SemaDeclObjC.cpp revision 219077
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/Sema/DeclSpec.h"
23#include "llvm/ADT/DenseSet.h"
24
25using namespace clang;
26
27static void DiagnoseObjCImplementedDeprecations(Sema &S,
28                                                NamedDecl *ND,
29                                                SourceLocation ImplLoc,
30                                                int select) {
31  if (ND && ND->getAttr<DeprecatedAttr>()) {
32    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
33    if (select == 0)
34      S.Diag(ND->getLocation(), diag::note_method_declared_at);
35    else
36      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
37  }
38}
39
40/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
41/// and user declared, in the method definition's AST.
42void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
43  assert(getCurMethodDecl() == 0 && "Method parsing confused");
44  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
45
46  // If we don't have a valid method decl, simply return.
47  if (!MDecl)
48    return;
49
50  // Allow the rest of sema to find private method decl implementations.
51  if (MDecl->isInstanceMethod())
52    AddInstanceMethodToGlobalPool(MDecl, true);
53  else
54    AddFactoryMethodToGlobalPool(MDecl, true);
55
56  // Allow all of Sema to see that we are entering a method definition.
57  PushDeclContext(FnBodyScope, MDecl);
58  PushFunctionScope();
59
60  // Create Decl objects for each parameter, entrring them in the scope for
61  // binding to their use.
62
63  // Insert the invisible arguments, self and _cmd!
64  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
65
66  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
67  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
68
69  // Introduce all of the other parameters into this scope.
70  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
71       E = MDecl->param_end(); PI != E; ++PI) {
72    ParmVarDecl *Param = (*PI);
73    if (!Param->isInvalidDecl() &&
74        RequireCompleteType(Param->getLocation(), Param->getType(),
75                            diag::err_typecheck_decl_incomplete_type))
76          Param->setInvalidDecl();
77    if ((*PI)->getIdentifier())
78      PushOnScopeChains(*PI, FnBodyScope);
79  }
80  // Warn on implementating deprecated methods under
81  // -Wdeprecated-implementations flag.
82  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface())
83    if (ObjCMethodDecl *IMD =
84          IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
85      DiagnoseObjCImplementedDeprecations(*this,
86                                          dyn_cast<NamedDecl>(IMD),
87                                          MDecl->getLocation(), 0);
88}
89
90Decl *Sema::
91ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
92                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
93                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
94                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
95                         const SourceLocation *ProtoLocs,
96                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
97  assert(ClassName && "Missing class identifier");
98
99  // Check for another declaration kind with the same name.
100  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
101                                         LookupOrdinaryName, ForRedeclaration);
102
103  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
104    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
105    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
106  }
107
108  ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
109  if (IDecl) {
110    // Class already seen. Is it a forward declaration?
111    if (!IDecl->isForwardDecl()) {
112      IDecl->setInvalidDecl();
113      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
114      Diag(IDecl->getLocation(), diag::note_previous_definition);
115
116      // Return the previous class interface.
117      // FIXME: don't leak the objects passed in!
118      return IDecl;
119    } else {
120      IDecl->setLocation(AtInterfaceLoc);
121      IDecl->setForwardDecl(false);
122      IDecl->setClassLoc(ClassLoc);
123      // If the forward decl was in a PCH, we need to write it again in a
124      // dependent AST file.
125      IDecl->setChangedSinceDeserialization(true);
126
127      // Since this ObjCInterfaceDecl was created by a forward declaration,
128      // we now add it to the DeclContext since it wasn't added before
129      // (see ActOnForwardClassDeclaration).
130      IDecl->setLexicalDeclContext(CurContext);
131      CurContext->addDecl(IDecl);
132
133      if (AttrList)
134        ProcessDeclAttributeList(TUScope, IDecl, AttrList);
135    }
136  } else {
137    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
138                                      ClassName, ClassLoc);
139    if (AttrList)
140      ProcessDeclAttributeList(TUScope, IDecl, AttrList);
141
142    PushOnScopeChains(IDecl, TUScope);
143  }
144
145  if (SuperName) {
146    // Check if a different kind of symbol declared in this scope.
147    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
148                                LookupOrdinaryName);
149
150    if (!PrevDecl) {
151      // Try to correct for a typo in the superclass name.
152      LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName);
153      if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
154          (PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
155        Diag(SuperLoc, diag::err_undef_superclass_suggest)
156          << SuperName << ClassName << PrevDecl->getDeclName();
157        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
158          << PrevDecl->getDeclName();
159      }
160    }
161
162    if (PrevDecl == IDecl) {
163      Diag(SuperLoc, diag::err_recursive_superclass)
164        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
165      IDecl->setLocEnd(ClassLoc);
166    } else {
167      ObjCInterfaceDecl *SuperClassDecl =
168                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
169
170      // Diagnose classes that inherit from deprecated classes.
171      if (SuperClassDecl)
172        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
173
174      if (PrevDecl && SuperClassDecl == 0) {
175        // The previous declaration was not a class decl. Check if we have a
176        // typedef. If we do, get the underlying class type.
177        if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
178          QualType T = TDecl->getUnderlyingType();
179          if (T->isObjCObjectType()) {
180            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
181              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
182          }
183        }
184
185        // This handles the following case:
186        //
187        // typedef int SuperClass;
188        // @interface MyClass : SuperClass {} @end
189        //
190        if (!SuperClassDecl) {
191          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
192          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
193        }
194      }
195
196      if (!dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
197        if (!SuperClassDecl)
198          Diag(SuperLoc, diag::err_undef_superclass)
199            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
200        else if (SuperClassDecl->isForwardDecl())
201          Diag(SuperLoc, diag::err_undef_superclass)
202            << SuperClassDecl->getDeclName() << ClassName
203            << SourceRange(AtInterfaceLoc, ClassLoc);
204      }
205      IDecl->setSuperClass(SuperClassDecl);
206      IDecl->setSuperClassLoc(SuperLoc);
207      IDecl->setLocEnd(SuperLoc);
208    }
209  } else { // we have a root class.
210    IDecl->setLocEnd(ClassLoc);
211  }
212
213  // Check then save referenced protocols.
214  if (NumProtoRefs) {
215    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
216                           ProtoLocs, Context);
217    IDecl->setLocEnd(EndProtoLoc);
218  }
219
220  CheckObjCDeclScope(IDecl);
221  return IDecl;
222}
223
224/// ActOnCompatiblityAlias - this action is called after complete parsing of
225/// @compatibility_alias declaration. It sets up the alias relationships.
226Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
227                                        IdentifierInfo *AliasName,
228                                        SourceLocation AliasLocation,
229                                        IdentifierInfo *ClassName,
230                                        SourceLocation ClassLocation) {
231  // Look for previous declaration of alias name
232  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
233                                      LookupOrdinaryName, ForRedeclaration);
234  if (ADecl) {
235    if (isa<ObjCCompatibleAliasDecl>(ADecl))
236      Diag(AliasLocation, diag::warn_previous_alias_decl);
237    else
238      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
239    Diag(ADecl->getLocation(), diag::note_previous_declaration);
240    return 0;
241  }
242  // Check for class declaration
243  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
244                                       LookupOrdinaryName, ForRedeclaration);
245  if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) {
246    QualType T = TDecl->getUnderlyingType();
247    if (T->isObjCObjectType()) {
248      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
249        ClassName = IDecl->getIdentifier();
250        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
251                                  LookupOrdinaryName, ForRedeclaration);
252      }
253    }
254  }
255  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
256  if (CDecl == 0) {
257    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
258    if (CDeclU)
259      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
260    return 0;
261  }
262
263  // Everything checked out, instantiate a new alias declaration AST.
264  ObjCCompatibleAliasDecl *AliasDecl =
265    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
266
267  if (!CheckObjCDeclScope(AliasDecl))
268    PushOnScopeChains(AliasDecl, TUScope);
269
270  return AliasDecl;
271}
272
273void Sema::CheckForwardProtocolDeclarationForCircularDependency(
274  IdentifierInfo *PName,
275  SourceLocation &Ploc, SourceLocation PrevLoc,
276  const ObjCList<ObjCProtocolDecl> &PList) {
277  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
278       E = PList.end(); I != E; ++I) {
279
280    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
281                                                 Ploc)) {
282      if (PDecl->getIdentifier() == PName) {
283        Diag(Ploc, diag::err_protocol_has_circular_dependency);
284        Diag(PrevLoc, diag::note_previous_definition);
285      }
286      CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
287        PDecl->getLocation(), PDecl->getReferencedProtocols());
288    }
289  }
290}
291
292Decl *
293Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
294                                  IdentifierInfo *ProtocolName,
295                                  SourceLocation ProtocolLoc,
296                                  Decl * const *ProtoRefs,
297                                  unsigned NumProtoRefs,
298                                  const SourceLocation *ProtoLocs,
299                                  SourceLocation EndProtoLoc,
300                                  AttributeList *AttrList) {
301  // FIXME: Deal with AttrList.
