SemaDeclObjC.cpp revision 245431
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Sema/DeclSpec.h"
27#include "clang/Lex/Preprocessor.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36///   if non-null, check this as if making a call to it with the given
37///   receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40///   actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                           QualType receiverTypeIfCall) {
43  if (method->isInvalidDecl()) return true;
44
45  // This castAs is safe: methods that don't return an object
46  // pointer won't be inferred as inits and will reject an explicit
47  // objc_method_family(init).
48
49  // We ignore protocols here.  Should we?  What about Class?
50
51  const ObjCObjectType *result = method->getResultType()
52    ->castAs<ObjCObjectPointerType>()->getObjectType();
53
54  if (result->isObjCId()) {
55    return false;
56  } else if (result->isObjCClass()) {
57    // fall through: always an error
58  } else {
59    ObjCInterfaceDecl *resultClass = result->getInterface();
60    assert(resultClass && "unexpected object type!");
61
62    // It's okay for the result type to still be a forward declaration
63    // if we're checking an interface declaration.
64    if (!resultClass->hasDefinition()) {
65      if (receiverTypeIfCall.isNull() &&
66          !isa<ObjCImplementationDecl>(method->getDeclContext()))
67        return false;
68
69    // Otherwise, we try to compare class types.
70    } else {
71      // If this method was declared in a protocol, we can't check
72      // anything unless we have a receiver type that's an interface.
73      const ObjCInterfaceDecl *receiverClass = 0;
74      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75        if (receiverTypeIfCall.isNull())
76          return false;
77
78        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79          ->getInterfaceDecl();
80
81        // This can be null for calls to e.g. id<Foo>.
82        if (!receiverClass) return false;
83      } else {
84        receiverClass = method->getClassInterface();
85        assert(receiverClass && "method not associated with a class!");
86      }
87
88      // If either class is a subclass of the other, it's fine.
89      if (receiverClass->isSuperClassOf(resultClass) ||
90          resultClass->isSuperClassOf(receiverClass))
91        return false;
92    }
93  }
94
95  SourceLocation loc = method->getLocation();
96
97  // If we're in a system header, and this is not a call, just make
98  // the method unusable.
99  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100    method->addAttr(new (Context) UnavailableAttr(loc, Context,
101                "init method returns a type unrelated to its receiver type"));
102    return true;
103  }
104
105  // Otherwise, it's an error.
106  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107  method->setInvalidDecl();
108  return true;
109}
110
111void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
112                                   const ObjCMethodDecl *Overridden,
113                                   bool IsImplementation) {
114  if (Overridden->hasRelatedResultType() &&
115      !NewMethod->hasRelatedResultType()) {
116    // This can only happen when the method follows a naming convention that
117    // implies a related result type, and the original (overridden) method has
118    // a suitable return type, but the new (overriding) method does not have
119    // a suitable return type.
120    QualType ResultType = NewMethod->getResultType();
121    SourceRange ResultTypeRange;
122    if (const TypeSourceInfo *ResultTypeInfo
123                                        = NewMethod->getResultTypeSourceInfo())
124      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
125
126    // Figure out which class this method is part of, if any.
127    ObjCInterfaceDecl *CurrentClass
128      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
129    if (!CurrentClass) {
130      DeclContext *DC = NewMethod->getDeclContext();
131      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
132        CurrentClass = Cat->getClassInterface();
133      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
134        CurrentClass = Impl->getClassInterface();
135      else if (ObjCCategoryImplDecl *CatImpl
136               = dyn_cast<ObjCCategoryImplDecl>(DC))
137        CurrentClass = CatImpl->getClassInterface();
138    }
139
140    if (CurrentClass) {
141      Diag(NewMethod->getLocation(),
142           diag::warn_related_result_type_compatibility_class)
143        << Context.getObjCInterfaceType(CurrentClass)
144        << ResultType
145        << ResultTypeRange;
146    } else {
147      Diag(NewMethod->getLocation(),
148           diag::warn_related_result_type_compatibility_protocol)
149        << ResultType
150        << ResultTypeRange;
151    }
152
153    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
154      Diag(Overridden->getLocation(),
155           diag::note_related_result_type_overridden_family)
156        << Family;
157    else
158      Diag(Overridden->getLocation(),
159           diag::note_related_result_type_overridden);
160  }
161  if (getLangOpts().ObjCAutoRefCount) {
162    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
163         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
164        Diag(NewMethod->getLocation(),
165             diag::err_nsreturns_retained_attribute_mismatch) << 1;
166        Diag(Overridden->getLocation(), diag::note_previous_decl)
167        << "method";
168    }
169    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171        Diag(NewMethod->getLocation(),
172             diag::err_nsreturns_retained_attribute_mismatch) << 0;
173        Diag(Overridden->getLocation(), diag::note_previous_decl)
174        << "method";
175    }
176    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
177                                         oe = Overridden->param_end();
178    for (ObjCMethodDecl::param_iterator
179           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
180         ni != ne && oi != oe; ++ni, ++oi) {
181      const ParmVarDecl *oldDecl = (*oi);
182      ParmVarDecl *newDecl = (*ni);
183      if (newDecl->hasAttr<NSConsumedAttr>() !=
184          oldDecl->hasAttr<NSConsumedAttr>()) {
185        Diag(newDecl->getLocation(),
186             diag::err_nsconsumed_attribute_mismatch);
187        Diag(oldDecl->getLocation(), diag::note_previous_decl)
188          << "parameter";
189      }
190    }
191  }
192}
193
194/// \brief Check a method declaration for compatibility with the Objective-C
195/// ARC conventions.
196static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
197  ObjCMethodFamily family = method->getMethodFamily();
198  switch (family) {
199  case OMF_None:
200  case OMF_finalize:
201  case OMF_retain:
202  case OMF_release:
203  case OMF_autorelease:
204  case OMF_retainCount:
205  case OMF_self:
206  case OMF_performSelector:
207    return false;
208
209  case OMF_dealloc:
210    if (!S.Context.hasSameType(method->getResultType(), S.Context.VoidTy)) {
211      SourceRange ResultTypeRange;
212      if (const TypeSourceInfo *ResultTypeInfo
213          = method->getResultTypeSourceInfo())
214        ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
215      if (ResultTypeRange.isInvalid())
216        S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217          << method->getResultType()
218          << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
219      else
220        S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
221          << method->getResultType()
222          << FixItHint::CreateReplacement(ResultTypeRange, "void");
223      return true;
224    }
225    return false;
226
227  case OMF_init:
228    // If the method doesn't obey the init rules, don't bother annotating it.
229    if (S.checkInitMethod(method, QualType()))
230      return true;
231
232    method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
233                                                       S.Context));
234
235    // Don't add a second copy of this attribute, but otherwise don't
236    // let it be suppressed.
237    if (method->hasAttr<NSReturnsRetainedAttr>())
238      return false;
239    break;
240
241  case OMF_alloc:
242  case OMF_copy:
243  case OMF_mutableCopy:
244  case OMF_new:
245    if (method->hasAttr<NSReturnsRetainedAttr>() ||
246        method->hasAttr<NSReturnsNotRetainedAttr>() ||
247        method->hasAttr<NSReturnsAutoreleasedAttr>())
248      return false;
249    break;
250  }
251
252  method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
253                                                        S.Context));
254  return false;
255}
256
257static void DiagnoseObjCImplementedDeprecations(Sema &S,
258                                                NamedDecl *ND,
259                                                SourceLocation ImplLoc,
260                                                int select) {
261  if (ND && ND->isDeprecated()) {
262    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
263    if (select == 0)
264      S.Diag(ND->getLocation(), diag::note_method_declared_at)
265        << ND->getDeclName();
266    else
267      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
268  }
269}
270
271/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
272/// pool.
273void Sema::AddAnyMethodToGlobalPool(Decl *D) {
274  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
275
276  // If we don't have a valid method decl, simply return.
277  if (!MDecl)
278    return;
279  if (MDecl->isInstanceMethod())
280    AddInstanceMethodToGlobalPool(MDecl, true);
281  else
282    AddFactoryMethodToGlobalPool(MDecl, true);
283}
284
285/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
286/// has explicit ownership attribute; false otherwise.
287static bool
288HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
289  QualType T = Param->getType();
290
291  if (const PointerType *PT = T->getAs<PointerType>()) {
292    T = PT->getPointeeType();
293  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
294    T = RT->getPointeeType();
295  } else {
296    return true;
297  }
298
299  // If we have a lifetime qualifier, but it's local, we must have
300  // inferred it. So, it is implicit.
301  return !T.getLocalQualifiers().hasObjCLifetime();
302}
303
304/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
305/// and user declared, in the method definition's AST.
306void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
307  assert((getCurMethodDecl() == 0) && "Methodparsing confused");
308  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
309
310  // If we don't have a valid method decl, simply return.
311  if (!MDecl)
312    return;
313
314  // Allow all of Sema to see that we are entering a method definition.
315  PushDeclContext(FnBodyScope, MDecl);
316  PushFunctionScope();
317
318  // Create Decl objects for each parameter, entrring them in the scope for
319  // binding to their use.
320
321  // Insert the invisible arguments, self and _cmd!
322  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
323
324  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
325  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
326
327  // Introduce all of the other parameters into this scope.
328  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
329       E = MDecl->param_end(); PI != E; ++PI) {
330    ParmVarDecl *Param = (*PI);
331    if (!Param->isInvalidDecl() &&
332        RequireCompleteType(Param->getLocation(), Param->getType(),
333                            diag::err_typecheck_decl_incomplete_type))
334          Param->setInvalidDecl();
335    if (!Param->isInvalidDecl() &&
336        getLangOpts().ObjCAutoRefCount &&
337        !HasExplicitOwnershipAttr(*this, Param))
338      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
339            Param->getType();
340
341    if ((*PI)->getIdentifier())
342      PushOnScopeChains(*PI, FnBodyScope);
343  }
344
345  // In ARC, disallow definition of retain/release/autorelease/retainCount
346  if (getLangOpts().ObjCAutoRefCount) {
347    switch (MDecl->getMethodFamily()) {
348    case OMF_retain:
349    case OMF_retainCount:
350    case OMF_release:
351    case OMF_autorelease:
352      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
353        << MDecl->getSelector();
354      break;
355
356    case OMF_None:
357    case OMF_dealloc:
358    case OMF_finalize:
359    case OMF_alloc:
360    case OMF_init:
361    case OMF_mutableCopy:
362    case OMF_copy:
363    case OMF_new:
364    case OMF_self:
365    case OMF_performSelector:
366      break;
367    }
368  }
369
370  // Warn on deprecated methods under -Wdeprecated-implementations,
371  // and prepare for warning on missing super calls.
372  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
373    ObjCMethodDecl *IMD =
374      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
375
376    if (IMD)
377      DiagnoseObjCImplementedDeprecations(*this,
378                                          dyn_cast<NamedDecl>(IMD),
379                                          MDecl->getLocation(), 0);
380
381    // If this is "dealloc" or "finalize", set some bit here.
382    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
383    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
384    // Only do this if the current class actually has a superclass.
385    if (IC->getSuperClass()) {
386      ObjCMethodFamily Family = MDecl->getMethodFamily();
387      if (Family == OMF_dealloc) {
388        if (!(getLangOpts().ObjCAutoRefCount ||
389              getLangOpts().getGC() == LangOptions::GCOnly))
390          getCurFunction()->ObjCShouldCallSuper = true;
391
392      } else if (Family == OMF_finalize) {
393        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
394          getCurFunction()->ObjCShouldCallSuper = true;
395
396      } else {
397        const ObjCMethodDecl *SuperMethod =
398          IC->getSuperClass()->lookupMethod(MDecl->getSelector(),
399                                            MDecl->isInstanceMethod());
400        getCurFunction()->ObjCShouldCallSuper =
401          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
402      }
403    }
404  }
405}
406
407namespace {
408
409// Callback to only accept typo corrections that are Objective-C classes.
410// If an ObjCInterfaceDecl* is given to the constructor, then the validation
411// function will reject corrections to that class.
412class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
413 public:
414  ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
415  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
416      : CurrentIDecl(IDecl) {}
417
418  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
419    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
420    return ID && !declaresSameEntity(ID, CurrentIDecl);
421  }
422
423 private:
424  ObjCInterfaceDecl *CurrentIDecl;
425};
426
427}
428
429Decl *Sema::
430ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
431                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
432                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
433                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
434                         const SourceLocation *ProtoLocs,
435                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
436  assert(ClassName && "Missing class identifier");
437
438  // Check for another declaration kind with the same name.
439  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
440                                         LookupOrdinaryName, ForRedeclaration);
441
442  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
443    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
444    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
445  }
446
447  // Create a declaration to describe this @interface.
448  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
449  ObjCInterfaceDecl *IDecl
450    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
451                                PrevIDecl, ClassLoc);
452
453  if (PrevIDecl) {
454    // Class already seen. Was it a definition?
