SemaOverload.cpp revision 210299
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion,
56    ICC_Conversion,
57    ICC_Conversion
58  };
59  return Category[(int)Kind];
60}
61
62/// GetConversionRank - Retrieve the implicit conversion rank
63/// corresponding to the given implicit conversion kind.
64ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
65  static const ImplicitConversionRank
66    Rank[(int)ICK_Num_Conversion_Kinds] = {
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Exact_Match,
72    ICR_Exact_Match,
73    ICR_Promotion,
74    ICR_Promotion,
75    ICR_Promotion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion,
84    ICR_Conversion,
85    ICR_Conversion,
86    ICR_Conversion,
87    ICR_Complex_Real_Conversion
88  };
89  return Rank[(int)Kind];
90}
91
92/// GetImplicitConversionName - Return the name of this kind of
93/// implicit conversion.
94const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
95  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
96    "No conversion",
97    "Lvalue-to-rvalue",
98    "Array-to-pointer",
99    "Function-to-pointer",
100    "Noreturn adjustment",
101    "Qualification",
102    "Integral promotion",
103    "Floating point promotion",
104    "Complex promotion",
105    "Integral conversion",
106    "Floating conversion",
107    "Complex conversion",
108    "Floating-integral conversion",
109    "Pointer conversion",
110    "Pointer-to-member conversion",
111    "Boolean conversion",
112    "Compatible-types conversion",
113    "Derived-to-base conversion",
114    "Vector conversion",
115    "Vector splat",
116    "Complex-real conversion"
117  };
118  return Name[Kind];
119}
120
121/// StandardConversionSequence - Set the standard conversion
122/// sequence to the identity conversion.
123void StandardConversionSequence::setAsIdentityConversion() {
124  First = ICK_Identity;
125  Second = ICK_Identity;
126  Third = ICK_Identity;
127  DeprecatedStringLiteralToCharPtr = false;
128  ReferenceBinding = false;
129  DirectBinding = false;
130  RRefBinding = false;
131  CopyConstructor = 0;
132}
133
134/// getRank - Retrieve the rank of this standard conversion sequence
135/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
136/// implicit conversions.
137ImplicitConversionRank StandardConversionSequence::getRank() const {
138  ImplicitConversionRank Rank = ICR_Exact_Match;
139  if  (GetConversionRank(First) > Rank)
140    Rank = GetConversionRank(First);
141  if  (GetConversionRank(Second) > Rank)
142    Rank = GetConversionRank(Second);
143  if  (GetConversionRank(Third) > Rank)
144    Rank = GetConversionRank(Third);
145  return Rank;
146}
147
148/// isPointerConversionToBool - Determines whether this conversion is
149/// a conversion of a pointer or pointer-to-member to bool. This is
150/// used as part of the ranking of standard conversion sequences
151/// (C++ 13.3.3.2p4).
152bool StandardConversionSequence::isPointerConversionToBool() const {
153  // Note that FromType has not necessarily been transformed by the
154  // array-to-pointer or function-to-pointer implicit conversions, so
155  // check for their presence as well as checking whether FromType is
156  // a pointer.
157  if (getToType(1)->isBooleanType() &&
158      (getFromType()->isPointerType() ||
159       getFromType()->isObjCObjectPointerType() ||
160       getFromType()->isBlockPointerType() ||
161       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
162    return true;
163
164  return false;
165}
166
167/// isPointerConversionToVoidPointer - Determines whether this
168/// conversion is a conversion of a pointer to a void pointer. This is
169/// used as part of the ranking of standard conversion sequences (C++
170/// 13.3.3.2p4).
171bool
172StandardConversionSequence::
173isPointerConversionToVoidPointer(ASTContext& Context) const {
174  QualType FromType = getFromType();
175  QualType ToType = getToType(1);
176
177  // Note that FromType has not necessarily been transformed by the
178  // array-to-pointer implicit conversion, so check for its presence
179  // and redo the conversion to get a pointer.
180  if (First == ICK_Array_To_Pointer)
181    FromType = Context.getArrayDecayedType(FromType);
182
183  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
184    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
185      return ToPtrType->getPointeeType()->isVoidType();
186
187  return false;
188}
189
190/// DebugPrint - Print this standard conversion sequence to standard
191/// error. Useful for debugging overloading issues.
192void StandardConversionSequence::DebugPrint() const {
193  llvm::raw_ostream &OS = llvm::errs();
194  bool PrintedSomething = false;
195  if (First != ICK_Identity) {
196    OS << GetImplicitConversionName(First);
197    PrintedSomething = true;
198  }
199
200  if (Second != ICK_Identity) {
201    if (PrintedSomething) {
202      OS << " -> ";
203    }
204    OS << GetImplicitConversionName(Second);
205
206    if (CopyConstructor) {
207      OS << " (by copy constructor)";
208    } else if (DirectBinding) {
209      OS << " (direct reference binding)";
210    } else if (ReferenceBinding) {
211      OS << " (reference binding)";
212    }
213    PrintedSomething = true;
214  }
215
216  if (Third != ICK_Identity) {
217    if (PrintedSomething) {
218      OS << " -> ";
219    }
220    OS << GetImplicitConversionName(Third);
221    PrintedSomething = true;
222  }
223
224  if (!PrintedSomething) {
225    OS << "No conversions required";
226  }
227}
228
229/// DebugPrint - Print this user-defined conversion sequence to standard
230/// error. Useful for debugging overloading issues.
231void UserDefinedConversionSequence::DebugPrint() const {
232  llvm::raw_ostream &OS = llvm::errs();
233  if (Before.First || Before.Second || Before.Third) {
234    Before.DebugPrint();
235    OS << " -> ";
236  }
237  OS << '\'' << ConversionFunction << '\'';
238  if (After.First || After.Second || After.Third) {
239    OS << " -> ";
240    After.DebugPrint();
241  }
242}
243
244/// DebugPrint - Print this implicit conversion sequence to standard
245/// error. Useful for debugging overloading issues.
246void ImplicitConversionSequence::DebugPrint() const {
247  llvm::raw_ostream &OS = llvm::errs();
248  switch (ConversionKind) {
249  case StandardConversion:
250    OS << "Standard conversion: ";
251    Standard.DebugPrint();
252    break;
253  case UserDefinedConversion:
254    OS << "User-defined conversion: ";
255    UserDefined.DebugPrint();
256    break;
257  case EllipsisConversion:
258    OS << "Ellipsis conversion";
259    break;
260  case AmbiguousConversion:
261    OS << "Ambiguous conversion";
262    break;
263  case BadConversion:
264    OS << "Bad conversion";
265    break;
266  }
267
268  OS << "\n";
269}
270
271void AmbiguousConversionSequence::construct() {
272  new (&conversions()) ConversionSet();
273}
274
275void AmbiguousConversionSequence::destruct() {
276  conversions().~ConversionSet();
277}
278
279void
280AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
281  FromTypePtr = O.FromTypePtr;
282  ToTypePtr = O.ToTypePtr;
283  new (&conversions()) ConversionSet(O.conversions());
284}
285
286namespace {
287  // Structure used by OverloadCandidate::DeductionFailureInfo to store
288  // template parameter and template argument information.
289  struct DFIParamWithArguments {
290    TemplateParameter Param;
291    TemplateArgument FirstArg;
292    TemplateArgument SecondArg;
293  };
294}
295
296/// \brief Convert from Sema's representation of template deduction information
297/// to the form used in overload-candidate information.
298OverloadCandidate::DeductionFailureInfo
299static MakeDeductionFailureInfo(ASTContext &Context,
300                                Sema::TemplateDeductionResult TDK,
301                                Sema::TemplateDeductionInfo &Info) {
302  OverloadCandidate::DeductionFailureInfo Result;
303  Result.Result = static_cast<unsigned>(TDK);
304  Result.Data = 0;
305  switch (TDK) {
306  case Sema::TDK_Success:
307  case Sema::TDK_InstantiationDepth:
308  case Sema::TDK_TooManyArguments:
309  case Sema::TDK_TooFewArguments:
310    break;
311
312  case Sema::TDK_Incomplete:
313  case Sema::TDK_InvalidExplicitArguments:
314    Result.Data = Info.Param.getOpaqueValue();
315    break;
316
317  case Sema::TDK_Inconsistent:
318  case Sema::TDK_InconsistentQuals: {
319    // FIXME: Should allocate from normal heap so that we can free this later.
320    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
321    Saved->Param = Info.Param;
322    Saved->FirstArg = Info.FirstArg;
323    Saved->SecondArg = Info.SecondArg;
324    Result.Data = Saved;
325    break;
326  }
327
328  case Sema::TDK_SubstitutionFailure:
329    Result.Data = Info.take();
330    break;
331
332  case Sema::TDK_NonDeducedMismatch:
333  case Sema::TDK_FailedOverloadResolution:
334    break;
335  }
336
337  return Result;
338}
339
340void OverloadCandidate::DeductionFailureInfo::Destroy() {
341  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
342  case Sema::TDK_Success:
343  case Sema::TDK_InstantiationDepth:
344  case Sema::TDK_Incomplete:
345  case Sema::TDK_TooManyArguments:
346  case Sema::TDK_TooFewArguments:
347  case Sema::TDK_InvalidExplicitArguments:
348    break;
349
350  case Sema::TDK_Inconsistent:
351  case Sema::TDK_InconsistentQuals:
352    // FIXME: Destroy the data?
353    Data = 0;
354    break;
355
356  case Sema::TDK_SubstitutionFailure:
357    // FIXME: Destroy the template arugment list?
358    Data = 0;
359    break;
360
361  // Unhandled
362  case Sema::TDK_NonDeducedMismatch:
363  case Sema::TDK_FailedOverloadResolution:
364    break;
365  }
366}
367
368TemplateParameter
369OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
370  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
371  case Sema::TDK_Success:
372  case Sema::TDK_InstantiationDepth:
373  case Sema::TDK_TooManyArguments:
374  case Sema::TDK_TooFewArguments:
375  case Sema::TDK_SubstitutionFailure:
376    return TemplateParameter();
377
378  case Sema::TDK_Incomplete:
379  case Sema::TDK_InvalidExplicitArguments:
380    return TemplateParameter::getFromOpaqueValue(Data);
381
382  case Sema::TDK_Inconsistent:
383  case Sema::TDK_InconsistentQuals:
384    return static_cast<DFIParamWithArguments*>(Data)->Param;
385
386  // Unhandled
387  case Sema::TDK_NonDeducedMismatch:
388  case Sema::TDK_FailedOverloadResolution:
389    break;
390  }
391
392  return TemplateParameter();
393}
394
395TemplateArgumentList *
396OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
397  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
398    case Sema::TDK_Success:
399    case Sema::TDK_InstantiationDepth:
400    case Sema::TDK_TooManyArguments:
401    case Sema::TDK_TooFewArguments:
402    case Sema::TDK_Incomplete:
403    case Sema::TDK_InvalidExplicitArguments:
404    case Sema::TDK_Inconsistent:
405    case Sema::TDK_InconsistentQuals:
406      return 0;
407
408    case Sema::TDK_SubstitutionFailure:
409      return static_cast<TemplateArgumentList*>(Data);
410
411    // Unhandled
412    case Sema::TDK_NonDeducedMismatch:
413    case Sema::TDK_FailedOverloadResolution:
414      break;
415  }
416
417  return 0;
418}
419
420const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
421  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
422  case Sema::TDK_Success:
423  case Sema::TDK_InstantiationDepth:
424  case Sema::TDK_Incomplete:
425  case Sema::TDK_TooManyArguments:
426  case Sema::TDK_TooFewArguments:
427  case Sema::TDK_InvalidExplicitArguments:
428  case Sema::TDK_SubstitutionFailure:
429    return 0;
430
431  case Sema::TDK_Inconsistent:
432  case Sema::TDK_InconsistentQuals:
433    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
434
435  // Unhandled
436  case Sema::TDK_NonDeducedMismatch:
437  case Sema::TDK_FailedOverloadResolution:
438    break;
439  }
440
441  return 0;
442}
443
444const TemplateArgument *
445OverloadCandidate::DeductionFailureInfo::getSecondArg() {
446  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
447  case Sema::TDK_Success:
448  case Sema::TDK_InstantiationDepth:
449  case Sema::TDK_Incomplete:
450  case Sema::TDK_TooManyArguments:
451  case Sema::TDK_TooFewArguments:
452  case Sema::TDK_InvalidExplicitArguments:
453  case Sema::TDK_SubstitutionFailure:
454    return 0;
455
456  case Sema::TDK_Inconsistent:
457  case Sema::TDK_InconsistentQuals:
458    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
459
460  // Unhandled
461  case Sema::TDK_NonDeducedMismatch:
462  case Sema::TDK_FailedOverloadResolution:
463    break;
464  }
465
466  return 0;
467}
468
469void OverloadCandidateSet::clear() {
470  inherited::clear();
471  Functions.clear();
472}
473
474// IsOverload - Determine whether the given New declaration is an
475// overload of the declarations in Old. This routine returns false if
476// New and Old cannot be overloaded, e.g., if New has the same
477// signature as some function in Old (C++ 1.3.10) or if the Old
478// declarations aren't functions (or function templates) at all. When
479// it does return false, MatchedDecl will point to the decl that New
480// cannot be overloaded with.  This decl may be a UsingShadowDecl on
481// top of the underlying declaration.
482//
483// Example: Given the following input:
484//
485//   void f(int, float); // #1
486//   void f(int, int); // #2
487//   int f(int, int); // #3
488//
489// When we process #1, there is no previous declaration of "f",
490// so IsOverload will not be used.
491//
492// When we process #2, Old contains only the FunctionDecl for #1.  By
493// comparing the parameter types, we see that #1 and #2 are overloaded
494// (since they have different signatures), so this routine returns
495// false; MatchedDecl is unchanged.
496//
497// When we process #3, Old is an overload set containing #1 and #2. We
498// compare the signatures of #3 to #1 (they're overloaded, so we do
499// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
500// identical (return types of functions are not part of the
501// signature), IsOverload returns false and MatchedDecl will be set to
502// point to the FunctionDecl for #2.
503//
504// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
505// into a class by a using declaration.  The rules for whether to hide
506// shadow declarations ignore some properties which otherwise figure
507// into a function template's signature.
508Sema::OverloadKind
509Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
510                    NamedDecl *&Match, bool NewIsUsingDecl) {
511  for (LookupResult::iterator I = Old.begin(), E = Old.end();
512         I != E; ++I) {
513    NamedDecl *OldD = *I;
514
515    bool OldIsUsingDecl = false;
516    if (isa<UsingShadowDecl>(OldD)) {
517      OldIsUsingDecl = true;
518
519      // We can always introduce two using declarations into the same
520      // context, even if they have identical signatures.
521      if (NewIsUsingDecl) continue;
522
523      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
524    }
525
526    // If either declaration was introduced by a using declaration,
527    // we'll need to use slightly different rules for matching.
528    // Essentially, these rules are the normal rules, except that
529    // function templates hide function templates with different
530    // return types or template parameter lists.
531    bool UseMemberUsingDeclRules =
532      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
533
534    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
535      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
536        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
537          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
538          continue;
539        }
540
541        Match = *I;
542        return Ovl_Match;
543      }
544    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
545      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
546        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
547          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
548          continue;
549        }
550
551        Match = *I;
552        return Ovl_Match;
553      }
554    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
555      // We can overload with these, which can show up when doing
556      // redeclaration checks for UsingDecls.
557      assert(Old.getLookupKind() == LookupUsingDeclName);
558    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
559      // Optimistically assume that an unresolved using decl will
560      // overload; if it doesn't, we'll have to diagnose during
561      // template instantiation.
562    } else {
563      // (C++ 13p1):
564      //   Only function declarations can be overloaded; object and type
565      //   declarations cannot be overloaded.
566      Match = *I;
567      return Ovl_NonFunction;
568    }
569  }
570
571  return Ovl_Overload;
572}
573
574bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
575                      bool UseUsingDeclRules) {
576  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
577  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
578
579  // C++ [temp.fct]p2:
580  //   A function template can be overloaded with other function templates
581  //   and with normal (non-template) functions.
582  if ((OldTemplate == 0) != (NewTemplate == 0))
583    return true;
584
585  // Is the function New an overload of the function Old?
586  QualType OldQType = Context.getCanonicalType(Old->getType());
587  QualType NewQType = Context.getCanonicalType(New->getType());
588
589  // Compare the signatures (C++ 1.3.10) of the two functions to
590  // determine whether they are overloads. If we find any mismatch
591  // in the signature, they are overloads.
592
593  // If either of these functions is a K&R-style function (no
594  // prototype), then we consider them to have matching signatures.
595  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
596      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
597    return false;
598
599  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
600  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
601
602  // The signature of a function includes the types of its
603  // parameters (C++ 1.3.10), which includes the presence or absence
604  // of the ellipsis; see C++ DR 357).
605  if (OldQType != NewQType &&
606      (OldType->getNumArgs() != NewType->getNumArgs() ||
607       OldType->isVariadic() != NewType->isVariadic() ||
608       !FunctionArgTypesAreEqual(OldType, NewType)))
609    return true;
610
611  // C++ [temp.over.link]p4:
612  //   The signature of a function template consists of its function
613  //   signature, its return type and its template parameter list. The names
614  //   of the template parameters are significant only for establishing the
615  //   relationship between the template parameters and the rest of the
616  //   signature.
617  //
618  // We check the return type and template parameter lists for function
619  // templates first; the remaining checks follow.
620  //
621  // However, we don't consider either of these when deciding whether
622  // a member introduced by a shadow declaration is hidden.
623  if (!UseUsingDeclRules && NewTemplate &&
624      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
625                                       OldTemplate->getTemplateParameters(),
626                                       false, TPL_TemplateMatch) ||
627       OldType->getResultType() != NewType->getResultType()))
628    return true;
629
630  // If the function is a class member, its signature includes the
631  // cv-qualifiers (if any) on the function itself.
632  //
633  // As part of this, also check whether one of the member functions
634  // is static, in which case they are not overloads (C++
635  // 13.1p2). While not part of the definition of the signature,
636  // this check is important to determine whether these functions
637  // can be overloaded.
638  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
639  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
640  if (OldMethod && NewMethod &&
641      !OldMethod->isStatic() && !NewMethod->isStatic() &&
642      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
643    return true;
644
645  // The signatures match; this is not an overload.
646  return false;
647}
648
649/// TryImplicitConversion - Attempt to perform an implicit conversion
650/// from the given expression (Expr) to the given type (ToType). This
651/// function returns an implicit conversion sequence that can be used
652/// to perform the initialization. Given
653///
654///   void f(float f);
655///   void g(int i) { f(i); }
656///
657/// this routine would produce an implicit conversion sequence to
658/// describe the initialization of f from i, which will be a standard
659/// conversion sequence containing an lvalue-to-rvalue conversion (C++
660/// 4.1) followed by a floating-integral conversion (C++ 4.9).
661//
662/// Note that this routine only determines how the conversion can be
663/// performed; it does not actually perform the conversion. As such,
664/// it will not produce any diagnostics if no conversion is available,
665/// but will instead return an implicit conversion sequence of kind
666/// "BadConversion".
667///
668/// If @p SuppressUserConversions, then user-defined conversions are
669/// not permitted.
670/// If @p AllowExplicit, then explicit user-defined conversions are
671/// permitted.
672ImplicitConversionSequence
673Sema::TryImplicitConversion(Expr* From, QualType ToType,
674                            bool SuppressUserConversions,
675                            bool AllowExplicit,
676                            bool InOverloadResolution) {
677  ImplicitConversionSequence ICS;
678  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
679    ICS.setStandard();
680    return ICS;
681  }
682
683  if (!getLangOptions().CPlusPlus) {
684    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
685    return ICS;
686  }
687
688  if (SuppressUserConversions) {
689    // C++ [over.ics.user]p4:
690    //   A conversion of an expression of class type to the same class
691    //   type is given Exact Match rank, and a conversion of an
692    //   expression of class type to a base class of that type is
693    //   given Conversion rank, in spite of the fact that a copy/move
694    //   constructor (i.e., a user-defined conversion function) is
695    //   called for those cases.
696    QualType FromType = From->getType();
697    if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() ||
698        !(Context.hasSameUnqualifiedType(FromType, ToType) ||
699          IsDerivedFrom(FromType, ToType))) {
700      // We're not in the case above, so there is no conversion that
701      // we can perform.
702      ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
703      return ICS;
704    }
705
706    ICS.setStandard();
707    ICS.Standard.setAsIdentityConversion();
708    ICS.Standard.setFromType(FromType);
709    ICS.Standard.setAllToTypes(ToType);
710
711    // We don't actually check at this point whether there is a valid
712    // copy/move constructor, since overloading just assumes that it
713    // exists. When we actually perform initialization, we'll find the
714    // appropriate constructor to copy the returned object, if needed.
715    ICS.Standard.CopyConstructor = 0;
716
717    // Determine whether this is considered a derived-to-base conversion.
718    if (!Context.hasSameUnqualifiedType(FromType, ToType))
719      ICS.Standard.Second = ICK_Derived_To_Base;
720
721    return ICS;
722  }
723
724  // Attempt user-defined conversion.
725  OverloadCandidateSet Conversions(From->getExprLoc());
726  OverloadingResult UserDefResult
727    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
728                              AllowExplicit);
729
730  if (UserDefResult == OR_Success) {
731    ICS.setUserDefined();
732    // C++ [over.ics.user]p4:
733    //   A conversion of an expression of class type to the same class
734    //   type is given Exact Match rank, and a conversion of an
735    //   expression of class type to a base class of that type is
736    //   given Conversion rank, in spite of the fact that a copy
737    //   constructor (i.e., a user-defined conversion function) is
738    //   called for those cases.
739    if (CXXConstructorDecl *Constructor
740          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
741      QualType FromCanon
742        = Context.getCanonicalType(From->getType().getUnqualifiedType());
743      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
744      if (Constructor->isCopyConstructor() &&
745          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
746        // Turn this into a "standard" conversion sequence, so that it
747        // gets ranked with standard conversion sequences.
748        ICS.setStandard();
749        ICS.Standard.setAsIdentityConversion();
750        ICS.Standard.setFromType(From->getType());
751        ICS.Standard.setAllToTypes(ToType);
752        ICS.Standard.CopyConstructor = Constructor;
753        if (ToCanon != FromCanon)
754          ICS.Standard.Second = ICK_Derived_To_Base;
755      }
756    }
757
758    // C++ [over.best.ics]p4:
759    //   However, when considering the argument of a user-defined
760    //   conversion function that is a candidate by 13.3.1.3 when
761    //   invoked for the copying of the temporary in the second step
762    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
763    //   13.3.1.6 in all cases, only standard conversion sequences and
764    //   ellipsis conversion sequences are allowed.
765    if (SuppressUserConversions && ICS.isUserDefined()) {
766      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
767    }
768  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
769    ICS.setAmbiguous();
770    ICS.Ambiguous.setFromType(From->getType());
771    ICS.Ambiguous.setToType(ToType);
772    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
773         Cand != Conversions.end(); ++Cand)
774      if (Cand->Viable)
775        ICS.Ambiguous.addConversion(Cand->Function);
776  } else {
777    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
778  }
779
780  return ICS;
781}
782
783/// PerformImplicitConversion - Perform an implicit conversion of the
784/// expression From to the type ToType. Returns true if there was an
785/// error, false otherwise. The expression From is replaced with the
786/// converted expression. Flavor is the kind of conversion we're
787/// performing, used in the error message. If @p AllowExplicit,
788/// explicit user-defined conversions are permitted.
789bool
790Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
791                                AssignmentAction Action, bool AllowExplicit) {
792  ImplicitConversionSequence ICS;
793  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
794}
795
796bool
797Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
798                                AssignmentAction Action, bool AllowExplicit,
799                                ImplicitConversionSequence& ICS) {
800  ICS = TryImplicitConversion(From, ToType,
801                              /*SuppressUserConversions=*/false,
802                              AllowExplicit,
803                              /*InOverloadResolution=*/false);
804  return PerformImplicitConversion(From, ToType, ICS, Action);
805}
806
807/// \brief Determine whether the conversion from FromType to ToType is a valid
808/// conversion that strips "noreturn" off the nested function type.
809static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
810                                 QualType ToType, QualType &ResultTy) {
811  if (Context.hasSameUnqualifiedType(FromType, ToType))
812    return false;
813
814  // Strip the noreturn off the type we're converting from; noreturn can
815  // safely be removed.
816  FromType = Context.getNoReturnType(FromType, false);
817  if (!Context.hasSameUnqualifiedType(FromType, ToType))
818    return false;
819
820  ResultTy = FromType;
821  return true;
822}
823
824/// \brief Determine whether the conversion from FromType to ToType is a valid
825/// vector conversion.
826///
827/// \param ICK Will be set to the vector conversion kind, if this is a vector
828/// conversion.
829static bool IsVectorConversion(ASTContext &Context, QualType FromType,
830                               QualType ToType, ImplicitConversionKind &ICK) {
831  // We need at least one of these types to be a vector type to have a vector
832  // conversion.
833  if (!ToType->isVectorType() && !FromType->isVectorType())
834    return false;
835
836  // Identical types require no conversions.
837  if (Context.hasSameUnqualifiedType(FromType, ToType))
838    return false;
839
840  // There are no conversions between extended vector types, only identity.
841  if (ToType->isExtVectorType()) {
842    // There are no conversions between extended vector types other than the
843    // identity conversion.
844    if (FromType->isExtVectorType())
845      return false;
846
847    // Vector splat from any arithmetic type to a vector.
848    if (FromType->isArithmeticType()) {
849      ICK = ICK_Vector_Splat;
850      return true;
851    }
852  }
853
854  // If lax vector conversions are permitted and the vector types are of the
855  // same size, we can perform the conversion.
856  if (Context.getLangOptions().LaxVectorConversions &&
857      FromType->isVectorType() && ToType->isVectorType() &&
858      Context.getTypeSize(FromType) == Context.getTypeSize(ToType)) {
859    ICK = ICK_Vector_Conversion;
860    return true;
861  }
862
863  return false;
864}
865
866/// IsStandardConversion - Determines whether there is a standard
867/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
868/// expression From to the type ToType. Standard conversion sequences
869/// only consider non-class types; for conversions that involve class
870/// types, use TryImplicitConversion. If a conversion exists, SCS will
871/// contain the standard conversion sequence required to perform this
872/// conversion and this routine will return true. Otherwise, this
873/// routine will return false and the value of SCS is unspecified.
874bool
875Sema::IsStandardConversion(Expr* From, QualType ToType,
876                           bool InOverloadResolution,
877                           StandardConversionSequence &SCS) {
878  QualType FromType = From->getType();
879
880  // Standard conversions (C++ [conv])
881  SCS.setAsIdentityConversion();
882  SCS.DeprecatedStringLiteralToCharPtr = false;
883  SCS.IncompatibleObjC = false;
884  SCS.setFromType(FromType);
885  SCS.CopyConstructor = 0;
886
887  // There are no standard conversions for class types in C++, so
888  // abort early. When overloading in C, however, we do permit
889  if (FromType->isRecordType() || ToType->isRecordType()) {
890    if (getLangOptions().CPlusPlus)
891      return false;
892
893    // When we're overloading in C, we allow, as standard conversions,
894  }
895
896  // The first conversion can be an lvalue-to-rvalue conversion,
897  // array-to-pointer conversion, or function-to-pointer conversion
898  // (C++ 4p1).
899
900  if (FromType == Context.OverloadTy) {
901    DeclAccessPair AccessPair;
902    if (FunctionDecl *Fn
903          = ResolveAddressOfOverloadedFunction(From, ToType, false,
904                                               AccessPair)) {
905      // We were able to resolve the address of the overloaded function,
906      // so we can convert to the type of that function.
907      FromType = Fn->getType();
908      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
909        if (!Method->isStatic()) {
910          Type *ClassType
911            = Context.getTypeDeclType(Method->getParent()).getTypePtr();
912          FromType = Context.getMemberPointerType(FromType, ClassType);
913        }
914      }
915
916      // If the "from" expression takes the address of the overloaded
917      // function, update the type of the resulting expression accordingly.
918      if (FromType->getAs<FunctionType>())
919        if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
920          if (UnOp->getOpcode() == UnaryOperator::AddrOf)
921            FromType = Context.getPointerType(FromType);
922
923      // Check that we've computed the proper type after overload resolution.
924      assert(Context.hasSameType(FromType,
925              FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
926    } else {
927      return false;
928    }
929  }
930  // Lvalue-to-rvalue conversion (C++ 4.1):
931  //   An lvalue (3.10) of a non-function, non-array type T can be
932  //   converted to an rvalue.
933  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
934  if (argIsLvalue == Expr::LV_Valid &&
935      !FromType->isFunctionType() && !FromType->isArrayType() &&
936      Context.getCanonicalType(FromType) != Context.OverloadTy) {
937    SCS.First = ICK_Lvalue_To_Rvalue;
938
939    // If T is a non-class type, the type of the rvalue is the
940    // cv-unqualified version of T. Otherwise, the type of the rvalue
941    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
942    // just strip the qualifiers because they don't matter.
943    FromType = FromType.getUnqualifiedType();
944  } else if (FromType->isArrayType()) {
945    // Array-to-pointer conversion (C++ 4.2)
946    SCS.First = ICK_Array_To_Pointer;
947
948    // An lvalue or rvalue of type "array of N T" or "array of unknown
949    // bound of T" can be converted to an rvalue of type "pointer to
950    // T" (C++ 4.2p1).
951    FromType = Context.getArrayDecayedType(FromType);
952
953    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
954      // This conversion is deprecated. (C++ D.4).
955      SCS.DeprecatedStringLiteralToCharPtr = true;
956
957      // For the purpose of ranking in overload resolution
958      // (13.3.3.1.1), this conversion is considered an
959      // array-to-pointer conversion followed by a qualification
960      // conversion (4.4). (C++ 4.2p2)
961      SCS.Second = ICK_Identity;
962      SCS.Third = ICK_Qualification;
963      SCS.setAllToTypes(FromType);
964      return true;
965    }
966  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
967    // Function-to-pointer conversion (C++ 4.3).
968    SCS.First = ICK_Function_To_Pointer;
969
970    // An lvalue of function type T can be converted to an rvalue of
971    // type "pointer to T." The result is a pointer to the
972    // function. (C++ 4.3p1).
973    FromType = Context.getPointerType(FromType);
974  } else {
975    // We don't require any conversions for the first step.
976    SCS.First = ICK_Identity;
977  }
978  SCS.setToType(0, FromType);
979
980  // The second conversion can be an integral promotion, floating
981  // point promotion, integral conversion, floating point conversion,
982  // floating-integral conversion, pointer conversion,
983  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
984  // For overloading in C, this can also be a "compatible-type"
985  // conversion.
986  bool IncompatibleObjC = false;
987  ImplicitConversionKind SecondICK = ICK_Identity;
988  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
989    // The unqualified versions of the types are the same: there's no
990    // conversion to do.
991    SCS.Second = ICK_Identity;
992  } else if (IsIntegralPromotion(From, FromType, ToType)) {
993    // Integral promotion (C++ 4.5).
994    SCS.Second = ICK_Integral_Promotion;
995    FromType = ToType.getUnqualifiedType();
996  } else if (IsFloatingPointPromotion(FromType, ToType)) {
997    // Floating point promotion (C++ 4.6).
998    SCS.Second = ICK_Floating_Promotion;
999    FromType = ToType.getUnqualifiedType();
1000  } else if (IsComplexPromotion(FromType, ToType)) {
1001    // Complex promotion (Clang extension)
1002    SCS.Second = ICK_Complex_Promotion;
1003    FromType = ToType.getUnqualifiedType();
1004  } else if (FromType->isIntegralOrEnumerationType() &&
1005             ToType->isIntegralType(Context)) {
1006    // Integral conversions (C++ 4.7).
1007    SCS.Second = ICK_Integral_Conversion;
1008    FromType = ToType.getUnqualifiedType();
1009  } else if (FromType->isComplexType() && ToType->isComplexType()) {
1010    // Complex conversions (C99 6.3.1.6)
1011    SCS.Second = ICK_Complex_Conversion;
1012    FromType = ToType.getUnqualifiedType();
1013  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
1014             (ToType->isComplexType() && FromType->isArithmeticType())) {
1015    // Complex-real conversions (C99 6.3.1.7)
1016    SCS.Second = ICK_Complex_Real;
1017    FromType = ToType.getUnqualifiedType();
1018  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1019    // Floating point conversions (C++ 4.8).
1020    SCS.Second = ICK_Floating_Conversion;
1021    FromType = ToType.getUnqualifiedType();
1022  } else if ((FromType->isRealFloatingType() &&
1023              ToType->isIntegralType(Context) && !ToType->isBooleanType()) ||
1024             (FromType->isIntegralOrEnumerationType() &&
1025              ToType->isRealFloatingType())) {
1026    // Floating-integral conversions (C++ 4.9).