302  assert(ProtocolName && "Missing protocol identifier");
303  ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
304  if (PDecl) {
305    // Protocol already seen. Better be a forward protocol declaration
306    if (!PDecl->isForwardDecl()) {
307      Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
308      Diag(PDecl->getLocation(), diag::note_previous_definition);
309      // Just return the protocol we already had.
310      // FIXME: don't leak the objects passed in!
311      return PDecl;
312    }
313    ObjCList<ObjCProtocolDecl> PList;
314    PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
315    CheckForwardProtocolDeclarationForCircularDependency(
316      ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
317
318    // Make sure the cached decl gets a valid start location.
319    PDecl->setLocation(AtProtoInterfaceLoc);
320    PDecl->setForwardDecl(false);
321    CurContext->addDecl(PDecl);
322    // Repeat in dependent AST files.
323    PDecl->setChangedSinceDeserialization(true);
324  } else {
325    PDecl = ObjCProtocolDecl::Create(Context, CurContext,
326                                     AtProtoInterfaceLoc,ProtocolName);
327    PushOnScopeChains(PDecl, TUScope);
328    PDecl->setForwardDecl(false);
329  }
330  if (AttrList)
331    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
332  if (NumProtoRefs) {
333    /// Check then save referenced protocols.
334    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
335                           ProtoLocs, Context);
336    PDecl->setLocEnd(EndProtoLoc);
337  }
338
339  CheckObjCDeclScope(PDecl);
340  return PDecl;
341}
342
343/// FindProtocolDeclaration - This routine looks up protocols and
344/// issues an error if they are not declared. It returns list of
345/// protocol declarations in its 'Protocols' argument.
346void
347Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
348                              const IdentifierLocPair *ProtocolId,
349                              unsigned NumProtocols,
350                              llvm::SmallVectorImpl<Decl *> &Protocols) {
351  for (unsigned i = 0; i != NumProtocols; ++i) {
352    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
353                                             ProtocolId[i].second);
354    if (!PDecl) {
355      LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second,
356                     LookupObjCProtocolName);
357      if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
358          (PDecl = R.getAsSingle<ObjCProtocolDecl>())) {
359        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
360          << ProtocolId[i].first << R.getLookupName();
361        Diag(PDecl->getLocation(), diag::note_previous_decl)
362          << PDecl->getDeclName();
363      }
364    }
365
366    if (!PDecl) {
367      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
368        << ProtocolId[i].first;
369      continue;
370    }
371
372    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
373
374    // If this is a forward declaration and we are supposed to warn in this
375    // case, do it.
376    if (WarnOnDeclarations && PDecl->isForwardDecl())
377      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
378        << ProtocolId[i].first;
379    Protocols.push_back(PDecl);
380  }
381}
382
383/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
384/// a class method in its extension.
385///
386void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
387                                            ObjCInterfaceDecl *ID) {
388  if (!ID)
389    return;  // Possibly due to previous error
390
391  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
392  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
393       e =  ID->meth_end(); i != e; ++i) {
394    ObjCMethodDecl *MD = *i;
395    MethodMap[MD->getSelector()] = MD;
396  }
397
398  if (MethodMap.empty())
399    return;
400  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
401       e =  CAT->meth_end(); i != e; ++i) {
402    ObjCMethodDecl *Method = *i;
403    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
404    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
405      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
406            << Method->getDeclName();
407      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
408    }
409  }
410}
411
412/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
413Decl *
414Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
415                                      const IdentifierLocPair *IdentList,
416                                      unsigned NumElts,
417                                      AttributeList *attrList) {
418  llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
419  llvm::SmallVector<SourceLocation, 8> ProtoLocs;
420
421  for (unsigned i = 0; i != NumElts; ++i) {
422    IdentifierInfo *Ident = IdentList[i].first;
423    ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
424    bool isNew = false;
425    if (PDecl == 0) { // Not already seen?
426      PDecl = ObjCProtocolDecl::Create(Context, CurContext,
427                                       IdentList[i].second, Ident);
428      PushOnScopeChains(PDecl, TUScope, false);
429      isNew = true;
430    }
431    if (attrList) {
432      ProcessDeclAttributeList(TUScope, PDecl, attrList);
433      if (!isNew)
434        PDecl->setChangedSinceDeserialization(true);
435    }
436    Protocols.push_back(PDecl);
437    ProtoLocs.push_back(IdentList[i].second);
438  }
439
440  ObjCForwardProtocolDecl *PDecl =
441    ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
442                                    Protocols.data(), Protocols.size(),
443                                    ProtoLocs.data());
444  CurContext->addDecl(PDecl);
445  CheckObjCDeclScope(PDecl);
446  return PDecl;
447}
448
449Decl *Sema::
450ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
451                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
452                            IdentifierInfo *CategoryName,
453                            SourceLocation CategoryLoc,
454                            Decl * const *ProtoRefs,
455                            unsigned NumProtoRefs,
456                            const SourceLocation *ProtoLocs,
457                            SourceLocation EndProtoLoc) {
458  ObjCCategoryDecl *CDecl;
459  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
460
461  /// Check that class of this category is already completely declared.
462  if (!IDecl || IDecl->isForwardDecl()) {
463    // Create an invalid ObjCCategoryDecl to serve as context for
464    // the enclosing method declarations.  We mark the decl invalid
465    // to make it clear that this isn't a valid AST.
466    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
467                                     ClassLoc, CategoryLoc, CategoryName);
468    CDecl->setInvalidDecl();
469    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
470    return CDecl;
471  }
472
473  if (!CategoryName && IDecl->getImplementation()) {
474    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
475    Diag(IDecl->getImplementation()->getLocation(),
476          diag::note_implementation_declared);
477  }
478
479  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
480                                   ClassLoc, CategoryLoc, CategoryName);
481  // FIXME: PushOnScopeChains?
482  CurContext->addDecl(CDecl);
483
484  CDecl->setClassInterface(IDecl);
485  // Insert class extension to the list of class's categories.
486  if (!CategoryName)
487    CDecl->insertNextClassCategory();
488
489  // If the interface is deprecated, warn about it.
490  (void)DiagnoseUseOfDecl(IDecl, ClassLoc);
491
492  if (CategoryName) {
493    /// Check for duplicate interface declaration for this category
494    ObjCCategoryDecl *CDeclChain;
495    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
496         CDeclChain = CDeclChain->getNextClassCategory()) {
497      if (CDeclChain->getIdentifier() == CategoryName) {
498        // Class extensions can be declared multiple times.
499        Diag(CategoryLoc, diag::warn_dup_category_def)
500          << ClassName << CategoryName;
501        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
502        break;
503      }
504    }
505    if (!CDeclChain)
506      CDecl->insertNextClassCategory();
507  }
508
509  if (NumProtoRefs) {
510    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
511                           ProtoLocs, Context);
512    // Protocols in the class extension belong to the class.
513    if (CDecl->IsClassExtension())
514     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
515                                            NumProtoRefs, Context);
516  }
517
518  CheckObjCDeclScope(CDecl);
519  return CDecl;
520}
521
522/// ActOnStartCategoryImplementation - Perform semantic checks on the
523/// category implementation declaration and build an ObjCCategoryImplDecl
524/// object.
525Decl *Sema::ActOnStartCategoryImplementation(
526                      SourceLocation AtCatImplLoc,
527                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
528                      IdentifierInfo *CatName, SourceLocation CatLoc) {
529  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
530  ObjCCategoryDecl *CatIDecl = 0;
531  if (IDecl) {
532    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
533    if (!CatIDecl) {
534      // Category @implementation with no corresponding @interface.
535      // Create and install one.
536      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
537                                          SourceLocation(), SourceLocation(),
538                                          CatName);
539      CatIDecl->setClassInterface(IDecl);
540      CatIDecl->insertNextClassCategory();
541    }
542  }
543
544  ObjCCategoryImplDecl *CDecl =
545    ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
546                                 IDecl);
547  /// Check that class of this category is already completely declared.
548  if (!IDecl || IDecl->isForwardDecl())
549    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
550
551  // FIXME: PushOnScopeChains?
552  CurContext->addDecl(CDecl);
553
554  /// Check that CatName, category name, is not used in another implementation.
555  if (CatIDecl) {
556    if (CatIDecl->getImplementation()) {
557      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
558        << CatName;
559      Diag(CatIDecl->getImplementation()->getLocation(),
560           diag::note_previous_definition);
561    } else {
562      CatIDecl->setImplementation(CDecl);
563      // Warn on implementating category of deprecated class under
564      // -Wdeprecated-implementations flag.
