SemaDecl.cpp revision 225736
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
49  if (OwnedType) {
50    Decl *Group[2] = { OwnedType, Ptr };
51    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
52  }
53
54  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
55}
56
57/// \brief If the identifier refers to a type name within this scope,
58/// return the declaration of that type.
59///
60/// This routine performs ordinary name lookup of the identifier II
61/// within the given scope, with optional C++ scope specifier SS, to
62/// determine whether the name refers to a type. If so, returns an
63/// opaque pointer (actually a QualType) corresponding to that
64/// type. Otherwise, returns NULL.
65///
66/// If name lookup results in an ambiguity, this routine will complain
67/// and then return NULL.
68ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                             Scope *S, CXXScopeSpec *SS,
70                             bool isClassName, bool HasTrailingDot,
71                             ParsedType ObjectTypePtr,
72                             bool WantNontrivialTypeSourceInfo) {
73  // Determine where we will perform name lookup.
74  DeclContext *LookupCtx = 0;
75  if (ObjectTypePtr) {
76    QualType ObjectType = ObjectTypePtr.get();
77    if (ObjectType->isRecordType())
78      LookupCtx = computeDeclContext(ObjectType);
79  } else if (SS && SS->isNotEmpty()) {
80    LookupCtx = computeDeclContext(*SS, false);
81
82    if (!LookupCtx) {
83      if (isDependentScopeSpecifier(*SS)) {
84        // C++ [temp.res]p3:
85        //   A qualified-id that refers to a type and in which the
86        //   nested-name-specifier depends on a template-parameter (14.6.2)
87        //   shall be prefixed by the keyword typename to indicate that the
88        //   qualified-id denotes a type, forming an
89        //   elaborated-type-specifier (7.1.5.3).
90        //
91        // We therefore do not perform any name lookup if the result would
92        // refer to a member of an unknown specialization.
93        if (!isClassName)
94          return ParsedType();
95
96        // We know from the grammar that this name refers to a type,
97        // so build a dependent node to describe the type.
98        if (WantNontrivialTypeSourceInfo)
99          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
100
101        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
102        QualType T =
103          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
104                            II, NameLoc);
105
106          return ParsedType::make(T);
107      }
108
109      return ParsedType();
110    }
111
112    if (!LookupCtx->isDependentContext() &&
113        RequireCompleteDeclContext(*SS, LookupCtx))
114      return ParsedType();
115  }
116
117  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
118  // lookup for class-names.
119  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
120                                      LookupOrdinaryName;
121  LookupResult Result(*this, &II, NameLoc, Kind);
122  if (LookupCtx) {
123    // Perform "qualified" name lookup into the declaration context we
124    // computed, which is either the type of the base of a member access
125    // expression or the declaration context associated with a prior
126    // nested-name-specifier.
127    LookupQualifiedName(Result, LookupCtx);
128
129    if (ObjectTypePtr && Result.empty()) {
130      // C++ [basic.lookup.classref]p3:
131      //   If the unqualified-id is ~type-name, the type-name is looked up
132      //   in the context of the entire postfix-expression. If the type T of
133      //   the object expression is of a class type C, the type-name is also
134      //   looked up in the scope of class C. At least one of the lookups shall
135      //   find a name that refers to (possibly cv-qualified) T.
136      LookupName(Result, S);
137    }
138  } else {
139    // Perform unqualified name lookup.
140    LookupName(Result, S);
141  }
142
143  NamedDecl *IIDecl = 0;
144  switch (Result.getResultKind()) {
145  case LookupResult::NotFound:
146  case LookupResult::NotFoundInCurrentInstantiation:
147  case LookupResult::FoundOverloaded:
148  case LookupResult::FoundUnresolvedValue:
149    Result.suppressDiagnostics();
150    return ParsedType();
151
152  case LookupResult::Ambiguous:
153    // Recover from type-hiding ambiguities by hiding the type.  We'll
154    // do the lookup again when looking for an object, and we can
155    // diagnose the error then.  If we don't do this, then the error
156    // about hiding the type will be immediately followed by an error
157    // that only makes sense if the identifier was treated like a type.
158    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
159      Result.suppressDiagnostics();
160      return ParsedType();
161    }
162
163    // Look to see if we have a type anywhere in the list of results.
164    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
165         Res != ResEnd; ++Res) {
166      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
167        if (!IIDecl ||
168            (*Res)->getLocation().getRawEncoding() <
169              IIDecl->getLocation().getRawEncoding())
170          IIDecl = *Res;
171      }
172    }
173
174    if (!IIDecl) {
175      // None of the entities we found is a type, so there is no way
176      // to even assume that the result is a type. In this case, don't
177      // complain about the ambiguity. The parser will either try to
178      // perform this lookup again (e.g., as an object name), which
179      // will produce the ambiguity, or will complain that it expected
180      // a type name.
181      Result.suppressDiagnostics();
182      return ParsedType();
183    }
184
185    // We found a type within the ambiguous lookup; diagnose the
186    // ambiguity and then return that type. This might be the right
187    // answer, or it might not be, but it suppresses any attempt to
188    // perform the name lookup again.
189    break;
190
191  case LookupResult::Found:
192    IIDecl = Result.getFoundDecl();
193    break;
194  }
195
196  assert(IIDecl && "Didn't find decl");
197
198  QualType T;
199  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
200    DiagnoseUseOfDecl(IIDecl, NameLoc);
201
202    if (T.isNull())
203      T = Context.getTypeDeclType(TD);
204
205    if (SS && SS->isNotEmpty()) {
206      if (WantNontrivialTypeSourceInfo) {
207        // Construct a type with type-source information.
208        TypeLocBuilder Builder;
209        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
210
211        T = getElaboratedType(ETK_None, *SS, T);
212        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
213        ElabTL.setKeywordLoc(SourceLocation());
214        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
215        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
216      } else {
217        T = getElaboratedType(ETK_None, *SS, T);
218      }
219    }
220  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
221    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
222    if (!HasTrailingDot)
223      T = Context.getObjCInterfaceType(IDecl);
224  }
225
226  if (T.isNull()) {
227    // If it's not plausibly a type, suppress diagnostics.
228    Result.suppressDiagnostics();
229    return ParsedType();
230  }
231  return ParsedType::make(T);
232}
233
234/// isTagName() - This method is called *for error recovery purposes only*
235/// to determine if the specified name is a valid tag name ("struct foo").  If
236/// so, this returns the TST for the tag corresponding to it (TST_enum,
237/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
238/// where the user forgot to specify the tag.
239DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
240  // Do a tag name lookup in this scope.
241  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
242  LookupName(R, S, false);
243  R.suppressDiagnostics();
244  if (R.getResultKind() == LookupResult::Found)
245    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
246      switch (TD->getTagKind()) {
247      default:         return DeclSpec::TST_unspecified;
248      case TTK_Struct: return DeclSpec::TST_struct;
249      case TTK_Union:  return DeclSpec::TST_union;
250      case TTK_Class:  return DeclSpec::TST_class;
251      case TTK_Enum:   return DeclSpec::TST_enum;
252      }
253    }
254
255  return DeclSpec::TST_unspecified;
256}
257
258/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
259/// if a CXXScopeSpec's type is equal to the type of one of the base classes
260/// then downgrade the missing typename error to a warning.
261/// This is needed for MSVC compatibility; Example:
262/// @code
263/// template<class T> class A {
264/// public:
265///   typedef int TYPE;
266/// };
267/// template<class T> class B : public A<T> {
268/// public:
269///   A<T>::TYPE a; // no typename required because A<T> is a base class.
270/// };
271/// @endcode
272bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
273  if (CurContext->isRecord()) {
274    const Type *Ty = SS->getScopeRep()->getAsType();
275
276    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
277    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
278          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
279      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
280        return true;
281  }
282  return false;
283}
284
285bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
286                                   SourceLocation IILoc,
287                                   Scope *S,
288                                   CXXScopeSpec *SS,
289                                   ParsedType &SuggestedType) {
290  // We don't have anything to suggest (yet).
291  SuggestedType = ParsedType();
292
293  // There may have been a typo in the name of the type. Look up typo
294  // results, in case we have something that we can suggest.
295  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
296                                             LookupOrdinaryName, S, SS, NULL,
297                                             false, CTC_Type)) {
298    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
299    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
300
301    if (Corrected.isKeyword()) {
302      // We corrected to a keyword.
303      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
304      Diag(IILoc, diag::err_unknown_typename_suggest)
305        << &II << CorrectedQuotedStr;
306      return true;
307    } else {
308      NamedDecl *Result = Corrected.getCorrectionDecl();
309      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
310          !Result->isInvalidDecl()) {
311        // We found a similarly-named type or interface; suggest that.
312        if (!SS || !SS->isSet())
313          Diag(IILoc, diag::err_unknown_typename_suggest)
314            << &II << CorrectedQuotedStr
315            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
316        else if (DeclContext *DC = computeDeclContext(*SS, false))
317          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
318            << &II << DC << CorrectedQuotedStr << SS->getRange()
319            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
320        else
321          llvm_unreachable("could not have corrected a typo here");
322
323        Diag(Result->getLocation(), diag::note_previous_decl)
324          << CorrectedQuotedStr;
325
326        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
327                                    false, false, ParsedType(),
328                                    /*NonTrivialTypeSourceInfo=*/true);
329        return true;
330      }
331    }
332  }
333
334  if (getLangOptions().CPlusPlus) {
335    // See if II is a class template that the user forgot to pass arguments to.
336    UnqualifiedId Name;
337    Name.setIdentifier(&II, IILoc);
338    CXXScopeSpec EmptySS;
339    TemplateTy TemplateResult;
340    bool MemberOfUnknownSpecialization;
341    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
342                       Name, ParsedType(), true, TemplateResult,
343                       MemberOfUnknownSpecialization) == TNK_Type_template) {
344      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
345      Diag(IILoc, diag::err_template_missing_args) << TplName;
346      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
347        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
348          << TplDecl->getTemplateParameters()->getSourceRange();
349      }
350      return true;
351    }
352  }
353
354  // FIXME: Should we move the logic that tries to recover from a missing tag
355  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
356
357  if (!SS || (!SS->isSet() && !SS->isInvalid()))
358    Diag(IILoc, diag::err_unknown_typename) << &II;
359  else if (DeclContext *DC = computeDeclContext(*SS, false))
360    Diag(IILoc, diag::err_typename_nested_not_found)
361      << &II << DC << SS->getRange();
362  else if (isDependentScopeSpecifier(*SS)) {
363    unsigned DiagID = diag::err_typename_missing;
364    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
365      DiagID = diag::warn_typename_missing;
366
367    Diag(SS->getRange().getBegin(), DiagID)
368      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
369      << SourceRange(SS->getRange().getBegin(), IILoc)
370      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
371    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
372  } else {
373    assert(SS && SS->isInvalid() &&
374           "Invalid scope specifier has already been diagnosed");
375  }
376
377  return true;
378}
379
380/// \brief Determine whether the given result set contains either a type name
381/// or
382static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
383  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
384                       NextToken.is(tok::less);
385
386  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
387    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
388      return true;
389
390    if (CheckTemplate && isa<TemplateDecl>(*I))
391      return true;
392  }
393
394  return false;
395}
396
397Sema::NameClassification Sema::ClassifyName(Scope *S,
398                                            CXXScopeSpec &SS,
399                                            IdentifierInfo *&Name,
400                                            SourceLocation NameLoc,
401                                            const Token &NextToken) {
402  DeclarationNameInfo NameInfo(Name, NameLoc);
403  ObjCMethodDecl *CurMethod = getCurMethodDecl();
404
405  if (NextToken.is(tok::coloncolon)) {
406    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
407                                QualType(), false, SS, 0, false);
408
409  }
410
411  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
412  LookupParsedName(Result, S, &SS, !CurMethod);
413
414  // Perform lookup for Objective-C instance variables (including automatically
415  // synthesized instance variables), if we're in an Objective-C method.
416  // FIXME: This lookup really, really needs to be folded in to the normal
417  // unqualified lookup mechanism.
418  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
419    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
420    if (E.get() || E.isInvalid())
421      return E;
422
423    // Synthesize ivars lazily.
424    if (getLangOptions().ObjCDefaultSynthProperties &&
425        getLangOptions().ObjCNonFragileABI2) {
426      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
427        if (const ObjCPropertyDecl *Property =
428                                          canSynthesizeProvisionalIvar(Name)) {
429          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
430          Diag(Property->getLocation(), diag::note_property_declare);
431        }
432
433        // FIXME: This is strange. Shouldn't we just take the ivar returned
434        // from SynthesizeProvisionalIvar and continue with that?
435        E = LookupInObjCMethod(Result, S, Name, true);
436        if (E.get() || E.isInvalid())
437          return E;
438      }
439    }
440  }
441
442  bool SecondTry = false;
443  bool IsFilteredTemplateName = false;
444
445Corrected:
446  switch (Result.getResultKind()) {
447  case LookupResult::NotFound:
448    // If an unqualified-id is followed by a '(', then we have a function
449    // call.
450    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
451      // In C++, this is an ADL-only call.
452      // FIXME: Reference?
453      if (getLangOptions().CPlusPlus)
454        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
455
456      // C90 6.3.2.2:
457      //   If the expression that precedes the parenthesized argument list in a
458      //   function call consists solely of an identifier, and if no
459      //   declaration is visible for this identifier, the identifier is
460      //   implicitly declared exactly as if, in the innermost block containing
461      //   the function call, the declaration
462      //
463      //     extern int identifier ();
464      //
465      //   appeared.
466      //
467      // We also allow this in C99 as an extension.
468      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
469        Result.addDecl(D);
470        Result.resolveKind();
471        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
472      }
473    }
474
475    // In C, we first see whether there is a tag type by the same name, in
476    // which case it's likely that the user just forget to write "enum",
477    // "struct", or "union".
478    if (!getLangOptions().CPlusPlus && !SecondTry) {
479      Result.clear(LookupTagName);
480      LookupParsedName(Result, S, &SS);
481      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
482        const char *TagName = 0;
483        const char *FixItTagName = 0;
484        switch (Tag->getTagKind()) {
485          case TTK_Class:
486            TagName = "class";
487            FixItTagName = "class ";
488            break;
489
490          case TTK_Enum:
491            TagName = "enum";
492            FixItTagName = "enum ";
493            break;
494
495          case TTK_Struct:
496            TagName = "struct";
497            FixItTagName = "struct ";
498            break;
499
500          case TTK_Union:
501            TagName = "union";
502            FixItTagName = "union ";
503            break;
504        }
505
506        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
507          << Name << TagName << getLangOptions().CPlusPlus
508          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
509        break;
510      }
511
512      Result.clear(LookupOrdinaryName);
513    }
514
515    // Perform typo correction to determine if there is another name that is
516    // close to this name.
517    if (!SecondTry) {
518      SecondTry = true;
519      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
520                                                 Result.getLookupKind(), S, &SS)) {
521        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
522        unsigned QualifiedDiag = diag::err_no_member_suggest;
523        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
524        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
525
526        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
527        NamedDecl *UnderlyingFirstDecl
528          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
529        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
530            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
531          UnqualifiedDiag = diag::err_no_template_suggest;
532          QualifiedDiag = diag::err_no_member_template_suggest;
533        } else if (UnderlyingFirstDecl &&
534                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
535                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
536                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
537           UnqualifiedDiag = diag::err_unknown_typename_suggest;
538           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
539         }
540
541        if (SS.isEmpty())
542          Diag(NameLoc, UnqualifiedDiag)
543            << Name << CorrectedQuotedStr
544            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
545        else
546          Diag(NameLoc, QualifiedDiag)
547            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
548            << SS.getRange()
549            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
550
551        // Update the name, so that the caller has the new name.
552        Name = Corrected.getCorrectionAsIdentifierInfo();
553
554        // Also update the LookupResult...
555        // FIXME: This should probably go away at some point
556        Result.clear();
557        Result.setLookupName(Corrected.getCorrection());
558        if (FirstDecl) Result.addDecl(FirstDecl);
559
560        // Typo correction corrected to a keyword.
561        if (Corrected.isKeyword())
562          return Corrected.getCorrectionAsIdentifierInfo();
563
564        if (FirstDecl)
565          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
566            << CorrectedQuotedStr;
567
568        // If we found an Objective-C instance variable, let
569        // LookupInObjCMethod build the appropriate expression to
570        // reference the ivar.
571        // FIXME: This is a gross hack.
572        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
573          Result.clear();
574          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
575          return move(E);
576        }
577
578        goto Corrected;
579      }
580    }
581
582    // We failed to correct; just fall through and let the parser deal with it.
583    Result.suppressDiagnostics();
584    return NameClassification::Unknown();
585
586  case LookupResult::NotFoundInCurrentInstantiation:
587    // We performed name lookup into the current instantiation, and there were
588    // dependent bases, so we treat this result the same way as any other
589    // dependent nested-name-specifier.
590
591    // C++ [temp.res]p2:
592    //   A name used in a template declaration or definition and that is
593    //   dependent on a template-parameter is assumed not to name a type
594    //   unless the applicable name lookup finds a type name or the name is
595    //   qualified by the keyword typename.
596    //
597    // FIXME: If the next token is '<', we might want to ask the parser to
598    // perform some heroics to see if we actually have a
599    // template-argument-list, which would indicate a missing 'template'
600    // keyword here.
601    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
602
603  case LookupResult::Found:
604  case LookupResult::FoundOverloaded:
605  case LookupResult::FoundUnresolvedValue:
606    break;
607
608  case LookupResult::Ambiguous:
609    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
610        hasAnyAcceptableTemplateNames(Result)) {
611      // C++ [temp.local]p3:
612      //   A lookup that finds an injected-class-name (10.2) can result in an
613      //   ambiguity in certain cases (for example, if it is found in more than
614      //   one base class). If all of the injected-class-names that are found
615      //   refer to specializations of the same class template, and if the name
616      //   is followed by a template-argument-list, the reference refers to the
617      //   class template itself and not a specialization thereof, and is not
618      //   ambiguous.
619      //
620      // This filtering can make an ambiguous result into an unambiguous one,
621      // so try again after filtering out template names.
622      FilterAcceptableTemplateNames(Result);
623      if (!Result.isAmbiguous()) {
624        IsFilteredTemplateName = true;
625        break;
626      }
627    }
628
629    // Diagnose the ambiguity and return an error.
630    return NameClassification::Error();
631  }
632
633  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
634      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
635    // C++ [temp.names]p3:
636    //   After name lookup (3.4) finds that a name is a template-name or that
637    //   an operator-function-id or a literal- operator-id refers to a set of
638    //   overloaded functions any member of which is a function template if
639    //   this is followed by a <, the < is always taken as the delimiter of a
640    //   template-argument-list and never as the less-than operator.
641    if (!IsFilteredTemplateName)
642      FilterAcceptableTemplateNames(Result);
643
644    if (!Result.empty()) {
645      bool IsFunctionTemplate;
646      TemplateName Template;
647      if (Result.end() - Result.begin() > 1) {
648        IsFunctionTemplate = true;
649        Template = Context.getOverloadedTemplateName(Result.begin(),
650                                                     Result.end());
651      } else {
652        TemplateDecl *TD
653          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
654        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
655
656        if (SS.isSet() && !SS.isInvalid())
657          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
658                                                    /*TemplateKeyword=*/false,
659                                                      TD);
660        else
661          Template = TemplateName(TD);
662      }
663
664      if (IsFunctionTemplate) {
665        // Function templates always go through overload resolution, at which
666        // point we'll perform the various checks (e.g., accessibility) we need
667        // to based on which function we selected.
668        Result.suppressDiagnostics();
669
670        return NameClassification::FunctionTemplate(Template);
671      }
672
673      return NameClassification::TypeTemplate(Template);
674    }
675  }
676
677  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
678  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
679    DiagnoseUseOfDecl(Type, NameLoc);
680    QualType T = Context.getTypeDeclType(Type);
681    return ParsedType::make(T);
682  }
683
684  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
685  if (!Class) {
686    // FIXME: It's unfortunate that we don't have a Type node for handling this.
687    if (ObjCCompatibleAliasDecl *Alias
688                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
689      Class = Alias->getClassInterface();
690  }
691
692  if (Class) {
693    DiagnoseUseOfDecl(Class, NameLoc);
694
695    if (NextToken.is(tok::period)) {
696      // Interface. <something> is parsed as a property reference expression.
697      // Just return "unknown" as a fall-through for now.
698      Result.suppressDiagnostics();
699      return NameClassification::Unknown();
700    }
701
702    QualType T = Context.getObjCInterfaceType(Class);
703    return ParsedType::make(T);
704  }
705
706  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
707    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
708
709  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
710  return BuildDeclarationNameExpr(SS, Result, ADL);
711}
712
713// Determines the context to return to after temporarily entering a
714// context.  This depends in an unnecessarily complicated way on the
715// exact ordering of callbacks from the parser.
716DeclContext *Sema::getContainingDC(DeclContext *DC) {
717
718  // Functions defined inline within classes aren't parsed until we've
719  // finished parsing the top-level class, so the top-level class is
720  // the context we'll need to return to.
721  if (isa<FunctionDecl>(DC)) {
722    DC = DC->getLexicalParent();
723
724    // A function not defined within a class will always return to its
725    // lexical context.
726    if (!isa<CXXRecordDecl>(DC))
727      return DC;
728
729    // A C++ inline method/friend is parsed *after* the topmost class
730    // it was declared in is fully parsed ("complete");  the topmost
731    // class is the context we need to return to.
732    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
733      DC = RD;
734
735    // Return the declaration context of the topmost class the inline method is
736    // declared in.
737    return DC;
738  }
739
740  // ObjCMethodDecls are parsed (for some reason) outside the context
741  // of the class.
742  if (isa<ObjCMethodDecl>(DC))
743    return DC->getLexicalParent()->getLexicalParent();
744
745  return DC->getLexicalParent();
746}
747
748void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
749  assert(getContainingDC(DC) == CurContext &&
750      "The next DeclContext should be lexically contained in the current one.");
751  CurContext = DC;
752  S->setEntity(DC);
753}
754
755void Sema::PopDeclContext() {
756  assert(CurContext && "DeclContext imbalance!");
757
758  CurContext = getContainingDC(CurContext);
759  assert(CurContext && "Popped translation unit!");
760}
761
762/// EnterDeclaratorContext - Used when we must lookup names in the context
763/// of a declarator's nested name specifier.
764///
765void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
766  // C++0x [basic.lookup.unqual]p13:
767  //   A name used in the definition of a static data member of class
768  //   X (after the qualified-id of the static member) is looked up as
769  //   if the name was used in a member function of X.
770  // C++0x [basic.lookup.unqual]p14:
771  //   If a variable member of a namespace is defined outside of the
772  //   scope of its namespace then any name used in the definition of
773  //   the variable member (after the declarator-id) is looked up as
774  //   if the definition of the variable member occurred in its
775  //   namespace.
776  // Both of these imply that we should push a scope whose context
777  // is the semantic context of the declaration.  We can't use
778  // PushDeclContext here because that context is not necessarily
779  // lexically contained in the current context.  Fortunately,
780  // the containing scope should have the appropriate information.
781
782  assert(!S->getEntity() && "scope already has entity");
783
784#ifndef NDEBUG
785  Scope *Ancestor = S->getParent();
786  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
787  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
788#endif
789
790  CurContext = DC;
791  S->setEntity(DC);
792}
793
794void Sema::ExitDeclaratorContext(Scope *S) {
795  assert(S->getEntity() == CurContext && "Context imbalance!");
796
797  // Switch back to the lexical context.  The safety of this is
798  // enforced by an assert in EnterDeclaratorContext.
799  Scope *Ancestor = S->getParent();
800  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
801  CurContext = (DeclContext*) Ancestor->getEntity();
802
803  // We don't need to do anything with the scope, which is going to
804  // disappear.
805}
806
807/// \brief Determine whether we allow overloading of the function
808/// PrevDecl with another declaration.
809///
810/// This routine determines whether overloading is possible, not
811/// whether some new function is actually an overload. It will return
812/// true in C++ (where we can always provide overloads) or, as an
813/// extension, in C when the previous function is already an
814/// overloaded function declaration or has the "overloadable"
815/// attribute.