1027    SCS.Second = ICK_Floating_Integral;
1028    FromType = ToType.getUnqualifiedType();
1029  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1030                                 FromType, IncompatibleObjC)) {
1031    // Pointer conversions (C++ 4.10).
1032    SCS.Second = ICK_Pointer_Conversion;
1033    SCS.IncompatibleObjC = IncompatibleObjC;
1034  } else if (IsMemberPointerConversion(From, FromType, ToType,
1035                                       InOverloadResolution, FromType)) {
1036    // Pointer to member conversions (4.11).
1037    SCS.Second = ICK_Pointer_Member;
1038  } else if (ToType->isBooleanType() &&
1039             (FromType->isArithmeticType() ||
1040              FromType->isEnumeralType() ||
1041              FromType->isAnyPointerType() ||
1042              FromType->isBlockPointerType() ||
1043              FromType->isMemberPointerType() ||
1044              FromType->isNullPtrType())) {
1045    // Boolean conversions (C++ 4.12).
1046    SCS.Second = ICK_Boolean_Conversion;
1047    FromType = Context.BoolTy;
1048  } else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) {
1049    SCS.Second = SecondICK;
1050    FromType = ToType.getUnqualifiedType();
1051  } else if (!getLangOptions().CPlusPlus &&
1052             Context.typesAreCompatible(ToType, FromType)) {
1053    // Compatible conversions (Clang extension for C function overloading)
1054    SCS.Second = ICK_Compatible_Conversion;
1055    FromType = ToType.getUnqualifiedType();
1056  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
1057    // Treat a conversion that strips "noreturn" as an identity conversion.
1058    SCS.Second = ICK_NoReturn_Adjustment;
1059  } else {
1060    // No second conversion required.
1061    SCS.Second = ICK_Identity;
1062  }
1063  SCS.setToType(1, FromType);
1064
1065  QualType CanonFrom;
1066  QualType CanonTo;
1067  // The third conversion can be a qualification conversion (C++ 4p1).
1068  if (IsQualificationConversion(FromType, ToType)) {
1069    SCS.Third = ICK_Qualification;
1070    FromType = ToType;
1071    CanonFrom = Context.getCanonicalType(FromType);
1072    CanonTo = Context.getCanonicalType(ToType);
1073  } else {
1074    // No conversion required
1075    SCS.Third = ICK_Identity;
1076
1077    // C++ [over.best.ics]p6:
1078    //   [...] Any difference in top-level cv-qualification is
1079    //   subsumed by the initialization itself and does not constitute
1080    //   a conversion. [...]
1081    CanonFrom = Context.getCanonicalType(FromType);
1082    CanonTo = Context.getCanonicalType(ToType);
1083    if (CanonFrom.getLocalUnqualifiedType()
1084                                       == CanonTo.getLocalUnqualifiedType() &&
1085        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1086         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
1087      FromType = ToType;
1088      CanonFrom = CanonTo;
1089    }
1090  }
1091  SCS.setToType(2, FromType);
1092
1093  // If we have not converted the argument type to the parameter type,
1094  // this is a bad conversion sequence.
1095  if (CanonFrom != CanonTo)
1096    return false;
1097
1098  return true;
1099}
1100
1101/// IsIntegralPromotion - Determines whether the conversion from the
1102/// expression From (whose potentially-adjusted type is FromType) to
1103/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1104/// sets PromotedType to the promoted type.
1105bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1106  const BuiltinType *To = ToType->getAs<BuiltinType>();
1107  // All integers are built-in.
1108  if (!To) {
1109    return false;
1110  }
1111
1112  // An rvalue of type char, signed char, unsigned char, short int, or
1113  // unsigned short int can be converted to an rvalue of type int if
1114  // int can represent all the values of the source type; otherwise,
1115  // the source rvalue can be converted to an rvalue of type unsigned
1116  // int (C++ 4.5p1).
1117  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1118      !FromType->isEnumeralType()) {
1119    if (// We can promote any signed, promotable integer type to an int
1120        (FromType->isSignedIntegerType() ||
1121         // We can promote any unsigned integer type whose size is
1122         // less than int to an int.
1123         (!FromType->isSignedIntegerType() &&
1124          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1125      return To->getKind() == BuiltinType::Int;
1126    }
1127
1128    return To->getKind() == BuiltinType::UInt;
1129  }
1130
1131  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
1132  // can be converted to an rvalue of the first of the following types
1133  // that can represent all the values of its underlying type: int,
1134  // unsigned int, long, or unsigned long (C++ 4.5p2).
1135
1136  // We pre-calculate the promotion type for enum types.
1137  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
1138    if (ToType->isIntegerType())
1139      return Context.hasSameUnqualifiedType(ToType,
1140                                FromEnumType->getDecl()->getPromotionType());
1141
1142  if (FromType->isWideCharType() && ToType->isIntegerType()) {
1143    // Determine whether the type we're converting from is signed or
1144    // unsigned.
1145    bool FromIsSigned;
1146    uint64_t FromSize = Context.getTypeSize(FromType);
1147
1148    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1149    FromIsSigned = true;
1150
1151    // The types we'll try to promote to, in the appropriate
1152    // order. Try each of these types.
1153    QualType PromoteTypes[6] = {
1154      Context.IntTy, Context.UnsignedIntTy,
1155      Context.LongTy, Context.UnsignedLongTy ,
1156      Context.LongLongTy, Context.UnsignedLongLongTy
1157    };
1158    for (int Idx = 0; Idx < 6; ++Idx) {
1159      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1160      if (FromSize < ToSize ||
1161          (FromSize == ToSize &&
1162           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1163        // We found the type that we can promote to. If this is the
1164        // type we wanted, we have a promotion. Otherwise, no
1165        // promotion.
1166        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1167      }
1168    }
1169  }
1170
1171  // An rvalue for an integral bit-field (9.6) can be converted to an
1172  // rvalue of type int if int can represent all the values of the
1173  // bit-field; otherwise, it can be converted to unsigned int if
1174  // unsigned int can represent all the values of the bit-field. If
1175  // the bit-field is larger yet, no integral promotion applies to
1176  // it. If the bit-field has an enumerated type, it is treated as any
1177  // other value of that type for promotion purposes (C++ 4.5p3).
1178  // FIXME: We should delay checking of bit-fields until we actually perform the
1179  // conversion.
1180  using llvm::APSInt;
1181  if (From)
1182    if (FieldDecl *MemberDecl = From->getBitField()) {
1183      APSInt BitWidth;
1184      if (FromType->isIntegralType(Context) &&
1185          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1186        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1187        ToSize = Context.getTypeSize(ToType);
1188
1189        // Are we promoting to an int from a bitfield that fits in an int?
1190        if (BitWidth < ToSize ||
1191            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1192          return To->getKind() == BuiltinType::Int;
1193        }
1194
1195        // Are we promoting to an unsigned int from an unsigned bitfield
1196        // that fits into an unsigned int?
1197        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1198          return To->getKind() == BuiltinType::UInt;
1199        }
1200
1201        return false;
1202      }
1203    }
1204
1205  // An rvalue of type bool can be converted to an rvalue of type int,
1206  // with false becoming zero and true becoming one (C++ 4.5p4).
1207  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1208    return true;
1209  }
1210
1211  return false;
1212}
1213
1214/// IsFloatingPointPromotion - Determines whether the conversion from
1215/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1216/// returns true and sets PromotedType to the promoted type.
1217bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1218  /// An rvalue of type float can be converted to an rvalue of type
1219  /// double. (C++ 4.6p1).
1220  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1221    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1222      if (FromBuiltin->getKind() == BuiltinType::Float &&
1223          ToBuiltin->getKind() == BuiltinType::Double)
1224        return true;
1225
1226      // C99 6.3.1.5p1:
1227      //   When a float is promoted to double or long double, or a
1228      //   double is promoted to long double [...].
1229      if (!getLangOptions().CPlusPlus &&
1230          (FromBuiltin->getKind() == BuiltinType::Float ||
1231           FromBuiltin->getKind() == BuiltinType::Double) &&
1232          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1233        return true;
1234    }
1235
1236  return false;
1237}
1238
1239/// \brief Determine if a conversion is a complex promotion.
1240///
1241/// A complex promotion is defined as a complex -> complex conversion
1242/// where the conversion between the underlying real types is a
1243/// floating-point or integral promotion.
1244bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1245  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1246  if (!FromComplex)
1247    return false;
1248
1249  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1250  if (!ToComplex)
1251    return false;
1252
1253  return IsFloatingPointPromotion(FromComplex->getElementType(),
1254                                  ToComplex->getElementType()) ||
1255    IsIntegralPromotion(0, FromComplex->getElementType(),
1256                        ToComplex->getElementType());
1257}
1258
1259/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1260/// the pointer type FromPtr to a pointer to type ToPointee, with the
1261/// same type qualifiers as FromPtr has on its pointee type. ToType,
1262/// if non-empty, will be a pointer to ToType that may or may not have
1263/// the right set of qualifiers on its pointee.
1264static QualType
1265BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
1266                                   QualType ToPointee, QualType ToType,
1267                                   ASTContext &Context) {
1268  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
1269  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1270  Qualifiers Quals = CanonFromPointee.getQualifiers();
1271
1272  // Exact qualifier match -> return the pointer type we're converting to.
1273  if (CanonToPointee.getLocalQualifiers() == Quals) {
1274    // ToType is exactly what we need. Return it.
1275    if (!ToType.isNull())
1276      return ToType.getUnqualifiedType();
1277
1278    // Build a pointer to ToPointee. It has the right qualifiers
1279    // already.
1280    return Context.getPointerType(ToPointee);
1281  }
1282
1283  // Just build a canonical type that has the right qualifiers.
1284  return Context.getPointerType(
1285         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
1286                                  Quals));
1287}
1288
1289/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
1290/// the FromType, which is an objective-c pointer, to ToType, which may or may
1291/// not have the right set of qualifiers.
1292static QualType
1293BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
1294                                             QualType ToType,
1295                                             ASTContext &Context) {
1296  QualType CanonFromType = Context.getCanonicalType(FromType);
1297  QualType CanonToType = Context.getCanonicalType(ToType);
1298  Qualifiers Quals = CanonFromType.getQualifiers();
1299
1300  // Exact qualifier match -> return the pointer type we're converting to.
1301  if (CanonToType.getLocalQualifiers() == Quals)
1302    return ToType;
1303
1304  // Just build a canonical type that has the right qualifiers.
1305  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
1306}
1307
1308static bool isNullPointerConstantForConversion(Expr *Expr,
1309                                               bool InOverloadResolution,
1310                                               ASTContext &Context) {
1311  // Handle value-dependent integral null pointer constants correctly.
1312  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1313  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1314      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1315    return !InOverloadResolution;
1316
1317  return Expr->isNullPointerConstant(Context,
1318                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1319                                        : Expr::NPC_ValueDependentIsNull);
1320}
1321
1322/// IsPointerConversion - Determines whether the conversion of the
1323/// expression From, which has the (possibly adjusted) type FromType,
1324/// can be converted to the type ToType via a pointer conversion (C++
1325/// 4.10). If so, returns true and places the converted type (that
1326/// might differ from ToType in its cv-qualifiers at some level) into
1327/// ConvertedType.
1328///
1329/// This routine also supports conversions to and from block pointers
1330/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1331/// pointers to interfaces. FIXME: Once we've determined the
1332/// appropriate overloading rules for Objective-C, we may want to
1333/// split the Objective-C checks into a different routine; however,
1334/// GCC seems to consider all of these conversions to be pointer
1335/// conversions, so for now they live here. IncompatibleObjC will be
1336/// set if the conversion is an allowed Objective-C conversion that
1337/// should result in a warning.
1338bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1339                               bool InOverloadResolution,
1340                               QualType& ConvertedType,
1341                               bool &IncompatibleObjC) {
1342  IncompatibleObjC = false;
1343  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1344    return true;
1345
1346  // Conversion from a null pointer constant to any Objective-C pointer type.
1347  if (ToType->isObjCObjectPointerType() &&
1348      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1349    ConvertedType = ToType;
1350    return true;
1351  }
1352
1353  // Blocks: Block pointers can be converted to void*.
1354  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1355      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1356    ConvertedType = ToType;
1357    return true;
1358  }
1359  // Blocks: A null pointer constant can be converted to a block
1360  // pointer type.
1361  if (ToType->isBlockPointerType() &&
1362      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1363    ConvertedType = ToType;
1364    return true;
1365  }
1366
1367  // If the left-hand-side is nullptr_t, the right side can be a null
1368  // pointer constant.
1369  if (ToType->isNullPtrType() &&
1370      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1371    ConvertedType = ToType;
1372    return true;
1373  }
1374
1375  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1376  if (!ToTypePtr)
1377    return false;
1378
1379  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1380  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1381    ConvertedType = ToType;
1382    return true;
1383  }
1384
1385  // Beyond this point, both types need to be pointers
1386  // , including objective-c pointers.
1387  QualType ToPointeeType = ToTypePtr->getPointeeType();
1388  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1389    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1390                                                       ToType, Context);
1391    return true;
1392
1393  }
1394  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1395  if (!FromTypePtr)
1396    return false;
1397
1398  QualType FromPointeeType = FromTypePtr->getPointeeType();
1399
1400  // An rvalue of type "pointer to cv T," where T is an object type,
1401  // can be converted to an rvalue of type "pointer to cv void" (C++
1402  // 4.10p2).
1403  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1404    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1405                                                       ToPointeeType,
1406                                                       ToType, Context);
1407    return true;
1408  }
1409
1410  // When we're overloading in C, we allow a special kind of pointer
1411  // conversion for compatible-but-not-identical pointee types.
1412  if (!getLangOptions().CPlusPlus &&
1413      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1414    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1415                                                       ToPointeeType,
1416                                                       ToType, Context);
1417    return true;
1418  }
1419
1420  // C++ [conv.ptr]p3:
1421  //
1422  //   An rvalue of type "pointer to cv D," where D is a class type,
1423  //   can be converted to an rvalue of type "pointer to cv B," where
1424  //   B is a base class (clause 10) of D. If B is an inaccessible
1425  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1426  //   necessitates this conversion is ill-formed. The result of the
1427  //   conversion is a pointer to the base class sub-object of the
1428  //   derived class object. The null pointer value is converted to
1429  //   the null pointer value of the destination type.
1430  //
1431  // Note that we do not check for ambiguity or inaccessibility
1432  // here. That is handled by CheckPointerConversion.
1433  if (getLangOptions().CPlusPlus &&
1434      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1435      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1436      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1437      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1438    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1439                                                       ToPointeeType,
1440                                                       ToType, Context);
1441    return true;
1442  }
1443
1444  return false;
1445}
1446
1447/// isObjCPointerConversion - Determines whether this is an
1448/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1449/// with the same arguments and return values.
1450bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1451                                   QualType& ConvertedType,
1452                                   bool &IncompatibleObjC) {
1453  if (!getLangOptions().ObjC1)
1454    return false;
1455
1456  // First, we handle all conversions on ObjC object pointer types.
1457  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1458  const ObjCObjectPointerType *FromObjCPtr =
1459    FromType->getAs<ObjCObjectPointerType>();
1460
1461  if (ToObjCPtr && FromObjCPtr) {
1462    // Objective C++: We're able to convert between "id" or "Class" and a
1463    // pointer to any interface (in both directions).
1464    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1465      ConvertedType = ToType;
1466      return true;
1467    }
1468    // Conversions with Objective-C's id<...>.
1469    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1470         ToObjCPtr->isObjCQualifiedIdType()) &&
1471        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1472                                                  /*compare=*/false)) {
1473      ConvertedType = ToType;
1474      return true;
1475    }
1476    // Objective C++: We're able to convert from a pointer to an
1477    // interface to a pointer to a different interface.
1478    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1479      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1480      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1481      if (getLangOptions().CPlusPlus && LHS && RHS &&
1482          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1483                                                FromObjCPtr->getPointeeType()))
1484        return false;
1485      ConvertedType = ToType;
1486      return true;
1487    }
1488
1489    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1490      // Okay: this is some kind of implicit downcast of Objective-C
1491      // interfaces, which is permitted. However, we're going to
1492      // complain about it.
1493      IncompatibleObjC = true;
1494      ConvertedType = FromType;
1495      return true;
1496    }
1497  }
1498  // Beyond this point, both types need to be C pointers or block pointers.
1499  QualType ToPointeeType;
1500  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1501    ToPointeeType = ToCPtr->getPointeeType();
1502  else if (const BlockPointerType *ToBlockPtr =
1503            ToType->getAs<BlockPointerType>()) {
1504    // Objective C++: We're able to convert from a pointer to any object
1505    // to a block pointer type.
1506    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1507      ConvertedType = ToType;
1508      return true;
1509    }
1510    ToPointeeType = ToBlockPtr->getPointeeType();
1511  }
1512  else if (FromType->getAs<BlockPointerType>() &&
1513           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1514    // Objective C++: We're able to convert from a block pointer type to a
1515    // pointer to any object.
1516    ConvertedType = ToType;
1517    return true;
1518  }
1519  else
1520    return false;
1521
1522  QualType FromPointeeType;
1523  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1524    FromPointeeType = FromCPtr->getPointeeType();
1525  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1526    FromPointeeType = FromBlockPtr->getPointeeType();
1527  else
1528    return false;
1529
1530  // If we have pointers to pointers, recursively check whether this
1531  // is an Objective-C conversion.
1532  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1533      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1534                              IncompatibleObjC)) {
1535    // We always complain about this conversion.
1536    IncompatibleObjC = true;
1537    ConvertedType = ToType;
1538    return true;
1539  }
1540  // Allow conversion of pointee being objective-c pointer to another one;
1541  // as in I* to id.
1542  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1543      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1544      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1545                              IncompatibleObjC)) {
1546    ConvertedType = ToType;
1547    return true;
1548  }
1549
1550  // If we have pointers to functions or blocks, check whether the only
1551  // differences in the argument and result types are in Objective-C
1552  // pointer conversions. If so, we permit the conversion (but
1553  // complain about it).
1554  const FunctionProtoType *FromFunctionType
1555    = FromPointeeType->getAs<FunctionProtoType>();
1556  const FunctionProtoType *ToFunctionType
1557    = ToPointeeType->getAs<FunctionProtoType>();
1558  if (FromFunctionType && ToFunctionType) {
1559    // If the function types are exactly the same, this isn't an
1560    // Objective-C pointer conversion.
1561    if (Context.getCanonicalType(FromPointeeType)
1562          == Context.getCanonicalType(ToPointeeType))
1563      return false;
1564
1565    // Perform the quick checks that will tell us whether these
1566    // function types are obviously different.
1567    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1568        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1569        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1570      return false;
1571
1572    bool HasObjCConversion = false;
1573    if (Context.getCanonicalType(FromFunctionType->getResultType())
1574          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1575      // Okay, the types match exactly. Nothing to do.
1576    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1577                                       ToFunctionType->getResultType(),
1578                                       ConvertedType, IncompatibleObjC)) {
1579      // Okay, we have an Objective-C pointer conversion.
1580      HasObjCConversion = true;
1581    } else {
1582      // Function types are too different. Abort.
1583      return false;
1584    }
1585
1586    // Check argument types.
1587    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1588         ArgIdx != NumArgs; ++ArgIdx) {
1589      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1590      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1591      if (Context.getCanonicalType(FromArgType)
1592            == Context.getCanonicalType(ToArgType)) {
1593        // Okay, the types match exactly. Nothing to do.
1594      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1595                                         ConvertedType, IncompatibleObjC)) {
1596        // Okay, we have an Objective-C pointer conversion.
1597        HasObjCConversion = true;
1598      } else {
1599        // Argument types are too different. Abort.
1600        return false;
1601      }
1602    }
1603
1604    if (HasObjCConversion) {
1605      // We had an Objective-C conversion. Allow this pointer
1606      // conversion, but complain about it.
1607      ConvertedType = ToType;
1608      IncompatibleObjC = true;
1609      return true;
1610    }
1611  }
1612
1613  return false;
1614}
1615
1616/// FunctionArgTypesAreEqual - This routine checks two function proto types
1617/// for equlity of their argument types. Caller has already checked that
1618/// they have same number of arguments. This routine assumes that Objective-C
1619/// pointer types which only differ in their protocol qualifiers are equal.
1620bool Sema::FunctionArgTypesAreEqual(FunctionProtoType*  OldType,
1621                            FunctionProtoType*  NewType){
1622  if (!getLangOptions().ObjC1)
1623    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1624                      NewType->arg_type_begin());
1625
1626  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1627       N = NewType->arg_type_begin(),
1628       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1629    QualType ToType = (*O);
1630    QualType FromType = (*N);
1631    if (ToType != FromType) {
1632      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1633        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1634          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1635               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1636              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1637               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1638            continue;
1639      }
1640      else if (const ObjCObjectPointerType *PTTo =
1641                 ToType->getAs<ObjCObjectPointerType>()) {
1642        if (const ObjCObjectPointerType *PTFr =
1643              FromType->getAs<ObjCObjectPointerType>())
1644          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
1645            continue;
1646      }
1647      return false;
1648    }
1649  }
1650  return true;
1651}
1652
1653/// CheckPointerConversion - Check the pointer conversion from the
1654/// expression From to the type ToType. This routine checks for
1655/// ambiguous or inaccessible derived-to-base pointer
1656/// conversions for which IsPointerConversion has already returned
1657/// true. It returns true and produces a diagnostic if there was an
1658/// error, or returns false otherwise.
1659bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1660                                  CastExpr::CastKind &Kind,
1661                                  CXXBaseSpecifierArray& BasePath,
1662                                  bool IgnoreBaseAccess) {
1663  QualType FromType = From->getType();
1664
1665  if (CXXBoolLiteralExpr* LitBool
1666                          = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens()))
1667    if (LitBool->getValue() == false)
1668      Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false)
1669        << ToType;
1670
1671  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1672    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1673      QualType FromPointeeType = FromPtrType->getPointeeType(),
1674               ToPointeeType   = ToPtrType->getPointeeType();
1675
1676      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1677          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1678        // We must have a derived-to-base conversion. Check an
1679        // ambiguous or inaccessible conversion.
1680        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1681                                         From->getExprLoc(),
1682                                         From->getSourceRange(), &BasePath,
1683                                         IgnoreBaseAccess))
1684          return true;
1685
1686        // The conversion was successful.
1687        Kind = CastExpr::CK_DerivedToBase;
1688      }
1689    }
1690  if (const ObjCObjectPointerType *FromPtrType =
1691        FromType->getAs<ObjCObjectPointerType>())
1692    if (const ObjCObjectPointerType *ToPtrType =
1693          ToType->getAs<ObjCObjectPointerType>()) {
1694      // Objective-C++ conversions are always okay.
1695      // FIXME: We should have a different class of conversions for the
1696      // Objective-C++ implicit conversions.
1697      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1698        return false;
1699
1700  }
1701  return false;
1702}
1703
1704/// IsMemberPointerConversion - Determines whether the conversion of the
1705/// expression From, which has the (possibly adjusted) type FromType, can be
1706/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1707/// If so, returns true and places the converted type (that might differ from
1708/// ToType in its cv-qualifiers at some level) into ConvertedType.
1709bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1710                                     QualType ToType,
1711                                     bool InOverloadResolution,
1712                                     QualType &ConvertedType) {
1713  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1714  if (!ToTypePtr)
1715    return false;
1716
1717  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1718  if (From->isNullPointerConstant(Context,
1719                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1720                                        : Expr::NPC_ValueDependentIsNull)) {
1721    ConvertedType = ToType;
1722    return true;
1723  }
1724
1725  // Otherwise, both types have to be member pointers.
1726  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1727  if (!FromTypePtr)
1728    return false;
1729
1730  // A pointer to member of B can be converted to a pointer to member of D,
1731  // where D is derived from B (C++ 4.11p2).
1732  QualType FromClass(FromTypePtr->getClass(), 0);
1733  QualType ToClass(ToTypePtr->getClass(), 0);
1734  // FIXME: What happens when these are dependent? Is this function even called?
1735
1736  if (IsDerivedFrom(ToClass, FromClass)) {
1737    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1738                                                 ToClass.getTypePtr());
1739    return true;
1740  }
1741
1742  return false;
1743}
1744
1745/// CheckMemberPointerConversion - Check the member pointer conversion from the
1746/// expression From to the type ToType. This routine checks for ambiguous or
1747/// virtual or inaccessible base-to-derived member pointer conversions
1748/// for which IsMemberPointerConversion has already returned true. It returns
1749/// true and produces a diagnostic if there was an error, or returns false
1750/// otherwise.
1751bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1752                                        CastExpr::CastKind &Kind,
1753                                        CXXBaseSpecifierArray &BasePath,
1754                                        bool IgnoreBaseAccess) {
1755  QualType FromType = From->getType();
1756  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1757  if (!FromPtrType) {
1758    // This must be a null pointer to member pointer conversion
1759    assert(From->isNullPointerConstant(Context,
1760                                       Expr::NPC_ValueDependentIsNull) &&
1761           "Expr must be null pointer constant!");
1762    Kind = CastExpr::CK_NullToMemberPointer;
1763    return false;
1764  }
1765
1766  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1767  assert(ToPtrType && "No member pointer cast has a target type "
1768                      "that is not a member pointer.");
1769
1770  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1771  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1772
1773  // FIXME: What about dependent types?
1774  assert(FromClass->isRecordType() && "Pointer into non-class.");
1775  assert(ToClass->isRecordType() && "Pointer into non-class.");
1776
1777  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1778                     /*DetectVirtual=*/true);
1779  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1780  assert(DerivationOkay &&
1781         "Should not have been called if derivation isn't OK.");
1782  (void)DerivationOkay;
1783
1784  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1785                                  getUnqualifiedType())) {
1786    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1787    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1788      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1789    return true;
1790  }
1791
1792  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1793    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1794      << FromClass << ToClass << QualType(VBase, 0)
1795      << From->getSourceRange();
1796    return true;
1797  }
1798
1799  if (!IgnoreBaseAccess)
1800    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1801                         Paths.front(),
1802                         diag::err_downcast_from_inaccessible_base);
1803
1804  // Must be a base to derived member conversion.
1805  BuildBasePathArray(Paths, BasePath);
1806  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1807  return false;
1808}
1809
1810/// IsQualificationConversion - Determines whether the conversion from
1811/// an rvalue of type FromType to ToType is a qualification conversion
1812/// (C++ 4.4).
1813bool
1814Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1815  FromType = Context.getCanonicalType(FromType);
1816  ToType = Context.getCanonicalType(ToType);
1817
1818  // If FromType and ToType are the same type, this is not a
1819  // qualification conversion.
1820  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1821    return false;
1822
1823  // (C++ 4.4p4):
1824  //   A conversion can add cv-qualifiers at levels other than the first
1825  //   in multi-level pointers, subject to the following rules: [...]
1826  bool PreviousToQualsIncludeConst = true;
1827  bool UnwrappedAnyPointer = false;
1828  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
1829    // Within each iteration of the loop, we check the qualifiers to
1830    // determine if this still looks like a qualification
1831    // conversion. Then, if all is well, we unwrap one more level of
1832    // pointers or pointers-to-members and do it all again
1833    // until there are no more pointers or pointers-to-members left to
1834    // unwrap.
1835    UnwrappedAnyPointer = true;
1836
1837    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1838    //      2,j, and similarly for volatile.
1839    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1840      return false;
1841
1842    //   -- if the cv 1,j and cv 2,j are different, then const is in
1843    //      every cv for 0 < k < j.
1844    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1845        && !PreviousToQualsIncludeConst)
1846      return false;
1847
1848    // Keep track of whether all prior cv-qualifiers in the "to" type
1849    // include const.
1850    PreviousToQualsIncludeConst
1851      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1852  }
1853
1854  // We are left with FromType and ToType being the pointee types
1855  // after unwrapping the original FromType and ToType the same number
1856  // of types. If we unwrapped any pointers, and if FromType and
1857  // ToType have the same unqualified type (since we checked
1858  // qualifiers above), then this is a qualification conversion.
1859  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1860}
1861
1862/// Determines whether there is a user-defined conversion sequence
1863/// (C++ [over.ics.user]) that converts expression From to the type
1864/// ToType. If such a conversion exists, User will contain the
1865/// user-defined conversion sequence that performs such a conversion
1866/// and this routine will return true. Otherwise, this routine returns
1867/// false and User is unspecified.
1868///
1869/// \param AllowExplicit  true if the conversion should consider C++0x
1870/// "explicit" conversion functions as well as non-explicit conversion
1871/// functions (C++0x [class.conv.fct]p2).
1872OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1873                                          UserDefinedConversionSequence& User,
1874                                           OverloadCandidateSet& CandidateSet,
1875                                                bool AllowExplicit) {
1876  // Whether we will only visit constructors.
1877  bool ConstructorsOnly = false;
1878
1879  // If the type we are conversion to is a class type, enumerate its
1880  // constructors.
1881  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1882    // C++ [over.match.ctor]p1:
1883    //   When objects of class type are direct-initialized (8.5), or
1884    //   copy-initialized from an expression of the same or a
1885    //   derived class type (8.5), overload resolution selects the
1886    //   constructor. [...] For copy-initialization, the candidate
1887    //   functions are all the converting constructors (12.3.1) of
1888    //   that class. The argument list is the expression-list within
1889    //   the parentheses of the initializer.
1890    if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1891        (From->getType()->getAs<RecordType>() &&
1892         IsDerivedFrom(From->getType(), ToType)))
1893      ConstructorsOnly = true;
1894
1895    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1896      // We're not going to find any constructors.
1897    } else if (CXXRecordDecl *ToRecordDecl
1898                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1899      DeclContext::lookup_iterator Con, ConEnd;
1900      for (llvm::tie(Con, ConEnd) = LookupConstructors(ToRecordDecl);
1901           Con != ConEnd; ++Con) {
1902        NamedDecl *D = *Con;
1903        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1904
1905        // Find the constructor (which may be a template).
1906        CXXConstructorDecl *Constructor = 0;
1907        FunctionTemplateDecl *ConstructorTmpl
1908          = dyn_cast<FunctionTemplateDecl>(D);
1909        if (ConstructorTmpl)
1910          Constructor
1911            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1912        else
1913          Constructor = cast<CXXConstructorDecl>(D);
1914
1915        if (!Constructor->isInvalidDecl() &&
1916            Constructor->isConvertingConstructor(AllowExplicit)) {
1917          if (ConstructorTmpl)
1918            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1919                                         /*ExplicitArgs*/ 0,
1920                                         &From, 1, CandidateSet,
1921                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1922          else
1923            // Allow one user-defined conversion when user specifies a
1924            // From->ToType conversion via an static cast (c-style, etc).
1925            AddOverloadCandidate(Constructor, FoundDecl,
1926                                 &From, 1, CandidateSet,
1927                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1928        }
1929      }
1930    }
1931  }
1932
1933  // Enumerate conversion functions, if we're allowed to.
1934  if (ConstructorsOnly) {
1935  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1936                          PDiag(0) << From->getSourceRange())) {
1937    // No conversion functions from incomplete types.
1938  } else if (const RecordType *FromRecordType
1939                                   = From->getType()->getAs<RecordType>()) {
1940    if (CXXRecordDecl *FromRecordDecl
1941         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1942      // Add all of the conversion functions as candidates.
1943      const UnresolvedSetImpl *Conversions
1944        = FromRecordDecl->getVisibleConversionFunctions();
1945      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1946             E = Conversions->end(); I != E; ++I) {
1947        DeclAccessPair FoundDecl = I.getPair();
1948        NamedDecl *D = FoundDecl.getDecl();
1949        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1950        if (isa<UsingShadowDecl>(D))
1951          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1952
1953        CXXConversionDecl *Conv;
1954        FunctionTemplateDecl *ConvTemplate;
1955        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1956          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1957        else
1958          Conv = cast<CXXConversionDecl>(D);
1959
1960        if (AllowExplicit || !Conv->isExplicit()) {
1961          if (ConvTemplate)
1962            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1963                                           ActingContext, From, ToType,
1964                                           CandidateSet);
1965          else
1966            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1967                                   From, ToType, CandidateSet);
1968        }
1969      }
1970    }
1971  }
1972
1973  OverloadCandidateSet::iterator Best;
1974  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1975    case OR_Success:
1976      // Record the standard conversion we used and the conversion function.
1977      if (CXXConstructorDecl *Constructor
1978            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1979        // C++ [over.ics.user]p1:
1980        //   If the user-defined conversion is specified by a
1981        //   constructor (12.3.1), the initial standard conversion
1982        //   sequence converts the source type to the type required by
1983        //   the argument of the constructor.