455    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
456      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
457        << PrevIDecl->getDeclName();
458      Diag(Def->getLocation(), diag::note_previous_definition);
459      IDecl->setInvalidDecl();
460    }
461  }
462
463  if (AttrList)
464    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
465  PushOnScopeChains(IDecl, TUScope);
466
467  // Start the definition of this class. If we're in a redefinition case, there
468  // may already be a definition, so we'll end up adding to it.
469  if (!IDecl->hasDefinition())
470    IDecl->startDefinition();
471
472  if (SuperName) {
473    // Check if a different kind of symbol declared in this scope.
474    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
475                                LookupOrdinaryName);
476
477    if (!PrevDecl) {
478      // Try to correct for a typo in the superclass name without correcting
479      // to the class we're defining.
480      ObjCInterfaceValidatorCCC Validator(IDecl);
481      if (TypoCorrection Corrected = CorrectTypo(
482          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
483          NULL, Validator)) {
484        PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
485        Diag(SuperLoc, diag::err_undef_superclass_suggest)
486          << SuperName << ClassName << PrevDecl->getDeclName();
487        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
488          << PrevDecl->getDeclName();
489      }
490    }
491
492    if (declaresSameEntity(PrevDecl, IDecl)) {
493      Diag(SuperLoc, diag::err_recursive_superclass)
494        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
495      IDecl->setEndOfDefinitionLoc(ClassLoc);
496    } else {
497      ObjCInterfaceDecl *SuperClassDecl =
498                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
499
500      // Diagnose classes that inherit from deprecated classes.
501      if (SuperClassDecl)
502        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
503
504      if (PrevDecl && SuperClassDecl == 0) {
505        // The previous declaration was not a class decl. Check if we have a
506        // typedef. If we do, get the underlying class type.
507        if (const TypedefNameDecl *TDecl =
508              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
509          QualType T = TDecl->getUnderlyingType();
510          if (T->isObjCObjectType()) {
511            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
512              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
513          }
514        }
515
516        // This handles the following case:
517        //
518        // typedef int SuperClass;
519        // @interface MyClass : SuperClass {} @end
520        //
521        if (!SuperClassDecl) {
522          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
523          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
524        }
525      }
526
527      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
528        if (!SuperClassDecl)
529          Diag(SuperLoc, diag::err_undef_superclass)
530            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
531        else if (RequireCompleteType(SuperLoc,
532                                  Context.getObjCInterfaceType(SuperClassDecl),
533                                     diag::err_forward_superclass,
534                                     SuperClassDecl->getDeclName(),
535                                     ClassName,
536                                     SourceRange(AtInterfaceLoc, ClassLoc))) {
537          SuperClassDecl = 0;
538        }
539      }
540      IDecl->setSuperClass(SuperClassDecl);
541      IDecl->setSuperClassLoc(SuperLoc);
542      IDecl->setEndOfDefinitionLoc(SuperLoc);
543    }
544  } else { // we have a root class.
545    IDecl->setEndOfDefinitionLoc(ClassLoc);
546  }
547
548  // Check then save referenced protocols.
549  if (NumProtoRefs) {
550    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
551                           ProtoLocs, Context);
552    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
553  }
554
555  CheckObjCDeclScope(IDecl);
556  return ActOnObjCContainerStartDefinition(IDecl);
557}
558
559/// ActOnCompatibilityAlias - this action is called after complete parsing of
560/// a \@compatibility_alias declaration. It sets up the alias relationships.
561Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
562                                    IdentifierInfo *AliasName,
563                                    SourceLocation AliasLocation,
564                                    IdentifierInfo *ClassName,
565                                    SourceLocation ClassLocation) {
566  // Look for previous declaration of alias name
567  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
568                                      LookupOrdinaryName, ForRedeclaration);
569  if (ADecl) {
570    if (isa<ObjCCompatibleAliasDecl>(ADecl))
571      Diag(AliasLocation, diag::warn_previous_alias_decl);
572    else
573      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
574    Diag(ADecl->getLocation(), diag::note_previous_declaration);
575    return 0;
576  }
577  // Check for class declaration
578  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
579                                       LookupOrdinaryName, ForRedeclaration);
580  if (const TypedefNameDecl *TDecl =
581        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
582    QualType T = TDecl->getUnderlyingType();
583    if (T->isObjCObjectType()) {
584      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
585        ClassName = IDecl->getIdentifier();
586        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
587                                  LookupOrdinaryName, ForRedeclaration);
588      }
589    }
590  }
591  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
592  if (CDecl == 0) {
593    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
594    if (CDeclU)
595      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
596    return 0;
597  }
598
599  // Everything checked out, instantiate a new alias declaration AST.
600  ObjCCompatibleAliasDecl *AliasDecl =
601    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
602
603  if (!CheckObjCDeclScope(AliasDecl))
604    PushOnScopeChains(AliasDecl, TUScope);
605
606  return AliasDecl;
607}
608
609bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
610  IdentifierInfo *PName,
611  SourceLocation &Ploc, SourceLocation PrevLoc,
612  const ObjCList<ObjCProtocolDecl> &PList) {
613
614  bool res = false;
615  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
616       E = PList.end(); I != E; ++I) {
617    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
618                                                 Ploc)) {
619      if (PDecl->getIdentifier() == PName) {
620        Diag(Ploc, diag::err_protocol_has_circular_dependency);
621        Diag(PrevLoc, diag::note_previous_definition);
622        res = true;
623      }
624
625      if (!PDecl->hasDefinition())
626        continue;
627
628      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
629            PDecl->getLocation(), PDecl->getReferencedProtocols()))
630        res = true;
631    }
632  }
633  return res;
634}
635
636Decl *
637Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
638                                  IdentifierInfo *ProtocolName,
639                                  SourceLocation ProtocolLoc,
640                                  Decl * const *ProtoRefs,
641                                  unsigned NumProtoRefs,
642                                  const SourceLocation *ProtoLocs,
643                                  SourceLocation EndProtoLoc,
644                                  AttributeList *AttrList) {
645  bool err = false;
646  // FIXME: Deal with AttrList.
647  assert(ProtocolName && "Missing protocol identifier");
648  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
649                                              ForRedeclaration);
650  ObjCProtocolDecl *PDecl = 0;
651  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
652    // If we already have a definition, complain.
653    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
654    Diag(Def->getLocation(), diag::note_previous_definition);
655
656    // Create a new protocol that is completely distinct from previous
657    // declarations, and do not make this protocol available for name lookup.
658    // That way, we'll end up completely ignoring the duplicate.
659    // FIXME: Can we turn this into an error?
660    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
661                                     ProtocolLoc, AtProtoInterfaceLoc,
662                                     /*PrevDecl=*/0);
663    PDecl->startDefinition();
664  } else {
665    if (PrevDecl) {
666      // Check for circular dependencies among protocol declarations. This can
667      // only happen if this protocol was forward-declared.
668      ObjCList<ObjCProtocolDecl> PList;
669      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
670      err = CheckForwardProtocolDeclarationForCircularDependency(
671              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
672    }
673
674    // Create the new declaration.
675    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
676                                     ProtocolLoc, AtProtoInterfaceLoc,
677                                     /*PrevDecl=*/PrevDecl);
678
679    PushOnScopeChains(PDecl, TUScope);
680    PDecl->startDefinition();
681  }
682
683  if (AttrList)
684    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
685
686  // Merge attributes from previous declarations.
687  if (PrevDecl)
688    mergeDeclAttributes(PDecl, PrevDecl);
689
690  if (!err && NumProtoRefs ) {
691    /// Check then save referenced protocols.
692    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
693                           ProtoLocs, Context);
694  }
695
696  CheckObjCDeclScope(PDecl);
697  return ActOnObjCContainerStartDefinition(PDecl);
698}
699
700/// FindProtocolDeclaration - This routine looks up protocols and
701/// issues an error if they are not declared. It returns list of
702/// protocol declarations in its 'Protocols' argument.
703void
704Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
705                              const IdentifierLocPair *ProtocolId,
706                              unsigned NumProtocols,
707                              SmallVectorImpl<Decl *> &Protocols) {
708  for (unsigned i = 0; i != NumProtocols; ++i) {
709    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
710                                             ProtocolId[i].second);
711    if (!PDecl) {
712      DeclFilterCCC<ObjCProtocolDecl> Validator;
713      TypoCorrection Corrected = CorrectTypo(
714          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
715          LookupObjCProtocolName, TUScope, NULL, Validator);
716      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
717        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
718          << ProtocolId[i].first << Corrected.getCorrection();
719        Diag(PDecl->getLocation(), diag::note_previous_decl)
720          << PDecl->getDeclName();
721      }
722    }
723
724    if (!PDecl) {
725      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
726        << ProtocolId[i].first;
727      continue;
728    }
729
730    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
731
732    // If this is a forward declaration and we are supposed to warn in this
733    // case, do it.
734    if (WarnOnDeclarations && !PDecl->hasDefinition())
735      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
736        << ProtocolId[i].first;
737    Protocols.push_back(PDecl);
738  }
739}
740
741/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
742/// a class method in its extension.
743///
744void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
745                                            ObjCInterfaceDecl *ID) {
746  if (!ID)
747    return;  // Possibly due to previous error
748
749  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
750  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
751       e =  ID->meth_end(); i != e; ++i) {
752    ObjCMethodDecl *MD = *i;
753    MethodMap[MD->getSelector()] = MD;
754  }
755
756  if (MethodMap.empty())
757    return;
758  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
759       e =  CAT->meth_end(); i != e; ++i) {
760    ObjCMethodDecl *Method = *i;
761    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
762    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
763      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
764            << Method->getDeclName();
765      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
766    }
767  }
768}
769
770/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
771Sema::DeclGroupPtrTy
772Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
773                                      const IdentifierLocPair *IdentList,
774                                      unsigned NumElts,
775                                      AttributeList *attrList) {
776  SmallVector<Decl *, 8> DeclsInGroup;
777  for (unsigned i = 0; i != NumElts; ++i) {
778    IdentifierInfo *Ident = IdentList[i].first;
779    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
780                                                ForRedeclaration);
781    ObjCProtocolDecl *PDecl
782      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
783                                 IdentList[i].second, AtProtocolLoc,
784                                 PrevDecl);
785
786    PushOnScopeChains(PDecl, TUScope);
787    CheckObjCDeclScope(PDecl);
788
789    if (attrList)
790      ProcessDeclAttributeList(TUScope, PDecl, attrList);
791
792    if (PrevDecl)
793      mergeDeclAttributes(PDecl, PrevDecl);
794
795    DeclsInGroup.push_back(PDecl);
796  }
797
798  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
799}
800
801Decl *Sema::
802ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
803                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
804                            IdentifierInfo *CategoryName,
805                            SourceLocation CategoryLoc,
806                            Decl * const *ProtoRefs,
807                            unsigned NumProtoRefs,
808                            const SourceLocation *ProtoLocs,
809                            SourceLocation EndProtoLoc) {
810  ObjCCategoryDecl *CDecl;
811  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
812
813  /// Check that class of this category is already completely declared.
814
815  if (!IDecl
816      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
817                             diag::err_category_forward_interface,
818                             CategoryName == 0)) {
819    // Create an invalid ObjCCategoryDecl to serve as context for
820    // the enclosing method declarations.  We mark the decl invalid
821    // to make it clear that this isn't a valid AST.
822    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
823                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
824    CDecl->setInvalidDecl();
825    CurContext->addDecl(CDecl);
826
827    if (!IDecl)
828      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
829    return ActOnObjCContainerStartDefinition(CDecl);
830  }
831
832  if (!CategoryName && IDecl->getImplementation()) {
833    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
834    Diag(IDecl->getImplementation()->getLocation(),
835          diag::note_implementation_declared);
836  }
837
838  if (CategoryName) {
839    /// Check for duplicate interface declaration for this category
840    ObjCCategoryDecl *CDeclChain;
841    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
842         CDeclChain = CDeclChain->getNextClassCategory()) {
843      if (CDeclChain->getIdentifier() == CategoryName) {
844        // Class extensions can be declared multiple times.
845        Diag(CategoryLoc, diag::warn_dup_category_def)
846          << ClassName << CategoryName;
847        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
848        break;
849      }
850    }
851  }
852
853  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
854                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
855  // FIXME: PushOnScopeChains?
856  CurContext->addDecl(CDecl);
857
858  if (NumProtoRefs) {
859    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
860                           ProtoLocs, Context);
861    // Protocols in the class extension belong to the class.
862    if (CDecl->IsClassExtension())
863     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
864                                            NumProtoRefs, Context);
865  }
866
867  CheckObjCDeclScope(CDecl);
868  return ActOnObjCContainerStartDefinition(CDecl);
869}
870
871/// ActOnStartCategoryImplementation - Perform semantic checks on the
872/// category implementation declaration and build an ObjCCategoryImplDecl
873/// object.
