise calls putfunc with args.
2168		 */
2169#ifndef KERNEL_PLL
2170# define	CTL_IF_KERNPPS(putfunc, args)	\
2171		ctl_putint(sys_var[varid].text, 0)
2172#else
2173# define	CTL_IF_KERNPPS(putfunc, args)			\
2174		if (0 == ntx.shift)				\
2175			ctl_putint(sys_var[varid].text, 0);	\
2176		else						\
2177			putfunc args	/* no trailing ; */
2178#endif
2179
2180	case CS_K_OFFSET:
2181		CTL_IF_KERNLOOP(
2182			ctl_putdblf,
2183			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2184		);
2185		break;
2186
2187	case CS_K_FREQ:
2188		CTL_IF_KERNLOOP(
2189			ctl_putsfp,
2190			(sys_var[varid].text, ntx.freq)
2191		);
2192		break;
2193
2194	case CS_K_MAXERR:
2195		CTL_IF_KERNLOOP(
2196			ctl_putdblf,
2197			(sys_var[varid].text, 0, 6,
2198			 to_ms * ntx.maxerror)
2199		);
2200		break;
2201
2202	case CS_K_ESTERR:
2203		CTL_IF_KERNLOOP(
2204			ctl_putdblf,
2205			(sys_var[varid].text, 0, 6,
2206			 to_ms * ntx.esterror)
2207		);
2208		break;
2209
2210	case CS_K_STFLAGS:
2211#ifndef KERNEL_PLL
2212		ss = "";
2213#else
2214		ss = k_st_flags(ntx.status);
2215#endif
2216		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2217		break;
2218
2219	case CS_K_TIMECONST:
2220		CTL_IF_KERNLOOP(
2221			ctl_putint,
2222			(sys_var[varid].text, ntx.constant)
2223		);
2224		break;
2225
2226	case CS_K_PRECISION:
2227		CTL_IF_KERNLOOP(
2228			ctl_putdblf,
2229			(sys_var[varid].text, 0, 6,
2230			    to_ms * ntx.precision)
2231		);
2232		break;
2233
2234	case CS_K_FREQTOL:
2235		CTL_IF_KERNLOOP(
2236			ctl_putsfp,
2237			(sys_var[varid].text, ntx.tolerance)
2238		);
2239		break;
2240
2241	case CS_K_PPS_FREQ:
2242		CTL_IF_KERNPPS(
2243			ctl_putsfp,
2244			(sys_var[varid].text, ntx.ppsfreq)
2245		);
2246		break;
2247
2248	case CS_K_PPS_STABIL:
2249		CTL_IF_KERNPPS(
2250			ctl_putsfp,
2251			(sys_var[varid].text, ntx.stabil)
2252		);
2253		break;
2254
2255	case CS_K_PPS_JITTER:
2256		CTL_IF_KERNPPS(
2257			ctl_putdbl,
2258			(sys_var[varid].text, to_ms * ntx.jitter)
2259		);
2260		break;
2261
2262	case CS_K_PPS_CALIBDUR:
2263		CTL_IF_KERNPPS(
2264			ctl_putint,
2265			(sys_var[varid].text, 1 << ntx.shift)
2266		);
2267		break;
2268
2269	case CS_K_PPS_CALIBS:
2270		CTL_IF_KERNPPS(
2271			ctl_putint,
2272			(sys_var[varid].text, ntx.calcnt)
2273		);
2274		break;
2275
2276	case CS_K_PPS_CALIBERRS:
2277		CTL_IF_KERNPPS(
2278			ctl_putint,
2279			(sys_var[varid].text, ntx.errcnt)
2280		);
2281		break;
2282
2283	case CS_K_PPS_JITEXC:
2284		CTL_IF_KERNPPS(
2285			ctl_putint,
2286			(sys_var[varid].text, ntx.jitcnt)
2287		);
2288		break;
2289
2290	case CS_K_PPS_STBEXC:
2291		CTL_IF_KERNPPS(
2292			ctl_putint,
2293			(sys_var[varid].text, ntx.stbcnt)
2294		);
2295		break;
2296
2297	case CS_IOSTATS_RESET:
2298		ctl_putuint(sys_var[varid].text,
2299			    current_time - io_timereset);
2300		break;
2301
2302	case CS_TOTAL_RBUF:
2303		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2304		break;
2305
2306	case CS_FREE_RBUF:
2307		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2308		break;
2309
2310	case CS_USED_RBUF:
2311		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2312		break;
2313
2314	case CS_RBUF_LOWATER:
2315		ctl_putuint(sys_var[varid].text, lowater_additions());
2316		break;
2317
2318	case CS_IO_DROPPED:
2319		ctl_putuint(sys_var[varid].text, packets_dropped);
2320		break;
2321
2322	case CS_IO_IGNORED:
2323		ctl_putuint(sys_var[varid].text, packets_ignored);
2324		break;
2325
2326	case CS_IO_RECEIVED:
2327		ctl_putuint(sys_var[varid].text, packets_received);
2328		break;
2329
2330	case CS_IO_SENT:
2331		ctl_putuint(sys_var[varid].text, packets_sent);
2332		break;
2333
2334	case CS_IO_SENDFAILED:
2335		ctl_putuint(sys_var[varid].text, packets_notsent);
2336		break;
2337
2338	case CS_IO_WAKEUPS:
2339		ctl_putuint(sys_var[varid].text, handler_calls);
2340		break;
2341
2342	case CS_IO_GOODWAKEUPS:
2343		ctl_putuint(sys_var[varid].text, handler_pkts);
2344		break;
2345
2346	case CS_TIMERSTATS_RESET:
2347		ctl_putuint(sys_var[varid].text,
2348			    current_time - timer_timereset);
2349		break;
2350
2351	case CS_TIMER_OVERRUNS:
2352		ctl_putuint(sys_var[varid].text, alarm_overflow);
2353		break;
2354
2355	case CS_TIMER_XMTS:
2356		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2357		break;
2358
2359	case CS_FUZZ:
2360		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2361		break;
2362	case CS_WANDER_THRESH:
2363		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2364		break;
2365#ifdef AUTOKEY
2366	case CS_FLAGS:
2367		if (crypto_flags)
2368			ctl_puthex(sys_var[CS_FLAGS].text,
2369			    crypto_flags);
2370		break;
2371
2372	case CS_DIGEST:
2373		if (crypto_flags) {
2374			strlcpy(str, OBJ_nid2ln(crypto_nid),
2375			    COUNTOF(str));
2376			ctl_putstr(sys_var[CS_DIGEST].text, str,
2377			    strlen(str));
2378		}
2379		break;
2380
2381	case CS_SIGNATURE:
2382		if (crypto_flags) {
2383			const EVP_MD *dp;
2384
2385			dp = EVP_get_digestbynid(crypto_flags >> 16);
2386			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2387			    COUNTOF(str));
2388			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2389			    strlen(str));
2390		}
2391		break;
2392
2393	case CS_HOST:
2394		if (hostval.ptr != NULL)
2395			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2396			    strlen(hostval.ptr));
2397		break;
2398
2399	case CS_IDENT:
2400		if (sys_ident != NULL)
2401			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2402			    strlen(sys_ident));
2403		break;
2404
2405	case CS_CERTIF:
2406		for (cp = cinfo; cp != NULL; cp = cp->link) {
2407			snprintf(str, sizeof(str), "%s %s 0x%x",
2408			    cp->subject, cp->issuer, cp->flags);
2409			ctl_putstr(sys_var[CS_CERTIF].text, str,
2410			    strlen(str));
2411			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2412		}
2413		break;
2414
2415	case CS_PUBLIC:
2416		if (hostval.tstamp != 0)
2417			ctl_putfs(sys_var[CS_PUBLIC].text,
2418			    ntohl(hostval.tstamp));
2419		break;
2420#endif	/* AUTOKEY */
2421
2422	default:
2423		break;
2424	}
2425}
2426
2427
2428/*
2429 * ctl_putpeer - output a peer variable
2430 */
2431static void
2432ctl_putpeer(
2433	int id,
2434	struct peer *p
2435	)
2436{
2437	char buf[CTL_MAX_DATA_LEN];
2438	char *s;
2439	char *t;
2440	char *be;
2441	int i;
2442	const struct ctl_var *k;
2443#ifdef AUTOKEY
2444	struct autokey *ap;
2445	const EVP_MD *dp;
2446	const char *str;
2447#endif	/* AUTOKEY */
2448
2449	switch (id) {
2450
2451	case CP_CONFIG:
2452		ctl_putuint(peer_var[id].text,
2453			    !(FLAG_PREEMPT & p->flags));
2454		break;
2455
2456	case CP_AUTHENABLE:
2457		ctl_putuint(peer_var[id].text, !(p->keyid));
2458		break;
2459
2460	case CP_AUTHENTIC:
2461		ctl_putuint(peer_var[id].text,
2462			    !!(FLAG_AUTHENTIC & p->flags));
2463		break;
2464
2465	case CP_SRCADR:
2466		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2467		break;
2468
2469	case CP_SRCPORT:
2470		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2471		break;
2472
2473	case CP_SRCHOST:
2474		if (p->hostname != NULL)
2475			ctl_putstr(peer_var[id].text, p->hostname,
2476				   strlen(p->hostname));
2477		break;
2478
2479	case CP_DSTADR:
2480		ctl_putadr(peer_var[id].text, 0,
2481			   (p->dstadr != NULL)
2482				? &p->dstadr->sin
2483				: NULL);
2484		break;
2485
2486	case CP_DSTPORT:
2487		ctl_putuint(peer_var[id].text,
2488			    (p->dstadr != NULL)
2489				? SRCPORT(&p->dstadr->sin)
2490				: 0);
2491		break;
2492
2493	case CP_IN:
2494		if (p->r21 > 0.)
2495			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2496		break;
2497
2498	case CP_OUT:
2499		if (p->r34 > 0.)
2500			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2501		break;
2502
2503	case CP_RATE:
2504		ctl_putuint(peer_var[id].text, p->throttle);
2505		break;
2506
2507	case CP_LEAP:
2508		ctl_putuint(peer_var[id].text, p->leap);
2509		break;
2510
2511	case CP_HMODE:
2512		ctl_putuint(peer_var[id].text, p->hmode);
2513		break;
2514
2515	case CP_STRATUM:
2516		ctl_putuint(peer_var[id].text, p->stratum);
2517		break;
2518
2519	case CP_PPOLL:
2520		ctl_putuint(peer_var[id].text, p->ppoll);
2521		break;
2522
2523	case CP_HPOLL:
2524		ctl_putuint(peer_var[id].text, p->hpoll);
2525		break;
2526
2527	case CP_PRECISION:
2528		ctl_putint(peer_var[id].text, p->precision);
2529		break;
2530
2531	case CP_ROOTDELAY:
2532		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2533		break;
2534
2535	case CP_ROOTDISPERSION:
2536		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2537		break;
2538
2539	case CP_REFID:
2540#ifdef REFCLOCK
2541		if (p->flags & FLAG_REFCLOCK) {
2542			ctl_putrefid(peer_var[id].text, p->refid);
2543			break;
2544		}
2545#endif
2546		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2547			ctl_putadr(peer_var[id].text, p->refid,
2548				   NULL);
2549		else
2550			ctl_putrefid(peer_var[id].text, p->refid);
2551		break;
2552
2553	case CP_REFTIME:
2554		ctl_putts(peer_var[id].text, &p->reftime);
2555		break;
2556
2557	case CP_ORG:
2558		ctl_putts(peer_var[id].text, &p->aorg);
2559		break;
2560
2561	case CP_REC:
2562		ctl_putts(peer_var[id].text, &p->dst);
2563		break;
2564
2565	case CP_XMT:
2566		if (p->xleave)
2567			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2568		break;
2569
2570	case CP_BIAS:
2571		if (p->bias != 0.)