1984        //
1985        QualType ThisType = Constructor->getThisType(Context);
1986        if (Best->Conversions[0].isEllipsis())
1987          User.EllipsisConversion = true;
1988        else {
1989          User.Before = Best->Conversions[0].Standard;
1990          User.EllipsisConversion = false;
1991        }
1992        User.ConversionFunction = Constructor;
1993        User.After.setAsIdentityConversion();
1994        User.After.setFromType(
1995          ThisType->getAs<PointerType>()->getPointeeType());
1996        User.After.setAllToTypes(ToType);
1997        return OR_Success;
1998      } else if (CXXConversionDecl *Conversion
1999                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
2000        // C++ [over.ics.user]p1:
2001        //
2002        //   [...] If the user-defined conversion is specified by a
2003        //   conversion function (12.3.2), the initial standard
2004        //   conversion sequence converts the source type to the
2005        //   implicit object parameter of the conversion function.
2006        User.Before = Best->Conversions[0].Standard;
2007        User.ConversionFunction = Conversion;
2008        User.EllipsisConversion = false;
2009
2010        // C++ [over.ics.user]p2:
2011        //   The second standard conversion sequence converts the
2012        //   result of the user-defined conversion to the target type
2013        //   for the sequence. Since an implicit conversion sequence
2014        //   is an initialization, the special rules for
2015        //   initialization by user-defined conversion apply when
2016        //   selecting the best user-defined conversion for a
2017        //   user-defined conversion sequence (see 13.3.3 and
2018        //   13.3.3.1).
2019        User.After = Best->FinalConversion;
2020        return OR_Success;
2021      } else {
2022        assert(false && "Not a constructor or conversion function?");
2023        return OR_No_Viable_Function;
2024      }
2025
2026    case OR_No_Viable_Function:
2027      return OR_No_Viable_Function;
2028    case OR_Deleted:
2029      // No conversion here! We're done.
2030      return OR_Deleted;
2031
2032    case OR_Ambiguous:
2033      return OR_Ambiguous;
2034    }
2035
2036  return OR_No_Viable_Function;
2037}
2038
2039bool
2040Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2041  ImplicitConversionSequence ICS;
2042  OverloadCandidateSet CandidateSet(From->getExprLoc());
2043  OverloadingResult OvResult =
2044    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
2045                            CandidateSet, false);
2046  if (OvResult == OR_Ambiguous)
2047    Diag(From->getSourceRange().getBegin(),
2048         diag::err_typecheck_ambiguous_condition)
2049          << From->getType() << ToType << From->getSourceRange();
2050  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2051    Diag(From->getSourceRange().getBegin(),
2052         diag::err_typecheck_nonviable_condition)
2053    << From->getType() << ToType << From->getSourceRange();
2054  else
2055    return false;
2056  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
2057  return true;
2058}
2059
2060/// CompareImplicitConversionSequences - Compare two implicit
2061/// conversion sequences to determine whether one is better than the
2062/// other or if they are indistinguishable (C++ 13.3.3.2).
2063ImplicitConversionSequence::CompareKind
2064Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
2065                                         const ImplicitConversionSequence& ICS2)
2066{
2067  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2068  // conversion sequences (as defined in 13.3.3.1)
2069  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2070  //      conversion sequence than a user-defined conversion sequence or
2071  //      an ellipsis conversion sequence, and
2072  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2073  //      conversion sequence than an ellipsis conversion sequence
2074  //      (13.3.3.1.3).
2075  //
2076  // C++0x [over.best.ics]p10:
2077  //   For the purpose of ranking implicit conversion sequences as
2078  //   described in 13.3.3.2, the ambiguous conversion sequence is
2079  //   treated as a user-defined sequence that is indistinguishable
2080  //   from any other user-defined conversion sequence.
2081  if (ICS1.getKindRank() < ICS2.getKindRank())
2082    return ImplicitConversionSequence::Better;
2083  else if (ICS2.getKindRank() < ICS1.getKindRank())
2084    return ImplicitConversionSequence::Worse;
2085
2086  // The following checks require both conversion sequences to be of
2087  // the same kind.
2088  if (ICS1.getKind() != ICS2.getKind())
2089    return ImplicitConversionSequence::Indistinguishable;
2090
2091  // Two implicit conversion sequences of the same form are
2092  // indistinguishable conversion sequences unless one of the
2093  // following rules apply: (C++ 13.3.3.2p3):
2094  if (ICS1.isStandard())
2095    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
2096  else if (ICS1.isUserDefined()) {
2097    // User-defined conversion sequence U1 is a better conversion
2098    // sequence than another user-defined conversion sequence U2 if
2099    // they contain the same user-defined conversion function or
2100    // constructor and if the second standard conversion sequence of
2101    // U1 is better than the second standard conversion sequence of
2102    // U2 (C++ 13.3.3.2p3).
2103    if (ICS1.UserDefined.ConversionFunction ==
2104          ICS2.UserDefined.ConversionFunction)
2105      return CompareStandardConversionSequences(ICS1.UserDefined.After,
2106                                                ICS2.UserDefined.After);
2107  }
2108
2109  return ImplicitConversionSequence::Indistinguishable;
2110}
2111
2112static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2113  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2114    Qualifiers Quals;
2115    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2116    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2117  }
2118
2119  return Context.hasSameUnqualifiedType(T1, T2);
2120}
2121
2122// Per 13.3.3.2p3, compare the given standard conversion sequences to
2123// determine if one is a proper subset of the other.
2124static ImplicitConversionSequence::CompareKind
2125compareStandardConversionSubsets(ASTContext &Context,
2126                                 const StandardConversionSequence& SCS1,
2127                                 const StandardConversionSequence& SCS2) {
2128  ImplicitConversionSequence::CompareKind Result
2129    = ImplicitConversionSequence::Indistinguishable;
2130
2131  // the identity conversion sequence is considered to be a subsequence of
2132  // any non-identity conversion sequence
2133  if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) {
2134    if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2135      return ImplicitConversionSequence::Better;
2136    else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2137      return ImplicitConversionSequence::Worse;
2138  }
2139
2140  if (SCS1.Second != SCS2.Second) {
2141    if (SCS1.Second == ICK_Identity)
2142      Result = ImplicitConversionSequence::Better;
2143    else if (SCS2.Second == ICK_Identity)
2144      Result = ImplicitConversionSequence::Worse;
2145    else
2146      return ImplicitConversionSequence::Indistinguishable;
2147  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2148    return ImplicitConversionSequence::Indistinguishable;
2149
2150  if (SCS1.Third == SCS2.Third) {
2151    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2152                             : ImplicitConversionSequence::Indistinguishable;
2153  }
2154
2155  if (SCS1.Third == ICK_Identity)
2156    return Result == ImplicitConversionSequence::Worse
2157             ? ImplicitConversionSequence::Indistinguishable
2158             : ImplicitConversionSequence::Better;
2159
2160  if (SCS2.Third == ICK_Identity)
2161    return Result == ImplicitConversionSequence::Better
2162             ? ImplicitConversionSequence::Indistinguishable
2163             : ImplicitConversionSequence::Worse;
2164
2165  return ImplicitConversionSequence::Indistinguishable;
2166}
2167
2168/// CompareStandardConversionSequences - Compare two standard
2169/// conversion sequences to determine whether one is better than the
2170/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2171ImplicitConversionSequence::CompareKind
2172Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
2173                                         const StandardConversionSequence& SCS2)
2174{
2175  // Standard conversion sequence S1 is a better conversion sequence
2176  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2177
2178  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2179  //     sequences in the canonical form defined by 13.3.3.1.1,
2180  //     excluding any Lvalue Transformation; the identity conversion
2181  //     sequence is considered to be a subsequence of any
2182  //     non-identity conversion sequence) or, if not that,
2183  if (ImplicitConversionSequence::CompareKind CK
2184        = compareStandardConversionSubsets(Context, SCS1, SCS2))
2185    return CK;
2186
2187  //  -- the rank of S1 is better than the rank of S2 (by the rules
2188  //     defined below), or, if not that,
2189  ImplicitConversionRank Rank1 = SCS1.getRank();
2190  ImplicitConversionRank Rank2 = SCS2.getRank();
2191  if (Rank1 < Rank2)
2192    return ImplicitConversionSequence::Better;
2193  else if (Rank2 < Rank1)
2194    return ImplicitConversionSequence::Worse;
2195
2196  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2197  // are indistinguishable unless one of the following rules
2198  // applies:
2199
2200  //   A conversion that is not a conversion of a pointer, or
2201  //   pointer to member, to bool is better than another conversion
2202  //   that is such a conversion.
2203  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2204    return SCS2.isPointerConversionToBool()
2205             ? ImplicitConversionSequence::Better
2206             : ImplicitConversionSequence::Worse;
2207
2208  // C++ [over.ics.rank]p4b2:
2209  //
2210  //   If class B is derived directly or indirectly from class A,
2211  //   conversion of B* to A* is better than conversion of B* to
2212  //   void*, and conversion of A* to void* is better than conversion
2213  //   of B* to void*.
2214  bool SCS1ConvertsToVoid
2215    = SCS1.isPointerConversionToVoidPointer(Context);
2216  bool SCS2ConvertsToVoid
2217    = SCS2.isPointerConversionToVoidPointer(Context);
2218  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2219    // Exactly one of the conversion sequences is a conversion to
2220    // a void pointer; it's the worse conversion.
2221    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2222                              : ImplicitConversionSequence::Worse;
2223  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2224    // Neither conversion sequence converts to a void pointer; compare
2225    // their derived-to-base conversions.
2226    if (ImplicitConversionSequence::CompareKind DerivedCK
2227          = CompareDerivedToBaseConversions(SCS1, SCS2))
2228      return DerivedCK;
2229  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
2230    // Both conversion sequences are conversions to void
2231    // pointers. Compare the source types to determine if there's an
2232    // inheritance relationship in their sources.
2233    QualType FromType1 = SCS1.getFromType();
2234    QualType FromType2 = SCS2.getFromType();
2235
2236    // Adjust the types we're converting from via the array-to-pointer
2237    // conversion, if we need to.
2238    if (SCS1.First == ICK_Array_To_Pointer)
2239      FromType1 = Context.getArrayDecayedType(FromType1);
2240    if (SCS2.First == ICK_Array_To_Pointer)
2241      FromType2 = Context.getArrayDecayedType(FromType2);
2242
2243    QualType FromPointee1
2244      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2245    QualType FromPointee2
2246      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2247
2248    if (IsDerivedFrom(FromPointee2, FromPointee1))
2249      return ImplicitConversionSequence::Better;
2250    else if (IsDerivedFrom(FromPointee1, FromPointee2))
2251      return ImplicitConversionSequence::Worse;
2252
2253    // Objective-C++: If one interface is more specific than the
2254    // other, it is the better one.
2255    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2256    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2257    if (FromIface1 && FromIface1) {
2258      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2259        return ImplicitConversionSequence::Better;
2260      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2261        return ImplicitConversionSequence::Worse;
2262    }
2263  }
2264
2265  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2266  // bullet 3).
2267  if (ImplicitConversionSequence::CompareKind QualCK
2268        = CompareQualificationConversions(SCS1, SCS2))
2269    return QualCK;
2270
2271  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2272    // C++0x [over.ics.rank]p3b4:
2273    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2274    //      implicit object parameter of a non-static member function declared
2275    //      without a ref-qualifier, and S1 binds an rvalue reference to an
2276    //      rvalue and S2 binds an lvalue reference.
2277    // FIXME: We don't know if we're dealing with the implicit object parameter,
2278    // or if the member function in this case has a ref qualifier.
2279    // (Of course, we don't have ref qualifiers yet.)
2280    if (SCS1.RRefBinding != SCS2.RRefBinding)
2281      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
2282                              : ImplicitConversionSequence::Worse;
2283
2284    // C++ [over.ics.rank]p3b4:
2285    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2286    //      which the references refer are the same type except for
2287    //      top-level cv-qualifiers, and the type to which the reference
2288    //      initialized by S2 refers is more cv-qualified than the type
2289    //      to which the reference initialized by S1 refers.
2290    QualType T1 = SCS1.getToType(2);
2291    QualType T2 = SCS2.getToType(2);
2292    T1 = Context.getCanonicalType(T1);
2293    T2 = Context.getCanonicalType(T2);
2294    Qualifiers T1Quals, T2Quals;
2295    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2296    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2297    if (UnqualT1 == UnqualT2) {
2298      // If the type is an array type, promote the element qualifiers to the type
2299      // for comparison.
2300      if (isa<ArrayType>(T1) && T1Quals)
2301        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2302      if (isa<ArrayType>(T2) && T2Quals)
2303        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2304      if (T2.isMoreQualifiedThan(T1))
2305        return ImplicitConversionSequence::Better;
2306      else if (T1.isMoreQualifiedThan(T2))
2307        return ImplicitConversionSequence::Worse;
2308    }
2309  }
2310
2311  return ImplicitConversionSequence::Indistinguishable;
2312}
2313
2314/// CompareQualificationConversions - Compares two standard conversion
2315/// sequences to determine whether they can be ranked based on their
2316/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2317ImplicitConversionSequence::CompareKind
2318Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
2319                                      const StandardConversionSequence& SCS2) {
2320  // C++ 13.3.3.2p3:
2321  //  -- S1 and S2 differ only in their qualification conversion and
2322  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2323  //     cv-qualification signature of type T1 is a proper subset of
2324  //     the cv-qualification signature of type T2, and S1 is not the
2325  //     deprecated string literal array-to-pointer conversion (4.2).
2326  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2327      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2328    return ImplicitConversionSequence::Indistinguishable;
2329
2330  // FIXME: the example in the standard doesn't use a qualification
2331  // conversion (!)
2332  QualType T1 = SCS1.getToType(2);
2333  QualType T2 = SCS2.getToType(2);
2334  T1 = Context.getCanonicalType(T1);
2335  T2 = Context.getCanonicalType(T2);
2336  Qualifiers T1Quals, T2Quals;
2337  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2338  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2339
2340  // If the types are the same, we won't learn anything by unwrapped
2341  // them.
2342  if (UnqualT1 == UnqualT2)
2343    return ImplicitConversionSequence::Indistinguishable;
2344
2345  // If the type is an array type, promote the element qualifiers to the type
2346  // for comparison.
2347  if (isa<ArrayType>(T1) && T1Quals)
2348    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2349  if (isa<ArrayType>(T2) && T2Quals)
2350    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2351
2352  ImplicitConversionSequence::CompareKind Result
2353    = ImplicitConversionSequence::Indistinguishable;
2354  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2355    // Within each iteration of the loop, we check the qualifiers to
2356    // determine if this still looks like a qualification
2357    // conversion. Then, if all is well, we unwrap one more level of
2358    // pointers or pointers-to-members and do it all again
2359    // until there are no more pointers or pointers-to-members left
2360    // to unwrap. This essentially mimics what
2361    // IsQualificationConversion does, but here we're checking for a
2362    // strict subset of qualifiers.
2363    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2364      // The qualifiers are the same, so this doesn't tell us anything
2365      // about how the sequences rank.
2366      ;
2367    else if (T2.isMoreQualifiedThan(T1)) {
2368      // T1 has fewer qualifiers, so it could be the better sequence.
2369      if (Result == ImplicitConversionSequence::Worse)
2370        // Neither has qualifiers that are a subset of the other's
2371        // qualifiers.
2372        return ImplicitConversionSequence::Indistinguishable;
2373
2374      Result = ImplicitConversionSequence::Better;
2375    } else if (T1.isMoreQualifiedThan(T2)) {
2376      // T2 has fewer qualifiers, so it could be the better sequence.
2377      if (Result == ImplicitConversionSequence::Better)
2378        // Neither has qualifiers that are a subset of the other's
2379        // qualifiers.
2380        return ImplicitConversionSequence::Indistinguishable;
2381
2382      Result = ImplicitConversionSequence::Worse;
2383    } else {
2384      // Qualifiers are disjoint.
2385      return ImplicitConversionSequence::Indistinguishable;
2386    }
2387
2388    // If the types after this point are equivalent, we're done.
2389    if (Context.hasSameUnqualifiedType(T1, T2))
2390      break;
2391  }
2392
2393  // Check that the winning standard conversion sequence isn't using
2394  // the deprecated string literal array to pointer conversion.
2395  switch (Result) {
2396  case ImplicitConversionSequence::Better:
2397    if (SCS1.DeprecatedStringLiteralToCharPtr)
2398      Result = ImplicitConversionSequence::Indistinguishable;
2399    break;
2400
2401  case ImplicitConversionSequence::Indistinguishable:
2402    break;
2403
2404  case ImplicitConversionSequence::Worse:
2405    if (SCS2.DeprecatedStringLiteralToCharPtr)
2406      Result = ImplicitConversionSequence::Indistinguishable;
2407    break;
2408  }
2409
2410  return Result;
2411}
2412
2413/// CompareDerivedToBaseConversions - Compares two standard conversion
2414/// sequences to determine whether they can be ranked based on their
2415/// various kinds of derived-to-base conversions (C++
2416/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2417/// conversions between Objective-C interface types.
2418ImplicitConversionSequence::CompareKind
2419Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2420                                      const StandardConversionSequence& SCS2) {
2421  QualType FromType1 = SCS1.getFromType();
2422  QualType ToType1 = SCS1.getToType(1);
2423  QualType FromType2 = SCS2.getFromType();
2424  QualType ToType2 = SCS2.getToType(1);
2425
2426  // Adjust the types we're converting from via the array-to-pointer
2427  // conversion, if we need to.
2428  if (SCS1.First == ICK_Array_To_Pointer)
2429    FromType1 = Context.getArrayDecayedType(FromType1);
2430  if (SCS2.First == ICK_Array_To_Pointer)
2431    FromType2 = Context.getArrayDecayedType(FromType2);
2432
2433  // Canonicalize all of the types.
2434  FromType1 = Context.getCanonicalType(FromType1);
2435  ToType1 = Context.getCanonicalType(ToType1);
2436  FromType2 = Context.getCanonicalType(FromType2);
2437  ToType2 = Context.getCanonicalType(ToType2);
2438
2439  // C++ [over.ics.rank]p4b3:
2440  //
2441  //   If class B is derived directly or indirectly from class A and
2442  //   class C is derived directly or indirectly from B,
2443  //
2444  // For Objective-C, we let A, B, and C also be Objective-C
2445  // interfaces.
2446
2447  // Compare based on pointer conversions.
2448  if (SCS1.Second == ICK_Pointer_Conversion &&
2449      SCS2.Second == ICK_Pointer_Conversion &&
2450      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2451      FromType1->isPointerType() && FromType2->isPointerType() &&
2452      ToType1->isPointerType() && ToType2->isPointerType()) {
2453    QualType FromPointee1
2454      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2455    QualType ToPointee1
2456      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2457    QualType FromPointee2
2458      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2459    QualType ToPointee2
2460      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2461
2462    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2463    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2464    const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>();
2465    const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>();
2466
2467    //   -- conversion of C* to B* is better than conversion of C* to A*,
2468    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2469      if (IsDerivedFrom(ToPointee1, ToPointee2))
2470        return ImplicitConversionSequence::Better;
2471      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2472        return ImplicitConversionSequence::Worse;
2473
2474      if (ToIface1 && ToIface2) {
2475        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2476          return ImplicitConversionSequence::Better;
2477        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2478          return ImplicitConversionSequence::Worse;
2479      }
2480    }
2481
2482    //   -- conversion of B* to A* is better than conversion of C* to A*,
2483    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2484      if (IsDerivedFrom(FromPointee2, FromPointee1))
2485        return ImplicitConversionSequence::Better;
2486      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2487        return ImplicitConversionSequence::Worse;
2488
2489      if (FromIface1 && FromIface2) {
2490        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2491          return ImplicitConversionSequence::Better;
2492        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2493          return ImplicitConversionSequence::Worse;
2494      }
2495    }
2496  }
2497
2498  // Ranking of member-pointer types.
2499  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2500      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2501      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2502    const MemberPointerType * FromMemPointer1 =
2503                                        FromType1->getAs<MemberPointerType>();
2504    const MemberPointerType * ToMemPointer1 =
2505                                          ToType1->getAs<MemberPointerType>();
2506    const MemberPointerType * FromMemPointer2 =
2507                                          FromType2->getAs<MemberPointerType>();
2508    const MemberPointerType * ToMemPointer2 =
2509                                          ToType2->getAs<MemberPointerType>();
2510    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2511    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2512    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2513    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2514    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2515    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2516    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2517    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2518    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2519    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2520      if (IsDerivedFrom(ToPointee1, ToPointee2))
2521        return ImplicitConversionSequence::Worse;
2522      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2523        return ImplicitConversionSequence::Better;
2524    }
2525    // conversion of B::* to C::* is better than conversion of A::* to C::*
2526    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2527      if (IsDerivedFrom(FromPointee1, FromPointee2))
2528        return ImplicitConversionSequence::Better;
2529      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2530        return ImplicitConversionSequence::Worse;
2531    }
2532  }
2533
2534  if (SCS1.Second == ICK_Derived_To_Base) {
2535    //   -- conversion of C to B is better than conversion of C to A,
2536    //   -- binding of an expression of type C to a reference of type
2537    //      B& is better than binding an expression of type C to a
2538    //      reference of type A&,
2539    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2540        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2541      if (IsDerivedFrom(ToType1, ToType2))
2542        return ImplicitConversionSequence::Better;
2543      else if (IsDerivedFrom(ToType2, ToType1))
2544        return ImplicitConversionSequence::Worse;
2545    }
2546
2547    //   -- conversion of B to A is better than conversion of C to A.
2548    //   -- binding of an expression of type B to a reference of type
2549    //      A& is better than binding an expression of type C to a
2550    //      reference of type A&,
2551    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2552        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2553      if (IsDerivedFrom(FromType2, FromType1))
2554        return ImplicitConversionSequence::Better;
2555      else if (IsDerivedFrom(FromType1, FromType2))
2556        return ImplicitConversionSequence::Worse;
2557    }
2558  }
2559
2560  return ImplicitConversionSequence::Indistinguishable;
2561}
2562
2563/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2564/// determine whether they are reference-related,
2565/// reference-compatible, reference-compatible with added
2566/// qualification, or incompatible, for use in C++ initialization by
2567/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2568/// type, and the first type (T1) is the pointee type of the reference
2569/// type being initialized.
2570Sema::ReferenceCompareResult
2571Sema::CompareReferenceRelationship(SourceLocation Loc,
2572                                   QualType OrigT1, QualType OrigT2,
2573                                   bool& DerivedToBase) {
2574  assert(!OrigT1->isReferenceType() &&
2575    "T1 must be the pointee type of the reference type");
2576  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2577
2578  QualType T1 = Context.getCanonicalType(OrigT1);
2579  QualType T2 = Context.getCanonicalType(OrigT2);
2580  Qualifiers T1Quals, T2Quals;
2581  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2582  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2583
2584  // C++ [dcl.init.ref]p4:
2585  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2586  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2587  //   T1 is a base class of T2.
2588  if (UnqualT1 == UnqualT2)
2589    DerivedToBase = false;
2590  else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
2591           IsDerivedFrom(UnqualT2, UnqualT1))
2592    DerivedToBase = true;
2593  else
2594    return Ref_Incompatible;
2595
2596  // At this point, we know that T1 and T2 are reference-related (at
2597  // least).
2598
2599  // If the type is an array type, promote the element qualifiers to the type
2600  // for comparison.
2601  if (isa<ArrayType>(T1) && T1Quals)
2602    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2603  if (isa<ArrayType>(T2) && T2Quals)
2604    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2605
2606  // C++ [dcl.init.ref]p4:
2607  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2608  //   reference-related to T2 and cv1 is the same cv-qualification
2609  //   as, or greater cv-qualification than, cv2. For purposes of
2610  //   overload resolution, cases for which cv1 is greater
2611  //   cv-qualification than cv2 are identified as
2612  //   reference-compatible with added qualification (see 13.3.3.2).
2613  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2614    return Ref_Compatible;
2615  else if (T1.isMoreQualifiedThan(T2))
2616    return Ref_Compatible_With_Added_Qualification;
2617  else
2618    return Ref_Related;
2619}
2620
2621/// \brief Look for a user-defined conversion to an lvalue reference-compatible
2622///        with DeclType. Return true if something definite is found.
2623static bool
2624FindConversionToLValue(Sema &S, ImplicitConversionSequence &ICS,
2625                       QualType DeclType, SourceLocation DeclLoc,
2626                       Expr *Init, QualType T2, bool AllowExplicit) {
2627  assert(T2->isRecordType() && "Can only find conversions of record types.");
2628  CXXRecordDecl *T2RecordDecl
2629    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2630
2631  OverloadCandidateSet CandidateSet(DeclLoc);
2632  const UnresolvedSetImpl *Conversions
2633    = T2RecordDecl->getVisibleConversionFunctions();
2634  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2635         E = Conversions->end(); I != E; ++I) {
2636    NamedDecl *D = *I;
2637    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2638    if (isa<UsingShadowDecl>(D))
2639      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2640
2641    FunctionTemplateDecl *ConvTemplate
2642      = dyn_cast<FunctionTemplateDecl>(D);
2643    CXXConversionDecl *Conv;
2644    if (ConvTemplate)
2645      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2646    else
2647      Conv = cast<CXXConversionDecl>(D);
2648
2649    // If the conversion function doesn't return a reference type,
2650    // it can't be considered for this conversion. An rvalue reference
2651    // is only acceptable if its referencee is a function type.
2652    const ReferenceType *RefType =
2653      Conv->getConversionType()->getAs<ReferenceType>();
2654    if (RefType && (RefType->isLValueReferenceType() ||
2655                    RefType->getPointeeType()->isFunctionType()) &&
2656        (AllowExplicit || !Conv->isExplicit())) {
2657      if (ConvTemplate)
2658        S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2659                                       Init, DeclType, CandidateSet);
2660      else
2661        S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2662                               DeclType, CandidateSet);
2663    }
2664  }
2665
2666  OverloadCandidateSet::iterator Best;
2667  switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2668  case OR_Success:
2669    // C++ [over.ics.ref]p1:
2670    //
2671    //   [...] If the parameter binds directly to the result of
2672    //   applying a conversion function to the argument
2673    //   expression, the implicit conversion sequence is a
2674    //   user-defined conversion sequence (13.3.3.1.2), with the
2675    //   second standard conversion sequence either an identity
2676    //   conversion or, if the conversion function returns an
2677    //   entity of a type that is a derived class of the parameter
2678    //   type, a derived-to-base Conversion.
2679    if (!Best->FinalConversion.DirectBinding)
2680      return false;
2681
2682    ICS.setUserDefined();
2683    ICS.UserDefined.Before = Best->Conversions[0].Standard;
2684    ICS.UserDefined.After = Best->FinalConversion;
2685    ICS.UserDefined.ConversionFunction = Best->Function;
2686    ICS.UserDefined.EllipsisConversion = false;
2687    assert(ICS.UserDefined.After.ReferenceBinding &&
2688           ICS.UserDefined.After.DirectBinding &&
2689           "Expected a direct reference binding!");
2690    return true;
2691
2692  case OR_Ambiguous:
2693    ICS.setAmbiguous();
2694    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2695         Cand != CandidateSet.end(); ++Cand)
2696      if (Cand->Viable)
2697        ICS.Ambiguous.addConversion(Cand->Function);
2698    return true;
2699
2700  case OR_No_Viable_Function:
2701  case OR_Deleted:
2702    // There was no suitable conversion, or we found a deleted
2703    // conversion; continue with other checks.
2704    return false;
2705  }
2706
2707  return false;
2708}
2709
2710/// \brief Compute an implicit conversion sequence for reference
2711/// initialization.
2712static ImplicitConversionSequence
2713TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2714                 SourceLocation DeclLoc,
2715                 bool SuppressUserConversions,
2716                 bool AllowExplicit) {
2717  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2718
2719  // Most paths end in a failed conversion.
2720  ImplicitConversionSequence ICS;
2721  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2722
2723  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2724  QualType T2 = Init->getType();
2725
2726  // If the initializer is the address of an overloaded function, try
2727  // to resolve the overloaded function. If all goes well, T2 is the
2728  // type of the resulting function.
2729  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2730    DeclAccessPair Found;
2731    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2732                                                                false, Found))
2733      T2 = Fn->getType();
2734  }
2735
2736  // Compute some basic properties of the types and the initializer.
2737  bool isRValRef = DeclType->isRValueReferenceType();
2738  bool DerivedToBase = false;
2739  Expr::Classification InitCategory = Init->Classify(S.Context);
2740  Sema::ReferenceCompareResult RefRelationship
2741    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2742
2743
2744  // C++0x [dcl.init.ref]p5:
2745  //   A reference to type "cv1 T1" is initialized by an expression
2746  //   of type "cv2 T2" as follows:
2747
2748  //     -- If reference is an lvalue reference and the initializer expression
2749  // The next bullet point (T1 is a function) is pretty much equivalent to this
2750  // one, so it's handled here.
2751  if (!isRValRef || T1->isFunctionType()) {
2752    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2753    //        reference-compatible with "cv2 T2," or
2754    //
2755    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2756    if (InitCategory.isLValue() &&
2757        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2758      // C++ [over.ics.ref]p1:
2759      //   When a parameter of reference type binds directly (8.5.3)
2760      //   to an argument expression, the implicit conversion sequence
2761      //   is the identity conversion, unless the argument expression
2762      //   has a type that is a derived class of the parameter type,
2763      //   in which case the implicit conversion sequence is a
2764      //   derived-to-base Conversion (13.3.3.1).
2765      ICS.setStandard();
2766      ICS.Standard.First = ICK_Identity;
2767      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2768      ICS.Standard.Third = ICK_Identity;
2769      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2770      ICS.Standard.setToType(0, T2);
2771      ICS.Standard.setToType(1, T1);
2772      ICS.Standard.setToType(2, T1);
2773      ICS.Standard.ReferenceBinding = true;
2774      ICS.Standard.DirectBinding = true;
2775      ICS.Standard.RRefBinding = isRValRef;
2776      ICS.Standard.CopyConstructor = 0;
2777
2778      // Nothing more to do: the inaccessibility/ambiguity check for
2779      // derived-to-base conversions is suppressed when we're
2780      // computing the implicit conversion sequence (C++
2781      // [over.best.ics]p2).
2782      return ICS;
2783    }
2784
2785    //       -- has a class type (i.e., T2 is a class type), where T1 is
2786    //          not reference-related to T2, and can be implicitly
2787    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2788    //          is reference-compatible with "cv3 T3" 92) (this
2789    //          conversion is selected by enumerating the applicable
2790    //          conversion functions (13.3.1.6) and choosing the best
2791    //          one through overload resolution (13.3)),
2792    if (!SuppressUserConversions && T2->isRecordType() &&
2793        !S.RequireCompleteType(DeclLoc, T2, 0) &&
2794        RefRelationship == Sema::Ref_Incompatible) {
2795      if (FindConversionToLValue(S, ICS, DeclType, DeclLoc,
2796                                 Init, T2, AllowExplicit))
2797        return ICS;
2798    }
2799  }
2800
2801  //     -- Otherwise, the reference shall be an lvalue reference to a
2802  //        non-volatile const type (i.e., cv1 shall be const), or the reference
2803  //        shall be an rvalue reference and the initializer expression shall be
2804  //        an rvalue or have a function type.
2805  //
2806  // We actually handle one oddity of C++ [over.ics.ref] at this
2807  // point, which is that, due to p2 (which short-circuits reference
2808  // binding by only attempting a simple conversion for non-direct
2809  // bindings) and p3's strange wording, we allow a const volatile
2810  // reference to bind to an rvalue. Hence the check for the presence
2811  // of "const" rather than checking for "const" being the only
2812  // qualifier.
2813  // This is also the point where rvalue references and lvalue inits no longer
2814  // go together.
2815  if ((!isRValRef && !T1.isConstQualified()) ||
2816      (isRValRef && InitCategory.isLValue()))
2817    return ICS;
2818
2819  //       -- If T1 is a function type, then
2820  //          -- if T2 is the same type as T1, the reference is bound to the
2821  //             initializer expression lvalue;
2822  //          -- if T2 is a class type and the initializer expression can be
2823  //             implicitly converted to an lvalue of type T1 [...], the
2824  //             reference is bound to the function lvalue that is the result
2825  //             of the conversion;
2826  // This is the same as for the lvalue case above, so it was handled there.
2827  //          -- otherwise, the program is ill-formed.
2828  // This is the one difference to the lvalue case.