816static bool AllowOverloadingOfFunction(LookupResult &Previous,
817                                       ASTContext &Context) {
818  if (Context.getLangOptions().CPlusPlus)
819    return true;
820
821  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
822    return true;
823
824  return (Previous.getResultKind() == LookupResult::Found
825          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
826}
827
828/// Add this decl to the scope shadowed decl chains.
829void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
830  // Move up the scope chain until we find the nearest enclosing
831  // non-transparent context. The declaration will be introduced into this
832  // scope.
833  while (S->getEntity() &&
834         ((DeclContext *)S->getEntity())->isTransparentContext())
835    S = S->getParent();
836
837  // Add scoped declarations into their context, so that they can be
838  // found later. Declarations without a context won't be inserted
839  // into any context.
840  if (AddToContext)
841    CurContext->addDecl(D);
842
843  // Out-of-line definitions shouldn't be pushed into scope in C++.
844  // Out-of-line variable and function definitions shouldn't even in C.
845  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
846      D->isOutOfLine())
847    return;
848
849  // Template instantiations should also not be pushed into scope.
850  if (isa<FunctionDecl>(D) &&
851      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
852    return;
853
854  // If this replaces anything in the current scope,
855  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
856                               IEnd = IdResolver.end();
857  for (; I != IEnd; ++I) {
858    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
859      S->RemoveDecl(*I);
860      IdResolver.RemoveDecl(*I);
861
862      // Should only need to replace one decl.
863      break;
864    }
865  }
866
867  S->AddDecl(D);
868
869  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
870    // Implicitly-generated labels may end up getting generated in an order that
871    // isn't strictly lexical, which breaks name lookup. Be careful to insert
872    // the label at the appropriate place in the identifier chain.
873    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
874      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
875      if (IDC == CurContext) {
876        if (!S->isDeclScope(*I))
877          continue;
878      } else if (IDC->Encloses(CurContext))
879        break;
880    }
881
882    IdResolver.InsertDeclAfter(I, D);
883  } else {
884    IdResolver.AddDecl(D);
885  }
886}
887
888bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
889                         bool ExplicitInstantiationOrSpecialization) {
890  return IdResolver.isDeclInScope(D, Ctx, Context, S,
891                                  ExplicitInstantiationOrSpecialization);
892}
893
894Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
895  DeclContext *TargetDC = DC->getPrimaryContext();
896  do {
897    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
898      if (ScopeDC->getPrimaryContext() == TargetDC)
899        return S;
900  } while ((S = S->getParent()));
901
902  return 0;
903}
904
905static bool isOutOfScopePreviousDeclaration(NamedDecl *,
906                                            DeclContext*,
907                                            ASTContext&);
908
909/// Filters out lookup results that don't fall within the given scope
910/// as determined by isDeclInScope.
911void Sema::FilterLookupForScope(LookupResult &R,
912                                DeclContext *Ctx, Scope *S,
913                                bool ConsiderLinkage,
914                                bool ExplicitInstantiationOrSpecialization) {
915  LookupResult::Filter F = R.makeFilter();
916  while (F.hasNext()) {
917    NamedDecl *D = F.next();
918
919    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
920      continue;
921
922    if (ConsiderLinkage &&
923        isOutOfScopePreviousDeclaration(D, Ctx, Context))
924      continue;
925
926    F.erase();
927  }
928
929  F.done();
930}
931
932static bool isUsingDecl(NamedDecl *D) {
933  return isa<UsingShadowDecl>(D) ||
934         isa<UnresolvedUsingTypenameDecl>(D) ||
935         isa<UnresolvedUsingValueDecl>(D);
936}
937
938/// Removes using shadow declarations from the lookup results.
939static void RemoveUsingDecls(LookupResult &R) {
940  LookupResult::Filter F = R.makeFilter();
941  while (F.hasNext())
942    if (isUsingDecl(F.next()))
943      F.erase();
944
945  F.done();
946}
947
948/// \brief Check for this common pattern:
949/// @code
950/// class S {
951///   S(const S&); // DO NOT IMPLEMENT
952///   void operator=(const S&); // DO NOT IMPLEMENT
953/// };
954/// @endcode
955static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
956  // FIXME: Should check for private access too but access is set after we get
957  // the decl here.
958  if (D->doesThisDeclarationHaveABody())
959    return false;
960
961  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
962    return CD->isCopyConstructor();
963  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
964    return Method->isCopyAssignmentOperator();
965  return false;
966}
967
968bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
969  assert(D);
970
971  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
972    return false;
973
974  // Ignore class templates.
975  if (D->getDeclContext()->isDependentContext() ||
976      D->getLexicalDeclContext()->isDependentContext())
977    return false;
978
979  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
980    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
981      return false;
982
983    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
984      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
985        return false;
986    } else {
987      // 'static inline' functions are used in headers; don't warn.
988      if (FD->getStorageClass() == SC_Static &&
989          FD->isInlineSpecified())
990        return false;
991    }
992
993    if (FD->doesThisDeclarationHaveABody() &&
994        Context.DeclMustBeEmitted(FD))
995      return false;
996  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
997    if (!VD->isFileVarDecl() ||
998        VD->getType().isConstant(Context) ||
999        Context.DeclMustBeEmitted(VD))
1000      return false;
1001
1002    if (VD->isStaticDataMember() &&
1003        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1004      return false;
1005
1006  } else {
1007    return false;
1008  }
1009
1010  // Only warn for unused decls internal to the translation unit.
1011  if (D->getLinkage() == ExternalLinkage)
1012    return false;
1013
1014  return true;
1015}
1016
1017void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1018  if (!D)
1019    return;
1020
1021  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1022    const FunctionDecl *First = FD->getFirstDeclaration();
1023    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1024      return; // First should already be in the vector.
1025  }
1026
1027  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1028    const VarDecl *First = VD->getFirstDeclaration();
1029    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1030      return; // First should already be in the vector.
1031  }
1032
1033   if (ShouldWarnIfUnusedFileScopedDecl(D))
1034     UnusedFileScopedDecls.push_back(D);
1035 }
1036
1037static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1038  if (D->isInvalidDecl())
1039    return false;
1040
1041  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1042    return false;
1043
1044  if (isa<LabelDecl>(D))
1045    return true;
1046
1047  // White-list anything that isn't a local variable.
1048  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1049      !D->getDeclContext()->isFunctionOrMethod())
1050    return false;
1051
1052  // Types of valid local variables should be complete, so this should succeed.
1053  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1054
1055    // White-list anything with an __attribute__((unused)) type.
1056    QualType Ty = VD->getType();
1057
1058    // Only look at the outermost level of typedef.
1059    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1060      if (TT->getDecl()->hasAttr<UnusedAttr>())
1061        return false;
1062    }
1063
1064    // If we failed to complete the type for some reason, or if the type is
1065    // dependent, don't diagnose the variable.
1066    if (Ty->isIncompleteType() || Ty->isDependentType())
1067      return false;
1068
1069    if (const TagType *TT = Ty->getAs<TagType>()) {
1070      const TagDecl *Tag = TT->getDecl();
1071      if (Tag->hasAttr<UnusedAttr>())
1072        return false;
1073
1074      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1075        // FIXME: Checking for the presence of a user-declared constructor
1076        // isn't completely accurate; we'd prefer to check that the initializer
1077        // has no side effects.
1078        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1079          return false;
1080      }
1081    }
1082
1083    // TODO: __attribute__((unused)) templates?
1084  }
1085
1086  return true;
1087}
1088
1089/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1090/// unless they are marked attr(unused).
1091void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1092  if (!ShouldDiagnoseUnusedDecl(D))
1093    return;
1094
1095  unsigned DiagID;
1096  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1097    DiagID = diag::warn_unused_exception_param;
1098  else if (isa<LabelDecl>(D))
1099    DiagID = diag::warn_unused_label;
1100  else
1101    DiagID = diag::warn_unused_variable;
1102
1103  Diag(D->getLocation(), DiagID) << D->getDeclName();
1104}
1105
1106static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1107  // Verify that we have no forward references left.  If so, there was a goto
1108  // or address of a label taken, but no definition of it.  Label fwd
1109  // definitions are indicated with a null substmt.
1110  if (L->getStmt() == 0)
1111    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1112}
1113
1114void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1115  if (S->decl_empty()) return;
1116  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1117         "Scope shouldn't contain decls!");
1118
1119  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1120       I != E; ++I) {
1121    Decl *TmpD = (*I);
1122    assert(TmpD && "This decl didn't get pushed??");
1123
1124    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1125    NamedDecl *D = cast<NamedDecl>(TmpD);
1126
1127    if (!D->getDeclName()) continue;
1128
1129    // Diagnose unused variables in this scope.
1130    if (!S->hasErrorOccurred())
1131      DiagnoseUnusedDecl(D);
1132
1133    // If this was a forward reference to a label, verify it was defined.
1134    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1135      CheckPoppedLabel(LD, *this);
1136
1137    // Remove this name from our lexical scope.
1138    IdResolver.RemoveDecl(D);
1139  }
1140}
1141
1142/// \brief Look for an Objective-C class in the translation unit.
1143///
1144/// \param Id The name of the Objective-C class we're looking for. If
1145/// typo-correction fixes this name, the Id will be updated
1146/// to the fixed name.
1147///
1148/// \param IdLoc The location of the name in the translation unit.
1149///
1150/// \param TypoCorrection If true, this routine will attempt typo correction
1151/// if there is no class with the given name.
1152///
1153/// \returns The declaration of the named Objective-C class, or NULL if the
1154/// class could not be found.
1155ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1156                                              SourceLocation IdLoc,
1157                                              bool DoTypoCorrection) {
1158  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1159  // creation from this context.
1160  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1161
1162  if (!IDecl && DoTypoCorrection) {
1163    // Perform typo correction at the given location, but only if we
1164    // find an Objective-C class name.
1165    TypoCorrection C;
1166    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1167                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1168        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1169      Diag(IdLoc, diag::err_undef_interface_suggest)
1170        << Id << IDecl->getDeclName()
1171        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1172      Diag(IDecl->getLocation(), diag::note_previous_decl)
1173        << IDecl->getDeclName();
1174
1175      Id = IDecl->getIdentifier();
1176    }
1177  }
1178
1179  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1180}
1181
1182/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1183/// from S, where a non-field would be declared. This routine copes
1184/// with the difference between C and C++ scoping rules in structs and
1185/// unions. For example, the following code is well-formed in C but
1186/// ill-formed in C++:
1187/// @code
1188/// struct S6 {
1189///   enum { BAR } e;
1190/// };
1191///
1192/// void test_S6() {
1193///   struct S6 a;
1194///   a.e = BAR;
1195/// }
1196/// @endcode
1197/// For the declaration of BAR, this routine will return a different
1198/// scope. The scope S will be the scope of the unnamed enumeration
1199/// within S6. In C++, this routine will return the scope associated
1200/// with S6, because the enumeration's scope is a transparent
1201/// context but structures can contain non-field names. In C, this
1202/// routine will return the translation unit scope, since the
1203/// enumeration's scope is a transparent context and structures cannot
1204/// contain non-field names.
1205Scope *Sema::getNonFieldDeclScope(Scope *S) {
1206  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1207         (S->getEntity() &&
1208          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1209         (S->isClassScope() && !getLangOptions().CPlusPlus))
1210    S = S->getParent();
1211  return S;
1212}
1213
1214/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1215/// file scope.  lazily create a decl for it. ForRedeclaration is true
1216/// if we're creating this built-in in anticipation of redeclaring the
1217/// built-in.
1218NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1219                                     Scope *S, bool ForRedeclaration,
1220                                     SourceLocation Loc) {
1221  Builtin::ID BID = (Builtin::ID)bid;
1222
1223  ASTContext::GetBuiltinTypeError Error;
1224  QualType R = Context.GetBuiltinType(BID, Error);
1225  switch (Error) {
1226  case ASTContext::GE_None:
1227    // Okay
1228    break;
1229
1230  case ASTContext::GE_Missing_stdio:
1231    if (ForRedeclaration)
1232      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1233        << Context.BuiltinInfo.GetName(BID);
1234    return 0;
1235
1236  case ASTContext::GE_Missing_setjmp:
1237    if (ForRedeclaration)
1238      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1239        << Context.BuiltinInfo.GetName(BID);
1240    return 0;
1241  }
1242
1243  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1244    Diag(Loc, diag::ext_implicit_lib_function_decl)
1245      << Context.BuiltinInfo.GetName(BID)
1246      << R;
1247    if (Context.BuiltinInfo.getHeaderName(BID) &&
1248        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1249          != Diagnostic::Ignored)
1250      Diag(Loc, diag::note_please_include_header)
1251        << Context.BuiltinInfo.getHeaderName(BID)
1252        << Context.BuiltinInfo.GetName(BID);
1253  }
1254
1255  FunctionDecl *New = FunctionDecl::Create(Context,
1256                                           Context.getTranslationUnitDecl(),
1257                                           Loc, Loc, II, R, /*TInfo=*/0,
1258                                           SC_Extern,
1259                                           SC_None, false,
1260                                           /*hasPrototype=*/true);
1261  New->setImplicit();
1262
1263  // Create Decl objects for each parameter, adding them to the
1264  // FunctionDecl.
1265  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1266    llvm::SmallVector<ParmVarDecl*, 16> Params;
1267    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1268      ParmVarDecl *parm =
1269        ParmVarDecl::Create(Context, New, SourceLocation(),
1270                            SourceLocation(), 0,
1271                            FT->getArgType(i), /*TInfo=*/0,
1272                            SC_None, SC_None, 0);
1273      parm->setScopeInfo(0, i);
1274      Params.push_back(parm);
1275    }
1276    New->setParams(Params.data(), Params.size());
1277  }
1278
1279  AddKnownFunctionAttributes(New);
1280
1281  // TUScope is the translation-unit scope to insert this function into.
1282  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1283  // relate Scopes to DeclContexts, and probably eliminate CurContext
1284  // entirely, but we're not there yet.
1285  DeclContext *SavedContext = CurContext;
1286  CurContext = Context.getTranslationUnitDecl();
1287  PushOnScopeChains(New, TUScope);
1288  CurContext = SavedContext;
1289  return New;
1290}
1291
1292/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1293/// same name and scope as a previous declaration 'Old'.  Figure out
1294/// how to resolve this situation, merging decls or emitting
1295/// diagnostics as appropriate. If there was an error, set New to be invalid.
1296///
1297void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1298  // If the new decl is known invalid already, don't bother doing any
1299  // merging checks.
1300  if (New->isInvalidDecl()) return;
1301
1302  // Allow multiple definitions for ObjC built-in typedefs.
1303  // FIXME: Verify the underlying types are equivalent!
1304  if (getLangOptions().ObjC1) {
1305    const IdentifierInfo *TypeID = New->getIdentifier();
1306    switch (TypeID->getLength()) {
1307    default: break;
1308    case 2:
1309      if (!TypeID->isStr("id"))
1310        break;
1311      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1312      // Install the built-in type for 'id', ignoring the current definition.
1313      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1314      return;
1315    case 5:
1316      if (!TypeID->isStr("Class"))
1317        break;
1318      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1319      // Install the built-in type for 'Class', ignoring the current definition.
1320      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1321      return;
1322    case 3:
1323      if (!TypeID->isStr("SEL"))
1324        break;
1325      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1326      // Install the built-in type for 'SEL', ignoring the current definition.
1327      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1328      return;
1329    case 8:
1330      if (!TypeID->isStr("Protocol"))
1331        break;
1332      Context.setObjCProtoType(New->getUnderlyingType());
1333      return;
1334    }
1335    // Fall through - the typedef name was not a builtin type.
1336  }
1337
1338  // Verify the old decl was also a type.
1339  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1340  if (!Old) {
1341    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1342      << New->getDeclName();
1343
1344    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1345    if (OldD->getLocation().isValid())
1346      Diag(OldD->getLocation(), diag::note_previous_definition);
1347
1348    return New->setInvalidDecl();
1349  }
1350
1351  // If the old declaration is invalid, just give up here.
1352  if (Old->isInvalidDecl())
1353    return New->setInvalidDecl();
1354
1355  // Determine the "old" type we'll use for checking and diagnostics.
1356  QualType OldType;
1357  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1358    OldType = OldTypedef->getUnderlyingType();
1359  else
1360    OldType = Context.getTypeDeclType(Old);
1361
1362  // If the typedef types are not identical, reject them in all languages and
1363  // with any extensions enabled.
1364
1365  if (OldType != New->getUnderlyingType() &&
1366      Context.getCanonicalType(OldType) !=
1367      Context.getCanonicalType(New->getUnderlyingType())) {
1368    int Kind = 0;
1369    if (isa<TypeAliasDecl>(Old))
1370      Kind = 1;
1371    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1372      << Kind << New->getUnderlyingType() << OldType;
1373    if (Old->getLocation().isValid())
1374      Diag(Old->getLocation(), diag::note_previous_definition);
1375    return New->setInvalidDecl();
1376  }
1377
1378  // The types match.  Link up the redeclaration chain if the old
1379  // declaration was a typedef.
1380  // FIXME: this is a potential source of weirdness if the type
1381  // spellings don't match exactly.
1382  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1383    New->setPreviousDeclaration(Typedef);
1384
1385  if (getLangOptions().Microsoft)
1386    return;
1387
1388  if (getLangOptions().CPlusPlus) {
1389    // C++ [dcl.typedef]p2:
1390    //   In a given non-class scope, a typedef specifier can be used to
1391    //   redefine the name of any type declared in that scope to refer
1392    //   to the type to which it already refers.
1393    if (!isa<CXXRecordDecl>(CurContext))
1394      return;
1395
1396    // C++0x [dcl.typedef]p4:
1397    //   In a given class scope, a typedef specifier can be used to redefine
1398    //   any class-name declared in that scope that is not also a typedef-name
1399    //   to refer to the type to which it already refers.
1400    //
1401    // This wording came in via DR424, which was a correction to the
1402    // wording in DR56, which accidentally banned code like:
1403    //
1404    //   struct S {
1405    //     typedef struct A { } A;
1406    //   };
1407    //
1408    // in the C++03 standard. We implement the C++0x semantics, which
1409    // allow the above but disallow
1410    //
1411    //   struct S {
1412    //     typedef int I;
1413    //     typedef int I;
1414    //   };
1415    //
1416    // since that was the intent of DR56.
1417    if (!isa<TypedefNameDecl>(Old))
1418      return;
1419
1420    Diag(New->getLocation(), diag::err_redefinition)
1421      << New->getDeclName();
1422    Diag(Old->getLocation(), diag::note_previous_definition);
1423    return New->setInvalidDecl();
1424  }
1425
1426  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1427  // is normally mapped to an error, but can be controlled with
1428  // -Wtypedef-redefinition.  If either the original or the redefinition is
1429  // in a system header, don't emit this for compatibility with GCC.
1430  if (getDiagnostics().getSuppressSystemWarnings() &&
1431      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1432       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1433    return;
1434
1435  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1436    << New->getDeclName();
1437  Diag(Old->getLocation(), diag::note_previous_definition);
1438  return;
1439}
1440
1441/// DeclhasAttr - returns true if decl Declaration already has the target
1442/// attribute.
1443static bool
1444DeclHasAttr(const Decl *D, const Attr *A) {
1445  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1446  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1447    if ((*i)->getKind() == A->getKind()) {
1448      // FIXME: Don't hardcode this check
1449      if (OA && isa<OwnershipAttr>(*i))
1450        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1451      return true;
1452    }
1453
1454  return false;
1455}
1456
1457/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1458static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1459                                ASTContext &C) {
1460  if (!oldDecl->hasAttrs())
1461    return;
1462
1463  bool foundAny = newDecl->hasAttrs();
1464
1465  // Ensure that any moving of objects within the allocated map is done before
1466  // we process them.
1467  if (!foundAny) newDecl->setAttrs(AttrVec());
1468
1469  for (specific_attr_iterator<InheritableAttr>
1470       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1471       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1472    if (!DeclHasAttr(newDecl, *i)) {
1473      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1474      newAttr->setInherited(true);
1475      newDecl->addAttr(newAttr);
1476      foundAny = true;
1477    }
1478  }
1479
1480  if (!foundAny) newDecl->dropAttrs();
1481}
1482
1483/// mergeParamDeclAttributes - Copy attributes from the old parameter
1484/// to the new one.
1485static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1486                                     const ParmVarDecl *oldDecl,
1487                                     ASTContext &C) {
1488  if (!oldDecl->hasAttrs())
1489    return;
1490
1491  bool foundAny = newDecl->hasAttrs();
1492
1493  // Ensure that any moving of objects within the allocated map is
1494  // done before we process them.
1495  if (!foundAny) newDecl->setAttrs(AttrVec());
1496
1497  for (specific_attr_iterator<InheritableParamAttr>
1498       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1499       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1500    if (!DeclHasAttr(newDecl, *i)) {
1501      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1502      newAttr->setInherited(true);
1503      newDecl->addAttr(newAttr);
1504      foundAny = true;
1505    }
1506  }
1507
1508  if (!foundAny) newDecl->dropAttrs();
1509}
1510
1511namespace {
1512
1513/// Used in MergeFunctionDecl to keep track of function parameters in
1514/// C.
1515struct GNUCompatibleParamWarning {
1516  ParmVarDecl *OldParm;
1517  ParmVarDecl *NewParm;
1518  QualType PromotedType;
1519};
1520
1521}
1522
1523/// getSpecialMember - get the special member enum for a method.
1524Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1525  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1526    if (Ctor->isDefaultConstructor())
1527      return Sema::CXXDefaultConstructor;
1528
1529    if (Ctor->isCopyConstructor())
1530      return Sema::CXXCopyConstructor;
1531
1532    if (Ctor->isMoveConstructor())
1533      return Sema::CXXMoveConstructor;
1534  } else if (isa<CXXDestructorDecl>(MD)) {
1535    return Sema::CXXDestructor;
1536  } else if (MD->isCopyAssignmentOperator()) {
1537    return Sema::CXXCopyAssignment;
1538  }
1539
1540  return Sema::CXXInvalid;
1541}
1542
1543/// canRedefineFunction - checks if a function can be redefined. Currently,
1544/// only extern inline functions can be redefined, and even then only in
1545/// GNU89 mode.
1546static bool canRedefineFunction(const FunctionDecl *FD,
1547                                const LangOptions& LangOpts) {
1548  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1549          !LangOpts.CPlusPlus &&
1550          FD->isInlineSpecified() &&
1551          FD->getStorageClass() == SC_Extern);
1552}
1553
1554/// MergeFunctionDecl - We just parsed a function 'New' from
1555/// declarator D which has the same name and scope as a previous
1556/// declaration 'Old'.  Figure out how to resolve this situation,
1557/// merging decls or emitting diagnostics as appropriate.
1558///
1559/// In C++, New and Old must be declarations that are not
1560/// overloaded. Use IsOverload to determine whether New and Old are
1561/// overloaded, and to select the Old declaration that New should be
1562/// merged with.
1563///
1564/// Returns true if there was an error, false otherwise.
1565bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1566  // Verify the old decl was also a function.
1567  FunctionDecl *Old = 0;
1568  if (FunctionTemplateDecl *OldFunctionTemplate
1569        = dyn_cast<FunctionTemplateDecl>(OldD))
1570    Old = OldFunctionTemplate->getTemplatedDecl();
1571  else
1572    Old = dyn_cast<FunctionDecl>(OldD);
1573  if (!Old) {
1574    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1575      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1576      Diag(Shadow->getTargetDecl()->getLocation(),
1577           diag::note_using_decl_target);
1578      Diag(Shadow->getUsingDecl()->getLocation(),
1579           diag::note_using_decl) << 0;
1580      return true;
1581    }
1582
1583    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1584      << New->getDeclName();
1585    Diag(OldD->getLocation(), diag::note_previous_definition);
1586    return true;
1587  }
1588
1589  // Determine whether the previous declaration was a definition,
1590  // implicit declaration, or a declaration.
1591  diag::kind PrevDiag;
1592  if (Old->isThisDeclarationADefinition())
1593    PrevDiag = diag::note_previous_definition;
1594  else if (Old->isImplicit())
1595    PrevDiag = diag::note_previous_implicit_declaration;
1596  else
1597    PrevDiag = diag::note_previous_declaration;
1598
1599  QualType OldQType = Context.getCanonicalType(Old->getType());
1600  QualType NewQType = Context.getCanonicalType(New->getType());
1601
1602  // Don't complain about this if we're in GNU89 mode and the old function
1603  // is an extern inline function.