874Decl *Sema::ActOnStartCategoryImplementation(
875                      SourceLocation AtCatImplLoc,
876                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
877                      IdentifierInfo *CatName, SourceLocation CatLoc) {
878  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
879  ObjCCategoryDecl *CatIDecl = 0;
880  if (IDecl && IDecl->hasDefinition()) {
881    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
882    if (!CatIDecl) {
883      // Category @implementation with no corresponding @interface.
884      // Create and install one.
885      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
886                                          ClassLoc, CatLoc,
887                                          CatName, IDecl);
888      CatIDecl->setImplicit();
889    }
890  }
891
892  ObjCCategoryImplDecl *CDecl =
893    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
894                                 ClassLoc, AtCatImplLoc, CatLoc);
895  /// Check that class of this category is already completely declared.
896  if (!IDecl) {
897    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
898    CDecl->setInvalidDecl();
899  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
900                                 diag::err_undef_interface)) {
901    CDecl->setInvalidDecl();
902  }
903
904  // FIXME: PushOnScopeChains?
905  CurContext->addDecl(CDecl);
906
907  // If the interface is deprecated/unavailable, warn/error about it.
908  if (IDecl)
909    DiagnoseUseOfDecl(IDecl, ClassLoc);
910
911  /// Check that CatName, category name, is not used in another implementation.
912  if (CatIDecl) {
913    if (CatIDecl->getImplementation()) {
914      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
915        << CatName;
916      Diag(CatIDecl->getImplementation()->getLocation(),
917           diag::note_previous_definition);
918    } else {
919      CatIDecl->setImplementation(CDecl);
920      // Warn on implementating category of deprecated class under
921      // -Wdeprecated-implementations flag.
922      DiagnoseObjCImplementedDeprecations(*this,
923                                          dyn_cast<NamedDecl>(IDecl),
924                                          CDecl->getLocation(), 2);
925    }
926  }
927
928  CheckObjCDeclScope(CDecl);
929  return ActOnObjCContainerStartDefinition(CDecl);
930}
931
932Decl *Sema::ActOnStartClassImplementation(
933                      SourceLocation AtClassImplLoc,
934                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
935                      IdentifierInfo *SuperClassname,
936                      SourceLocation SuperClassLoc) {
937  ObjCInterfaceDecl* IDecl = 0;
938  // Check for another declaration kind with the same name.
939  NamedDecl *PrevDecl
940    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
941                       ForRedeclaration);
942  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
943    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
944    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
945  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
946    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
947                        diag::warn_undef_interface);
948  } else {
949    // We did not find anything with the name ClassName; try to correct for
950    // typos in the class name.
951    ObjCInterfaceValidatorCCC Validator;
952    if (TypoCorrection Corrected = CorrectTypo(
953        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
954        NULL, Validator)) {
955      // Suggest the (potentially) correct interface name. However, put the
956      // fix-it hint itself in a separate note, since changing the name in
957      // the warning would make the fix-it change semantics.However, don't
958      // provide a code-modification hint or use the typo name for recovery,
959      // because this is just a warning. The program may actually be correct.
960      IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
961      DeclarationName CorrectedName = Corrected.getCorrection();
962      Diag(ClassLoc, diag::warn_undef_interface_suggest)
963        << ClassName << CorrectedName;
964      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
965        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
966      IDecl = 0;
967    } else {
968      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
969    }
970  }
971
972  // Check that super class name is valid class name
973  ObjCInterfaceDecl* SDecl = 0;
974  if (SuperClassname) {
975    // Check if a different kind of symbol declared in this scope.
976    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
977                                LookupOrdinaryName);
978    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
979      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
980        << SuperClassname;
981      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
982    } else {
983      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
984      if (SDecl && !SDecl->hasDefinition())
985        SDecl = 0;
986      if (!SDecl)
987        Diag(SuperClassLoc, diag::err_undef_superclass)
988          << SuperClassname << ClassName;
989      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
990        // This implementation and its interface do not have the same
991        // super class.
992        Diag(SuperClassLoc, diag::err_conflicting_super_class)
993          << SDecl->getDeclName();
994        Diag(SDecl->getLocation(), diag::note_previous_definition);
995      }
996    }
997  }
998
999  if (!IDecl) {
1000    // Legacy case of @implementation with no corresponding @interface.
1001    // Build, chain & install the interface decl into the identifier.
1002
1003    // FIXME: Do we support attributes on the @implementation? If so we should
1004    // copy them over.
1005    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1006                                      ClassName, /*PrevDecl=*/0, ClassLoc,
1007                                      true);
1008    IDecl->startDefinition();
1009    if (SDecl) {
1010      IDecl->setSuperClass(SDecl);
1011      IDecl->setSuperClassLoc(SuperClassLoc);
1012      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1013    } else {
1014      IDecl->setEndOfDefinitionLoc(ClassLoc);
1015    }
1016
1017    PushOnScopeChains(IDecl, TUScope);
1018  } else {
1019    // Mark the interface as being completed, even if it was just as
1020    //   @class ....;
1021    // declaration; the user cannot reopen it.
1022    if (!IDecl->hasDefinition())
1023      IDecl->startDefinition();
1024  }
1025
1026  ObjCImplementationDecl* IMPDecl =
1027    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1028                                   ClassLoc, AtClassImplLoc);
1029
1030  if (CheckObjCDeclScope(IMPDecl))
1031    return ActOnObjCContainerStartDefinition(IMPDecl);
1032
1033  // Check that there is no duplicate implementation of this class.
1034  if (IDecl->getImplementation()) {
1035    // FIXME: Don't leak everything!
1036    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1037    Diag(IDecl->getImplementation()->getLocation(),
1038         diag::note_previous_definition);
1039  } else { // add it to the list.
1040    IDecl->setImplementation(IMPDecl);
1041    PushOnScopeChains(IMPDecl, TUScope);
1042    // Warn on implementating deprecated class under
1043    // -Wdeprecated-implementations flag.
1044    DiagnoseObjCImplementedDeprecations(*this,
1045                                        dyn_cast<NamedDecl>(IDecl),
1046                                        IMPDecl->getLocation(), 1);
1047  }
1048  return ActOnObjCContainerStartDefinition(IMPDecl);
1049}
1050
1051Sema::DeclGroupPtrTy
1052Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1053  SmallVector<Decl *, 64> DeclsInGroup;
1054  DeclsInGroup.reserve(Decls.size() + 1);
1055
1056  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1057    Decl *Dcl = Decls[i];
1058    if (!Dcl)
1059      continue;
1060    if (Dcl->getDeclContext()->isFileContext())
1061      Dcl->setTopLevelDeclInObjCContainer();
1062    DeclsInGroup.push_back(Dcl);
1063  }
1064
1065  DeclsInGroup.push_back(ObjCImpDecl);
1066
1067  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1068}
1069
1070void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1071                                    ObjCIvarDecl **ivars, unsigned numIvars,
1072                                    SourceLocation RBrace) {
1073  assert(ImpDecl && "missing implementation decl");
1074  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1075  if (!IDecl)
1076    return;
1077  /// Check case of non-existing \@interface decl.
1078  /// (legacy objective-c \@implementation decl without an \@interface decl).
1079  /// Add implementations's ivar to the synthesize class's ivar list.
1080  if (IDecl->isImplicitInterfaceDecl()) {
1081    IDecl->setEndOfDefinitionLoc(RBrace);
1082    // Add ivar's to class's DeclContext.
1083    for (unsigned i = 0, e = numIvars; i != e; ++i) {
1084      ivars[i]->setLexicalDeclContext(ImpDecl);
1085      IDecl->makeDeclVisibleInContext(ivars[i]);
1086      ImpDecl->addDecl(ivars[i]);
1087    }
1088
1089    return;
1090  }
1091  // If implementation has empty ivar list, just return.
1092  if (numIvars == 0)
1093    return;
1094
1095  assert(ivars && "missing @implementation ivars");
1096  if (LangOpts.ObjCRuntime.isNonFragile()) {
1097    if (ImpDecl->getSuperClass())
1098      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1099    for (unsigned i = 0; i < numIvars; i++) {
1100      ObjCIvarDecl* ImplIvar = ivars[i];
1101      if (const ObjCIvarDecl *ClsIvar =
1102            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1103        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1104        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1105        continue;
1106      }
1107      // Instance ivar to Implementation's DeclContext.
1108      ImplIvar->setLexicalDeclContext(ImpDecl);
1109      IDecl->makeDeclVisibleInContext(ImplIvar);
1110      ImpDecl->addDecl(ImplIvar);
1111    }
1112    return;
1113  }
1114  // Check interface's Ivar list against those in the implementation.
1115  // names and types must match.
1116  //
1117  unsigned j = 0;
1118  ObjCInterfaceDecl::ivar_iterator
1119    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1120  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1121    ObjCIvarDecl* ImplIvar = ivars[j++];
1122    ObjCIvarDecl* ClsIvar = *IVI;
1123    assert (ImplIvar && "missing implementation ivar");
1124    assert (ClsIvar && "missing class ivar");
1125
1126    // First, make sure the types match.
1127    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1128      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1129        << ImplIvar->getIdentifier()
1130        << ImplIvar->getType() << ClsIvar->getType();
1131      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1132    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1133               ImplIvar->getBitWidthValue(Context) !=
1134               ClsIvar->getBitWidthValue(Context)) {
1135      Diag(ImplIvar->getBitWidth()->getLocStart(),
1136           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1137      Diag(ClsIvar->getBitWidth()->getLocStart(),
1138           diag::note_previous_definition);
1139    }
1140    // Make sure the names are identical.
1141    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1142      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1143        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1144      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1145    }
1146    --numIvars;
1147  }
1148
1149  if (numIvars > 0)
1150    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1151  else if (IVI != IVE)
1152    Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
1153}
1154
1155void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1156                               bool &IncompleteImpl, unsigned DiagID) {
1157  // No point warning no definition of method which is 'unavailable'.
1158  if (method->hasAttr<UnavailableAttr>())
1159    return;
1160  if (!IncompleteImpl) {
1161    Diag(ImpLoc, diag::warn_incomplete_impl);
1162    IncompleteImpl = true;
1163  }
1164  if (DiagID == diag::warn_unimplemented_protocol_method)
1165    Diag(ImpLoc, DiagID) << method->getDeclName();
1166  else
1167    Diag(method->getLocation(), DiagID) << method->getDeclName();
1168}
1169
1170/// Determines if type B can be substituted for type A.  Returns true if we can
1171/// guarantee that anything that the user will do to an object of type A can
1172/// also be done to an object of type B.  This is trivially true if the two
1173/// types are the same, or if B is a subclass of A.  It becomes more complex
1174/// in cases where protocols are involved.
1175///
1176/// Object types in Objective-C describe the minimum requirements for an
1177/// object, rather than providing a complete description of a type.  For
1178/// example, if A is a subclass of B, then B* may refer to an instance of A.
1179/// The principle of substitutability means that we may use an instance of A
1180/// anywhere that we may use an instance of B - it will implement all of the
1181/// ivars of B and all of the methods of B.
1182///
1183/// This substitutability is important when type checking methods, because
1184/// the implementation may have stricter type definitions than the interface.
1185/// The interface specifies minimum requirements, but the implementation may
1186/// have more accurate ones.  For example, a method may privately accept
1187/// instances of B, but only publish that it accepts instances of A.  Any
1188/// object passed to it will be type checked against B, and so will implicitly
1189/// by a valid A*.  Similarly, a method may return a subclass of the class that
1190/// it is declared as returning.
1191///
1192/// This is most important when considering subclassing.  A method in a
1193/// subclass must accept any object as an argument that its superclass's
1194/// implementation accepts.  It may, however, accept a more general type
1195/// without breaking substitutability (i.e. you can still use the subclass
1196/// anywhere that you can use the superclass, but not vice versa).  The
1197/// converse requirement applies to return types: the return type for a
1198/// subclass method must be a valid object of the kind that the superclass
1199/// advertises, but it may be specified more accurately.  This avoids the need
1200/// for explicit down-casting by callers.
1201///
1202/// Note: This is a stricter requirement than for assignment.
1203static bool isObjCTypeSubstitutable(ASTContext &Context,
1204                                    const ObjCObjectPointerType *A,
1205                                    const ObjCObjectPointerType *B,
1206                                    bool rejectId) {
1207  // Reject a protocol-unqualified id.
1208  if (rejectId && B->isObjCIdType()) return false;
1209
1210  // If B is a qualified id, then A must also be a qualified id and it must
1211  // implement all of the protocols in B.  It may not be a qualified class.
1212  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1213  // stricter definition so it is not substitutable for id<A>.
1214  if (B->isObjCQualifiedIdType()) {
1215    return A->isObjCQualifiedIdType() &&
1216           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1217                                                     QualType(B,0),
1218                                                     false);
1219  }
1220
1221  /*
1222  // id is a special type that bypasses type checking completely.  We want a
1223  // warning when it is used in one place but not another.
1224  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1225
1226
1227  // If B is a qualified id, then A must also be a qualified id (which it isn't
1228  // if we've got this far)
1229  if (B->isObjCQualifiedIdType()) return false;
1230  */
1231
1232  // Now we know that A and B are (potentially-qualified) class types.  The
1233  // normal rules for assignment apply.