2829  if (T1->isFunctionType())
2830    return ICS;
2831
2832  //       -- Otherwise, if T2 is a class type and
2833  //          -- the initializer expression is an rvalue and "cv1 T1"
2834  //             is reference-compatible with "cv2 T2," or
2835  //
2836  //          -- T1 is not reference-related to T2 and the initializer
2837  //             expression can be implicitly converted to an rvalue
2838  //             of type "cv3 T3" (this conversion is selected by
2839  //             enumerating the applicable conversion functions
2840  //             (13.3.1.6) and choosing the best one through overload
2841  //             resolution (13.3)),
2842  //
2843  //          then the reference is bound to the initializer
2844  //          expression rvalue in the first case and to the object
2845  //          that is the result of the conversion in the second case
2846  //          (or, in either case, to the appropriate base class
2847  //          subobject of the object).
2848  //
2849  // We're only checking the first case here, which is a direct
2850  // binding in C++0x but not in C++03.
2851  if (InitCategory.isRValue() && T2->isRecordType() &&
2852      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2853    ICS.setStandard();
2854    ICS.Standard.First = ICK_Identity;
2855    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2856    ICS.Standard.Third = ICK_Identity;
2857    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2858    ICS.Standard.setToType(0, T2);
2859    ICS.Standard.setToType(1, T1);
2860    ICS.Standard.setToType(2, T1);
2861    ICS.Standard.ReferenceBinding = true;
2862    ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
2863    ICS.Standard.RRefBinding = isRValRef;
2864    ICS.Standard.CopyConstructor = 0;
2865    return ICS;
2866  }
2867
2868  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2869  //          initialized from the initializer expression using the
2870  //          rules for a non-reference copy initialization (8.5). The
2871  //          reference is then bound to the temporary. If T1 is
2872  //          reference-related to T2, cv1 must be the same
2873  //          cv-qualification as, or greater cv-qualification than,
2874  //          cv2; otherwise, the program is ill-formed.
2875  if (RefRelationship == Sema::Ref_Related) {
2876    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2877    // we would be reference-compatible or reference-compatible with
2878    // added qualification. But that wasn't the case, so the reference
2879    // initialization fails.
2880    return ICS;
2881  }
2882
2883  // If at least one of the types is a class type, the types are not
2884  // related, and we aren't allowed any user conversions, the
2885  // reference binding fails. This case is important for breaking
2886  // recursion, since TryImplicitConversion below will attempt to
2887  // create a temporary through the use of a copy constructor.
2888  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2889      (T1->isRecordType() || T2->isRecordType()))
2890    return ICS;
2891
2892  // C++ [over.ics.ref]p2:
2893  //   When a parameter of reference type is not bound directly to
2894  //   an argument expression, the conversion sequence is the one
2895  //   required to convert the argument expression to the
2896  //   underlying type of the reference according to
2897  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2898  //   to copy-initializing a temporary of the underlying type with
2899  //   the argument expression. Any difference in top-level
2900  //   cv-qualification is subsumed by the initialization itself
2901  //   and does not constitute a conversion.
2902  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2903                                /*AllowExplicit=*/false,
2904                                /*InOverloadResolution=*/false);
2905
2906  // Of course, that's still a reference binding.
2907  if (ICS.isStandard()) {
2908    ICS.Standard.ReferenceBinding = true;
2909    ICS.Standard.RRefBinding = isRValRef;
2910  } else if (ICS.isUserDefined()) {
2911    ICS.UserDefined.After.ReferenceBinding = true;
2912    ICS.UserDefined.After.RRefBinding = isRValRef;
2913  }
2914  return ICS;
2915}
2916
2917/// TryCopyInitialization - Try to copy-initialize a value of type
2918/// ToType from the expression From. Return the implicit conversion
2919/// sequence required to pass this argument, which may be a bad
2920/// conversion sequence (meaning that the argument cannot be passed to
2921/// a parameter of this type). If @p SuppressUserConversions, then we
2922/// do not permit any user-defined conversion sequences.
2923static ImplicitConversionSequence
2924TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
2925                      bool SuppressUserConversions,
2926                      bool InOverloadResolution) {
2927  if (ToType->isReferenceType())
2928    return TryReferenceInit(S, From, ToType,
2929                            /*FIXME:*/From->getLocStart(),
2930                            SuppressUserConversions,
2931                            /*AllowExplicit=*/false);
2932
2933  return S.TryImplicitConversion(From, ToType,
2934                                 SuppressUserConversions,
2935                                 /*AllowExplicit=*/false,
2936                                 InOverloadResolution);
2937}
2938
2939/// TryObjectArgumentInitialization - Try to initialize the object
2940/// parameter of the given member function (@c Method) from the
2941/// expression @p From.
2942ImplicitConversionSequence
2943Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2944                                      CXXMethodDecl *Method,
2945                                      CXXRecordDecl *ActingContext) {
2946  QualType ClassType = Context.getTypeDeclType(ActingContext);
2947  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2948  //                 const volatile object.
2949  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2950    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2951  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2952
2953  // Set up the conversion sequence as a "bad" conversion, to allow us
2954  // to exit early.
2955  ImplicitConversionSequence ICS;
2956
2957  // We need to have an object of class type.
2958  QualType FromType = OrigFromType;
2959  if (const PointerType *PT = FromType->getAs<PointerType>())
2960    FromType = PT->getPointeeType();
2961
2962  assert(FromType->isRecordType());
2963
2964  // The implicit object parameter is has the type "reference to cv X",
2965  // where X is the class of which the function is a member
2966  // (C++ [over.match.funcs]p4). However, when finding an implicit
2967  // conversion sequence for the argument, we are not allowed to
2968  // create temporaries or perform user-defined conversions
2969  // (C++ [over.match.funcs]p5). We perform a simplified version of
2970  // reference binding here, that allows class rvalues to bind to
2971  // non-constant references.
2972
2973  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2974  // with the implicit object parameter (C++ [over.match.funcs]p5).
2975  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2976  if (ImplicitParamType.getCVRQualifiers()
2977                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2978      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2979    ICS.setBad(BadConversionSequence::bad_qualifiers,
2980               OrigFromType, ImplicitParamType);
2981    return ICS;
2982  }
2983
2984  // Check that we have either the same type or a derived type. It
2985  // affects the conversion rank.
2986  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2987  ImplicitConversionKind SecondKind;
2988  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2989    SecondKind = ICK_Identity;
2990  } else if (IsDerivedFrom(FromType, ClassType))
2991    SecondKind = ICK_Derived_To_Base;
2992  else {
2993    ICS.setBad(BadConversionSequence::unrelated_class,
2994               FromType, ImplicitParamType);
2995    return ICS;
2996  }
2997
2998  // Success. Mark this as a reference binding.
2999  ICS.setStandard();
3000  ICS.Standard.setAsIdentityConversion();
3001  ICS.Standard.Second = SecondKind;
3002  ICS.Standard.setFromType(FromType);
3003  ICS.Standard.setAllToTypes(ImplicitParamType);
3004  ICS.Standard.ReferenceBinding = true;
3005  ICS.Standard.DirectBinding = true;
3006  ICS.Standard.RRefBinding = false;
3007  return ICS;
3008}
3009
3010/// PerformObjectArgumentInitialization - Perform initialization of
3011/// the implicit object parameter for the given Method with the given
3012/// expression.
3013bool
3014Sema::PerformObjectArgumentInitialization(Expr *&From,
3015                                          NestedNameSpecifier *Qualifier,
3016                                          NamedDecl *FoundDecl,
3017                                          CXXMethodDecl *Method) {
3018  QualType FromRecordType, DestType;
3019  QualType ImplicitParamRecordType  =
3020    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3021
3022  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3023    FromRecordType = PT->getPointeeType();
3024    DestType = Method->getThisType(Context);
3025  } else {
3026    FromRecordType = From->getType();
3027    DestType = ImplicitParamRecordType;
3028  }
3029
3030  // Note that we always use the true parent context when performing
3031  // the actual argument initialization.
3032  ImplicitConversionSequence ICS
3033    = TryObjectArgumentInitialization(From->getType(), Method,
3034                                      Method->getParent());
3035  if (ICS.isBad())
3036    return Diag(From->getSourceRange().getBegin(),
3037                diag::err_implicit_object_parameter_init)
3038       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3039
3040  if (ICS.Standard.Second == ICK_Derived_To_Base)
3041    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3042
3043  if (!Context.hasSameType(From->getType(), DestType))
3044    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
3045                      /*isLvalue=*/!From->getType()->isPointerType());
3046  return false;
3047}
3048
3049/// TryContextuallyConvertToBool - Attempt to contextually convert the
3050/// expression From to bool (C++0x [conv]p3).
3051ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
3052  // FIXME: This is pretty broken.
3053  return TryImplicitConversion(From, Context.BoolTy,
3054                               // FIXME: Are these flags correct?
3055                               /*SuppressUserConversions=*/false,
3056                               /*AllowExplicit=*/true,
3057                               /*InOverloadResolution=*/false);
3058}
3059
3060/// PerformContextuallyConvertToBool - Perform a contextual conversion
3061/// of the expression From to bool (C++0x [conv]p3).
3062bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
3063  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
3064  if (!ICS.isBad())
3065    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3066
3067  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3068    return  Diag(From->getSourceRange().getBegin(),
3069                 diag::err_typecheck_bool_condition)
3070                  << From->getType() << From->getSourceRange();
3071  return true;
3072}
3073
3074/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3075/// expression From to 'id'.
3076ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) {
3077  QualType Ty = Context.getObjCIdType();
3078  return TryImplicitConversion(From, Ty,
3079                                 // FIXME: Are these flags correct?
3080                                 /*SuppressUserConversions=*/false,
3081                                 /*AllowExplicit=*/true,
3082                                 /*InOverloadResolution=*/false);
3083}
3084
3085/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3086/// of the expression From to 'id'.
3087bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
3088  QualType Ty = Context.getObjCIdType();
3089  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From);
3090  if (!ICS.isBad())
3091    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3092  return true;
3093}
3094
3095/// \brief Attempt to convert the given expression to an integral or
3096/// enumeration type.
3097///
3098/// This routine will attempt to convert an expression of class type to an
3099/// integral or enumeration type, if that class type only has a single
3100/// conversion to an integral or enumeration type.
3101///
3102/// \param Loc The source location of the construct that requires the
3103/// conversion.
3104///
3105/// \param FromE The expression we're converting from.
3106///
3107/// \param NotIntDiag The diagnostic to be emitted if the expression does not
3108/// have integral or enumeration type.
3109///
3110/// \param IncompleteDiag The diagnostic to be emitted if the expression has
3111/// incomplete class type.
3112///
3113/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
3114/// explicit conversion function (because no implicit conversion functions
3115/// were available). This is a recovery mode.
3116///
3117/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
3118/// showing which conversion was picked.
3119///
3120/// \param AmbigDiag The diagnostic to be emitted if there is more than one
3121/// conversion function that could convert to integral or enumeration type.
3122///
3123/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
3124/// usable conversion function.
3125///
3126/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
3127/// function, which may be an extension in this case.
3128///
3129/// \returns The expression, converted to an integral or enumeration type if
3130/// successful.
3131Sema::OwningExprResult
3132Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, ExprArg FromE,
3133                                         const PartialDiagnostic &NotIntDiag,
3134                                       const PartialDiagnostic &IncompleteDiag,
3135                                     const PartialDiagnostic &ExplicitConvDiag,
3136                                     const PartialDiagnostic &ExplicitConvNote,
3137                                         const PartialDiagnostic &AmbigDiag,
3138                                         const PartialDiagnostic &AmbigNote,
3139                                         const PartialDiagnostic &ConvDiag) {
3140  Expr *From = static_cast<Expr *>(FromE.get());
3141
3142  // We can't perform any more checking for type-dependent expressions.
3143  if (From->isTypeDependent())
3144    return move(FromE);
3145
3146  // If the expression already has integral or enumeration type, we're golden.
3147  QualType T = From->getType();
3148  if (T->isIntegralOrEnumerationType())
3149    return move(FromE);
3150
3151  // FIXME: Check for missing '()' if T is a function type?
3152
3153  // If we don't have a class type in C++, there's no way we can get an
3154  // expression of integral or enumeration type.
3155  const RecordType *RecordTy = T->getAs<RecordType>();
3156  if (!RecordTy || !getLangOptions().CPlusPlus) {
3157    Diag(Loc, NotIntDiag)
3158      << T << From->getSourceRange();
3159    return move(FromE);
3160  }
3161
3162  // We must have a complete class type.
3163  if (RequireCompleteType(Loc, T, IncompleteDiag))
3164    return move(FromE);
3165
3166  // Look for a conversion to an integral or enumeration type.
3167  UnresolvedSet<4> ViableConversions;
3168  UnresolvedSet<4> ExplicitConversions;
3169  const UnresolvedSetImpl *Conversions
3170    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
3171
3172  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3173                                   E = Conversions->end();
3174       I != E;
3175       ++I) {
3176    if (CXXConversionDecl *Conversion
3177          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
3178      if (Conversion->getConversionType().getNonReferenceType()
3179            ->isIntegralOrEnumerationType()) {
3180        if (Conversion->isExplicit())
3181          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
3182        else
3183          ViableConversions.addDecl(I.getDecl(), I.getAccess());
3184      }
3185  }
3186
3187  switch (ViableConversions.size()) {
3188  case 0:
3189    if (ExplicitConversions.size() == 1) {
3190      DeclAccessPair Found = ExplicitConversions[0];
3191      CXXConversionDecl *Conversion
3192        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3193
3194      // The user probably meant to invoke the given explicit
3195      // conversion; use it.
3196      QualType ConvTy
3197        = Conversion->getConversionType().getNonReferenceType();
3198      std::string TypeStr;
3199      ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
3200
3201      Diag(Loc, ExplicitConvDiag)
3202        << T << ConvTy
3203        << FixItHint::CreateInsertion(From->getLocStart(),
3204                                      "static_cast<" + TypeStr + ">(")
3205        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
3206                                      ")");
3207      Diag(Conversion->getLocation(), ExplicitConvNote)
3208        << ConvTy->isEnumeralType() << ConvTy;
3209
3210      // If we aren't in a SFINAE context, build a call to the
3211      // explicit conversion function.
3212      if (isSFINAEContext())
3213        return ExprError();
3214
3215      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3216      From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found, Conversion);
3217      FromE = Owned(From);
3218    }
3219
3220    // We'll complain below about a non-integral condition type.
3221    break;
3222
3223  case 1: {
3224    // Apply this conversion.
3225    DeclAccessPair Found = ViableConversions[0];
3226    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3227
3228    CXXConversionDecl *Conversion
3229      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3230    QualType ConvTy
3231      = Conversion->getConversionType().getNonReferenceType();
3232    if (ConvDiag.getDiagID()) {
3233      if (isSFINAEContext())
3234        return ExprError();
3235
3236      Diag(Loc, ConvDiag)
3237        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
3238    }
3239
3240    From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found,
3241                          cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
3242    FromE = Owned(From);
3243    break;
3244  }
3245
3246  default:
3247    Diag(Loc, AmbigDiag)
3248      << T << From->getSourceRange();
3249    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
3250      CXXConversionDecl *Conv
3251        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
3252      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
3253      Diag(Conv->getLocation(), AmbigNote)
3254        << ConvTy->isEnumeralType() << ConvTy;
3255    }
3256    return move(FromE);
3257  }
3258
3259  if (!From->getType()->isIntegralOrEnumerationType())
3260    Diag(Loc, NotIntDiag)
3261      << From->getType() << From->getSourceRange();
3262
3263  return move(FromE);
3264}
3265
3266/// AddOverloadCandidate - Adds the given function to the set of
3267/// candidate functions, using the given function call arguments.  If
3268/// @p SuppressUserConversions, then don't allow user-defined
3269/// conversions via constructors or conversion operators.
3270///
3271/// \para PartialOverloading true if we are performing "partial" overloading
3272/// based on an incomplete set of function arguments. This feature is used by
3273/// code completion.
3274void
3275Sema::AddOverloadCandidate(FunctionDecl *Function,
3276                           DeclAccessPair FoundDecl,
3277                           Expr **Args, unsigned NumArgs,
3278                           OverloadCandidateSet& CandidateSet,
3279                           bool SuppressUserConversions,
3280                           bool PartialOverloading) {
3281  const FunctionProtoType* Proto
3282    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
3283  assert(Proto && "Functions without a prototype cannot be overloaded");
3284  assert(!Function->getDescribedFunctionTemplate() &&
3285         "Use AddTemplateOverloadCandidate for function templates");
3286
3287  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3288    if (!isa<CXXConstructorDecl>(Method)) {
3289      // If we get here, it's because we're calling a member function
3290      // that is named without a member access expression (e.g.,
3291      // "this->f") that was either written explicitly or created
3292      // implicitly. This can happen with a qualified call to a member
3293      // function, e.g., X::f(). We use an empty type for the implied
3294      // object argument (C++ [over.call.func]p3), and the acting context
3295      // is irrelevant.
3296      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
3297                         QualType(), Args, NumArgs, CandidateSet,
3298                         SuppressUserConversions);
3299      return;
3300    }
3301    // We treat a constructor like a non-member function, since its object
3302    // argument doesn't participate in overload resolution.
3303  }
3304
3305  if (!CandidateSet.isNewCandidate(Function))
3306    return;
3307
3308  // Overload resolution is always an unevaluated context.
3309  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3310
3311  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
3312    // C++ [class.copy]p3:
3313    //   A member function template is never instantiated to perform the copy
3314    //   of a class object to an object of its class type.
3315    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
3316    if (NumArgs == 1 &&
3317        Constructor->isCopyConstructorLikeSpecialization() &&
3318        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
3319         IsDerivedFrom(Args[0]->getType(), ClassType)))
3320      return;
3321  }
3322
3323  // Add this candidate
3324  CandidateSet.push_back(OverloadCandidate());
3325  OverloadCandidate& Candidate = CandidateSet.back();
3326  Candidate.FoundDecl = FoundDecl;
3327  Candidate.Function = Function;
3328  Candidate.Viable = true;
3329  Candidate.IsSurrogate = false;
3330  Candidate.IgnoreObjectArgument = false;
3331
3332  unsigned NumArgsInProto = Proto->getNumArgs();
3333
3334  // (C++ 13.3.2p2): A candidate function having fewer than m
3335  // parameters is viable only if it has an ellipsis in its parameter
3336  // list (8.3.5).
3337  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
3338      !Proto->isVariadic()) {
3339    Candidate.Viable = false;
3340    Candidate.FailureKind = ovl_fail_too_many_arguments;
3341    return;
3342  }
3343
3344  // (C++ 13.3.2p2): A candidate function having more than m parameters
3345  // is viable only if the (m+1)st parameter has a default argument
3346  // (8.3.6). For the purposes of overload resolution, the
3347  // parameter list is truncated on the right, so that there are
3348  // exactly m parameters.
3349  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
3350  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
3351    // Not enough arguments.
3352    Candidate.Viable = false;
3353    Candidate.FailureKind = ovl_fail_too_few_arguments;
3354    return;
3355  }
3356
3357  // Determine the implicit conversion sequences for each of the
3358  // arguments.
3359  Candidate.Conversions.resize(NumArgs);
3360  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3361    if (ArgIdx < NumArgsInProto) {
3362      // (C++ 13.3.2p3): for F to be a viable function, there shall
3363      // exist for each argument an implicit conversion sequence
3364      // (13.3.3.1) that converts that argument to the corresponding
3365      // parameter of F.
3366      QualType ParamType = Proto->getArgType(ArgIdx);
3367      Candidate.Conversions[ArgIdx]
3368        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3369                                SuppressUserConversions,
3370                                /*InOverloadResolution=*/true);
3371      if (Candidate.Conversions[ArgIdx].isBad()) {
3372        Candidate.Viable = false;
3373        Candidate.FailureKind = ovl_fail_bad_conversion;
3374        break;
3375      }
3376    } else {
3377      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3378      // argument for which there is no corresponding parameter is
3379      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3380      Candidate.Conversions[ArgIdx].setEllipsis();
3381    }
3382  }
3383}
3384
3385/// \brief Add all of the function declarations in the given function set to
3386/// the overload canddiate set.
3387void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3388                                 Expr **Args, unsigned NumArgs,
3389                                 OverloadCandidateSet& CandidateSet,
3390                                 bool SuppressUserConversions) {
3391  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3392    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3393    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3394      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3395        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3396                           cast<CXXMethodDecl>(FD)->getParent(),
3397                           Args[0]->getType(), Args + 1, NumArgs - 1,
3398                           CandidateSet, SuppressUserConversions);
3399      else
3400        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
3401                             SuppressUserConversions);
3402    } else {
3403      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
3404      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
3405          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
3406        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
3407                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
3408                                   /*FIXME: explicit args */ 0,
3409                                   Args[0]->getType(), Args + 1, NumArgs - 1,
3410                                   CandidateSet,
3411                                   SuppressUserConversions);
3412      else
3413        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
3414                                     /*FIXME: explicit args */ 0,
3415                                     Args, NumArgs, CandidateSet,
3416                                     SuppressUserConversions);
3417    }
3418  }
3419}
3420
3421/// AddMethodCandidate - Adds a named decl (which is some kind of
3422/// method) as a method candidate to the given overload set.
3423void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
3424                              QualType ObjectType,
3425                              Expr **Args, unsigned NumArgs,
3426                              OverloadCandidateSet& CandidateSet,
3427                              bool SuppressUserConversions) {
3428  NamedDecl *Decl = FoundDecl.getDecl();
3429  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
3430
3431  if (isa<UsingShadowDecl>(Decl))
3432    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
3433
3434  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
3435    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
3436           "Expected a member function template");
3437    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
3438                               /*ExplicitArgs*/ 0,
3439                               ObjectType, Args, NumArgs,
3440                               CandidateSet,
3441                               SuppressUserConversions);
3442  } else {
3443    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
3444                       ObjectType, Args, NumArgs,
3445                       CandidateSet, SuppressUserConversions);
3446  }
3447}
3448
3449/// AddMethodCandidate - Adds the given C++ member function to the set
3450/// of candidate functions, using the given function call arguments
3451/// and the object argument (@c Object). For example, in a call
3452/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
3453/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
3454/// allow user-defined conversions via constructors or conversion
3455/// operators.
3456void
3457Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
3458                         CXXRecordDecl *ActingContext, QualType ObjectType,
3459                         Expr **Args, unsigned NumArgs,
3460                         OverloadCandidateSet& CandidateSet,
3461                         bool SuppressUserConversions) {
3462  const FunctionProtoType* Proto
3463    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
3464  assert(Proto && "Methods without a prototype cannot be overloaded");
3465  assert(!isa<CXXConstructorDecl>(Method) &&
3466         "Use AddOverloadCandidate for constructors");
3467
3468  if (!CandidateSet.isNewCandidate(Method))
3469    return;
3470
3471  // Overload resolution is always an unevaluated context.
3472  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3473
3474  // Add this candidate
3475  CandidateSet.push_back(OverloadCandidate());
3476  OverloadCandidate& Candidate = CandidateSet.back();
3477  Candidate.FoundDecl = FoundDecl;
3478  Candidate.Function = Method;
3479  Candidate.IsSurrogate = false;
3480  Candidate.IgnoreObjectArgument = false;
3481
3482  unsigned NumArgsInProto = Proto->getNumArgs();
3483
3484  // (C++ 13.3.2p2): A candidate function having fewer than m
3485  // parameters is viable only if it has an ellipsis in its parameter
3486  // list (8.3.5).
3487  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3488    Candidate.Viable = false;
3489    Candidate.FailureKind = ovl_fail_too_many_arguments;
3490    return;
3491  }
3492
3493  // (C++ 13.3.2p2): A candidate function having more than m parameters
3494  // is viable only if the (m+1)st parameter has a default argument
3495  // (8.3.6). For the purposes of overload resolution, the
3496  // parameter list is truncated on the right, so that there are
3497  // exactly m parameters.
3498  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
3499  if (NumArgs < MinRequiredArgs) {
3500    // Not enough arguments.
3501    Candidate.Viable = false;
3502    Candidate.FailureKind = ovl_fail_too_few_arguments;
3503    return;
3504  }
3505
3506  Candidate.Viable = true;
3507  Candidate.Conversions.resize(NumArgs + 1);
3508
3509  if (Method->isStatic() || ObjectType.isNull())
3510    // The implicit object argument is ignored.
3511    Candidate.IgnoreObjectArgument = true;
3512  else {
3513    // Determine the implicit conversion sequence for the object
3514    // parameter.
3515    Candidate.Conversions[0]
3516      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
3517    if (Candidate.Conversions[0].isBad()) {
3518      Candidate.Viable = false;
3519      Candidate.FailureKind = ovl_fail_bad_conversion;
3520      return;
3521    }
3522  }
3523
3524  // Determine the implicit conversion sequences for each of the
3525  // arguments.
3526  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3527    if (ArgIdx < NumArgsInProto) {
3528      // (C++ 13.3.2p3): for F to be a viable function, there shall
3529      // exist for each argument an implicit conversion sequence
3530      // (13.3.3.1) that converts that argument to the corresponding
3531      // parameter of F.
3532      QualType ParamType = Proto->getArgType(ArgIdx);
3533      Candidate.Conversions[ArgIdx + 1]
3534        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3535                                SuppressUserConversions,
3536                                /*InOverloadResolution=*/true);
3537      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3538        Candidate.Viable = false;
3539        Candidate.FailureKind = ovl_fail_bad_conversion;
3540        break;
3541      }
3542    } else {
3543      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3544      // argument for which there is no corresponding parameter is
3545      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3546      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3547    }
3548  }
3549}
3550
3551/// \brief Add a C++ member function template as a candidate to the candidate
3552/// set, using template argument deduction to produce an appropriate member
3553/// function template specialization.
3554void
3555Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3556                                 DeclAccessPair FoundDecl,
3557                                 CXXRecordDecl *ActingContext,
3558                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3559                                 QualType ObjectType,
3560                                 Expr **Args, unsigned NumArgs,
3561                                 OverloadCandidateSet& CandidateSet,
3562                                 bool SuppressUserConversions) {
3563  if (!CandidateSet.isNewCandidate(MethodTmpl))
3564    return;
3565
3566  // C++ [over.match.funcs]p7:
3567  //   In each case where a candidate is a function template, candidate
3568  //   function template specializations are generated using template argument
3569  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3570  //   candidate functions in the usual way.113) A given name can refer to one
3571  //   or more function templates and also to a set of overloaded non-template
3572  //   functions. In such a case, the candidate functions generated from each
3573  //   function template are combined with the set of non-template candidate
3574  //   functions.
3575  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3576  FunctionDecl *Specialization = 0;
3577  if (TemplateDeductionResult Result
3578      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3579                                Args, NumArgs, Specialization, Info)) {
3580    CandidateSet.push_back(OverloadCandidate());
3581    OverloadCandidate &Candidate = CandidateSet.back();
3582    Candidate.FoundDecl = FoundDecl;
3583    Candidate.Function = MethodTmpl->getTemplatedDecl();
3584    Candidate.Viable = false;
3585    Candidate.FailureKind = ovl_fail_bad_deduction;
3586    Candidate.IsSurrogate = false;
3587    Candidate.IgnoreObjectArgument = false;
3588    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3589                                                          Info);
3590    return;
3591  }
3592
3593  // Add the function template specialization produced by template argument
3594  // deduction as a candidate.
3595  assert(Specialization && "Missing member function template specialization?");
3596  assert(isa<CXXMethodDecl>(Specialization) &&
3597         "Specialization is not a member function?");
3598  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3599                     ActingContext, ObjectType, Args, NumArgs,
3600                     CandidateSet, SuppressUserConversions);
3601}
3602
3603/// \brief Add a C++ function template specialization as a candidate
3604/// in the candidate set, using template argument deduction to produce
3605/// an appropriate function template specialization.
3606void
3607Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3608                                   DeclAccessPair FoundDecl,
3609                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3610                                   Expr **Args, unsigned NumArgs,
3611                                   OverloadCandidateSet& CandidateSet,
3612                                   bool SuppressUserConversions) {
3613  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3614    return;
3615
3616  // C++ [over.match.funcs]p7:
3617  //   In each case where a candidate is a function template, candidate
3618  //   function template specializations are generated using template argument
3619  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3620  //   candidate functions in the usual way.113) A given name can refer to one
3621  //   or more function templates and also to a set of overloaded non-template
3622  //   functions. In such a case, the candidate functions generated from each
3623  //   function template are combined with the set of non-template candidate
3624  //   functions.
3625  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3626  FunctionDecl *Specialization = 0;
3627  if (TemplateDeductionResult Result
3628        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3629                                  Args, NumArgs, Specialization, Info)) {
3630    CandidateSet.push_back(OverloadCandidate());
3631    OverloadCandidate &Candidate = CandidateSet.back();
3632    Candidate.FoundDecl = FoundDecl;
3633    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3634    Candidate.Viable = false;
3635    Candidate.FailureKind = ovl_fail_bad_deduction;
3636    Candidate.IsSurrogate = false;
3637    Candidate.IgnoreObjectArgument = false;
3638    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3639                                                          Info);
3640    return;
3641  }
3642
3643  // Add the function template specialization produced by template argument
3644  // deduction as a candidate.
3645  assert(Specialization && "Missing function template specialization?");
3646  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3647                       SuppressUserConversions);
3648}
3649
3650/// AddConversionCandidate - Add a C++ conversion function as a
3651/// candidate in the candidate set (C++ [over.match.conv],
3652/// C++ [over.match.copy]). From is the expression we're converting from,
3653/// and ToType is the type that we're eventually trying to convert to
3654/// (which may or may not be the same type as the type that the
3655/// conversion function produces).
3656void
3657Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3658                             DeclAccessPair FoundDecl,
3659                             CXXRecordDecl *ActingContext,
3660                             Expr *From, QualType ToType,
3661                             OverloadCandidateSet& CandidateSet) {
3662  assert(!Conversion->getDescribedFunctionTemplate() &&
3663         "Conversion function templates use AddTemplateConversionCandidate");
3664  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3665  if (!CandidateSet.isNewCandidate(Conversion))
3666    return;
3667
3668  // Overload resolution is always an unevaluated context.
3669  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3670
3671  // Add this candidate
3672  CandidateSet.push_back(OverloadCandidate());
3673  OverloadCandidate& Candidate = CandidateSet.back();
3674  Candidate.FoundDecl = FoundDecl;
3675  Candidate.Function = Conversion;
3676  Candidate.IsSurrogate = false;
3677  Candidate.IgnoreObjectArgument = false;
3678  Candidate.FinalConversion.setAsIdentityConversion();
3679  Candidate.FinalConversion.setFromType(ConvType);
3680  Candidate.FinalConversion.setAllToTypes(ToType);
3681
3682  // Determine the implicit conversion sequence for the implicit
3683  // object parameter.
3684  Candidate.Viable = true;
3685  Candidate.Conversions.resize(1);
3686  Candidate.Conversions[0]
3687    = TryObjectArgumentInitialization(From->getType(), Conversion,
3688                                      ActingContext);
3689  // Conversion functions to a different type in the base class is visible in
3690  // the derived class.  So, a derived to base conversion should not participate
3691  // in overload resolution.
3692  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3693    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3694  if (Candidate.Conversions[0].isBad()) {
3695    Candidate.Viable = false;
3696    Candidate.FailureKind = ovl_fail_bad_conversion;
3697    return;
3698  }
3699
3700  // We won't go through a user-define type conversion function to convert a
3701  // derived to base as such conversions are given Conversion Rank. They only
3702  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3703  QualType FromCanon
3704    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3705  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3706  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3707    Candidate.Viable = false;
3708    Candidate.FailureKind = ovl_fail_trivial_conversion;
3709    return;
3710  }
3711
3712  // To determine what the conversion from the result of calling the
3713  // conversion function to the type we're eventually trying to
3714  // convert to (ToType), we need to synthesize a call to the
3715  // conversion function and attempt copy initialization from it. This
3716  // makes sure that we get the right semantics with respect to
3717  // lvalues/rvalues and the type. Fortunately, we can allocate this
3718  // call on the stack and we don't need its arguments to be
3719  // well-formed.
3720  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3721                            From->getLocStart());
3722  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3723                                CastExpr::CK_FunctionToPointerDecay,
3724                                &ConversionRef, CXXBaseSpecifierArray(), false);
3725
3726  // Note that it is safe to allocate CallExpr on the stack here because
3727  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3728  // allocator).
3729  CallExpr Call(Context, &ConversionFn, 0, 0,
3730                Conversion->getConversionType().getNonLValueExprType(Context),
3731                From->getLocStart());
3732  ImplicitConversionSequence ICS =
3733    TryCopyInitialization(*this, &Call, ToType,
3734                          /*SuppressUserConversions=*/true,
3735                          /*InOverloadResolution=*/false);
3736
3737  switch (ICS.getKind()) {
3738  case ImplicitConversionSequence::StandardConversion:
3739    Candidate.FinalConversion = ICS.Standard;
3740
3741    // C++ [over.ics.user]p3:
3742    //   If the user-defined conversion is specified by a specialization of a
3743    //   conversion function template, the second standard conversion sequence
3744    //   shall have exact match rank.