1604  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1605      New->getStorageClass() == SC_Static &&
1606      Old->getStorageClass() != SC_Static &&
1607      !canRedefineFunction(Old, getLangOptions())) {
1608    if (getLangOptions().Microsoft) {
1609      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1610      Diag(Old->getLocation(), PrevDiag);
1611    } else {
1612      Diag(New->getLocation(), diag::err_static_non_static) << New;
1613      Diag(Old->getLocation(), PrevDiag);
1614      return true;
1615    }
1616  }
1617
1618  // If a function is first declared with a calling convention, but is
1619  // later declared or defined without one, the second decl assumes the
1620  // calling convention of the first.
1621  //
1622  // For the new decl, we have to look at the NON-canonical type to tell the
1623  // difference between a function that really doesn't have a calling
1624  // convention and one that is declared cdecl. That's because in
1625  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1626  // because it is the default calling convention.
1627  //
1628  // Note also that we DO NOT return at this point, because we still have
1629  // other tests to run.
1630  const FunctionType *OldType = cast<FunctionType>(OldQType);
1631  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1632  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1633  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1634  bool RequiresAdjustment = false;
1635  if (OldTypeInfo.getCC() != CC_Default &&
1636      NewTypeInfo.getCC() == CC_Default) {
1637    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1638    RequiresAdjustment = true;
1639  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1640                                     NewTypeInfo.getCC())) {
1641    // Calling conventions really aren't compatible, so complain.
1642    Diag(New->getLocation(), diag::err_cconv_change)
1643      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1644      << (OldTypeInfo.getCC() == CC_Default)
1645      << (OldTypeInfo.getCC() == CC_Default ? "" :
1646          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1647    Diag(Old->getLocation(), diag::note_previous_declaration);
1648    return true;
1649  }
1650
1651  // FIXME: diagnose the other way around?
1652  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1653    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1654    RequiresAdjustment = true;
1655  }
1656
1657  // Merge regparm attribute.
1658  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1659      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1660    if (NewTypeInfo.getHasRegParm()) {
1661      Diag(New->getLocation(), diag::err_regparm_mismatch)
1662        << NewType->getRegParmType()
1663        << OldType->getRegParmType();
1664      Diag(Old->getLocation(), diag::note_previous_declaration);
1665      return true;
1666    }
1667
1668    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1669    RequiresAdjustment = true;
1670  }
1671
1672  if (RequiresAdjustment) {
1673    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1674    New->setType(QualType(NewType, 0));
1675    NewQType = Context.getCanonicalType(New->getType());
1676  }
1677
1678  if (getLangOptions().CPlusPlus) {
1679    // (C++98 13.1p2):
1680    //   Certain function declarations cannot be overloaded:
1681    //     -- Function declarations that differ only in the return type
1682    //        cannot be overloaded.
1683    QualType OldReturnType = OldType->getResultType();
1684    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1685    QualType ResQT;
1686    if (OldReturnType != NewReturnType) {
1687      if (NewReturnType->isObjCObjectPointerType()
1688          && OldReturnType->isObjCObjectPointerType())
1689        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1690      if (ResQT.isNull()) {
1691        if (New->isCXXClassMember() && New->isOutOfLine())
1692          Diag(New->getLocation(),
1693               diag::err_member_def_does_not_match_ret_type) << New;
1694        else
1695          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1696        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1697        return true;
1698      }
1699      else
1700        NewQType = ResQT;
1701    }
1702
1703    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1704    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1705    if (OldMethod && NewMethod) {
1706      // Preserve triviality.
1707      NewMethod->setTrivial(OldMethod->isTrivial());
1708
1709      bool isFriend = NewMethod->getFriendObjectKind();
1710
1711      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1712        //    -- Member function declarations with the same name and the
1713        //       same parameter types cannot be overloaded if any of them
1714        //       is a static member function declaration.
1715        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1716          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1717          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1718          return true;
1719        }
1720
1721        // C++ [class.mem]p1:
1722        //   [...] A member shall not be declared twice in the
1723        //   member-specification, except that a nested class or member
1724        //   class template can be declared and then later defined.
1725        unsigned NewDiag;
1726        if (isa<CXXConstructorDecl>(OldMethod))
1727          NewDiag = diag::err_constructor_redeclared;
1728        else if (isa<CXXDestructorDecl>(NewMethod))
1729          NewDiag = diag::err_destructor_redeclared;
1730        else if (isa<CXXConversionDecl>(NewMethod))
1731          NewDiag = diag::err_conv_function_redeclared;
1732        else
1733          NewDiag = diag::err_member_redeclared;
1734
1735        Diag(New->getLocation(), NewDiag);
1736        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1737
1738      // Complain if this is an explicit declaration of a special
1739      // member that was initially declared implicitly.
1740      //
1741      // As an exception, it's okay to befriend such methods in order
1742      // to permit the implicit constructor/destructor/operator calls.
1743      } else if (OldMethod->isImplicit()) {
1744        if (isFriend) {
1745          NewMethod->setImplicit();
1746        } else {
1747          Diag(NewMethod->getLocation(),
1748               diag::err_definition_of_implicitly_declared_member)
1749            << New << getSpecialMember(OldMethod);
1750          return true;
1751        }
1752      } else if (OldMethod->isExplicitlyDefaulted()) {
1753        Diag(NewMethod->getLocation(),
1754             diag::err_definition_of_explicitly_defaulted_member)
1755          << getSpecialMember(OldMethod);
1756        return true;
1757      }
1758    }
1759
1760    // (C++98 8.3.5p3):
1761    //   All declarations for a function shall agree exactly in both the
1762    //   return type and the parameter-type-list.
1763    // We also want to respect all the extended bits except noreturn.
1764
1765    // noreturn should now match unless the old type info didn't have it.
1766    QualType OldQTypeForComparison = OldQType;
1767    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1768      assert(OldQType == QualType(OldType, 0));
1769      const FunctionType *OldTypeForComparison
1770        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1771      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1772      assert(OldQTypeForComparison.isCanonical());
1773    }
1774
1775    if (OldQTypeForComparison == NewQType)
1776      return MergeCompatibleFunctionDecls(New, Old);
1777
1778    // Fall through for conflicting redeclarations and redefinitions.
1779  }
1780
1781  // C: Function types need to be compatible, not identical. This handles
1782  // duplicate function decls like "void f(int); void f(enum X);" properly.
1783  if (!getLangOptions().CPlusPlus &&
1784      Context.typesAreCompatible(OldQType, NewQType)) {
1785    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1786    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1787    const FunctionProtoType *OldProto = 0;
1788    if (isa<FunctionNoProtoType>(NewFuncType) &&
1789        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1790      // The old declaration provided a function prototype, but the
1791      // new declaration does not. Merge in the prototype.
1792      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1793      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1794                                                 OldProto->arg_type_end());
1795      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1796                                         ParamTypes.data(), ParamTypes.size(),
1797                                         OldProto->getExtProtoInfo());
1798      New->setType(NewQType);
1799      New->setHasInheritedPrototype();
1800
1801      // Synthesize a parameter for each argument type.
1802      llvm::SmallVector<ParmVarDecl*, 16> Params;
1803      for (FunctionProtoType::arg_type_iterator
1804             ParamType = OldProto->arg_type_begin(),
1805             ParamEnd = OldProto->arg_type_end();
1806           ParamType != ParamEnd; ++ParamType) {
1807        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1808                                                 SourceLocation(),
1809                                                 SourceLocation(), 0,
1810                                                 *ParamType, /*TInfo=*/0,
1811                                                 SC_None, SC_None,
1812                                                 0);
1813        Param->setScopeInfo(0, Params.size());
1814        Param->setImplicit();
1815        Params.push_back(Param);
1816      }
1817
1818      New->setParams(Params.data(), Params.size());
1819    }
1820
1821    return MergeCompatibleFunctionDecls(New, Old);
1822  }
1823
1824  // GNU C permits a K&R definition to follow a prototype declaration
1825  // if the declared types of the parameters in the K&R definition
1826  // match the types in the prototype declaration, even when the
1827  // promoted types of the parameters from the K&R definition differ
1828  // from the types in the prototype. GCC then keeps the types from
1829  // the prototype.
1830  //
1831  // If a variadic prototype is followed by a non-variadic K&R definition,
1832  // the K&R definition becomes variadic.  This is sort of an edge case, but
1833  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1834  // C99 6.9.1p8.
1835  if (!getLangOptions().CPlusPlus &&
1836      Old->hasPrototype() && !New->hasPrototype() &&
1837      New->getType()->getAs<FunctionProtoType>() &&
1838      Old->getNumParams() == New->getNumParams()) {
1839    llvm::SmallVector<QualType, 16> ArgTypes;
1840    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1841    const FunctionProtoType *OldProto
1842      = Old->getType()->getAs<FunctionProtoType>();
1843    const FunctionProtoType *NewProto
1844      = New->getType()->getAs<FunctionProtoType>();
1845
1846    // Determine whether this is the GNU C extension.
1847    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1848                                               NewProto->getResultType());
1849    bool LooseCompatible = !MergedReturn.isNull();
1850    for (unsigned Idx = 0, End = Old->getNumParams();
1851         LooseCompatible && Idx != End; ++Idx) {
1852      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1853      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1854      if (Context.typesAreCompatible(OldParm->getType(),
1855                                     NewProto->getArgType(Idx))) {
1856        ArgTypes.push_back(NewParm->getType());
1857      } else if (Context.typesAreCompatible(OldParm->getType(),
1858                                            NewParm->getType(),
1859                                            /*CompareUnqualified=*/true)) {
1860        GNUCompatibleParamWarning Warn
1861          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1862        Warnings.push_back(Warn);
1863        ArgTypes.push_back(NewParm->getType());
1864      } else
1865        LooseCompatible = false;
1866    }
1867
1868    if (LooseCompatible) {
1869      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1870        Diag(Warnings[Warn].NewParm->getLocation(),
1871             diag::ext_param_promoted_not_compatible_with_prototype)
1872          << Warnings[Warn].PromotedType
1873          << Warnings[Warn].OldParm->getType();
1874        if (Warnings[Warn].OldParm->getLocation().isValid())
1875          Diag(Warnings[Warn].OldParm->getLocation(),
1876               diag::note_previous_declaration);
1877      }
1878
1879      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1880                                           ArgTypes.size(),
1881                                           OldProto->getExtProtoInfo()));
1882      return MergeCompatibleFunctionDecls(New, Old);
1883    }
1884
1885    // Fall through to diagnose conflicting types.
1886  }
1887
1888  // A function that has already been declared has been redeclared or defined
1889  // with a different type- show appropriate diagnostic
1890  if (unsigned BuiltinID = Old->getBuiltinID()) {
1891    // The user has declared a builtin function with an incompatible
1892    // signature.
1893    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1894      // The function the user is redeclaring is a library-defined
1895      // function like 'malloc' or 'printf'. Warn about the
1896      // redeclaration, then pretend that we don't know about this
1897      // library built-in.
1898      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1899      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1900        << Old << Old->getType();
1901      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1902      Old->setInvalidDecl();
1903      return false;
1904    }
1905
1906    PrevDiag = diag::note_previous_builtin_declaration;
1907  }
1908
1909  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1910  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1911  return true;
1912}
1913
1914/// \brief Completes the merge of two function declarations that are
1915/// known to be compatible.
1916///
1917/// This routine handles the merging of attributes and other
1918/// properties of function declarations form the old declaration to
1919/// the new declaration, once we know that New is in fact a
1920/// redeclaration of Old.
1921///
1922/// \returns false
1923bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1924  // Merge the attributes
1925  mergeDeclAttributes(New, Old, Context);
1926
1927  // Merge the storage class.
1928  if (Old->getStorageClass() != SC_Extern &&
1929      Old->getStorageClass() != SC_None)
1930    New->setStorageClass(Old->getStorageClass());
1931
1932  // Merge "pure" flag.
1933  if (Old->isPure())
1934    New->setPure();
1935
1936  // Merge attributes from the parameters.  These can mismatch with K&R
1937  // declarations.
1938  if (New->getNumParams() == Old->getNumParams())
1939    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1940      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1941                               Context);
1942
1943  if (getLangOptions().CPlusPlus)
1944    return MergeCXXFunctionDecl(New, Old);
1945
1946  return false;
1947}
1948
1949
1950void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1951                                const ObjCMethodDecl *oldMethod) {
1952  // Merge the attributes.
1953  mergeDeclAttributes(newMethod, oldMethod, Context);
1954
1955  // Merge attributes from the parameters.
1956  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1957         ni = newMethod->param_begin(), ne = newMethod->param_end();
1958       ni != ne; ++ni, ++oi)
1959    mergeParamDeclAttributes(*ni, *oi, Context);
1960
1961  CheckObjCMethodOverride(newMethod, oldMethod, true);
1962}
1963
1964/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1965/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1966/// emitting diagnostics as appropriate.
1967///
1968/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1969/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1970/// check them before the initializer is attached.
1971///
1972void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1973  if (New->isInvalidDecl() || Old->isInvalidDecl())
1974    return;
1975
1976  QualType MergedT;
1977  if (getLangOptions().CPlusPlus) {
1978    AutoType *AT = New->getType()->getContainedAutoType();
1979    if (AT && !AT->isDeduced()) {
1980      // We don't know what the new type is until the initializer is attached.
1981      return;
1982    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1983      // These could still be something that needs exception specs checked.
1984      return MergeVarDeclExceptionSpecs(New, Old);
1985    }
1986    // C++ [basic.link]p10:
1987    //   [...] the types specified by all declarations referring to a given
1988    //   object or function shall be identical, except that declarations for an
1989    //   array object can specify array types that differ by the presence or
1990    //   absence of a major array bound (8.3.4).
1991    else if (Old->getType()->isIncompleteArrayType() &&
1992             New->getType()->isArrayType()) {
1993      CanQual<ArrayType> OldArray
1994        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1995      CanQual<ArrayType> NewArray
1996        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1997      if (OldArray->getElementType() == NewArray->getElementType())
1998        MergedT = New->getType();
1999    } else if (Old->getType()->isArrayType() &&
2000             New->getType()->isIncompleteArrayType()) {
2001      CanQual<ArrayType> OldArray
2002        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2003      CanQual<ArrayType> NewArray
2004        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2005      if (OldArray->getElementType() == NewArray->getElementType())
2006        MergedT = Old->getType();
2007    } else if (New->getType()->isObjCObjectPointerType()
2008               && Old->getType()->isObjCObjectPointerType()) {
2009        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2010                                                        Old->getType());
2011    }
2012  } else {
2013    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2014  }
2015  if (MergedT.isNull()) {
2016    Diag(New->getLocation(), diag::err_redefinition_different_type)
2017      << New->getDeclName();
2018    Diag(Old->getLocation(), diag::note_previous_definition);
2019    return New->setInvalidDecl();
2020  }
2021  New->setType(MergedT);
2022}
2023
2024/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2025/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2026/// situation, merging decls or emitting diagnostics as appropriate.
2027///
2028/// Tentative definition rules (C99 6.9.2p2) are checked by
2029/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2030/// definitions here, since the initializer hasn't been attached.
2031///
2032void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2033  // If the new decl is already invalid, don't do any other checking.
2034  if (New->isInvalidDecl())
2035    return;
2036
2037  // Verify the old decl was also a variable.
2038  VarDecl *Old = 0;
2039  if (!Previous.isSingleResult() ||
2040      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2041    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2042      << New->getDeclName();
2043    Diag(Previous.getRepresentativeDecl()->getLocation(),
2044         diag::note_previous_definition);
2045    return New->setInvalidDecl();
2046  }
2047
2048  // C++ [class.mem]p1:
2049  //   A member shall not be declared twice in the member-specification [...]
2050  //
2051  // Here, we need only consider static data members.
2052  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2053    Diag(New->getLocation(), diag::err_duplicate_member)
2054      << New->getIdentifier();
2055    Diag(Old->getLocation(), diag::note_previous_declaration);
2056    New->setInvalidDecl();
2057  }
2058
2059  mergeDeclAttributes(New, Old, Context);
2060  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2061  if (New->getAttr<WeakImportAttr>() &&
2062      Old->getStorageClass() == SC_None &&
2063      !Old->getAttr<WeakImportAttr>()) {
2064    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2065    Diag(Old->getLocation(), diag::note_previous_definition);
2066    // Remove weak_import attribute on new declaration.
2067    New->dropAttr<WeakImportAttr>();
2068  }
2069
2070  // Merge the types.
2071  MergeVarDeclTypes(New, Old);
2072  if (New->isInvalidDecl())
2073    return;
2074
2075  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2076  if (New->getStorageClass() == SC_Static &&
2077      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2078    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2079    Diag(Old->getLocation(), diag::note_previous_definition);
2080    return New->setInvalidDecl();
2081  }
2082  // C99 6.2.2p4:
2083  //   For an identifier declared with the storage-class specifier
2084  //   extern in a scope in which a prior declaration of that
2085  //   identifier is visible,23) if the prior declaration specifies
2086  //   internal or external linkage, the linkage of the identifier at
2087  //   the later declaration is the same as the linkage specified at
2088  //   the prior declaration. If no prior declaration is visible, or
2089  //   if the prior declaration specifies no linkage, then the
2090  //   identifier has external linkage.
2091  if (New->hasExternalStorage() && Old->hasLinkage())
2092    /* Okay */;
2093  else if (New->getStorageClass() != SC_Static &&
2094           Old->getStorageClass() == SC_Static) {
2095    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2096    Diag(Old->getLocation(), diag::note_previous_definition);
2097    return New->setInvalidDecl();
2098  }
2099
2100  // Check if extern is followed by non-extern and vice-versa.
2101  if (New->hasExternalStorage() &&
2102      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2103    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2104    Diag(Old->getLocation(), diag::note_previous_definition);
2105    return New->setInvalidDecl();
2106  }
2107  if (Old->hasExternalStorage() &&
2108      !New->hasLinkage() && New->isLocalVarDecl()) {
2109    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2110    Diag(Old->getLocation(), diag::note_previous_definition);
2111    return New->setInvalidDecl();
2112  }
2113
2114  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2115
2116  // FIXME: The test for external storage here seems wrong? We still
2117  // need to check for mismatches.
2118  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2119      // Don't complain about out-of-line definitions of static members.
2120      !(Old->getLexicalDeclContext()->isRecord() &&
2121        !New->getLexicalDeclContext()->isRecord())) {
2122    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2123    Diag(Old->getLocation(), diag::note_previous_definition);
2124    return New->setInvalidDecl();
2125  }
2126
2127  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2128    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2129    Diag(Old->getLocation(), diag::note_previous_definition);
2130  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2131    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2132    Diag(Old->getLocation(), diag::note_previous_definition);
2133  }
2134
2135  // C++ doesn't have tentative definitions, so go right ahead and check here.
2136  const VarDecl *Def;
2137  if (getLangOptions().CPlusPlus &&
2138      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2139      (Def = Old->getDefinition())) {
2140    Diag(New->getLocation(), diag::err_redefinition)
2141      << New->getDeclName();
2142    Diag(Def->getLocation(), diag::note_previous_definition);
2143    New->setInvalidDecl();
2144    return;
2145  }
2146  // c99 6.2.2 P4.
2147  // For an identifier declared with the storage-class specifier extern in a
2148  // scope in which a prior declaration of that identifier is visible, if
2149  // the prior declaration specifies internal or external linkage, the linkage
2150  // of the identifier at the later declaration is the same as the linkage
2151  // specified at the prior declaration.
2152  // FIXME. revisit this code.
2153  if (New->hasExternalStorage() &&
2154      Old->getLinkage() == InternalLinkage &&
2155      New->getDeclContext() == Old->getDeclContext())
2156    New->setStorageClass(Old->getStorageClass());
2157
2158  // Keep a chain of previous declarations.
2159  New->setPreviousDeclaration(Old);
2160
2161  // Inherit access appropriately.
2162  New->setAccess(Old->getAccess());
2163}
2164
2165/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2166/// no declarator (e.g. "struct foo;") is parsed.
2167Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2168                                       DeclSpec &DS) {
2169  return ParsedFreeStandingDeclSpec(S, AS, DS,
2170                                    MultiTemplateParamsArg(*this, 0, 0));
2171}
2172
2173/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2174/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2175/// parameters to cope with template friend declarations.
2176Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2177                                       DeclSpec &DS,
2178                                       MultiTemplateParamsArg TemplateParams) {
2179  Decl *TagD = 0;
2180  TagDecl *Tag = 0;
2181  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2182      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2183      DS.getTypeSpecType() == DeclSpec::TST_union ||
2184      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2185    TagD = DS.getRepAsDecl();
2186
2187    if (!TagD) // We probably had an error
2188      return 0;
2189
2190    // Note that the above type specs guarantee that the
2191    // type rep is a Decl, whereas in many of the others
2192    // it's a Type.
2193    Tag = dyn_cast<TagDecl>(TagD);
2194  }
2195
2196  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2197    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2198    // or incomplete types shall not be restrict-qualified."
2199    if (TypeQuals & DeclSpec::TQ_restrict)
2200      Diag(DS.getRestrictSpecLoc(),
2201           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2202           << DS.getSourceRange();
2203  }
2204
2205  if (DS.isFriendSpecified()) {
2206    // If we're dealing with a decl but not a TagDecl, assume that
2207    // whatever routines created it handled the friendship aspect.
2208    if (TagD && !Tag)
2209      return 0;
2210    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2211  }
2212
2213  // Track whether we warned about the fact that there aren't any
2214  // declarators.
2215  bool emittedWarning = false;
2216
2217  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2218    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2219
2220    if (!Record->getDeclName() && Record->isDefinition() &&
2221        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2222      if (getLangOptions().CPlusPlus ||
2223          Record->getDeclContext()->isRecord())
2224        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2225
2226      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2227        << DS.getSourceRange();
2228      emittedWarning = true;
2229    }
2230  }
2231
2232  // Check for Microsoft C extension: anonymous struct.
2233  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2234      CurContext->isRecord() &&
2235      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2236    // Handle 2 kinds of anonymous struct:
2237    //   struct STRUCT;
2238    // and
2239    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2240    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2241    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2242        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2243         DS.getRepAsType().get()->isStructureType())) {
2244      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2245        << DS.getSourceRange();
2246      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2247    }
2248  }
2249
2250  if (getLangOptions().CPlusPlus &&
2251      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2252    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2253      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2254          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2255        Diag(Enum->getLocation(), diag::ext_no_declarators)
2256          << DS.getSourceRange();
2257        emittedWarning = true;
2258      }
2259
2260  // Skip all the checks below if we have a type error.
2261  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2262
2263  if (!DS.isMissingDeclaratorOk()) {
2264    // Warn about typedefs of enums without names, since this is an
2265    // extension in both Microsoft and GNU.
2266    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2267        Tag && isa<EnumDecl>(Tag)) {
2268      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2269        << DS.getSourceRange();
2270      return Tag;
2271    }
2272
2273    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2274      << DS.getSourceRange();
2275    emittedWarning = true;
2276  }
2277
2278  // We're going to complain about a bunch of spurious specifiers;
2279  // only do this if we're declaring a tag, because otherwise we
2280  // should be getting diag::ext_no_declarators.
2281  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2282    return TagD;
2283
2284  // Note that a linkage-specification sets a storage class, but
2285  // 'extern "C" struct foo;' is actually valid and not theoretically
2286  // useless.
2287  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2288    if (!DS.isExternInLinkageSpec())
2289      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2290        << DeclSpec::getSpecifierName(scs);
2291
2292  if (DS.isThreadSpecified())
2293    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2294  if (DS.getTypeQualifiers()) {
2295    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2296      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2297    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2298      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2299    // Restrict is covered above.
2300  }
2301  if (DS.isInlineSpecified())
2302    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2303  if (DS.isVirtualSpecified())
2304    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2305  if (DS.isExplicitSpecified())
2306    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2307
2308  // FIXME: Warn on useless attributes
2309
2310  return TagD;
2311}
2312
2313/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2314/// builds a statement for it and returns it so it is evaluated.