565      DiagnoseObjCImplementedDeprecations(*this,
566                                          dyn_cast<NamedDecl>(IDecl),
567                                          CDecl->getLocation(), 2);
568    }
569  }
570
571  CheckObjCDeclScope(CDecl);
572  return CDecl;
573}
574
575Decl *Sema::ActOnStartClassImplementation(
576                      SourceLocation AtClassImplLoc,
577                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
578                      IdentifierInfo *SuperClassname,
579                      SourceLocation SuperClassLoc) {
580  ObjCInterfaceDecl* IDecl = 0;
581  // Check for another declaration kind with the same name.
582  NamedDecl *PrevDecl
583    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
584                       ForRedeclaration);
585  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
586    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
587    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
588  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
589    // If this is a forward declaration of an interface, warn.
590    if (IDecl->isForwardDecl()) {
591      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
592      IDecl = 0;
593    }
594  } else {
595    // We did not find anything with the name ClassName; try to correct for
596    // typos in the class name.
597    LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName);
598    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
599        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
600      // Suggest the (potentially) correct interface name. However, put the
601      // fix-it hint itself in a separate note, since changing the name in
602      // the warning would make the fix-it change semantics.However, don't
603      // provide a code-modification hint or use the typo name for recovery,
604      // because this is just a warning. The program may actually be correct.
605      Diag(ClassLoc, diag::warn_undef_interface_suggest)
606        << ClassName << R.getLookupName();
607      Diag(IDecl->getLocation(), diag::note_previous_decl)
608        << R.getLookupName()
609        << FixItHint::CreateReplacement(ClassLoc,
610                                        R.getLookupName().getAsString());
611      IDecl = 0;
612    } else {
613      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
614    }
615  }
616
617  // Check that super class name is valid class name
618  ObjCInterfaceDecl* SDecl = 0;
619  if (SuperClassname) {
620    // Check if a different kind of symbol declared in this scope.
621    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
622                                LookupOrdinaryName);
623    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
624      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
625        << SuperClassname;
626      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
627    } else {
628      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
629      if (!SDecl)
630        Diag(SuperClassLoc, diag::err_undef_superclass)
631          << SuperClassname << ClassName;
632      else if (IDecl && IDecl->getSuperClass() != SDecl) {
633        // This implementation and its interface do not have the same
634        // super class.
635        Diag(SuperClassLoc, diag::err_conflicting_super_class)
636          << SDecl->getDeclName();
637        Diag(SDecl->getLocation(), diag::note_previous_definition);
638      }
639    }
640  }
641
642  if (!IDecl) {
643    // Legacy case of @implementation with no corresponding @interface.
644    // Build, chain & install the interface decl into the identifier.
645
646    // FIXME: Do we support attributes on the @implementation? If so we should
647    // copy them over.
648    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
649                                      ClassName, ClassLoc, false, true);
650    IDecl->setSuperClass(SDecl);
651    IDecl->setLocEnd(ClassLoc);
652
653    PushOnScopeChains(IDecl, TUScope);
654  } else {
655    // Mark the interface as being completed, even if it was just as
656    //   @class ....;
657    // declaration; the user cannot reopen it.
658    IDecl->setForwardDecl(false);
659  }
660
661  ObjCImplementationDecl* IMPDecl =
662    ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
663                                   IDecl, SDecl);
664
665  if (CheckObjCDeclScope(IMPDecl))
666    return IMPDecl;
667
668  // Check that there is no duplicate implementation of this class.
669  if (IDecl->getImplementation()) {
670    // FIXME: Don't leak everything!
671    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
672    Diag(IDecl->getImplementation()->getLocation(),
673         diag::note_previous_definition);
674  } else { // add it to the list.
675    IDecl->setImplementation(IMPDecl);
676    PushOnScopeChains(IMPDecl, TUScope);
677    // Warn on implementating deprecated class under
678    // -Wdeprecated-implementations flag.
679    DiagnoseObjCImplementedDeprecations(*this,
680                                        dyn_cast<NamedDecl>(IDecl),
681                                        IMPDecl->getLocation(), 1);
682  }
683  return IMPDecl;
684}
685
686void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
687                                    ObjCIvarDecl **ivars, unsigned numIvars,
688                                    SourceLocation RBrace) {
689  assert(ImpDecl && "missing implementation decl");
690  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
691  if (!IDecl)
692    return;
693  /// Check case of non-existing @interface decl.
694  /// (legacy objective-c @implementation decl without an @interface decl).
695  /// Add implementations's ivar to the synthesize class's ivar list.
696  if (IDecl->isImplicitInterfaceDecl()) {
697    IDecl->setLocEnd(RBrace);
698    // Add ivar's to class's DeclContext.
699    for (unsigned i = 0, e = numIvars; i != e; ++i) {
700      ivars[i]->setLexicalDeclContext(ImpDecl);
701      IDecl->makeDeclVisibleInContext(ivars[i], false);
702      ImpDecl->addDecl(ivars[i]);
703    }
704
705    return;
706  }
707  // If implementation has empty ivar list, just return.
708  if (numIvars == 0)
709    return;
710
711  assert(ivars && "missing @implementation ivars");
712  if (LangOpts.ObjCNonFragileABI2) {
713    if (ImpDecl->getSuperClass())
714      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
715    for (unsigned i = 0; i < numIvars; i++) {
716      ObjCIvarDecl* ImplIvar = ivars[i];
717      if (const ObjCIvarDecl *ClsIvar =
718            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
719        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
720        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
721        continue;
722      }
723      // Instance ivar to Implementation's DeclContext.
724      ImplIvar->setLexicalDeclContext(ImpDecl);
725      IDecl->makeDeclVisibleInContext(ImplIvar, false);
726      ImpDecl->addDecl(ImplIvar);
727    }
728    return;
729  }
730  // Check interface's Ivar list against those in the implementation.
731  // names and types must match.
732  //
733  unsigned j = 0;
734  ObjCInterfaceDecl::ivar_iterator
735    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
736  for (; numIvars > 0 && IVI != IVE; ++IVI) {
737    ObjCIvarDecl* ImplIvar = ivars[j++];
738    ObjCIvarDecl* ClsIvar = *IVI;
739    assert (ImplIvar && "missing implementation ivar");
740    assert (ClsIvar && "missing class ivar");
741
742    // First, make sure the types match.
743    if (Context.getCanonicalType(ImplIvar->getType()) !=
744        Context.getCanonicalType(ClsIvar->getType())) {
745      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
746        << ImplIvar->getIdentifier()
747        << ImplIvar->getType() << ClsIvar->getType();
748      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
749    } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
750      Expr *ImplBitWidth = ImplIvar->getBitWidth();
751      Expr *ClsBitWidth = ClsIvar->getBitWidth();
752      if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
753          ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
754        Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
755          << ImplIvar->getIdentifier();
756        Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
757      }
758    }
759    // Make sure the names are identical.
760    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
761      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
762        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
763      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
764    }
765    --numIvars;
766  }
767
768  if (numIvars > 0)
769    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
770  else if (IVI != IVE)
771    Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
772}
773
774void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
775                               bool &IncompleteImpl, unsigned DiagID) {
776  if (!IncompleteImpl) {
777    Diag(ImpLoc, diag::warn_incomplete_impl);
778    IncompleteImpl = true;
779  }
780  if (DiagID == diag::warn_unimplemented_protocol_method)
781    Diag(ImpLoc, DiagID) << method->getDeclName();
782  else
783    Diag(method->getLocation(), DiagID) << method->getDeclName();
784}
785
786/// Determines if type B can be substituted for type A.  Returns true if we can
787/// guarantee that anything that the user will do to an object of type A can
788/// also be done to an object of type B.  This is trivially true if the two
789/// types are the same, or if B is a subclass of A.  It becomes more complex
790/// in cases where protocols are involved.
791///
792/// Object types in Objective-C describe the minimum requirements for an
793/// object, rather than providing a complete description of a type.  For
794/// example, if A is a subclass of B, then B* may refer to an instance of A.
795/// The principle of substitutability means that we may use an instance of A
796/// anywhere that we may use an instance of B - it will implement all of the
797/// ivars of B and all of the methods of B.
798///
799/// This substitutability is important when type checking methods, because
800/// the implementation may have stricter type definitions than the interface.
801/// The interface specifies minimum requirements, but the implementation may
802/// have more accurate ones.  For example, a method may privately accept
803/// instances of B, but only publish that it accepts instances of A.  Any
804/// object passed to it will be type checked against B, and so will implicitly
805/// by a valid A*.  Similarly, a method may return a subclass of the class that
806/// it is declared as returning.
807///
808/// This is most important when considering subclassing.  A method in a
809/// subclass must accept any object as an argument that its superclass's
810/// implementation accepts.  It may, however, accept a more general type
811/// without breaking substitutability (i.e. you can still use the subclass
812/// anywhere that you can use the superclass, but not vice versa).  The
813/// converse requirement applies to return types: the return type for a
814/// subclass method must be a valid object of the kind that the superclass
815/// advertises, but it may be specified more accurately.  This avoids the need
816/// for explicit down-casting by callers.
