timespecops.h revision 290001
1/*
2 * timespecops.h -- calculations on 'struct timespec' values
3 *
4 * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
5 * The contents of 'html/copyright.html' apply.
6 *
7 * Rationale
8 * ---------
9 *
10 * Doing basic arithmetic on a 'struct timespec' is not exceedingly
11 * hard, but it requires tedious and repetitive code to keep the result
12 * normalised. We consider a timespec normalised when the nanosecond
13 * fraction is in the interval [0 .. 10^9[ ; there are multiple value
14 * pairs of seconds and nanoseconds that denote the same time interval,
15 * but the normalised representation is unique. No two different
16 * intervals can have the same normalised representation.
17 *
18 * Another topic is the representation of negative time intervals.
19 * There's more than one way to this, since both the seconds and the
20 * nanoseconds of a timespec are signed values. IMHO, the easiest way is
21 * to use a complement representation where the nanoseconds are still
22 * normalised, no matter what the sign of the seconds value. This makes
23 * normalisation easier, since the sign of the integer part is
24 * irrelevant, and it removes several sign decision cases during the
25 * calculations.
26 *
27 * As long as no signed integer overflow can occur with the nanosecond
28 * part of the operands, all operations work as expected and produce a
29 * normalised result.
30 *
31 * The exception to this are functions fix a '_fast' suffix, which do no
32 * normalisation on input data and therefore expect the input data to be
33 * normalised.
34 *
35 * Input and output operands may overlap; all input is consumed before
36 * the output is written to.
37 */
38#ifndef TIMESPECOPS_H
39#define TIMESPECOPS_H
40
41#include <sys/types.h>
42#include <stdio.h>
43#include <math.h>
44
45#include "ntp.h"
46#include "timetoa.h"
47
48
49/* nanoseconds per second */
50#define NANOSECONDS 1000000000
51
52/* predicate: returns TRUE if the nanoseconds are in nominal range */
53#define timespec_isnormal(x) \
54	((x)->tv_nsec >= 0 && (x)->tv_nsec < NANOSECONDS)
55
56/* predicate: returns TRUE if the nanoseconds are out-of-bounds */
57#define timespec_isdenormal(x)	(!timespec_isnormal(x))
58
59/* conversion between l_fp fractions and nanoseconds */
60#ifdef HAVE_U_INT64
61# define FTOTVN(tsf)						\
62	((int32)						\
63	 (((u_int64)(tsf) * NANOSECONDS + 0x80000000) >> 32))
64# define TVNTOF(tvu)						\
65	((u_int32)						\
66	 ((((u_int64)(tvu) << 32) + NANOSECONDS / 2) /		\
67	  NANOSECONDS))
68#else
69# define NSECFRAC	(FRAC / NANOSECONDS)
70# define FTOTVN(tsf)						\
71	((int32)((tsf) / NSECFRAC + 0.5))
72# define TVNTOF(tvu)						\
73	((u_int32)((tvu) * NSECFRAC + 0.5))
74#endif
75
76
77
78/* make sure nanoseconds are in nominal range */
79static inline struct timespec
80normalize_tspec(
81	struct timespec x
82	)
83{
84#if SIZEOF_LONG > 4
85	long	z;
86
87	/*
88	 * tv_nsec is of type 'long', and on a 64-bit machine using only
89	 * loops becomes prohibitive once the upper 32 bits get
90	 * involved. On the other hand, division by constant should be
91	 * fast enough; so we do a division of the nanoseconds in that
92	 * case. The floor adjustment step follows with the standard
93	 * normalisation loops. And labs() is intentionally not used
94	 * here: it has implementation-defined behaviour when applied
95	 * to LONG_MIN.
96	 */
97	if (x.tv_nsec < -3l * NANOSECONDS ||
98	    x.tv_nsec > 3l * NANOSECONDS) {
99		z = x.tv_nsec / NANOSECONDS;
100		x.tv_nsec -= z * NANOSECONDS;
101		x.tv_sec += z;
102	}
103#endif
104	/* since 10**9 is close to 2**32, we don't divide but do a
105	 * normalisation in a loop; this takes 3 steps max, and should
106	 * outperform a division even if the mul-by-inverse trick is
107	 * employed. */
108	if (x.tv_nsec < 0)
109		do {
110			x.tv_nsec += NANOSECONDS;
111			x.tv_sec--;
112		} while (x.tv_nsec < 0);
113	else if (x.tv_nsec >= NANOSECONDS)
114		do {
115			x.tv_nsec -= NANOSECONDS;
116			x.tv_sec++;
117		} while (x.tv_nsec >= NANOSECONDS);
118
119	return x;
120}
121
122/* x = a + b */
123static inline struct timespec
124add_tspec(
125	struct timespec	a,
126	struct timespec	b
127	)
128{
129	struct timespec	x;
130
131	x = a;
132	x.tv_sec += b.tv_sec;
133	x.tv_nsec += b.tv_nsec;
134
135	return normalize_tspec(x);
136}
137
138/* x = a + b, b is fraction only */
139static inline struct timespec
140add_tspec_ns(
141	struct timespec	a,
142	long		b
143	)
144{
145	struct timespec x;
146
147	x = a;