3745    if (Conversion->getPrimaryTemplate() &&
3746        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3747      Candidate.Viable = false;
3748      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3749    }
3750
3751    break;
3752
3753  case ImplicitConversionSequence::BadConversion:
3754    Candidate.Viable = false;
3755    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3756    break;
3757
3758  default:
3759    assert(false &&
3760           "Can only end up with a standard conversion sequence or failure");
3761  }
3762}
3763
3764/// \brief Adds a conversion function template specialization
3765/// candidate to the overload set, using template argument deduction
3766/// to deduce the template arguments of the conversion function
3767/// template from the type that we are converting to (C++
3768/// [temp.deduct.conv]).
3769void
3770Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3771                                     DeclAccessPair FoundDecl,
3772                                     CXXRecordDecl *ActingDC,
3773                                     Expr *From, QualType ToType,
3774                                     OverloadCandidateSet &CandidateSet) {
3775  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3776         "Only conversion function templates permitted here");
3777
3778  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3779    return;
3780
3781  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3782  CXXConversionDecl *Specialization = 0;
3783  if (TemplateDeductionResult Result
3784        = DeduceTemplateArguments(FunctionTemplate, ToType,
3785                                  Specialization, Info)) {
3786    CandidateSet.push_back(OverloadCandidate());
3787    OverloadCandidate &Candidate = CandidateSet.back();
3788    Candidate.FoundDecl = FoundDecl;
3789    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3790    Candidate.Viable = false;
3791    Candidate.FailureKind = ovl_fail_bad_deduction;
3792    Candidate.IsSurrogate = false;
3793    Candidate.IgnoreObjectArgument = false;
3794    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3795                                                          Info);
3796    return;
3797  }
3798
3799  // Add the conversion function template specialization produced by
3800  // template argument deduction as a candidate.
3801  assert(Specialization && "Missing function template specialization?");
3802  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3803                         CandidateSet);
3804}
3805
3806/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3807/// converts the given @c Object to a function pointer via the
3808/// conversion function @c Conversion, and then attempts to call it
3809/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3810/// the type of function that we'll eventually be calling.
3811void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3812                                 DeclAccessPair FoundDecl,
3813                                 CXXRecordDecl *ActingContext,
3814                                 const FunctionProtoType *Proto,
3815                                 QualType ObjectType,
3816                                 Expr **Args, unsigned NumArgs,
3817                                 OverloadCandidateSet& CandidateSet) {
3818  if (!CandidateSet.isNewCandidate(Conversion))
3819    return;
3820
3821  // Overload resolution is always an unevaluated context.
3822  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3823
3824  CandidateSet.push_back(OverloadCandidate());
3825  OverloadCandidate& Candidate = CandidateSet.back();
3826  Candidate.FoundDecl = FoundDecl;
3827  Candidate.Function = 0;
3828  Candidate.Surrogate = Conversion;
3829  Candidate.Viable = true;
3830  Candidate.IsSurrogate = true;
3831  Candidate.IgnoreObjectArgument = false;
3832  Candidate.Conversions.resize(NumArgs + 1);
3833
3834  // Determine the implicit conversion sequence for the implicit
3835  // object parameter.
3836  ImplicitConversionSequence ObjectInit
3837    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3838  if (ObjectInit.isBad()) {
3839    Candidate.Viable = false;
3840    Candidate.FailureKind = ovl_fail_bad_conversion;
3841    Candidate.Conversions[0] = ObjectInit;
3842    return;
3843  }
3844
3845  // The first conversion is actually a user-defined conversion whose
3846  // first conversion is ObjectInit's standard conversion (which is
3847  // effectively a reference binding). Record it as such.
3848  Candidate.Conversions[0].setUserDefined();
3849  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3850  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3851  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3852  Candidate.Conversions[0].UserDefined.After
3853    = Candidate.Conversions[0].UserDefined.Before;
3854  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3855
3856  // Find the
3857  unsigned NumArgsInProto = Proto->getNumArgs();
3858
3859  // (C++ 13.3.2p2): A candidate function having fewer than m
3860  // parameters is viable only if it has an ellipsis in its parameter
3861  // list (8.3.5).
3862  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3863    Candidate.Viable = false;
3864    Candidate.FailureKind = ovl_fail_too_many_arguments;
3865    return;
3866  }
3867
3868  // Function types don't have any default arguments, so just check if
3869  // we have enough arguments.
3870  if (NumArgs < NumArgsInProto) {
3871    // Not enough arguments.
3872    Candidate.Viable = false;
3873    Candidate.FailureKind = ovl_fail_too_few_arguments;
3874    return;
3875  }
3876
3877  // Determine the implicit conversion sequences for each of the
3878  // arguments.
3879  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3880    if (ArgIdx < NumArgsInProto) {
3881      // (C++ 13.3.2p3): for F to be a viable function, there shall
3882      // exist for each argument an implicit conversion sequence
3883      // (13.3.3.1) that converts that argument to the corresponding
3884      // parameter of F.
3885      QualType ParamType = Proto->getArgType(ArgIdx);
3886      Candidate.Conversions[ArgIdx + 1]
3887        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3888                                /*SuppressUserConversions=*/false,
3889                                /*InOverloadResolution=*/false);
3890      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3891        Candidate.Viable = false;
3892        Candidate.FailureKind = ovl_fail_bad_conversion;
3893        break;
3894      }
3895    } else {
3896      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3897      // argument for which there is no corresponding parameter is
3898      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3899      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3900    }
3901  }
3902}
3903
3904/// \brief Add overload candidates for overloaded operators that are
3905/// member functions.
3906///
3907/// Add the overloaded operator candidates that are member functions
3908/// for the operator Op that was used in an operator expression such
3909/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3910/// CandidateSet will store the added overload candidates. (C++
3911/// [over.match.oper]).
3912void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3913                                       SourceLocation OpLoc,
3914                                       Expr **Args, unsigned NumArgs,
3915                                       OverloadCandidateSet& CandidateSet,
3916                                       SourceRange OpRange) {
3917  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3918
3919  // C++ [over.match.oper]p3:
3920  //   For a unary operator @ with an operand of a type whose
3921  //   cv-unqualified version is T1, and for a binary operator @ with
3922  //   a left operand of a type whose cv-unqualified version is T1 and
3923  //   a right operand of a type whose cv-unqualified version is T2,
3924  //   three sets of candidate functions, designated member
3925  //   candidates, non-member candidates and built-in candidates, are
3926  //   constructed as follows:
3927  QualType T1 = Args[0]->getType();
3928  QualType T2;
3929  if (NumArgs > 1)
3930    T2 = Args[1]->getType();
3931
3932  //     -- If T1 is a class type, the set of member candidates is the
3933  //        result of the qualified lookup of T1::operator@
3934  //        (13.3.1.1.1); otherwise, the set of member candidates is
3935  //        empty.
3936  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3937    // Complete the type if it can be completed. Otherwise, we're done.
3938    if (RequireCompleteType(OpLoc, T1, PDiag()))
3939      return;
3940
3941    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3942    LookupQualifiedName(Operators, T1Rec->getDecl());
3943    Operators.suppressDiagnostics();
3944
3945    for (LookupResult::iterator Oper = Operators.begin(),
3946                             OperEnd = Operators.end();
3947         Oper != OperEnd;
3948         ++Oper)
3949      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3950                         Args + 1, NumArgs - 1, CandidateSet,
3951                         /* SuppressUserConversions = */ false);
3952  }
3953}
3954
3955/// AddBuiltinCandidate - Add a candidate for a built-in
3956/// operator. ResultTy and ParamTys are the result and parameter types
3957/// of the built-in candidate, respectively. Args and NumArgs are the
3958/// arguments being passed to the candidate. IsAssignmentOperator
3959/// should be true when this built-in candidate is an assignment
3960/// operator. NumContextualBoolArguments is the number of arguments
3961/// (at the beginning of the argument list) that will be contextually
3962/// converted to bool.
3963void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3964                               Expr **Args, unsigned NumArgs,
3965                               OverloadCandidateSet& CandidateSet,
3966                               bool IsAssignmentOperator,
3967                               unsigned NumContextualBoolArguments) {
3968  // Overload resolution is always an unevaluated context.
3969  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3970
3971  // Add this candidate
3972  CandidateSet.push_back(OverloadCandidate());
3973  OverloadCandidate& Candidate = CandidateSet.back();
3974  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3975  Candidate.Function = 0;
3976  Candidate.IsSurrogate = false;
3977  Candidate.IgnoreObjectArgument = false;
3978  Candidate.BuiltinTypes.ResultTy = ResultTy;
3979  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3980    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3981
3982  // Determine the implicit conversion sequences for each of the
3983  // arguments.
3984  Candidate.Viable = true;
3985  Candidate.Conversions.resize(NumArgs);
3986  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3987    // C++ [over.match.oper]p4:
3988    //   For the built-in assignment operators, conversions of the
3989    //   left operand are restricted as follows:
3990    //     -- no temporaries are introduced to hold the left operand, and
3991    //     -- no user-defined conversions are applied to the left
3992    //        operand to achieve a type match with the left-most
3993    //        parameter of a built-in candidate.
3994    //
3995    // We block these conversions by turning off user-defined
3996    // conversions, since that is the only way that initialization of
3997    // a reference to a non-class type can occur from something that
3998    // is not of the same type.
3999    if (ArgIdx < NumContextualBoolArguments) {
4000      assert(ParamTys[ArgIdx] == Context.BoolTy &&
4001             "Contextual conversion to bool requires bool type");
4002      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
4003    } else {
4004      Candidate.Conversions[ArgIdx]
4005        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4006                                ArgIdx == 0 && IsAssignmentOperator,
4007                                /*InOverloadResolution=*/false);
4008    }
4009    if (Candidate.Conversions[ArgIdx].isBad()) {
4010      Candidate.Viable = false;
4011      Candidate.FailureKind = ovl_fail_bad_conversion;
4012      break;
4013    }
4014  }
4015}
4016
4017/// BuiltinCandidateTypeSet - A set of types that will be used for the
4018/// candidate operator functions for built-in operators (C++
4019/// [over.built]). The types are separated into pointer types and
4020/// enumeration types.
4021class BuiltinCandidateTypeSet  {
4022  /// TypeSet - A set of types.
4023  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4024
4025  /// PointerTypes - The set of pointer types that will be used in the
4026  /// built-in candidates.
4027  TypeSet PointerTypes;
4028
4029  /// MemberPointerTypes - The set of member pointer types that will be
4030  /// used in the built-in candidates.
4031  TypeSet MemberPointerTypes;
4032
4033  /// EnumerationTypes - The set of enumeration types that will be
4034  /// used in the built-in candidates.
4035  TypeSet EnumerationTypes;
4036
4037  /// \brief The set of vector types that will be used in the built-in
4038  /// candidates.
4039  TypeSet VectorTypes;
4040
4041  /// Sema - The semantic analysis instance where we are building the
4042  /// candidate type set.
4043  Sema &SemaRef;
4044
4045  /// Context - The AST context in which we will build the type sets.
4046  ASTContext &Context;
4047
4048  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4049                                               const Qualifiers &VisibleQuals);
4050  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
4051
4052public:
4053  /// iterator - Iterates through the types that are part of the set.
4054  typedef TypeSet::iterator iterator;
4055
4056  BuiltinCandidateTypeSet(Sema &SemaRef)
4057    : SemaRef(SemaRef), Context(SemaRef.Context) { }
4058
4059  void AddTypesConvertedFrom(QualType Ty,
4060                             SourceLocation Loc,
4061                             bool AllowUserConversions,
4062                             bool AllowExplicitConversions,
4063                             const Qualifiers &VisibleTypeConversionsQuals);
4064
4065  /// pointer_begin - First pointer type found;
4066  iterator pointer_begin() { return PointerTypes.begin(); }
4067
4068  /// pointer_end - Past the last pointer type found;
4069  iterator pointer_end() { return PointerTypes.end(); }
4070
4071  /// member_pointer_begin - First member pointer type found;
4072  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
4073
4074  /// member_pointer_end - Past the last member pointer type found;
4075  iterator member_pointer_end() { return MemberPointerTypes.end(); }
4076
4077  /// enumeration_begin - First enumeration type found;
4078  iterator enumeration_begin() { return EnumerationTypes.begin(); }
4079
4080  /// enumeration_end - Past the last enumeration type found;
4081  iterator enumeration_end() { return EnumerationTypes.end(); }
4082
4083  iterator vector_begin() { return VectorTypes.begin(); }
4084  iterator vector_end() { return VectorTypes.end(); }
4085};
4086
4087/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
4088/// the set of pointer types along with any more-qualified variants of
4089/// that type. For example, if @p Ty is "int const *", this routine
4090/// will add "int const *", "int const volatile *", "int const
4091/// restrict *", and "int const volatile restrict *" to the set of
4092/// pointer types. Returns true if the add of @p Ty itself succeeded,
4093/// false otherwise.
4094///
4095/// FIXME: what to do about extended qualifiers?
4096bool
4097BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4098                                             const Qualifiers &VisibleQuals) {
4099
4100  // Insert this type.
4101  if (!PointerTypes.insert(Ty))
4102    return false;
4103
4104  const PointerType *PointerTy = Ty->getAs<PointerType>();
4105  assert(PointerTy && "type was not a pointer type!");
4106
4107  QualType PointeeTy = PointerTy->getPointeeType();
4108  // Don't add qualified variants of arrays. For one, they're not allowed
4109  // (the qualifier would sink to the element type), and for another, the
4110  // only overload situation where it matters is subscript or pointer +- int,
4111  // and those shouldn't have qualifier variants anyway.
4112  if (PointeeTy->isArrayType())
4113    return true;
4114  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4115  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
4116    BaseCVR = Array->getElementType().getCVRQualifiers();
4117  bool hasVolatile = VisibleQuals.hasVolatile();
4118  bool hasRestrict = VisibleQuals.hasRestrict();
4119
4120  // Iterate through all strict supersets of BaseCVR.
4121  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4122    if ((CVR | BaseCVR) != CVR) continue;
4123    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
4124    // in the types.
4125    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
4126    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
4127    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4128    PointerTypes.insert(Context.getPointerType(QPointeeTy));
4129  }
4130
4131  return true;
4132}
4133
4134/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
4135/// to the set of pointer types along with any more-qualified variants of
4136/// that type. For example, if @p Ty is "int const *", this routine
4137/// will add "int const *", "int const volatile *", "int const
4138/// restrict *", and "int const volatile restrict *" to the set of
4139/// pointer types. Returns true if the add of @p Ty itself succeeded,
4140/// false otherwise.
4141///
4142/// FIXME: what to do about extended qualifiers?
4143bool
4144BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
4145    QualType Ty) {
4146  // Insert this type.
4147  if (!MemberPointerTypes.insert(Ty))
4148    return false;
4149
4150  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
4151  assert(PointerTy && "type was not a member pointer type!");
4152
4153  QualType PointeeTy = PointerTy->getPointeeType();
4154  // Don't add qualified variants of arrays. For one, they're not allowed
4155  // (the qualifier would sink to the element type), and for another, the
4156  // only overload situation where it matters is subscript or pointer +- int,
4157  // and those shouldn't have qualifier variants anyway.
4158  if (PointeeTy->isArrayType())
4159    return true;
4160  const Type *ClassTy = PointerTy->getClass();
4161
4162  // Iterate through all strict supersets of the pointee type's CVR
4163  // qualifiers.
4164  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4165  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4166    if ((CVR | BaseCVR) != CVR) continue;
4167
4168    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4169    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
4170  }
4171
4172  return true;
4173}
4174
4175/// AddTypesConvertedFrom - Add each of the types to which the type @p
4176/// Ty can be implicit converted to the given set of @p Types. We're
4177/// primarily interested in pointer types and enumeration types. We also
4178/// take member pointer types, for the conditional operator.
4179/// AllowUserConversions is true if we should look at the conversion
4180/// functions of a class type, and AllowExplicitConversions if we
4181/// should also include the explicit conversion functions of a class
4182/// type.
4183void
4184BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
4185                                               SourceLocation Loc,
4186                                               bool AllowUserConversions,
4187                                               bool AllowExplicitConversions,
4188                                               const Qualifiers &VisibleQuals) {
4189  // Only deal with canonical types.
4190  Ty = Context.getCanonicalType(Ty);
4191
4192  // Look through reference types; they aren't part of the type of an
4193  // expression for the purposes of conversions.
4194  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
4195    Ty = RefTy->getPointeeType();
4196
4197  // We don't care about qualifiers on the type.
4198  Ty = Ty.getLocalUnqualifiedType();
4199
4200  // If we're dealing with an array type, decay to the pointer.
4201  if (Ty->isArrayType())
4202    Ty = SemaRef.Context.getArrayDecayedType(Ty);
4203
4204  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
4205    QualType PointeeTy = PointerTy->getPointeeType();
4206
4207    // Insert our type, and its more-qualified variants, into the set
4208    // of types.
4209    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
4210      return;
4211  } else if (Ty->isMemberPointerType()) {
4212    // Member pointers are far easier, since the pointee can't be converted.
4213    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
4214      return;
4215  } else if (Ty->isEnumeralType()) {
4216    EnumerationTypes.insert(Ty);
4217  } else if (Ty->isVectorType()) {
4218    VectorTypes.insert(Ty);
4219  } else if (AllowUserConversions) {
4220    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
4221      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
4222        // No conversion functions in incomplete types.
4223        return;
4224      }
4225
4226      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4227      const UnresolvedSetImpl *Conversions
4228        = ClassDecl->getVisibleConversionFunctions();
4229      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4230             E = Conversions->end(); I != E; ++I) {
4231        NamedDecl *D = I.getDecl();
4232        if (isa<UsingShadowDecl>(D))
4233          D = cast<UsingShadowDecl>(D)->getTargetDecl();
4234
4235        // Skip conversion function templates; they don't tell us anything
4236        // about which builtin types we can convert to.
4237        if (isa<FunctionTemplateDecl>(D))
4238          continue;
4239
4240        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
4241        if (AllowExplicitConversions || !Conv->isExplicit()) {
4242          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
4243                                VisibleQuals);
4244        }
4245      }
4246    }
4247  }
4248}
4249
4250/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
4251/// the volatile- and non-volatile-qualified assignment operators for the
4252/// given type to the candidate set.
4253static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
4254                                                   QualType T,
4255                                                   Expr **Args,
4256                                                   unsigned NumArgs,
4257                                    OverloadCandidateSet &CandidateSet) {
4258  QualType ParamTypes[2];
4259
4260  // T& operator=(T&, T)
4261  ParamTypes[0] = S.Context.getLValueReferenceType(T);
4262  ParamTypes[1] = T;
4263  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4264                        /*IsAssignmentOperator=*/true);
4265
4266  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
4267    // volatile T& operator=(volatile T&, T)
4268    ParamTypes[0]
4269      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
4270    ParamTypes[1] = T;
4271    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4272                          /*IsAssignmentOperator=*/true);
4273  }
4274}
4275
4276/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
4277/// if any, found in visible type conversion functions found in ArgExpr's type.
4278static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
4279    Qualifiers VRQuals;
4280    const RecordType *TyRec;
4281    if (const MemberPointerType *RHSMPType =
4282        ArgExpr->getType()->getAs<MemberPointerType>())
4283      TyRec = RHSMPType->getClass()->getAs<RecordType>();
4284    else
4285      TyRec = ArgExpr->getType()->getAs<RecordType>();
4286    if (!TyRec) {
4287      // Just to be safe, assume the worst case.
4288      VRQuals.addVolatile();
4289      VRQuals.addRestrict();
4290      return VRQuals;
4291    }
4292
4293    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4294    if (!ClassDecl->hasDefinition())
4295      return VRQuals;
4296
4297    const UnresolvedSetImpl *Conversions =
4298      ClassDecl->getVisibleConversionFunctions();
4299
4300    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4301           E = Conversions->end(); I != E; ++I) {
4302      NamedDecl *D = I.getDecl();
4303      if (isa<UsingShadowDecl>(D))
4304        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4305      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
4306        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
4307        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
4308          CanTy = ResTypeRef->getPointeeType();
4309        // Need to go down the pointer/mempointer chain and add qualifiers
4310        // as see them.
4311        bool done = false;
4312        while (!done) {
4313          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
4314            CanTy = ResTypePtr->getPointeeType();
4315          else if (const MemberPointerType *ResTypeMPtr =
4316                CanTy->getAs<MemberPointerType>())
4317            CanTy = ResTypeMPtr->getPointeeType();
4318          else
4319            done = true;
4320          if (CanTy.isVolatileQualified())
4321            VRQuals.addVolatile();
4322          if (CanTy.isRestrictQualified())
4323            VRQuals.addRestrict();
4324          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
4325            return VRQuals;
4326        }
4327      }
4328    }
4329    return VRQuals;
4330}
4331
4332/// AddBuiltinOperatorCandidates - Add the appropriate built-in
4333/// operator overloads to the candidate set (C++ [over.built]), based
4334/// on the operator @p Op and the arguments given. For example, if the
4335/// operator is a binary '+', this routine might add "int
4336/// operator+(int, int)" to cover integer addition.
4337void
4338Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
4339                                   SourceLocation OpLoc,
4340                                   Expr **Args, unsigned NumArgs,
4341                                   OverloadCandidateSet& CandidateSet) {
4342  // The set of "promoted arithmetic types", which are the arithmetic
4343  // types are that preserved by promotion (C++ [over.built]p2). Note
4344  // that the first few of these types are the promoted integral
4345  // types; these types need to be first.
4346  // FIXME: What about complex?
4347  const unsigned FirstIntegralType = 0;
4348  const unsigned LastIntegralType = 13;
4349  const unsigned FirstPromotedIntegralType = 7,
4350                 LastPromotedIntegralType = 13;
4351  const unsigned FirstPromotedArithmeticType = 7,
4352                 LastPromotedArithmeticType = 16;
4353  const unsigned NumArithmeticTypes = 16;
4354  QualType ArithmeticTypes[NumArithmeticTypes] = {
4355    Context.BoolTy, Context.CharTy, Context.WCharTy,
4356// FIXME:   Context.Char16Ty, Context.Char32Ty,
4357    Context.SignedCharTy, Context.ShortTy,
4358    Context.UnsignedCharTy, Context.UnsignedShortTy,
4359    Context.IntTy, Context.LongTy, Context.LongLongTy,
4360    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
4361    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
4362  };
4363  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
4364         "Invalid first promoted integral type");
4365  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
4366           == Context.UnsignedLongLongTy &&
4367         "Invalid last promoted integral type");
4368  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
4369         "Invalid first promoted arithmetic type");
4370  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
4371            == Context.LongDoubleTy &&
4372         "Invalid last promoted arithmetic type");
4373
4374  // Find all of the types that the arguments can convert to, but only
4375  // if the operator we're looking at has built-in operator candidates
4376  // that make use of these types.
4377  Qualifiers VisibleTypeConversionsQuals;
4378  VisibleTypeConversionsQuals.addConst();
4379  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4380    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
4381
4382  BuiltinCandidateTypeSet CandidateTypes(*this);
4383  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4384    CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
4385                                         OpLoc,
4386                                         true,
4387                                         (Op == OO_Exclaim ||
4388                                          Op == OO_AmpAmp ||
4389                                          Op == OO_PipePipe),
4390                                         VisibleTypeConversionsQuals);
4391
4392  bool isComparison = false;
4393  switch (Op) {
4394  case OO_None:
4395  case NUM_OVERLOADED_OPERATORS:
4396    assert(false && "Expected an overloaded operator");
4397    break;
4398
4399  case OO_Star: // '*' is either unary or binary
4400    if (NumArgs == 1)
4401      goto UnaryStar;
4402    else
4403      goto BinaryStar;
4404    break;
4405
4406  case OO_Plus: // '+' is either unary or binary
4407    if (NumArgs == 1)
4408      goto UnaryPlus;
4409    else
4410      goto BinaryPlus;
4411    break;
4412
4413  case OO_Minus: // '-' is either unary or binary
4414    if (NumArgs == 1)
4415      goto UnaryMinus;
4416    else
4417      goto BinaryMinus;
4418    break;
4419
4420  case OO_Amp: // '&' is either unary or binary
4421    if (NumArgs == 1)
4422      goto UnaryAmp;
4423    else
4424      goto BinaryAmp;
4425
4426  case OO_PlusPlus:
4427  case OO_MinusMinus:
4428    // C++ [over.built]p3:
4429    //
4430    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
4431    //   is either volatile or empty, there exist candidate operator
4432    //   functions of the form
4433    //
4434    //       VQ T&      operator++(VQ T&);
4435    //       T          operator++(VQ T&, int);
4436    //
4437    // C++ [over.built]p4:
4438    //
4439    //   For every pair (T, VQ), where T is an arithmetic type other
4440    //   than bool, and VQ is either volatile or empty, there exist
4441    //   candidate operator functions of the form
4442    //
4443    //       VQ T&      operator--(VQ T&);
4444    //       T          operator--(VQ T&, int);
4445    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
4446         Arith < NumArithmeticTypes; ++Arith) {
4447      QualType ArithTy = ArithmeticTypes[Arith];
4448      QualType ParamTypes[2]
4449        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
4450
4451      // Non-volatile version.
4452      if (NumArgs == 1)
4453        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4454      else
4455        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4456      // heuristic to reduce number of builtin candidates in the set.
4457      // Add volatile version only if there are conversions to a volatile type.
4458      if (VisibleTypeConversionsQuals.hasVolatile()) {
4459        // Volatile version
4460        ParamTypes[0]
4461          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
4462        if (NumArgs == 1)
4463          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4464        else
4465          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4466      }
4467    }
4468
4469    // C++ [over.built]p5:
4470    //
4471    //   For every pair (T, VQ), where T is a cv-qualified or
4472    //   cv-unqualified object type, and VQ is either volatile or
4473    //   empty, there exist candidate operator functions of the form
4474    //
4475    //       T*VQ&      operator++(T*VQ&);
4476    //       T*VQ&      operator--(T*VQ&);
4477    //       T*         operator++(T*VQ&, int);
4478    //       T*         operator--(T*VQ&, int);
4479    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4480         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4481      // Skip pointer types that aren't pointers to object types.
4482      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
4483        continue;
4484
4485      QualType ParamTypes[2] = {
4486        Context.getLValueReferenceType(*Ptr), Context.IntTy
4487      };
4488
4489      // Without volatile
4490      if (NumArgs == 1)
4491        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4492      else
4493        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4494
4495      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4496          VisibleTypeConversionsQuals.hasVolatile()) {
4497        // With volatile
4498        ParamTypes[0]
4499          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4500        if (NumArgs == 1)
4501          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4502        else
4503          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4504      }
4505    }
4506    break;
4507
4508  UnaryStar:
4509    // C++ [over.built]p6:
4510    //   For every cv-qualified or cv-unqualified object type T, there
4511    //   exist candidate operator functions of the form
4512    //
4513    //       T&         operator*(T*);
4514    //
4515    // C++ [over.built]p7:
4516    //   For every function type T, there exist candidate operator
4517    //   functions of the form
4518    //       T&         operator*(T*);
4519    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4520         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4521      QualType ParamTy = *Ptr;
4522      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
4523      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
4524                          &ParamTy, Args, 1, CandidateSet);
4525    }
4526    break;
4527
4528  UnaryPlus:
4529    // C++ [over.built]p8:
4530    //   For every type T, there exist candidate operator functions of
4531    //   the form
4532    //
4533    //       T*         operator+(T*);
4534    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4535         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4536      QualType ParamTy = *Ptr;
4537      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
4538    }
4539
4540    // Fall through
4541
4542  UnaryMinus:
4543    // C++ [over.built]p9:
4544    //  For every promoted arithmetic type T, there exist candidate
4545    //  operator functions of the form
4546    //
4547    //       T         operator+(T);
4548    //       T         operator-(T);
4549    for (unsigned Arith = FirstPromotedArithmeticType;
4550         Arith < LastPromotedArithmeticType; ++Arith) {
4551      QualType ArithTy = ArithmeticTypes[Arith];
4552      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
4553    }
4554
4555    // Extension: We also add these operators for vector types.
4556    for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(),
4557                                        VecEnd = CandidateTypes.vector_end();
4558         Vec != VecEnd; ++Vec) {
4559      QualType VecTy = *Vec;
4560      AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
4561    }
4562    break;
4563
4564  case OO_Tilde:
4565    // C++ [over.built]p10:
4566    //   For every promoted integral type T, there exist candidate
4567    //   operator functions of the form
4568    //
4569    //        T         operator~(T);
4570    for (unsigned Int = FirstPromotedIntegralType;
4571         Int < LastPromotedIntegralType; ++Int) {
4572      QualType IntTy = ArithmeticTypes[Int];
4573      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
4574    }
4575
4576    // Extension: We also add this operator for vector types.
4577    for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(),
4578                                        VecEnd = CandidateTypes.vector_end();
4579         Vec != VecEnd; ++Vec) {
4580      QualType VecTy = *Vec;
4581      AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
4582    }
4583    break;
4584
4585  case OO_New:
4586  case OO_Delete:
4587  case OO_Array_New:
4588  case OO_Array_Delete:
4589  case OO_Call:
4590    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
4591    break;
4592
4593  case OO_Comma:
4594  UnaryAmp:
4595  case OO_Arrow:
4596    // C++ [over.match.oper]p3:
4597    //   -- For the operator ',', the unary operator '&', or the
4598    //      operator '->', the built-in candidates set is empty.
4599    break;
4600
4601  case OO_EqualEqual:
4602  case OO_ExclaimEqual:
4603    // C++ [over.match.oper]p16:
4604    //   For every pointer to member type T, there exist candidate operator
4605    //   functions of the form
4606    //
4607    //        bool operator==(T,T);
4608    //        bool operator!=(T,T);
4609    for (BuiltinCandidateTypeSet::iterator
4610           MemPtr = CandidateTypes.member_pointer_begin(),
4611           MemPtrEnd = CandidateTypes.member_pointer_end();
4612         MemPtr != MemPtrEnd;
4613         ++MemPtr) {
4614      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4615      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4616    }
4617
4618    // Fall through
4619
4620  case OO_Less:
4621  case OO_Greater:
4622  case OO_LessEqual:
4623  case OO_GreaterEqual:
4624    // C++ [over.built]p15:
4625    //
4626    //   For every pointer or enumeration type T, there exist
4627    //   candidate operator functions of the form
4628    //
4629    //        bool       operator<(T, T);
4630    //        bool       operator>(T, T);
4631    //        bool       operator<=(T, T);
4632    //        bool       operator>=(T, T);
4633    //        bool       operator==(T, T);
4634    //        bool       operator!=(T, T);
4635    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4636         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4637      QualType ParamTypes[2] = { *Ptr, *Ptr };
4638      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4639    }
4640    for (BuiltinCandidateTypeSet::iterator Enum
4641           = CandidateTypes.enumeration_begin();
4642         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4643      QualType ParamTypes[2] = { *Enum, *Enum };
4644      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4645    }
4646
4647    // Fall through.
4648    isComparison = true;
4649
4650  BinaryPlus:
4651  BinaryMinus:
4652    if (!isComparison) {
4653      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4654
4655      // C++ [over.built]p13:
4656      //
4657      //   For every cv-qualified or cv-unqualified object type T
4658      //   there exist candidate operator functions of the form
4659      //
4660      //      T*         operator+(T*, ptrdiff_t);
4661      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4662      //      T*         operator-(T*, ptrdiff_t);
4663      //      T*         operator+(ptrdiff_t, T*);
4664      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4665      //
4666      // C++ [over.built]p14:
4667      //
4668      //   For every T, where T is a pointer to object type, there
4669      //   exist candidate operator functions of the form
4670      //
4671      //      ptrdiff_t  operator-(T, T);
4672      for (BuiltinCandidateTypeSet::iterator Ptr
4673             = CandidateTypes.pointer_begin();
4674           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4675        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4676
4677        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4678        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4679
4680        if (Op == OO_Plus) {
4681          // T* operator+(ptrdiff_t, T*);
4682          ParamTypes[0] = ParamTypes[1];
4683          ParamTypes[1] = *Ptr;
4684          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4685        } else {
4686          // ptrdiff_t operator-(T, T);
4687          ParamTypes[1] = *Ptr;
4688          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4689                              Args, 2, CandidateSet);
4690        }
4691      }
4692    }
4693    // Fall through
4694
4695  case OO_Slash:
4696  BinaryStar:
4697  Conditional:
4698    // C++ [over.built]p12:
4699    //
4700    //   For every pair of promoted arithmetic types L and R, there
4701    //   exist candidate operator functions of the form
4702    //
4703    //        LR         operator*(L, R);
4704    //        LR         operator/(L, R);
4705    //        LR         operator+(L, R);
4706    //        LR         operator-(L, R);
4707    //        bool       operator<(L, R);
4708    //        bool       operator>(L, R);
4709    //        bool       operator<=(L, R);
4710    //        bool       operator>=(L, R);
4711    //        bool       operator==(L, R);
4712    //        bool       operator!=(L, R);
4713    //
4714    //   where LR is the result of the usual arithmetic conversions
4715    //   between types L and R.