2572			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2573		break;
2574
2575	case CP_REACH:
2576		ctl_puthex(peer_var[id].text, p->reach);
2577		break;
2578
2579	case CP_FLASH:
2580		ctl_puthex(peer_var[id].text, p->flash);
2581		break;
2582
2583	case CP_TTL:
2584#ifdef REFCLOCK
2585		if (p->flags & FLAG_REFCLOCK) {
2586			ctl_putuint(peer_var[id].text, p->ttl);
2587			break;
2588		}
2589#endif
2590		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2591			ctl_putint(peer_var[id].text,
2592				   sys_ttl[p->ttl]);
2593		break;
2594
2595	case CP_UNREACH:
2596		ctl_putuint(peer_var[id].text, p->unreach);
2597		break;
2598
2599	case CP_TIMER:
2600		ctl_putuint(peer_var[id].text,
2601			    p->nextdate - current_time);
2602		break;
2603
2604	case CP_DELAY:
2605		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2606		break;
2607
2608	case CP_OFFSET:
2609		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2610		break;
2611
2612	case CP_JITTER:
2613		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2614		break;
2615
2616	case CP_DISPERSION:
2617		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2618		break;
2619
2620	case CP_KEYID:
2621		if (p->keyid > NTP_MAXKEY)
2622			ctl_puthex(peer_var[id].text, p->keyid);
2623		else
2624			ctl_putuint(peer_var[id].text, p->keyid);
2625		break;
2626
2627	case CP_FILTDELAY:
2628		ctl_putarray(peer_var[id].text, p->filter_delay,
2629			     p->filter_nextpt);
2630		break;
2631
2632	case CP_FILTOFFSET:
2633		ctl_putarray(peer_var[id].text, p->filter_offset,
2634			     p->filter_nextpt);
2635		break;
2636
2637	case CP_FILTERROR:
2638		ctl_putarray(peer_var[id].text, p->filter_disp,
2639			     p->filter_nextpt);
2640		break;
2641
2642	case CP_PMODE:
2643		ctl_putuint(peer_var[id].text, p->pmode);
2644		break;
2645
2646	case CP_RECEIVED:
2647		ctl_putuint(peer_var[id].text, p->received);
2648		break;
2649
2650	case CP_SENT:
2651		ctl_putuint(peer_var[id].text, p->sent);
2652		break;
2653
2654	case CP_VARLIST:
2655		s = buf;
2656		be = buf + sizeof(buf);
2657		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2658			break;	/* really long var name */
2659
2660		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2661		s += strlen(s);
2662		t = s;
2663		for (k = peer_var; !(EOV & k->flags); k++) {
2664			if (PADDING & k->flags)
2665				continue;
2666			i = strlen(k->text);
2667			if (s + i + 1 >= be)
2668				break;
2669			if (s != t)
2670				*s++ = ',';
2671			memcpy(s, k->text, i);
2672			s += i;
2673		}
2674		if (s + 2 < be) {
2675			*s++ = '"';
2676			*s = '\0';
2677			ctl_putdata(buf, (u_int)(s - buf), 0);
2678		}
2679		break;
2680
2681	case CP_TIMEREC:
2682		ctl_putuint(peer_var[id].text,
2683			    current_time - p->timereceived);
2684		break;
2685
2686	case CP_TIMEREACH:
2687		ctl_putuint(peer_var[id].text,
2688			    current_time - p->timereachable);
2689		break;
2690
2691	case CP_BADAUTH:
2692		ctl_putuint(peer_var[id].text, p->badauth);
2693		break;
2694
2695	case CP_BOGUSORG:
2696		ctl_putuint(peer_var[id].text, p->bogusorg);
2697		break;
2698
2699	case CP_OLDPKT:
2700		ctl_putuint(peer_var[id].text, p->oldpkt);
2701		break;
2702
2703	case CP_SELDISP:
2704		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2705		break;
2706
2707	case CP_SELBROKEN:
2708		ctl_putuint(peer_var[id].text, p->selbroken);
2709		break;
2710
2711	case CP_CANDIDATE:
2712		ctl_putuint(peer_var[id].text, p->status);
2713		break;
2714#ifdef AUTOKEY
2715	case CP_FLAGS:
2716		if (p->crypto)
2717			ctl_puthex(peer_var[id].text, p->crypto);
2718		break;
2719
2720	case CP_SIGNATURE:
2721		if (p->crypto) {
2722			dp = EVP_get_digestbynid(p->crypto >> 16);
2723			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2724			ctl_putstr(peer_var[id].text, str, strlen(str));
2725		}
2726		break;
2727
2728	case CP_HOST:
2729		if (p->subject != NULL)
2730			ctl_putstr(peer_var[id].text, p->subject,
2731			    strlen(p->subject));
2732		break;
2733
2734	case CP_VALID:		/* not used */
2735		break;
2736
2737	case CP_INITSEQ:
2738		if (NULL == (ap = p->recval.ptr))
2739			break;
2740
2741		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2742		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2743		ctl_putfs(peer_var[CP_INITTSP].text,
2744			  ntohl(p->recval.tstamp));
2745		break;
2746
2747	case CP_IDENT:
2748		if (p->ident != NULL)
2749			ctl_putstr(peer_var[id].text, p->ident,
2750			    strlen(p->ident));
2751		break;
2752
2753
2754#endif	/* AUTOKEY */
2755	}
2756}
2757
2758
2759#ifdef REFCLOCK
2760/*
2761 * ctl_putclock - output clock variables
2762 */
2763static void
2764ctl_putclock(
2765	int id,
2766	struct refclockstat *pcs,
2767	int mustput
2768	)
2769{
2770	char buf[CTL_MAX_DATA_LEN];
2771	char *s, *t, *be;
2772	const char *ss;
2773	int i;
2774	const struct ctl_var *k;
2775
2776	switch (id) {
2777
2778	case CC_TYPE:
2779		if (mustput || pcs->clockdesc == NULL
2780		    || *(pcs->clockdesc) == '\0') {
2781			ctl_putuint(clock_var[id].text, pcs->type);
2782		}
2783		break;
2784	case CC_TIMECODE:
2785		ctl_putstr(clock_var[id].text,
2786			   pcs->p_lastcode,
2787			   (unsigned)pcs->lencode);
2788		break;
2789
2790	case CC_POLL:
2791		ctl_putuint(clock_var[id].text, pcs->polls);
2792		break;
2793
2794	case CC_NOREPLY:
2795		ctl_putuint(clock_var[id].text,
2796			    pcs->noresponse);
2797		break;
2798
2799	case CC_BADFORMAT:
2800		ctl_putuint(clock_var[id].text,
2801			    pcs->badformat);
2802		break;
2803
2804	case CC_BADDATA:
2805		ctl_putuint(clock_var[id].text,
2806			    pcs->baddata);
2807		break;
2808
2809	case CC_FUDGETIME1:
2810		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2811			ctl_putdbl(clock_var[id].text,
2812				   pcs->fudgetime1 * 1e3);
2813		break;
2814
2815	case CC_FUDGETIME2:
2816		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2817			ctl_putdbl(clock_var[id].text,
2818				   pcs->fudgetime2 * 1e3);
2819		break;
2820
2821	case CC_FUDGEVAL1:
2822		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2823			ctl_putint(clock_var[id].text,
2824				   pcs->fudgeval1);
2825		break;
2826
2827	case CC_FUDGEVAL2:
2828		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2829			if (pcs->fudgeval1 > 1)
2830				ctl_putadr(clock_var[id].text,
2831					   pcs->fudgeval2, NULL);
2832			else
2833				ctl_putrefid(clock_var[id].text,
2834					     pcs->fudgeval2);
2835		}
2836		break;
2837
2838	case CC_FLAGS:
2839		ctl_putuint(clock_var[id].text, pcs->flags);
2840		break;
2841
2842	case CC_DEVICE:
2843		if (pcs->clockdesc == NULL ||
2844		    *(pcs->clockdesc) == '\0') {
2845			if (mustput)
2846				ctl_putstr(clock_var[id].text,
2847					   "", 0);
2848		} else {
2849			ctl_putstr(clock_var[id].text,
2850				   pcs->clockdesc,
2851				   strlen(pcs->clockdesc));
2852		}
2853		break;
2854
2855	case CC_VARLIST:
2856		s = buf;
2857		be = buf + sizeof(buf);
2858		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2859		    sizeof(buf))
2860			break;	/* really long var name */
2861
2862		snprintf(s, sizeof(buf), "%s=\"",
2863			 clock_var[CC_VARLIST].text);
2864		s += strlen(s);
2865		t = s;
2866
2867		for (k = clock_var; !(EOV & k->flags); k++) {
2868			if (PADDING & k->flags)
2869				continue;
2870
2871			i = strlen(k->text);
2872			if (s + i + 1 >= be)
2873				break;
2874
2875			if (s != t)
2876				*s++ = ',';
2877			memcpy(s, k->text, i);
2878			s += i;
2879		}
2880
2881		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2882			if (PADDING & k->flags)
2883				continue;
2884
2885			ss = k->text;
2886			if (NULL == ss)
2887				continue;
2888
2889			while (*ss && *ss != '=')
2890				ss++;
2891			i = ss - k->text;
2892			if (s + i + 1 >= be)
2893				break;
2894
2895			if (s != t)
2896				*s++ = ',';
2897			memcpy(s, k->text, (unsigned)i);
2898			s += i;
2899			*s = '\0';
2900		}
2901		if (s + 2 >= be)
2902			break;
2903
2904		*s++ = '"';
2905		*s = '\0';
2906		ctl_putdata(buf, (unsigned)(s - buf), 0);
2907		break;
2908	}
2909}
2910#endif
2911
2912
2913
2914/*
2915 * ctl_getitem - get the next data item from the incoming packet
2916 */
2917static const struct ctl_var *
2918ctl_getitem(
2919	const struct ctl_var *var_list,
2920	char **data
2921	)
2922{
2923	static const struct ctl_var eol = { 0, EOV, NULL };
2924	static char buf[128];
2925	static u_long quiet_until;
2926	const struct ctl_var *v;
2927	const char *pch;
2928	char *cp;
2929	char *tp;
2930
2931	/*
2932	 * Delete leading commas and white space
2933	 */
2934	while (reqpt < reqend && (*reqpt == ',' ||
2935				  isspace((unsigned char)*reqpt)))
2936		reqpt++;
2937	if (reqpt >= reqend)
2938		return NULL;
2939
2940	if (NULL == var_list)
2941		return &eol;
2942
2943	/*
2944	 * Look for a first character match on the tag.  If we find
2945	 * one, see if it is a full match.