817///
818/// Note: This is a stricter requirement than for assignment.
819static bool isObjCTypeSubstitutable(ASTContext &Context,
820                                    const ObjCObjectPointerType *A,
821                                    const ObjCObjectPointerType *B,
822                                    bool rejectId) {
823  // Reject a protocol-unqualified id.
824  if (rejectId && B->isObjCIdType()) return false;
825
826  // If B is a qualified id, then A must also be a qualified id and it must
827  // implement all of the protocols in B.  It may not be a qualified class.
828  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
829  // stricter definition so it is not substitutable for id<A>.
830  if (B->isObjCQualifiedIdType()) {
831    return A->isObjCQualifiedIdType() &&
832           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
833                                                     QualType(B,0),
834                                                     false);
835  }
836
837  /*
838  // id is a special type that bypasses type checking completely.  We want a
839  // warning when it is used in one place but not another.
840  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
841
842
843  // If B is a qualified id, then A must also be a qualified id (which it isn't
844  // if we've got this far)
845  if (B->isObjCQualifiedIdType()) return false;
846  */
847
848  // Now we know that A and B are (potentially-qualified) class types.  The
849  // normal rules for assignment apply.
850  return Context.canAssignObjCInterfaces(A, B);
851}
852
853static SourceRange getTypeRange(TypeSourceInfo *TSI) {
854  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
855}
856
857static void CheckMethodOverrideReturn(Sema &S,
858                                      ObjCMethodDecl *MethodImpl,
859                                      ObjCMethodDecl *MethodDecl,
860                                      bool IsProtocolMethodDecl) {
861  if (IsProtocolMethodDecl &&
862      (MethodDecl->getObjCDeclQualifier() !=
863       MethodImpl->getObjCDeclQualifier())) {
864    S.Diag(MethodImpl->getLocation(),
865           diag::warn_conflicting_ret_type_modifiers)
866        << MethodImpl->getDeclName()
867        << getTypeRange(MethodImpl->getResultTypeSourceInfo());
868    S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
869        << getTypeRange(MethodDecl->getResultTypeSourceInfo());
870  }
871
872  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
873                                       MethodDecl->getResultType()))
874    return;
875
876  unsigned DiagID = diag::warn_conflicting_ret_types;
877
878  // Mismatches between ObjC pointers go into a different warning
879  // category, and sometimes they're even completely whitelisted.
880  if (const ObjCObjectPointerType *ImplPtrTy =
881        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
882    if (const ObjCObjectPointerType *IfacePtrTy =
883          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
884      // Allow non-matching return types as long as they don't violate
885      // the principle of substitutability.  Specifically, we permit
886      // return types that are subclasses of the declared return type,
887      // or that are more-qualified versions of the declared type.
888      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
889        return;
890
891      DiagID = diag::warn_non_covariant_ret_types;
892    }
893  }
894
895  S.Diag(MethodImpl->getLocation(), DiagID)
896    << MethodImpl->getDeclName()
897    << MethodDecl->getResultType()
898    << MethodImpl->getResultType()
899    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
900  S.Diag(MethodDecl->getLocation(), diag::note_previous_definition)
901    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
902}
903
904static void CheckMethodOverrideParam(Sema &S,
905                                     ObjCMethodDecl *MethodImpl,
906                                     ObjCMethodDecl *MethodDecl,
907                                     ParmVarDecl *ImplVar,
908                                     ParmVarDecl *IfaceVar,
909                                     bool IsProtocolMethodDecl) {
910  if (IsProtocolMethodDecl &&
911      (ImplVar->getObjCDeclQualifier() !=
912       IfaceVar->getObjCDeclQualifier())) {
913    S.Diag(ImplVar->getLocation(),
914           diag::warn_conflicting_param_modifiers)
915        << getTypeRange(ImplVar->getTypeSourceInfo())
916        << MethodImpl->getDeclName();
917    S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
918        << getTypeRange(IfaceVar->getTypeSourceInfo());
919  }
920
921  QualType ImplTy = ImplVar->getType();
922  QualType IfaceTy = IfaceVar->getType();
923
924  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
925    return;
926
927  unsigned DiagID = diag::warn_conflicting_param_types;
928
929  // Mismatches between ObjC pointers go into a different warning
930  // category, and sometimes they're even completely whitelisted.
931  if (const ObjCObjectPointerType *ImplPtrTy =
932        ImplTy->getAs<ObjCObjectPointerType>()) {
933    if (const ObjCObjectPointerType *IfacePtrTy =
934          IfaceTy->getAs<ObjCObjectPointerType>()) {
935      // Allow non-matching argument types as long as they don't
936      // violate the principle of substitutability.  Specifically, the
937      // implementation must accept any objects that the superclass
938      // accepts, however it may also accept others.
939      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
940        return;
941
942      DiagID = diag::warn_non_contravariant_param_types;
943    }
944  }
945
946  S.Diag(ImplVar->getLocation(), DiagID)
947    << getTypeRange(ImplVar->getTypeSourceInfo())
948    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
949  S.Diag(IfaceVar->getLocation(), diag::note_previous_definition)
950    << getTypeRange(IfaceVar->getTypeSourceInfo());
951}
952
953
954void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
955                                       ObjCMethodDecl *MethodDecl,
956                                       bool IsProtocolMethodDecl) {
957  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
958                            IsProtocolMethodDecl);
959
960  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
961       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
962       IM != EM; ++IM, ++IF)
963    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
964                             IsProtocolMethodDecl);
965
966  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
967    Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
968    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
969  }
970}
971
972/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
973/// improve the efficiency of selector lookups and type checking by associating
974/// with each protocol / interface / category the flattened instance tables. If
975/// we used an immutable set to keep the table then it wouldn't add significant
976/// memory cost and it would be handy for lookups.
977
978/// CheckProtocolMethodDefs - This routine checks unimplemented methods
979/// Declared in protocol, and those referenced by it.
980void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
981                                   ObjCProtocolDecl *PDecl,
982                                   bool& IncompleteImpl,
983                                   const llvm::DenseSet<Selector> &InsMap,
984                                   const llvm::DenseSet<Selector> &ClsMap,
985                                   ObjCContainerDecl *CDecl) {
986  ObjCInterfaceDecl *IDecl;
987  if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
988    IDecl = C->getClassInterface();
989  else
990    IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
991  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
992
993  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
994  ObjCInterfaceDecl *NSIDecl = 0;
995  if (getLangOptions().NeXTRuntime) {
996    // check to see if class implements forwardInvocation method and objects
997    // of this class are derived from 'NSProxy' so that to forward requests
998    // from one object to another.
999    // Under such conditions, which means that every method possible is
1000    // implemented in the class, we should not issue "Method definition not
1001    // found" warnings.
1002    // FIXME: Use a general GetUnarySelector method for this.
1003    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1004    Selector fISelector = Context.Selectors.getSelector(1, &II);
1005    if (InsMap.count(fISelector))
1006      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1007      // need be implemented in the implementation.
1008      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1009  }
1010
1011  // If a method lookup fails locally we still need to look and see if
1012  // the method was implemented by a base class or an inherited
1013  // protocol. This lookup is slow, but occurs rarely in correct code
1014  // and otherwise would terminate in a warning.
1015
1016  // check unimplemented instance methods.
1017  if (!NSIDecl)
1018    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1019         E = PDecl->instmeth_end(); I != E; ++I) {
1020      ObjCMethodDecl *method = *I;
1021      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1022          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1023          (!Super ||
1024           !Super->lookupInstanceMethod(method->getSelector()))) {
1025            // Ugly, but necessary. Method declared in protcol might have
1026            // have been synthesized due to a property declared in the class which
1027            // uses the protocol.
1028            ObjCMethodDecl *MethodInClass =
1029            IDecl->lookupInstanceMethod(method->getSelector());
1030            if (!MethodInClass || !MethodInClass->isSynthesized()) {
1031              unsigned DIAG = diag::warn_unimplemented_protocol_method;
1032              if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1033                      != Diagnostic::Ignored) {
1034                WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1035                Diag(method->getLocation(), diag::note_method_declared_at);
1036                Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1037                  << PDecl->getDeclName();
1038              }
1039            }
1040          }
1041    }
1042  // check unimplemented class methods
1043  for (ObjCProtocolDecl::classmeth_iterator
1044         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1045       I != E; ++I) {
1046    ObjCMethodDecl *method = *I;
1047    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1048        !ClsMap.count(method->getSelector()) &&
1049        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1050      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1051      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) {
1052        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1053        Diag(method->getLocation(), diag::note_method_declared_at);
1054        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1055          PDecl->getDeclName();
1056      }
1057    }
1058  }
1059  // Check on this protocols's referenced protocols, recursively.
1060  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1061       E = PDecl->protocol_end(); PI != E; ++PI)
1062    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
1063}
1064
1065/// MatchAllMethodDeclarations - Check methods declaraed in interface or
1066/// or protocol against those declared in their implementations.
