SemaStmtAsm.cpp revision 252723
1//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for inline asm statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/RecordLayout.h"
16#include "clang/AST/TypeLoc.h"
17#include "clang/Basic/TargetInfo.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/Sema/Initialization.h"
20#include "clang/Sema/Lookup.h"
21#include "clang/Sema/Scope.h"
22#include "clang/Sema/ScopeInfo.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/BitVector.h"
25using namespace clang;
26using namespace sema;
27
28/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
29/// ignore "noop" casts in places where an lvalue is required by an inline asm.
30/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
31/// provide a strong guidance to not use it.
32///
33/// This method checks to see if the argument is an acceptable l-value and
34/// returns false if it is a case we can handle.
35static bool CheckAsmLValue(const Expr *E, Sema &S) {
36  // Type dependent expressions will be checked during instantiation.
37  if (E->isTypeDependent())
38    return false;
39
40  if (E->isLValue())
41    return false;  // Cool, this is an lvalue.
42
43  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
44  // are supposed to allow.
45  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
46  if (E != E2 && E2->isLValue()) {
47    if (!S.getLangOpts().HeinousExtensions)
48      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
49        << E->getSourceRange();
50    else
51      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
52        << E->getSourceRange();
53    // Accept, even if we emitted an error diagnostic.
54    return false;
55  }
56
57  // None of the above, just randomly invalid non-lvalue.
58  return true;
59}
60
61/// isOperandMentioned - Return true if the specified operand # is mentioned
62/// anywhere in the decomposed asm string.
63static bool isOperandMentioned(unsigned OpNo,
64                         ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
65  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
66    const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
67    if (!Piece.isOperand()) continue;
68
69    // If this is a reference to the input and if the input was the smaller
70    // one, then we have to reject this asm.
71    if (Piece.getOperandNo() == OpNo)
72      return true;
73  }
74  return false;
75}
76
77StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
78                                 bool IsVolatile, unsigned NumOutputs,
79                                 unsigned NumInputs, IdentifierInfo **Names,
80                                 MultiExprArg constraints, MultiExprArg exprs,
81                                 Expr *asmString, MultiExprArg clobbers,
82                                 SourceLocation RParenLoc) {
83  unsigned NumClobbers = clobbers.size();
84  StringLiteral **Constraints =
85    reinterpret_cast<StringLiteral**>(constraints.data());
86  Expr **Exprs = exprs.data();
87  StringLiteral *AsmString = cast<StringLiteral>(asmString);
88  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
89
90  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
91
92  // The parser verifies that there is a string literal here.
93  if (!AsmString->isAscii())
94    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
95      << AsmString->getSourceRange());
96
97  for (unsigned i = 0; i != NumOutputs; i++) {
98    StringLiteral *Literal = Constraints[i];
99    if (!Literal->isAscii())
100      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
101        << Literal->getSourceRange());
102
103    StringRef OutputName;
104    if (Names[i])
105      OutputName = Names[i]->getName();
106
107    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
108    if (!Context.getTargetInfo().validateOutputConstraint(Info))
109      return StmtError(Diag(Literal->getLocStart(),
110                            diag::err_asm_invalid_output_constraint)
111                       << Info.getConstraintStr());
112
113    // Check that the output exprs are valid lvalues.
114    Expr *OutputExpr = Exprs[i];
115    if (CheckAsmLValue(OutputExpr, *this))
116      return StmtError(Diag(OutputExpr->getLocStart(),
117                            diag::err_asm_invalid_lvalue_in_output)
118                       << OutputExpr->getSourceRange());
119
120    if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
121                            diag::err_dereference_incomplete_type))
122      return StmtError();
123
124    OutputConstraintInfos.push_back(Info);
125  }
126
127  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
128
129  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
130    StringLiteral *Literal = Constraints[i];
131    if (!Literal->isAscii())
132      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
133        << Literal->getSourceRange());
134
135    StringRef InputName;
136    if (Names[i])
137      InputName = Names[i]->getName();
138
139    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
140    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
141                                                NumOutputs, Info)) {
142      return StmtError(Diag(Literal->getLocStart(),
143                            diag::err_asm_invalid_input_constraint)
144                       << Info.getConstraintStr());
145    }
146
147    Expr *InputExpr = Exprs[i];
148
149    // Only allow void types for memory constraints.
150    if (Info.allowsMemory() && !Info.allowsRegister()) {
151      if (CheckAsmLValue(InputExpr, *this))
152        return StmtError(Diag(InputExpr->getLocStart(),
153                              diag::err_asm_invalid_lvalue_in_input)
154                         << Info.getConstraintStr()
155                         << InputExpr->getSourceRange());
156    }
157
158    if (Info.allowsRegister()) {
159      if (InputExpr->getType()->isVoidType()) {
160        return StmtError(Diag(InputExpr->getLocStart(),
161                              diag::err_asm_invalid_type_in_input)
162          << InputExpr->getType() << Info.getConstraintStr()
163          << InputExpr->getSourceRange());
164      }
165    }
166
167    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
168    if (Result.isInvalid())
169      return StmtError();
170
171    Exprs[i] = Result.take();
172    InputConstraintInfos.push_back(Info);
173
174    const Type *Ty = Exprs[i]->getType().getTypePtr();
175    if (Ty->isDependentType())
176      continue;
177
178    if (!Ty->isVoidType() || !Info.allowsMemory())
179      if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
180                              diag::err_dereference_incomplete_type))
181        return StmtError();
182
183    unsigned Size = Context.getTypeSize(Ty);
184    if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
185                                                   Size))
186      return StmtError(Diag(InputExpr->getLocStart(),
187                            diag::err_asm_invalid_input_size)
188                       << Info.getConstraintStr());
189  }
190
191  // Check that the clobbers are valid.