4716    //
4717    // C++ [over.built]p24:
4718    //
4719    //   For every pair of promoted arithmetic types L and R, there exist
4720    //   candidate operator functions of the form
4721    //
4722    //        LR       operator?(bool, L, R);
4723    //
4724    //   where LR is the result of the usual arithmetic conversions
4725    //   between types L and R.
4726    // Our candidates ignore the first parameter.
4727    for (unsigned Left = FirstPromotedArithmeticType;
4728         Left < LastPromotedArithmeticType; ++Left) {
4729      for (unsigned Right = FirstPromotedArithmeticType;
4730           Right < LastPromotedArithmeticType; ++Right) {
4731        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4732        QualType Result
4733          = isComparison
4734          ? Context.BoolTy
4735          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4736        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4737      }
4738    }
4739
4740    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
4741    // conditional operator for vector types.
4742    for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(),
4743         Vec1End = CandidateTypes.vector_end();
4744         Vec1 != Vec1End; ++Vec1)
4745      for (BuiltinCandidateTypeSet::iterator
4746           Vec2 = CandidateTypes.vector_begin(),
4747           Vec2End = CandidateTypes.vector_end();
4748           Vec2 != Vec2End; ++Vec2) {
4749        QualType LandR[2] = { *Vec1, *Vec2 };
4750        QualType Result;
4751        if (isComparison)
4752          Result = Context.BoolTy;
4753        else {
4754          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
4755            Result = *Vec1;
4756          else
4757            Result = *Vec2;
4758        }
4759
4760        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4761      }
4762
4763    break;
4764
4765  case OO_Percent:
4766  BinaryAmp:
4767  case OO_Caret:
4768  case OO_Pipe:
4769  case OO_LessLess:
4770  case OO_GreaterGreater:
4771    // C++ [over.built]p17:
4772    //
4773    //   For every pair of promoted integral types L and R, there
4774    //   exist candidate operator functions of the form
4775    //
4776    //      LR         operator%(L, R);
4777    //      LR         operator&(L, R);
4778    //      LR         operator^(L, R);
4779    //      LR         operator|(L, R);
4780    //      L          operator<<(L, R);
4781    //      L          operator>>(L, R);
4782    //
4783    //   where LR is the result of the usual arithmetic conversions
4784    //   between types L and R.
4785    for (unsigned Left = FirstPromotedIntegralType;
4786         Left < LastPromotedIntegralType; ++Left) {
4787      for (unsigned Right = FirstPromotedIntegralType;
4788           Right < LastPromotedIntegralType; ++Right) {
4789        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4790        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4791            ? LandR[0]
4792            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4793        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4794      }
4795    }
4796    break;
4797
4798  case OO_Equal:
4799    // C++ [over.built]p20:
4800    //
4801    //   For every pair (T, VQ), where T is an enumeration or
4802    //   pointer to member type and VQ is either volatile or
4803    //   empty, there exist candidate operator functions of the form
4804    //
4805    //        VQ T&      operator=(VQ T&, T);
4806    for (BuiltinCandidateTypeSet::iterator
4807           Enum = CandidateTypes.enumeration_begin(),
4808           EnumEnd = CandidateTypes.enumeration_end();
4809         Enum != EnumEnd; ++Enum)
4810      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4811                                             CandidateSet);
4812    for (BuiltinCandidateTypeSet::iterator
4813           MemPtr = CandidateTypes.member_pointer_begin(),
4814         MemPtrEnd = CandidateTypes.member_pointer_end();
4815         MemPtr != MemPtrEnd; ++MemPtr)
4816      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4817                                             CandidateSet);
4818
4819    // Fall through.
4820
4821  case OO_PlusEqual:
4822  case OO_MinusEqual:
4823    // C++ [over.built]p19:
4824    //
4825    //   For every pair (T, VQ), where T is any type and VQ is either
4826    //   volatile or empty, there exist candidate operator functions
4827    //   of the form
4828    //
4829    //        T*VQ&      operator=(T*VQ&, T*);
4830    //
4831    // C++ [over.built]p21:
4832    //
4833    //   For every pair (T, VQ), where T is a cv-qualified or
4834    //   cv-unqualified object type and VQ is either volatile or
4835    //   empty, there exist candidate operator functions of the form
4836    //
4837    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4838    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4839    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4840         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4841      QualType ParamTypes[2];
4842      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4843
4844      // non-volatile version
4845      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4846      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4847                          /*IsAssigmentOperator=*/Op == OO_Equal);
4848
4849      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4850          VisibleTypeConversionsQuals.hasVolatile()) {
4851        // volatile version
4852        ParamTypes[0]
4853          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4854        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4855                            /*IsAssigmentOperator=*/Op == OO_Equal);
4856      }
4857    }
4858    // Fall through.
4859
4860  case OO_StarEqual:
4861  case OO_SlashEqual:
4862    // C++ [over.built]p18:
4863    //
4864    //   For every triple (L, VQ, R), where L is an arithmetic type,
4865    //   VQ is either volatile or empty, and R is a promoted
4866    //   arithmetic type, there exist candidate operator functions of
4867    //   the form
4868    //
4869    //        VQ L&      operator=(VQ L&, R);
4870    //        VQ L&      operator*=(VQ L&, R);
4871    //        VQ L&      operator/=(VQ L&, R);
4872    //        VQ L&      operator+=(VQ L&, R);
4873    //        VQ L&      operator-=(VQ L&, R);
4874    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4875      for (unsigned Right = FirstPromotedArithmeticType;
4876           Right < LastPromotedArithmeticType; ++Right) {
4877        QualType ParamTypes[2];
4878        ParamTypes[1] = ArithmeticTypes[Right];
4879
4880        // Add this built-in operator as a candidate (VQ is empty).
4881        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4882        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4883                            /*IsAssigmentOperator=*/Op == OO_Equal);
4884
4885        // Add this built-in operator as a candidate (VQ is 'volatile').
4886        if (VisibleTypeConversionsQuals.hasVolatile()) {
4887          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4888          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4889          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4890                              /*IsAssigmentOperator=*/Op == OO_Equal);
4891        }
4892      }
4893    }
4894
4895    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
4896    for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(),
4897                                        Vec1End = CandidateTypes.vector_end();
4898         Vec1 != Vec1End; ++Vec1)
4899      for (BuiltinCandidateTypeSet::iterator
4900                Vec2 = CandidateTypes.vector_begin(),
4901             Vec2End = CandidateTypes.vector_end();
4902           Vec2 != Vec2End; ++Vec2) {
4903        QualType ParamTypes[2];
4904        ParamTypes[1] = *Vec2;
4905        // Add this built-in operator as a candidate (VQ is empty).
4906        ParamTypes[0] = Context.getLValueReferenceType(*Vec1);
4907        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4908                            /*IsAssigmentOperator=*/Op == OO_Equal);
4909
4910        // Add this built-in operator as a candidate (VQ is 'volatile').
4911        if (VisibleTypeConversionsQuals.hasVolatile()) {
4912          ParamTypes[0] = Context.getVolatileType(*Vec1);
4913          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4914          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4915                              /*IsAssigmentOperator=*/Op == OO_Equal);
4916        }
4917      }
4918    break;
4919
4920  case OO_PercentEqual:
4921  case OO_LessLessEqual:
4922  case OO_GreaterGreaterEqual:
4923  case OO_AmpEqual:
4924  case OO_CaretEqual:
4925  case OO_PipeEqual:
4926    // C++ [over.built]p22:
4927    //
4928    //   For every triple (L, VQ, R), where L is an integral type, VQ
4929    //   is either volatile or empty, and R is a promoted integral
4930    //   type, there exist candidate operator functions of the form
4931    //
4932    //        VQ L&       operator%=(VQ L&, R);
4933    //        VQ L&       operator<<=(VQ L&, R);
4934    //        VQ L&       operator>>=(VQ L&, R);
4935    //        VQ L&       operator&=(VQ L&, R);
4936    //        VQ L&       operator^=(VQ L&, R);
4937    //        VQ L&       operator|=(VQ L&, R);
4938    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4939      for (unsigned Right = FirstPromotedIntegralType;
4940           Right < LastPromotedIntegralType; ++Right) {
4941        QualType ParamTypes[2];
4942        ParamTypes[1] = ArithmeticTypes[Right];
4943
4944        // Add this built-in operator as a candidate (VQ is empty).
4945        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4946        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4947        if (VisibleTypeConversionsQuals.hasVolatile()) {
4948          // Add this built-in operator as a candidate (VQ is 'volatile').
4949          ParamTypes[0] = ArithmeticTypes[Left];
4950          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4951          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4952          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4953        }
4954      }
4955    }
4956    break;
4957
4958  case OO_Exclaim: {
4959    // C++ [over.operator]p23:
4960    //
4961    //   There also exist candidate operator functions of the form
4962    //
4963    //        bool        operator!(bool);
4964    //        bool        operator&&(bool, bool);     [BELOW]
4965    //        bool        operator||(bool, bool);     [BELOW]
4966    QualType ParamTy = Context.BoolTy;
4967    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4968                        /*IsAssignmentOperator=*/false,
4969                        /*NumContextualBoolArguments=*/1);
4970    break;
4971  }
4972
4973  case OO_AmpAmp:
4974  case OO_PipePipe: {
4975    // C++ [over.operator]p23:
4976    //
4977    //   There also exist candidate operator functions of the form
4978    //
4979    //        bool        operator!(bool);            [ABOVE]
4980    //        bool        operator&&(bool, bool);
4981    //        bool        operator||(bool, bool);
4982    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4983    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4984                        /*IsAssignmentOperator=*/false,
4985                        /*NumContextualBoolArguments=*/2);
4986    break;
4987  }
4988
4989  case OO_Subscript:
4990    // C++ [over.built]p13:
4991    //
4992    //   For every cv-qualified or cv-unqualified object type T there
4993    //   exist candidate operator functions of the form
4994    //
4995    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4996    //        T&         operator[](T*, ptrdiff_t);
4997    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4998    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4999    //        T&         operator[](ptrdiff_t, T*);
5000    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
5001         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
5002      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
5003      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
5004      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
5005
5006      // T& operator[](T*, ptrdiff_t)
5007      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5008
5009      // T& operator[](ptrdiff_t, T*);
5010      ParamTypes[0] = ParamTypes[1];
5011      ParamTypes[1] = *Ptr;
5012      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5013    }
5014    break;
5015
5016  case OO_ArrowStar:
5017    // C++ [over.built]p11:
5018    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
5019    //    C1 is the same type as C2 or is a derived class of C2, T is an object
5020    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
5021    //    there exist candidate operator functions of the form
5022    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
5023    //    where CV12 is the union of CV1 and CV2.
5024    {
5025      for (BuiltinCandidateTypeSet::iterator Ptr =
5026             CandidateTypes.pointer_begin();
5027           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
5028        QualType C1Ty = (*Ptr);
5029        QualType C1;
5030        QualifierCollector Q1;
5031        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
5032          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
5033          if (!isa<RecordType>(C1))
5034            continue;
5035          // heuristic to reduce number of builtin candidates in the set.
5036          // Add volatile/restrict version only if there are conversions to a
5037          // volatile/restrict type.
5038          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
5039            continue;
5040          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
5041            continue;
5042        }
5043        for (BuiltinCandidateTypeSet::iterator
5044             MemPtr = CandidateTypes.member_pointer_begin(),
5045             MemPtrEnd = CandidateTypes.member_pointer_end();
5046             MemPtr != MemPtrEnd; ++MemPtr) {
5047          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
5048          QualType C2 = QualType(mptr->getClass(), 0);
5049          C2 = C2.getUnqualifiedType();
5050          if (C1 != C2 && !IsDerivedFrom(C1, C2))
5051            break;
5052          QualType ParamTypes[2] = { *Ptr, *MemPtr };
5053          // build CV12 T&
5054          QualType T = mptr->getPointeeType();
5055          if (!VisibleTypeConversionsQuals.hasVolatile() &&
5056              T.isVolatileQualified())
5057            continue;
5058          if (!VisibleTypeConversionsQuals.hasRestrict() &&
5059              T.isRestrictQualified())
5060            continue;
5061          T = Q1.apply(T);
5062          QualType ResultTy = Context.getLValueReferenceType(T);
5063          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5064        }
5065      }
5066    }
5067    break;
5068
5069  case OO_Conditional:
5070    // Note that we don't consider the first argument, since it has been
5071    // contextually converted to bool long ago. The candidates below are
5072    // therefore added as binary.
5073    //
5074    // C++ [over.built]p24:
5075    //   For every type T, where T is a pointer or pointer-to-member type,
5076    //   there exist candidate operator functions of the form
5077    //
5078    //        T        operator?(bool, T, T);
5079    //
5080    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
5081         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
5082      QualType ParamTypes[2] = { *Ptr, *Ptr };
5083      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
5084    }
5085    for (BuiltinCandidateTypeSet::iterator Ptr =
5086           CandidateTypes.member_pointer_begin(),
5087         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
5088      QualType ParamTypes[2] = { *Ptr, *Ptr };
5089      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
5090    }
5091    goto Conditional;
5092  }
5093}
5094
5095/// \brief Add function candidates found via argument-dependent lookup
5096/// to the set of overloading candidates.
5097///
5098/// This routine performs argument-dependent name lookup based on the
5099/// given function name (which may also be an operator name) and adds
5100/// all of the overload candidates found by ADL to the overload
5101/// candidate set (C++ [basic.lookup.argdep]).
5102void
5103Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
5104                                           bool Operator,
5105                                           Expr **Args, unsigned NumArgs,
5106                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5107                                           OverloadCandidateSet& CandidateSet,
5108                                           bool PartialOverloading) {
5109  ADLResult Fns;
5110
5111  // FIXME: This approach for uniquing ADL results (and removing
5112  // redundant candidates from the set) relies on pointer-equality,
5113  // which means we need to key off the canonical decl.  However,
5114  // always going back to the canonical decl might not get us the
5115  // right set of default arguments.  What default arguments are
5116  // we supposed to consider on ADL candidates, anyway?
5117
5118  // FIXME: Pass in the explicit template arguments?
5119  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
5120
5121  // Erase all of the candidates we already knew about.
5122  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5123                                   CandEnd = CandidateSet.end();
5124       Cand != CandEnd; ++Cand)
5125    if (Cand->Function) {
5126      Fns.erase(Cand->Function);
5127      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
5128        Fns.erase(FunTmpl);
5129    }
5130
5131  // For each of the ADL candidates we found, add it to the overload
5132  // set.
5133  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
5134    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
5135    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
5136      if (ExplicitTemplateArgs)
5137        continue;
5138
5139      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
5140                           false, PartialOverloading);
5141    } else
5142      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
5143                                   FoundDecl, ExplicitTemplateArgs,
5144                                   Args, NumArgs, CandidateSet);
5145  }
5146}
5147
5148/// isBetterOverloadCandidate - Determines whether the first overload
5149/// candidate is a better candidate than the second (C++ 13.3.3p1).
5150bool
5151Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
5152                                const OverloadCandidate& Cand2,
5153                                SourceLocation Loc) {
5154  // Define viable functions to be better candidates than non-viable
5155  // functions.
5156  if (!Cand2.Viable)
5157    return Cand1.Viable;
5158  else if (!Cand1.Viable)
5159    return false;
5160
5161  // C++ [over.match.best]p1:
5162  //
5163  //   -- if F is a static member function, ICS1(F) is defined such
5164  //      that ICS1(F) is neither better nor worse than ICS1(G) for
5165  //      any function G, and, symmetrically, ICS1(G) is neither
5166  //      better nor worse than ICS1(F).
5167  unsigned StartArg = 0;
5168  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
5169    StartArg = 1;
5170
5171  // C++ [over.match.best]p1:
5172  //   A viable function F1 is defined to be a better function than another
5173  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
5174  //   conversion sequence than ICSi(F2), and then...
5175  unsigned NumArgs = Cand1.Conversions.size();
5176  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
5177  bool HasBetterConversion = false;
5178  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
5179    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
5180                                               Cand2.Conversions[ArgIdx])) {
5181    case ImplicitConversionSequence::Better:
5182      // Cand1 has a better conversion sequence.
5183      HasBetterConversion = true;
5184      break;
5185
5186    case ImplicitConversionSequence::Worse:
5187      // Cand1 can't be better than Cand2.
5188      return false;
5189
5190    case ImplicitConversionSequence::Indistinguishable:
5191      // Do nothing.
5192      break;
5193    }
5194  }
5195
5196  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
5197  //       ICSj(F2), or, if not that,
5198  if (HasBetterConversion)
5199    return true;
5200
5201  //     - F1 is a non-template function and F2 is a function template
5202  //       specialization, or, if not that,
5203  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
5204      Cand2.Function && Cand2.Function->getPrimaryTemplate())
5205    return true;
5206
5207  //   -- F1 and F2 are function template specializations, and the function
5208  //      template for F1 is more specialized than the template for F2
5209  //      according to the partial ordering rules described in 14.5.5.2, or,
5210  //      if not that,
5211  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
5212      Cand2.Function && Cand2.Function->getPrimaryTemplate())
5213    if (FunctionTemplateDecl *BetterTemplate
5214          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
5215                                       Cand2.Function->getPrimaryTemplate(),
5216                                       Loc,
5217                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
5218                                                             : TPOC_Call))
5219      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
5220
5221  //   -- the context is an initialization by user-defined conversion
5222  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
5223  //      from the return type of F1 to the destination type (i.e.,
5224  //      the type of the entity being initialized) is a better
5225  //      conversion sequence than the standard conversion sequence
5226  //      from the return type of F2 to the destination type.
5227  if (Cand1.Function && Cand2.Function &&
5228      isa<CXXConversionDecl>(Cand1.Function) &&
5229      isa<CXXConversionDecl>(Cand2.Function)) {
5230    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
5231                                               Cand2.FinalConversion)) {
5232    case ImplicitConversionSequence::Better:
5233      // Cand1 has a better conversion sequence.
5234      return true;
5235
5236    case ImplicitConversionSequence::Worse:
5237      // Cand1 can't be better than Cand2.
5238      return false;
5239
5240    case ImplicitConversionSequence::Indistinguishable:
5241      // Do nothing
5242      break;
5243    }
5244  }
5245
5246  return false;
5247}
5248
5249/// \brief Computes the best viable function (C++ 13.3.3)
5250/// within an overload candidate set.
5251///
5252/// \param CandidateSet the set of candidate functions.
5253///
5254/// \param Loc the location of the function name (or operator symbol) for
5255/// which overload resolution occurs.
5256///
5257/// \param Best f overload resolution was successful or found a deleted
5258/// function, Best points to the candidate function found.
5259///
5260/// \returns The result of overload resolution.
5261OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
5262                                           SourceLocation Loc,
5263                                        OverloadCandidateSet::iterator& Best) {
5264  // Find the best viable function.
5265  Best = CandidateSet.end();
5266  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
5267       Cand != CandidateSet.end(); ++Cand) {
5268    if (Cand->Viable) {
5269      if (Best == CandidateSet.end() ||
5270          isBetterOverloadCandidate(*Cand, *Best, Loc))
5271        Best = Cand;
5272    }
5273  }
5274
5275  // If we didn't find any viable functions, abort.
5276  if (Best == CandidateSet.end())
5277    return OR_No_Viable_Function;
5278
5279  // Make sure that this function is better than every other viable
5280  // function. If not, we have an ambiguity.
5281  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
5282       Cand != CandidateSet.end(); ++Cand) {
5283    if (Cand->Viable &&
5284        Cand != Best &&
5285        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
5286      Best = CandidateSet.end();
5287      return OR_Ambiguous;
5288    }
5289  }
5290
5291  // Best is the best viable function.
5292  if (Best->Function &&
5293      (Best->Function->isDeleted() ||
5294       Best->Function->getAttr<UnavailableAttr>()))
5295    return OR_Deleted;
5296
5297  // C++ [basic.def.odr]p2:
5298  //   An overloaded function is used if it is selected by overload resolution
5299  //   when referred to from a potentially-evaluated expression. [Note: this
5300  //   covers calls to named functions (5.2.2), operator overloading
5301  //   (clause 13), user-defined conversions (12.3.2), allocation function for
5302  //   placement new (5.3.4), as well as non-default initialization (8.5).
5303  if (Best->Function)
5304    MarkDeclarationReferenced(Loc, Best->Function);
5305  return OR_Success;
5306}
5307
5308namespace {
5309
5310enum OverloadCandidateKind {
5311  oc_function,
5312  oc_method,
5313  oc_constructor,
5314  oc_function_template,
5315  oc_method_template,
5316  oc_constructor_template,
5317  oc_implicit_default_constructor,
5318  oc_implicit_copy_constructor,
5319  oc_implicit_copy_assignment
5320};
5321
5322OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
5323                                                FunctionDecl *Fn,
5324                                                std::string &Description) {
5325  bool isTemplate = false;
5326
5327  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
5328    isTemplate = true;
5329    Description = S.getTemplateArgumentBindingsText(
5330      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
5331  }
5332
5333  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
5334    if (!Ctor->isImplicit())
5335      return isTemplate ? oc_constructor_template : oc_constructor;
5336
5337    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
5338                                     : oc_implicit_default_constructor;
5339  }
5340
5341  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
5342    // This actually gets spelled 'candidate function' for now, but
5343    // it doesn't hurt to split it out.
5344    if (!Meth->isImplicit())
5345      return isTemplate ? oc_method_template : oc_method;
5346
5347    assert(Meth->isCopyAssignment()
5348           && "implicit method is not copy assignment operator?");
5349    return oc_implicit_copy_assignment;
5350  }
5351
5352  return isTemplate ? oc_function_template : oc_function;
5353}
5354
5355} // end anonymous namespace
5356
5357// Notes the location of an overload candidate.
5358void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
5359  std::string FnDesc;
5360  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
5361  Diag(Fn->getLocation(), diag::note_ovl_candidate)
5362    << (unsigned) K << FnDesc;
5363}
5364
5365/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
5366/// "lead" diagnostic; it will be given two arguments, the source and
5367/// target types of the conversion.
5368void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
5369                                       SourceLocation CaretLoc,
5370                                       const PartialDiagnostic &PDiag) {
5371  Diag(CaretLoc, PDiag)
5372    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
5373  for (AmbiguousConversionSequence::const_iterator
5374         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
5375    NoteOverloadCandidate(*I);
5376  }
5377}
5378
5379namespace {
5380
5381void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
5382  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
5383  assert(Conv.isBad());
5384  assert(Cand->Function && "for now, candidate must be a function");
5385  FunctionDecl *Fn = Cand->Function;
5386
5387  // There's a conversion slot for the object argument if this is a
5388  // non-constructor method.  Note that 'I' corresponds the
5389  // conversion-slot index.
5390  bool isObjectArgument = false;
5391  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
5392    if (I == 0)
5393      isObjectArgument = true;
5394    else
5395      I--;
5396  }
5397
5398  std::string FnDesc;
5399  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5400
5401  Expr *FromExpr = Conv.Bad.FromExpr;
5402  QualType FromTy = Conv.Bad.getFromType();
5403  QualType ToTy = Conv.Bad.getToType();
5404
5405  if (FromTy == S.Context.OverloadTy) {
5406    assert(FromExpr && "overload set argument came from implicit argument?");
5407    Expr *E = FromExpr->IgnoreParens();
5408    if (isa<UnaryOperator>(E))
5409      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
5410    DeclarationName Name = cast<OverloadExpr>(E)->getName();
5411
5412    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
5413      << (unsigned) FnKind << FnDesc
5414      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5415      << ToTy << Name << I+1;
5416    return;
5417  }
5418
5419  // Do some hand-waving analysis to see if the non-viability is due
5420  // to a qualifier mismatch.
5421  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
5422  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
5423  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
5424    CToTy = RT->getPointeeType();
5425  else {
5426    // TODO: detect and diagnose the full richness of const mismatches.
5427    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
5428      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
5429        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
5430  }
5431
5432  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
5433      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
5434    // It is dumb that we have to do this here.
5435    while (isa<ArrayType>(CFromTy))
5436      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
5437    while (isa<ArrayType>(CToTy))
5438      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
5439
5440    Qualifiers FromQs = CFromTy.getQualifiers();
5441    Qualifiers ToQs = CToTy.getQualifiers();
5442
5443    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
5444      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
5445        << (unsigned) FnKind << FnDesc
5446        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5447        << FromTy
5448        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
5449        << (unsigned) isObjectArgument << I+1;
5450      return;
5451    }
5452
5453    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5454    assert(CVR && "unexpected qualifiers mismatch");
5455
5456    if (isObjectArgument) {
5457      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
5458        << (unsigned) FnKind << FnDesc
5459        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5460        << FromTy << (CVR - 1);
5461    } else {
5462      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
5463        << (unsigned) FnKind << FnDesc
5464        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5465        << FromTy << (CVR - 1) << I+1;
5466    }
5467    return;
5468  }
5469
5470  // Diagnose references or pointers to incomplete types differently,
5471  // since it's far from impossible that the incompleteness triggered
5472  // the failure.
5473  QualType TempFromTy = FromTy.getNonReferenceType();
5474  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
5475    TempFromTy = PTy->getPointeeType();
5476  if (TempFromTy->isIncompleteType()) {
5477    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
5478      << (unsigned) FnKind << FnDesc
5479      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5480      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5481    return;
5482  }
5483
5484  // Diagnose base -> derived pointer conversions.
5485  unsigned BaseToDerivedConversion = 0;
5486  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
5487    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
5488      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
5489                                               FromPtrTy->getPointeeType()) &&
5490          !FromPtrTy->getPointeeType()->isIncompleteType() &&
5491          !ToPtrTy->getPointeeType()->isIncompleteType() &&
5492          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
5493                          FromPtrTy->getPointeeType()))
5494        BaseToDerivedConversion = 1;
5495    }
5496  } else if (const ObjCObjectPointerType *FromPtrTy
5497                                    = FromTy->getAs<ObjCObjectPointerType>()) {
5498    if (const ObjCObjectPointerType *ToPtrTy
5499                                        = ToTy->getAs<ObjCObjectPointerType>())
5500      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
5501        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
5502          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
5503                                                FromPtrTy->getPointeeType()) &&
5504              FromIface->isSuperClassOf(ToIface))
5505            BaseToDerivedConversion = 2;
5506  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
5507      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
5508          !FromTy->isIncompleteType() &&
5509          !ToRefTy->getPointeeType()->isIncompleteType() &&
5510          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
5511        BaseToDerivedConversion = 3;
5512    }
5513
5514  if (BaseToDerivedConversion) {
5515    S.Diag(Fn->getLocation(),
5516           diag::note_ovl_candidate_bad_base_to_derived_conv)
5517      << (unsigned) FnKind << FnDesc
5518      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5519      << (BaseToDerivedConversion - 1)
5520      << FromTy << ToTy << I+1;
5521    return;
5522  }
5523
5524  // TODO: specialize more based on the kind of mismatch
5525  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
5526    << (unsigned) FnKind << FnDesc
5527    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5528    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5529}
5530
5531void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
5532                           unsigned NumFormalArgs) {
5533  // TODO: treat calls to a missing default constructor as a special case
5534
5535  FunctionDecl *Fn = Cand->Function;
5536  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
5537
5538  unsigned MinParams = Fn->getMinRequiredArguments();
5539
5540  // at least / at most / exactly
5541  // FIXME: variadic templates "at most" should account for parameter packs
5542  unsigned mode, modeCount;
5543  if (NumFormalArgs < MinParams) {
5544    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
5545           (Cand->FailureKind == ovl_fail_bad_deduction &&
5546            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
5547    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
5548      mode = 0; // "at least"
5549    else
5550      mode = 2; // "exactly"
5551    modeCount = MinParams;
5552  } else {
5553    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
5554           (Cand->FailureKind == ovl_fail_bad_deduction &&
5555            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
5556    if (MinParams != FnTy->getNumArgs())
5557      mode = 1; // "at most"
5558    else
5559      mode = 2; // "exactly"
5560    modeCount = FnTy->getNumArgs();
5561  }
5562
5563  std::string Description;
5564  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
5565
5566  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
5567    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
5568    << modeCount << NumFormalArgs;
5569}
5570
5571/// Diagnose a failed template-argument deduction.
5572void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
5573                          Expr **Args, unsigned NumArgs) {
5574  FunctionDecl *Fn = Cand->Function; // pattern
5575
5576  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
5577  NamedDecl *ParamD;
5578  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
5579  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
5580  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
5581  switch (Cand->DeductionFailure.Result) {
5582  case Sema::TDK_Success:
5583    llvm_unreachable("TDK_success while diagnosing bad deduction");
5584
5585  case Sema::TDK_Incomplete: {
5586    assert(ParamD && "no parameter found for incomplete deduction result");
5587    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
5588      << ParamD->getDeclName();
5589    return;
5590  }
5591
5592  case Sema::TDK_Inconsistent:
5593  case Sema::TDK_InconsistentQuals: {
5594    assert(ParamD && "no parameter found for inconsistent deduction result");
5595    int which = 0;
5596    if (isa<TemplateTypeParmDecl>(ParamD))
5597      which = 0;
5598    else if (isa<NonTypeTemplateParmDecl>(ParamD))
5599      which = 1;
5600    else {
5601      which = 2;
5602    }
5603
5604    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
5605      << which << ParamD->getDeclName()
5606      << *Cand->DeductionFailure.getFirstArg()
5607      << *Cand->DeductionFailure.getSecondArg();
5608    return;
5609  }
5610
5611  case Sema::TDK_InvalidExplicitArguments:
5612    assert(ParamD && "no parameter found for invalid explicit arguments");
5613    if (ParamD->getDeclName())
5614      S.Diag(Fn->getLocation(),
5615             diag::note_ovl_candidate_explicit_arg_mismatch_named)
5616        << ParamD->getDeclName();
5617    else {
5618      int index = 0;
5619      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
5620        index = TTP->getIndex();
5621      else if (NonTypeTemplateParmDecl *NTTP
5622                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
5623        index = NTTP->getIndex();
5624      else
5625        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
5626      S.Diag(Fn->getLocation(),
5627             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
5628        << (index + 1);
5629    }
5630    return;
5631
5632  case Sema::TDK_TooManyArguments:
5633  case Sema::TDK_TooFewArguments:
5634    DiagnoseArityMismatch(S, Cand, NumArgs);
5635    return;
5636
5637  case Sema::TDK_InstantiationDepth:
5638    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
5639    return;
5640
5641  case Sema::TDK_SubstitutionFailure: {
5642    std::string ArgString;
5643    if (TemplateArgumentList *Args
5644                            = Cand->DeductionFailure.getTemplateArgumentList())
5645      ArgString = S.getTemplateArgumentBindingsText(
5646                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
5647                                                    *Args);
5648    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
5649      << ArgString;
5650    return;
5651  }
5652
5653  // TODO: diagnose these individually, then kill off
5654  // note_ovl_candidate_bad_deduction, which is uselessly vague.
5655  case Sema::TDK_NonDeducedMismatch:
5656  case Sema::TDK_FailedOverloadResolution:
5657    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
5658    return;
5659  }
5660}
5661
5662/// Generates a 'note' diagnostic for an overload candidate.  We've
5663/// already generated a primary error at the call site.
5664///
5665/// It really does need to be a single diagnostic with its caret
5666/// pointed at the candidate declaration.  Yes, this creates some
5667/// major challenges of technical writing.  Yes, this makes pointing
5668/// out problems with specific arguments quite awkward.  It's still
5669/// better than generating twenty screens of text for every failed
5670/// overload.
5671///
5672/// It would be great to be able to express per-candidate problems
5673/// more richly for those diagnostic clients that cared, but we'd
5674/// still have to be just as careful with the default diagnostics.
5675void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
5676                           Expr **Args, unsigned NumArgs) {
5677  FunctionDecl *Fn = Cand->Function;
5678
5679  // Note deleted candidates, but only if they're viable.
5680  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
5681    std::string FnDesc;
5682    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5683
5684    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
5685      << FnKind << FnDesc << Fn->isDeleted();
5686    return;
5687  }
5688
5689  // We don't really have anything else to say about viable candidates.