2946	 */
2947	cp = reqpt;
2948	for (v = var_list; !(EOV & v->flags); v++) {
2949		if (!(PADDING & v->flags) && *cp == *(v->text)) {
2950			pch = v->text;
2951			while ('\0' != *pch && '=' != *pch && cp < reqend
2952			       && *cp == *pch) {
2953				cp++;
2954				pch++;
2955			}
2956			if ('\0' == *pch || '=' == *pch) {
2957				while (cp < reqend && isspace((u_char)*cp))
2958					cp++;
2959				if (cp == reqend || ',' == *cp) {
2960					buf[0] = '\0';
2961					*data = buf;
2962					if (cp < reqend)
2963						cp++;
2964					reqpt = cp;
2965					return v;
2966				}
2967				if ('=' == *cp) {
2968					cp++;
2969					tp = buf;
2970					while (cp < reqend && isspace((u_char)*cp))
2971						cp++;
2972					while (cp < reqend && *cp != ',') {
2973						*tp++ = *cp++;
2974						if ((size_t)(tp - buf) >= sizeof(buf)) {
2975							ctl_error(CERR_BADFMT);
2976							numctlbadpkts++;
2977							NLOG(NLOG_SYSEVENT)
2978								if (quiet_until <= current_time) {
2979									quiet_until = current_time + 300;
2980									msyslog(LOG_WARNING,
2981"Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2982								}
2983							return NULL;
2984						}
2985					}
2986					if (cp < reqend)
2987						cp++;
2988					*tp-- = '\0';
2989					while (tp >= buf && isspace((u_char)*tp))
2990						*tp-- = '\0';
2991					reqpt = cp;
2992					*data = buf;
2993					return v;
2994				}
2995			}
2996			cp = reqpt;
2997		}
2998	}
2999	return v;
3000}
3001
3002
3003/*
3004 * control_unspec - response to an unspecified op-code
3005 */
3006/*ARGSUSED*/
3007static void
3008control_unspec(
3009	struct recvbuf *rbufp,
3010	int restrict_mask
3011	)
3012{
3013	struct peer *peer;
3014
3015	/*
3016	 * What is an appropriate response to an unspecified op-code?
3017	 * I return no errors and no data, unless a specified assocation
3018	 * doesn't exist.
3019	 */
3020	if (res_associd) {
3021		peer = findpeerbyassoc(res_associd);
3022		if (NULL == peer) {
3023			ctl_error(CERR_BADASSOC);
3024			return;
3025		}
3026		rpkt.status = htons(ctlpeerstatus(peer));
3027	} else
3028		rpkt.status = htons(ctlsysstatus());
3029	ctl_flushpkt(0);
3030}
3031
3032
3033/*
3034 * read_status - return either a list of associd's, or a particular
3035 * peer's status.
3036 */
3037/*ARGSUSED*/
3038static void
3039read_status(
3040	struct recvbuf *rbufp,
3041	int restrict_mask
3042	)
3043{
3044	struct peer *peer;
3045	const u_char *cp;
3046	size_t n;
3047	/* a_st holds association ID, status pairs alternating */
3048	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3049
3050#ifdef DEBUG
3051	if (debug > 2)
3052		printf("read_status: ID %d\n", res_associd);
3053#endif
3054	/*
3055	 * Two choices here. If the specified association ID is
3056	 * zero we return all known assocation ID's.  Otherwise
3057	 * we return a bunch of stuff about the particular peer.
3058	 */
3059	if (res_associd) {
3060		peer = findpeerbyassoc(res_associd);
3061		if (NULL == peer) {
3062			ctl_error(CERR_BADASSOC);
3063			return;
3064		}
3065		rpkt.status = htons(ctlpeerstatus(peer));
3066		if (res_authokay)
3067			peer->num_events = 0;
3068		/*
3069		 * For now, output everything we know about the
3070		 * peer. May be more selective later.
3071		 */
3072		for (cp = def_peer_var; *cp != 0; cp++)
3073			ctl_putpeer((int)*cp, peer);
3074		ctl_flushpkt(0);
3075		return;
3076	}
3077	n = 0;
3078	rpkt.status = htons(ctlsysstatus());
3079	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3080		a_st[n++] = htons(peer->associd);
3081		a_st[n++] = htons(ctlpeerstatus(peer));
3082		/* two entries each loop iteration, so n + 1 */
3083		if (n + 1 >= COUNTOF(a_st)) {
3084			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3085				    1);
3086			n = 0;
3087		}
3088	}
3089	if (n)
3090		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3091	ctl_flushpkt(0);
3092}
3093
3094
3095/*
3096 * read_peervars - half of read_variables() implementation
3097 */
3098static void
3099read_peervars(void)
3100{
3101	const struct ctl_var *v;
3102	struct peer *peer;
3103	const u_char *cp;
3104	size_t i;
3105	char *	valuep;
3106	u_char	wants[CP_MAXCODE + 1];
3107	u_int	gotvar;
3108
3109	/*
3110	 * Wants info for a particular peer. See if we know
3111	 * the guy.
3112	 */
3113	peer = findpeerbyassoc(res_associd);
3114	if (NULL == peer) {
3115		ctl_error(CERR_BADASSOC);
3116		return;
3117	}
3118	rpkt.status = htons(ctlpeerstatus(peer));
3119	if (res_authokay)
3120		peer->num_events = 0;
3121	ZERO(wants);
3122	gotvar = 0;
3123	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3124		if (v->flags & EOV) {
3125			ctl_error(CERR_UNKNOWNVAR);
3126			return;
3127		}
3128		INSIST(v->code < COUNTOF(wants));
3129		wants[v->code] = 1;
3130		gotvar = 1;
3131	}
3132	if (gotvar) {
3133		for (i = 1; i < COUNTOF(wants); i++)
3134			if (wants[i])
3135				ctl_putpeer(i, peer);
3136	} else
3137		for (cp = def_peer_var; *cp != 0; cp++)
3138			ctl_putpeer((int)*cp, peer);
3139	ctl_flushpkt(0);
3140}
3141
3142
3143/*
3144 * read_sysvars - half of read_variables() implementation
3145 */
3146static void
3147read_sysvars(void)
3148{
3149	const struct ctl_var *v;
3150	struct ctl_var *kv;
3151	u_int	n;
3152	u_int	gotvar;
3153	const u_char *cs;
3154	char *	valuep;
3155	const char * pch;
3156	u_char *wants;
3157	size_t	wants_count;
3158
3159	/*
3160	 * Wants system variables. Figure out which he wants
3161	 * and give them to him.
3162	 */
3163	rpkt.status = htons(ctlsysstatus());
3164	if (res_authokay)
3165		ctl_sys_num_events = 0;
3166	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3167	wants = emalloc_zero(wants_count);
3168	gotvar = 0;
3169	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3170		if (!(EOV & v->flags)) {
3171			INSIST(v->code < wants_count);
3172			wants[v->code] = 1;
3173			gotvar = 1;
3174		} else {
3175			v = ctl_getitem(ext_sys_var, &valuep);
3176			INSIST(v != NULL);
3177			if (EOV & v->flags) {
3178				ctl_error(CERR_UNKNOWNVAR);
3179				free(wants);
3180				return;
3181			}
3182			n = v->code + CS_MAXCODE + 1;
3183			INSIST(n < wants_count);
3184			wants[n] = 1;
3185			gotvar = 1;
3186		}
3187	}
3188	if (gotvar) {
3189		for (n = 1; n <= CS_MAXCODE; n++)
3190			if (wants[n])
3191				ctl_putsys(n);
3192		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3193			if (wants[n + CS_MAXCODE + 1]) {
3194				pch = ext_sys_var[n].text;
3195				ctl_putdata(pch, strlen(pch), 0);
3196			}
3197	} else {
3198		for (cs = def_sys_var; *cs != 0; cs++)
3199			ctl_putsys((int)*cs);
3200		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3201			if (DEF & kv->flags)
3202				ctl_putdata(kv->text, strlen(kv->text),
3203					    0);
3204	}
3205	free(wants);
3206	ctl_flushpkt(0);
3207}
3208
3209
3210/*
3211 * read_variables - return the variables the caller asks for
3212 */
3213/*ARGSUSED*/
3214static void
3215read_variables(
3216	struct recvbuf *rbufp,
3217	int restrict_mask
3218	)
3219{
3220	if (res_associd)
3221		read_peervars();
3222	else
3223		read_sysvars();
3224}
3225
3226
3227/*
3228 * write_variables - write into variables. We only allow leap bit
3229 * writing this way.
3230 */
3231/*ARGSUSED*/
3232static void
3233write_variables(
3234	struct recvbuf *rbufp,
3235	int restrict_mask
3236	)
3237{
3238	const struct ctl_var *v;
3239	int ext_var;
3240	char *valuep;
3241	long val;
3242	size_t octets;
3243	char *vareqv;
3244	const char *t;
3245	char *tt;
3246
3247	val = 0;
3248	/*
3249	 * If he's trying to write into a peer tell him no way
3250	 */
3251	if (res_associd != 0) {
3252		ctl_error(CERR_PERMISSION);
3253		return;
3254	}
3255
3256	/*
3257	 * Set status
3258	 */
3259	rpkt.status = htons(ctlsysstatus());
3260
3261	/*
3262	 * Look through the variables. Dump out at the first sign of
3263	 * trouble.