1067///
1068void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
1069                                      const llvm::DenseSet<Selector> &ClsMap,
1070                                      llvm::DenseSet<Selector> &InsMapSeen,
1071                                      llvm::DenseSet<Selector> &ClsMapSeen,
1072                                      ObjCImplDecl* IMPDecl,
1073                                      ObjCContainerDecl* CDecl,
1074                                      bool &IncompleteImpl,
1075                                      bool ImmediateClass) {
1076  // Check and see if instance methods in class interface have been
1077  // implemented in the implementation class. If so, their types match.
1078  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1079       E = CDecl->instmeth_end(); I != E; ++I) {
1080    if (InsMapSeen.count((*I)->getSelector()))
1081        continue;
1082    InsMapSeen.insert((*I)->getSelector());
1083    if (!(*I)->isSynthesized() &&
1084        !InsMap.count((*I)->getSelector())) {
1085      if (ImmediateClass)
1086        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1087                            diag::note_undef_method_impl);
1088      continue;
1089    } else {
1090      ObjCMethodDecl *ImpMethodDecl =
1091      IMPDecl->getInstanceMethod((*I)->getSelector());
1092      ObjCMethodDecl *MethodDecl =
1093      CDecl->getInstanceMethod((*I)->getSelector());
1094      assert(MethodDecl &&
1095             "MethodDecl is null in ImplMethodsVsClassMethods");
1096      // ImpMethodDecl may be null as in a @dynamic property.
1097      if (ImpMethodDecl)
1098        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1099                                    isa<ObjCProtocolDecl>(CDecl));
1100    }
1101  }
1102
1103  // Check and see if class methods in class interface have been
1104  // implemented in the implementation class. If so, their types match.
1105   for (ObjCInterfaceDecl::classmeth_iterator
1106       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1107     if (ClsMapSeen.count((*I)->getSelector()))
1108       continue;
1109     ClsMapSeen.insert((*I)->getSelector());
1110    if (!ClsMap.count((*I)->getSelector())) {
1111      if (ImmediateClass)
1112        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1113                            diag::note_undef_method_impl);
1114    } else {
1115      ObjCMethodDecl *ImpMethodDecl =
1116        IMPDecl->getClassMethod((*I)->getSelector());
1117      ObjCMethodDecl *MethodDecl =
1118        CDecl->getClassMethod((*I)->getSelector());
1119      WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1120                                  isa<ObjCProtocolDecl>(CDecl));
1121    }
1122  }
1123
1124  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1125    // Also methods in class extensions need be looked at next.
1126    for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1127         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1128      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1129                                 IMPDecl,
1130                                 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1131                                 IncompleteImpl, false);
1132
1133    // Check for any implementation of a methods declared in protocol.
1134    for (ObjCInterfaceDecl::all_protocol_iterator
1135          PI = I->all_referenced_protocol_begin(),
1136          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1137      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1138                                 IMPDecl,
1139                                 (*PI), IncompleteImpl, false);
1140    if (I->getSuperClass())
1141      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1142                                 IMPDecl,
1143                                 I->getSuperClass(), IncompleteImpl, false);
1144  }
1145}
1146
1147void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1148                                     ObjCContainerDecl* CDecl,
1149                                     bool IncompleteImpl) {
1150  llvm::DenseSet<Selector> InsMap;
1151  // Check and see if instance methods in class interface have been
1152  // implemented in the implementation class.
1153  for (ObjCImplementationDecl::instmeth_iterator
1154         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1155    InsMap.insert((*I)->getSelector());
1156
1157  // Check and see if properties declared in the interface have either 1)
1158  // an implementation or 2) there is a @synthesize/@dynamic implementation
1159  // of the property in the @implementation.
1160  if (isa<ObjCInterfaceDecl>(CDecl) &&
1161        !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
1162    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1163
1164  llvm::DenseSet<Selector> ClsMap;
1165  for (ObjCImplementationDecl::classmeth_iterator
1166       I = IMPDecl->classmeth_begin(),
1167       E = IMPDecl->classmeth_end(); I != E; ++I)
1168    ClsMap.insert((*I)->getSelector());
1169
1170  // Check for type conflict of methods declared in a class/protocol and
1171  // its implementation; if any.
1172  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1173  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1174                             IMPDecl, CDecl,
1175                             IncompleteImpl, true);
1176
1177  // Check the protocol list for unimplemented methods in the @implementation
1178  // class.
1179  // Check and see if class methods in class interface have been
1180  // implemented in the implementation class.
1181
1182  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1183    for (ObjCInterfaceDecl::all_protocol_iterator
1184          PI = I->all_referenced_protocol_begin(),
1185          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1186      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1187                              InsMap, ClsMap, I);
1188    // Check class extensions (unnamed categories)
1189    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1190         Categories; Categories = Categories->getNextClassExtension())
1191      ImplMethodsVsClassMethods(S, IMPDecl,
1192                                const_cast<ObjCCategoryDecl*>(Categories),
1193                                IncompleteImpl);
1194  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1195    // For extended class, unimplemented methods in its protocols will
1196    // be reported in the primary class.
1197    if (!C->IsClassExtension()) {
1198      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1199           E = C->protocol_end(); PI != E; ++PI)
1200        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1201                                InsMap, ClsMap, CDecl);
1202      // Report unimplemented properties in the category as well.
1203      // When reporting on missing setter/getters, do not report when
1204      // setter/getter is implemented in category's primary class
1205      // implementation.
1206      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1207        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1208          for (ObjCImplementationDecl::instmeth_iterator
1209               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1210            InsMap.insert((*I)->getSelector());
1211        }
1212      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1213    }
1214  } else
1215    assert(false && "invalid ObjCContainerDecl type.");
1216}
1217
1218/// ActOnForwardClassDeclaration -
1219Decl *
1220Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1221                                   IdentifierInfo **IdentList,
1222                                   SourceLocation *IdentLocs,
1223                                   unsigned NumElts) {
1224  llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
1225
1226  for (unsigned i = 0; i != NumElts; ++i) {
1227    // Check for another declaration kind with the same name.
1228    NamedDecl *PrevDecl
1229      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1230                         LookupOrdinaryName, ForRedeclaration);
1231    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1232      // Maybe we will complain about the shadowed template parameter.
1233      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1234      // Just pretend that we didn't see the previous declaration.
1235      PrevDecl = 0;
1236    }
1237
1238    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1239      // GCC apparently allows the following idiom:
1240      //
1241      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1242      // @class XCElementToggler;
1243      //
1244      // FIXME: Make an extension?
1245      TypedefDecl *TDD = dyn_cast<TypedefDecl>(PrevDecl);
1246      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1247        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1248        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1249      } else {
1250        // a forward class declaration matching a typedef name of a class refers
1251        // to the underlying class.
1252        if (const ObjCObjectType *OI =
1253              TDD->getUnderlyingType()->getAs<ObjCObjectType>())
1254          PrevDecl = OI->getInterface();
1255      }
1256    }
1257    ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1258    if (!IDecl) {  // Not already seen?  Make a forward decl.
1259      IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1260                                        IdentList[i], IdentLocs[i], true);
1261
1262      // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
1263      // the current DeclContext.  This prevents clients that walk DeclContext
1264      // from seeing the imaginary ObjCInterfaceDecl until it is actually
1265      // declared later (if at all).  We also take care to explicitly make
1266      // sure this declaration is visible for name lookup.
1267      PushOnScopeChains(IDecl, TUScope, false);
1268      CurContext->makeDeclVisibleInContext(IDecl, true);
1269    }
1270
1271    Interfaces.push_back(IDecl);
1272  }
1273
1274  assert(Interfaces.size() == NumElts);
1275  ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
1276                                               Interfaces.data(), IdentLocs,
1277                                               Interfaces.size());
1278  CurContext->addDecl(CDecl);
1279  CheckObjCDeclScope(CDecl);
1280  return CDecl;
1281}
1282
1283
1284/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1285/// returns true, or false, accordingly.
1286/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1287bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
1288                                      const ObjCMethodDecl *PrevMethod,
1289                                      bool matchBasedOnSizeAndAlignment,
1290                                      bool matchBasedOnStrictEqulity) {
1291  QualType T1 = Context.getCanonicalType(Method->getResultType());
1292  QualType T2 = Context.getCanonicalType(PrevMethod->getResultType());
1293
1294  if (T1 != T2) {
1295    // The result types are different.
1296    if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
1297      return false;
1298    // Incomplete types don't have a size and alignment.
1299    if (T1->isIncompleteType() || T2->isIncompleteType())
1300      return false;
1301    // Check is based on size and alignment.
1302    if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
1303      return false;
1304  }
1305
1306  ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1307       E = Method->param_end();
1308  ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin();
1309
1310  for (; ParamI != E; ++ParamI, ++PrevI) {
1311    assert(PrevI != PrevMethod->param_end() && "Param mismatch");
1312    T1 = Context.getCanonicalType((*ParamI)->getType());
1313    T2 = Context.getCanonicalType((*PrevI)->getType());
1314    if (T1 != T2) {
1315      // The result types are different.