2315StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2316  StmtResult R;
2317  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2318    Expr *Exp = DS.getRepAsExpr();
2319    QualType Ty = Exp->getType();
2320    if (Ty->isPointerType()) {
2321      do
2322        Ty = Ty->getAs<PointerType>()->getPointeeType();
2323      while (Ty->isPointerType());
2324    }
2325    if (Ty->isVariableArrayType()) {
2326      R = ActOnExprStmt(MakeFullExpr(Exp));
2327    }
2328  }
2329  return R;
2330}
2331
2332/// We are trying to inject an anonymous member into the given scope;
2333/// check if there's an existing declaration that can't be overloaded.
2334///
2335/// \return true if this is a forbidden redeclaration
2336static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2337                                         Scope *S,
2338                                         DeclContext *Owner,
2339                                         DeclarationName Name,
2340                                         SourceLocation NameLoc,
2341                                         unsigned diagnostic) {
2342  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2343                 Sema::ForRedeclaration);
2344  if (!SemaRef.LookupName(R, S)) return false;
2345
2346  if (R.getAsSingle<TagDecl>())
2347    return false;
2348
2349  // Pick a representative declaration.
2350  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2351  assert(PrevDecl && "Expected a non-null Decl");
2352
2353  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2354    return false;
2355
2356  SemaRef.Diag(NameLoc, diagnostic) << Name;
2357  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2358
2359  return true;
2360}
2361
2362/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2363/// anonymous struct or union AnonRecord into the owning context Owner
2364/// and scope S. This routine will be invoked just after we realize
2365/// that an unnamed union or struct is actually an anonymous union or
2366/// struct, e.g.,
2367///
2368/// @code
2369/// union {
2370///   int i;
2371///   float f;
2372/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2373///    // f into the surrounding scope.x
2374/// @endcode
2375///
2376/// This routine is recursive, injecting the names of nested anonymous
2377/// structs/unions into the owning context and scope as well.
2378static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2379                                                DeclContext *Owner,
2380                                                RecordDecl *AnonRecord,
2381                                                AccessSpecifier AS,
2382                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2383                                                      bool MSAnonStruct) {
2384  unsigned diagKind
2385    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2386                            : diag::err_anonymous_struct_member_redecl;
2387
2388  bool Invalid = false;
2389
2390  // Look every FieldDecl and IndirectFieldDecl with a name.
2391  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2392                               DEnd = AnonRecord->decls_end();
2393       D != DEnd; ++D) {
2394    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2395        cast<NamedDecl>(*D)->getDeclName()) {
2396      ValueDecl *VD = cast<ValueDecl>(*D);
2397      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2398                                       VD->getLocation(), diagKind)) {
2399        // C++ [class.union]p2:
2400        //   The names of the members of an anonymous union shall be
2401        //   distinct from the names of any other entity in the
2402        //   scope in which the anonymous union is declared.
2403        Invalid = true;
2404      } else {
2405        // C++ [class.union]p2:
2406        //   For the purpose of name lookup, after the anonymous union
2407        //   definition, the members of the anonymous union are
2408        //   considered to have been defined in the scope in which the
2409        //   anonymous union is declared.
2410        unsigned OldChainingSize = Chaining.size();
2411        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2412          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2413               PE = IF->chain_end(); PI != PE; ++PI)
2414            Chaining.push_back(*PI);
2415        else
2416          Chaining.push_back(VD);
2417
2418        assert(Chaining.size() >= 2);
2419        NamedDecl **NamedChain =
2420          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2421        for (unsigned i = 0; i < Chaining.size(); i++)
2422          NamedChain[i] = Chaining[i];
2423
2424        IndirectFieldDecl* IndirectField =
2425          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2426                                    VD->getIdentifier(), VD->getType(),
2427                                    NamedChain, Chaining.size());
2428
2429        IndirectField->setAccess(AS);
2430        IndirectField->setImplicit();
2431        SemaRef.PushOnScopeChains(IndirectField, S);
2432
2433        // That includes picking up the appropriate access specifier.
2434        if (AS != AS_none) IndirectField->setAccess(AS);
2435
2436        Chaining.resize(OldChainingSize);
2437      }
2438    }
2439  }
2440
2441  return Invalid;
2442}
2443
2444/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2445/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2446/// illegal input values are mapped to SC_None.
2447static StorageClass
2448StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2449  switch (StorageClassSpec) {
2450  case DeclSpec::SCS_unspecified:    return SC_None;
2451  case DeclSpec::SCS_extern:         return SC_Extern;
2452  case DeclSpec::SCS_static:         return SC_Static;
2453  case DeclSpec::SCS_auto:           return SC_Auto;
2454  case DeclSpec::SCS_register:       return SC_Register;
2455  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2456    // Illegal SCSs map to None: error reporting is up to the caller.
2457  case DeclSpec::SCS_mutable:        // Fall through.
2458  case DeclSpec::SCS_typedef:        return SC_None;
2459  }
2460  llvm_unreachable("unknown storage class specifier");
2461}
2462
2463/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2464/// a StorageClass. Any error reporting is up to the caller:
2465/// illegal input values are mapped to SC_None.
2466static StorageClass
2467StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2468  switch (StorageClassSpec) {
2469  case DeclSpec::SCS_unspecified:    return SC_None;
2470  case DeclSpec::SCS_extern:         return SC_Extern;
2471  case DeclSpec::SCS_static:         return SC_Static;
2472  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2473    // Illegal SCSs map to None: error reporting is up to the caller.
2474  case DeclSpec::SCS_auto:           // Fall through.
2475  case DeclSpec::SCS_mutable:        // Fall through.
2476  case DeclSpec::SCS_register:       // Fall through.
2477  case DeclSpec::SCS_typedef:        return SC_None;
2478  }
2479  llvm_unreachable("unknown storage class specifier");
2480}
2481
2482/// BuildAnonymousStructOrUnion - Handle the declaration of an
2483/// anonymous structure or union. Anonymous unions are a C++ feature
2484/// (C++ [class.union]) and a GNU C extension; anonymous structures
2485/// are a GNU C and GNU C++ extension.
2486Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2487                                             AccessSpecifier AS,
2488                                             RecordDecl *Record) {
2489  DeclContext *Owner = Record->getDeclContext();
2490
2491  // Diagnose whether this anonymous struct/union is an extension.
2492  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2493    Diag(Record->getLocation(), diag::ext_anonymous_union);
2494  else if (!Record->isUnion())
2495    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2496
2497  // C and C++ require different kinds of checks for anonymous
2498  // structs/unions.
2499  bool Invalid = false;
2500  if (getLangOptions().CPlusPlus) {
2501    const char* PrevSpec = 0;
2502    unsigned DiagID;
2503    // C++ [class.union]p3:
2504    //   Anonymous unions declared in a named namespace or in the
2505    //   global namespace shall be declared static.
2506    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2507        (isa<TranslationUnitDecl>(Owner) ||
2508         (isa<NamespaceDecl>(Owner) &&
2509          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2510      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2511      Invalid = true;
2512
2513      // Recover by adding 'static'.
2514      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2515                             PrevSpec, DiagID, getLangOptions());
2516    }
2517    // C++ [class.union]p3:
2518    //   A storage class is not allowed in a declaration of an
2519    //   anonymous union in a class scope.
2520    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2521             isa<RecordDecl>(Owner)) {
2522      Diag(DS.getStorageClassSpecLoc(),
2523           diag::err_anonymous_union_with_storage_spec);
2524      Invalid = true;
2525
2526      // Recover by removing the storage specifier.
2527      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2528                             PrevSpec, DiagID, getLangOptions());
2529    }
2530
2531    // Ignore const/volatile/restrict qualifiers.
2532    if (DS.getTypeQualifiers()) {
2533      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2534        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2535          << Record->isUnion() << 0
2536          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2537      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2538        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2539          << Record->isUnion() << 1
2540          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2541      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2542        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2543          << Record->isUnion() << 2
2544          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2545
2546      DS.ClearTypeQualifiers();
2547    }
2548
2549    // C++ [class.union]p2:
2550    //   The member-specification of an anonymous union shall only
2551    //   define non-static data members. [Note: nested types and
2552    //   functions cannot be declared within an anonymous union. ]
2553    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2554                                 MemEnd = Record->decls_end();
2555         Mem != MemEnd; ++Mem) {
2556      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2557        // C++ [class.union]p3:
2558        //   An anonymous union shall not have private or protected
2559        //   members (clause 11).
2560        assert(FD->getAccess() != AS_none);
2561        if (FD->getAccess() != AS_public) {
2562          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2563            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2564          Invalid = true;
2565        }
2566
2567        // C++ [class.union]p1
2568        //   An object of a class with a non-trivial constructor, a non-trivial
2569        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2570        //   assignment operator cannot be a member of a union, nor can an
2571        //   array of such objects.
2572        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2573          Invalid = true;
2574      } else if ((*Mem)->isImplicit()) {
2575        // Any implicit members are fine.
2576      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2577        // This is a type that showed up in an
2578        // elaborated-type-specifier inside the anonymous struct or
2579        // union, but which actually declares a type outside of the
2580        // anonymous struct or union. It's okay.
2581      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2582        if (!MemRecord->isAnonymousStructOrUnion() &&
2583            MemRecord->getDeclName()) {
2584          // Visual C++ allows type definition in anonymous struct or union.
2585          if (getLangOptions().Microsoft)
2586            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2587              << (int)Record->isUnion();
2588          else {
2589            // This is a nested type declaration.
2590            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2591              << (int)Record->isUnion();
2592            Invalid = true;
2593          }
2594        }
2595      } else if (isa<AccessSpecDecl>(*Mem)) {
2596        // Any access specifier is fine.
2597      } else {
2598        // We have something that isn't a non-static data
2599        // member. Complain about it.
2600        unsigned DK = diag::err_anonymous_record_bad_member;
2601        if (isa<TypeDecl>(*Mem))
2602          DK = diag::err_anonymous_record_with_type;
2603        else if (isa<FunctionDecl>(*Mem))
2604          DK = diag::err_anonymous_record_with_function;
2605        else if (isa<VarDecl>(*Mem))
2606          DK = diag::err_anonymous_record_with_static;
2607
2608        // Visual C++ allows type definition in anonymous struct or union.
2609        if (getLangOptions().Microsoft &&
2610            DK == diag::err_anonymous_record_with_type)
2611          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2612            << (int)Record->isUnion();
2613        else {
2614          Diag((*Mem)->getLocation(), DK)
2615              << (int)Record->isUnion();
2616          Invalid = true;
2617        }
2618      }
2619    }
2620  }
2621
2622  if (!Record->isUnion() && !Owner->isRecord()) {
2623    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2624      << (int)getLangOptions().CPlusPlus;
2625    Invalid = true;
2626  }
2627
2628  // Mock up a declarator.
2629  Declarator Dc(DS, Declarator::MemberContext);
2630  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2631  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2632
2633  // Create a declaration for this anonymous struct/union.
2634  NamedDecl *Anon = 0;
2635  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2636    Anon = FieldDecl::Create(Context, OwningClass,
2637                             DS.getSourceRange().getBegin(),
2638                             Record->getLocation(),
2639                             /*IdentifierInfo=*/0,
2640                             Context.getTypeDeclType(Record),
2641                             TInfo,
2642                             /*BitWidth=*/0, /*Mutable=*/false,
2643                             /*HasInit=*/false);
2644    Anon->setAccess(AS);
2645    if (getLangOptions().CPlusPlus)
2646      FieldCollector->Add(cast<FieldDecl>(Anon));
2647  } else {
2648    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2649    assert(SCSpec != DeclSpec::SCS_typedef &&
2650           "Parser allowed 'typedef' as storage class VarDecl.");
2651    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2652    if (SCSpec == DeclSpec::SCS_mutable) {
2653      // mutable can only appear on non-static class members, so it's always
2654      // an error here
2655      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2656      Invalid = true;
2657      SC = SC_None;
2658    }
2659    SCSpec = DS.getStorageClassSpecAsWritten();
2660    VarDecl::StorageClass SCAsWritten
2661      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2662
2663    Anon = VarDecl::Create(Context, Owner,
2664                           DS.getSourceRange().getBegin(),
2665                           Record->getLocation(), /*IdentifierInfo=*/0,
2666                           Context.getTypeDeclType(Record),
2667                           TInfo, SC, SCAsWritten);
2668  }
2669  Anon->setImplicit();
2670
2671  // Add the anonymous struct/union object to the current
2672  // context. We'll be referencing this object when we refer to one of
2673  // its members.
2674  Owner->addDecl(Anon);
2675
2676  // Inject the members of the anonymous struct/union into the owning
2677  // context and into the identifier resolver chain for name lookup
2678  // purposes.
2679  llvm::SmallVector<NamedDecl*, 2> Chain;
2680  Chain.push_back(Anon);
2681
2682  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2683                                          Chain, false))
2684    Invalid = true;
2685
2686  // Mark this as an anonymous struct/union type. Note that we do not
2687  // do this until after we have already checked and injected the
2688  // members of this anonymous struct/union type, because otherwise
2689  // the members could be injected twice: once by DeclContext when it
2690  // builds its lookup table, and once by
2691  // InjectAnonymousStructOrUnionMembers.
2692  Record->setAnonymousStructOrUnion(true);
2693
2694  if (Invalid)
2695    Anon->setInvalidDecl();
2696
2697  return Anon;
2698}
2699
2700/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2701/// Microsoft C anonymous structure.
2702/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2703/// Example:
2704///
2705/// struct A { int a; };
2706/// struct B { struct A; int b; };
2707///
2708/// void foo() {
2709///   B var;
2710///   var.a = 3;
2711/// }
2712///
2713Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2714                                           RecordDecl *Record) {
2715
2716  // If there is no Record, get the record via the typedef.
2717  if (!Record)
2718    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2719
2720  // Mock up a declarator.
2721  Declarator Dc(DS, Declarator::TypeNameContext);
2722  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2723  assert(TInfo && "couldn't build declarator info for anonymous struct");
2724
2725  // Create a declaration for this anonymous struct.
2726  NamedDecl* Anon = FieldDecl::Create(Context,
2727                             cast<RecordDecl>(CurContext),
2728                             DS.getSourceRange().getBegin(),
2729                             DS.getSourceRange().getBegin(),
2730                             /*IdentifierInfo=*/0,
2731                             Context.getTypeDeclType(Record),
2732                             TInfo,
2733                             /*BitWidth=*/0, /*Mutable=*/false,
2734                             /*HasInit=*/false);
2735  Anon->setImplicit();
2736
2737  // Add the anonymous struct object to the current context.
2738  CurContext->addDecl(Anon);
2739
2740  // Inject the members of the anonymous struct into the current
2741  // context and into the identifier resolver chain for name lookup
2742  // purposes.
2743  llvm::SmallVector<NamedDecl*, 2> Chain;
2744  Chain.push_back(Anon);
2745
2746  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2747                                          Record->getDefinition(),
2748                                          AS_none, Chain, true))
2749    Anon->setInvalidDecl();
2750
2751  return Anon;
2752}
2753
2754/// GetNameForDeclarator - Determine the full declaration name for the
2755/// given Declarator.
2756DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2757  return GetNameFromUnqualifiedId(D.getName());
2758}
2759
2760/// \brief Retrieves the declaration name from a parsed unqualified-id.
2761DeclarationNameInfo
2762Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2763  DeclarationNameInfo NameInfo;
2764  NameInfo.setLoc(Name.StartLocation);
2765
2766  switch (Name.getKind()) {
2767
2768  case UnqualifiedId::IK_ImplicitSelfParam:
2769  case UnqualifiedId::IK_Identifier:
2770    NameInfo.setName(Name.Identifier);
2771    NameInfo.setLoc(Name.StartLocation);
2772    return NameInfo;
2773
2774  case UnqualifiedId::IK_OperatorFunctionId:
2775    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2776                                           Name.OperatorFunctionId.Operator));
2777    NameInfo.setLoc(Name.StartLocation);
2778    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2779      = Name.OperatorFunctionId.SymbolLocations[0];
2780    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2781      = Name.EndLocation.getRawEncoding();
2782    return NameInfo;
2783
2784  case UnqualifiedId::IK_LiteralOperatorId:
2785    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2786                                                           Name.Identifier));
2787    NameInfo.setLoc(Name.StartLocation);
2788    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2789    return NameInfo;
2790
2791  case UnqualifiedId::IK_ConversionFunctionId: {
2792    TypeSourceInfo *TInfo;
2793    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2794    if (Ty.isNull())
2795      return DeclarationNameInfo();
2796    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2797                                               Context.getCanonicalType(Ty)));
2798    NameInfo.setLoc(Name.StartLocation);
2799    NameInfo.setNamedTypeInfo(TInfo);
2800    return NameInfo;
2801  }
2802
2803  case UnqualifiedId::IK_ConstructorName: {
2804    TypeSourceInfo *TInfo;
2805    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2806    if (Ty.isNull())
2807      return DeclarationNameInfo();
2808    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2809                                              Context.getCanonicalType(Ty)));
2810    NameInfo.setLoc(Name.StartLocation);
2811    NameInfo.setNamedTypeInfo(TInfo);
2812    return NameInfo;
2813  }
2814
2815  case UnqualifiedId::IK_ConstructorTemplateId: {
2816    // In well-formed code, we can only have a constructor
2817    // template-id that refers to the current context, so go there
2818    // to find the actual type being constructed.
2819    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2820    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2821      return DeclarationNameInfo();
2822
2823    // Determine the type of the class being constructed.
2824    QualType CurClassType = Context.getTypeDeclType(CurClass);
2825
2826    // FIXME: Check two things: that the template-id names the same type as
2827    // CurClassType, and that the template-id does not occur when the name
2828    // was qualified.
2829
2830    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2831                                    Context.getCanonicalType(CurClassType)));
2832    NameInfo.setLoc(Name.StartLocation);
2833    // FIXME: should we retrieve TypeSourceInfo?
2834    NameInfo.setNamedTypeInfo(0);
2835    return NameInfo;
2836  }
2837
2838  case UnqualifiedId::IK_DestructorName: {
2839    TypeSourceInfo *TInfo;
2840    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2841    if (Ty.isNull())
2842      return DeclarationNameInfo();
2843    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2844                                              Context.getCanonicalType(Ty)));
2845    NameInfo.setLoc(Name.StartLocation);
2846    NameInfo.setNamedTypeInfo(TInfo);
2847    return NameInfo;
2848  }
2849
2850  case UnqualifiedId::IK_TemplateId: {
2851    TemplateName TName = Name.TemplateId->Template.get();
2852    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2853    return Context.getNameForTemplate(TName, TNameLoc);
2854  }
2855
2856  } // switch (Name.getKind())
2857
2858  assert(false && "Unknown name kind");
2859  return DeclarationNameInfo();
2860}
2861
2862/// isNearlyMatchingFunction - Determine whether the C++ functions
2863/// Declaration and Definition are "nearly" matching. This heuristic
2864/// is used to improve diagnostics in the case where an out-of-line
2865/// function definition doesn't match any declaration within
2866/// the class or namespace.
2867static bool isNearlyMatchingFunction(ASTContext &Context,
2868                                     FunctionDecl *Declaration,
2869                                     FunctionDecl *Definition) {
2870  if (Declaration->param_size() != Definition->param_size())
2871    return false;
2872  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2873    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2874    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2875
2876    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2877                                        DefParamTy.getNonReferenceType()))
2878      return false;
2879  }
2880
2881  return true;
2882}
2883
2884/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2885/// declarator needs to be rebuilt in the current instantiation.
2886/// Any bits of declarator which appear before the name are valid for
2887/// consideration here.  That's specifically the type in the decl spec
2888/// and the base type in any member-pointer chunks.
2889static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2890                                                    DeclarationName Name) {
2891  // The types we specifically need to rebuild are:
2892  //   - typenames, typeofs, and decltypes
2893  //   - types which will become injected class names
2894  // Of course, we also need to rebuild any type referencing such a
2895  // type.  It's safest to just say "dependent", but we call out a
2896  // few cases here.
2897
2898  DeclSpec &DS = D.getMutableDeclSpec();
2899  switch (DS.getTypeSpecType()) {
2900  case DeclSpec::TST_typename:
2901  case DeclSpec::TST_typeofType:
2902  case DeclSpec::TST_decltype:
2903  case DeclSpec::TST_underlyingType: {
2904    // Grab the type from the parser.
2905    TypeSourceInfo *TSI = 0;
2906    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2907    if (T.isNull() || !T->isDependentType()) break;
2908
2909    // Make sure there's a type source info.  This isn't really much
2910    // of a waste; most dependent types should have type source info
2911    // attached already.
2912    if (!TSI)
2913      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2914
2915    // Rebuild the type in the current instantiation.
2916    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2917    if (!TSI) return true;
2918
2919    // Store the new type back in the decl spec.
2920    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2921    DS.UpdateTypeRep(LocType);
2922    break;
2923  }
2924
2925  case DeclSpec::TST_typeofExpr: {
2926    Expr *E = DS.getRepAsExpr();
2927    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2928    if (Result.isInvalid()) return true;
2929    DS.UpdateExprRep(Result.get());
2930    break;
2931  }
2932
2933  default:
2934    // Nothing to do for these decl specs.
2935    break;
2936  }
2937
2938  // It doesn't matter what order we do this in.
2939  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2940    DeclaratorChunk &Chunk = D.getTypeObject(I);
2941
2942    // The only type information in the declarator which can come
2943    // before the declaration name is the base type of a member
2944    // pointer.
2945    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2946      continue;
2947
2948    // Rebuild the scope specifier in-place.
2949    CXXScopeSpec &SS = Chunk.Mem.Scope();
2950    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2951      return true;
2952  }
2953
2954  return false;
2955}
2956
2957Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2958  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2959                          /*IsFunctionDefinition=*/false);
2960}
2961
2962/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2963///   If T is the name of a class, then each of the following shall have a
2964///   name different from T:
2965///     - every static data member of class T;
2966///     - every member function of class T
2967///     - every member of class T that is itself a type;
2968/// \returns true if the declaration name violates these rules.
2969bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2970                                   DeclarationNameInfo NameInfo) {
2971  DeclarationName Name = NameInfo.getName();
2972
2973  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2974    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2975      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2976      return true;
2977    }
2978
2979  return false;
2980}
2981
2982Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2983                             MultiTemplateParamsArg TemplateParamLists,
2984                             bool IsFunctionDefinition) {
2985  // TODO: consider using NameInfo for diagnostic.
2986  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2987  DeclarationName Name = NameInfo.getName();
2988
2989  // All of these full declarators require an identifier.  If it doesn't have
2990  // one, the ParsedFreeStandingDeclSpec action should be used.
2991  if (!Name) {
2992    if (!D.isInvalidType())  // Reject this if we think it is valid.
2993      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2994           diag::err_declarator_need_ident)
2995        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2996    return 0;
2997  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2998    return 0;
2999
3000  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3001  // we find one that is.
3002  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3003         (S->getFlags() & Scope::TemplateParamScope) != 0)
3004    S = S->getParent();
3005
3006  DeclContext *DC = CurContext;
3007  if (D.getCXXScopeSpec().isInvalid())
3008    D.setInvalidType();
3009  else if (D.getCXXScopeSpec().isSet()) {
3010    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3011                                        UPPC_DeclarationQualifier))
3012      return 0;
3013
3014    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3015    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3016    if (!DC) {
3017      // If we could not compute the declaration context, it's because the
3018      // declaration context is dependent but does not refer to a class,
3019      // class template, or class template partial specialization. Complain
3020      // and return early, to avoid the coming semantic disaster.
3021      Diag(D.getIdentifierLoc(),
3022           diag::err_template_qualified_declarator_no_match)
3023        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3024        << D.getCXXScopeSpec().getRange();
3025      return 0;
3026    }
3027    bool IsDependentContext = DC->isDependentContext();
3028
3029    if (!IsDependentContext &&
3030        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3031      return 0;
3032
3033    if (isa<CXXRecordDecl>(DC)) {
3034      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3035        Diag(D.getIdentifierLoc(),
3036             diag::err_member_def_undefined_record)
3037          << Name << DC << D.getCXXScopeSpec().getRange();
3038        D.setInvalidType();
3039      } else if (isa<CXXRecordDecl>(CurContext) &&
3040                 !D.getDeclSpec().isFriendSpecified()) {
3041        // The user provided a superfluous scope specifier inside a class
3042        // definition:
3043        //
3044        // class X {
3045        //   void X::f();
3046        // };
3047        if (CurContext->Equals(DC))
3048          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3049            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3050        else
3051          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3052            << Name << D.getCXXScopeSpec().getRange();
3053
3054        // Pretend that this qualifier was not here.