1234  return Context.canAssignObjCInterfaces(A, B);
1235}
1236
1237static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1238  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1239}
1240
1241static bool CheckMethodOverrideReturn(Sema &S,
1242                                      ObjCMethodDecl *MethodImpl,
1243                                      ObjCMethodDecl *MethodDecl,
1244                                      bool IsProtocolMethodDecl,
1245                                      bool IsOverridingMode,
1246                                      bool Warn) {
1247  if (IsProtocolMethodDecl &&
1248      (MethodDecl->getObjCDeclQualifier() !=
1249       MethodImpl->getObjCDeclQualifier())) {
1250    if (Warn) {
1251        S.Diag(MethodImpl->getLocation(),
1252               (IsOverridingMode ?
1253                 diag::warn_conflicting_overriding_ret_type_modifiers
1254                 : diag::warn_conflicting_ret_type_modifiers))
1255          << MethodImpl->getDeclName()
1256          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1257        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1258          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1259    }
1260    else
1261      return false;
1262  }
1263
1264  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1265                                       MethodDecl->getResultType()))
1266    return true;
1267  if (!Warn)
1268    return false;
1269
1270  unsigned DiagID =
1271    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1272                     : diag::warn_conflicting_ret_types;
1273
1274  // Mismatches between ObjC pointers go into a different warning
1275  // category, and sometimes they're even completely whitelisted.
1276  if (const ObjCObjectPointerType *ImplPtrTy =
1277        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1278    if (const ObjCObjectPointerType *IfacePtrTy =
1279          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1280      // Allow non-matching return types as long as they don't violate
1281      // the principle of substitutability.  Specifically, we permit
1282      // return types that are subclasses of the declared return type,
1283      // or that are more-qualified versions of the declared type.
1284      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1285        return false;
1286
1287      DiagID =
1288        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1289                          : diag::warn_non_covariant_ret_types;
1290    }
1291  }
1292
1293  S.Diag(MethodImpl->getLocation(), DiagID)
1294    << MethodImpl->getDeclName()
1295    << MethodDecl->getResultType()
1296    << MethodImpl->getResultType()
1297    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1298  S.Diag(MethodDecl->getLocation(),
1299         IsOverridingMode ? diag::note_previous_declaration
1300                          : diag::note_previous_definition)
1301    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1302  return false;
1303}
1304
1305static bool CheckMethodOverrideParam(Sema &S,
1306                                     ObjCMethodDecl *MethodImpl,
1307                                     ObjCMethodDecl *MethodDecl,
1308                                     ParmVarDecl *ImplVar,
1309                                     ParmVarDecl *IfaceVar,
1310                                     bool IsProtocolMethodDecl,
1311                                     bool IsOverridingMode,
1312                                     bool Warn) {
1313  if (IsProtocolMethodDecl &&
1314      (ImplVar->getObjCDeclQualifier() !=
1315       IfaceVar->getObjCDeclQualifier())) {
1316    if (Warn) {
1317      if (IsOverridingMode)
1318        S.Diag(ImplVar->getLocation(),
1319               diag::warn_conflicting_overriding_param_modifiers)
1320            << getTypeRange(ImplVar->getTypeSourceInfo())
1321            << MethodImpl->getDeclName();
1322      else S.Diag(ImplVar->getLocation(),
1323             diag::warn_conflicting_param_modifiers)
1324          << getTypeRange(ImplVar->getTypeSourceInfo())
1325          << MethodImpl->getDeclName();
1326      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1327          << getTypeRange(IfaceVar->getTypeSourceInfo());
1328    }
1329    else
1330      return false;
1331  }
1332
1333  QualType ImplTy = ImplVar->getType();
1334  QualType IfaceTy = IfaceVar->getType();
1335
1336  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1337    return true;
1338
1339  if (!Warn)
1340    return false;
1341  unsigned DiagID =
1342    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1343                     : diag::warn_conflicting_param_types;
1344
1345  // Mismatches between ObjC pointers go into a different warning
1346  // category, and sometimes they're even completely whitelisted.
1347  if (const ObjCObjectPointerType *ImplPtrTy =
1348        ImplTy->getAs<ObjCObjectPointerType>()) {
1349    if (const ObjCObjectPointerType *IfacePtrTy =
1350          IfaceTy->getAs<ObjCObjectPointerType>()) {
1351      // Allow non-matching argument types as long as they don't
1352      // violate the principle of substitutability.  Specifically, the
1353      // implementation must accept any objects that the superclass
1354      // accepts, however it may also accept others.
1355      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1356        return false;
1357
1358      DiagID =
1359      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1360                       :  diag::warn_non_contravariant_param_types;
1361    }
1362  }
1363
1364  S.Diag(ImplVar->getLocation(), DiagID)
1365    << getTypeRange(ImplVar->getTypeSourceInfo())
1366    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1367  S.Diag(IfaceVar->getLocation(),
1368         (IsOverridingMode ? diag::note_previous_declaration
1369                        : diag::note_previous_definition))
1370    << getTypeRange(IfaceVar->getTypeSourceInfo());
1371  return false;
1372}
1373
1374/// In ARC, check whether the conventional meanings of the two methods
1375/// match.  If they don't, it's a hard error.
1376static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1377                                      ObjCMethodDecl *decl) {
1378  ObjCMethodFamily implFamily = impl->getMethodFamily();
1379  ObjCMethodFamily declFamily = decl->getMethodFamily();
1380  if (implFamily == declFamily) return false;
1381
1382  // Since conventions are sorted by selector, the only possibility is
1383  // that the types differ enough to cause one selector or the other
1384  // to fall out of the family.
1385  assert(implFamily == OMF_None || declFamily == OMF_None);
1386
1387  // No further diagnostics required on invalid declarations.
1388  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1389
1390  const ObjCMethodDecl *unmatched = impl;
1391  ObjCMethodFamily family = declFamily;
1392  unsigned errorID = diag::err_arc_lost_method_convention;
1393  unsigned noteID = diag::note_arc_lost_method_convention;
1394  if (declFamily == OMF_None) {
1395    unmatched = decl;
1396    family = implFamily;
1397    errorID = diag::err_arc_gained_method_convention;
1398    noteID = diag::note_arc_gained_method_convention;
1399  }
1400
1401  // Indexes into a %select clause in the diagnostic.
1402  enum FamilySelector {
1403    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1404  };
1405  FamilySelector familySelector = FamilySelector();
1406
1407  switch (family) {
1408  case OMF_None: llvm_unreachable("logic error, no method convention");
1409  case OMF_retain:
1410  case OMF_release:
1411  case OMF_autorelease:
1412  case OMF_dealloc:
1413  case OMF_finalize:
1414  case OMF_retainCount:
1415  case OMF_self:
1416  case OMF_performSelector:
1417    // Mismatches for these methods don't change ownership
1418    // conventions, so we don't care.
1419    return false;
1420
1421  case OMF_init: familySelector = F_init; break;
1422  case OMF_alloc: familySelector = F_alloc; break;
1423  case OMF_copy: familySelector = F_copy; break;
1424  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1425  case OMF_new: familySelector = F_new; break;
1426  }
1427
1428  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1429  ReasonSelector reasonSelector;
1430
1431  // The only reason these methods don't fall within their families is
1432  // due to unusual result types.
1433  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1434    reasonSelector = R_UnrelatedReturn;
1435  } else {
1436    reasonSelector = R_NonObjectReturn;
1437  }
1438
1439  S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1440  S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1441
1442  return true;
1443}
1444
1445void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1446                                       ObjCMethodDecl *MethodDecl,
1447                                       bool IsProtocolMethodDecl) {
1448  if (getLangOpts().ObjCAutoRefCount &&
1449      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1450    return;
1451
1452  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1453                            IsProtocolMethodDecl, false,
1454                            true);
1455
1456  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1457       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1458       EF = MethodDecl->param_end();
1459       IM != EM && IF != EF; ++IM, ++IF) {
1460    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1461                             IsProtocolMethodDecl, false, true);
1462  }
1463
1464  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1465    Diag(ImpMethodDecl->getLocation(),
1466         diag::warn_conflicting_variadic);
1467    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1468  }
1469}
1470
1471void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1472                                       ObjCMethodDecl *Overridden,
1473                                       bool IsProtocolMethodDecl) {
1474
1475  CheckMethodOverrideReturn(*this, Method, Overridden,
1476                            IsProtocolMethodDecl, true,
1477                            true);
1478
1479  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1480       IF = Overridden->param_begin(), EM = Method->param_end(),
1481       EF = Overridden->param_end();
1482       IM != EM && IF != EF; ++IM, ++IF) {
1483    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1484                             IsProtocolMethodDecl, true, true);
1485  }
1486
1487  if (Method->isVariadic() != Overridden->isVariadic()) {
1488    Diag(Method->getLocation(),
1489         diag::warn_conflicting_overriding_variadic);
1490    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1491  }
1492}
1493
1494/// WarnExactTypedMethods - This routine issues a warning if method
1495/// implementation declaration matches exactly that of its declaration.
1496void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1497                                 ObjCMethodDecl *MethodDecl,
1498                                 bool IsProtocolMethodDecl) {
1499  // don't issue warning when protocol method is optional because primary
1500  // class is not required to implement it and it is safe for protocol
1501  // to implement it.
1502  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1503    return;
1504  // don't issue warning when primary class's method is
1505  // depecated/unavailable.
1506  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1507      MethodDecl->hasAttr<DeprecatedAttr>())
1508    return;
1509
1510  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1511                                      IsProtocolMethodDecl, false, false);
1512  if (match)
1513    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1514         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1515         EF = MethodDecl->param_end();
1516         IM != EM && IF != EF; ++IM, ++IF) {
1517      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1518                                       *IM, *IF,
1519                                       IsProtocolMethodDecl, false, false);
1520      if (!match)
1521        break;
1522    }
1523  if (match)
1524    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1525  if (match)
1526    match = !(MethodDecl->isClassMethod() &&
1527              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1528
1529  if (match) {
1530    Diag(ImpMethodDecl->getLocation(),
1531         diag::warn_category_method_impl_match);
1532    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1533      << MethodDecl->getDeclName();
1534  }
1535}
1536
1537/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1538/// improve the efficiency of selector lookups and type checking by associating
1539/// with each protocol / interface / category the flattened instance tables. If
1540/// we used an immutable set to keep the table then it wouldn't add significant
1541/// memory cost and it would be handy for lookups.
1542
1543/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1544/// Declared in protocol, and those referenced by it.
1545void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1546                                   ObjCProtocolDecl *PDecl,
1547                                   bool& IncompleteImpl,
1548                                   const SelectorSet &InsMap,
1549                                   const SelectorSet &ClsMap,
1550                                   ObjCContainerDecl *CDecl) {
1551  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1552  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1553                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
1554  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1555
1556  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1557  ObjCInterfaceDecl *NSIDecl = 0;
1558  if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
1559    // check to see if class implements forwardInvocation method and objects
1560    // of this class are derived from 'NSProxy' so that to forward requests
1561    // from one object to another.
1562    // Under such conditions, which means that every method possible is
1563    // implemented in the class, we should not issue "Method definition not
1564    // found" warnings.
1565    // FIXME: Use a general GetUnarySelector method for this.
1566    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1567    Selector fISelector = Context.Selectors.getSelector(1, &II);
1568    if (InsMap.count(fISelector))
1569      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1570      // need be implemented in the implementation.
1571      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1572  }
1573
1574  // If a method lookup fails locally we still need to look and see if
1575  // the method was implemented by a base class or an inherited
1576  // protocol. This lookup is slow, but occurs rarely in correct code
1577  // and otherwise would terminate in a warning.
1578
1579  // check unimplemented instance methods.
1580  if (!NSIDecl)
1581    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1582         E = PDecl->instmeth_end(); I != E; ++I) {
1583      ObjCMethodDecl *method = *I;
1584      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1585          !method->isPropertyAccessor() &&
1586          !InsMap.count(method->getSelector()) &&
1587          (!Super || !Super->lookupInstanceMethod(method->getSelector()))) {
1588            // If a method is not implemented in the category implementation but
1589            // has been declared in its primary class, superclass,
1590            // or in one of their protocols, no need to issue the warning.
1591            // This is because method will be implemented in the primary class
1592            // or one of its super class implementation.
1593
1594            // Ugly, but necessary. Method declared in protcol might have
1595            // have been synthesized due to a property declared in the class which
1596            // uses the protocol.