3264	 */
3265	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3266		ext_var = 0;
3267		if (v->flags & EOV) {
3268			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3269			    0) {
3270				if (v->flags & EOV) {
3271					ctl_error(CERR_UNKNOWNVAR);
3272					return;
3273				}
3274				ext_var = 1;
3275			} else {
3276				break;
3277			}
3278		}
3279		if (!(v->flags & CAN_WRITE)) {
3280			ctl_error(CERR_PERMISSION);
3281			return;
3282		}
3283		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3284							    &val))) {
3285			ctl_error(CERR_BADFMT);
3286			return;
3287		}
3288		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3289			ctl_error(CERR_BADVALUE);
3290			return;
3291		}
3292
3293		if (ext_var) {
3294			octets = strlen(v->text) + strlen(valuep) + 2;
3295			vareqv = emalloc(octets);
3296			tt = vareqv;
3297			t = v->text;
3298			while (*t && *t != '=')
3299				*tt++ = *t++;
3300			*tt++ = '=';
3301			memcpy(tt, valuep, 1 + strlen(valuep));
3302			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3303			free(vareqv);
3304		} else {
3305			ctl_error(CERR_UNSPEC); /* really */
3306			return;
3307		}
3308	}
3309
3310	/*
3311	 * If we got anything, do it. xxx nothing to do ***
3312	 */
3313	/*
3314	  if (leapind != ~0 || leapwarn != ~0) {
3315	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3316	  ctl_error(CERR_PERMISSION);
3317	  return;
3318	  }
3319	  }
3320	*/
3321	ctl_flushpkt(0);
3322}
3323
3324
3325/*
3326 * configure() processes ntpq :config/config-from-file, allowing
3327 *		generic runtime reconfiguration.
3328 */
3329static void configure(
3330	struct recvbuf *rbufp,
3331	int restrict_mask
3332	)
3333{
3334	size_t data_count;
3335	int retval;
3336
3337	/* I haven't yet implemented changes to an existing association.
3338	 * Hence check if the association id is 0
3339	 */
3340	if (res_associd != 0) {
3341		ctl_error(CERR_BADVALUE);
3342		return;
3343	}
3344
3345	if (RES_NOMODIFY & restrict_mask) {
3346		snprintf(remote_config.err_msg,
3347			 sizeof(remote_config.err_msg),
3348			 "runtime configuration prohibited by restrict ... nomodify");
3349		ctl_putdata(remote_config.err_msg,
3350			    strlen(remote_config.err_msg), 0);
3351		ctl_flushpkt(0);
3352		NLOG(NLOG_SYSINFO)
3353			msyslog(LOG_NOTICE,
3354				"runtime config from %s rejected due to nomodify restriction",
3355				stoa(&rbufp->recv_srcadr));
3356		sys_restricted++;
3357		return;
3358	}
3359
3360	/* Initialize the remote config buffer */
3361	data_count = remoteconfig_cmdlength(reqpt, reqend);
3362
3363	if (data_count > sizeof(remote_config.buffer) - 2) {
3364		snprintf(remote_config.err_msg,
3365			 sizeof(remote_config.err_msg),
3366			 "runtime configuration failed: request too long");
3367		ctl_putdata(remote_config.err_msg,
3368			    strlen(remote_config.err_msg), 0);
3369		ctl_flushpkt(0);
3370		msyslog(LOG_NOTICE,
3371			"runtime config from %s rejected: request too long",
3372			stoa(&rbufp->recv_srcadr));
3373		return;
3374	}
3375	/* Bug 2853 -- check if all characters were acceptable */
3376	if (data_count != (size_t)(reqend - reqpt)) {
3377		snprintf(remote_config.err_msg,
3378			 sizeof(remote_config.err_msg),
3379			 "runtime configuration failed: request contains an unprintable character");
3380		ctl_putdata(remote_config.err_msg,
3381			    strlen(remote_config.err_msg), 0);
3382		ctl_flushpkt(0);
3383		msyslog(LOG_NOTICE,
3384			"runtime config from %s rejected: request contains an unprintable character: %0x",
3385			stoa(&rbufp->recv_srcadr),
3386			reqpt[data_count]);
3387		return;
3388	}
3389
3390	memcpy(remote_config.buffer, reqpt, data_count);
3391	/* The buffer has no trailing linefeed or NUL right now. For
3392	 * logging, we do not want a newline, so we do that first after
3393	 * adding the necessary NUL byte.
3394	 */
3395	remote_config.buffer[data_count] = '\0';
3396	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3397		remote_config.buffer));
3398	msyslog(LOG_NOTICE, "%s config: %s",
3399		stoa(&rbufp->recv_srcadr),
3400		remote_config.buffer);
3401
3402	/* Now we have to make sure there is a NL/NUL sequence at the
3403	 * end of the buffer before we parse it.
3404	 */
3405	remote_config.buffer[data_count++] = '\n';
3406	remote_config.buffer[data_count] = '\0';
3407	remote_config.pos = 0;
3408	remote_config.err_pos = 0;
3409	remote_config.no_errors = 0;
3410	config_remotely(&rbufp->recv_srcadr);
3411
3412	/*
3413	 * Check if errors were reported. If not, output 'Config
3414	 * Succeeded'.  Else output the error count.  It would be nice
3415	 * to output any parser error messages.
3416	 */
3417	if (0 == remote_config.no_errors) {
3418		retval = snprintf(remote_config.err_msg,
3419				  sizeof(remote_config.err_msg),
3420				  "Config Succeeded");
3421		if (retval > 0)
3422			remote_config.err_pos += retval;
3423	}
3424
3425	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3426	ctl_flushpkt(0);
3427
3428	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3429
3430	if (remote_config.no_errors > 0)
3431		msyslog(LOG_NOTICE, "%d error in %s config",
3432			remote_config.no_errors,
3433			stoa(&rbufp->recv_srcadr));
3434}
3435
3436
3437/*
3438 * derive_nonce - generate client-address-specific nonce value
3439 *		  associated with a given timestamp.
3440 */
3441static u_int32 derive_nonce(
3442	sockaddr_u *	addr,
3443	u_int32		ts_i,
3444	u_int32		ts_f
3445	)
3446{
3447	static u_int32	salt[4];
3448	static u_long	last_salt_update;
3449	union d_tag {
3450		u_char	digest[EVP_MAX_MD_SIZE];
3451		u_int32 extract;
3452	}		d;
3453	EVP_MD_CTX	ctx;
3454	u_int		len;
3455
3456	while (!salt[0] || current_time - last_salt_update >= 3600) {
3457		salt[0] = ntp_random();
3458		salt[1] = ntp_random();
3459		salt[2] = ntp_random();
3460		salt[3] = ntp_random();
3461		last_salt_update = current_time;
3462	}
3463
3464	EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3465	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3466	EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3467	EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3468	if (IS_IPV4(addr))
3469		EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3470			         sizeof(SOCK_ADDR4(addr)));
3471	else
3472		EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3473			         sizeof(SOCK_ADDR6(addr)));
3474	EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3475	EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3476	EVP_DigestFinal(&ctx, d.digest, &len);
3477
3478	return d.extract;
3479}
3480
3481
3482/*
3483 * generate_nonce - generate client-address-specific nonce string.
3484 */
3485static void generate_nonce(
3486	struct recvbuf *	rbufp,
3487	char *			nonce,
3488	size_t			nonce_octets
3489	)
3490{
3491	u_int32 derived;
3492
3493	derived = derive_nonce(&rbufp->recv_srcadr,
3494			       rbufp->recv_time.l_ui,
3495			       rbufp->recv_time.l_uf);
3496	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3497		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3498}
3499
3500
3501/*
3502 * validate_nonce - validate client-address-specific nonce string.
3503 *
3504 * Returns TRUE if the local calculation of the nonce matches the
3505 * client-provided value and the timestamp is recent enough.
3506 */
3507static int validate_nonce(
3508	const char *		pnonce,
3509	struct recvbuf *	rbufp
3510	)
3511{
3512	u_int	ts_i;
3513	u_int	ts_f;
3514	l_fp	ts;
3515	l_fp	now_delta;
3516	u_int	supposed;
3517	u_int	derived;
3518
3519	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3520		return FALSE;
3521
3522	ts.l_ui = (u_int32)ts_i;
3523	ts.l_uf = (u_int32)ts_f;
3524	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3525	get_systime(&now_delta);
3526	L_SUB(&now_delta, &ts);
3527
3528	return (supposed == derived && now_delta.l_ui < 16);
3529}
3530
3531
3532/*
3533 * send_random_tag_value - send a randomly-generated three character
3534 *			   tag prefix, a '.', an index, a '=' and a
3535 *			   random integer value.
3536 *
3537 * To try to force clients to ignore unrecognized tags in mrulist,
3538 * reslist, and ifstats responses, the first and last rows are spiced
3539 * with randomly-generated tag names with correct .# index.  Make it
3540 * three characters knowing that none of the currently-used subscripted
3541 * tags have that length, avoiding the need to test for
3542 * tag collision.
3543 */
3544static void
3545send_random_tag_value(
3546	int	indx
3547	)
3548{
3549	int	noise;
3550	char	buf[32];
3551
3552	noise = rand() ^ (rand() << 16);
3553	buf[0] = 'a' + noise % 26;
3554	noise >>= 5;
3555	buf[1] = 'a' + noise % 26;
3556	noise >>= 5;
3557	buf[2] = 'a' + noise % 26;
3558	noise >>= 5;
3559	buf[3] = '.';
3560	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3561	ctl_putuint(buf, noise);
3562}
3563
3564
3565/*
3566 * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3567 *
3568 * To keep clients honest about not depending on the order of values,
3569 * and thereby avoid being locked into ugly workarounds to maintain
3570 * backward compatibility later as new fields are added to the response,
3571 * the order is random.
3572 */
3573static void
3574send_mru_entry(
3575	mon_entry *	mon,
3576	int		count
3577	)
3578{
3579	const char first_fmt[] =	"first.%d";
3580	const char ct_fmt[] =		"ct.%d";
3581	const char mv_fmt[] =		"mv.%d";
3582	const char rs_fmt[] =		"rs.%d";
3583	char	tag[32];
3584	u_char	sent[6]; /* 6 tag=value pairs */
3585	u_int32 noise;
3586	u_int	which;
3587	u_int	remaining;
3588	const char * pch;
3589
3590	remaining = COUNTOF(sent);
3591	ZERO(sent);
3592	noise = (u_int32)(rand() ^ (rand() << 16));
3593	while (remaining > 0) {
3594		which = (noise & 7) % COUNTOF(sent);
3595		noise >>= 3;
3596		while (sent[which])
3597			which = (which + 1) % COUNTOF(sent);
3598
3599		switch (which) {
3600
3601		case 0:
3602			snprintf(tag, sizeof(tag), addr_fmt, count);
3603			pch = sptoa(&mon->rmtadr);
3604			ctl_putunqstr(tag, pch, strlen(pch));
3605			break;
3606
3607		case 1:
3608			snprintf(tag, sizeof(tag), last_fmt, count);
3609			ctl_putts(tag, &mon->last);
3610			break;
3611
3612		case 2:
3613			snprintf(tag, sizeof(tag), first_fmt, count);
3614			ctl_putts(tag, &mon->first);
3615			break;
3616
3617		case 3:
3618			snprintf(tag, sizeof(tag), ct_fmt, count);
3619			ctl_putint(tag, mon->count);
3620			break;
3621
3622		case 4:
3623			snprintf(tag, sizeof(tag), mv_fmt, count);
3624			ctl_putuint(tag, mon->vn_mode);
3625			break;
3626
3627		case 5:
3628			snprintf(tag, sizeof(tag), rs_fmt, count);
3629			ctl_puthex(tag, mon->flags);
3630			break;
3631		}
3632		sent[which] = TRUE;
3633		remaining--;
3634	}
3635}
3636
3637
3638/*
3639 * read_mru_list - supports ntpq's mrulist command.