3055        D.getCXXScopeSpec().clear();
3056      }
3057    }
3058
3059    // Check whether we need to rebuild the type of the given
3060    // declaration in the current instantiation.
3061    if (EnteringContext && IsDependentContext &&
3062        TemplateParamLists.size() != 0) {
3063      ContextRAII SavedContext(*this, DC);
3064      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3065        D.setInvalidType();
3066    }
3067  }
3068
3069  if (DiagnoseClassNameShadow(DC, NameInfo))
3070    // If this is a typedef, we'll end up spewing multiple diagnostics.
3071    // Just return early; it's safer.
3072    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3073      return 0;
3074
3075  NamedDecl *New;
3076
3077  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3078  QualType R = TInfo->getType();
3079
3080  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3081                                      UPPC_DeclarationType))
3082    D.setInvalidType();
3083
3084  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3085                        ForRedeclaration);
3086
3087  // See if this is a redefinition of a variable in the same scope.
3088  if (!D.getCXXScopeSpec().isSet()) {
3089    bool IsLinkageLookup = false;
3090
3091    // If the declaration we're planning to build will be a function
3092    // or object with linkage, then look for another declaration with
3093    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3094    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3095      /* Do nothing*/;
3096    else if (R->isFunctionType()) {
3097      if (CurContext->isFunctionOrMethod() ||
3098          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3099        IsLinkageLookup = true;
3100    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3101      IsLinkageLookup = true;
3102    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3103             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3104      IsLinkageLookup = true;
3105
3106    if (IsLinkageLookup)
3107      Previous.clear(LookupRedeclarationWithLinkage);
3108
3109    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3110  } else { // Something like "int foo::x;"
3111    LookupQualifiedName(Previous, DC);
3112
3113    // Don't consider using declarations as previous declarations for
3114    // out-of-line members.
3115    RemoveUsingDecls(Previous);
3116
3117    // C++ 7.3.1.2p2:
3118    // Members (including explicit specializations of templates) of a named
3119    // namespace can also be defined outside that namespace by explicit
3120    // qualification of the name being defined, provided that the entity being
3121    // defined was already declared in the namespace and the definition appears
3122    // after the point of declaration in a namespace that encloses the
3123    // declarations namespace.
3124    //
3125    // Note that we only check the context at this point. We don't yet
3126    // have enough information to make sure that PrevDecl is actually
3127    // the declaration we want to match. For example, given:
3128    //
3129    //   class X {
3130    //     void f();
3131    //     void f(float);
3132    //   };
3133    //
3134    //   void X::f(int) { } // ill-formed
3135    //
3136    // In this case, PrevDecl will point to the overload set
3137    // containing the two f's declared in X, but neither of them
3138    // matches.
3139
3140    // First check whether we named the global scope.
3141    if (isa<TranslationUnitDecl>(DC)) {
3142      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3143        << Name << D.getCXXScopeSpec().getRange();
3144    } else {
3145      DeclContext *Cur = CurContext;
3146      while (isa<LinkageSpecDecl>(Cur))
3147        Cur = Cur->getParent();
3148      if (!Cur->Encloses(DC)) {
3149        // The qualifying scope doesn't enclose the original declaration.
3150        // Emit diagnostic based on current scope.
3151        SourceLocation L = D.getIdentifierLoc();
3152        SourceRange R = D.getCXXScopeSpec().getRange();
3153        if (isa<FunctionDecl>(Cur))
3154          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3155        else
3156          Diag(L, diag::err_invalid_declarator_scope)
3157            << Name << cast<NamedDecl>(DC) << R;
3158        D.setInvalidType();
3159      }
3160    }
3161  }
3162
3163  if (Previous.isSingleResult() &&
3164      Previous.getFoundDecl()->isTemplateParameter()) {
3165    // Maybe we will complain about the shadowed template parameter.
3166    if (!D.isInvalidType())
3167      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3168                                          Previous.getFoundDecl()))
3169        D.setInvalidType();
3170
3171    // Just pretend that we didn't see the previous declaration.
3172    Previous.clear();
3173  }
3174
3175  // In C++, the previous declaration we find might be a tag type
3176  // (class or enum). In this case, the new declaration will hide the
3177  // tag type. Note that this does does not apply if we're declaring a
3178  // typedef (C++ [dcl.typedef]p4).
3179  if (Previous.isSingleTagDecl() &&
3180      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3181    Previous.clear();
3182
3183  bool Redeclaration = false;
3184  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3185    if (TemplateParamLists.size()) {
3186      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3187      return 0;
3188    }
3189
3190    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3191  } else if (R->isFunctionType()) {
3192    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3193                                  move(TemplateParamLists),
3194                                  IsFunctionDefinition, Redeclaration);
3195  } else {
3196    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3197                                  move(TemplateParamLists),
3198                                  Redeclaration);
3199  }
3200
3201  if (New == 0)
3202    return 0;
3203
3204  // If this has an identifier and is not an invalid redeclaration or
3205  // function template specialization, add it to the scope stack.
3206  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3207    PushOnScopeChains(New, S);
3208
3209  return New;
3210}
3211
3212/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3213/// types into constant array types in certain situations which would otherwise
3214/// be errors (for GCC compatibility).
3215static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3216                                                    ASTContext &Context,
3217                                                    bool &SizeIsNegative,
3218                                                    llvm::APSInt &Oversized) {
3219  // This method tries to turn a variable array into a constant
3220  // array even when the size isn't an ICE.  This is necessary
3221  // for compatibility with code that depends on gcc's buggy
3222  // constant expression folding, like struct {char x[(int)(char*)2];}
3223  SizeIsNegative = false;
3224  Oversized = 0;
3225
3226  if (T->isDependentType())
3227    return QualType();
3228
3229  QualifierCollector Qs;
3230  const Type *Ty = Qs.strip(T);
3231
3232  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3233    QualType Pointee = PTy->getPointeeType();
3234    QualType FixedType =
3235        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3236                                            Oversized);
3237    if (FixedType.isNull()) return FixedType;
3238    FixedType = Context.getPointerType(FixedType);
3239    return Qs.apply(Context, FixedType);
3240  }
3241  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3242    QualType Inner = PTy->getInnerType();
3243    QualType FixedType =
3244        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3245                                            Oversized);
3246    if (FixedType.isNull()) return FixedType;
3247    FixedType = Context.getParenType(FixedType);
3248    return Qs.apply(Context, FixedType);
3249  }
3250
3251  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3252  if (!VLATy)
3253    return QualType();
3254  // FIXME: We should probably handle this case
3255  if (VLATy->getElementType()->isVariablyModifiedType())
3256    return QualType();
3257
3258  Expr::EvalResult EvalResult;
3259  if (!VLATy->getSizeExpr() ||
3260      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3261      !EvalResult.Val.isInt())
3262    return QualType();
3263
3264  // Check whether the array size is negative.
3265  llvm::APSInt &Res = EvalResult.Val.getInt();
3266  if (Res.isSigned() && Res.isNegative()) {
3267    SizeIsNegative = true;
3268    return QualType();
3269  }
3270
3271  // Check whether the array is too large to be addressed.
3272  unsigned ActiveSizeBits
3273    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3274                                              Res);
3275  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3276    Oversized = Res;
3277    return QualType();
3278  }
3279
3280  return Context.getConstantArrayType(VLATy->getElementType(),
3281                                      Res, ArrayType::Normal, 0);
3282}
3283
3284/// \brief Register the given locally-scoped external C declaration so
3285/// that it can be found later for redeclarations
3286void
3287Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3288                                       const LookupResult &Previous,
3289                                       Scope *S) {
3290  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3291         "Decl is not a locally-scoped decl!");
3292  // Note that we have a locally-scoped external with this name.
3293  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3294
3295  if (!Previous.isSingleResult())
3296    return;
3297
3298  NamedDecl *PrevDecl = Previous.getFoundDecl();
3299
3300  // If there was a previous declaration of this variable, it may be
3301  // in our identifier chain. Update the identifier chain with the new
3302  // declaration.
3303  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3304    // The previous declaration was found on the identifer resolver
3305    // chain, so remove it from its scope.
3306
3307    if (S->isDeclScope(PrevDecl)) {
3308      // Special case for redeclarations in the SAME scope.
3309      // Because this declaration is going to be added to the identifier chain
3310      // later, we should temporarily take it OFF the chain.
3311      IdResolver.RemoveDecl(ND);
3312
3313    } else {
3314      // Find the scope for the original declaration.
3315      while (S && !S->isDeclScope(PrevDecl))
3316        S = S->getParent();
3317    }
3318
3319    if (S)
3320      S->RemoveDecl(PrevDecl);
3321  }
3322}
3323
3324/// \brief Diagnose function specifiers on a declaration of an identifier that
3325/// does not identify a function.
3326void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3327  // FIXME: We should probably indicate the identifier in question to avoid
3328  // confusion for constructs like "inline int a(), b;"
3329  if (D.getDeclSpec().isInlineSpecified())
3330    Diag(D.getDeclSpec().getInlineSpecLoc(),
3331         diag::err_inline_non_function);
3332
3333  if (D.getDeclSpec().isVirtualSpecified())
3334    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3335         diag::err_virtual_non_function);
3336
3337  if (D.getDeclSpec().isExplicitSpecified())
3338    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3339         diag::err_explicit_non_function);
3340}
3341
3342NamedDecl*
3343Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3344                             QualType R,  TypeSourceInfo *TInfo,
3345                             LookupResult &Previous, bool &Redeclaration) {
3346  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3347  if (D.getCXXScopeSpec().isSet()) {
3348    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3349      << D.getCXXScopeSpec().getRange();
3350    D.setInvalidType();
3351    // Pretend we didn't see the scope specifier.
3352    DC = CurContext;
3353    Previous.clear();
3354  }
3355
3356  if (getLangOptions().CPlusPlus) {
3357    // Check that there are no default arguments (C++ only).
3358    CheckExtraCXXDefaultArguments(D);
3359  }
3360
3361  DiagnoseFunctionSpecifiers(D);
3362
3363  if (D.getDeclSpec().isThreadSpecified())
3364    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3365
3366  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3367    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3368      << D.getName().getSourceRange();
3369    return 0;
3370  }
3371
3372  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3373  if (!NewTD) return 0;
3374
3375  // Handle attributes prior to checking for duplicates in MergeVarDecl
3376  ProcessDeclAttributes(S, NewTD, D);
3377
3378  CheckTypedefForVariablyModifiedType(S, NewTD);
3379
3380  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3381}
3382
3383void
3384Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3385  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3386  // then it shall have block scope.
3387  // Note that variably modified types must be fixed before merging the decl so
3388  // that redeclarations will match.
3389  QualType T = NewTD->getUnderlyingType();
3390  if (T->isVariablyModifiedType()) {
3391    getCurFunction()->setHasBranchProtectedScope();
3392
3393    if (S->getFnParent() == 0) {
3394      bool SizeIsNegative;
3395      llvm::APSInt Oversized;
3396      QualType FixedTy =
3397          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3398                                              Oversized);
3399      if (!FixedTy.isNull()) {
3400        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3401        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3402      } else {
3403        if (SizeIsNegative)
3404          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3405        else if (T->isVariableArrayType())
3406          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3407        else if (Oversized.getBoolValue())
3408          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3409        else
3410          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3411        NewTD->setInvalidDecl();
3412      }
3413    }
3414  }
3415}
3416
3417
3418/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3419/// declares a typedef-name, either using the 'typedef' type specifier or via
3420/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3421NamedDecl*
3422Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3423                           LookupResult &Previous, bool &Redeclaration) {
3424  // Merge the decl with the existing one if appropriate. If the decl is
3425  // in an outer scope, it isn't the same thing.
3426  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3427                       /*ExplicitInstantiationOrSpecialization=*/false);
3428  if (!Previous.empty()) {
3429    Redeclaration = true;
3430    MergeTypedefNameDecl(NewTD, Previous);
3431  }
3432
3433  // If this is the C FILE type, notify the AST context.
3434  if (IdentifierInfo *II = NewTD->getIdentifier())
3435    if (!NewTD->isInvalidDecl() &&
3436        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3437      if (II->isStr("FILE"))
3438        Context.setFILEDecl(NewTD);
3439      else if (II->isStr("jmp_buf"))
3440        Context.setjmp_bufDecl(NewTD);
3441      else if (II->isStr("sigjmp_buf"))
3442        Context.setsigjmp_bufDecl(NewTD);
3443      else if (II->isStr("__builtin_va_list"))
3444        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3445    }
3446
3447  return NewTD;
3448}
3449
3450/// \brief Determines whether the given declaration is an out-of-scope
3451/// previous declaration.
3452///
3453/// This routine should be invoked when name lookup has found a
3454/// previous declaration (PrevDecl) that is not in the scope where a
3455/// new declaration by the same name is being introduced. If the new
3456/// declaration occurs in a local scope, previous declarations with
3457/// linkage may still be considered previous declarations (C99
3458/// 6.2.2p4-5, C++ [basic.link]p6).
3459///
3460/// \param PrevDecl the previous declaration found by name
3461/// lookup
3462///
3463/// \param DC the context in which the new declaration is being
3464/// declared.
3465///
3466/// \returns true if PrevDecl is an out-of-scope previous declaration
3467/// for a new delcaration with the same name.
3468static bool
3469isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3470                                ASTContext &Context) {
3471  if (!PrevDecl)
3472    return false;
3473
3474  if (!PrevDecl->hasLinkage())
3475    return false;
3476
3477  if (Context.getLangOptions().CPlusPlus) {
3478    // C++ [basic.link]p6:
3479    //   If there is a visible declaration of an entity with linkage
3480    //   having the same name and type, ignoring entities declared
3481    //   outside the innermost enclosing namespace scope, the block
3482    //   scope declaration declares that same entity and receives the
3483    //   linkage of the previous declaration.
3484    DeclContext *OuterContext = DC->getRedeclContext();
3485    if (!OuterContext->isFunctionOrMethod())
3486      // This rule only applies to block-scope declarations.
3487      return false;
3488
3489    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3490    if (PrevOuterContext->isRecord())
3491      // We found a member function: ignore it.
3492      return false;
3493
3494    // Find the innermost enclosing namespace for the new and
3495    // previous declarations.
3496    OuterContext = OuterContext->getEnclosingNamespaceContext();
3497    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3498
3499    // The previous declaration is in a different namespace, so it
3500    // isn't the same function.
3501    if (!OuterContext->Equals(PrevOuterContext))
3502      return false;
3503  }
3504
3505  return true;
3506}
3507
3508static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3509  CXXScopeSpec &SS = D.getCXXScopeSpec();
3510  if (!SS.isSet()) return;
3511  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3512}
3513
3514bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3515  QualType type = decl->getType();
3516  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3517  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3518    // Various kinds of declaration aren't allowed to be __autoreleasing.
3519    unsigned kind = -1U;
3520    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3521      if (var->hasAttr<BlocksAttr>())
3522        kind = 0; // __block
3523      else if (!var->hasLocalStorage())
3524        kind = 1; // global
3525    } else if (isa<ObjCIvarDecl>(decl)) {
3526      kind = 3; // ivar
3527    } else if (isa<FieldDecl>(decl)) {
3528      kind = 2; // field
3529    }
3530
3531    if (kind != -1U) {
3532      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3533        << kind;
3534    }
3535  } else if (lifetime == Qualifiers::OCL_None) {
3536    // Try to infer lifetime.
3537    if (!type->isObjCLifetimeType())
3538      return false;
3539
3540    lifetime = type->getObjCARCImplicitLifetime();
3541    type = Context.getLifetimeQualifiedType(type, lifetime);
3542    decl->setType(type);
3543  }
3544
3545  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3546    // Thread-local variables cannot have lifetime.
3547    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3548        var->isThreadSpecified()) {
3549      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3550        << var->getType();
3551      return true;
3552    }
3553  }
3554
3555  return false;
3556}
3557
3558NamedDecl*
3559Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3560                              QualType R, TypeSourceInfo *TInfo,
3561                              LookupResult &Previous,
3562                              MultiTemplateParamsArg TemplateParamLists,
3563                              bool &Redeclaration) {
3564  DeclarationName Name = GetNameForDeclarator(D).getName();
3565
3566  // Check that there are no default arguments (C++ only).
3567  if (getLangOptions().CPlusPlus)
3568    CheckExtraCXXDefaultArguments(D);
3569
3570  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3571  assert(SCSpec != DeclSpec::SCS_typedef &&
3572         "Parser allowed 'typedef' as storage class VarDecl.");
3573  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3574  if (SCSpec == DeclSpec::SCS_mutable) {
3575    // mutable can only appear on non-static class members, so it's always
3576    // an error here
3577    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3578    D.setInvalidType();
3579    SC = SC_None;
3580  }
3581  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3582  VarDecl::StorageClass SCAsWritten
3583    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3584
3585  IdentifierInfo *II = Name.getAsIdentifierInfo();
3586  if (!II) {
3587    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3588      << Name.getAsString();
3589    return 0;
3590  }
3591
3592  DiagnoseFunctionSpecifiers(D);
3593
3594  if (!DC->isRecord() && S->getFnParent() == 0) {
3595    // C99 6.9p2: The storage-class specifiers auto and register shall not
3596    // appear in the declaration specifiers in an external declaration.
3597    if (SC == SC_Auto || SC == SC_Register) {
3598
3599      // If this is a register variable with an asm label specified, then this
3600      // is a GNU extension.
3601      if (SC == SC_Register && D.getAsmLabel())
3602        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3603      else
3604        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3605      D.setInvalidType();
3606    }
3607  }
3608
3609  bool isExplicitSpecialization = false;
3610  VarDecl *NewVD;
3611  if (!getLangOptions().CPlusPlus) {
3612    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3613                            D.getIdentifierLoc(), II,
3614                            R, TInfo, SC, SCAsWritten);
3615
3616    if (D.isInvalidType())
3617      NewVD->setInvalidDecl();
3618  } else {
3619    if (DC->isRecord() && !CurContext->isRecord()) {
3620      // This is an out-of-line definition of a static data member.
3621      if (SC == SC_Static) {
3622        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3623             diag::err_static_out_of_line)
3624          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3625      } else if (SC == SC_None)
3626        SC = SC_Static;
3627    }
3628    if (SC == SC_Static) {
3629      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3630        if (RD->isLocalClass())
3631          Diag(D.getIdentifierLoc(),
3632               diag::err_static_data_member_not_allowed_in_local_class)
3633            << Name << RD->getDeclName();
3634
3635        // C++ [class.union]p1: If a union contains a static data member,
3636        // the program is ill-formed.
3637        //
3638        // We also disallow static data members in anonymous structs.
3639        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3640          Diag(D.getIdentifierLoc(),
3641               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3642            << Name << RD->isUnion();
3643      }
3644    }
3645
3646    // Match up the template parameter lists with the scope specifier, then
3647    // determine whether we have a template or a template specialization.
3648    isExplicitSpecialization = false;
3649    bool Invalid = false;
3650    if (TemplateParameterList *TemplateParams
3651        = MatchTemplateParametersToScopeSpecifier(
3652                                  D.getDeclSpec().getSourceRange().getBegin(),
3653                                                  D.getIdentifierLoc(),
3654                                                  D.getCXXScopeSpec(),
3655                                                  TemplateParamLists.get(),
3656                                                  TemplateParamLists.size(),
3657                                                  /*never a friend*/ false,
3658                                                  isExplicitSpecialization,
3659                                                  Invalid)) {
3660      if (TemplateParams->size() > 0) {
3661        // There is no such thing as a variable template.
3662        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3663          << II
3664          << SourceRange(TemplateParams->getTemplateLoc(),
3665                         TemplateParams->getRAngleLoc());
3666        return 0;
3667      } else {
3668        // There is an extraneous 'template<>' for this variable. Complain
3669        // about it, but allow the declaration of the variable.
3670        Diag(TemplateParams->getTemplateLoc(),
3671             diag::err_template_variable_noparams)
3672          << II
3673          << SourceRange(TemplateParams->getTemplateLoc(),
3674                         TemplateParams->getRAngleLoc());
3675      }
3676    }
3677
3678    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3679                            D.getIdentifierLoc(), II,
3680                            R, TInfo, SC, SCAsWritten);
3681
3682    // If this decl has an auto type in need of deduction, make a note of the
3683    // Decl so we can diagnose uses of it in its own initializer.
3684    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3685        R->getContainedAutoType())
3686      ParsingInitForAutoVars.insert(NewVD);
3687
3688    if (D.isInvalidType() || Invalid)
3689      NewVD->setInvalidDecl();
3690
3691    SetNestedNameSpecifier(NewVD, D);
3692
3693    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3694      NewVD->setTemplateParameterListsInfo(Context,
3695                                           TemplateParamLists.size(),
3696                                           TemplateParamLists.release());
3697    }
3698  }
3699
3700  if (D.getDeclSpec().isThreadSpecified()) {
3701    if (NewVD->hasLocalStorage())
3702      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3703    else if (!Context.Target.isTLSSupported())
3704      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3705    else
3706      NewVD->setThreadSpecified(true);
3707  }
3708
3709  // Set the lexical context. If the declarator has a C++ scope specifier, the
3710  // lexical context will be different from the semantic context.
3711  NewVD->setLexicalDeclContext(CurContext);
3712
3713  // Handle attributes prior to checking for duplicates in MergeVarDecl
3714  ProcessDeclAttributes(S, NewVD, D);
3715
3716  // In auto-retain/release, infer strong retension for variables of
3717  // retainable type.
3718  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3719    NewVD->setInvalidDecl();
3720
3721  // Handle GNU asm-label extension (encoded as an attribute).
3722  if (Expr *E = (Expr*)D.getAsmLabel()) {
3723    // The parser guarantees this is a string.
3724    StringLiteral *SE = cast<StringLiteral>(E);
3725    llvm::StringRef Label = SE->getString();
3726    if (S->getFnParent() != 0) {
3727      switch (SC) {
3728      case SC_None:
3729      case SC_Auto:
3730        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3731        break;
3732      case SC_Register:
3733        if (!Context.Target.isValidGCCRegisterName(Label))
3734          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3735        break;
3736      case SC_Static:
3737      case SC_Extern:
3738      case SC_PrivateExtern:
3739        break;
3740      }
3741    }
3742
3743    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3744                                                Context, Label));
3745  }
3746
3747  // Diagnose shadowed variables before filtering for scope.
3748  if (!D.getCXXScopeSpec().isSet())
3749    CheckShadow(S, NewVD, Previous);
3750
3751  // Don't consider existing declarations that are in a different
3752  // scope and are out-of-semantic-context declarations (if the new
3753  // declaration has linkage).
3754  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3755                       isExplicitSpecialization);
3756
3757  if (!getLangOptions().CPlusPlus)
3758    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3759  else {
3760    // Merge the decl with the existing one if appropriate.
3761    if (!Previous.empty()) {
3762      if (Previous.isSingleResult() &&
3763          isa<FieldDecl>(Previous.getFoundDecl()) &&
3764          D.getCXXScopeSpec().isSet()) {
3765        // The user tried to define a non-static data member
3766        // out-of-line (C++ [dcl.meaning]p1).
3767        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3768          << D.getCXXScopeSpec().getRange();
3769        Previous.clear();
3770        NewVD->setInvalidDecl();
3771      }
3772    } else if (D.getCXXScopeSpec().isSet()) {
3773      // No previous declaration in the qualifying scope.
3774      Diag(D.getIdentifierLoc(), diag::err_no_member)
3775        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3776        << D.getCXXScopeSpec().getRange();
3777      NewVD->setInvalidDecl();
3778    }
3779
3780    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3781
3782    // This is an explicit specialization of a static data member. Check it.
3783    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3784        CheckMemberSpecialization(NewVD, Previous))
3785      NewVD->setInvalidDecl();
3786  }
3787
3788  // attributes declared post-definition are currently ignored
3789  // FIXME: This should be handled in attribute merging, not
3790  // here.