1597            if (ObjCMethodDecl *MethodInClass =
1598                  IDecl->lookupInstanceMethod(method->getSelector(),
1599                                              true /*shallowCategoryLookup*/))
1600              if (C || MethodInClass->isPropertyAccessor())
1601                continue;
1602            unsigned DIAG = diag::warn_unimplemented_protocol_method;
1603            if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1604                != DiagnosticsEngine::Ignored) {
1605              WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1606              Diag(method->getLocation(), diag::note_method_declared_at)
1607                << method->getDeclName();
1608              Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1609                << PDecl->getDeclName();
1610            }
1611          }
1612    }
1613  // check unimplemented class methods
1614  for (ObjCProtocolDecl::classmeth_iterator
1615         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1616       I != E; ++I) {
1617    ObjCMethodDecl *method = *I;
1618    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1619        !ClsMap.count(method->getSelector()) &&
1620        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1621      // See above comment for instance method lookups.
1622      if (C && IDecl->lookupClassMethod(method->getSelector(),
1623                                        true /*shallowCategoryLookup*/))
1624        continue;
1625      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1626      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1627            DiagnosticsEngine::Ignored) {
1628        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1629        Diag(method->getLocation(), diag::note_method_declared_at)
1630          << method->getDeclName();
1631        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1632          PDecl->getDeclName();
1633      }
1634    }
1635  }
1636  // Check on this protocols's referenced protocols, recursively.
1637  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1638       E = PDecl->protocol_end(); PI != E; ++PI)
1639    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1640}
1641
1642/// MatchAllMethodDeclarations - Check methods declared in interface
1643/// or protocol against those declared in their implementations.
1644///
1645void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1646                                      const SelectorSet &ClsMap,
1647                                      SelectorSet &InsMapSeen,
1648                                      SelectorSet &ClsMapSeen,
1649                                      ObjCImplDecl* IMPDecl,
1650                                      ObjCContainerDecl* CDecl,
1651                                      bool &IncompleteImpl,
1652                                      bool ImmediateClass,
1653                                      bool WarnCategoryMethodImpl) {
1654  // Check and see if instance methods in class interface have been
1655  // implemented in the implementation class. If so, their types match.
1656  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1657       E = CDecl->instmeth_end(); I != E; ++I) {
1658    if (InsMapSeen.count((*I)->getSelector()))
1659        continue;
1660    InsMapSeen.insert((*I)->getSelector());
1661    if (!(*I)->isPropertyAccessor() &&
1662        !InsMap.count((*I)->getSelector())) {
1663      if (ImmediateClass)
1664        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1665                            diag::note_undef_method_impl);
1666      continue;
1667    } else {
1668      ObjCMethodDecl *ImpMethodDecl =
1669        IMPDecl->getInstanceMethod((*I)->getSelector());
1670      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1671             "Expected to find the method through lookup as well");
1672      ObjCMethodDecl *MethodDecl = *I;
1673      // ImpMethodDecl may be null as in a @dynamic property.
1674      if (ImpMethodDecl) {
1675        if (!WarnCategoryMethodImpl)
1676          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1677                                      isa<ObjCProtocolDecl>(CDecl));
1678        else if (!MethodDecl->isPropertyAccessor())
1679          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1680                                isa<ObjCProtocolDecl>(CDecl));
1681      }
1682    }
1683  }
1684
1685  // Check and see if class methods in class interface have been
1686  // implemented in the implementation class. If so, their types match.
1687   for (ObjCInterfaceDecl::classmeth_iterator
1688       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1689     if (ClsMapSeen.count((*I)->getSelector()))
1690       continue;
1691     ClsMapSeen.insert((*I)->getSelector());
1692    if (!ClsMap.count((*I)->getSelector())) {
1693      if (ImmediateClass)
1694        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1695                            diag::note_undef_method_impl);
1696    } else {
1697      ObjCMethodDecl *ImpMethodDecl =
1698        IMPDecl->getClassMethod((*I)->getSelector());
1699      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1700             "Expected to find the method through lookup as well");
1701      ObjCMethodDecl *MethodDecl = *I;
1702      if (!WarnCategoryMethodImpl)
1703        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1704                                    isa<ObjCProtocolDecl>(CDecl));
1705      else
1706        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1707                              isa<ObjCProtocolDecl>(CDecl));
1708    }
1709  }
1710
1711  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1712    // when checking that methods in implementation match their declaration,
1713    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1714    // extension; as well as those in categories.
1715    if (!WarnCategoryMethodImpl)
1716      for (const ObjCCategoryDecl *CDeclChain = I->getCategoryList();
1717           CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1718        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1719                                   IMPDecl,
1720                                   const_cast<ObjCCategoryDecl *>(CDeclChain),
1721                                   IncompleteImpl, false,
1722                                   WarnCategoryMethodImpl);
1723    else
1724      // Also methods in class extensions need be looked at next.
1725      for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1726           ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1727        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1728                                   IMPDecl,
1729                                   const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1730                                   IncompleteImpl, false,
1731                                   WarnCategoryMethodImpl);
1732
1733    // Check for any implementation of a methods declared in protocol.
1734    for (ObjCInterfaceDecl::all_protocol_iterator
1735          PI = I->all_referenced_protocol_begin(),
1736          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1737      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1738                                 IMPDecl,
1739                                 (*PI), IncompleteImpl, false,
1740                                 WarnCategoryMethodImpl);
1741
1742    // FIXME. For now, we are not checking for extact match of methods
1743    // in category implementation and its primary class's super class.
1744    if (!WarnCategoryMethodImpl && I->getSuperClass())
1745      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1746                                 IMPDecl,
1747                                 I->getSuperClass(), IncompleteImpl, false);
1748  }
1749}
1750
1751/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1752/// category matches with those implemented in its primary class and
1753/// warns each time an exact match is found.
1754void Sema::CheckCategoryVsClassMethodMatches(
1755                                  ObjCCategoryImplDecl *CatIMPDecl) {
1756  SelectorSet InsMap, ClsMap;
1757
1758  for (ObjCImplementationDecl::instmeth_iterator
1759       I = CatIMPDecl->instmeth_begin(),
1760       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1761    InsMap.insert((*I)->getSelector());
1762
1763  for (ObjCImplementationDecl::classmeth_iterator
1764       I = CatIMPDecl->classmeth_begin(),
1765       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1766    ClsMap.insert((*I)->getSelector());
1767  if (InsMap.empty() && ClsMap.empty())
1768    return;
1769
1770  // Get category's primary class.
1771  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1772  if (!CatDecl)
1773    return;
1774  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1775  if (!IDecl)
1776    return;
1777  SelectorSet InsMapSeen, ClsMapSeen;
1778  bool IncompleteImpl = false;
1779  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1780                             CatIMPDecl, IDecl,
1781                             IncompleteImpl, false,
1782                             true /*WarnCategoryMethodImpl*/);
1783}
1784
1785void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1786                                     ObjCContainerDecl* CDecl,
1787                                     bool IncompleteImpl) {
1788  SelectorSet InsMap;
1789  // Check and see if instance methods in class interface have been
1790  // implemented in the implementation class.
1791  for (ObjCImplementationDecl::instmeth_iterator
1792         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1793    InsMap.insert((*I)->getSelector());
1794
1795  // Check and see if properties declared in the interface have either 1)
1796  // an implementation or 2) there is a @synthesize/@dynamic implementation
1797  // of the property in the @implementation.
1798  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1799    if  (!(LangOpts.ObjCDefaultSynthProperties &&
1800           LangOpts.ObjCRuntime.isNonFragile()) ||
1801         IDecl->isObjCRequiresPropertyDefs())
1802      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1803
1804  SelectorSet ClsMap;
1805  for (ObjCImplementationDecl::classmeth_iterator
1806       I = IMPDecl->classmeth_begin(),
1807       E = IMPDecl->classmeth_end(); I != E; ++I)
1808    ClsMap.insert((*I)->getSelector());
1809
1810  // Check for type conflict of methods declared in a class/protocol and
1811  // its implementation; if any.
1812  SelectorSet InsMapSeen, ClsMapSeen;
1813  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1814                             IMPDecl, CDecl,
1815                             IncompleteImpl, true);
1816
1817  // check all methods implemented in category against those declared
1818  // in its primary class.
1819  if (ObjCCategoryImplDecl *CatDecl =
1820        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1821    CheckCategoryVsClassMethodMatches(CatDecl);
1822
1823  // Check the protocol list for unimplemented methods in the @implementation
1824  // class.
1825  // Check and see if class methods in class interface have been
1826  // implemented in the implementation class.
1827
1828  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1829    for (ObjCInterfaceDecl::all_protocol_iterator
1830          PI = I->all_referenced_protocol_begin(),
1831          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1832      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1833                              InsMap, ClsMap, I);
1834    // Check class extensions (unnamed categories)
1835    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1836         Categories; Categories = Categories->getNextClassExtension())
1837      ImplMethodsVsClassMethods(S, IMPDecl,
1838                                const_cast<ObjCCategoryDecl*>(Categories),
1839                                IncompleteImpl);
1840  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1841    // For extended class, unimplemented methods in its protocols will
1842    // be reported in the primary class.
1843    if (!C->IsClassExtension()) {
1844      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1845           E = C->protocol_end(); PI != E; ++PI)
1846        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1847                                InsMap, ClsMap, CDecl);
1848      // Report unimplemented properties in the category as well.
1849      // When reporting on missing setter/getters, do not report when
1850      // setter/getter is implemented in category's primary class
1851      // implementation.
1852      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1853        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1854          for (ObjCImplementationDecl::instmeth_iterator
1855               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1856            InsMap.insert((*I)->getSelector());
1857        }
1858      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1859    }
1860  } else
1861    llvm_unreachable("invalid ObjCContainerDecl type.");
1862}
1863
1864/// ActOnForwardClassDeclaration -
1865Sema::DeclGroupPtrTy
1866Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1867                                   IdentifierInfo **IdentList,
1868                                   SourceLocation *IdentLocs,
1869                                   unsigned NumElts) {
1870  SmallVector<Decl *, 8> DeclsInGroup;
1871  for (unsigned i = 0; i != NumElts; ++i) {
1872    // Check for another declaration kind with the same name.
1873    NamedDecl *PrevDecl
1874      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1875                         LookupOrdinaryName, ForRedeclaration);
1876    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1877      // Maybe we will complain about the shadowed template parameter.
1878      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1879      // Just pretend that we didn't see the previous declaration.
1880      PrevDecl = 0;
1881    }
1882
1883    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1884      // GCC apparently allows the following idiom:
1885      //
1886      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1887      // @class XCElementToggler;
1888      //
1889      // Here we have chosen to ignore the forward class declaration
1890      // with a warning. Since this is the implied behavior.
1891      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1892      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1893        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1894        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1895      } else {
1896        // a forward class declaration matching a typedef name of a class refers
1897        // to the underlying class. Just ignore the forward class with a warning
1898        // as this will force the intended behavior which is to lookup the typedef
1899        // name.
1900        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1901          Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1902          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1903          continue;
1904        }
1905      }
1906    }
1907
1908    // Create a declaration to describe this forward declaration.
1909    ObjCInterfaceDecl *PrevIDecl
1910      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1911    ObjCInterfaceDecl *IDecl
1912      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1913                                  IdentList[i], PrevIDecl, IdentLocs[i]);
1914    IDecl->setAtEndRange(IdentLocs[i]);
1915
1916    PushOnScopeChains(IDecl, TUScope);
1917    CheckObjCDeclScope(IDecl);
1918    DeclsInGroup.push_back(IDecl);
1919  }
1920
1921  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1922}
1923
1924static bool tryMatchRecordTypes(ASTContext &Context,
1925                                Sema::MethodMatchStrategy strategy,
1926                                const Type *left, const Type *right);
1927
1928static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1929                       QualType leftQT, QualType rightQT) {
1930  const Type *left =
1931    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1932  const Type *right =
1933    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1934
1935  if (left == right) return true;
1936
1937  // If we're doing a strict match, the types have to match exactly.
1938  if (strategy == Sema::MMS_strict) return false;
1939
1940  if (left->isIncompleteType() || right->isIncompleteType()) return false;
1941
1942  // Otherwise, use this absurdly complicated algorithm to try to
1943  // validate the basic, low-level compatibility of the two types.
1944
1945  // As a minimum, require the sizes and alignments to match.
1946  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1947    return false;
1948
1949  // Consider all the kinds of non-dependent canonical types:
1950  // - functions and arrays aren't possible as return and parameter types
1951
1952  // - vector types of equal size can be arbitrarily mixed
1953  if (isa<VectorType>(left)) return isa<VectorType>(right);
1954  if (isa<VectorType>(right)) return false;
1955
1956  // - references should only match references of identical type
1957  // - structs, unions, and Objective-C objects must match more-or-less
1958  //   exactly
1959  // - everything else should be a scalar
1960  if (!left->isScalarType() || !right->isScalarType())
1961    return tryMatchRecordTypes(Context, strategy, left, right);
1962
1963  // Make scalars agree in kind, except count bools as chars, and group
1964  // all non-member pointers together.
1965  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1966  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1967  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1968  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1969  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
1970    leftSK = Type::STK_ObjCObjectPointer;
1971  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
1972    rightSK = Type::STK_ObjCObjectPointer;
1973
1974  // Note that data member pointers and function member pointers don't
1975  // intermix because of the size differences.