3640 *
3641 * The challenge here is to match ntpdc's monlist functionality without
3642 * being limited to hundreds of entries returned total, and without
3643 * requiring state on the server.  If state were required, ntpq's
3644 * mrulist command would require authentication.
3645 *
3646 * The approach was suggested by Ry Jones.  A finite and variable number
3647 * of entries are retrieved per request, to avoid having responses with
3648 * such large numbers of packets that socket buffers are overflowed and
3649 * packets lost.  The entries are retrieved oldest-first, taking into
3650 * account that the MRU list will be changing between each request.  We
3651 * can expect to see duplicate entries for addresses updated in the MRU
3652 * list during the fetch operation.  In the end, the client can assemble
3653 * a close approximation of the MRU list at the point in time the last
3654 * response was sent by ntpd.  The only difference is it may be longer,
3655 * containing some number of oldest entries which have since been
3656 * reclaimed.  If necessary, the protocol could be extended to zap those
3657 * from the client snapshot at the end, but so far that doesn't seem
3658 * useful.
3659 *
3660 * To accomodate the changing MRU list, the starting point for requests
3661 * after the first request is supplied as a series of last seen
3662 * timestamps and associated addresses, the newest ones the client has
3663 * received.  As long as at least one of those entries hasn't been
3664 * bumped to the head of the MRU list, ntpd can pick up at that point.
3665 * Otherwise, the request is failed and it is up to ntpq to back up and
3666 * provide the next newest entry's timestamps and addresses, conceivably
3667 * backing up all the way to the starting point.
3668 *
3669 * input parameters:
3670 *	nonce=		Regurgitated nonce retrieved by the client
3671 *			previously using CTL_OP_REQ_NONCE, demonstrating
3672 *			ability to receive traffic sent to its address.
3673 *	frags=		Limit on datagrams (fragments) in response.  Used
3674 *			by newer ntpq versions instead of limit= when
3675 *			retrieving multiple entries.
3676 *	limit=		Limit on MRU entries returned.  One of frags= or
3677 *			limit= must be provided.
3678 *			limit=1 is a special case:  Instead of fetching
3679 *			beginning with the supplied starting point's
3680 *			newer neighbor, fetch the supplied entry, and
3681 *			in that case the #.last timestamp can be zero.
3682 *			This enables fetching a single entry by IP
3683 *			address.  When limit is not one and frags= is
3684 *			provided, the fragment limit controls.
3685 *	mincount=	(decimal) Return entries with count >= mincount.
3686 *	laddr=		Return entries associated with the server's IP
3687 *			address given.  No port specification is needed,
3688 *			and any supplied is ignored.
3689 *	resall=		0x-prefixed hex restrict bits which must all be
3690 *			lit for an MRU entry to be included.
3691 *			Has precedence over any resany=.
3692 *	resany=		0x-prefixed hex restrict bits, at least one of
3693 *			which must be list for an MRU entry to be
3694 *			included.
3695 *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3696 *			which client previously received.
3697 *	addr.0=		text of newest entry's IP address and port,
3698 *			IPv6 addresses in bracketed form: [::]:123
3699 *	last.1=		timestamp of 2nd newest entry client has.
3700 *	addr.1=		address of 2nd newest entry.
3701 *	[...]
3702 *
3703 * ntpq provides as many last/addr pairs as will fit in a single request
3704 * packet, except for the first request in a MRU fetch operation.
3705 *
3706 * The response begins with a new nonce value to be used for any
3707 * followup request.  Following the nonce is the next newer entry than
3708 * referred to by last.0 and addr.0, if the "0" entry has not been
3709 * bumped to the front.  If it has, the first entry returned will be the
3710 * next entry newer than referred to by last.1 and addr.1, and so on.
3711 * If none of the referenced entries remain unchanged, the request fails
3712 * and ntpq backs up to the next earlier set of entries to resync.
3713 *
3714 * Except for the first response, the response begins with confirmation
3715 * of the entry that precedes the first additional entry provided:
3716 *
3717 *	last.older=	hex l_fp timestamp matching one of the input
3718 *			.last timestamps, which entry now precedes the
3719 *			response 0. entry in the MRU list.
3720 *	addr.older=	text of address corresponding to older.last.
3721 *
3722 * And in any case, a successful response contains sets of values
3723 * comprising entries, with the oldest numbered 0 and incrementing from
3724 * there:
3725 *
3726 *	addr.#		text of IPv4 or IPv6 address and port
3727 *	last.#		hex l_fp timestamp of last receipt
3728 *	first.#		hex l_fp timestamp of first receipt
3729 *	ct.#		count of packets received
3730 *	mv.#		mode and version
3731 *	rs.#		restriction mask (RES_* bits)
3732 *
3733 * Note the code currently assumes there are no valid three letter
3734 * tags sent with each row, and needs to be adjusted if that changes.
3735 *
3736 * The client should accept the values in any order, and ignore .#
3737 * values which it does not understand, to allow a smooth path to
3738 * future changes without requiring a new opcode.  Clients can rely
3739 * on all *.0 values preceding any *.1 values, that is all values for
3740 * a given index number are together in the response.
3741 *
3742 * The end of the response list is noted with one or two tag=value
3743 * pairs.  Unconditionally:
3744 *
3745 *	now=		0x-prefixed l_fp timestamp at the server marking
3746 *			the end of the operation.
3747 *
3748 * If any entries were returned, now= is followed by:
3749 *
3750 *	last.newest=	hex l_fp identical to last.# of the prior
3751 *			entry.
3752 */
3753static void read_mru_list(
3754	struct recvbuf *rbufp,
3755	int restrict_mask
3756	)
3757{
3758	const char		nonce_text[] =		"nonce";
3759	const char		frags_text[] =		"frags";
3760	const char		limit_text[] =		"limit";
3761	const char		mincount_text[] =	"mincount";
3762	const char		resall_text[] =		"resall";
3763	const char		resany_text[] =		"resany";
3764	const char		maxlstint_text[] =	"maxlstint";
3765	const char		laddr_text[] =		"laddr";
3766	const char		resaxx_fmt[] =		"0x%hx";
3767	u_int			limit;
3768	u_short			frags;
3769	u_short			resall;
3770	u_short			resany;
3771	int			mincount;
3772	u_int			maxlstint;
3773	sockaddr_u		laddr;
3774	struct interface *	lcladr;
3775	u_int			count;
3776	u_int			ui;
3777	u_int			uf;
3778	l_fp			last[16];
3779	sockaddr_u		addr[COUNTOF(last)];
3780	char			buf[128];
3781	struct ctl_var *	in_parms;
3782	const struct ctl_var *	v;
3783	char *			val;
3784	const char *		pch;
3785	char *			pnonce;
3786	int			nonce_valid;
3787	size_t			i;
3788	int			priors;
3789	u_short			hash;
3790	mon_entry *		mon;
3791	mon_entry *		prior_mon;
3792	l_fp			now;
3793
3794	if (RES_NOMRULIST & restrict_mask) {
3795		ctl_error(CERR_PERMISSION);
3796		NLOG(NLOG_SYSINFO)
3797			msyslog(LOG_NOTICE,
3798				"mrulist from %s rejected due to nomrulist restriction",
3799				stoa(&rbufp->recv_srcadr));
3800		sys_restricted++;
3801		return;
3802	}
3803	/*
3804	 * fill in_parms var list with all possible input parameters.
3805	 */
3806	in_parms = NULL;
3807	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3808	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3809	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3810	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3811	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3812	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3813	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3814	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3815	for (i = 0; i < COUNTOF(last); i++) {
3816		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3817		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3818		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3819		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3820	}
3821
3822	/* decode input parms */
3823	pnonce = NULL;
3824	frags = 0;
3825	limit = 0;
3826	mincount = 0;
3827	resall = 0;
3828	resany = 0;
3829	maxlstint = 0;
3830	lcladr = NULL;
3831	priors = 0;
3832	ZERO(last);
3833	ZERO(addr);
3834
3835	while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3836	       !(EOV & v->flags)) {
3837		int si;
3838
3839		if (!strcmp(nonce_text, v->text)) {
3840			if (NULL != pnonce)
3841				free(pnonce);
3842			pnonce = estrdup(val);
3843		} else if (!strcmp(frags_text, v->text)) {
3844			sscanf(val, "%hu", &frags);
3845		} else if (!strcmp(limit_text, v->text)) {
3846			sscanf(val, "%u", &limit);
3847		} else if (!strcmp(mincount_text, v->text)) {
3848			if (1 != sscanf(val, "%d", &mincount) ||
3849			    mincount < 0)
3850				mincount = 0;
3851		} else if (!strcmp(resall_text, v->text)) {
3852			sscanf(val, resaxx_fmt, &resall);
3853		} else if (!strcmp(resany_text, v->text)) {
3854			sscanf(val, resaxx_fmt, &resany);
3855		} else if (!strcmp(maxlstint_text, v->text)) {
3856			sscanf(val, "%u", &maxlstint);
3857		} else if (!strcmp(laddr_text, v->text)) {
3858			if (decodenetnum(val, &laddr))
3859				lcladr = getinterface(&laddr, 0);
3860		} else if (1 == sscanf(v->text, last_fmt, &si) &&
3861			   (size_t)si < COUNTOF(last)) {
3862			if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3863				last[si].l_ui = ui;
3864				last[si].l_uf = uf;
3865				if (!SOCK_UNSPEC(&addr[si]) &&
3866				    si == priors)
3867					priors++;
3868			}
3869		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
3870			   (size_t)si < COUNTOF(addr)) {
3871			if (decodenetnum(val, &addr[si])
3872			    && last[si].l_ui && last[si].l_uf &&
3873			    si == priors)
3874				priors++;
3875		}
3876	}
3877	free_varlist(in_parms);
3878	in_parms = NULL;
3879
3880	/* return no responses until the nonce is validated */
3881	if (NULL == pnonce)
3882		return;
3883
3884	nonce_valid = validate_nonce(pnonce, rbufp);
3885	free(pnonce);
3886	if (!nonce_valid)
3887		return;
3888
3889	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3890	    frags > MRU_FRAGS_LIMIT) {
3891		ctl_error(CERR_BADVALUE);
3892		return;
3893	}
3894
3895	/*
3896	 * If either frags or limit is not given, use the max.
3897	 */
3898	if (0 != frags && 0 == limit)
3899		limit = UINT_MAX;
3900	else if (0 != limit && 0 == frags)
3901		frags = MRU_FRAGS_LIMIT;
3902
3903	/*
3904	 * Find the starting point if one was provided.