3791  if (Previous.isSingleResult()) {
3792    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3793    if (Def && (Def = Def->getDefinition()) &&
3794        Def != NewVD && D.hasAttributes()) {
3795      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3796      Diag(Def->getLocation(), diag::note_previous_definition);
3797    }
3798  }
3799
3800  // If this is a locally-scoped extern C variable, update the map of
3801  // such variables.
3802  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3803      !NewVD->isInvalidDecl())
3804    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3805
3806  // If there's a #pragma GCC visibility in scope, and this isn't a class
3807  // member, set the visibility of this variable.
3808  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3809    AddPushedVisibilityAttribute(NewVD);
3810
3811  MarkUnusedFileScopedDecl(NewVD);
3812
3813  return NewVD;
3814}
3815
3816/// \brief Diagnose variable or built-in function shadowing.  Implements
3817/// -Wshadow.
3818///
3819/// This method is called whenever a VarDecl is added to a "useful"
3820/// scope.
3821///
3822/// \param S the scope in which the shadowing name is being declared
3823/// \param R the lookup of the name
3824///
3825void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3826  // Return if warning is ignored.
3827  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3828        Diagnostic::Ignored)
3829    return;
3830
3831  // Don't diagnose declarations at file scope.
3832  if (D->hasGlobalStorage())
3833    return;
3834
3835  DeclContext *NewDC = D->getDeclContext();
3836
3837  // Only diagnose if we're shadowing an unambiguous field or variable.
3838  if (R.getResultKind() != LookupResult::Found)
3839    return;
3840
3841  NamedDecl* ShadowedDecl = R.getFoundDecl();
3842  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3843    return;
3844
3845  // Fields are not shadowed by variables in C++ static methods.
3846  if (isa<FieldDecl>(ShadowedDecl))
3847    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3848      if (MD->isStatic())
3849        return;
3850
3851  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3852    if (shadowedVar->isExternC()) {
3853      // For shadowing external vars, make sure that we point to the global
3854      // declaration, not a locally scoped extern declaration.
3855      for (VarDecl::redecl_iterator
3856             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3857           I != E; ++I)
3858        if (I->isFileVarDecl()) {
3859          ShadowedDecl = *I;
3860          break;
3861        }
3862    }
3863
3864  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3865
3866  // Only warn about certain kinds of shadowing for class members.
3867  if (NewDC && NewDC->isRecord()) {
3868    // In particular, don't warn about shadowing non-class members.
3869    if (!OldDC->isRecord())
3870      return;
3871
3872    // TODO: should we warn about static data members shadowing
3873    // static data members from base classes?
3874
3875    // TODO: don't diagnose for inaccessible shadowed members.
3876    // This is hard to do perfectly because we might friend the
3877    // shadowing context, but that's just a false negative.
3878  }
3879
3880  // Determine what kind of declaration we're shadowing.
3881  unsigned Kind;
3882  if (isa<RecordDecl>(OldDC)) {
3883    if (isa<FieldDecl>(ShadowedDecl))
3884      Kind = 3; // field
3885    else
3886      Kind = 2; // static data member
3887  } else if (OldDC->isFileContext())
3888    Kind = 1; // global
3889  else
3890    Kind = 0; // local
3891
3892  DeclarationName Name = R.getLookupName();
3893
3894  // Emit warning and note.
3895  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3896  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3897}
3898
3899/// \brief Check -Wshadow without the advantage of a previous lookup.
3900void Sema::CheckShadow(Scope *S, VarDecl *D) {
3901  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3902        Diagnostic::Ignored)
3903    return;
3904
3905  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3906                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3907  LookupName(R, S);
3908  CheckShadow(S, D, R);
3909}
3910
3911/// \brief Perform semantic checking on a newly-created variable
3912/// declaration.
3913///
3914/// This routine performs all of the type-checking required for a
3915/// variable declaration once it has been built. It is used both to
3916/// check variables after they have been parsed and their declarators
3917/// have been translated into a declaration, and to check variables
3918/// that have been instantiated from a template.
3919///
3920/// Sets NewVD->isInvalidDecl() if an error was encountered.
3921void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3922                                    LookupResult &Previous,
3923                                    bool &Redeclaration) {
3924  // If the decl is already known invalid, don't check it.
3925  if (NewVD->isInvalidDecl())
3926    return;
3927
3928  QualType T = NewVD->getType();
3929
3930  if (T->isObjCObjectType()) {
3931    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3932    return NewVD->setInvalidDecl();
3933  }
3934
3935  // Emit an error if an address space was applied to decl with local storage.
3936  // This includes arrays of objects with address space qualifiers, but not
3937  // automatic variables that point to other address spaces.
3938  // ISO/IEC TR 18037 S5.1.2
3939  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3940    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3941    return NewVD->setInvalidDecl();
3942  }
3943
3944  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3945      && !NewVD->hasAttr<BlocksAttr>()) {
3946    if (getLangOptions().getGCMode() != LangOptions::NonGC)
3947      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
3948    else
3949      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3950  }
3951
3952  bool isVM = T->isVariablyModifiedType();
3953  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3954      NewVD->hasAttr<BlocksAttr>())
3955    getCurFunction()->setHasBranchProtectedScope();
3956
3957  if ((isVM && NewVD->hasLinkage()) ||
3958      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3959    bool SizeIsNegative;
3960    llvm::APSInt Oversized;
3961    QualType FixedTy =
3962        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3963                                            Oversized);
3964
3965    if (FixedTy.isNull() && T->isVariableArrayType()) {
3966      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3967      // FIXME: This won't give the correct result for
3968      // int a[10][n];
3969      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3970
3971      if (NewVD->isFileVarDecl())
3972        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3973        << SizeRange;
3974      else if (NewVD->getStorageClass() == SC_Static)
3975        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3976        << SizeRange;
3977      else
3978        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3979        << SizeRange;
3980      return NewVD->setInvalidDecl();
3981    }
3982
3983    if (FixedTy.isNull()) {
3984      if (NewVD->isFileVarDecl())
3985        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3986      else
3987        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3988      return NewVD->setInvalidDecl();
3989    }
3990
3991    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3992    NewVD->setType(FixedTy);
3993  }
3994
3995  if (Previous.empty() && NewVD->isExternC()) {
3996    // Since we did not find anything by this name and we're declaring
3997    // an extern "C" variable, look for a non-visible extern "C"
3998    // declaration with the same name.
3999    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4000      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
4001    if (Pos != LocallyScopedExternalDecls.end())
4002      Previous.addDecl(Pos->second);
4003  }
4004
4005  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4006    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4007      << T;
4008    return NewVD->setInvalidDecl();
4009  }
4010
4011  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4012    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4013    return NewVD->setInvalidDecl();
4014  }
4015
4016  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4017    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4018    return NewVD->setInvalidDecl();
4019  }
4020
4021  // Function pointers and references cannot have qualified function type, only
4022  // function pointer-to-members can do that.
4023  QualType Pointee;
4024  unsigned PtrOrRef = 0;
4025  if (const PointerType *Ptr = T->getAs<PointerType>())
4026    Pointee = Ptr->getPointeeType();
4027  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4028    Pointee = Ref->getPointeeType();
4029    PtrOrRef = 1;
4030  }
4031  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4032      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4033    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4034        << PtrOrRef;
4035    return NewVD->setInvalidDecl();
4036  }
4037
4038  if (!Previous.empty()) {
4039    Redeclaration = true;
4040    MergeVarDecl(NewVD, Previous);
4041  }
4042}
4043
4044/// \brief Data used with FindOverriddenMethod
4045struct FindOverriddenMethodData {
4046  Sema *S;
4047  CXXMethodDecl *Method;
4048};
4049
4050/// \brief Member lookup function that determines whether a given C++
4051/// method overrides a method in a base class, to be used with
4052/// CXXRecordDecl::lookupInBases().
4053static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4054                                 CXXBasePath &Path,
4055                                 void *UserData) {
4056  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4057
4058  FindOverriddenMethodData *Data
4059    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4060
4061  DeclarationName Name = Data->Method->getDeclName();
4062
4063  // FIXME: Do we care about other names here too?
4064  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4065    // We really want to find the base class destructor here.
4066    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4067    CanQualType CT = Data->S->Context.getCanonicalType(T);
4068
4069    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4070  }
4071
4072  for (Path.Decls = BaseRecord->lookup(Name);
4073       Path.Decls.first != Path.Decls.second;
4074       ++Path.Decls.first) {
4075    NamedDecl *D = *Path.Decls.first;
4076    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4077      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4078        return true;
4079    }
4080  }
4081
4082  return false;
4083}
4084
4085/// AddOverriddenMethods - See if a method overrides any in the base classes,
4086/// and if so, check that it's a valid override and remember it.
4087bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4088  // Look for virtual methods in base classes that this method might override.
4089  CXXBasePaths Paths;
4090  FindOverriddenMethodData Data;
4091  Data.Method = MD;
4092  Data.S = this;
4093  bool AddedAny = false;
4094  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4095    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4096         E = Paths.found_decls_end(); I != E; ++I) {
4097      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4098        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4099        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4100            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4101            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4102          AddedAny = true;
4103        }
4104      }
4105    }
4106  }
4107
4108  return AddedAny;
4109}
4110
4111static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4112  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4113                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4114  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4115  assert(!Prev.isAmbiguous() &&
4116         "Cannot have an ambiguity in previous-declaration lookup");
4117  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4118       Func != FuncEnd; ++Func) {
4119    if (isa<FunctionDecl>(*Func) &&
4120        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4121      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4122  }
4123}
4124
4125NamedDecl*
4126Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4127                              QualType R, TypeSourceInfo *TInfo,
4128                              LookupResult &Previous,
4129                              MultiTemplateParamsArg TemplateParamLists,
4130                              bool IsFunctionDefinition, bool &Redeclaration) {
4131  assert(R.getTypePtr()->isFunctionType());
4132
4133  // TODO: consider using NameInfo for diagnostic.
4134  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4135  DeclarationName Name = NameInfo.getName();
4136  FunctionDecl::StorageClass SC = SC_None;
4137  switch (D.getDeclSpec().getStorageClassSpec()) {
4138  default: assert(0 && "Unknown storage class!");
4139  case DeclSpec::SCS_auto:
4140  case DeclSpec::SCS_register:
4141  case DeclSpec::SCS_mutable:
4142    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4143         diag::err_typecheck_sclass_func);
4144    D.setInvalidType();
4145    break;
4146  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4147  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4148  case DeclSpec::SCS_static: {
4149    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4150      // C99 6.7.1p5:
4151      //   The declaration of an identifier for a function that has
4152      //   block scope shall have no explicit storage-class specifier
4153      //   other than extern
4154      // See also (C++ [dcl.stc]p4).
4155      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4156           diag::err_static_block_func);
4157      SC = SC_None;
4158    } else
4159      SC = SC_Static;
4160    break;
4161  }
4162  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4163  }
4164
4165  if (D.getDeclSpec().isThreadSpecified())
4166    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4167
4168  // Do not allow returning a objc interface by-value.
4169  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4170    Diag(D.getIdentifierLoc(),
4171         diag::err_object_cannot_be_passed_returned_by_value) << 0
4172    << R->getAs<FunctionType>()->getResultType();
4173    D.setInvalidType();
4174  }
4175
4176  FunctionDecl *NewFD;
4177  bool isInline = D.getDeclSpec().isInlineSpecified();
4178  bool isFriend = false;
4179  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4180  FunctionDecl::StorageClass SCAsWritten
4181    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4182  FunctionTemplateDecl *FunctionTemplate = 0;
4183  bool isExplicitSpecialization = false;
4184  bool isFunctionTemplateSpecialization = false;
4185
4186  if (!getLangOptions().CPlusPlus) {
4187    // Determine whether the function was written with a
4188    // prototype. This true when:
4189    //   - there is a prototype in the declarator, or
4190    //   - the type R of the function is some kind of typedef or other reference
4191    //     to a type name (which eventually refers to a function type).
4192    bool HasPrototype =
4193    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4194    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4195
4196    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4197                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4198                                 HasPrototype);
4199    if (D.isInvalidType())
4200      NewFD->setInvalidDecl();
4201
4202    // Set the lexical context.
4203    NewFD->setLexicalDeclContext(CurContext);
4204    // Filter out previous declarations that don't match the scope.
4205    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4206                         /*ExplicitInstantiationOrSpecialization=*/false);
4207  } else {
4208    isFriend = D.getDeclSpec().isFriendSpecified();
4209    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4210    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4211    bool isVirtualOkay = false;
4212
4213    // Check that the return type is not an abstract class type.
4214    // For record types, this is done by the AbstractClassUsageDiagnoser once
4215    // the class has been completely parsed.
4216    if (!DC->isRecord() &&
4217      RequireNonAbstractType(D.getIdentifierLoc(),
4218                             R->getAs<FunctionType>()->getResultType(),
4219                             diag::err_abstract_type_in_decl,
4220                             AbstractReturnType))
4221      D.setInvalidType();
4222
4223    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4224      // This is a C++ constructor declaration.
4225      assert(DC->isRecord() &&
4226             "Constructors can only be declared in a member context");
4227
4228      R = CheckConstructorDeclarator(D, R, SC);
4229
4230      // Create the new declaration
4231      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4232                                         Context,
4233                                         cast<CXXRecordDecl>(DC),
4234                                         D.getSourceRange().getBegin(),
4235                                         NameInfo, R, TInfo,
4236                                         isExplicit, isInline,
4237                                         /*isImplicitlyDeclared=*/false);
4238
4239      NewFD = NewCD;
4240    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4241      // This is a C++ destructor declaration.
4242      if (DC->isRecord()) {
4243        R = CheckDestructorDeclarator(D, R, SC);
4244        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4245
4246        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4247                                          D.getSourceRange().getBegin(),
4248                                          NameInfo, R, TInfo,
4249                                          isInline,
4250                                          /*isImplicitlyDeclared=*/false);
4251        NewFD = NewDD;
4252        isVirtualOkay = true;
4253
4254        // If the class is complete, then we now create the implicit exception
4255        // specification. If the class is incomplete or dependent, we can't do
4256        // it yet.
4257        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4258            Record->getDefinition() && !Record->isBeingDefined() &&
4259            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4260          AdjustDestructorExceptionSpec(Record, NewDD);
4261        }
4262
4263      } else {
4264        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4265
4266        // Create a FunctionDecl to satisfy the function definition parsing
4267        // code path.
4268        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4269                                     D.getIdentifierLoc(), Name, R, TInfo,
4270                                     SC, SCAsWritten, isInline,
4271                                     /*hasPrototype=*/true);
4272        D.setInvalidType();
4273      }
4274    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4275      if (!DC->isRecord()) {
4276        Diag(D.getIdentifierLoc(),
4277             diag::err_conv_function_not_member);
4278        return 0;
4279      }
4280
4281      CheckConversionDeclarator(D, R, SC);
4282      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4283                                        D.getSourceRange().getBegin(),
4284                                        NameInfo, R, TInfo,
4285                                        isInline, isExplicit,
4286                                        SourceLocation());
4287
4288      isVirtualOkay = true;
4289    } else if (DC->isRecord()) {
4290      // If the of the function is the same as the name of the record, then this
4291      // must be an invalid constructor that has a return type.
4292      // (The parser checks for a return type and makes the declarator a
4293      // constructor if it has no return type).
4294      // must have an invalid constructor that has a return type
4295      if (Name.getAsIdentifierInfo() &&
4296          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4297        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4298          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4299          << SourceRange(D.getIdentifierLoc());
4300        return 0;
4301      }
4302
4303      bool isStatic = SC == SC_Static;
4304
4305      // [class.free]p1:
4306      // Any allocation function for a class T is a static member
4307      // (even if not explicitly declared static).
4308      if (Name.getCXXOverloadedOperator() == OO_New ||
4309          Name.getCXXOverloadedOperator() == OO_Array_New)
4310        isStatic = true;
4311
4312      // [class.free]p6 Any deallocation function for a class X is a static member
4313      // (even if not explicitly declared static).
4314      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4315          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4316        isStatic = true;
4317
4318      // This is a C++ method declaration.
4319      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4320                                               Context, cast<CXXRecordDecl>(DC),
4321                                               D.getSourceRange().getBegin(),
4322                                               NameInfo, R, TInfo,
4323                                               isStatic, SCAsWritten, isInline,
4324                                               SourceLocation());
4325      NewFD = NewMD;
4326
4327      isVirtualOkay = !isStatic;
4328    } else {
4329      // Determine whether the function was written with a
4330      // prototype. This true when:
4331      //   - we're in C++ (where every function has a prototype),
4332      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4333                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4334                                   true/*HasPrototype*/);
4335    }
4336
4337    if (isFriend && !isInline && IsFunctionDefinition) {
4338      // C++ [class.friend]p5
4339      //   A function can be defined in a friend declaration of a
4340      //   class . . . . Such a function is implicitly inline.
4341      NewFD->setImplicitlyInline();
4342    }
4343
4344    SetNestedNameSpecifier(NewFD, D);
4345    isExplicitSpecialization = false;
4346    isFunctionTemplateSpecialization = false;
4347    if (D.isInvalidType())
4348      NewFD->setInvalidDecl();
4349
4350    // Set the lexical context. If the declarator has a C++
4351    // scope specifier, or is the object of a friend declaration, the
4352    // lexical context will be different from the semantic context.
4353    NewFD->setLexicalDeclContext(CurContext);
4354
4355    // Match up the template parameter lists with the scope specifier, then
4356    // determine whether we have a template or a template specialization.
4357    bool Invalid = false;
4358    if (TemplateParameterList *TemplateParams
4359          = MatchTemplateParametersToScopeSpecifier(
4360                                  D.getDeclSpec().getSourceRange().getBegin(),
4361                                  D.getIdentifierLoc(),
4362                                  D.getCXXScopeSpec(),
4363                                  TemplateParamLists.get(),
4364                                  TemplateParamLists.size(),
4365                                  isFriend,
4366                                  isExplicitSpecialization,
4367                                  Invalid)) {
4368      if (TemplateParams->size() > 0) {
4369        // This is a function template
4370
4371        // Check that we can declare a template here.
4372        if (CheckTemplateDeclScope(S, TemplateParams))
4373          return 0;
4374
4375        // A destructor cannot be a template.
4376        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4377          Diag(NewFD->getLocation(), diag::err_destructor_template);
4378          return 0;
4379        }
4380
4381        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4382                                                        NewFD->getLocation(),
4383                                                        Name, TemplateParams,
4384                                                        NewFD);
4385        FunctionTemplate->setLexicalDeclContext(CurContext);
4386        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4387
4388        // For source fidelity, store the other template param lists.
4389        if (TemplateParamLists.size() > 1) {
4390          NewFD->setTemplateParameterListsInfo(Context,
4391                                               TemplateParamLists.size() - 1,
4392                                               TemplateParamLists.release());
4393        }
4394      } else {
4395        // This is a function template specialization.
4396        isFunctionTemplateSpecialization = true;
4397        // For source fidelity, store all the template param lists.
4398        NewFD->setTemplateParameterListsInfo(Context,
4399                                             TemplateParamLists.size(),
4400                                             TemplateParamLists.release());
4401
4402        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4403        if (isFriend) {
4404          // We want to remove the "template<>", found here.
4405          SourceRange RemoveRange = TemplateParams->getSourceRange();
4406
4407          // If we remove the template<> and the name is not a
4408          // template-id, we're actually silently creating a problem:
4409          // the friend declaration will refer to an untemplated decl,
4410          // and clearly the user wants a template specialization.  So
4411          // we need to insert '<>' after the name.
4412          SourceLocation InsertLoc;
4413          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4414            InsertLoc = D.getName().getSourceRange().getEnd();
4415            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4416          }
4417
4418          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4419            << Name << RemoveRange
4420            << FixItHint::CreateRemoval(RemoveRange)
4421            << FixItHint::CreateInsertion(InsertLoc, "<>");
4422        }
4423      }
4424    }
4425    else {
4426      // All template param lists were matched against the scope specifier:
4427      // this is NOT (an explicit specialization of) a template.
4428      if (TemplateParamLists.size() > 0)
4429        // For source fidelity, store all the template param lists.
4430        NewFD->setTemplateParameterListsInfo(Context,
4431                                             TemplateParamLists.size(),
4432                                             TemplateParamLists.release());
4433    }
4434
4435    if (Invalid) {
4436      NewFD->setInvalidDecl();
4437      if (FunctionTemplate)
4438        FunctionTemplate->setInvalidDecl();
4439    }
4440
4441    // C++ [dcl.fct.spec]p5:
4442    //   The virtual specifier shall only be used in declarations of
4443    //   nonstatic class member functions that appear within a
4444    //   member-specification of a class declaration; see 10.3.
4445    //
4446    if (isVirtual && !NewFD->isInvalidDecl()) {
4447      if (!isVirtualOkay) {
4448        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4449             diag::err_virtual_non_function);
4450      } else if (!CurContext->isRecord()) {
4451        // 'virtual' was specified outside of the class.
4452        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4453             diag::err_virtual_out_of_class)
4454          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4455      } else if (NewFD->getDescribedFunctionTemplate()) {
4456        // C++ [temp.mem]p3:
4457        //  A member function template shall not be virtual.
4458        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4459             diag::err_virtual_member_function_template)
4460          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4461      } else {
4462        // Okay: Add virtual to the method.
4463        NewFD->setVirtualAsWritten(true);
4464      }
4465    }
4466
4467    // C++ [dcl.fct.spec]p3:
4468    //  The inline specifier shall not appear on a block scope function declaration.
4469    if (isInline && !NewFD->isInvalidDecl()) {
4470      if (CurContext->isFunctionOrMethod()) {
4471        // 'inline' is not allowed on block scope function declaration.
4472        Diag(D.getDeclSpec().getInlineSpecLoc(),
4473             diag::err_inline_declaration_block_scope) << Name
4474          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4475      }
4476    }
4477
4478    // C++ [dcl.fct.spec]p6:
4479    //  The explicit specifier shall be used only in the declaration of a
4480    //  constructor or conversion function within its class definition; see 12.3.1
4481    //  and 12.3.2.
4482    if (isExplicit && !NewFD->isInvalidDecl()) {
4483      if (!CurContext->isRecord()) {
4484        // 'explicit' was specified outside of the class.
4485        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4486             diag::err_explicit_out_of_class)
4487          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4488      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4489                 !isa<CXXConversionDecl>(NewFD)) {
4490        // 'explicit' was specified on a function that wasn't a constructor
4491        // or conversion function.
4492        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4493             diag::err_explicit_non_ctor_or_conv_function)
4494          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4495      }
4496    }
4497
4498    // Filter out previous declarations that don't match the scope.
4499    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4500                         isExplicitSpecialization ||
4501                         isFunctionTemplateSpecialization);
4502
4503    if (isFriend) {
4504      // For now, claim that the objects have no previous declaration.
4505      if (FunctionTemplate) {
4506        FunctionTemplate->setObjectOfFriendDecl(false);
4507        FunctionTemplate->setAccess(AS_public);
4508      }
4509      NewFD->setObjectOfFriendDecl(false);
4510      NewFD->setAccess(AS_public);
4511    }
4512
4513    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4514      // A method is implicitly inline if it's defined in its class
4515      // definition.
4516      NewFD->setImplicitlyInline();
4517    }
4518
4519    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4520        !CurContext->isRecord()) {
4521      // C++ [class.static]p1:
4522      //   A data or function member of a class may be declared static
4523      //   in a class definition, in which case it is a static member of
4524      //   the class.
4525
4526      // Complain about the 'static' specifier if it's on an out-of-line
4527      // member function definition.
4528      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4529           diag::err_static_out_of_line)
4530        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4531    }
4532  }
4533
4534  // Handle GNU asm-label extension (encoded as an attribute).
4535  if (Expr *E = (Expr*) D.getAsmLabel()) {
4536    // The parser guarantees this is a string.
4537    StringLiteral *SE = cast<StringLiteral>(E);
4538    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4539                                                SE->getString()));
4540  }
4541
4542  // Copy the parameter declarations from the declarator D to the function
4543  // declaration NewFD, if they are available.  First scavenge them into Params.
4544  llvm::SmallVector<ParmVarDecl*, 16> Params;
4545  if (D.isFunctionDeclarator()) {
4546    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4547
4548    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4549    // function that takes no arguments, not a function that takes a
4550    // single void argument.