1976
1977  return (leftSK == rightSK);
1978}
1979
1980static bool tryMatchRecordTypes(ASTContext &Context,
1981                                Sema::MethodMatchStrategy strategy,
1982                                const Type *lt, const Type *rt) {
1983  assert(lt && rt && lt != rt);
1984
1985  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
1986  RecordDecl *left = cast<RecordType>(lt)->getDecl();
1987  RecordDecl *right = cast<RecordType>(rt)->getDecl();
1988
1989  // Require union-hood to match.
1990  if (left->isUnion() != right->isUnion()) return false;
1991
1992  // Require an exact match if either is non-POD.
1993  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
1994      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
1995    return false;
1996
1997  // Require size and alignment to match.
1998  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
1999
2000  // Require fields to match.
2001  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2002  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2003  for (; li != le && ri != re; ++li, ++ri) {
2004    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2005      return false;
2006  }
2007  return (li == le && ri == re);
2008}
2009
2010/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2011/// returns true, or false, accordingly.
2012/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
2013bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2014                                      const ObjCMethodDecl *right,
2015                                      MethodMatchStrategy strategy) {
2016  if (!matchTypes(Context, strategy,
2017                  left->getResultType(), right->getResultType()))
2018    return false;
2019
2020  if (getLangOpts().ObjCAutoRefCount &&
2021      (left->hasAttr<NSReturnsRetainedAttr>()
2022         != right->hasAttr<NSReturnsRetainedAttr>() ||
2023       left->hasAttr<NSConsumesSelfAttr>()
2024         != right->hasAttr<NSConsumesSelfAttr>()))
2025    return false;
2026
2027  ObjCMethodDecl::param_const_iterator
2028    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2029    re = right->param_end();
2030
2031  for (; li != le && ri != re; ++li, ++ri) {
2032    assert(ri != right->param_end() && "Param mismatch");
2033    const ParmVarDecl *lparm = *li, *rparm = *ri;
2034
2035    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2036      return false;
2037
2038    if (getLangOpts().ObjCAutoRefCount &&
2039        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2040      return false;
2041  }
2042  return true;
2043}
2044
2045void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
2046  // If the list is empty, make it a singleton list.
2047  if (List->Method == 0) {
2048    List->Method = Method;
2049    List->Next = 0;
2050    return;
2051  }
2052
2053  // We've seen a method with this name, see if we have already seen this type
2054  // signature.
2055  ObjCMethodList *Previous = List;
2056  for (; List; Previous = List, List = List->Next) {
2057    if (!MatchTwoMethodDeclarations(Method, List->Method))
2058      continue;
2059
2060    ObjCMethodDecl *PrevObjCMethod = List->Method;
2061
2062    // Propagate the 'defined' bit.
2063    if (Method->isDefined())
2064      PrevObjCMethod->setDefined(true);
2065
2066    // If a method is deprecated, push it in the global pool.
2067    // This is used for better diagnostics.
2068    if (Method->isDeprecated()) {
2069      if (!PrevObjCMethod->isDeprecated())
2070        List->Method = Method;
2071    }
2072    // If new method is unavailable, push it into global pool
2073    // unless previous one is deprecated.
2074    if (Method->isUnavailable()) {
2075      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2076        List->Method = Method;
2077    }
2078
2079    return;
2080  }
2081
2082  // We have a new signature for an existing method - add it.
2083  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2084  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2085  Previous->Next = new (Mem) ObjCMethodList(Method, 0);
2086}
2087
2088/// \brief Read the contents of the method pool for a given selector from
2089/// external storage.
2090void Sema::ReadMethodPool(Selector Sel) {
2091  assert(ExternalSource && "We need an external AST source");
2092  ExternalSource->ReadMethodPool(Sel);
2093}
2094
2095void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2096                                 bool instance) {
2097  // Ignore methods of invalid containers.
2098  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2099    return;
2100
2101  if (ExternalSource)
2102    ReadMethodPool(Method->getSelector());
2103
2104  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2105  if (Pos == MethodPool.end())
2106    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2107                                           GlobalMethods())).first;
2108
2109  Method->setDefined(impl);
2110
2111  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2112  addMethodToGlobalList(&Entry, Method);
2113}
2114
2115/// Determines if this is an "acceptable" loose mismatch in the global
2116/// method pool.  This exists mostly as a hack to get around certain
2117/// global mismatches which we can't afford to make warnings / errors.
2118/// Really, what we want is a way to take a method out of the global
2119/// method pool.
2120static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2121                                       ObjCMethodDecl *other) {
2122  if (!chosen->isInstanceMethod())
2123    return false;
2124
2125  Selector sel = chosen->getSelector();
2126  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2127    return false;
2128
2129  // Don't complain about mismatches for -length if the method we
2130  // chose has an integral result type.
2131  return (chosen->getResultType()->isIntegerType());
2132}
2133
2134ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2135                                               bool receiverIdOrClass,
2136                                               bool warn, bool instance) {
2137  if (ExternalSource)
2138    ReadMethodPool(Sel);
2139
2140  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2141  if (Pos == MethodPool.end())
2142    return 0;
2143
2144  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2145
2146  if (warn && MethList.Method && MethList.Next) {
2147    bool issueDiagnostic = false, issueError = false;
2148
2149    // We support a warning which complains about *any* difference in
2150    // method signature.
2151    bool strictSelectorMatch =
2152      (receiverIdOrClass && warn &&
2153       (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2154                                 R.getBegin()) !=
2155      DiagnosticsEngine::Ignored));
2156    if (strictSelectorMatch)
2157      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2158        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2159                                        MMS_strict)) {
2160          issueDiagnostic = true;
2161          break;
2162        }
2163      }
2164
2165    // If we didn't see any strict differences, we won't see any loose
2166    // differences.  In ARC, however, we also need to check for loose
2167    // mismatches, because most of them are errors.
2168    if (!strictSelectorMatch ||
2169        (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2170      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2171        // This checks if the methods differ in type mismatch.
2172        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2173                                        MMS_loose) &&
2174            !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
2175          issueDiagnostic = true;
2176          if (getLangOpts().ObjCAutoRefCount)
2177            issueError = true;
2178          break;
2179        }
2180      }
2181
2182    if (issueDiagnostic) {
2183      if (issueError)
2184        Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2185      else if (strictSelectorMatch)
2186        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2187      else
2188        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2189
2190      Diag(MethList.Method->getLocStart(),
2191           issueError ? diag::note_possibility : diag::note_using)
2192        << MethList.Method->getSourceRange();
2193      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
2194        Diag(Next->Method->getLocStart(), diag::note_also_found)
2195          << Next->Method->getSourceRange();
2196    }
2197  }
2198  return MethList.Method;
2199}
2200
2201ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2202  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2203  if (Pos == MethodPool.end())
2204    return 0;
2205
2206  GlobalMethods &Methods = Pos->second;
2207
2208  if (Methods.first.Method && Methods.first.Method->isDefined())
2209    return Methods.first.Method;
2210  if (Methods.second.Method && Methods.second.Method->isDefined())
2211    return Methods.second.Method;
2212  return 0;
2213}
2214
2215/// DiagnoseDuplicateIvars -
2216/// Check for duplicate ivars in the entire class at the start of
2217/// \@implementation. This becomes necesssary because class extension can
2218/// add ivars to a class in random order which will not be known until
2219/// class's \@implementation is seen.
2220void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2221                                  ObjCInterfaceDecl *SID) {
2222  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2223       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2224    ObjCIvarDecl* Ivar = *IVI;
2225    if (Ivar->isInvalidDecl())
2226      continue;
2227    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2228      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2229      if (prevIvar) {
2230        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2231        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2232        Ivar->setInvalidDecl();
2233      }
2234    }
2235  }
2236}
2237
2238Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2239  switch (CurContext->getDeclKind()) {
2240    case Decl::ObjCInterface:
2241      return Sema::OCK_Interface;
2242    case Decl::ObjCProtocol:
2243      return Sema::OCK_Protocol;
2244    case Decl::ObjCCategory:
2245      if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2246        return Sema::OCK_ClassExtension;
2247      else
2248        return Sema::OCK_Category;
2249    case Decl::ObjCImplementation:
2250      return Sema::OCK_Implementation;
2251    case Decl::ObjCCategoryImpl:
2252      return Sema::OCK_CategoryImplementation;
2253
2254    default:
2255      return Sema::OCK_None;
2256  }
2257}
2258
2259// Note: For class/category implemenations, allMethods/allProperties is
2260// always null.
2261Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2262                       Decl **allMethods, unsigned allNum,
2263                       Decl **allProperties, unsigned pNum,
2264                       DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2265
2266  if (getObjCContainerKind() == Sema::OCK_None)
2267    return 0;
2268
2269  assert(AtEnd.isValid() && "Invalid location for '@end'");
2270
2271  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2272  Decl *ClassDecl = cast<Decl>(OCD);
2273
2274  bool isInterfaceDeclKind =
2275        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2276         || isa<ObjCProtocolDecl>(ClassDecl);
2277  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2278
2279  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2280  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2281  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2282
2283  for (unsigned i = 0; i < allNum; i++ ) {
2284    ObjCMethodDecl *Method =
2285      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2286
2287    if (!Method) continue;  // Already issued a diagnostic.
2288    if (Method->isInstanceMethod()) {
2289      /// Check for instance method of the same name with incompatible types
2290      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2291      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2292                              : false;
2293      if ((isInterfaceDeclKind && PrevMethod && !match)
2294          || (checkIdenticalMethods && match)) {
2295          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2296            << Method->getDeclName();
2297          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2298        Method->setInvalidDecl();
2299      } else {
2300        if (PrevMethod) {
2301          Method->setAsRedeclaration(PrevMethod);
2302          if (!Context.getSourceManager().isInSystemHeader(
2303                 Method->getLocation()))
2304            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2305              << Method->getDeclName();
2306          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2307        }
2308        InsMap[Method->getSelector()] = Method;
2309        /// The following allows us to typecheck messages to "id".
2310        AddInstanceMethodToGlobalPool(Method);
2311      }
2312    } else {
2313      /// Check for class method of the same name with incompatible types
2314      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2315      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2316                              : false;
2317      if ((isInterfaceDeclKind && PrevMethod && !match)
2318          || (checkIdenticalMethods && match)) {
2319        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2320          << Method->getDeclName();
2321        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2322        Method->setInvalidDecl();
2323      } else {
2324        if (PrevMethod) {
2325          Method->setAsRedeclaration(PrevMethod);
2326          if (!Context.getSourceManager().isInSystemHeader(
2327                 Method->getLocation()))
2328            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2329              << Method->getDeclName();
2330          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2331        }
2332        ClsMap[Method->getSelector()] = Method;
2333        AddFactoryMethodToGlobalPool(Method);
2334      }
2335    }
2336  }
2337  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
2338    // Compares properties declared in this class to those of its
2339    // super class.
2340    ComparePropertiesInBaseAndSuper(I);
2341    CompareProperties(I, I);
2342  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2343    // Categories are used to extend the class by declaring new methods.
2344    // By the same token, they are also used to add new properties. No
2345    // need to compare the added property to those in the class.
2346
2347    // Compare protocol properties with those in category
2348    CompareProperties(C, C);
2349    if (C->IsClassExtension()) {
2350      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2351      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2352    }
2353  }
2354  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2355    if (CDecl->getIdentifier())
2356      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2357      // user-defined setter/getter. It also synthesizes setter/getter methods
2358      // and adds them to the DeclContext and global method pools.
2359      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2360                                            E = CDecl->prop_end();
2361           I != E; ++I)
2362        ProcessPropertyDecl(*I, CDecl);
2363    CDecl->setAtEndRange(AtEnd);
2364  }
2365  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2366    IC->setAtEndRange(AtEnd);
2367    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2368      // Any property declared in a class extension might have user
2369      // declared setter or getter in current class extension or one
2370      // of the other class extensions. Mark them as synthesized as
2371      // property will be synthesized when property with same name is
2372      // seen in the @implementation.
2373      for (const ObjCCategoryDecl *ClsExtDecl =
2374           IDecl->getFirstClassExtension();
2375           ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
2376        for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
2377             E = ClsExtDecl->prop_end(); I != E; ++I) {
2378          ObjCPropertyDecl *Property = *I;
2379          // Skip over properties declared @dynamic
2380          if (const ObjCPropertyImplDecl *PIDecl
2381              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2382            if (PIDecl->getPropertyImplementation()
2383                  == ObjCPropertyImplDecl::Dynamic)
2384              continue;
2385
2386          for (const ObjCCategoryDecl *CExtDecl =
2387               IDecl->getFirstClassExtension();
2388               CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
2389            if (ObjCMethodDecl *GetterMethod =
2390                CExtDecl->getInstanceMethod(Property->getGetterName()))
2391              GetterMethod->setPropertyAccessor(true);
2392            if (!Property->isReadOnly())
2393              if (ObjCMethodDecl *SetterMethod =
2394                  CExtDecl->getInstanceMethod(Property->getSetterName()))
2395                SetterMethod->setPropertyAccessor(true);
2396          }
2397        }
2398      }
2399      ImplMethodsVsClassMethods(S, IC, IDecl);
2400      AtomicPropertySetterGetterRules(IC, IDecl);
2401      DiagnoseOwningPropertyGetterSynthesis(IC);
2402
2403      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2404      if (IDecl->getSuperClass() == NULL) {
2405        // This class has no superclass, so check that it has been marked with
2406        // __attribute((objc_root_class)).