148	x.tv_nsec += b;
149
150	return normalize_tspec(x);
151}
152
153/* x = a - b */
154static inline struct timespec
155sub_tspec(
156	struct timespec	a,
157	struct timespec	b
158	)
159{
160	struct timespec x;
161
162	x = a;
163	x.tv_sec -= b.tv_sec;
164	x.tv_nsec -= b.tv_nsec;
165
166	return normalize_tspec(x);
167}
168
169/* x = a - b, b is fraction only */
170static inline struct timespec
171sub_tspec_ns(
172	struct timespec	a,
173	long		b
174	)
175{
176	struct timespec	x;
177
178	x = a;
179	x.tv_nsec -= b;
180
181	return normalize_tspec(x);
182}
183
184/* x = -a */
185static inline struct timespec
186neg_tspec(
187	struct timespec	a
188	)
189{
190	struct timespec	x;
191
192	x.tv_sec = -a.tv_sec;
193	x.tv_nsec = -a.tv_nsec;
194
195	return normalize_tspec(x);
196}
197
198/* x = abs(a) */
199static inline struct timespec
200abs_tspec(
201	struct timespec	a
202	)
203{
204	struct timespec	c;
205
206	c = normalize_tspec(a);
207	if (c.tv_sec < 0) {
208		if (c.tv_nsec != 0) {
209			c.tv_sec = -c.tv_sec - 1;
210			c.tv_nsec = NANOSECONDS - c.tv_nsec;
211		} else {
212			c.tv_sec = -c.tv_sec;
213		}
214	}
215
216	return c;
217}
218
219/*
220 * compare previously-normalised a and b
221 * return 1 / 0 / -1 if a < / == / > b
222 */
223static inline int
224cmp_tspec(
225	struct timespec a,
226	struct timespec b
227	)
228{
229	int r;
230
231	r = (a.tv_sec > b.tv_sec) - (a.tv_sec < b.tv_sec);
232	if (0 == r)
233		r = (a.tv_nsec > b.tv_nsec) -
234		    (a.tv_nsec < b.tv_nsec);
235
236	return r;
237}
238
239/*
240 * compare possibly-denormal a and b
241 * return 1 / 0 / -1 if a < / == / > b
242 */
243static inline int
244cmp_tspec_denorm(
245	struct timespec	a,
246	struct timespec	b
247	)
248{
249	return cmp_tspec(normalize_tspec(a), normalize_tspec(b));
250}
251
252/*
253 * test previously-normalised a
254 * return 1 / 0 / -1 if a < / == / > 0
255 */
256static inline int
257test_tspec(
258	struct timespec	a
259	)
260{
261	int		r;
262
263	r = (a.tv_sec > 0) - (a.tv_sec < 0);
264	if (r == 0)
265		r = (a.tv_nsec > 0);
266
267	return r;
268}
269
270/*
271 * test possibly-denormal a
272 * return 1 / 0 / -1 if a < / == / > 0
273 */
274static inline int
275test_tspec_denorm(
276	struct timespec	a
277	)
278{
279	return test_tspec(normalize_tspec(a));
280}
281
282/* return LIB buffer ptr to string rep */
283static inline const char *
284tspectoa(
285	struct timespec	x
286	)
287{
288	return format_time_fraction(x.tv_sec, x.tv_nsec, 9);
289}
290
291/*
292 *  convert to l_fp type, relative and absolute
293 */
294
295/* convert from timespec duration to l_fp duration */
296static inline l_fp
297tspec_intv_to_lfp(
298	struct timespec	x
299	)
300{
301	struct timespec	v;
302	l_fp		y;
303
304	v = normalize_tspec(x);
305	y.l_uf = TVNTOF(v.tv_nsec);
306	y.l_i = (int32)v.tv_sec;
307
308	return y;
309}
310
311/* x must be UN*X epoch, output will be in NTP epoch */
312static inline l_fp
313tspec_stamp_to_lfp(
314	struct timespec	x
315	)
316{
317	l_fp		y;
318
319	y = tspec_intv_to_lfp(x);
320	y.l_ui += JAN_1970;
321
322	return y;
323}
324
325/* convert from l_fp type, relative signed/unsigned and absolute */
326static inline struct timespec
327lfp_intv_to_tspec(
328	l_fp		x
329	)
330{
331	struct timespec out;
332	l_fp		absx;
333	int		neg;
334
335	neg = L_ISNEG(&x);
336	absx = x;
337	if (neg) {
338		L_NEG(&absx);
339	}
340	out.tv_nsec = FTOTVN(absx.l_uf);
341	out.tv_sec = absx.l_i;
342	if (neg) {
343		out.tv_sec = -out.tv_sec;
344		out.tv_nsec = -out.tv_nsec;
345		out = normalize_tspec(out);
346	}
347
348	return out;
349}
350
351static inline struct timespec
352lfp_uintv_to_tspec(
353	l_fp		x
354	)
355{
356	struct timespec	out;
357
358	out.tv_nsec = FTOTVN(x.l_uf);
359	out.tv_sec = x.l_ui;
360
361	return out;
362}
363
364/*
365 * absolute (timestamp) conversion. Input is time in NTP epoch, output
366 * is in UN*X epoch. The NTP time stamp will be expanded around the
367 * pivot time *p or the current time, if p is NULL.
368 */
369static inline struct timespec
370lfp_stamp_to_tspec(
371	l_fp		x,
372	const time_t *	p
373	)
374{
375	struct timespec	out;
376	vint64		sec;
377
378	sec = ntpcal_ntp_to_time(x.l_ui, p);
379	out.tv_nsec = FTOTVN(x.l_uf);
380
381	/* copying a vint64 to a time_t needs some care... */
382#if SIZEOF_TIME_T <= 4
383	out.tv_sec = (time_t)sec.d_s.lo;
384#elif defined(HAVE_INT64)
385	out.tv_sec = (time_t)sec.q_s;
386#else
387	out.tv_sec = ((time_t)sec.d_s.hi << 32) | sec.d_s.lo;
388#endif
389
390	return out;
391}
392
393#endif	/* TIMESPECOPS_H */
394