4551    // We let through "const void" here because Sema::GetTypeForDeclarator
4552    // already checks for that case.
4553    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4554        FTI.ArgInfo[0].Param &&
4555        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4556      // Empty arg list, don't push any params.
4557      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4558
4559      // In C++, the empty parameter-type-list must be spelled "void"; a
4560      // typedef of void is not permitted.
4561      if (getLangOptions().CPlusPlus &&
4562          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4563        bool IsTypeAlias = false;
4564        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4565          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4566        else if (const TemplateSpecializationType *TST =
4567                   Param->getType()->getAs<TemplateSpecializationType>())
4568          IsTypeAlias = TST->isTypeAlias();
4569        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4570          << IsTypeAlias;
4571      }
4572    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4573      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4574        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4575        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4576        Param->setDeclContext(NewFD);
4577        Params.push_back(Param);
4578
4579        if (Param->isInvalidDecl())
4580          NewFD->setInvalidDecl();
4581      }
4582    }
4583
4584  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4585    // When we're declaring a function with a typedef, typeof, etc as in the
4586    // following example, we'll need to synthesize (unnamed)
4587    // parameters for use in the declaration.
4588    //
4589    // @code
4590    // typedef void fn(int);
4591    // fn f;
4592    // @endcode
4593
4594    // Synthesize a parameter for each argument type.
4595    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4596         AE = FT->arg_type_end(); AI != AE; ++AI) {
4597      ParmVarDecl *Param =
4598        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4599      Param->setScopeInfo(0, Params.size());
4600      Params.push_back(Param);
4601    }
4602  } else {
4603    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4604           "Should not need args for typedef of non-prototype fn");
4605  }
4606  // Finally, we know we have the right number of parameters, install them.
4607  NewFD->setParams(Params.data(), Params.size());
4608
4609  // Process the non-inheritable attributes on this declaration.
4610  ProcessDeclAttributes(S, NewFD, D,
4611                        /*NonInheritable=*/true, /*Inheritable=*/false);
4612
4613  if (!getLangOptions().CPlusPlus) {
4614    // Perform semantic checking on the function declaration.
4615    bool isExplicitSpecialization=false;
4616    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4617                             Redeclaration);
4618    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4619            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4620           "previous declaration set still overloaded");
4621  } else {
4622    // If the declarator is a template-id, translate the parser's template
4623    // argument list into our AST format.
4624    bool HasExplicitTemplateArgs = false;
4625    TemplateArgumentListInfo TemplateArgs;
4626    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4627      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4628      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4629      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4630      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4631                                         TemplateId->getTemplateArgs(),
4632                                         TemplateId->NumArgs);
4633      translateTemplateArguments(TemplateArgsPtr,
4634                                 TemplateArgs);
4635      TemplateArgsPtr.release();
4636
4637      HasExplicitTemplateArgs = true;
4638
4639      if (NewFD->isInvalidDecl()) {
4640        HasExplicitTemplateArgs = false;
4641      } else if (FunctionTemplate) {
4642        // Function template with explicit template arguments.
4643        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4644          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4645
4646        HasExplicitTemplateArgs = false;
4647      } else if (!isFunctionTemplateSpecialization &&
4648                 !D.getDeclSpec().isFriendSpecified()) {
4649        // We have encountered something that the user meant to be a
4650        // specialization (because it has explicitly-specified template
4651        // arguments) but that was not introduced with a "template<>" (or had
4652        // too few of them).
4653        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4654          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4655          << FixItHint::CreateInsertion(
4656                                        D.getDeclSpec().getSourceRange().getBegin(),
4657                                                  "template<> ");
4658        isFunctionTemplateSpecialization = true;
4659      } else {
4660        // "friend void foo<>(int);" is an implicit specialization decl.
4661        isFunctionTemplateSpecialization = true;
4662      }
4663    } else if (isFriend && isFunctionTemplateSpecialization) {
4664      // This combination is only possible in a recovery case;  the user
4665      // wrote something like:
4666      //   template <> friend void foo(int);
4667      // which we're recovering from as if the user had written:
4668      //   friend void foo<>(int);
4669      // Go ahead and fake up a template id.
4670      HasExplicitTemplateArgs = true;
4671        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4672      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4673    }
4674
4675    // If it's a friend (and only if it's a friend), it's possible
4676    // that either the specialized function type or the specialized
4677    // template is dependent, and therefore matching will fail.  In
4678    // this case, don't check the specialization yet.
4679    if (isFunctionTemplateSpecialization && isFriend &&
4680        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4681      assert(HasExplicitTemplateArgs &&
4682             "friend function specialization without template args");
4683      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4684                                                       Previous))
4685        NewFD->setInvalidDecl();
4686    } else if (isFunctionTemplateSpecialization) {
4687      if (CurContext->isDependentContext() && CurContext->isRecord()
4688          && !isFriend) {
4689        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4690          << NewFD->getDeclName();
4691        NewFD->setInvalidDecl();
4692        return 0;
4693      } else if (CheckFunctionTemplateSpecialization(NewFD,
4694                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4695                                                     Previous))
4696        NewFD->setInvalidDecl();
4697
4698      // C++ [dcl.stc]p1:
4699      //   A storage-class-specifier shall not be specified in an explicit
4700      //   specialization (14.7.3)
4701      if (SC != SC_None) {
4702        if (SC != NewFD->getStorageClass())
4703          Diag(NewFD->getLocation(),
4704               diag::err_explicit_specialization_inconsistent_storage_class)
4705            << SC
4706            << FixItHint::CreateRemoval(
4707                                      D.getDeclSpec().getStorageClassSpecLoc());
4708
4709        else
4710          Diag(NewFD->getLocation(),
4711               diag::ext_explicit_specialization_storage_class)
4712            << FixItHint::CreateRemoval(
4713                                      D.getDeclSpec().getStorageClassSpecLoc());
4714      }
4715
4716    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4717      if (CheckMemberSpecialization(NewFD, Previous))
4718          NewFD->setInvalidDecl();
4719    }
4720
4721    // Perform semantic checking on the function declaration.
4722    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4723                             Redeclaration);
4724
4725    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4726            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4727           "previous declaration set still overloaded");
4728
4729    NamedDecl *PrincipalDecl = (FunctionTemplate
4730                                ? cast<NamedDecl>(FunctionTemplate)
4731                                : NewFD);
4732
4733    if (isFriend && Redeclaration) {
4734      AccessSpecifier Access = AS_public;
4735      if (!NewFD->isInvalidDecl())
4736        Access = NewFD->getPreviousDeclaration()->getAccess();
4737
4738      NewFD->setAccess(Access);
4739      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4740
4741      PrincipalDecl->setObjectOfFriendDecl(true);
4742    }
4743
4744    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4745        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4746      PrincipalDecl->setNonMemberOperator();
4747
4748    // If we have a function template, check the template parameter
4749    // list. This will check and merge default template arguments.
4750    if (FunctionTemplate) {
4751      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4752      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4753                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4754                            D.getDeclSpec().isFriendSpecified()
4755                              ? (IsFunctionDefinition
4756                                   ? TPC_FriendFunctionTemplateDefinition
4757                                   : TPC_FriendFunctionTemplate)
4758                              : (D.getCXXScopeSpec().isSet() &&
4759                                 DC && DC->isRecord() &&
4760                                 DC->isDependentContext())
4761                                  ? TPC_ClassTemplateMember
4762                                  : TPC_FunctionTemplate);
4763    }
4764
4765    if (NewFD->isInvalidDecl()) {
4766      // Ignore all the rest of this.
4767    } else if (!Redeclaration) {
4768      // Fake up an access specifier if it's supposed to be a class member.
4769      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4770        NewFD->setAccess(AS_public);
4771
4772      // Qualified decls generally require a previous declaration.
4773      if (D.getCXXScopeSpec().isSet()) {
4774        // ...with the major exception of templated-scope or
4775        // dependent-scope friend declarations.
4776
4777        // TODO: we currently also suppress this check in dependent
4778        // contexts because (1) the parameter depth will be off when
4779        // matching friend templates and (2) we might actually be
4780        // selecting a friend based on a dependent factor.  But there
4781        // are situations where these conditions don't apply and we
4782        // can actually do this check immediately.
4783        if (isFriend &&
4784            (TemplateParamLists.size() ||
4785             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4786             CurContext->isDependentContext())) {
4787              // ignore these
4788            } else {
4789              // The user tried to provide an out-of-line definition for a
4790              // function that is a member of a class or namespace, but there
4791              // was no such member function declared (C++ [class.mfct]p2,
4792              // C++ [namespace.memdef]p2). For example:
4793              //
4794              // class X {
4795              //   void f() const;
4796              // };
4797              //
4798              // void X::f() { } // ill-formed
4799              //
4800              // Complain about this problem, and attempt to suggest close
4801              // matches (e.g., those that differ only in cv-qualifiers and
4802              // whether the parameter types are references).
4803              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4804              << Name << DC << D.getCXXScopeSpec().getRange();
4805              NewFD->setInvalidDecl();
4806
4807              DiagnoseInvalidRedeclaration(*this, NewFD);
4808            }
4809
4810        // Unqualified local friend declarations are required to resolve
4811        // to something.
4812        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4813          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4814          NewFD->setInvalidDecl();
4815          DiagnoseInvalidRedeclaration(*this, NewFD);
4816        }
4817
4818    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4819               !isFriend && !isFunctionTemplateSpecialization &&
4820               !isExplicitSpecialization) {
4821      // An out-of-line member function declaration must also be a
4822      // definition (C++ [dcl.meaning]p1).
4823      // Note that this is not the case for explicit specializations of
4824      // function templates or member functions of class templates, per
4825      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4826      // for compatibility with old SWIG code which likes to generate them.
4827      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4828        << D.getCXXScopeSpec().getRange();
4829    }
4830  }
4831
4832
4833  // Handle attributes. We need to have merged decls when handling attributes
4834  // (for example to check for conflicts, etc).
4835  // FIXME: This needs to happen before we merge declarations. Then,
4836  // let attribute merging cope with attribute conflicts.
4837  ProcessDeclAttributes(S, NewFD, D,
4838                        /*NonInheritable=*/false, /*Inheritable=*/true);
4839
4840  // attributes declared post-definition are currently ignored
4841  // FIXME: This should happen during attribute merging
4842  if (Redeclaration && Previous.isSingleResult()) {
4843    const FunctionDecl *Def;
4844    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4845    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4846      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4847      Diag(Def->getLocation(), diag::note_previous_definition);
4848    }
4849  }
4850
4851  AddKnownFunctionAttributes(NewFD);
4852
4853  if (NewFD->hasAttr<OverloadableAttr>() &&
4854      !NewFD->getType()->getAs<FunctionProtoType>()) {
4855    Diag(NewFD->getLocation(),
4856         diag::err_attribute_overloadable_no_prototype)
4857      << NewFD;
4858
4859    // Turn this into a variadic function with no parameters.
4860    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4861    FunctionProtoType::ExtProtoInfo EPI;
4862    EPI.Variadic = true;
4863    EPI.ExtInfo = FT->getExtInfo();
4864
4865    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4866    NewFD->setType(R);
4867  }
4868
4869  // If there's a #pragma GCC visibility in scope, and this isn't a class
4870  // member, set the visibility of this function.
4871  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4872    AddPushedVisibilityAttribute(NewFD);
4873
4874  // If this is a locally-scoped extern C function, update the
4875  // map of such names.
4876  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4877      && !NewFD->isInvalidDecl())
4878    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4879
4880  // Set this FunctionDecl's range up to the right paren.
4881  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4882
4883  if (getLangOptions().CPlusPlus) {
4884    if (FunctionTemplate) {
4885      if (NewFD->isInvalidDecl())
4886        FunctionTemplate->setInvalidDecl();
4887      return FunctionTemplate;
4888    }
4889  }
4890
4891  MarkUnusedFileScopedDecl(NewFD);
4892
4893  if (getLangOptions().CUDA)
4894    if (IdentifierInfo *II = NewFD->getIdentifier())
4895      if (!NewFD->isInvalidDecl() &&
4896          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4897        if (II->isStr("cudaConfigureCall")) {
4898          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4899            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4900
4901          Context.setcudaConfigureCallDecl(NewFD);
4902        }
4903      }
4904
4905  return NewFD;
4906}
4907
4908/// \brief Perform semantic checking of a new function declaration.
4909///
4910/// Performs semantic analysis of the new function declaration
4911/// NewFD. This routine performs all semantic checking that does not
4912/// require the actual declarator involved in the declaration, and is
4913/// used both for the declaration of functions as they are parsed
4914/// (called via ActOnDeclarator) and for the declaration of functions
4915/// that have been instantiated via C++ template instantiation (called
4916/// via InstantiateDecl).
4917///
4918/// \param IsExplicitSpecialiation whether this new function declaration is
4919/// an explicit specialization of the previous declaration.
4920///
4921/// This sets NewFD->isInvalidDecl() to true if there was an error.
4922void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4923                                    LookupResult &Previous,
4924                                    bool IsExplicitSpecialization,
4925                                    bool &Redeclaration) {
4926  // If NewFD is already known erroneous, don't do any of this checking.
4927  if (NewFD->isInvalidDecl()) {
4928    // If this is a class member, mark the class invalid immediately.
4929    // This avoids some consistency errors later.
4930    if (isa<CXXMethodDecl>(NewFD))
4931      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4932
4933    return;
4934  }
4935
4936  if (NewFD->getResultType()->isVariablyModifiedType()) {
4937    // Functions returning a variably modified type violate C99 6.7.5.2p2
4938    // because all functions have linkage.
4939    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4940    return NewFD->setInvalidDecl();
4941  }
4942
4943  if (NewFD->isMain())
4944    CheckMain(NewFD);
4945
4946  // Check for a previous declaration of this name.
4947  if (Previous.empty() && NewFD->isExternC()) {
4948    // Since we did not find anything by this name and we're declaring
4949    // an extern "C" function, look for a non-visible extern "C"
4950    // declaration with the same name.
4951    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4952      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4953    if (Pos != LocallyScopedExternalDecls.end())
4954      Previous.addDecl(Pos->second);
4955  }
4956
4957  // Merge or overload the declaration with an existing declaration of
4958  // the same name, if appropriate.
4959  if (!Previous.empty()) {
4960    // Determine whether NewFD is an overload of PrevDecl or
4961    // a declaration that requires merging. If it's an overload,
4962    // there's no more work to do here; we'll just add the new
4963    // function to the scope.
4964
4965    NamedDecl *OldDecl = 0;
4966    if (!AllowOverloadingOfFunction(Previous, Context)) {
4967      Redeclaration = true;
4968      OldDecl = Previous.getFoundDecl();
4969    } else {
4970      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4971                            /*NewIsUsingDecl*/ false)) {
4972      case Ovl_Match:
4973        Redeclaration = true;
4974        break;
4975
4976      case Ovl_NonFunction:
4977        Redeclaration = true;
4978        break;
4979
4980      case Ovl_Overload:
4981        Redeclaration = false;
4982        break;
4983      }
4984
4985      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4986        // If a function name is overloadable in C, then every function
4987        // with that name must be marked "overloadable".
4988        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4989          << Redeclaration << NewFD;
4990        NamedDecl *OverloadedDecl = 0;
4991        if (Redeclaration)
4992          OverloadedDecl = OldDecl;
4993        else if (!Previous.empty())
4994          OverloadedDecl = Previous.getRepresentativeDecl();
4995        if (OverloadedDecl)
4996          Diag(OverloadedDecl->getLocation(),
4997               diag::note_attribute_overloadable_prev_overload);
4998        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4999                                                        Context));
5000      }
5001    }
5002
5003    if (Redeclaration) {
5004      // NewFD and OldDecl represent declarations that need to be
5005      // merged.
5006      if (MergeFunctionDecl(NewFD, OldDecl))
5007        return NewFD->setInvalidDecl();
5008
5009      Previous.clear();
5010      Previous.addDecl(OldDecl);
5011
5012      if (FunctionTemplateDecl *OldTemplateDecl
5013                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5014        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5015        FunctionTemplateDecl *NewTemplateDecl
5016          = NewFD->getDescribedFunctionTemplate();
5017        assert(NewTemplateDecl && "Template/non-template mismatch");
5018        if (CXXMethodDecl *Method
5019              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5020          Method->setAccess(OldTemplateDecl->getAccess());
5021          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5022        }
5023
5024        // If this is an explicit specialization of a member that is a function
5025        // template, mark it as a member specialization.
5026        if (IsExplicitSpecialization &&
5027            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5028          NewTemplateDecl->setMemberSpecialization();
5029          assert(OldTemplateDecl->isMemberSpecialization());
5030        }
5031      } else {
5032        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5033          NewFD->setAccess(OldDecl->getAccess());
5034        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5035      }
5036    }
5037  }
5038
5039  // Semantic checking for this function declaration (in isolation).
5040  if (getLangOptions().CPlusPlus) {
5041    // C++-specific checks.
5042    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5043      CheckConstructor(Constructor);
5044    } else if (CXXDestructorDecl *Destructor =
5045                dyn_cast<CXXDestructorDecl>(NewFD)) {
5046      CXXRecordDecl *Record = Destructor->getParent();
5047      QualType ClassType = Context.getTypeDeclType(Record);
5048
5049      // FIXME: Shouldn't we be able to perform this check even when the class
5050      // type is dependent? Both gcc and edg can handle that.
5051      if (!ClassType->isDependentType()) {
5052        DeclarationName Name
5053          = Context.DeclarationNames.getCXXDestructorName(
5054                                        Context.getCanonicalType(ClassType));
5055        if (NewFD->getDeclName() != Name) {
5056          Diag(NewFD->getLocation(), diag::err_destructor_name);
5057          return NewFD->setInvalidDecl();
5058        }
5059      }
5060    } else if (CXXConversionDecl *Conversion
5061               = dyn_cast<CXXConversionDecl>(NewFD)) {
5062      ActOnConversionDeclarator(Conversion);
5063    }
5064
5065    // Find any virtual functions that this function overrides.
5066    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5067      if (!Method->isFunctionTemplateSpecialization() &&
5068          !Method->getDescribedFunctionTemplate()) {
5069        if (AddOverriddenMethods(Method->getParent(), Method)) {
5070          // If the function was marked as "static", we have a problem.
5071          if (NewFD->getStorageClass() == SC_Static) {
5072            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5073              << NewFD->getDeclName();
5074            for (CXXMethodDecl::method_iterator
5075                      Overridden = Method->begin_overridden_methods(),
5076                   OverriddenEnd = Method->end_overridden_methods();
5077                 Overridden != OverriddenEnd;
5078                 ++Overridden) {
5079              Diag((*Overridden)->getLocation(),
5080                   diag::note_overridden_virtual_function);
5081            }
5082          }
5083        }
5084      }
5085    }
5086
5087    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5088    if (NewFD->isOverloadedOperator() &&
5089        CheckOverloadedOperatorDeclaration(NewFD))
5090      return NewFD->setInvalidDecl();
5091
5092    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5093    if (NewFD->getLiteralIdentifier() &&
5094        CheckLiteralOperatorDeclaration(NewFD))
5095      return NewFD->setInvalidDecl();
5096
5097    // In C++, check default arguments now that we have merged decls. Unless
5098    // the lexical context is the class, because in this case this is done
5099    // during delayed parsing anyway.
5100    if (!CurContext->isRecord())
5101      CheckCXXDefaultArguments(NewFD);
5102
5103    // If this function declares a builtin function, check the type of this
5104    // declaration against the expected type for the builtin.
5105    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5106      ASTContext::GetBuiltinTypeError Error;
5107      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5108      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5109        // The type of this function differs from the type of the builtin,
5110        // so forget about the builtin entirely.
5111        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5112      }
5113    }
5114  }
5115}
5116
5117void Sema::CheckMain(FunctionDecl* FD) {
5118  // C++ [basic.start.main]p3:  A program that declares main to be inline
5119  //   or static is ill-formed.
5120  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5121  //   shall not appear in a declaration of main.
5122  // static main is not an error under C99, but we should warn about it.
5123  bool isInline = FD->isInlineSpecified();
5124  bool isStatic = FD->getStorageClass() == SC_Static;
5125  if (isInline || isStatic) {
5126    unsigned diagID = diag::warn_unusual_main_decl;
5127    if (isInline || getLangOptions().CPlusPlus)
5128      diagID = diag::err_unusual_main_decl;
5129
5130    int which = isStatic + (isInline << 1) - 1;
5131    Diag(FD->getLocation(), diagID) << which;
5132  }
5133
5134  QualType T = FD->getType();
5135  assert(T->isFunctionType() && "function decl is not of function type");
5136  const FunctionType* FT = T->getAs<FunctionType>();
5137
5138  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5139    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5140    FD->setInvalidDecl(true);
5141  }
5142
5143  // Treat protoless main() as nullary.
5144  if (isa<FunctionNoProtoType>(FT)) return;
5145
5146  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5147  unsigned nparams = FTP->getNumArgs();
5148  assert(FD->getNumParams() == nparams);
5149
5150  bool HasExtraParameters = (nparams > 3);
5151
5152  // Darwin passes an undocumented fourth argument of type char**.  If
5153  // other platforms start sprouting these, the logic below will start
5154  // getting shifty.
5155  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5156    HasExtraParameters = false;
5157
5158  if (HasExtraParameters) {
5159    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5160    FD->setInvalidDecl(true);
5161    nparams = 3;
5162  }
5163
5164  // FIXME: a lot of the following diagnostics would be improved
5165  // if we had some location information about types.
5166
5167  QualType CharPP =
5168    Context.getPointerType(Context.getPointerType(Context.CharTy));
5169  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5170
5171  for (unsigned i = 0; i < nparams; ++i) {
5172    QualType AT = FTP->getArgType(i);
5173
5174    bool mismatch = true;
5175
5176    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5177      mismatch = false;
5178    else if (Expected[i] == CharPP) {
5179      // As an extension, the following forms are okay:
5180      //   char const **
5181      //   char const * const *
5182      //   char * const *
5183
5184      QualifierCollector qs;
5185      const PointerType* PT;
5186      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5187          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5188          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5189        qs.removeConst();
5190        mismatch = !qs.empty();
5191      }
5192    }
5193
5194    if (mismatch) {
5195      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5196      // TODO: suggest replacing given type with expected type
5197      FD->setInvalidDecl(true);
5198    }
5199  }
5200
5201  if (nparams == 1 && !FD->isInvalidDecl()) {
5202    Diag(FD->getLocation(), diag::warn_main_one_arg);
5203  }
5204
5205  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5206    Diag(FD->getLocation(), diag::err_main_template_decl);
5207    FD->setInvalidDecl();
5208  }
5209}
5210
5211bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5212  // FIXME: Need strict checking.  In C89, we need to check for
5213  // any assignment, increment, decrement, function-calls, or
5214  // commas outside of a sizeof.  In C99, it's the same list,
5215  // except that the aforementioned are allowed in unevaluated
5216  // expressions.  Everything else falls under the
5217  // "may accept other forms of constant expressions" exception.
5218  // (We never end up here for C++, so the constant expression
5219  // rules there don't matter.)
5220  if (Init->isConstantInitializer(Context, false))
5221    return false;
5222  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5223    << Init->getSourceRange();
5224  return true;
5225}
5226
5227namespace {
5228  // Visits an initialization expression to see if OrigDecl is evaluated in
5229  // its own initialization and throws a warning if it does.
5230  class SelfReferenceChecker
5231      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5232    Sema &S;
5233    Decl *OrigDecl;
5234
5235  public:
5236    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5237
5238    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5239                                                    S(S), OrigDecl(OrigDecl) { }
5240
5241    void VisitExpr(Expr *E) {
5242      if (isa<ObjCMessageExpr>(*E)) return;
5243      Inherited::VisitExpr(E);
5244    }
5245
5246    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5247      CheckForSelfReference(E);
5248      Inherited::VisitImplicitCastExpr(E);
5249    }
5250
5251    void CheckForSelfReference(ImplicitCastExpr *E) {
5252      if (E->getCastKind() != CK_LValueToRValue) return;
5253      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5254      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5255      if (!DRE) return;
5256      Decl* ReferenceDecl = DRE->getDecl();
5257      if (OrigDecl != ReferenceDecl) return;
5258      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5259                          Sema::NotForRedeclaration);
5260      S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
5261                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5262                              << Result.getLookupName()
5263                              << OrigDecl->getLocation()
5264                              << SubExpr->getSourceRange());
5265    }
5266  };
5267}
5268
5269/// AddInitializerToDecl - Adds the initializer Init to the
5270/// declaration dcl. If DirectInit is true, this is C++ direct
5271/// initialization rather than copy initialization.