5690  if (Cand->Viable) {
5691    S.NoteOverloadCandidate(Fn);
5692    return;
5693  }
5694
5695  switch (Cand->FailureKind) {
5696  case ovl_fail_too_many_arguments:
5697  case ovl_fail_too_few_arguments:
5698    return DiagnoseArityMismatch(S, Cand, NumArgs);
5699
5700  case ovl_fail_bad_deduction:
5701    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
5702
5703  case ovl_fail_trivial_conversion:
5704  case ovl_fail_bad_final_conversion:
5705  case ovl_fail_final_conversion_not_exact:
5706    return S.NoteOverloadCandidate(Fn);
5707
5708  case ovl_fail_bad_conversion: {
5709    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
5710    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
5711      if (Cand->Conversions[I].isBad())
5712        return DiagnoseBadConversion(S, Cand, I);
5713
5714    // FIXME: this currently happens when we're called from SemaInit
5715    // when user-conversion overload fails.  Figure out how to handle
5716    // those conditions and diagnose them well.
5717    return S.NoteOverloadCandidate(Fn);
5718  }
5719  }
5720}
5721
5722void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
5723  // Desugar the type of the surrogate down to a function type,
5724  // retaining as many typedefs as possible while still showing
5725  // the function type (and, therefore, its parameter types).
5726  QualType FnType = Cand->Surrogate->getConversionType();
5727  bool isLValueReference = false;
5728  bool isRValueReference = false;
5729  bool isPointer = false;
5730  if (const LValueReferenceType *FnTypeRef =
5731        FnType->getAs<LValueReferenceType>()) {
5732    FnType = FnTypeRef->getPointeeType();
5733    isLValueReference = true;
5734  } else if (const RValueReferenceType *FnTypeRef =
5735               FnType->getAs<RValueReferenceType>()) {
5736    FnType = FnTypeRef->getPointeeType();
5737    isRValueReference = true;
5738  }
5739  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
5740    FnType = FnTypePtr->getPointeeType();
5741    isPointer = true;
5742  }
5743  // Desugar down to a function type.
5744  FnType = QualType(FnType->getAs<FunctionType>(), 0);
5745  // Reconstruct the pointer/reference as appropriate.
5746  if (isPointer) FnType = S.Context.getPointerType(FnType);
5747  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5748  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5749
5750  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5751    << FnType;
5752}
5753
5754void NoteBuiltinOperatorCandidate(Sema &S,
5755                                  const char *Opc,
5756                                  SourceLocation OpLoc,
5757                                  OverloadCandidate *Cand) {
5758  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5759  std::string TypeStr("operator");
5760  TypeStr += Opc;
5761  TypeStr += "(";
5762  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5763  if (Cand->Conversions.size() == 1) {
5764    TypeStr += ")";
5765    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5766  } else {
5767    TypeStr += ", ";
5768    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5769    TypeStr += ")";
5770    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5771  }
5772}
5773
5774void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5775                                  OverloadCandidate *Cand) {
5776  unsigned NoOperands = Cand->Conversions.size();
5777  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5778    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5779    if (ICS.isBad()) break; // all meaningless after first invalid
5780    if (!ICS.isAmbiguous()) continue;
5781
5782    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5783                              S.PDiag(diag::note_ambiguous_type_conversion));
5784  }
5785}
5786
5787SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5788  if (Cand->Function)
5789    return Cand->Function->getLocation();
5790  if (Cand->IsSurrogate)
5791    return Cand->Surrogate->getLocation();
5792  return SourceLocation();
5793}
5794
5795struct CompareOverloadCandidatesForDisplay {
5796  Sema &S;
5797  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5798
5799  bool operator()(const OverloadCandidate *L,
5800                  const OverloadCandidate *R) {
5801    // Fast-path this check.
5802    if (L == R) return false;
5803
5804    // Order first by viability.
5805    if (L->Viable) {
5806      if (!R->Viable) return true;
5807
5808      // TODO: introduce a tri-valued comparison for overload
5809      // candidates.  Would be more worthwhile if we had a sort
5810      // that could exploit it.
5811      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5812      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5813    } else if (R->Viable)
5814      return false;
5815
5816    assert(L->Viable == R->Viable);
5817
5818    // Criteria by which we can sort non-viable candidates:
5819    if (!L->Viable) {
5820      // 1. Arity mismatches come after other candidates.
5821      if (L->FailureKind == ovl_fail_too_many_arguments ||
5822          L->FailureKind == ovl_fail_too_few_arguments)
5823        return false;
5824      if (R->FailureKind == ovl_fail_too_many_arguments ||
5825          R->FailureKind == ovl_fail_too_few_arguments)
5826        return true;
5827
5828      // 2. Bad conversions come first and are ordered by the number
5829      // of bad conversions and quality of good conversions.
5830      if (L->FailureKind == ovl_fail_bad_conversion) {
5831        if (R->FailureKind != ovl_fail_bad_conversion)
5832          return true;
5833
5834        // If there's any ordering between the defined conversions...
5835        // FIXME: this might not be transitive.
5836        assert(L->Conversions.size() == R->Conversions.size());
5837
5838        int leftBetter = 0;
5839        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5840        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5841          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5842                                                       R->Conversions[I])) {
5843          case ImplicitConversionSequence::Better:
5844            leftBetter++;
5845            break;
5846
5847          case ImplicitConversionSequence::Worse:
5848            leftBetter--;
5849            break;
5850
5851          case ImplicitConversionSequence::Indistinguishable:
5852            break;
5853          }
5854        }
5855        if (leftBetter > 0) return true;
5856        if (leftBetter < 0) return false;
5857
5858      } else if (R->FailureKind == ovl_fail_bad_conversion)
5859        return false;
5860
5861      // TODO: others?
5862    }
5863
5864    // Sort everything else by location.
5865    SourceLocation LLoc = GetLocationForCandidate(L);
5866    SourceLocation RLoc = GetLocationForCandidate(R);
5867
5868    // Put candidates without locations (e.g. builtins) at the end.
5869    if (LLoc.isInvalid()) return false;
5870    if (RLoc.isInvalid()) return true;
5871
5872    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5873  }
5874};
5875
5876/// CompleteNonViableCandidate - Normally, overload resolution only
5877/// computes up to the first
5878void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5879                                Expr **Args, unsigned NumArgs) {
5880  assert(!Cand->Viable);
5881
5882  // Don't do anything on failures other than bad conversion.
5883  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5884
5885  // Skip forward to the first bad conversion.
5886  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5887  unsigned ConvCount = Cand->Conversions.size();
5888  while (true) {
5889    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5890    ConvIdx++;
5891    if (Cand->Conversions[ConvIdx - 1].isBad())
5892      break;
5893  }
5894
5895  if (ConvIdx == ConvCount)
5896    return;
5897
5898  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5899         "remaining conversion is initialized?");
5900
5901  // FIXME: this should probably be preserved from the overload
5902  // operation somehow.
5903  bool SuppressUserConversions = false;
5904
5905  const FunctionProtoType* Proto;
5906  unsigned ArgIdx = ConvIdx;
5907
5908  if (Cand->IsSurrogate) {
5909    QualType ConvType
5910      = Cand->Surrogate->getConversionType().getNonReferenceType();
5911    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5912      ConvType = ConvPtrType->getPointeeType();
5913    Proto = ConvType->getAs<FunctionProtoType>();
5914    ArgIdx--;
5915  } else if (Cand->Function) {
5916    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5917    if (isa<CXXMethodDecl>(Cand->Function) &&
5918        !isa<CXXConstructorDecl>(Cand->Function))
5919      ArgIdx--;
5920  } else {
5921    // Builtin binary operator with a bad first conversion.
5922    assert(ConvCount <= 3);
5923    for (; ConvIdx != ConvCount; ++ConvIdx)
5924      Cand->Conversions[ConvIdx]
5925        = TryCopyInitialization(S, Args[ConvIdx],
5926                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
5927                                SuppressUserConversions,
5928                                /*InOverloadResolution*/ true);
5929    return;
5930  }
5931
5932  // Fill in the rest of the conversions.
5933  unsigned NumArgsInProto = Proto->getNumArgs();
5934  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5935    if (ArgIdx < NumArgsInProto)
5936      Cand->Conversions[ConvIdx]
5937        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
5938                                SuppressUserConversions,
5939                                /*InOverloadResolution=*/true);
5940    else
5941      Cand->Conversions[ConvIdx].setEllipsis();
5942  }
5943}
5944
5945} // end anonymous namespace
5946
5947/// PrintOverloadCandidates - When overload resolution fails, prints
5948/// diagnostic messages containing the candidates in the candidate
5949/// set.
5950void
5951Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5952                              OverloadCandidateDisplayKind OCD,
5953                              Expr **Args, unsigned NumArgs,
5954                              const char *Opc,
5955                              SourceLocation OpLoc) {
5956  // Sort the candidates by viability and position.  Sorting directly would
5957  // be prohibitive, so we make a set of pointers and sort those.
5958  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5959  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5960  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5961                                  LastCand = CandidateSet.end();
5962       Cand != LastCand; ++Cand) {
5963    if (Cand->Viable)
5964      Cands.push_back(Cand);
5965    else if (OCD == OCD_AllCandidates) {
5966      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5967      if (Cand->Function || Cand->IsSurrogate)
5968        Cands.push_back(Cand);
5969      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
5970      // want to list every possible builtin candidate.
5971    }
5972  }
5973
5974  std::sort(Cands.begin(), Cands.end(),
5975            CompareOverloadCandidatesForDisplay(*this));
5976
5977  bool ReportedAmbiguousConversions = false;
5978
5979  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5980  const Diagnostic::OverloadsShown ShowOverloads = Diags.getShowOverloads();
5981  unsigned CandsShown = 0;
5982  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5983    OverloadCandidate *Cand = *I;
5984
5985    // Set an arbitrary limit on the number of candidate functions we'll spam
5986    // the user with.  FIXME: This limit should depend on details of the
5987    // candidate list.
5988    if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
5989      break;
5990    }
5991    ++CandsShown;
5992
5993    if (Cand->Function)
5994      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5995    else if (Cand->IsSurrogate)
5996      NoteSurrogateCandidate(*this, Cand);
5997    else {
5998      assert(Cand->Viable &&
5999             "Non-viable built-in candidates are not added to Cands.");
6000      // Generally we only see ambiguities including viable builtin
6001      // operators if overload resolution got screwed up by an
6002      // ambiguous user-defined conversion.
6003      //
6004      // FIXME: It's quite possible for different conversions to see
6005      // different ambiguities, though.
6006      if (!ReportedAmbiguousConversions) {
6007        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
6008        ReportedAmbiguousConversions = true;
6009      }
6010
6011      // If this is a viable builtin, print it.
6012      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
6013    }
6014  }
6015
6016  if (I != E)
6017    Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
6018}
6019
6020static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
6021  if (isa<UnresolvedLookupExpr>(E))
6022    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
6023
6024  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
6025}
6026
6027/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
6028/// an overloaded function (C++ [over.over]), where @p From is an
6029/// expression with overloaded function type and @p ToType is the type
6030/// we're trying to resolve to. For example:
6031///
6032/// @code
6033/// int f(double);
6034/// int f(int);
6035///
6036/// int (*pfd)(double) = f; // selects f(double)
6037/// @endcode
6038///
6039/// This routine returns the resulting FunctionDecl if it could be
6040/// resolved, and NULL otherwise. When @p Complain is true, this
6041/// routine will emit diagnostics if there is an error.
6042FunctionDecl *
6043Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
6044                                         bool Complain,
6045                                         DeclAccessPair &FoundResult) {
6046  QualType FunctionType = ToType;
6047  bool IsMember = false;
6048  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
6049    FunctionType = ToTypePtr->getPointeeType();
6050  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
6051    FunctionType = ToTypeRef->getPointeeType();
6052  else if (const MemberPointerType *MemTypePtr =
6053                    ToType->getAs<MemberPointerType>()) {
6054    FunctionType = MemTypePtr->getPointeeType();
6055    IsMember = true;
6056  }
6057
6058  // C++ [over.over]p1:
6059  //   [...] [Note: any redundant set of parentheses surrounding the
6060  //   overloaded function name is ignored (5.1). ]
6061  // C++ [over.over]p1:
6062  //   [...] The overloaded function name can be preceded by the &
6063  //   operator.
6064  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
6065  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
6066  if (OvlExpr->hasExplicitTemplateArgs()) {
6067    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
6068    ExplicitTemplateArgs = &ETABuffer;
6069  }
6070
6071  // We expect a pointer or reference to function, or a function pointer.
6072  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
6073  if (!FunctionType->isFunctionType()) {
6074    if (Complain)
6075      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
6076        << OvlExpr->getName() << ToType;
6077
6078    return 0;
6079  }
6080
6081  assert(From->getType() == Context.OverloadTy);
6082
6083  // Look through all of the overloaded functions, searching for one
6084  // whose type matches exactly.
6085  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
6086  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
6087
6088  bool FoundNonTemplateFunction = false;
6089  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6090         E = OvlExpr->decls_end(); I != E; ++I) {
6091    // Look through any using declarations to find the underlying function.
6092    NamedDecl *Fn = (*I)->getUnderlyingDecl();
6093
6094    // C++ [over.over]p3:
6095    //   Non-member functions and static member functions match
6096    //   targets of type "pointer-to-function" or "reference-to-function."
6097    //   Nonstatic member functions match targets of
6098    //   type "pointer-to-member-function."
6099    // Note that according to DR 247, the containing class does not matter.
6100
6101    if (FunctionTemplateDecl *FunctionTemplate
6102          = dyn_cast<FunctionTemplateDecl>(Fn)) {
6103      if (CXXMethodDecl *Method
6104            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
6105        // Skip non-static function templates when converting to pointer, and
6106        // static when converting to member pointer.
6107        if (Method->isStatic() == IsMember)
6108          continue;
6109      } else if (IsMember)
6110        continue;
6111
6112      // C++ [over.over]p2:
6113      //   If the name is a function template, template argument deduction is
6114      //   done (14.8.2.2), and if the argument deduction succeeds, the
6115      //   resulting template argument list is used to generate a single
6116      //   function template specialization, which is added to the set of
6117      //   overloaded functions considered.
6118      // FIXME: We don't really want to build the specialization here, do we?
6119      FunctionDecl *Specialization = 0;
6120      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
6121      if (TemplateDeductionResult Result
6122            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
6123                                      FunctionType, Specialization, Info)) {
6124        // FIXME: make a note of the failed deduction for diagnostics.
6125        (void)Result;
6126      } else {
6127        // FIXME: If the match isn't exact, shouldn't we just drop this as
6128        // a candidate? Find a testcase before changing the code.
6129        assert(FunctionType
6130                 == Context.getCanonicalType(Specialization->getType()));
6131        Matches.push_back(std::make_pair(I.getPair(),
6132                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
6133      }
6134
6135      continue;
6136    }
6137
6138    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6139      // Skip non-static functions when converting to pointer, and static
6140      // when converting to member pointer.
6141      if (Method->isStatic() == IsMember)
6142        continue;
6143
6144      // If we have explicit template arguments, skip non-templates.
6145      if (OvlExpr->hasExplicitTemplateArgs())
6146        continue;
6147    } else if (IsMember)
6148      continue;
6149
6150    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
6151      QualType ResultTy;
6152      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
6153          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
6154                               ResultTy)) {
6155        Matches.push_back(std::make_pair(I.getPair(),
6156                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
6157        FoundNonTemplateFunction = true;
6158      }
6159    }
6160  }
6161
6162  // If there were 0 or 1 matches, we're done.
6163  if (Matches.empty()) {
6164    if (Complain) {
6165      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
6166        << OvlExpr->getName() << FunctionType;
6167      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6168                                 E = OvlExpr->decls_end();
6169           I != E; ++I)
6170        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
6171          NoteOverloadCandidate(F);
6172    }
6173
6174    return 0;
6175  } else if (Matches.size() == 1) {
6176    FunctionDecl *Result = Matches[0].second;
6177    FoundResult = Matches[0].first;
6178    MarkDeclarationReferenced(From->getLocStart(), Result);
6179    if (Complain)
6180      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
6181    return Result;
6182  }
6183
6184  // C++ [over.over]p4:
6185  //   If more than one function is selected, [...]
6186  if (!FoundNonTemplateFunction) {
6187    //   [...] and any given function template specialization F1 is
6188    //   eliminated if the set contains a second function template
6189    //   specialization whose function template is more specialized
6190    //   than the function template of F1 according to the partial
6191    //   ordering rules of 14.5.5.2.
6192
6193    // The algorithm specified above is quadratic. We instead use a
6194    // two-pass algorithm (similar to the one used to identify the
6195    // best viable function in an overload set) that identifies the
6196    // best function template (if it exists).
6197
6198    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
6199    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
6200      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
6201
6202    UnresolvedSetIterator Result =
6203        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
6204                           TPOC_Other, From->getLocStart(),
6205                           PDiag(),
6206                           PDiag(diag::err_addr_ovl_ambiguous)
6207                               << Matches[0].second->getDeclName(),
6208                           PDiag(diag::note_ovl_candidate)
6209                               << (unsigned) oc_function_template);
6210    assert(Result != MatchesCopy.end() && "no most-specialized template");
6211    MarkDeclarationReferenced(From->getLocStart(), *Result);
6212    FoundResult = Matches[Result - MatchesCopy.begin()].first;
6213    if (Complain) {
6214      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
6215      DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc());
6216    }
6217    return cast<FunctionDecl>(*Result);
6218  }
6219
6220  //   [...] any function template specializations in the set are
6221  //   eliminated if the set also contains a non-template function, [...]
6222  for (unsigned I = 0, N = Matches.size(); I != N; ) {
6223    if (Matches[I].second->getPrimaryTemplate() == 0)
6224      ++I;
6225    else {
6226      Matches[I] = Matches[--N];
6227      Matches.set_size(N);
6228    }
6229  }
6230
6231  // [...] After such eliminations, if any, there shall remain exactly one
6232  // selected function.
6233  if (Matches.size() == 1) {
6234    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
6235    FoundResult = Matches[0].first;
6236    if (Complain) {
6237      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
6238      DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc());
6239    }
6240    return cast<FunctionDecl>(Matches[0].second);
6241  }
6242
6243  // FIXME: We should probably return the same thing that BestViableFunction
6244  // returns (even if we issue the diagnostics here).
6245  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
6246    << Matches[0].second->getDeclName();
6247  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
6248    NoteOverloadCandidate(Matches[I].second);
6249  return 0;
6250}
6251
6252/// \brief Given an expression that refers to an overloaded function, try to
6253/// resolve that overloaded function expression down to a single function.
6254///
6255/// This routine can only resolve template-ids that refer to a single function
6256/// template, where that template-id refers to a single template whose template
6257/// arguments are either provided by the template-id or have defaults,
6258/// as described in C++0x [temp.arg.explicit]p3.
6259FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
6260  // C++ [over.over]p1:
6261  //   [...] [Note: any redundant set of parentheses surrounding the
6262  //   overloaded function name is ignored (5.1). ]
6263  // C++ [over.over]p1:
6264  //   [...] The overloaded function name can be preceded by the &
6265  //   operator.
6266
6267  if (From->getType() != Context.OverloadTy)
6268    return 0;
6269
6270  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
6271
6272  // If we didn't actually find any template-ids, we're done.
6273  if (!OvlExpr->hasExplicitTemplateArgs())
6274    return 0;
6275
6276  TemplateArgumentListInfo ExplicitTemplateArgs;
6277  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
6278
6279  // Look through all of the overloaded functions, searching for one
6280  // whose type matches exactly.
6281  FunctionDecl *Matched = 0;
6282  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6283         E = OvlExpr->decls_end(); I != E; ++I) {
6284    // C++0x [temp.arg.explicit]p3:
6285    //   [...] In contexts where deduction is done and fails, or in contexts
6286    //   where deduction is not done, if a template argument list is
6287    //   specified and it, along with any default template arguments,
6288    //   identifies a single function template specialization, then the
6289    //   template-id is an lvalue for the function template specialization.
6290    FunctionTemplateDecl *FunctionTemplate
6291      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
6292
6293    // C++ [over.over]p2:
6294    //   If the name is a function template, template argument deduction is
6295    //   done (14.8.2.2), and if the argument deduction succeeds, the
6296    //   resulting template argument list is used to generate a single
6297    //   function template specialization, which is added to the set of
6298    //   overloaded functions considered.
6299    FunctionDecl *Specialization = 0;
6300    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
6301    if (TemplateDeductionResult Result
6302          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
6303                                    Specialization, Info)) {
6304      // FIXME: make a note of the failed deduction for diagnostics.
6305      (void)Result;
6306      continue;
6307    }
6308
6309    // Multiple matches; we can't resolve to a single declaration.
6310    if (Matched)
6311      return 0;
6312
6313    Matched = Specialization;
6314  }
6315
6316  return Matched;
6317}
6318
6319/// \brief Add a single candidate to the overload set.
6320static void AddOverloadedCallCandidate(Sema &S,
6321                                       DeclAccessPair FoundDecl,
6322                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
6323                                       Expr **Args, unsigned NumArgs,
6324                                       OverloadCandidateSet &CandidateSet,
6325                                       bool PartialOverloading) {
6326  NamedDecl *Callee = FoundDecl.getDecl();
6327  if (isa<UsingShadowDecl>(Callee))
6328    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
6329
6330  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
6331    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
6332    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
6333                           false, PartialOverloading);
6334    return;
6335  }
6336
6337  if (FunctionTemplateDecl *FuncTemplate
6338      = dyn_cast<FunctionTemplateDecl>(Callee)) {
6339    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
6340                                   ExplicitTemplateArgs,
6341                                   Args, NumArgs, CandidateSet);
6342    return;
6343  }
6344
6345  assert(false && "unhandled case in overloaded call candidate");
6346
6347  // do nothing?
6348}
6349
6350/// \brief Add the overload candidates named by callee and/or found by argument
6351/// dependent lookup to the given overload set.
6352void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
6353                                       Expr **Args, unsigned NumArgs,
6354                                       OverloadCandidateSet &CandidateSet,
6355                                       bool PartialOverloading) {
6356
6357#ifndef NDEBUG
6358  // Verify that ArgumentDependentLookup is consistent with the rules
6359  // in C++0x [basic.lookup.argdep]p3:
6360  //
6361  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
6362  //   and let Y be the lookup set produced by argument dependent
6363  //   lookup (defined as follows). If X contains
6364  //
6365  //     -- a declaration of a class member, or
6366  //
6367  //     -- a block-scope function declaration that is not a
6368  //        using-declaration, or
6369  //
6370  //     -- a declaration that is neither a function or a function
6371  //        template
6372  //
6373  //   then Y is empty.
6374
6375  if (ULE->requiresADL()) {
6376    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
6377           E = ULE->decls_end(); I != E; ++I) {
6378      assert(!(*I)->getDeclContext()->isRecord());
6379      assert(isa<UsingShadowDecl>(*I) ||
6380             !(*I)->getDeclContext()->isFunctionOrMethod());
6381      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
6382    }
6383  }
6384#endif
6385
6386  // It would be nice to avoid this copy.
6387  TemplateArgumentListInfo TABuffer;
6388  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
6389  if (ULE->hasExplicitTemplateArgs()) {
6390    ULE->copyTemplateArgumentsInto(TABuffer);
6391    ExplicitTemplateArgs = &TABuffer;
6392  }
6393
6394  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
6395         E = ULE->decls_end(); I != E; ++I)
6396    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
6397                               Args, NumArgs, CandidateSet,
6398                               PartialOverloading);
6399
6400  if (ULE->requiresADL())
6401    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
6402                                         Args, NumArgs,
6403                                         ExplicitTemplateArgs,
6404                                         CandidateSet,
6405                                         PartialOverloading);
6406}
6407
6408static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
6409                                      Expr **Args, unsigned NumArgs) {
6410  Fn->Destroy(SemaRef.Context);
6411  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
6412    Args[Arg]->Destroy(SemaRef.Context);
6413  return SemaRef.ExprError();
6414}
6415
6416/// Attempts to recover from a call where no functions were found.
6417///
6418/// Returns true if new candidates were found.
6419static Sema::OwningExprResult
6420BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
6421                      UnresolvedLookupExpr *ULE,
6422                      SourceLocation LParenLoc,
6423                      Expr **Args, unsigned NumArgs,
6424                      SourceLocation *CommaLocs,
6425                      SourceLocation RParenLoc) {
6426
6427  CXXScopeSpec SS;
6428  if (ULE->getQualifier()) {
6429    SS.setScopeRep(ULE->getQualifier());
6430    SS.setRange(ULE->getQualifierRange());
6431  }
6432
6433  TemplateArgumentListInfo TABuffer;
6434  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
6435  if (ULE->hasExplicitTemplateArgs()) {
6436    ULE->copyTemplateArgumentsInto(TABuffer);
6437    ExplicitTemplateArgs = &TABuffer;
6438  }
6439
6440  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
6441                 Sema::LookupOrdinaryName);
6442  if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
6443    return Destroy(SemaRef, Fn, Args, NumArgs);
6444
6445  assert(!R.empty() && "lookup results empty despite recovery");
6446
6447  // Build an implicit member call if appropriate.  Just drop the
6448  // casts and such from the call, we don't really care.
6449  Sema::OwningExprResult NewFn = SemaRef.ExprError();
6450  if ((*R.begin())->isCXXClassMember())
6451    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
6452  else if (ExplicitTemplateArgs)
6453    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
6454  else
6455    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
6456
6457  if (NewFn.isInvalid())
6458    return Destroy(SemaRef, Fn, Args, NumArgs);
6459
6460  Fn->Destroy(SemaRef.Context);
6461
6462  // This shouldn't cause an infinite loop because we're giving it
6463  // an expression with non-empty lookup results, which should never
6464  // end up here.
6465  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
6466                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
6467                               CommaLocs, RParenLoc);
6468}
6469
6470/// ResolveOverloadedCallFn - Given the call expression that calls Fn
6471/// (which eventually refers to the declaration Func) and the call
6472/// arguments Args/NumArgs, attempt to resolve the function call down
6473/// to a specific function. If overload resolution succeeds, returns
6474/// the function declaration produced by overload
6475/// resolution. Otherwise, emits diagnostics, deletes all of the
6476/// arguments and Fn, and returns NULL.
6477Sema::OwningExprResult
6478Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
6479                              SourceLocation LParenLoc,
6480                              Expr **Args, unsigned NumArgs,
6481                              SourceLocation *CommaLocs,
6482                              SourceLocation RParenLoc) {
6483#ifndef NDEBUG
6484  if (ULE->requiresADL()) {
6485    // To do ADL, we must have found an unqualified name.
6486    assert(!ULE->getQualifier() && "qualified name with ADL");
6487
6488    // We don't perform ADL for implicit declarations of builtins.
6489    // Verify that this was correctly set up.
6490    FunctionDecl *F;
6491    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
6492        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
6493        F->getBuiltinID() && F->isImplicit())
6494      assert(0 && "performing ADL for builtin");
6495
6496    // We don't perform ADL in C.
6497    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
6498  }
6499#endif
6500
6501  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
6502
6503  // Add the functions denoted by the callee to the set of candidate
6504  // functions, including those from argument-dependent lookup.
6505  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
6506
6507  // If we found nothing, try to recover.
6508  // AddRecoveryCallCandidates diagnoses the error itself, so we just
6509  // bailout out if it fails.
6510  if (CandidateSet.empty())
6511    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
6512                                 CommaLocs, RParenLoc);
6513
6514  OverloadCandidateSet::iterator Best;
6515  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
6516  case OR_Success: {
6517    FunctionDecl *FDecl = Best->Function;
6518    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
6519    DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc());
6520    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
6521    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
6522  }
6523
6524  case OR_No_Viable_Function:
6525    Diag(Fn->getSourceRange().getBegin(),
6526         diag::err_ovl_no_viable_function_in_call)
6527      << ULE->getName() << Fn->getSourceRange();
6528    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6529    break;
6530
6531  case OR_Ambiguous:
6532    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
6533      << ULE->getName() << Fn->getSourceRange();
6534    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6535    break;
6536
6537  case OR_Deleted:
6538    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
6539      << Best->Function->isDeleted()
6540      << ULE->getName()
6541      << Fn->getSourceRange();
6542    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6543    break;
6544  }
6545
6546  // Overload resolution failed. Destroy all of the subexpressions and
6547  // return NULL.
6548  Fn->Destroy(Context);
6549  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
6550    Args[Arg]->Destroy(Context);
6551  return ExprError();
6552}
6553
6554static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
6555  return Functions.size() > 1 ||
6556    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
6557}
6558
6559/// \brief Create a unary operation that may resolve to an overloaded
6560/// operator.
6561///
6562/// \param OpLoc The location of the operator itself (e.g., '*').
6563///
6564/// \param OpcIn The UnaryOperator::Opcode that describes this
6565/// operator.
6566///
6567/// \param Functions The set of non-member functions that will be
6568/// considered by overload resolution. The caller needs to build this
6569/// set based on the context using, e.g.,
6570/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6571/// set should not contain any member functions; those will be added
6572/// by CreateOverloadedUnaryOp().
6573///
6574/// \param input The input argument.
6575Sema::OwningExprResult
6576Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
6577                              const UnresolvedSetImpl &Fns,
6578                              ExprArg input) {
6579  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6580  Expr *Input = (Expr *)input.get();
6581
6582  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
6583  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
6584  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6585
6586  Expr *Args[2] = { Input, 0 };
6587  unsigned NumArgs = 1;
6588
6589  // For post-increment and post-decrement, add the implicit '0' as
6590  // the second argument, so that we know this is a post-increment or
6591  // post-decrement.
6592  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
6593    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
6594    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
6595                                           SourceLocation());
6596    NumArgs = 2;
6597  }
6598
6599  if (Input->isTypeDependent()) {
6600    if (Fns.empty())
6601      return Owned(new (Context) UnaryOperator(input.takeAs<Expr>(),
6602                                               Opc,
6603                                               Context.DependentTy,
6604                                               OpLoc));
6605
6606    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6607    UnresolvedLookupExpr *Fn
6608      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6609                                     0, SourceRange(), OpName, OpLoc,
6610                                     /*ADL*/ true, IsOverloaded(Fns),
6611                                     Fns.begin(), Fns.end());
6612    input.release();
6613    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6614                                                   &Args[0], NumArgs,
6615                                                   Context.DependentTy,
6616                                                   OpLoc));
6617  }
6618
6619  // Build an empty overload set.
6620  OverloadCandidateSet CandidateSet(OpLoc);
6621
6622  // Add the candidates from the given function set.
6623  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
6624
6625  // Add operator candidates that are member functions.
6626  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6627
6628  // Add candidates from ADL.
6629  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6630                                       Args, NumArgs,
6631                                       /*ExplicitTemplateArgs*/ 0,
6632                                       CandidateSet);
6633
6634  // Add builtin operator candidates.
6635  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6636
6637  // Perform overload resolution.
6638  OverloadCandidateSet::iterator Best;
6639  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6640  case OR_Success: {
6641    // We found a built-in operator or an overloaded operator.
6642    FunctionDecl *FnDecl = Best->Function;
6643
6644    if (FnDecl) {
6645      // We matched an overloaded operator. Build a call to that
6646      // operator.
6647
6648      // Convert the arguments.
6649      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6650        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
6651
6652        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
6653                                                Best->FoundDecl, Method))
6654          return ExprError();
6655      } else {
6656        // Convert the arguments.
6657        OwningExprResult InputInit
6658          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6659                                                      FnDecl->getParamDecl(0)),
6660                                      SourceLocation(),
6661                                      move(input));
6662        if (InputInit.isInvalid())
6663          return ExprError();
6664
6665        input = move(InputInit);
6666        Input = (Expr *)input.get();
6667      }
6668
6669      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6670
6671      // Determine the result type
6672      QualType ResultTy = FnDecl->getCallResultType();
6673
6674      // Build the actual expression node.
6675      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6676                                               SourceLocation());
6677      UsualUnaryConversions(FnExpr);
6678
6679      input.release();
6680      Args[0] = Input;
6681      ExprOwningPtr<CallExpr> TheCall(this,
6682        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6683                                          Args, NumArgs, ResultTy, OpLoc));
6684
6685      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6686                              FnDecl))
6687        return ExprError();
6688
6689      return MaybeBindToTemporary(TheCall.release());
6690    } else {
6691      // We matched a built-in operator. Convert the arguments, then
6692      // break out so that we will build the appropriate built-in
6693      // operator node.
6694        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
6695                                      Best->Conversions[0], AA_Passing))
6696          return ExprError();
6697
6698        break;
6699      }
6700    }
6701
6702    case OR_No_Viable_Function:
6703      // No viable function; fall through to handling this as a
6704      // built-in operator, which will produce an error message for us.