1316      if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
1317        return false;
1318      // Incomplete types don't have a size and alignment.
1319      if (T1->isIncompleteType() || T2->isIncompleteType())
1320        return false;
1321      // Check is based on size and alignment.
1322      if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
1323        return false;
1324    }
1325  }
1326  return true;
1327}
1328
1329/// \brief Read the contents of the method pool for a given selector from
1330/// external storage.
1331///
1332/// This routine should only be called once, when the method pool has no entry
1333/// for this selector.
1334Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
1335  assert(ExternalSource && "We need an external AST source");
1336  assert(MethodPool.find(Sel) == MethodPool.end() &&
1337         "Selector data already loaded into the method pool");
1338
1339  // Read the method list from the external source.
1340  GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
1341
1342  return MethodPool.insert(std::make_pair(Sel, Methods)).first;
1343}
1344
1345void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
1346                                 bool instance) {
1347  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
1348  if (Pos == MethodPool.end()) {
1349    if (ExternalSource)
1350      Pos = ReadMethodPool(Method->getSelector());
1351    else
1352      Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
1353                                             GlobalMethods())).first;
1354  }
1355  Method->setDefined(impl);
1356  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
1357  if (Entry.Method == 0) {
1358    // Haven't seen a method with this selector name yet - add it.
1359    Entry.Method = Method;
1360    Entry.Next = 0;
1361    return;
1362  }
1363
1364  // We've seen a method with this name, see if we have already seen this type
1365  // signature.
1366  for (ObjCMethodList *List = &Entry; List; List = List->Next)
1367    if (MatchTwoMethodDeclarations(Method, List->Method)) {
1368      ObjCMethodDecl *PrevObjCMethod = List->Method;
1369      PrevObjCMethod->setDefined(impl);
1370      // If a method is deprecated, push it in the global pool.
1371      // This is used for better diagnostics.
1372      if (Method->getAttr<DeprecatedAttr>()) {
1373        if (!PrevObjCMethod->getAttr<DeprecatedAttr>())
1374          List->Method = Method;
1375      }
1376      // If new method is unavailable, push it into global pool
1377      // unless previous one is deprecated.
1378      if (Method->getAttr<UnavailableAttr>()) {
1379        if (!PrevObjCMethod->getAttr<UnavailableAttr>() &&
1380            !PrevObjCMethod->getAttr<DeprecatedAttr>())
1381          List->Method = Method;
1382      }
1383      return;
1384    }
1385
1386  // We have a new signature for an existing method - add it.
1387  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
1388  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
1389  Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
1390}
1391
1392ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
1393                                               bool receiverIdOrClass,
1394                                               bool warn, bool instance) {
1395  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1396  if (Pos == MethodPool.end()) {
1397    if (ExternalSource)
1398      Pos = ReadMethodPool(Sel);
1399    else
1400      return 0;
1401  }
1402
1403  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
1404
1405  bool strictSelectorMatch = receiverIdOrClass && warn &&
1406    (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
1407                              R.getBegin()) !=
1408      Diagnostic::Ignored);
1409  if (warn && MethList.Method && MethList.Next) {
1410    bool issueWarning = false;
1411    if (strictSelectorMatch)
1412      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1413        // This checks if the methods differ in type mismatch.
1414        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, false, true))
1415          issueWarning = true;
1416      }
1417
1418    if (!issueWarning)
1419      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1420        // This checks if the methods differ by size & alignment.
1421        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true))
1422          issueWarning = true;
1423      }
1424
1425    if (issueWarning) {
1426      if (strictSelectorMatch)
1427        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
1428      else
1429        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
1430      Diag(MethList.Method->getLocStart(), diag::note_using)
1431        << MethList.Method->getSourceRange();
1432      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
1433        Diag(Next->Method->getLocStart(), diag::note_also_found)
1434          << Next->Method->getSourceRange();
1435    }
1436  }
1437  return MethList.Method;
1438}
1439
1440ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
1441  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1442  if (Pos == MethodPool.end())
1443    return 0;
1444
1445  GlobalMethods &Methods = Pos->second;
1446
1447  if (Methods.first.Method && Methods.first.Method->isDefined())
1448    return Methods.first.Method;
1449  if (Methods.second.Method && Methods.second.Method->isDefined())
1450    return Methods.second.Method;
1451  return 0;
1452}
1453
1454/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
1455/// identical selector names in current and its super classes and issues
1456/// a warning if any of their argument types are incompatible.
1457void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
1458                                             ObjCMethodDecl *Method,
1459                                             bool IsInstance)  {
1460  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
1461  if (ID == 0) return;
1462
1463  while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
1464    ObjCMethodDecl *SuperMethodDecl =
1465        SD->lookupMethod(Method->getSelector(), IsInstance);
1466    if (SuperMethodDecl == 0) {
1467      ID = SD;
1468      continue;
1469    }
1470    ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1471      E = Method->param_end();
1472    ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
1473    for (; ParamI != E; ++ParamI, ++PrevI) {
1474      // Number of parameters are the same and is guaranteed by selector match.
1475      assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
1476      QualType T1 = Context.getCanonicalType((*ParamI)->getType());
1477      QualType T2 = Context.getCanonicalType((*PrevI)->getType());
1478      // If type of arguement of method in this class does not match its
1479      // respective argument type in the super class method, issue warning;
1480      if (!Context.typesAreCompatible(T1, T2)) {
1481        Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
1482          << T1 << T2;
1483        Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
1484        return;
1485      }
1486    }
1487    ID = SD;
1488  }
1489}
1490
1491/// DiagnoseDuplicateIvars -
1492/// Check for duplicate ivars in the entire class at the start of
1493/// @implementation. This becomes necesssary because class extension can
1494/// add ivars to a class in random order which will not be known until
1495/// class's @implementation is seen.
1496void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
1497                                  ObjCInterfaceDecl *SID) {
1498  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
1499       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
1500    ObjCIvarDecl* Ivar = (*IVI);
1501    if (Ivar->isInvalidDecl())
1502      continue;
1503    if (IdentifierInfo *II = Ivar->getIdentifier()) {
1504      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
1505      if (prevIvar) {
1506        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
1507        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
1508        Ivar->setInvalidDecl();
1509      }
1510    }
1511  }
1512}
1513
1514// Note: For class/category implemenations, allMethods/allProperties is
1515// always null.
1516void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
1517                      Decl *ClassDecl,
1518                      Decl **allMethods, unsigned allNum,
1519                      Decl **allProperties, unsigned pNum,
1520                      DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
1521  // FIXME: If we don't have a ClassDecl, we have an error. We should consider
1522  // always passing in a decl. If the decl has an error, isInvalidDecl()
1523  // should be true.
1524  if (!ClassDecl)
1525    return;
1526
1527  bool isInterfaceDeclKind =
1528        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
1529         || isa<ObjCProtocolDecl>(ClassDecl);
1530  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
1531
1532  if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
1533    // FIXME: This is wrong.  We shouldn't be pretending that there is
1534    //  an '@end' in the declaration.
1535    SourceLocation L = ClassDecl->getLocation();
1536    AtEnd.setBegin(L);
1537    AtEnd.setEnd(L);
1538    Diag(L, diag::warn_missing_atend);
1539  }
1540
1541  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
1542  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
1543  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
1544
1545  for (unsigned i = 0; i < allNum; i++ ) {
1546    ObjCMethodDecl *Method =
1547      cast_or_null<ObjCMethodDecl>(allMethods[i]);
1548
1549    if (!Method) continue;  // Already issued a diagnostic.
1550    if (Method->isInstanceMethod()) {
1551      /// Check for instance method of the same name with incompatible types
1552      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
1553      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
1554                              : false;
1555      if ((isInterfaceDeclKind && PrevMethod && !match)
1556          || (checkIdenticalMethods && match)) {
1557          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1558            << Method->getDeclName();
1559          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1560        Method->setInvalidDecl();
1561      } else {
1562        InsMap[Method->getSelector()] = Method;
1563        /// The following allows us to typecheck messages to "id".
1564        AddInstanceMethodToGlobalPool(Method);
1565        // verify that the instance method conforms to the same definition of
1566        // parent methods if it shadows one.
1567        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
1568      }
1569    } else {
1570      /// Check for class method of the same name with incompatible types
1571      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
1572      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
1573                              : false;
1574      if ((isInterfaceDeclKind && PrevMethod && !match)
1575          || (checkIdenticalMethods && match)) {
1576        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1577          << Method->getDeclName();
1578        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1579        Method->setInvalidDecl();
1580      } else {
1581        ClsMap[Method->getSelector()] = Method;
1582        /// The following allows us to typecheck messages to "Class".