192  for (unsigned i = 0; i != NumClobbers; i++) {
193    StringLiteral *Literal = Clobbers[i];
194    if (!Literal->isAscii())
195      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
196        << Literal->getSourceRange());
197
198    StringRef Clobber = Literal->getString();
199
200    if (!Context.getTargetInfo().isValidClobber(Clobber))
201      return StmtError(Diag(Literal->getLocStart(),
202                  diag::err_asm_unknown_register_name) << Clobber);
203  }
204
205  GCCAsmStmt *NS =
206    new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
207                             NumInputs, Names, Constraints, Exprs, AsmString,
208                             NumClobbers, Clobbers, RParenLoc);
209  // Validate the asm string, ensuring it makes sense given the operands we
210  // have.
211  SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
212  unsigned DiagOffs;
213  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
214    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
215           << AsmString->getSourceRange();
216    return StmtError();
217  }
218
219  // Validate constraints and modifiers.
220  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
221    GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
222    if (!Piece.isOperand()) continue;
223
224    // Look for the correct constraint index.
225    unsigned Idx = 0;
226    unsigned ConstraintIdx = 0;
227    for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) {
228      TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
229      if (Idx == Piece.getOperandNo())
230        break;
231      ++Idx;
232
233      if (Info.isReadWrite()) {
234        if (Idx == Piece.getOperandNo())
235          break;
236        ++Idx;
237      }
238    }
239
240    for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) {
241      TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
242      if (Idx == Piece.getOperandNo())
243        break;
244      ++Idx;
245
246      if (Info.isReadWrite()) {
247        if (Idx == Piece.getOperandNo())
248          break;
249        ++Idx;
250      }
251    }
252
253    // Now that we have the right indexes go ahead and check.
254    StringLiteral *Literal = Constraints[ConstraintIdx];
255    const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
256    if (Ty->isDependentType() || Ty->isIncompleteType())
257      continue;
258
259    unsigned Size = Context.getTypeSize(Ty);
260    if (!Context.getTargetInfo()
261          .validateConstraintModifier(Literal->getString(), Piece.getModifier(),
262                                      Size))
263      Diag(Exprs[ConstraintIdx]->getLocStart(),
264           diag::warn_asm_mismatched_size_modifier);
265  }
266
267  // Validate tied input operands for type mismatches.
268  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
269    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
270
271    // If this is a tied constraint, verify that the output and input have
272    // either exactly the same type, or that they are int/ptr operands with the
273    // same size (int/long, int*/long, are ok etc).
274    if (!Info.hasTiedOperand()) continue;
275
276    unsigned TiedTo = Info.getTiedOperand();
277    unsigned InputOpNo = i+NumOutputs;
278    Expr *OutputExpr = Exprs[TiedTo];
279    Expr *InputExpr = Exprs[InputOpNo];
280
281    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
282      continue;
283
284    QualType InTy = InputExpr->getType();
285    QualType OutTy = OutputExpr->getType();
286    if (Context.hasSameType(InTy, OutTy))
287      continue;  // All types can be tied to themselves.
288
289    // Decide if the input and output are in the same domain (integer/ptr or
290    // floating point.
291    enum AsmDomain {
292      AD_Int, AD_FP, AD_Other
293    } InputDomain, OutputDomain;
294
295    if (InTy->isIntegerType() || InTy->isPointerType())
296      InputDomain = AD_Int;
297    else if (InTy->isRealFloatingType())
298      InputDomain = AD_FP;
299    else
300      InputDomain = AD_Other;
301
302    if (OutTy->isIntegerType() || OutTy->isPointerType())
303      OutputDomain = AD_Int;
304    else if (OutTy->isRealFloatingType())
305      OutputDomain = AD_FP;
306    else
307      OutputDomain = AD_Other;
308
309    // They are ok if they are the same size and in the same domain.  This
310    // allows tying things like:
311    //   void* to int*
312    //   void* to int            if they are the same size.
313    //   double to long double   if they are the same size.
314    //
315    uint64_t OutSize = Context.getTypeSize(OutTy);
316    uint64_t InSize = Context.getTypeSize(InTy);
317    if (OutSize == InSize && InputDomain == OutputDomain &&
318        InputDomain != AD_Other)
319      continue;
320
321    // If the smaller input/output operand is not mentioned in the asm string,
322    // then we can promote the smaller one to a larger input and the asm string
323    // won't notice.