2407        if (!HasRootClassAttr) {
2408          SourceLocation DeclLoc(IDecl->getLocation());
2409          SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
2410          Diag(DeclLoc, diag::warn_objc_root_class_missing)
2411            << IDecl->getIdentifier();
2412          // See if NSObject is in the current scope, and if it is, suggest
2413          // adding " : NSObject " to the class declaration.
2414          NamedDecl *IF = LookupSingleName(TUScope,
2415                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2416                                           DeclLoc, LookupOrdinaryName);
2417          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2418          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2419            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2420              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2421          } else {
2422            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2423          }
2424        }
2425      } else if (HasRootClassAttr) {
2426        // Complain that only root classes may have this attribute.
2427        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2428      }
2429
2430      if (LangOpts.ObjCRuntime.isNonFragile()) {
2431        while (IDecl->getSuperClass()) {
2432          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2433          IDecl = IDecl->getSuperClass();
2434        }
2435      }
2436    }
2437    SetIvarInitializers(IC);
2438  } else if (ObjCCategoryImplDecl* CatImplClass =
2439                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2440    CatImplClass->setAtEndRange(AtEnd);
2441
2442    // Find category interface decl and then check that all methods declared
2443    // in this interface are implemented in the category @implementation.
2444    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2445      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
2446           Categories; Categories = Categories->getNextClassCategory()) {
2447        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
2448          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
2449          break;
2450        }
2451      }
2452    }
2453  }
2454  if (isInterfaceDeclKind) {
2455    // Reject invalid vardecls.
2456    for (unsigned i = 0; i != tuvNum; i++) {
2457      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2458      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2459        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2460          if (!VDecl->hasExternalStorage())
2461            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2462        }
2463    }
2464  }
2465  ActOnObjCContainerFinishDefinition();
2466
2467  for (unsigned i = 0; i != tuvNum; i++) {
2468    DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2469    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2470      (*I)->setTopLevelDeclInObjCContainer();
2471    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2472  }
2473
2474  ActOnDocumentableDecl(ClassDecl);
2475  return ClassDecl;
2476}
2477
2478
2479/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2480/// objective-c's type qualifier from the parser version of the same info.
2481static Decl::ObjCDeclQualifier
2482CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2483  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2484}
2485
2486static inline
2487unsigned countAlignAttr(const AttrVec &A) {
2488  unsigned count=0;
2489  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2490    if ((*i)->getKind() == attr::Aligned)
2491      ++count;
2492  return count;
2493}
2494
2495static inline
2496bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2497                                        const AttrVec &A) {
2498  // If method is only declared in implementation (private method),
2499  // No need to issue any diagnostics on method definition with attributes.
2500  if (!IMD)
2501    return false;
2502
2503  // method declared in interface has no attribute.
2504  // But implementation has attributes. This is invalid.
2505  // Except when implementation has 'Align' attribute which is
2506  // immaterial to method declared in interface.
2507  if (!IMD->hasAttrs())
2508    return (A.size() > countAlignAttr(A));
2509
2510  const AttrVec &D = IMD->getAttrs();
2511
2512  unsigned countAlignOnImpl = countAlignAttr(A);
2513  if (!countAlignOnImpl && (A.size() != D.size()))
2514    return true;
2515  else if (countAlignOnImpl) {
2516    unsigned countAlignOnDecl = countAlignAttr(D);
2517    if (countAlignOnDecl && (A.size() != D.size()))
2518      return true;
2519    else if (!countAlignOnDecl &&
2520             ((A.size()-countAlignOnImpl) != D.size()))
2521      return true;
2522  }
2523
2524  // attributes on method declaration and definition must match exactly.
2525  // Note that we have at most a couple of attributes on methods, so this
2526  // n*n search is good enough.
2527  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2528    if ((*i)->getKind() == attr::Aligned)
2529      continue;
2530    bool match = false;
2531    for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2532      if ((*i)->getKind() == (*i1)->getKind()) {
2533        match = true;
2534        break;
2535      }
2536    }
2537    if (!match)
2538      return true;
2539  }
2540
2541  return false;
2542}
2543
2544/// \brief Check whether the declared result type of the given Objective-C
2545/// method declaration is compatible with the method's class.
2546///
2547static Sema::ResultTypeCompatibilityKind
2548CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2549                                    ObjCInterfaceDecl *CurrentClass) {
2550  QualType ResultType = Method->getResultType();
2551
2552  // If an Objective-C method inherits its related result type, then its
2553  // declared result type must be compatible with its own class type. The
2554  // declared result type is compatible if:
2555  if (const ObjCObjectPointerType *ResultObjectType
2556                                = ResultType->getAs<ObjCObjectPointerType>()) {
2557    //   - it is id or qualified id, or
2558    if (ResultObjectType->isObjCIdType() ||
2559        ResultObjectType->isObjCQualifiedIdType())
2560      return Sema::RTC_Compatible;
2561
2562    if (CurrentClass) {
2563      if (ObjCInterfaceDecl *ResultClass
2564                                      = ResultObjectType->getInterfaceDecl()) {
2565        //   - it is the same as the method's class type, or
2566        if (declaresSameEntity(CurrentClass, ResultClass))
2567          return Sema::RTC_Compatible;
2568
2569        //   - it is a superclass of the method's class type
2570        if (ResultClass->isSuperClassOf(CurrentClass))
2571          return Sema::RTC_Compatible;
2572      }
2573    } else {
2574      // Any Objective-C pointer type might be acceptable for a protocol
2575      // method; we just don't know.
2576      return Sema::RTC_Unknown;
2577    }
2578  }
2579
2580  return Sema::RTC_Incompatible;
2581}
2582
2583namespace {
2584/// A helper class for searching for methods which a particular method
2585/// overrides.
2586class OverrideSearch {
2587public:
2588  Sema &S;
2589  ObjCMethodDecl *Method;
2590  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2591  bool Recursive;
2592
2593public:
2594  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2595    Selector selector = method->getSelector();
2596
2597    // Bypass this search if we've never seen an instance/class method
2598    // with this selector before.
2599    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2600    if (it == S.MethodPool.end()) {
2601      if (!S.getExternalSource()) return;
2602      S.ReadMethodPool(selector);
2603
2604      it = S.MethodPool.find(selector);
2605      if (it == S.MethodPool.end())
2606        return;
2607    }
2608    ObjCMethodList &list =
2609      method->isInstanceMethod() ? it->second.first : it->second.second;
2610    if (!list.Method) return;
2611
2612    ObjCContainerDecl *container
2613      = cast<ObjCContainerDecl>(method->getDeclContext());
2614
2615    // Prevent the search from reaching this container again.  This is
2616    // important with categories, which override methods from the
2617    // interface and each other.
2618    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2619      searchFromContainer(container);
2620      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2621        searchFromContainer(Interface);
2622    } else {
2623      searchFromContainer(container);
2624    }
2625  }
2626
2627  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2628  iterator begin() const { return Overridden.begin(); }
2629  iterator end() const { return Overridden.end(); }
2630
2631private:
2632  void searchFromContainer(ObjCContainerDecl *container) {
2633    if (container->isInvalidDecl()) return;
2634
2635    switch (container->getDeclKind()) {
2636#define OBJCCONTAINER(type, base) \
2637    case Decl::type: \
2638      searchFrom(cast<type##Decl>(container)); \
2639      break;
2640#define ABSTRACT_DECL(expansion)
2641#define DECL(type, base) \
2642    case Decl::type:
2643#include "clang/AST/DeclNodes.inc"
2644      llvm_unreachable("not an ObjC container!");
2645    }
2646  }
2647
2648  void searchFrom(ObjCProtocolDecl *protocol) {
2649    if (!protocol->hasDefinition())
2650      return;
2651
2652    // A method in a protocol declaration overrides declarations from
2653    // referenced ("parent") protocols.
2654    search(protocol->getReferencedProtocols());
2655  }
2656
2657  void searchFrom(ObjCCategoryDecl *category) {
2658    // A method in a category declaration overrides declarations from
2659    // the main class and from protocols the category references.
2660    // The main class is handled in the constructor.
2661    search(category->getReferencedProtocols());
2662  }
2663
2664  void searchFrom(ObjCCategoryImplDecl *impl) {
2665    // A method in a category definition that has a category
2666    // declaration overrides declarations from the category
2667    // declaration.
2668    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2669      search(category);
2670      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2671        search(Interface);
2672
2673    // Otherwise it overrides declarations from the class.
2674    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2675      search(Interface);
2676    }
2677  }
2678
2679  void searchFrom(ObjCInterfaceDecl *iface) {
2680    // A method in a class declaration overrides declarations from
2681    if (!iface->hasDefinition())
2682      return;
2683
2684    //   - categories,
2685    for (ObjCCategoryDecl *category = iface->getCategoryList();
2686           category; category = category->getNextClassCategory())
2687      search(category);
2688
2689    //   - the super class, and
2690    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2691      search(super);
2692
2693    //   - any referenced protocols.
2694    search(iface->getReferencedProtocols());
2695  }
2696
2697  void searchFrom(ObjCImplementationDecl *impl) {
2698    // A method in a class implementation overrides declarations from
2699    // the class interface.
2700    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2701      search(Interface);
2702  }
2703
2704
2705  void search(const ObjCProtocolList &protocols) {
2706    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2707         i != e; ++i)
2708      search(*i);
2709  }
2710
2711  void search(ObjCContainerDecl *container) {
2712    // Check for a method in this container which matches this selector.
2713    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2714                                                Method->isInstanceMethod());
2715
2716    // If we find one, record it and bail out.
2717    if (meth) {
2718      Overridden.insert(meth);
2719      return;
2720    }
2721
2722    // Otherwise, search for methods that a hypothetical method here
2723    // would have overridden.
2724
2725    // Note that we're now in a recursive case.
2726    Recursive = true;
2727
2728    searchFromContainer(container);
2729  }
2730};
2731}
2732
2733void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2734                                    ObjCInterfaceDecl *CurrentClass,
2735                                    ResultTypeCompatibilityKind RTC) {
2736  // Search for overridden methods and merge information down from them.
2737  OverrideSearch overrides(*this, ObjCMethod);
2738  // Keep track if the method overrides any method in the class's base classes,
2739  // its protocols, or its categories' protocols; we will keep that info
2740  // in the ObjCMethodDecl.
2741  // For this info, a method in an implementation is not considered as
2742  // overriding the same method in the interface or its categories.
2743  bool hasOverriddenMethodsInBaseOrProtocol = false;
2744  for (OverrideSearch::iterator
2745         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2746    ObjCMethodDecl *overridden = *i;
2747
2748    if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
2749        CurrentClass != overridden->getClassInterface() ||
2750        overridden->isOverriding())
2751      hasOverriddenMethodsInBaseOrProtocol = true;
2752
2753    // Propagate down the 'related result type' bit from overridden methods.
2754    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
2755      ObjCMethod->SetRelatedResultType();
2756
2757    // Then merge the declarations.
2758    mergeObjCMethodDecls(ObjCMethod, overridden);
2759
2760    if (ObjCMethod->isImplicit() && overridden->isImplicit())
2761      continue; // Conflicting properties are detected elsewhere.
2762
2763    // Check for overriding methods
2764    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
2765        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
2766      CheckConflictingOverridingMethod(ObjCMethod, overridden,
2767              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
2768
2769    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
2770        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
2771        !overridden->isImplicit() /* not meant for properties */) {
2772      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
2773                                          E = ObjCMethod->param_end();
2774      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
2775                                     PrevE = overridden->param_end();
2776      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
2777        assert(PrevI != overridden->param_end() && "Param mismatch");
2778        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2779        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2780        // If type of argument of method in this class does not match its
2781        // respective argument type in the super class method, issue warning;
2782        if (!Context.typesAreCompatible(T1, T2)) {
2783          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2784            << T1 << T2;
2785          Diag(overridden->getLocation(), diag::note_previous_declaration);
2786          break;
2787        }
2788      }
2789    }
2790  }
2791
2792  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
2793}
2794
2795Decl *Sema::ActOnMethodDeclaration(
2796    Scope *S,
2797    SourceLocation MethodLoc, SourceLocation EndLoc,
2798    tok::TokenKind MethodType,
2799    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2800    ArrayRef<SourceLocation> SelectorLocs,
2801    Selector Sel,
2802    // optional arguments. The number of types/arguments is obtained
2803    // from the Sel.getNumArgs().
2804    ObjCArgInfo *ArgInfo,
2805    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2806    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2807    bool isVariadic, bool MethodDefinition) {
2808  // Make sure we can establish a context for the method.