1583        AddFactoryMethodToGlobalPool(Method);
1584        // verify that the class method conforms to the same definition of
1585        // parent methods if it shadows one.
1586        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
1587      }
1588    }
1589  }
1590  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
1591    // Compares properties declared in this class to those of its
1592    // super class.
1593    ComparePropertiesInBaseAndSuper(I);
1594    CompareProperties(I, I);
1595  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
1596    // Categories are used to extend the class by declaring new methods.
1597    // By the same token, they are also used to add new properties. No
1598    // need to compare the added property to those in the class.
1599
1600    // Compare protocol properties with those in category
1601    CompareProperties(C, C);
1602    if (C->IsClassExtension()) {
1603      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
1604      DiagnoseClassExtensionDupMethods(C, CCPrimary);
1605    }
1606  }
1607  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
1608    if (CDecl->getIdentifier())
1609      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
1610      // user-defined setter/getter. It also synthesizes setter/getter methods
1611      // and adds them to the DeclContext and global method pools.
1612      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
1613                                            E = CDecl->prop_end();
1614           I != E; ++I)
1615        ProcessPropertyDecl(*I, CDecl);
1616    CDecl->setAtEndRange(AtEnd);
1617  }
1618  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
1619    IC->setAtEndRange(AtEnd);
1620    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
1621      // Any property declared in a class extension might have user
1622      // declared setter or getter in current class extension or one
1623      // of the other class extensions. Mark them as synthesized as
1624      // property will be synthesized when property with same name is
1625      // seen in the @implementation.
1626      for (const ObjCCategoryDecl *ClsExtDecl =
1627           IDecl->getFirstClassExtension();
1628           ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
1629        for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
1630             E = ClsExtDecl->prop_end(); I != E; ++I) {
1631          ObjCPropertyDecl *Property = (*I);
1632          // Skip over properties declared @dynamic
1633          if (const ObjCPropertyImplDecl *PIDecl
1634              = IC->FindPropertyImplDecl(Property->getIdentifier()))
1635            if (PIDecl->getPropertyImplementation()
1636                  == ObjCPropertyImplDecl::Dynamic)
1637              continue;
1638
1639          for (const ObjCCategoryDecl *CExtDecl =
1640               IDecl->getFirstClassExtension();
1641               CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
1642            if (ObjCMethodDecl *GetterMethod =
1643                CExtDecl->getInstanceMethod(Property->getGetterName()))
1644              GetterMethod->setSynthesized(true);
1645            if (!Property->isReadOnly())
1646              if (ObjCMethodDecl *SetterMethod =
1647                  CExtDecl->getInstanceMethod(Property->getSetterName()))
1648                SetterMethod->setSynthesized(true);
1649          }
1650        }
1651      }
1652
1653      if (LangOpts.ObjCDefaultSynthProperties &&
1654          LangOpts.ObjCNonFragileABI2)
1655        DefaultSynthesizeProperties(S, IC, IDecl);
1656      ImplMethodsVsClassMethods(S, IC, IDecl);
1657      AtomicPropertySetterGetterRules(IC, IDecl);
1658
1659      if (LangOpts.ObjCNonFragileABI2)
1660        while (IDecl->getSuperClass()) {
1661          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
1662          IDecl = IDecl->getSuperClass();
1663        }
1664    }
1665    SetIvarInitializers(IC);
1666  } else if (ObjCCategoryImplDecl* CatImplClass =
1667                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
1668    CatImplClass->setAtEndRange(AtEnd);
1669
1670    // Find category interface decl and then check that all methods declared
1671    // in this interface are implemented in the category @implementation.
1672    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
1673      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
1674           Categories; Categories = Categories->getNextClassCategory()) {
1675        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
1676          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
1677          break;
1678        }
1679      }
1680    }
1681  }
1682  if (isInterfaceDeclKind) {
1683    // Reject invalid vardecls.
1684    for (unsigned i = 0; i != tuvNum; i++) {
1685      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
1686      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
1687        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
1688          if (!VDecl->hasExternalStorage())
1689            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
1690        }
1691    }
1692  }
1693}
1694
1695
1696/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
1697/// objective-c's type qualifier from the parser version of the same info.
1698static Decl::ObjCDeclQualifier
1699CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
1700  Decl::ObjCDeclQualifier ret = Decl::OBJC_TQ_None;
1701  if (PQTVal & ObjCDeclSpec::DQ_In)
1702    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_In);
1703  if (PQTVal & ObjCDeclSpec::DQ_Inout)
1704    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Inout);
1705  if (PQTVal & ObjCDeclSpec::DQ_Out)
1706    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Out);
1707  if (PQTVal & ObjCDeclSpec::DQ_Bycopy)
1708    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Bycopy);
1709  if (PQTVal & ObjCDeclSpec::DQ_Byref)
1710    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Byref);
1711  if (PQTVal & ObjCDeclSpec::DQ_Oneway)
1712    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Oneway);
1713
1714  return ret;
1715}
1716
1717static inline
1718bool containsInvalidMethodImplAttribute(const AttrVec &A) {
1719  // The 'ibaction' attribute is allowed on method definitions because of
1720  // how the IBAction macro is used on both method declarations and definitions.
1721  // If the method definitions contains any other attributes, return true.
1722  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
1723    if ((*i)->getKind() != attr::IBAction)
1724      return true;
1725  return false;
1726}
1727
1728Decl *Sema::ActOnMethodDeclaration(
1729    Scope *S,
1730    SourceLocation MethodLoc, SourceLocation EndLoc,
1731    tok::TokenKind MethodType, Decl *ClassDecl,
1732    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
1733    Selector Sel,
1734    // optional arguments. The number of types/arguments is obtained
1735    // from the Sel.getNumArgs().
1736    ObjCArgInfo *ArgInfo,
1737    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
1738    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
1739    bool isVariadic) {
1740  // Make sure we can establish a context for the method.
1741  if (!ClassDecl) {
1742    Diag(MethodLoc, diag::error_missing_method_context);
1743    return 0;
1744  }
1745  QualType resultDeclType;
1746
1747  TypeSourceInfo *ResultTInfo = 0;
1748  if (ReturnType) {
1749    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
1750
1751    // Methods cannot return interface types. All ObjC objects are
1752    // passed by reference.
1753    if (resultDeclType->isObjCObjectType()) {
1754      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
1755        << 0 << resultDeclType;
1756      return 0;
1757    }
1758  } else // get the type for "id".
1759    resultDeclType = Context.getObjCIdType();
1760
1761  ObjCMethodDecl* ObjCMethod =
1762    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
1763                           ResultTInfo,
1764                           cast<DeclContext>(ClassDecl),
1765                           MethodType == tok::minus, isVariadic,
1766                           false, false,
1767                           MethodDeclKind == tok::objc_optional ?
1768                           ObjCMethodDecl::Optional :
1769                           ObjCMethodDecl::Required);
1770
1771  llvm::SmallVector<ParmVarDecl*, 16> Params;
1772
1773  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
1774    QualType ArgType;
1775    TypeSourceInfo *DI;
1776
1777    if (ArgInfo[i].Type == 0) {
1778      ArgType = Context.getObjCIdType();
1779      DI = 0;
1780    } else {
1781      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
1782      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
1783      ArgType = adjustParameterType(ArgType);
1784    }
1785
1786    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
1787                   LookupOrdinaryName, ForRedeclaration);
1788    LookupName(R, S);
1789    if (R.isSingleResult()) {
1790      NamedDecl *PrevDecl = R.getFoundDecl();
1791      if (S->isDeclScope(PrevDecl)) {
1792        // FIXME. This should be an error; but will break projects.
1793        Diag(ArgInfo[i].NameLoc, diag::warn_method_param_redefinition)
1794          << ArgInfo[i].Name;
1795        Diag(PrevDecl->getLocation(),
1796             diag::note_previous_declaration);
1797      }
1798    }
1799
1800    ParmVarDecl* Param
1801      = ParmVarDecl::Create(Context, ObjCMethod, ArgInfo[i].NameLoc,
1802                            ArgInfo[i].Name, ArgType, DI,
1803                            SC_None, SC_None, 0);
1804
1805    if (ArgType->isObjCObjectType()) {
1806      Diag(ArgInfo[i].NameLoc,
1807           diag::err_object_cannot_be_passed_returned_by_value)
1808        << 1 << ArgType;
1809      Param->setInvalidDecl();
1810    }
1811
1812    Param->setObjCDeclQualifier(
1813      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
1814
1815    // Apply the attributes to the parameter.