324    bool SmallerValueMentioned = false;
325
326    // If this is a reference to the input and if the input was the smaller
327    // one, then we have to reject this asm.
328    if (isOperandMentioned(InputOpNo, Pieces)) {
329      // This is a use in the asm string of the smaller operand.  Since we
330      // codegen this by promoting to a wider value, the asm will get printed
331      // "wrong".
332      SmallerValueMentioned |= InSize < OutSize;
333    }
334    if (isOperandMentioned(TiedTo, Pieces)) {
335      // If this is a reference to the output, and if the output is the larger
336      // value, then it's ok because we'll promote the input to the larger type.
337      SmallerValueMentioned |= OutSize < InSize;
338    }
339
340    // If the smaller value wasn't mentioned in the asm string, and if the
341    // output was a register, just extend the shorter one to the size of the
342    // larger one.
343    if (!SmallerValueMentioned && InputDomain != AD_Other &&
344        OutputConstraintInfos[TiedTo].allowsRegister())
345      continue;
346
347    // Either both of the operands were mentioned or the smaller one was
348    // mentioned.  One more special case that we'll allow: if the tied input is
349    // integer, unmentioned, and is a constant, then we'll allow truncating it
350    // down to the size of the destination.
351    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
352        !isOperandMentioned(InputOpNo, Pieces) &&
353        InputExpr->isEvaluatable(Context)) {
354      CastKind castKind =
355        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
356      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
357      Exprs[InputOpNo] = InputExpr;
358      NS->setInputExpr(i, InputExpr);
359      continue;
360    }
361
362    Diag(InputExpr->getLocStart(),
363         diag::err_asm_tying_incompatible_types)
364      << InTy << OutTy << OutputExpr->getSourceRange()
365      << InputExpr->getSourceRange();
366    return StmtError();
367  }
368
369  return Owned(NS);
370}
371
372ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
373                                           SourceLocation TemplateKWLoc,
374                                           UnqualifiedId &Id,
375                                           InlineAsmIdentifierInfo &Info,
376                                           bool IsUnevaluatedContext) {
377  Info.clear();
378
379  if (IsUnevaluatedContext)
380    PushExpressionEvaluationContext(UnevaluatedAbstract,
381                                    ReuseLambdaContextDecl);
382
383  ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
384                                        /*trailing lparen*/ false,
385                                        /*is & operand*/ false);
386
387  if (IsUnevaluatedContext)
388    PopExpressionEvaluationContext();
389
390  if (!Result.isUsable()) return Result;
391
392  Result = CheckPlaceholderExpr(Result.take());
393  if (!Result.isUsable()) return Result;
394
395  QualType T = Result.get()->getType();
396
397  // For now, reject dependent types.
398  if (T->isDependentType()) {
399    Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T;
400    return ExprError();
401  }
402
403  // Any sort of function type is fine.
404  if (T->isFunctionType()) {
405    return Result;
406  }
407
408  // Otherwise, it needs to be a complete type.
409  if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
410    return ExprError();
411  }
412
413  // Compute the type size (and array length if applicable?).
414  Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity();
415  if (T->isArrayType()) {
416    const ArrayType *ATy = Context.getAsArrayType(T);
417    Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
418    Info.Length = Info.Size / Info.Type;
419  }
420
421  // We can work with the expression as long as it's not an r-value.
422  if (!Result.get()->isRValue())
423    Info.IsVarDecl = true;
424
425  return Result;
426}
427
428bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
429                                unsigned &Offset, SourceLocation AsmLoc) {
430  Offset = 0;
431  LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
432                          LookupOrdinaryName);
433
434  if (!LookupName(BaseResult, getCurScope()))
435    return true;
436
437  if (!BaseResult.isSingleResult())
438    return true;
439
440  const RecordType *RT = 0;
441  NamedDecl *FoundDecl = BaseResult.getFoundDecl();
442  if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
443    RT = VD->getType()->getAs<RecordType>();
444  else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(FoundDecl))
445    RT = TD->getUnderlyingType()->getAs<RecordType>();
446  if (!RT)
447    return true;
448
449  if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0))
450    return true;
451
452  LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(),
453                           LookupMemberName);
454
455  if (!LookupQualifiedName(FieldResult, RT->getDecl()))
456    return true;
457
458  // FIXME: Handle IndirectFieldDecl?
459  FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
460  if (!FD)
461    return true;
462
463  const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
464  unsigned i = FD->getFieldIndex();
465  CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
466  Offset = (unsigned)Result.getQuantity();
467
468  return false;
469}
470
471StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
472                                ArrayRef<Token> AsmToks,
473                                StringRef AsmString,
474                                unsigned NumOutputs, unsigned NumInputs,
475                                ArrayRef<StringRef> Constraints,
476                                ArrayRef<StringRef> Clobbers,
477                                ArrayRef<Expr*> Exprs,
478                                SourceLocation EndLoc) {
479  bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
480  MSAsmStmt *NS =
481    new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
482                            /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
483                            Constraints, Exprs, AsmString,
484                            Clobbers, EndLoc);
485  return Owned(NS);
486}
487