2809  if (!CurContext->isObjCContainer()) {
2810    Diag(MethodLoc, diag::error_missing_method_context);
2811    return 0;
2812  }
2813  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2814  Decl *ClassDecl = cast<Decl>(OCD);
2815  QualType resultDeclType;
2816
2817  bool HasRelatedResultType = false;
2818  TypeSourceInfo *ResultTInfo = 0;
2819  if (ReturnType) {
2820    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2821
2822    // Methods cannot return interface types. All ObjC objects are
2823    // passed by reference.
2824    if (resultDeclType->isObjCObjectType()) {
2825      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2826        << 0 << resultDeclType;
2827      return 0;
2828    }
2829
2830    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
2831  } else { // get the type for "id".
2832    resultDeclType = Context.getObjCIdType();
2833    Diag(MethodLoc, diag::warn_missing_method_return_type)
2834      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
2835  }
2836
2837  ObjCMethodDecl* ObjCMethod =
2838    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
2839                           resultDeclType,
2840                           ResultTInfo,
2841                           CurContext,
2842                           MethodType == tok::minus, isVariadic,
2843                           /*isPropertyAccessor=*/false,
2844                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2845                           MethodDeclKind == tok::objc_optional
2846                             ? ObjCMethodDecl::Optional
2847                             : ObjCMethodDecl::Required,
2848                           HasRelatedResultType);
2849
2850  SmallVector<ParmVarDecl*, 16> Params;
2851
2852  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2853    QualType ArgType;
2854    TypeSourceInfo *DI;
2855
2856    if (ArgInfo[i].Type == 0) {
2857      ArgType = Context.getObjCIdType();
2858      DI = 0;
2859    } else {
2860      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2861      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2862      ArgType = Context.getAdjustedParameterType(ArgType);
2863    }
2864
2865    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2866                   LookupOrdinaryName, ForRedeclaration);
2867    LookupName(R, S);
2868    if (R.isSingleResult()) {
2869      NamedDecl *PrevDecl = R.getFoundDecl();
2870      if (S->isDeclScope(PrevDecl)) {
2871        Diag(ArgInfo[i].NameLoc,
2872             (MethodDefinition ? diag::warn_method_param_redefinition
2873                               : diag::warn_method_param_declaration))
2874          << ArgInfo[i].Name;
2875        Diag(PrevDecl->getLocation(),
2876             diag::note_previous_declaration);
2877      }
2878    }
2879
2880    SourceLocation StartLoc = DI
2881      ? DI->getTypeLoc().getBeginLoc()
2882      : ArgInfo[i].NameLoc;
2883
2884    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2885                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
2886                                        ArgType, DI, SC_None, SC_None);
2887
2888    Param->setObjCMethodScopeInfo(i);
2889
2890    Param->setObjCDeclQualifier(
2891      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2892
2893    // Apply the attributes to the parameter.
2894    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2895
2896    if (Param->hasAttr<BlocksAttr>()) {
2897      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
2898      Param->setInvalidDecl();
2899    }
2900    S->AddDecl(Param);
2901    IdResolver.AddDecl(Param);
2902
2903    Params.push_back(Param);
2904  }
2905
2906  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2907    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2908    QualType ArgType = Param->getType();
2909    if (ArgType.isNull())
2910      ArgType = Context.getObjCIdType();
2911    else
2912      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2913      ArgType = Context.getAdjustedParameterType(ArgType);
2914    if (ArgType->isObjCObjectType()) {
2915      Diag(Param->getLocation(),
2916           diag::err_object_cannot_be_passed_returned_by_value)
2917      << 1 << ArgType;
2918      Param->setInvalidDecl();
2919    }
2920    Param->setDeclContext(ObjCMethod);
2921
2922    Params.push_back(Param);
2923  }
2924
2925  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
2926  ObjCMethod->setObjCDeclQualifier(
2927    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2928
2929  if (AttrList)
2930    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2931
2932  // Add the method now.
2933  const ObjCMethodDecl *PrevMethod = 0;
2934  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
2935    if (MethodType == tok::minus) {
2936      PrevMethod = ImpDecl->getInstanceMethod(Sel);
2937      ImpDecl->addInstanceMethod(ObjCMethod);
2938    } else {
2939      PrevMethod = ImpDecl->getClassMethod(Sel);
2940      ImpDecl->addClassMethod(ObjCMethod);
2941    }
2942
2943    ObjCMethodDecl *IMD = 0;
2944    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
2945      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
2946                                ObjCMethod->isInstanceMethod());
2947    if (ObjCMethod->hasAttrs() &&
2948        containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
2949      SourceLocation MethodLoc = IMD->getLocation();
2950      if (!getSourceManager().isInSystemHeader(MethodLoc)) {
2951        Diag(EndLoc, diag::warn_attribute_method_def);
2952        Diag(MethodLoc, diag::note_method_declared_at)
2953          << ObjCMethod->getDeclName();
2954      }
2955    }
2956  } else {
2957    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
2958  }
2959
2960  if (PrevMethod) {
2961    // You can never have two method definitions with the same name.
2962    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
2963      << ObjCMethod->getDeclName();
2964    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2965  }
2966
2967  // If this Objective-C method does not have a related result type, but we
2968  // are allowed to infer related result types, try to do so based on the
2969  // method family.
2970  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2971  if (!CurrentClass) {
2972    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
2973      CurrentClass = Cat->getClassInterface();
2974    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
2975      CurrentClass = Impl->getClassInterface();
2976    else if (ObjCCategoryImplDecl *CatImpl
2977                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
2978      CurrentClass = CatImpl->getClassInterface();
2979  }
2980
2981  ResultTypeCompatibilityKind RTC
2982    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
2983
2984  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
2985
2986  bool ARCError = false;
2987  if (getLangOpts().ObjCAutoRefCount)
2988    ARCError = CheckARCMethodDecl(*this, ObjCMethod);
2989
2990  // Infer the related result type when possible.
2991  if (!ARCError && RTC == Sema::RTC_Compatible &&
2992      !ObjCMethod->hasRelatedResultType() &&
2993      LangOpts.ObjCInferRelatedResultType) {
2994    bool InferRelatedResultType = false;
2995    switch (ObjCMethod->getMethodFamily()) {
2996    case OMF_None:
2997    case OMF_copy:
2998    case OMF_dealloc:
2999    case OMF_finalize:
3000    case OMF_mutableCopy:
3001    case OMF_release:
3002    case OMF_retainCount:
3003    case OMF_performSelector:
3004      break;
3005
3006    case OMF_alloc:
3007    case OMF_new:
3008      InferRelatedResultType = ObjCMethod->isClassMethod();
3009      break;
3010
3011    case OMF_init:
3012    case OMF_autorelease:
3013    case OMF_retain:
3014    case OMF_self:
3015      InferRelatedResultType = ObjCMethod->isInstanceMethod();
3016      break;
3017    }
3018
3019    if (InferRelatedResultType)
3020      ObjCMethod->SetRelatedResultType();
3021  }
3022
3023  ActOnDocumentableDecl(ObjCMethod);
3024
3025  return ObjCMethod;
3026}
3027
3028bool Sema::CheckObjCDeclScope(Decl *D) {
3029  // Following is also an error. But it is caused by a missing @end
3030  // and diagnostic is issued elsewhere.
3031  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3032    return false;
3033
3034  // If we switched context to translation unit while we are still lexically in
3035  // an objc container, it means the parser missed emitting an error.
3036  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3037    return false;
3038
3039  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3040  D->setInvalidDecl();
3041
3042  return true;
3043}
3044
3045/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
3046/// instance variables of ClassName into Decls.
3047void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3048                     IdentifierInfo *ClassName,
3049                     SmallVectorImpl<Decl*> &Decls) {
3050  // Check that ClassName is a valid class
3051  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3052  if (!Class) {
3053    Diag(DeclStart, diag::err_undef_interface) << ClassName;
3054    return;
3055  }
3056  if (LangOpts.ObjCRuntime.isNonFragile()) {
3057    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3058    return;
3059  }
3060
3061  // Collect the instance variables
3062  SmallVector<const ObjCIvarDecl*, 32> Ivars;
3063  Context.DeepCollectObjCIvars(Class, true, Ivars);
3064  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3065  for (unsigned i = 0; i < Ivars.size(); i++) {
3066    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3067    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3068    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3069                                           /*FIXME: StartL=*/ID->getLocation(),
3070                                           ID->getLocation(),
3071                                           ID->getIdentifier(), ID->getType(),
3072                                           ID->getBitWidth());
3073    Decls.push_back(FD);
3074  }
3075
3076  // Introduce all of these fields into the appropriate scope.
3077  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3078       D != Decls.end(); ++D) {
3079    FieldDecl *FD = cast<FieldDecl>(*D);
3080    if (getLangOpts().CPlusPlus)
3081      PushOnScopeChains(cast<FieldDecl>(FD), S);
3082    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3083      Record->addDecl(FD);
3084  }
3085}
3086
3087/// \brief Build a type-check a new Objective-C exception variable declaration.
3088VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3089                                      SourceLocation StartLoc,
3090                                      SourceLocation IdLoc,
3091                                      IdentifierInfo *Id,
3092                                      bool Invalid) {
3093  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3094  // duration shall not be qualified by an address-space qualifier."
3095  // Since all parameters have automatic store duration, they can not have
3096  // an address space.
3097  if (T.getAddressSpace() != 0) {
3098    Diag(IdLoc, diag::err_arg_with_address_space);
3099    Invalid = true;
3100  }
3101
3102  // An @catch parameter must be an unqualified object pointer type;
3103  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3104  if (Invalid) {
3105    // Don't do any further checking.
3106  } else if (T->isDependentType()) {
3107    // Okay: we don't know what this type will instantiate to.
3108  } else if (!T->isObjCObjectPointerType()) {
3109    Invalid = true;
3110    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3111  } else if (T->isObjCQualifiedIdType()) {
3112    Invalid = true;
3113    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3114  }
3115
3116  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3117                                 T, TInfo, SC_None, SC_None);
3118  New->setExceptionVariable(true);
3119
3120  // In ARC, infer 'retaining' for variables of retainable type.
3121  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3122    Invalid = true;
3123
3124  if (Invalid)
3125    New->setInvalidDecl();
3126  return New;
3127}
3128
3129Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3130  const DeclSpec &DS = D.getDeclSpec();
3131
3132  // We allow the "register" storage class on exception variables because
3133  // GCC did, but we drop it completely. Any other storage class is an error.
3134  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3135    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3136      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3137  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3138    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3139      << DS.getStorageClassSpec();
3140  }
3141  if (D.getDeclSpec().isThreadSpecified())
3142    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3143  D.getMutableDeclSpec().ClearStorageClassSpecs();
3144
3145  DiagnoseFunctionSpecifiers(D);
3146
3147  // Check that there are no default arguments inside the type of this
3148  // exception object (C++ only).
3149  if (getLangOpts().CPlusPlus)
3150    CheckExtraCXXDefaultArguments(D);
3151
3152  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3153  QualType ExceptionType = TInfo->getType();
3154
3155  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3156                                        D.getSourceRange().getBegin(),
3157                                        D.getIdentifierLoc(),
3158                                        D.getIdentifier(),
3159                                        D.isInvalidType());
3160
3161  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3162  if (D.getCXXScopeSpec().isSet()) {
3163    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3164      << D.getCXXScopeSpec().getRange();
3165    New->setInvalidDecl();
3166  }
3167
3168  // Add the parameter declaration into this scope.
3169  S->AddDecl(New);
3170  if (D.getIdentifier())
3171    IdResolver.AddDecl(New);
3172
3173  ProcessDeclAttributes(S, New, D);
3174
3175  if (New->hasAttr<BlocksAttr>())
3176    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3177  return New;
3178}
3179
3180/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3181/// initialization.
3182void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3183                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3184  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3185       Iv= Iv->getNextIvar()) {
3186    QualType QT = Context.getBaseElementType(Iv->getType());
3187    if (QT->isRecordType())
3188      Ivars.push_back(Iv);
3189  }
3190}
3191
3192void Sema::DiagnoseUseOfUnimplementedSelectors() {
3193  // Load referenced selectors from the external source.
3194  if (ExternalSource) {
3195    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3196    ExternalSource->ReadReferencedSelectors(Sels);
3197    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3198      ReferencedSelectors[Sels[I].first] = Sels[I].second;
3199  }
3200
3201  // Warning will be issued only when selector table is
3202  // generated (which means there is at lease one implementation
3203  // in the TU). This is to match gcc's behavior.
3204  if (ReferencedSelectors.empty() ||
3205      !Context.AnyObjCImplementation())
3206    return;
3207  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3208        ReferencedSelectors.begin(),
3209       E = ReferencedSelectors.end(); S != E; ++S) {
3210    Selector Sel = (*S).first;
3211    if (!LookupImplementedMethodInGlobalPool(Sel))
3212      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3213  }
3214  return;
3215}
3216