1816    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
1817
1818    S->AddDecl(Param);
1819    IdResolver.AddDecl(Param);
1820
1821    Params.push_back(Param);
1822  }
1823
1824  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
1825    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
1826    QualType ArgType = Param->getType();
1827    if (ArgType.isNull())
1828      ArgType = Context.getObjCIdType();
1829    else
1830      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
1831      ArgType = adjustParameterType(ArgType);
1832    if (ArgType->isObjCObjectType()) {
1833      Diag(Param->getLocation(),
1834           diag::err_object_cannot_be_passed_returned_by_value)
1835      << 1 << ArgType;
1836      Param->setInvalidDecl();
1837    }
1838    Param->setDeclContext(ObjCMethod);
1839
1840    Params.push_back(Param);
1841  }
1842
1843  ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
1844                              Sel.getNumArgs());
1845  ObjCMethod->setObjCDeclQualifier(
1846    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
1847  const ObjCMethodDecl *PrevMethod = 0;
1848
1849  if (AttrList)
1850    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
1851
1852  const ObjCMethodDecl *InterfaceMD = 0;
1853
1854  // Add the method now.
1855  if (ObjCImplementationDecl *ImpDecl =
1856        dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
1857    if (MethodType == tok::minus) {
1858      PrevMethod = ImpDecl->getInstanceMethod(Sel);
1859      ImpDecl->addInstanceMethod(ObjCMethod);
1860    } else {
1861      PrevMethod = ImpDecl->getClassMethod(Sel);
1862      ImpDecl->addClassMethod(ObjCMethod);
1863    }
1864    InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
1865                                                   MethodType == tok::minus);
1866    if (ObjCMethod->hasAttrs() &&
1867        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
1868      Diag(EndLoc, diag::warn_attribute_method_def);
1869  } else if (ObjCCategoryImplDecl *CatImpDecl =
1870             dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
1871    if (MethodType == tok::minus) {
1872      PrevMethod = CatImpDecl->getInstanceMethod(Sel);
1873      CatImpDecl->addInstanceMethod(ObjCMethod);
1874    } else {
1875      PrevMethod = CatImpDecl->getClassMethod(Sel);
1876      CatImpDecl->addClassMethod(ObjCMethod);
1877    }
1878    if (ObjCMethod->hasAttrs() &&
1879        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
1880      Diag(EndLoc, diag::warn_attribute_method_def);
1881  } else {
1882    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
1883  }
1884  if (PrevMethod) {
1885    // You can never have two method definitions with the same name.
1886    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
1887      << ObjCMethod->getDeclName();
1888    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1889  }
1890
1891  // If the interface declared this method, and it was deprecated there,
1892  // mark it deprecated here.
1893  if (InterfaceMD)
1894   if (Attr *DA = InterfaceMD->getAttr<DeprecatedAttr>()) {
1895    StringLiteral *SE = StringLiteral::CreateEmpty(Context, 1);
1896    ObjCMethod->addAttr(::new (Context)
1897                        DeprecatedAttr(DA->getLocation(),
1898                                       Context,
1899                                       SE->getString()));
1900   }
1901
1902  return ObjCMethod;
1903}
1904
1905bool Sema::CheckObjCDeclScope(Decl *D) {
1906  if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
1907    return false;
1908
1909  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
1910  D->setInvalidDecl();
1911
1912  return true;
1913}
1914
1915/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1916/// instance variables of ClassName into Decls.
1917void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
1918                     IdentifierInfo *ClassName,
1919                     llvm::SmallVectorImpl<Decl*> &Decls) {
1920  // Check that ClassName is a valid class
1921  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
1922  if (!Class) {
1923    Diag(DeclStart, diag::err_undef_interface) << ClassName;
1924    return;
1925  }
1926  if (LangOpts.ObjCNonFragileABI) {
1927    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
1928    return;
1929  }
1930
1931  // Collect the instance variables
1932  llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
1933  Context.DeepCollectObjCIvars(Class, true, Ivars);
1934  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1935  for (unsigned i = 0; i < Ivars.size(); i++) {
1936    FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
1937    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
1938    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, ID->getLocation(),
1939                                           ID->getIdentifier(), ID->getType(),
1940                                           ID->getBitWidth());
1941    Decls.push_back(FD);
1942  }
1943
1944  // Introduce all of these fields into the appropriate scope.
1945  for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin();
1946       D != Decls.end(); ++D) {
1947    FieldDecl *FD = cast<FieldDecl>(*D);
1948    if (getLangOptions().CPlusPlus)
1949      PushOnScopeChains(cast<FieldDecl>(FD), S);
1950    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
1951      Record->addDecl(FD);
1952  }
1953}
1954
1955/// \brief Build a type-check a new Objective-C exception variable declaration.
1956VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo,
1957                                      QualType T,
1958                                      IdentifierInfo *Name,
1959                                      SourceLocation NameLoc,
1960                                      bool Invalid) {
1961  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
1962  // duration shall not be qualified by an address-space qualifier."
1963  // Since all parameters have automatic store duration, they can not have
1964  // an address space.
1965  if (T.getAddressSpace() != 0) {
1966    Diag(NameLoc, diag::err_arg_with_address_space);
1967    Invalid = true;
1968  }
1969
1970  // An @catch parameter must be an unqualified object pointer type;
1971  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
1972  if (Invalid) {
1973    // Don't do any further checking.
1974  } else if (T->isDependentType()) {
1975    // Okay: we don't know what this type will instantiate to.
1976  } else if (!T->isObjCObjectPointerType()) {
1977    Invalid = true;
1978    Diag(NameLoc ,diag::err_catch_param_not_objc_type);
1979  } else if (T->isObjCQualifiedIdType()) {
1980    Invalid = true;
1981    Diag(NameLoc, diag::err_illegal_qualifiers_on_catch_parm);
1982  }
1983
1984  VarDecl *New = VarDecl::Create(Context, CurContext, NameLoc, Name, T, TInfo,
1985                                 SC_None, SC_None);
1986  New->setExceptionVariable(true);
1987
1988  if (Invalid)
1989    New->setInvalidDecl();
1990  return New;
1991}
1992
1993Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
1994  const DeclSpec &DS = D.getDeclSpec();
1995
1996  // We allow the "register" storage class on exception variables because
1997  // GCC did, but we drop it completely. Any other storage class is an error.
1998  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1999    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
2000      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
2001  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2002    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
2003      << DS.getStorageClassSpec();
2004  }
2005  if (D.getDeclSpec().isThreadSpecified())
2006    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2007  D.getMutableDeclSpec().ClearStorageClassSpecs();
2008
2009  DiagnoseFunctionSpecifiers(D);
2010
2011  // Check that there are no default arguments inside the type of this
2012  // exception object (C++ only).
2013  if (getLangOptions().CPlusPlus)
2014    CheckExtraCXXDefaultArguments(D);
2015
2016  TagDecl *OwnedDecl = 0;
2017  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
2018  QualType ExceptionType = TInfo->getType();
2019
2020  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2021    // Objective-C++: Types shall not be defined in exception types.
2022    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2023      << Context.getTypeDeclType(OwnedDecl);
2024  }
2025
2026  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, D.getIdentifier(),
2027                                        D.getIdentifierLoc(),
2028                                        D.isInvalidType());
2029
2030  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2031  if (D.getCXXScopeSpec().isSet()) {
2032    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
2033      << D.getCXXScopeSpec().getRange();
2034    New->setInvalidDecl();
2035  }
2036
2037  // Add the parameter declaration into this scope.
2038  S->AddDecl(New);
2039  if (D.getIdentifier())
2040    IdResolver.AddDecl(New);
2041
2042  ProcessDeclAttributes(S, New, D);
2043
2044  if (New->hasAttr<BlocksAttr>())
2045    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2046  return New;
2047}
2048
2049/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
2050/// initialization.
2051void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
2052                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
2053  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
2054       Iv= Iv->getNextIvar()) {
2055    QualType QT = Context.getBaseElementType(Iv->getType());
2056    if (QT->isRecordType())
2057      Ivars.push_back(Iv);
2058  }
2059}
2060
2061void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
2062                                             CXXCtorInitializer ** initializers,
2063                                                 unsigned numInitializers) {
2064  if (numInitializers > 0) {
2065    NumIvarInitializers = numInitializers;
2066    CXXCtorInitializer **ivarInitializers =
2067    new (C) CXXCtorInitializer*[NumIvarInitializers];
2068    memcpy(ivarInitializers, initializers,
2069           numInitializers * sizeof(CXXCtorInitializer*));
2070    IvarInitializers = ivarInitializers;
2071  }
2072}
2073
2074void Sema::DiagnoseUseOfUnimplementedSelectors() {
2075  // Warning will be issued only when selector table is
2076  // generated (which means there is at lease one implementation
2077  // in the TU). This is to match gcc's behavior.
2078  if (ReferencedSelectors.empty() ||
2079      !Context.AnyObjCImplementation())
2080    return;
2081  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
2082        ReferencedSelectors.begin(),
2083       E = ReferencedSelectors.end(); S != E; ++S) {
2084    Selector Sel = (*S).first;
2085    if (!LookupImplementedMethodInGlobalPool(Sel))
2086      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
2087  }
2088  return;
2089}
2090