3905	 */
3906	mon = NULL;
3907	for (i = 0; i < (size_t)priors; i++) {
3908		hash = MON_HASH(&addr[i]);
3909		for (mon = mon_hash[hash];
3910		     mon != NULL;
3911		     mon = mon->hash_next)
3912			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3913				break;
3914		if (mon != NULL) {
3915			if (L_ISEQU(&mon->last, &last[i]))
3916				break;
3917			mon = NULL;
3918		}
3919	}
3920
3921	/* If a starting point was provided... */
3922	if (priors) {
3923		/* and none could be found unmodified... */
3924		if (NULL == mon) {
3925			/* tell ntpq to try again with older entries */
3926			ctl_error(CERR_UNKNOWNVAR);
3927			return;
3928		}
3929		/* confirm the prior entry used as starting point */
3930		ctl_putts("last.older", &mon->last);
3931		pch = sptoa(&mon->rmtadr);
3932		ctl_putunqstr("addr.older", pch, strlen(pch));
3933
3934		/*
3935		 * Move on to the first entry the client doesn't have,
3936		 * except in the special case of a limit of one.  In
3937		 * that case return the starting point entry.
3938		 */
3939		if (limit > 1)
3940			mon = PREV_DLIST(mon_mru_list, mon, mru);
3941	} else {	/* start with the oldest */
3942		mon = TAIL_DLIST(mon_mru_list, mru);
3943	}
3944
3945	/*
3946	 * send up to limit= entries in up to frags= datagrams
3947	 */
3948	get_systime(&now);
3949	generate_nonce(rbufp, buf, sizeof(buf));
3950	ctl_putunqstr("nonce", buf, strlen(buf));
3951	prior_mon = NULL;
3952	for (count = 0;
3953	     mon != NULL && res_frags < frags && count < limit;
3954	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3955
3956		if (mon->count < mincount)
3957			continue;
3958		if (resall && resall != (resall & mon->flags))
3959			continue;
3960		if (resany && !(resany & mon->flags))
3961			continue;
3962		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3963		    maxlstint)
3964			continue;
3965		if (lcladr != NULL && mon->lcladr != lcladr)
3966			continue;
3967
3968		send_mru_entry(mon, count);
3969		if (!count)
3970			send_random_tag_value(0);
3971		count++;
3972		prior_mon = mon;
3973	}
3974
3975	/*
3976	 * If this batch completes the MRU list, say so explicitly with
3977	 * a now= l_fp timestamp.
3978	 */
3979	if (NULL == mon) {
3980		if (count > 1)
3981			send_random_tag_value(count - 1);
3982		ctl_putts("now", &now);
3983		/* if any entries were returned confirm the last */
3984		if (prior_mon != NULL)
3985			ctl_putts("last.newest", &prior_mon->last);
3986	}
3987	ctl_flushpkt(0);
3988}
3989
3990
3991/*
3992 * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3993 *
3994 * To keep clients honest about not depending on the order of values,
3995 * and thereby avoid being locked into ugly workarounds to maintain
3996 * backward compatibility later as new fields are added to the response,
3997 * the order is random.
3998 */
3999static void
4000send_ifstats_entry(
4001	endpt *	la,
4002	u_int	ifnum
4003	)
4004{
4005	const char addr_fmtu[] =	"addr.%u";
4006	const char bcast_fmt[] =	"bcast.%u";
4007	const char en_fmt[] =		"en.%u";	/* enabled */
4008	const char name_fmt[] =		"name.%u";
4009	const char flags_fmt[] =	"flags.%u";
4010	const char tl_fmt[] =		"tl.%u";	/* ttl */
4011	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4012	const char rx_fmt[] =		"rx.%u";
4013	const char tx_fmt[] =		"tx.%u";
4014	const char txerr_fmt[] =	"txerr.%u";
4015	const char pc_fmt[] =		"pc.%u";	/* peer count */
4016	const char up_fmt[] =		"up.%u";	/* uptime */
4017	char	tag[32];
4018	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4019	int	noisebits;
4020	u_int32 noise;
4021	u_int	which;
4022	u_int	remaining;
4023	const char *pch;
4024
4025	remaining = COUNTOF(sent);
4026	ZERO(sent);
4027	noise = 0;
4028	noisebits = 0;
4029	while (remaining > 0) {
4030		if (noisebits < 4) {
4031			noise = rand() ^ (rand() << 16);
4032			noisebits = 31;
4033		}
4034		which = (noise & 0xf) % COUNTOF(sent);
4035		noise >>= 4;
4036		noisebits -= 4;
4037
4038		while (sent[which])
4039			which = (which + 1) % COUNTOF(sent);
4040
4041		switch (which) {
4042
4043		case 0:
4044			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4045			pch = sptoa(&la->sin);
4046			ctl_putunqstr(tag, pch, strlen(pch));
4047			break;
4048
4049		case 1:
4050			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4051			if (INT_BCASTOPEN & la->flags)
4052				pch = sptoa(&la->bcast);
4053			else
4054				pch = "";
4055			ctl_putunqstr(tag, pch, strlen(pch));
4056			break;
4057
4058		case 2:
4059			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4060			ctl_putint(tag, !la->ignore_packets);
4061			break;
4062
4063		case 3:
4064			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4065			ctl_putstr(tag, la->name, strlen(la->name));
4066			break;
4067
4068		case 4:
4069			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4070			ctl_puthex(tag, (u_int)la->flags);
4071			break;
4072
4073		case 5:
4074			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4075			ctl_putint(tag, la->last_ttl);
4076			break;
4077
4078		case 6:
4079			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4080			ctl_putint(tag, la->num_mcast);
4081			break;
4082
4083		case 7:
4084			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4085			ctl_putint(tag, la->received);
4086			break;
4087
4088		case 8:
4089			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4090			ctl_putint(tag, la->sent);
4091			break;
4092
4093		case 9:
4094			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4095			ctl_putint(tag, la->notsent);
4096			break;
4097
4098		case 10:
4099			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4100			ctl_putuint(tag, la->peercnt);
4101			break;
4102
4103		case 11:
4104			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4105			ctl_putuint(tag, current_time - la->starttime);
4106			break;
4107		}
4108		sent[which] = TRUE;
4109		remaining--;
4110	}
4111	send_random_tag_value((int)ifnum);
4112}
4113
4114
4115/*
4116 * read_ifstats - send statistics for each local address, exposed by
4117 *		  ntpq -c ifstats
4118 */
4119static void
4120read_ifstats(
4121	struct recvbuf *	rbufp
4122	)
4123{
4124	u_int	ifidx;
4125	endpt *	la;
4126
4127	/*
4128	 * loop over [0..sys_ifnum] searching ep_list for each
4129	 * ifnum in turn.
4130	 */
4131	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4132		for (la = ep_list; la != NULL; la = la->elink)
4133			if (ifidx == la->ifnum)
4134				break;
4135		if (NULL == la)
4136			continue;
4137		/* return stats for one local address */
4138		send_ifstats_entry(la, ifidx);
4139	}
4140	ctl_flushpkt(0);
4141}
4142
4143static void
4144sockaddrs_from_restrict_u(
4145	sockaddr_u *	psaA,
4146	sockaddr_u *	psaM,
4147	restrict_u *	pres,
4148	int		ipv6
4149	)
4150{
4151	ZERO(*psaA);
4152	ZERO(*psaM);
4153	if (!ipv6) {
4154		psaA->sa.sa_family = AF_INET;
4155		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4156		psaM->sa.sa_family = AF_INET;
4157		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4158	} else {
4159		psaA->sa.sa_family = AF_INET6;
4160		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4161		       sizeof(psaA->sa6.sin6_addr));
4162		psaM->sa.sa_family = AF_INET6;
4163		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4164		       sizeof(psaA->sa6.sin6_addr));
4165	}
4166}
4167
4168
4169/*
4170 * Send a restrict entry in response to a "ntpq -c reslist" request.
4171 *
4172 * To keep clients honest about not depending on the order of values,
4173 * and thereby avoid being locked into ugly workarounds to maintain
4174 * backward compatibility later as new fields are added to the response,
4175 * the order is random.
4176 */
4177static void
4178send_restrict_entry(
4179	restrict_u *	pres,
4180	int		ipv6,
4181	u_int		idx
4182	)
4183{
4184	const char addr_fmtu[] =	"addr.%u";
4185	const char mask_fmtu[] =	"mask.%u";
4186	const char hits_fmt[] =		"hits.%u";
4187	const char flags_fmt[] =	"flags.%u";
4188	char		tag[32];
4189	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4190	int		noisebits;
4191	u_int32		noise;
4192	u_int		which;
4193	u_int		remaining;
4194	sockaddr_u	addr;
4195	sockaddr_u	mask;
4196	const char *	pch;
4197	char *		buf;
4198	const char *	match_str;
4199	const char *	access_str;
4200
4201	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4202	remaining = COUNTOF(sent);
4203	ZERO(sent);
4204	noise = 0;
4205	noisebits = 0;
4206	while (remaining > 0) {
4207		if (noisebits < 2) {
4208			noise = rand() ^ (rand() << 16);
4209			noisebits = 31;
4210		}
4211		which = (noise & 0x3) % COUNTOF(sent);
4212		noise >>= 2;
4213		noisebits -= 2;
4214
4215		while (sent[which])
4216			which = (which + 1) % COUNTOF(sent);
4217
4218		switch (which) {
4219
4220		case 0:
4221			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4222			pch = stoa(&addr);
4223			ctl_putunqstr(tag, pch, strlen(pch));
4224			break;
4225
4226		case 1:
4227			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4228			pch = stoa(&mask);
4229			ctl_putunqstr(tag, pch, strlen(pch));
4230			break;
4231
4232		case 2:
4233			snprintf(tag, sizeof(tag), hits_fmt, idx);
4234			ctl_putuint(tag, pres->count);
4235			break;
4236
4237		case 3:
4238			snprintf(tag, sizeof(tag), flags_fmt, idx);
4239			match_str = res_match_flags(pres->mflags);
4240			access_str = res_access_flags(pres->flags);
4241			if ('\0' == match_str[0]) {
4242				pch = access_str;
4243			} else {
4244				LIB_GETBUF(buf);
4245				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4246					 match_str, access_str);
4247				pch = buf;
4248			}
4249			ctl_putunqstr(tag, pch, strlen(pch));
4250			break;
4251		}
4252		sent[which] = TRUE;
4253		remaining--;
4254	}
4255	send_random_tag_value((int)idx);
4256}
4257
4258
4259static void
4260send_restrict_list(
4261	restrict_u *	pres,
4262	int		ipv6,
4263	u_int *		pidx
4264	)
4265{
4266	for ( ; pres != NULL; pres = pres->link) {
4267		send_restrict_entry(pres, ipv6, *pidx);
4268		(*pidx)++;
4269	}
4270}
4271
4272
4273/*
4274 * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4275 */
4276static void
4277read_addr_restrictions(
4278	struct recvbuf *	rbufp
4279)
4280{
4281	u_int idx;
4282
4283	idx = 0;
4284	send_restrict_list(restrictlist4, FALSE, &idx);
4285	send_restrict_list(restrictlist6, TRUE, &idx);
4286	ctl_flushpkt(0);
4287}
4288
4289
4290/*
4291 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4292 */
4293static void
4294read_ordlist(
4295	struct recvbuf *	rbufp,
4296	int			restrict_mask
4297	)
4298{
4299	const char ifstats_s[] = "ifstats";
4300	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4301	const char addr_rst_s[] = "addr_restrictions";
4302	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4303	struct ntp_control *	cpkt;
4304	u_short			qdata_octets;
4305
4306	/*
4307	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4308	 * used only for ntpq -c ifstats.  With the addition of reslist
4309	 * the same opcode was generalized to retrieve ordered lists
4310	 * which require authentication.  The request data is empty or
4311	 * contains "ifstats" (not null terminated) to retrieve local
4312	 * addresses and associated stats.  It is "addr_restrictions"
4313	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4314	 * which are access control lists.  Other request data return
4315	 * CERR_UNKNOWNVAR.