6705      break;
6706
6707    case OR_Ambiguous:
6708      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6709          << UnaryOperator::getOpcodeStr(Opc)
6710          << Input->getSourceRange();
6711      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
6712                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
6713      return ExprError();
6714
6715    case OR_Deleted:
6716      Diag(OpLoc, diag::err_ovl_deleted_oper)
6717        << Best->Function->isDeleted()
6718        << UnaryOperator::getOpcodeStr(Opc)
6719        << Input->getSourceRange();
6720      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6721      return ExprError();
6722    }
6723
6724  // Either we found no viable overloaded operator or we matched a
6725  // built-in operator. In either case, fall through to trying to
6726  // build a built-in operation.
6727  input.release();
6728  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
6729}
6730
6731/// \brief Create a binary operation that may resolve to an overloaded
6732/// operator.
6733///
6734/// \param OpLoc The location of the operator itself (e.g., '+').
6735///
6736/// \param OpcIn The BinaryOperator::Opcode that describes this
6737/// operator.
6738///
6739/// \param Functions The set of non-member functions that will be
6740/// considered by overload resolution. The caller needs to build this
6741/// set based on the context using, e.g.,
6742/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6743/// set should not contain any member functions; those will be added
6744/// by CreateOverloadedBinOp().
6745///
6746/// \param LHS Left-hand argument.
6747/// \param RHS Right-hand argument.
6748Sema::OwningExprResult
6749Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
6750                            unsigned OpcIn,
6751                            const UnresolvedSetImpl &Fns,
6752                            Expr *LHS, Expr *RHS) {
6753  Expr *Args[2] = { LHS, RHS };
6754  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
6755
6756  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
6757  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
6758  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6759
6760  // If either side is type-dependent, create an appropriate dependent
6761  // expression.
6762  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6763    if (Fns.empty()) {
6764      // If there are no functions to store, just build a dependent
6765      // BinaryOperator or CompoundAssignment.
6766      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
6767        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
6768                                                  Context.DependentTy, OpLoc));
6769
6770      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
6771                                                        Context.DependentTy,
6772                                                        Context.DependentTy,
6773                                                        Context.DependentTy,
6774                                                        OpLoc));
6775    }
6776
6777    // FIXME: save results of ADL from here?
6778    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6779    UnresolvedLookupExpr *Fn
6780      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6781                                     0, SourceRange(), OpName, OpLoc,
6782                                     /*ADL*/ true, IsOverloaded(Fns),
6783                                     Fns.begin(), Fns.end());
6784    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6785                                                   Args, 2,
6786                                                   Context.DependentTy,
6787                                                   OpLoc));
6788  }
6789
6790  // If this is the .* operator, which is not overloadable, just
6791  // create a built-in binary operator.
6792  if (Opc == BinaryOperator::PtrMemD)
6793    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6794
6795  // If this is the assignment operator, we only perform overload resolution
6796  // if the left-hand side is a class or enumeration type. This is actually
6797  // a hack. The standard requires that we do overload resolution between the
6798  // various built-in candidates, but as DR507 points out, this can lead to
6799  // problems. So we do it this way, which pretty much follows what GCC does.
6800  // Note that we go the traditional code path for compound assignment forms.
6801  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6802    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6803
6804  // Build an empty overload set.
6805  OverloadCandidateSet CandidateSet(OpLoc);
6806
6807  // Add the candidates from the given function set.
6808  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6809
6810  // Add operator candidates that are member functions.
6811  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6812
6813  // Add candidates from ADL.
6814  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6815                                       Args, 2,
6816                                       /*ExplicitTemplateArgs*/ 0,
6817                                       CandidateSet);
6818
6819  // Add builtin operator candidates.
6820  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6821
6822  // Perform overload resolution.
6823  OverloadCandidateSet::iterator Best;
6824  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6825    case OR_Success: {
6826      // We found a built-in operator or an overloaded operator.
6827      FunctionDecl *FnDecl = Best->Function;
6828
6829      if (FnDecl) {
6830        // We matched an overloaded operator. Build a call to that
6831        // operator.
6832
6833        // Convert the arguments.
6834        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6835          // Best->Access is only meaningful for class members.
6836          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6837
6838          OwningExprResult Arg1
6839            = PerformCopyInitialization(
6840                                        InitializedEntity::InitializeParameter(
6841                                                        FnDecl->getParamDecl(0)),
6842                                        SourceLocation(),
6843                                        Owned(Args[1]));
6844          if (Arg1.isInvalid())
6845            return ExprError();
6846
6847          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6848                                                  Best->FoundDecl, Method))
6849            return ExprError();
6850
6851          Args[1] = RHS = Arg1.takeAs<Expr>();
6852        } else {
6853          // Convert the arguments.
6854          OwningExprResult Arg0
6855            = PerformCopyInitialization(
6856                                        InitializedEntity::InitializeParameter(
6857                                                        FnDecl->getParamDecl(0)),
6858                                        SourceLocation(),
6859                                        Owned(Args[0]));
6860          if (Arg0.isInvalid())
6861            return ExprError();
6862
6863          OwningExprResult Arg1
6864            = PerformCopyInitialization(
6865                                        InitializedEntity::InitializeParameter(
6866                                                        FnDecl->getParamDecl(1)),
6867                                        SourceLocation(),
6868                                        Owned(Args[1]));
6869          if (Arg1.isInvalid())
6870            return ExprError();
6871          Args[0] = LHS = Arg0.takeAs<Expr>();
6872          Args[1] = RHS = Arg1.takeAs<Expr>();
6873        }
6874
6875        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6876
6877        // Determine the result type
6878        QualType ResultTy
6879          = FnDecl->getType()->getAs<FunctionType>()
6880                                                ->getCallResultType(Context);
6881
6882        // Build the actual expression node.
6883        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6884                                                 OpLoc);
6885        UsualUnaryConversions(FnExpr);
6886
6887        ExprOwningPtr<CXXOperatorCallExpr>
6888          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6889                                                          Args, 2, ResultTy,
6890                                                          OpLoc));
6891
6892        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6893                                FnDecl))
6894          return ExprError();
6895
6896        return MaybeBindToTemporary(TheCall.release());
6897      } else {
6898        // We matched a built-in operator. Convert the arguments, then
6899        // break out so that we will build the appropriate built-in
6900        // operator node.
6901        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6902                                      Best->Conversions[0], AA_Passing) ||
6903            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6904                                      Best->Conversions[1], AA_Passing))
6905          return ExprError();
6906
6907        break;
6908      }
6909    }
6910
6911    case OR_No_Viable_Function: {
6912      // C++ [over.match.oper]p9:
6913      //   If the operator is the operator , [...] and there are no
6914      //   viable functions, then the operator is assumed to be the
6915      //   built-in operator and interpreted according to clause 5.
6916      if (Opc == BinaryOperator::Comma)
6917        break;
6918
6919      // For class as left operand for assignment or compound assigment operator
6920      // do not fall through to handling in built-in, but report that no overloaded
6921      // assignment operator found
6922      OwningExprResult Result = ExprError();
6923      if (Args[0]->getType()->isRecordType() &&
6924          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6925        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6926             << BinaryOperator::getOpcodeStr(Opc)
6927             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6928      } else {
6929        // No viable function; try to create a built-in operation, which will
6930        // produce an error. Then, show the non-viable candidates.
6931        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6932      }
6933      assert(Result.isInvalid() &&
6934             "C++ binary operator overloading is missing candidates!");
6935      if (Result.isInvalid())
6936        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6937                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6938      return move(Result);
6939    }
6940
6941    case OR_Ambiguous:
6942      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6943          << BinaryOperator::getOpcodeStr(Opc)
6944          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6945      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6946                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6947      return ExprError();
6948
6949    case OR_Deleted:
6950      Diag(OpLoc, diag::err_ovl_deleted_oper)
6951        << Best->Function->isDeleted()
6952        << BinaryOperator::getOpcodeStr(Opc)
6953        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6954      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6955      return ExprError();
6956  }
6957
6958  // We matched a built-in operator; build it.
6959  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6960}
6961
6962Action::OwningExprResult
6963Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6964                                         SourceLocation RLoc,
6965                                         ExprArg Base, ExprArg Idx) {
6966  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6967                    static_cast<Expr*>(Idx.get()) };
6968  DeclarationName OpName =
6969      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6970
6971  // If either side is type-dependent, create an appropriate dependent
6972  // expression.
6973  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6974
6975    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6976    UnresolvedLookupExpr *Fn
6977      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6978                                     0, SourceRange(), OpName, LLoc,
6979                                     /*ADL*/ true, /*Overloaded*/ false,
6980                                     UnresolvedSetIterator(),
6981                                     UnresolvedSetIterator());
6982    // Can't add any actual overloads yet
6983
6984    Base.release();
6985    Idx.release();
6986    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6987                                                   Args, 2,
6988                                                   Context.DependentTy,
6989                                                   RLoc));
6990  }
6991
6992  // Build an empty overload set.
6993  OverloadCandidateSet CandidateSet(LLoc);
6994
6995  // Subscript can only be overloaded as a member function.
6996
6997  // Add operator candidates that are member functions.
6998  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6999
7000  // Add builtin operator candidates.
7001  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
7002
7003  // Perform overload resolution.
7004  OverloadCandidateSet::iterator Best;
7005  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
7006    case OR_Success: {
7007      // We found a built-in operator or an overloaded operator.
7008      FunctionDecl *FnDecl = Best->Function;
7009
7010      if (FnDecl) {
7011        // We matched an overloaded operator. Build a call to that
7012        // operator.
7013
7014        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
7015        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
7016
7017        // Convert the arguments.
7018        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
7019        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
7020                                                Best->FoundDecl, Method))
7021          return ExprError();
7022
7023        // Convert the arguments.
7024        OwningExprResult InputInit
7025          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7026                                                      FnDecl->getParamDecl(0)),
7027                                      SourceLocation(),
7028                                      Owned(Args[1]));
7029        if (InputInit.isInvalid())
7030          return ExprError();
7031
7032        Args[1] = InputInit.takeAs<Expr>();
7033
7034        // Determine the result type
7035        QualType ResultTy
7036          = FnDecl->getType()->getAs<FunctionType>()
7037                                                  ->getCallResultType(Context);
7038
7039        // Build the actual expression node.
7040        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
7041                                                 LLoc);
7042        UsualUnaryConversions(FnExpr);
7043
7044        Base.release();
7045        Idx.release();
7046        ExprOwningPtr<CXXOperatorCallExpr>
7047          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
7048                                                          FnExpr, Args, 2,
7049                                                          ResultTy, RLoc));
7050
7051        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
7052                                FnDecl))
7053          return ExprError();
7054
7055        return MaybeBindToTemporary(TheCall.release());
7056      } else {
7057        // We matched a built-in operator. Convert the arguments, then
7058        // break out so that we will build the appropriate built-in
7059        // operator node.
7060        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
7061                                      Best->Conversions[0], AA_Passing) ||
7062            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
7063                                      Best->Conversions[1], AA_Passing))
7064          return ExprError();
7065
7066        break;
7067      }
7068    }
7069
7070    case OR_No_Viable_Function: {
7071      if (CandidateSet.empty())
7072        Diag(LLoc, diag::err_ovl_no_oper)
7073          << Args[0]->getType() << /*subscript*/ 0
7074          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7075      else
7076        Diag(LLoc, diag::err_ovl_no_viable_subscript)
7077          << Args[0]->getType()
7078          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7079      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
7080                              "[]", LLoc);
7081      return ExprError();
7082    }
7083
7084    case OR_Ambiguous:
7085      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
7086          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7087      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
7088                              "[]", LLoc);
7089      return ExprError();
7090
7091    case OR_Deleted:
7092      Diag(LLoc, diag::err_ovl_deleted_oper)
7093        << Best->Function->isDeleted() << "[]"
7094        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7095      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
7096                              "[]", LLoc);
7097      return ExprError();
7098    }
7099
7100  // We matched a built-in operator; build it.
7101  Base.release();
7102  Idx.release();
7103  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
7104                                         Owned(Args[1]), RLoc);
7105}
7106
7107/// BuildCallToMemberFunction - Build a call to a member
7108/// function. MemExpr is the expression that refers to the member
7109/// function (and includes the object parameter), Args/NumArgs are the
7110/// arguments to the function call (not including the object
7111/// parameter). The caller needs to validate that the member
7112/// expression refers to a member function or an overloaded member
7113/// function.
7114Sema::OwningExprResult
7115Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
7116                                SourceLocation LParenLoc, Expr **Args,
7117                                unsigned NumArgs, SourceLocation *CommaLocs,
7118                                SourceLocation RParenLoc) {
7119  // Dig out the member expression. This holds both the object
7120  // argument and the member function we're referring to.
7121  Expr *NakedMemExpr = MemExprE->IgnoreParens();
7122
7123  MemberExpr *MemExpr;
7124  CXXMethodDecl *Method = 0;
7125  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
7126  NestedNameSpecifier *Qualifier = 0;
7127  if (isa<MemberExpr>(NakedMemExpr)) {
7128    MemExpr = cast<MemberExpr>(NakedMemExpr);
7129    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
7130    FoundDecl = MemExpr->getFoundDecl();
7131    Qualifier = MemExpr->getQualifier();
7132  } else {
7133    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
7134    Qualifier = UnresExpr->getQualifier();
7135
7136    QualType ObjectType = UnresExpr->getBaseType();
7137
7138    // Add overload candidates
7139    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
7140
7141    // FIXME: avoid copy.
7142    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7143    if (UnresExpr->hasExplicitTemplateArgs()) {
7144      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
7145      TemplateArgs = &TemplateArgsBuffer;
7146    }
7147
7148    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
7149           E = UnresExpr->decls_end(); I != E; ++I) {
7150
7151      NamedDecl *Func = *I;
7152      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
7153      if (isa<UsingShadowDecl>(Func))
7154        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
7155
7156      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
7157        // If explicit template arguments were provided, we can't call a
7158        // non-template member function.
7159        if (TemplateArgs)
7160          continue;
7161
7162        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
7163                           Args, NumArgs,
7164                           CandidateSet, /*SuppressUserConversions=*/false);
7165      } else {
7166        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
7167                                   I.getPair(), ActingDC, TemplateArgs,
7168                                   ObjectType, Args, NumArgs,
7169                                   CandidateSet,
7170                                   /*SuppressUsedConversions=*/false);
7171      }
7172    }
7173
7174    DeclarationName DeclName = UnresExpr->getMemberName();
7175
7176    OverloadCandidateSet::iterator Best;
7177    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
7178    case OR_Success:
7179      Method = cast<CXXMethodDecl>(Best->Function);
7180      FoundDecl = Best->FoundDecl;
7181      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
7182      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
7183      break;
7184
7185    case OR_No_Viable_Function:
7186      Diag(UnresExpr->getMemberLoc(),
7187           diag::err_ovl_no_viable_member_function_in_call)
7188        << DeclName << MemExprE->getSourceRange();
7189      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7190      // FIXME: Leaking incoming expressions!
7191      return ExprError();
7192
7193    case OR_Ambiguous:
7194      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
7195        << DeclName << MemExprE->getSourceRange();
7196      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7197      // FIXME: Leaking incoming expressions!
7198      return ExprError();
7199
7200    case OR_Deleted:
7201      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
7202        << Best->Function->isDeleted()
7203        << DeclName << MemExprE->getSourceRange();
7204      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7205      // FIXME: Leaking incoming expressions!
7206      return ExprError();
7207    }
7208
7209    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
7210
7211    // If overload resolution picked a static member, build a
7212    // non-member call based on that function.
7213    if (Method->isStatic()) {
7214      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
7215                                   Args, NumArgs, RParenLoc);
7216    }
7217
7218    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
7219  }
7220
7221  assert(Method && "Member call to something that isn't a method?");
7222  ExprOwningPtr<CXXMemberCallExpr>
7223    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
7224                                                  NumArgs,
7225                                  Method->getCallResultType(),
7226                                  RParenLoc));
7227
7228  // Check for a valid return type.
7229  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
7230                          TheCall.get(), Method))
7231    return ExprError();
7232
7233  // Convert the object argument (for a non-static member function call).
7234  // We only need to do this if there was actually an overload; otherwise
7235  // it was done at lookup.
7236  Expr *ObjectArg = MemExpr->getBase();
7237  if (!Method->isStatic() &&
7238      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
7239                                          FoundDecl, Method))
7240    return ExprError();
7241  MemExpr->setBase(ObjectArg);
7242
7243  // Convert the rest of the arguments
7244  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
7245  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
7246                              RParenLoc))
7247    return ExprError();
7248
7249  if (CheckFunctionCall(Method, TheCall.get()))
7250    return ExprError();
7251
7252  return MaybeBindToTemporary(TheCall.release());
7253}
7254
7255/// BuildCallToObjectOfClassType - Build a call to an object of class
7256/// type (C++ [over.call.object]), which can end up invoking an
7257/// overloaded function call operator (@c operator()) or performing a
7258/// user-defined conversion on the object argument.
7259Sema::ExprResult
7260Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
7261                                   SourceLocation LParenLoc,
7262                                   Expr **Args, unsigned NumArgs,
7263                                   SourceLocation *CommaLocs,
7264                                   SourceLocation RParenLoc) {
7265  assert(Object->getType()->isRecordType() && "Requires object type argument");
7266  const RecordType *Record = Object->getType()->getAs<RecordType>();
7267
7268  // C++ [over.call.object]p1:
7269  //  If the primary-expression E in the function call syntax
7270  //  evaluates to a class object of type "cv T", then the set of
7271  //  candidate functions includes at least the function call
7272  //  operators of T. The function call operators of T are obtained by
7273  //  ordinary lookup of the name operator() in the context of
7274  //  (E).operator().
7275  OverloadCandidateSet CandidateSet(LParenLoc);
7276  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
7277
7278  if (RequireCompleteType(LParenLoc, Object->getType(),
7279                          PDiag(diag::err_incomplete_object_call)
7280                          << Object->getSourceRange()))
7281    return true;
7282
7283  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
7284  LookupQualifiedName(R, Record->getDecl());
7285  R.suppressDiagnostics();
7286
7287  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
7288       Oper != OperEnd; ++Oper) {
7289    AddMethodCandidate(Oper.getPair(), Object->getType(),
7290                       Args, NumArgs, CandidateSet,
7291                       /*SuppressUserConversions=*/ false);
7292  }
7293
7294  // C++ [over.call.object]p2:
7295  //   In addition, for each conversion function declared in T of the
7296  //   form
7297  //
7298  //        operator conversion-type-id () cv-qualifier;
7299  //
7300  //   where cv-qualifier is the same cv-qualification as, or a
7301  //   greater cv-qualification than, cv, and where conversion-type-id
7302  //   denotes the type "pointer to function of (P1,...,Pn) returning
7303  //   R", or the type "reference to pointer to function of
7304  //   (P1,...,Pn) returning R", or the type "reference to function
7305  //   of (P1,...,Pn) returning R", a surrogate call function [...]
7306  //   is also considered as a candidate function. Similarly,
7307  //   surrogate call functions are added to the set of candidate
7308  //   functions for each conversion function declared in an
7309  //   accessible base class provided the function is not hidden
7310  //   within T by another intervening declaration.
7311  const UnresolvedSetImpl *Conversions
7312    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
7313  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
7314         E = Conversions->end(); I != E; ++I) {
7315    NamedDecl *D = *I;
7316    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
7317    if (isa<UsingShadowDecl>(D))
7318      D = cast<UsingShadowDecl>(D)->getTargetDecl();
7319
7320    // Skip over templated conversion functions; they aren't
7321    // surrogates.
7322    if (isa<FunctionTemplateDecl>(D))
7323      continue;
7324
7325    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7326
7327    // Strip the reference type (if any) and then the pointer type (if
7328    // any) to get down to what might be a function type.
7329    QualType ConvType = Conv->getConversionType().getNonReferenceType();
7330    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
7331      ConvType = ConvPtrType->getPointeeType();
7332
7333    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
7334      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
7335                            Object->getType(), Args, NumArgs,
7336                            CandidateSet);
7337  }
7338
7339  // Perform overload resolution.
7340  OverloadCandidateSet::iterator Best;
7341  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
7342  case OR_Success:
7343    // Overload resolution succeeded; we'll build the appropriate call
7344    // below.
7345    break;
7346
7347  case OR_No_Viable_Function:
7348    if (CandidateSet.empty())
7349      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
7350        << Object->getType() << /*call*/ 1
7351        << Object->getSourceRange();
7352    else
7353      Diag(Object->getSourceRange().getBegin(),
7354           diag::err_ovl_no_viable_object_call)
7355        << Object->getType() << Object->getSourceRange();
7356    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7357    break;
7358
7359  case OR_Ambiguous:
7360    Diag(Object->getSourceRange().getBegin(),
7361         diag::err_ovl_ambiguous_object_call)
7362      << Object->getType() << Object->getSourceRange();
7363    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
7364    break;
7365
7366  case OR_Deleted:
7367    Diag(Object->getSourceRange().getBegin(),
7368         diag::err_ovl_deleted_object_call)
7369      << Best->Function->isDeleted()
7370      << Object->getType() << Object->getSourceRange();
7371    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7372    break;
7373  }
7374
7375  if (Best == CandidateSet.end()) {
7376    // We had an error; delete all of the subexpressions and return
7377    // the error.
7378    Object->Destroy(Context);
7379    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7380      Args[ArgIdx]->Destroy(Context);
7381    return true;
7382  }
7383
7384  if (Best->Function == 0) {
7385    // Since there is no function declaration, this is one of the
7386    // surrogate candidates. Dig out the conversion function.
7387    CXXConversionDecl *Conv
7388      = cast<CXXConversionDecl>(
7389                         Best->Conversions[0].UserDefined.ConversionFunction);
7390
7391    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
7392    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
7393
7394    // We selected one of the surrogate functions that converts the
7395    // object parameter to a function pointer. Perform the conversion
7396    // on the object argument, then let ActOnCallExpr finish the job.
7397
7398    // Create an implicit member expr to refer to the conversion operator.
7399    // and then call it.
7400    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
7401                                                   Conv);
7402
7403    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
7404                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
7405                         CommaLocs, RParenLoc).result();
7406  }
7407
7408  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
7409  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
7410
7411  // We found an overloaded operator(). Build a CXXOperatorCallExpr
7412  // that calls this method, using Object for the implicit object
7413  // parameter and passing along the remaining arguments.
7414  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
7415  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
7416
7417  unsigned NumArgsInProto = Proto->getNumArgs();
7418  unsigned NumArgsToCheck = NumArgs;
7419
7420  // Build the full argument list for the method call (the
7421  // implicit object parameter is placed at the beginning of the
7422  // list).
7423  Expr **MethodArgs;
7424  if (NumArgs < NumArgsInProto) {
7425    NumArgsToCheck = NumArgsInProto;
7426    MethodArgs = new Expr*[NumArgsInProto + 1];
7427  } else {
7428    MethodArgs = new Expr*[NumArgs + 1];
7429  }
7430  MethodArgs[0] = Object;
7431  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7432    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
7433
7434  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
7435                                          SourceLocation());
7436  UsualUnaryConversions(NewFn);
7437
7438  // Once we've built TheCall, all of the expressions are properly
7439  // owned.
7440  QualType ResultTy = Method->getCallResultType();
7441  ExprOwningPtr<CXXOperatorCallExpr>
7442    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
7443                                                    MethodArgs, NumArgs + 1,
7444                                                    ResultTy, RParenLoc));
7445  delete [] MethodArgs;
7446
7447  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
7448                          Method))
7449    return true;
7450
7451  // We may have default arguments. If so, we need to allocate more
7452  // slots in the call for them.
7453  if (NumArgs < NumArgsInProto)
7454    TheCall->setNumArgs(Context, NumArgsInProto + 1);
7455  else if (NumArgs > NumArgsInProto)
7456    NumArgsToCheck = NumArgsInProto;
7457
7458  bool IsError = false;
7459
7460  // Initialize the implicit object parameter.
7461  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
7462                                                 Best->FoundDecl, Method);
7463  TheCall->setArg(0, Object);
7464
7465
7466  // Check the argument types.
7467  for (unsigned i = 0; i != NumArgsToCheck; i++) {
7468    Expr *Arg;
7469    if (i < NumArgs) {
7470      Arg = Args[i];
7471
7472      // Pass the argument.
7473
7474      OwningExprResult InputInit
7475        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7476                                                    Method->getParamDecl(i)),
7477                                    SourceLocation(), Owned(Arg));
7478
7479      IsError |= InputInit.isInvalid();
7480      Arg = InputInit.takeAs<Expr>();
7481    } else {
7482      OwningExprResult DefArg
7483        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
7484      if (DefArg.isInvalid()) {
7485        IsError = true;
7486        break;
7487      }
7488
7489      Arg = DefArg.takeAs<Expr>();
7490    }
7491
7492    TheCall->setArg(i + 1, Arg);
7493  }
7494
7495  // If this is a variadic call, handle args passed through "...".
7496  if (Proto->isVariadic()) {
7497    // Promote the arguments (C99 6.5.2.2p7).
7498    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
7499      Expr *Arg = Args[i];
7500      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0);
7501      TheCall->setArg(i + 1, Arg);
7502    }
7503  }
7504
7505  if (IsError) return true;
7506
7507  if (CheckFunctionCall(Method, TheCall.get()))
7508    return true;
7509
7510  return MaybeBindToTemporary(TheCall.release()).result();
7511}
7512
7513/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
7514///  (if one exists), where @c Base is an expression of class type and
7515/// @c Member is the name of the member we're trying to find.
7516Sema::OwningExprResult
7517Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
7518  Expr *Base = static_cast<Expr *>(BaseIn.get());
7519  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
7520
7521  SourceLocation Loc = Base->getExprLoc();
7522
7523  // C++ [over.ref]p1:
7524  //
7525  //   [...] An expression x->m is interpreted as (x.operator->())->m
7526  //   for a class object x of type T if T::operator->() exists and if
7527  //   the operator is selected as the best match function by the
7528  //   overload resolution mechanism (13.3).
7529  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
7530  OverloadCandidateSet CandidateSet(Loc);
7531  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
7532
7533  if (RequireCompleteType(Loc, Base->getType(),
7534                          PDiag(diag::err_typecheck_incomplete_tag)
7535                            << Base->getSourceRange()))
7536    return ExprError();
7537
7538  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
7539  LookupQualifiedName(R, BaseRecord->getDecl());
7540  R.suppressDiagnostics();
7541
7542  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
7543       Oper != OperEnd; ++Oper) {
7544    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
7545                       /*SuppressUserConversions=*/false);
7546  }
7547
7548  // Perform overload resolution.
7549  OverloadCandidateSet::iterator Best;
7550  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
7551  case OR_Success:
7552    // Overload resolution succeeded; we'll build the call below.
7553    break;
7554
7555  case OR_No_Viable_Function:
7556    if (CandidateSet.empty())
7557      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7558        << Base->getType() << Base->getSourceRange();
7559    else
7560      Diag(OpLoc, diag::err_ovl_no_viable_oper)
7561        << "operator->" << Base->getSourceRange();
7562    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7563    return ExprError();
7564
7565  case OR_Ambiguous:
7566    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
7567      << "->" << Base->getSourceRange();
7568    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
7569    return ExprError();
7570
7571  case OR_Deleted:
7572    Diag(OpLoc,  diag::err_ovl_deleted_oper)
7573      << Best->Function->isDeleted()
7574      << "->" << Base->getSourceRange();
7575    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7576    return ExprError();
7577  }
7578
7579  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
7580  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7581
7582  // Convert the object parameter.
7583  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
7584  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
7585                                          Best->FoundDecl, Method))
7586    return ExprError();
7587
7588  // No concerns about early exits now.
7589  BaseIn.release();
7590
7591  // Build the operator call.
7592  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
7593                                           SourceLocation());
7594  UsualUnaryConversions(FnExpr);
7595
7596  QualType ResultTy = Method->getCallResultType();
7597  ExprOwningPtr<CXXOperatorCallExpr>
7598    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
7599                                                    &Base, 1, ResultTy, OpLoc));
7600
7601  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
7602                          Method))
7603          return ExprError();
7604  return move(TheCall);
7605}
7606
7607/// FixOverloadedFunctionReference - E is an expression that refers to
7608/// a C++ overloaded function (possibly with some parentheses and
7609/// perhaps a '&' around it). We have resolved the overloaded function
7610/// to the function declaration Fn, so patch up the expression E to
7611/// refer (possibly indirectly) to Fn. Returns the new expr.
7612Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
7613                                           FunctionDecl *Fn) {
7614  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7615    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
7616                                                   Found, Fn);
7617    if (SubExpr == PE->getSubExpr())
7618      return PE->Retain();
7619
7620    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
7621  }
7622
7623  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7624    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
7625                                                   Found, Fn);
7626    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
7627                               SubExpr->getType()) &&
7628           "Implicit cast type cannot be determined from overload");
7629    if (SubExpr == ICE->getSubExpr())
7630      return ICE->Retain();
7631
7632    return new (Context) ImplicitCastExpr(ICE->getType(),
7633                                          ICE->getCastKind(),
7634                                          SubExpr, CXXBaseSpecifierArray(),
7635                                          ICE->isLvalueCast());
7636  }
7637
7638  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
7639    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
7640           "Can only take the address of an overloaded function");
7641    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7642      if (Method->isStatic()) {
7643        // Do nothing: static member functions aren't any different
7644        // from non-member functions.
7645      } else {
7646        // Fix the sub expression, which really has to be an
7647        // UnresolvedLookupExpr holding an overloaded member function
7648        // or template.
7649        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7650                                                       Found, Fn);
7651        if (SubExpr == UnOp->getSubExpr())
7652          return UnOp->Retain();
7653
7654        assert(isa<DeclRefExpr>(SubExpr)
7655               && "fixed to something other than a decl ref");
7656        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
7657               && "fixed to a member ref with no nested name qualifier");
7658
7659        // We have taken the address of a pointer to member
7660        // function. Perform the computation here so that we get the
7661        // appropriate pointer to member type.
7662        QualType ClassType
7663          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
7664        QualType MemPtrType
7665          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
7666
7667        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7668                                           MemPtrType, UnOp->getOperatorLoc());
7669      }
7670    }
7671    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7672                                                   Found, Fn);
7673    if (SubExpr == UnOp->getSubExpr())
7674      return UnOp->Retain();
7675
7676    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7677                                     Context.getPointerType(SubExpr->getType()),
7678                                       UnOp->getOperatorLoc());
7679  }
7680
7681  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
7682    // FIXME: avoid copy.
7683    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7684    if (ULE->hasExplicitTemplateArgs()) {
7685      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
7686      TemplateArgs = &TemplateArgsBuffer;
7687    }
7688
7689    return DeclRefExpr::Create(Context,
7690                               ULE->getQualifier(),
7691                               ULE->getQualifierRange(),
7692                               Fn,
7693                               ULE->getNameLoc(),
7694                               Fn->getType(),
7695                               TemplateArgs);
7696  }
7697
7698  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
7699    // FIXME: avoid copy.
7700    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7701    if (MemExpr->hasExplicitTemplateArgs()) {
7702      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
7703      TemplateArgs = &TemplateArgsBuffer;
7704    }
7705
7706    Expr *Base;
7707
7708    // If we're filling in
7709    if (MemExpr->isImplicitAccess()) {
7710      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
7711        return DeclRefExpr::Create(Context,
7712                                   MemExpr->getQualifier(),
7713                                   MemExpr->getQualifierRange(),
7714                                   Fn,
7715                                   MemExpr->getMemberLoc(),
7716                                   Fn->getType(),
7717                                   TemplateArgs);
7718      } else {
7719        SourceLocation Loc = MemExpr->getMemberLoc();
7720        if (MemExpr->getQualifier())
7721          Loc = MemExpr->getQualifierRange().getBegin();
7722        Base = new (Context) CXXThisExpr(Loc,
7723                                         MemExpr->getBaseType(),
7724                                         /*isImplicit=*/true);
7725      }
7726    } else
7727      Base = MemExpr->getBase()->Retain();
7728
7729    return MemberExpr::Create(Context, Base,
7730                              MemExpr->isArrow(),
7731                              MemExpr->getQualifier(),
7732                              MemExpr->getQualifierRange(),
7733                              Fn,
7734                              Found,
7735                              MemExpr->getMemberLoc(),
7736                              TemplateArgs,
7737                              Fn->getType());
7738  }
7739
7740  assert(false && "Invalid reference to overloaded function");
7741  return E->Retain();
7742}
7743
7744Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
7745                                                          DeclAccessPair Found,
7746                                                            FunctionDecl *Fn) {
7747  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
7748}
7749
7750} // end namespace clang
7751