4316	 */
4317	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4318	qdata_octets = ntohs(cpkt->count);
4319	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4320	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4321		read_ifstats(rbufp);
4322		return;
4323	}
4324	if (a_r_chars == qdata_octets &&
4325	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4326		read_addr_restrictions(rbufp);
4327		return;
4328	}
4329	ctl_error(CERR_UNKNOWNVAR);
4330}
4331
4332
4333/*
4334 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4335 */
4336static void req_nonce(
4337	struct recvbuf *	rbufp,
4338	int			restrict_mask
4339	)
4340{
4341	char	buf[64];
4342
4343	generate_nonce(rbufp, buf, sizeof(buf));
4344	ctl_putunqstr("nonce", buf, strlen(buf));
4345	ctl_flushpkt(0);
4346}
4347
4348
4349/*
4350 * read_clockstatus - return clock radio status
4351 */
4352/*ARGSUSED*/
4353static void
4354read_clockstatus(
4355	struct recvbuf *rbufp,
4356	int restrict_mask
4357	)
4358{
4359#ifndef REFCLOCK
4360	/*
4361	 * If no refclock support, no data to return
4362	 */
4363	ctl_error(CERR_BADASSOC);
4364#else
4365	const struct ctl_var *	v;
4366	int			i;
4367	struct peer *		peer;
4368	char *			valuep;
4369	u_char *		wants;
4370	size_t			wants_alloc;
4371	int			gotvar;
4372	const u_char *		cc;
4373	struct ctl_var *	kv;
4374	struct refclockstat	cs;
4375
4376	if (res_associd != 0) {
4377		peer = findpeerbyassoc(res_associd);
4378	} else {
4379		/*
4380		 * Find a clock for this jerk.	If the system peer
4381		 * is a clock use it, else search peer_list for one.
4382		 */
4383		if (sys_peer != NULL && (FLAG_REFCLOCK &
4384		    sys_peer->flags))
4385			peer = sys_peer;
4386		else
4387			for (peer = peer_list;
4388			     peer != NULL;
4389			     peer = peer->p_link)
4390				if (FLAG_REFCLOCK & peer->flags)
4391					break;
4392	}
4393	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4394		ctl_error(CERR_BADASSOC);
4395		return;
4396	}
4397	/*
4398	 * If we got here we have a peer which is a clock. Get his
4399	 * status.
4400	 */
4401	cs.kv_list = NULL;
4402	refclock_control(&peer->srcadr, NULL, &cs);
4403	kv = cs.kv_list;
4404	/*
4405	 * Look for variables in the packet.
4406	 */
4407	rpkt.status = htons(ctlclkstatus(&cs));
4408	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4409	wants = emalloc_zero(wants_alloc);
4410	gotvar = FALSE;
4411	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4412		if (!(EOV & v->flags)) {
4413			wants[v->code] = TRUE;
4414			gotvar = TRUE;
4415		} else {
4416			v = ctl_getitem(kv, &valuep);
4417			INSIST(NULL != v);
4418			if (EOV & v->flags) {
4419				ctl_error(CERR_UNKNOWNVAR);
4420				free(wants);
4421				free_varlist(cs.kv_list);
4422				return;
4423			}
4424			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4425			gotvar = TRUE;
4426		}
4427	}
4428
4429	if (gotvar) {
4430		for (i = 1; i <= CC_MAXCODE; i++)
4431			if (wants[i])
4432				ctl_putclock(i, &cs, TRUE);
4433		if (kv != NULL)
4434			for (i = 0; !(EOV & kv[i].flags); i++)
4435				if (wants[i + CC_MAXCODE + 1])
4436					ctl_putdata(kv[i].text,
4437						    strlen(kv[i].text),
4438						    FALSE);
4439	} else {
4440		for (cc = def_clock_var; *cc != 0; cc++)
4441			ctl_putclock((int)*cc, &cs, FALSE);
4442		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4443			if (DEF & kv->flags)
4444				ctl_putdata(kv->text, strlen(kv->text),
4445					    FALSE);
4446	}
4447
4448	free(wants);
4449	free_varlist(cs.kv_list);
4450
4451	ctl_flushpkt(0);
4452#endif
4453}
4454
4455
4456/*
4457 * write_clockstatus - we don't do this
4458 */
4459/*ARGSUSED*/
4460static void
4461write_clockstatus(
4462	struct recvbuf *rbufp,
4463	int restrict_mask
4464	)
4465{
4466	ctl_error(CERR_PERMISSION);
4467}
4468
4469/*
4470 * Trap support from here on down. We send async trap messages when the
4471 * upper levels report trouble. Traps can by set either by control
4472 * messages or by configuration.
4473 */
4474/*
4475 * set_trap - set a trap in response to a control message
4476 */
4477static void
4478set_trap(
4479	struct recvbuf *rbufp,
4480	int restrict_mask
4481	)
4482{
4483	int traptype;
4484
4485	/*
4486	 * See if this guy is allowed
4487	 */
4488	if (restrict_mask & RES_NOTRAP) {
4489		ctl_error(CERR_PERMISSION);
4490		return;
4491	}
4492
4493	/*
4494	 * Determine his allowed trap type.
4495	 */
4496	traptype = TRAP_TYPE_PRIO;
4497	if (restrict_mask & RES_LPTRAP)
4498		traptype = TRAP_TYPE_NONPRIO;
4499
4500	/*
4501	 * Call ctlsettrap() to do the work.  Return
4502	 * an error if it can't assign the trap.
4503	 */
4504	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4505			(int)res_version))
4506		ctl_error(CERR_NORESOURCE);
4507	ctl_flushpkt(0);
4508}
4509
4510
4511/*
4512 * unset_trap - unset a trap in response to a control message
4513 */
4514static void
4515unset_trap(
4516	struct recvbuf *rbufp,
4517	int restrict_mask
4518	)
4519{
4520	int traptype;
4521
4522	/*
4523	 * We don't prevent anyone from removing his own trap unless the
4524	 * trap is configured. Note we also must be aware of the
4525	 * possibility that restriction flags were changed since this
4526	 * guy last set his trap. Set the trap type based on this.
4527	 */
4528	traptype = TRAP_TYPE_PRIO;
4529	if (restrict_mask & RES_LPTRAP)
4530		traptype = TRAP_TYPE_NONPRIO;
4531
4532	/*
4533	 * Call ctlclrtrap() to clear this out.
4534	 */
4535	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4536		ctl_error(CERR_BADASSOC);
4537	ctl_flushpkt(0);
4538}
4539
4540
4541/*
4542 * ctlsettrap - called to set a trap
4543 */
4544int
4545ctlsettrap(
4546	sockaddr_u *raddr,
4547	struct interface *linter,
4548	int traptype,
4549	int version
4550	)
4551{
4552	size_t n;
4553	struct ctl_trap *tp;
4554	struct ctl_trap *tptouse;
4555
4556	/*
4557	 * See if we can find this trap.  If so, we only need update
4558	 * the flags and the time.
4559	 */
4560	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4561		switch (traptype) {
4562
4563		case TRAP_TYPE_CONFIG:
4564			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4565			break;
4566
4567		case TRAP_TYPE_PRIO:
4568			if (tp->tr_flags & TRAP_CONFIGURED)
4569				return (1); /* don't change anything */
4570			tp->tr_flags = TRAP_INUSE;
4571			break;
4572
4573		case TRAP_TYPE_NONPRIO:
4574			if (tp->tr_flags & TRAP_CONFIGURED)
4575				return (1); /* don't change anything */
4576			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4577			break;
4578		}
4579		tp->tr_settime = current_time;
4580		tp->tr_resets++;
4581		return (1);
4582	}
4583
4584	/*
4585	 * First we heard of this guy.	Try to find a trap structure
4586	 * for him to use, clearing out lesser priority guys if we
4587	 * have to. Clear out anyone who's expired while we're at it.
4588	 */
4589	tptouse = NULL;
4590	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4591		tp = &ctl_traps[n];
4592		if ((TRAP_INUSE & tp->tr_flags) &&
4593		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4594		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4595			tp->tr_flags = 0;
4596			num_ctl_traps--;
4597		}
4598		if (!(TRAP_INUSE & tp->tr_flags)) {
4599			tptouse = tp;
4600		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4601			switch (traptype) {
4602
4603			case TRAP_TYPE_CONFIG:
4604				if (tptouse == NULL) {
4605					tptouse = tp;
4606					break;
4607				}
4608				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4609				    !(TRAP_NONPRIO & tp->tr_flags))
4610					break;
4611
4612				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4613				    && (TRAP_NONPRIO & tp->tr_flags)) {
4614					tptouse = tp;
4615					break;
4616				}
4617				if (tptouse->tr_origtime <
4618				    tp->tr_origtime)
4619					tptouse = tp;
4620				break;
4621
4622			case TRAP_TYPE_PRIO:
4623				if ( TRAP_NONPRIO & tp->tr_flags) {
4624					if (tptouse == NULL ||
4625					    ((TRAP_INUSE &
4626					      tptouse->tr_flags) &&
4627					     tptouse->tr_origtime <
4628					     tp->tr_origtime))
4629						tptouse = tp;
4630				}
4631				break;
4632
4633			case TRAP_TYPE_NONPRIO:
4634				break;
4635			}
4636		}
4637	}
4638
4639	/*
4640	 * If we don't have room for him return an error.
4641	 */
4642	if (tptouse == NULL)
4643		return (0);
4644
4645	/*
4646	 * Set up this structure for him.
4647	 */
4648	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4649	tptouse->tr_count = tptouse->tr_resets = 0;
4650	tptouse->tr_sequence = 1;
4651	tptouse->tr_addr = *raddr;
4652	tptouse->tr_localaddr = linter;
4653	tptouse->tr_version = (u_char) version;
4654	tptouse->tr_flags = TRAP_INUSE;
4655	if (traptype == TRAP_TYPE_CONFIG)
4656		tptouse->tr_flags |= TRAP_CONFIGURED;
4657	else if (traptype == TRAP_TYPE_NONPRIO)
4658		tptouse->tr_flags |= TRAP_NONPRIO;
4659	num_ctl_traps++;
4660	return (1);
4661}
4662
4663
4664/*
4665 * ctlclrtrap - called to clear a trap
4666 */
4667int
4668ctlclrtrap(
4669	sockaddr_u *raddr,
4670	struct interface *linter,
4671	int traptype
4672	)
4673{
4674	register struct ctl_trap *tp;
4675
4676	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4677		return (0);
4678
4679	if (tp->tr_flags & TRAP_CONFIGURED
4680	    && traptype != TRAP_TYPE_CONFIG)
4681		return (0);
4682
4683	tp->tr_flags = 0;
4684	num_ctl_traps--;
4685	return (1);
4686}
4687
4688
4689/*
4690 * ctlfindtrap - find a trap given the remote and local addresses
4691 */
4692static struct ctl_trap *
4693ctlfindtrap(
4694	sockaddr_u *raddr,
4695	struct interface *linter
4696	)
4697{
4698	size_t	n;
4699
4700	for (n = 0; n < COUNTOF(ctl_traps); n++)
4701		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4702		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4703		    && (linter == ctl_traps[n].tr_localaddr))
4704			return &ctl_traps[n];
4705
4706	return NULL;
4707}
4708
4709
4710/*
4711 * report_event - report an event to the trappers
4712 */
4713void
4714report_event(
4715	int	err,		/* error code */
4716	struct peer *peer,	/* peer structure pointer */
4717	const char *str		/* protostats string */
4718	)
4719{
4720	char	statstr[NTP_MAXSTRLEN];
4721	int	i;
4722	size_t	len;
4723
4724	/*
4725	 * Report the error to the protostats file, system log and
4726	 * trappers.
4727	 */
4728	if (peer == NULL) {
4729
4730		/*
4731		 * Discard a system report if the number of reports of
4732		 * the same type exceeds the maximum.
4733		 */
4734		if (ctl_sys_last_event != (u_char)err)
4735			ctl_sys_num_events= 0;
4736		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4737			return;
4738
4739		ctl_sys_last_event = (u_char)err;
4740		ctl_sys_num_events++;
4741		snprintf(statstr, sizeof(statstr),
4742		    "0.0.0.0 %04x %02x %s",
4743		    ctlsysstatus(), err, eventstr(err));
4744		if (str != NULL) {
4745			len = strlen(statstr);
4746			snprintf(statstr + len, sizeof(statstr) - len,
4747			    " %s", str);
4748		}
4749		NLOG(NLOG_SYSEVENT)
4750			msyslog(LOG_INFO, "%s", statstr);
4751	} else {
4752
4753		/*
4754		 * Discard a peer report if the number of reports of
4755		 * the same type exceeds the maximum for that peer.
4756		 */
4757		const char *	src;
4758		u_char		errlast;
4759
4760		errlast = (u_char)err & ~PEER_EVENT;
4761		if (peer->last_event == errlast)
4762			peer->num_events = 0;
4763		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4764			return;
4765
4766		peer->last_event = errlast;
4767		peer->num_events++;
4768		if (ISREFCLOCKADR(&peer->srcadr))
4769			src = refnumtoa(&peer->srcadr);
4770		else
4771			src = stoa(&peer->srcadr);
4772
4773		snprintf(statstr, sizeof(statstr),
4774		    "%s %04x %02x %s", src,
4775		    ctlpeerstatus(peer), err, eventstr(err));
4776		if (str != NULL) {
4777			len = strlen(statstr);
4778			snprintf(statstr + len, sizeof(statstr) - len,
4779			    " %s", str);
4780		}
4781		NLOG(NLOG_PEEREVENT)
4782			msyslog(LOG_INFO, "%s", statstr);
4783	}
4784	record_proto_stats(statstr);
4785#if DEBUG
4786	if (debug)
4787		printf("event at %lu %s\n", current_time, statstr);
4788#endif
4789
4790	/*
4791	 * If no trappers, return.
4792	 */
4793	if (num_ctl_traps <= 0)
4794		return;
4795
4796	/*
4797	 * Set up the outgoing packet variables
4798	 */
4799	res_opcode = CTL_OP_ASYNCMSG;
4800	res_offset = 0;
4801	res_async = TRUE;
4802	res_authenticate = FALSE;
4803	datapt = rpkt.u.data;
4804	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4805	if (!(err & PEER_EVENT)) {
4806		rpkt.associd = 0;
4807		rpkt.status = htons(ctlsysstatus());
4808
4809		/* Include the core system variables and the list. */
4810		for (i = 1; i <= CS_VARLIST; i++)
4811			ctl_putsys(i);
4812	} else {
4813		INSIST(peer != NULL);
4814		rpkt.associd = htons(peer->associd);
4815		rpkt.status = htons(ctlpeerstatus(peer));
4816
4817		/* Dump it all. Later, maybe less. */
4818		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4819			ctl_putpeer(i, peer);
4820#ifdef REFCLOCK
4821		/*
4822		 * for clock exception events: add clock variables to
4823		 * reflect info on exception
4824		 */
4825		if (err == PEVNT_CLOCK) {
4826			struct refclockstat cs;
4827			struct ctl_var *kv;
4828
4829			cs.kv_list = NULL;
4830			refclock_control(&peer->srcadr, NULL, &cs);
4831
4832			ctl_puthex("refclockstatus",
4833				   ctlclkstatus(&cs));
4834
4835			for (i = 1; i <= CC_MAXCODE; i++)
4836				ctl_putclock(i, &cs, FALSE);
4837			for (kv = cs.kv_list;
4838			     kv != NULL && !(EOV & kv->flags);
4839			     kv++)
4840				if (DEF & kv->flags)
4841					ctl_putdata(kv->text,
4842						    strlen(kv->text),
4843						    FALSE);
4844			free_varlist(cs.kv_list);
4845		}
4846#endif /* REFCLOCK */
4847	}
4848
4849	/*
4850	 * We're done, return.
4851	 */
4852	ctl_flushpkt(0);
4853}
4854
4855
4856/*
4857 * mprintf_event - printf-style varargs variant of report_event()
4858 */
4859int
4860mprintf_event(
4861	int		evcode,		/* event code */
4862	struct peer *	p,		/* may be NULL */
4863	const char *	fmt,		/* msnprintf format */
4864	...
4865	)
4866{
4867	va_list	ap;
4868	int	rc;
4869	char	msg[512];
4870
4871	va_start(ap, fmt);
4872	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4873	va_end(ap);
4874	report_event(evcode, p, msg);
4875
4876	return rc;
4877}
4878
4879
4880/*
4881 * ctl_clr_stats - clear stat counters
4882 */
4883void
4884ctl_clr_stats(void)
4885{
4886	ctltimereset = current_time;
4887	numctlreq = 0;
4888	numctlbadpkts = 0;
4889	numctlresponses = 0;
4890	numctlfrags = 0;
4891	numctlerrors = 0;
4892	numctlfrags = 0;
4893	numctltooshort = 0;
4894	numctlinputresp = 0;
4895	numctlinputfrag = 0;
4896	numctlinputerr = 0;
4897	numctlbadoffset = 0;
4898	numctlbadversion = 0;
4899	numctldatatooshort = 0;
4900	numctlbadop = 0;
4901	numasyncmsgs = 0;
4902}
4903
4904static u_short
4905count_var(
4906	const struct ctl_var *k
4907	)
4908{
4909	u_int c;
4910
4911	if (NULL == k)
4912		return 0;
4913
4914	c = 0;
4915	while (!(EOV & (k++)->flags))
4916		c++;
4917
4918	ENSURE(c <= USHRT_MAX);
4919	return (u_short)c;
4920}
4921
4922
4923char *
4924add_var(
4925	struct ctl_var **kv,
4926	u_long size,
4927	u_short def
4928	)
4929{
4930	u_short		c;
4931	struct ctl_var *k;
4932	char *		buf;
4933
4934	c = count_var(*kv);
4935	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4936	k = *kv;
4937	buf = emalloc(size);
4938	k[c].code  = c;
4939	k[c].text  = buf;
4940	k[c].flags = def;
4941	k[c + 1].code  = 0;
4942	k[c + 1].text  = NULL;
4943	k[c + 1].flags = EOV;
4944
4945	return buf;
4946}
4947
4948
4949void
4950set_var(
4951	struct ctl_var **kv,
4952	const char *data,
4953	u_long size,
4954	u_short def
4955	)
4956{
4957	struct ctl_var *k;
4958	const char *s;
4959	const char *t;
4960	char *td;
4961
4962	if (NULL == data || !size)
4963		return;
4964
4965	k = *kv;
4966	if (k != NULL) {
4967		while (!(EOV & k->flags)) {
4968			if (NULL == k->text)	{
4969				td = emalloc(size);
4970				memcpy(td, data, size);
4971				k->text = td;
4972				k->flags = def;
4973				return;
4974			} else {
4975				s = data;
4976				t = k->text;
4977				while (*t != '=' && *s == *t) {
4978					s++;
4979					t++;
4980				}
4981				if (*s == *t && ((*t == '=') || !*t)) {
4982					td = erealloc((void *)(intptr_t)k->text, size);
4983					memcpy(td, data, size);
4984					k->text = td;
4985					k->flags = def;
4986					return;
4987				}
4988			}
4989			k++;
4990		}
4991	}
4992	td = add_var(kv, size, def);
4993	memcpy(td, data, size);
4994}
4995
4996
4997void
4998set_sys_var(
4999	const char *data,
5000	u_long size,
5001	u_short def
5002	)
5003{
5004	set_var(&ext_sys_var, data, size, def);
5005}
5006
5007
5008/*
5009 * get_ext_sys_var() retrieves the value of a user-defined variable or
5010 * NULL if the variable has not been setvar'd.
5011 */
5012const char *
5013get_ext_sys_var(const char *tag)
5014{
5015	struct ctl_var *	v;
5016	size_t			c;
5017	const char *		val;
5018
5019	val = NULL;
5020	c = strlen(tag);
5021	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5022		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5023			if ('=' == v->text[c]) {
5024				val = v->text + c + 1;
5025				break;
5026			} else if ('\0' == v->text[c]) {
5027				val = "";
5028				break;
5029			}
5030		}
5031	}
5032
5033	return val;
5034}
5035
5036
5037void
5038free_varlist(
5039	struct ctl_var *kv
5040	)
5041{
5042	struct ctl_var *k;
5043	if (kv) {
5044		for (k = kv; !(k->flags & EOV); k++)
5045			free((void *)(intptr_t)k->text);
5046		free((void *)kv);
5047	}
5048}
5049