5272void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5273                                bool DirectInit, bool TypeMayContainAuto) {
5274  // If there is no declaration, there was an error parsing it.  Just ignore
5275  // the initializer.
5276  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5277    return;
5278
5279  // Check for self-references within variable initializers.
5280  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5281    // Variables declared within a function/method body are handled
5282    // by a dataflow analysis.
5283    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5284      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5285  }
5286  else {
5287    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5288  }
5289
5290  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5291    // With declarators parsed the way they are, the parser cannot
5292    // distinguish between a normal initializer and a pure-specifier.
5293    // Thus this grotesque test.
5294    IntegerLiteral *IL;
5295    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5296        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5297      CheckPureMethod(Method, Init->getSourceRange());
5298    else {
5299      Diag(Method->getLocation(), diag::err_member_function_initialization)
5300        << Method->getDeclName() << Init->getSourceRange();
5301      Method->setInvalidDecl();
5302    }
5303    return;
5304  }
5305
5306  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5307  if (!VDecl) {
5308    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5309    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5310    RealDecl->setInvalidDecl();
5311    return;
5312  }
5313
5314  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5315  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5316    TypeSourceInfo *DeducedType = 0;
5317    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5318      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5319        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5320        << Init->getSourceRange();
5321    if (!DeducedType) {
5322      RealDecl->setInvalidDecl();
5323      return;
5324    }
5325    VDecl->setTypeSourceInfo(DeducedType);
5326    VDecl->setType(DeducedType->getType());
5327
5328    // In ARC, infer lifetime.
5329    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5330      VDecl->setInvalidDecl();
5331
5332    // If this is a redeclaration, check that the type we just deduced matches
5333    // the previously declared type.
5334    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5335      MergeVarDeclTypes(VDecl, Old);
5336  }
5337
5338
5339  // A definition must end up with a complete type, which means it must be
5340  // complete with the restriction that an array type might be completed by the
5341  // initializer; note that later code assumes this restriction.
5342  QualType BaseDeclType = VDecl->getType();
5343  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5344    BaseDeclType = Array->getElementType();
5345  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5346                          diag::err_typecheck_decl_incomplete_type)) {
5347    RealDecl->setInvalidDecl();
5348    return;
5349  }
5350
5351  // The variable can not have an abstract class type.
5352  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5353                             diag::err_abstract_type_in_decl,
5354                             AbstractVariableType))
5355    VDecl->setInvalidDecl();
5356
5357  const VarDecl *Def;
5358  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5359    Diag(VDecl->getLocation(), diag::err_redefinition)
5360      << VDecl->getDeclName();
5361    Diag(Def->getLocation(), diag::note_previous_definition);
5362    VDecl->setInvalidDecl();
5363    return;
5364  }
5365
5366  const VarDecl* PrevInit = 0;
5367  if (getLangOptions().CPlusPlus) {
5368    // C++ [class.static.data]p4
5369    //   If a static data member is of const integral or const
5370    //   enumeration type, its declaration in the class definition can
5371    //   specify a constant-initializer which shall be an integral
5372    //   constant expression (5.19). In that case, the member can appear
5373    //   in integral constant expressions. The member shall still be
5374    //   defined in a namespace scope if it is used in the program and the
5375    //   namespace scope definition shall not contain an initializer.
5376    //
5377    // We already performed a redefinition check above, but for static
5378    // data members we also need to check whether there was an in-class
5379    // declaration with an initializer.
5380    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5381      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5382      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5383      return;
5384    }
5385
5386    if (VDecl->hasLocalStorage())
5387      getCurFunction()->setHasBranchProtectedScope();
5388
5389    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5390      VDecl->setInvalidDecl();
5391      return;
5392    }
5393  }
5394
5395  // Capture the variable that is being initialized and the style of
5396  // initialization.
5397  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5398
5399  // FIXME: Poor source location information.
5400  InitializationKind Kind
5401    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5402                                                   Init->getLocStart(),
5403                                                   Init->getLocEnd())
5404                : InitializationKind::CreateCopy(VDecl->getLocation(),
5405                                                 Init->getLocStart());
5406
5407  // Get the decls type and save a reference for later, since
5408  // CheckInitializerTypes may change it.
5409  QualType DclT = VDecl->getType(), SavT = DclT;
5410  if (VDecl->isLocalVarDecl()) {
5411    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5412      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5413      VDecl->setInvalidDecl();
5414    } else if (!VDecl->isInvalidDecl()) {
5415      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5416      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5417                                                MultiExprArg(*this, &Init, 1),
5418                                                &DclT);
5419      if (Result.isInvalid()) {
5420        VDecl->setInvalidDecl();
5421        return;
5422      }
5423
5424      Init = Result.takeAs<Expr>();
5425
5426      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5427      // Don't check invalid declarations to avoid emitting useless diagnostics.
5428      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5429        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5430          CheckForConstantInitializer(Init, DclT);
5431      }
5432    }
5433  } else if (VDecl->isStaticDataMember() &&
5434             VDecl->getLexicalDeclContext()->isRecord()) {
5435    // This is an in-class initialization for a static data member, e.g.,
5436    //
5437    // struct S {
5438    //   static const int value = 17;
5439    // };
5440
5441    // Try to perform the initialization regardless.
5442    if (!VDecl->isInvalidDecl()) {
5443      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5444      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5445                                          MultiExprArg(*this, &Init, 1),
5446                                          &DclT);
5447      if (Result.isInvalid()) {
5448        VDecl->setInvalidDecl();
5449        return;
5450      }
5451
5452      Init = Result.takeAs<Expr>();
5453    }
5454
5455    // C++ [class.mem]p4:
5456    //   A member-declarator can contain a constant-initializer only
5457    //   if it declares a static member (9.4) of const integral or
5458    //   const enumeration type, see 9.4.2.
5459    QualType T = VDecl->getType();
5460
5461    // Do nothing on dependent types.
5462    if (T->isDependentType()) {
5463
5464    // Require constness.
5465    } else if (!T.isConstQualified()) {
5466      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5467        << Init->getSourceRange();
5468      VDecl->setInvalidDecl();
5469
5470    // We allow integer constant expressions in all cases.
5471    } else if (T->isIntegralOrEnumerationType()) {
5472      // Check whether the expression is a constant expression.
5473      SourceLocation Loc;
5474      if (Init->isValueDependent())
5475        ; // Nothing to check.
5476      else if (Init->isIntegerConstantExpr(Context, &Loc))
5477        ; // Ok, it's an ICE!
5478      else if (Init->isEvaluatable(Context)) {
5479        // If we can constant fold the initializer through heroics, accept it,
5480        // but report this as a use of an extension for -pedantic.
5481        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5482          << Init->getSourceRange();
5483      } else {
5484        // Otherwise, this is some crazy unknown case.  Report the issue at the
5485        // location provided by the isIntegerConstantExpr failed check.
5486        Diag(Loc, diag::err_in_class_initializer_non_constant)
5487          << Init->getSourceRange();
5488        VDecl->setInvalidDecl();
5489      }
5490
5491    // We allow floating-point constants as an extension in C++03, and
5492    // C++0x has far more complicated rules that we don't really
5493    // implement fully.
5494    } else {
5495      bool Allowed = false;
5496      if (getLangOptions().CPlusPlus0x) {
5497        Allowed = T->isLiteralType();
5498      } else if (T->isFloatingType()) { // also permits complex, which is ok
5499        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5500          << T << Init->getSourceRange();
5501        Allowed = true;
5502      }
5503
5504      if (!Allowed) {
5505        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5506          << T << Init->getSourceRange();
5507        VDecl->setInvalidDecl();
5508
5509      // TODO: there are probably expressions that pass here that shouldn't.
5510      } else if (!Init->isValueDependent() &&
5511                 !Init->isConstantInitializer(Context, false)) {
5512        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5513          << Init->getSourceRange();
5514        VDecl->setInvalidDecl();
5515      }
5516    }
5517  } else if (VDecl->isFileVarDecl()) {
5518    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5519        (!getLangOptions().CPlusPlus ||
5520         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5521      Diag(VDecl->getLocation(), diag::warn_extern_init);
5522    if (!VDecl->isInvalidDecl()) {
5523      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5524      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5525                                                MultiExprArg(*this, &Init, 1),
5526                                                &DclT);
5527      if (Result.isInvalid()) {
5528        VDecl->setInvalidDecl();
5529        return;
5530      }
5531
5532      Init = Result.takeAs<Expr>();
5533    }
5534
5535    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5536    // Don't check invalid declarations to avoid emitting useless diagnostics.
5537    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5538      // C99 6.7.8p4. All file scoped initializers need to be constant.
5539      CheckForConstantInitializer(Init, DclT);
5540    }
5541  }
5542  // If the type changed, it means we had an incomplete type that was
5543  // completed by the initializer. For example:
5544  //   int ary[] = { 1, 3, 5 };
5545  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5546  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5547    VDecl->setType(DclT);
5548    Init->setType(DclT);
5549  }
5550
5551
5552  // If this variable is a local declaration with record type, make sure it
5553  // doesn't have a flexible member initialization.  We only support this as a
5554  // global/static definition.
5555  if (VDecl->hasLocalStorage())
5556    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5557      if (RT->getDecl()->hasFlexibleArrayMember()) {
5558        // Check whether the initializer tries to initialize the flexible
5559        // array member itself to anything other than an empty initializer list.
5560        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5561          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5562                                         RT->getDecl()->field_end()) - 1;
5563          if (Index < ILE->getNumInits() &&
5564              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5565                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5566            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5567            VDecl->setInvalidDecl();
5568          }
5569        }
5570      }
5571
5572  // Check any implicit conversions within the expression.
5573  CheckImplicitConversions(Init, VDecl->getLocation());
5574
5575  if (!VDecl->isInvalidDecl())
5576    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5577
5578  Init = MaybeCreateExprWithCleanups(Init);
5579  // Attach the initializer to the decl.
5580  VDecl->setInit(Init);
5581
5582  CheckCompleteVariableDeclaration(VDecl);
5583}
5584
5585/// ActOnInitializerError - Given that there was an error parsing an
5586/// initializer for the given declaration, try to return to some form
5587/// of sanity.
5588void Sema::ActOnInitializerError(Decl *D) {
5589  // Our main concern here is re-establishing invariants like "a
5590  // variable's type is either dependent or complete".
5591  if (!D || D->isInvalidDecl()) return;
5592
5593  VarDecl *VD = dyn_cast<VarDecl>(D);
5594  if (!VD) return;
5595
5596  // Auto types are meaningless if we can't make sense of the initializer.
5597  if (ParsingInitForAutoVars.count(D)) {
5598    D->setInvalidDecl();
5599    return;
5600  }
5601
5602  QualType Ty = VD->getType();
5603  if (Ty->isDependentType()) return;
5604
5605  // Require a complete type.
5606  if (RequireCompleteType(VD->getLocation(),
5607                          Context.getBaseElementType(Ty),
5608                          diag::err_typecheck_decl_incomplete_type)) {
5609    VD->setInvalidDecl();
5610    return;
5611  }
5612
5613  // Require an abstract type.
5614  if (RequireNonAbstractType(VD->getLocation(), Ty,
5615                             diag::err_abstract_type_in_decl,
5616                             AbstractVariableType)) {
5617    VD->setInvalidDecl();
5618    return;
5619  }
5620
5621  // Don't bother complaining about constructors or destructors,
5622  // though.
5623}
5624
5625void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5626                                  bool TypeMayContainAuto) {
5627  // If there is no declaration, there was an error parsing it. Just ignore it.
5628  if (RealDecl == 0)
5629    return;
5630
5631  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5632    QualType Type = Var->getType();
5633
5634    // C++0x [dcl.spec.auto]p3
5635    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5636      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5637        << Var->getDeclName() << Type;
5638      Var->setInvalidDecl();
5639      return;
5640    }
5641
5642    switch (Var->isThisDeclarationADefinition()) {
5643    case VarDecl::Definition:
5644      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5645        break;
5646
5647      // We have an out-of-line definition of a static data member
5648      // that has an in-class initializer, so we type-check this like
5649      // a declaration.
5650      //
5651      // Fall through
5652
5653    case VarDecl::DeclarationOnly:
5654      // It's only a declaration.
5655
5656      // Block scope. C99 6.7p7: If an identifier for an object is
5657      // declared with no linkage (C99 6.2.2p6), the type for the
5658      // object shall be complete.
5659      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5660          !Var->getLinkage() && !Var->isInvalidDecl() &&
5661          RequireCompleteType(Var->getLocation(), Type,
5662                              diag::err_typecheck_decl_incomplete_type))
5663        Var->setInvalidDecl();
5664
5665      // Make sure that the type is not abstract.
5666      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5667          RequireNonAbstractType(Var->getLocation(), Type,
5668                                 diag::err_abstract_type_in_decl,
5669                                 AbstractVariableType))
5670        Var->setInvalidDecl();
5671      return;
5672
5673    case VarDecl::TentativeDefinition:
5674      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5675      // object that has file scope without an initializer, and without a
5676      // storage-class specifier or with the storage-class specifier "static",
5677      // constitutes a tentative definition. Note: A tentative definition with
5678      // external linkage is valid (C99 6.2.2p5).
5679      if (!Var->isInvalidDecl()) {
5680        if (const IncompleteArrayType *ArrayT
5681                                    = Context.getAsIncompleteArrayType(Type)) {
5682          if (RequireCompleteType(Var->getLocation(),
5683                                  ArrayT->getElementType(),
5684                                  diag::err_illegal_decl_array_incomplete_type))
5685            Var->setInvalidDecl();
5686        } else if (Var->getStorageClass() == SC_Static) {
5687          // C99 6.9.2p3: If the declaration of an identifier for an object is
5688          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5689          // declared type shall not be an incomplete type.
5690          // NOTE: code such as the following
5691          //     static struct s;
5692          //     struct s { int a; };
5693          // is accepted by gcc. Hence here we issue a warning instead of
5694          // an error and we do not invalidate the static declaration.
5695          // NOTE: to avoid multiple warnings, only check the first declaration.
5696          if (Var->getPreviousDeclaration() == 0)
5697            RequireCompleteType(Var->getLocation(), Type,
5698                                diag::ext_typecheck_decl_incomplete_type);
5699        }
5700      }
5701
5702      // Record the tentative definition; we're done.
5703      if (!Var->isInvalidDecl())
5704        TentativeDefinitions.push_back(Var);
5705      return;
5706    }
5707
5708    // Provide a specific diagnostic for uninitialized variable
5709    // definitions with incomplete array type.
5710    if (Type->isIncompleteArrayType()) {
5711      Diag(Var->getLocation(),
5712           diag::err_typecheck_incomplete_array_needs_initializer);
5713      Var->setInvalidDecl();
5714      return;
5715    }
5716
5717    // Provide a specific diagnostic for uninitialized variable
5718    // definitions with reference type.
5719    if (Type->isReferenceType()) {
5720      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5721        << Var->getDeclName()
5722        << SourceRange(Var->getLocation(), Var->getLocation());
5723      Var->setInvalidDecl();
5724      return;
5725    }
5726
5727    // Do not attempt to type-check the default initializer for a
5728    // variable with dependent type.
5729    if (Type->isDependentType())
5730      return;
5731
5732    if (Var->isInvalidDecl())
5733      return;
5734
5735    if (RequireCompleteType(Var->getLocation(),
5736                            Context.getBaseElementType(Type),
5737                            diag::err_typecheck_decl_incomplete_type)) {
5738      Var->setInvalidDecl();
5739      return;
5740    }
5741
5742    // The variable can not have an abstract class type.
5743    if (RequireNonAbstractType(Var->getLocation(), Type,
5744                               diag::err_abstract_type_in_decl,
5745                               AbstractVariableType)) {
5746      Var->setInvalidDecl();
5747      return;
5748    }
5749
5750    // Check for jumps past the implicit initializer.  C++0x
5751    // clarifies that this applies to a "variable with automatic
5752    // storage duration", not a "local variable".
5753    // C++0x [stmt.dcl]p3
5754    //   A program that jumps from a point where a variable with automatic
5755    //   storage duration is not in scope to a point where it is in scope is
5756    //   ill-formed unless the variable has scalar type, class type with a
5757    //   trivial default constructor and a trivial destructor, a cv-qualified
5758    //   version of one of these types, or an array of one of the preceding
5759    //   types and is declared without an initializer.
5760    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5761      if (const RecordType *Record
5762            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5763        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5764        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5765            (getLangOptions().CPlusPlus0x &&
5766             (!CXXRecord->hasTrivialDefaultConstructor() ||
5767              !CXXRecord->hasTrivialDestructor())))
5768          getCurFunction()->setHasBranchProtectedScope();
5769      }
5770    }
5771
5772    // C++03 [dcl.init]p9:
5773    //   If no initializer is specified for an object, and the
5774    //   object is of (possibly cv-qualified) non-POD class type (or
5775    //   array thereof), the object shall be default-initialized; if
5776    //   the object is of const-qualified type, the underlying class
5777    //   type shall have a user-declared default
5778    //   constructor. Otherwise, if no initializer is specified for
5779    //   a non- static object, the object and its subobjects, if
5780    //   any, have an indeterminate initial value); if the object
5781    //   or any of its subobjects are of const-qualified type, the
5782    //   program is ill-formed.
5783    // C++0x [dcl.init]p11:
5784    //   If no initializer is specified for an object, the object is
5785    //   default-initialized; [...].
5786    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5787    InitializationKind Kind
5788      = InitializationKind::CreateDefault(Var->getLocation());
5789
5790    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5791    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5792                                      MultiExprArg(*this, 0, 0));
5793    if (Init.isInvalid())
5794      Var->setInvalidDecl();
5795    else if (Init.get())
5796      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5797
5798    CheckCompleteVariableDeclaration(Var);
5799  }
5800}
5801
5802void Sema::ActOnCXXForRangeDecl(Decl *D) {
5803  VarDecl *VD = dyn_cast<VarDecl>(D);
5804  if (!VD) {
5805    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5806    D->setInvalidDecl();
5807    return;
5808  }
5809
5810  VD->setCXXForRangeDecl(true);
5811
5812  // for-range-declaration cannot be given a storage class specifier.
5813  int Error = -1;
5814  switch (VD->getStorageClassAsWritten()) {
5815  case SC_None:
5816    break;
5817  case SC_Extern:
5818    Error = 0;
5819    break;
5820  case SC_Static:
5821    Error = 1;
5822    break;
5823  case SC_PrivateExtern:
5824    Error = 2;
5825    break;
5826  case SC_Auto:
5827    Error = 3;
5828    break;
5829  case SC_Register:
5830    Error = 4;
5831    break;
5832  }
5833  // FIXME: constexpr isn't allowed here.
5834  //if (DS.isConstexprSpecified())
5835  //  Error = 5;
5836  if (Error != -1) {
5837    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5838      << VD->getDeclName() << Error;
5839    D->setInvalidDecl();
5840  }
5841}
5842
5843void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5844  if (var->isInvalidDecl()) return;
5845
5846  // In ARC, don't allow jumps past the implicit initialization of a
5847  // local retaining variable.
5848  if (getLangOptions().ObjCAutoRefCount &&
5849      var->hasLocalStorage()) {
5850    switch (var->getType().getObjCLifetime()) {
5851    case Qualifiers::OCL_None:
5852    case Qualifiers::OCL_ExplicitNone:
5853    case Qualifiers::OCL_Autoreleasing:
5854      break;
5855
5856    case Qualifiers::OCL_Weak:
5857    case Qualifiers::OCL_Strong:
5858      getCurFunction()->setHasBranchProtectedScope();
5859      break;
5860    }
5861  }
5862
5863  // All the following checks are C++ only.
5864  if (!getLangOptions().CPlusPlus) return;
5865
5866  QualType baseType = Context.getBaseElementType(var->getType());
5867  if (baseType->isDependentType()) return;
5868
5869  // __block variables might require us to capture a copy-initializer.
5870  if (var->hasAttr<BlocksAttr>()) {
5871    // It's currently invalid to ever have a __block variable with an
5872    // array type; should we diagnose that here?
5873
5874    // Regardless, we don't want to ignore array nesting when
5875    // constructing this copy.
5876    QualType type = var->getType();
5877
5878    if (type->isStructureOrClassType()) {
5879      SourceLocation poi = var->getLocation();
5880      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5881      ExprResult result =
5882        PerformCopyInitialization(
5883                        InitializedEntity::InitializeBlock(poi, type, false),
5884                                  poi, Owned(varRef));
5885      if (!result.isInvalid()) {
5886        result = MaybeCreateExprWithCleanups(result);
5887        Expr *init = result.takeAs<Expr>();
5888        Context.setBlockVarCopyInits(var, init);
5889      }
5890    }
5891  }
5892
5893  // Check for global constructors.
5894  if (!var->getDeclContext()->isDependentContext() &&
5895      var->hasGlobalStorage() &&
5896      !var->isStaticLocal() &&
5897      var->getInit() &&
5898      !var->getInit()->isConstantInitializer(Context,
5899                                             baseType->isReferenceType()))
5900    Diag(var->getLocation(), diag::warn_global_constructor)
5901      << var->getInit()->getSourceRange();
5902
5903  // Require the destructor.
5904  if (const RecordType *recordType = baseType->getAs<RecordType>())
5905    FinalizeVarWithDestructor(var, recordType);
5906}
5907
5908/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5909/// any semantic actions necessary after any initializer has been attached.
5910void
5911Sema::FinalizeDeclaration(Decl *ThisDecl) {
5912  // Note that we are no longer parsing the initializer for this declaration.
5913  ParsingInitForAutoVars.erase(ThisDecl);
5914}
5915
5916Sema::DeclGroupPtrTy
5917Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5918                              Decl **Group, unsigned NumDecls) {
5919  llvm::SmallVector<Decl*, 8> Decls;
5920
5921  if (DS.isTypeSpecOwned())
5922    Decls.push_back(DS.getRepAsDecl());
5923
5924  for (unsigned i = 0; i != NumDecls; ++i)
5925    if (Decl *D = Group[i])
5926      Decls.push_back(D);
5927
5928  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5929                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5930}
5931
5932/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5933/// group, performing any necessary semantic checking.
5934Sema::DeclGroupPtrTy
5935Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5936                           bool TypeMayContainAuto) {
5937  // C++0x [dcl.spec.auto]p7:
5938  //   If the type deduced for the template parameter U is not the same in each
5939  //   deduction, the program is ill-formed.
5940  // FIXME: When initializer-list support is added, a distinction is needed
5941  // between the deduced type U and the deduced type which 'auto' stands for.
5942  //   auto a = 0, b = { 1, 2, 3 };
5943  // is legal because the deduced type U is 'int' in both cases.
5944  if (TypeMayContainAuto && NumDecls > 1) {
5945    QualType Deduced;
5946    CanQualType DeducedCanon;
5947    VarDecl *DeducedDecl = 0;
5948    for (unsigned i = 0; i != NumDecls; ++i) {
5949      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5950        AutoType *AT = D->getType()->getContainedAutoType();
5951        // Don't reissue diagnostics when instantiating a template.
5952        if (AT && D->isInvalidDecl())
5953          break;
5954        if (AT && AT->isDeduced()) {
5955          QualType U = AT->getDeducedType();
5956          CanQualType UCanon = Context.getCanonicalType(U);
5957          if (Deduced.isNull()) {
5958            Deduced = U;
5959            DeducedCanon = UCanon;
5960            DeducedDecl = D;
5961          } else if (DeducedCanon != UCanon) {
5962            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5963                 diag::err_auto_different_deductions)
5964              << Deduced << DeducedDecl->getDeclName()
5965              << U << D->getDeclName()
5966              << DeducedDecl->getInit()->getSourceRange()
5967              << D->getInit()->getSourceRange();
5968            D->setInvalidDecl();
5969            break;
5970          }
5971        }
5972      }
5973    }
5974  }
5975
5976  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5977}
5978
5979
5980/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5981/// to introduce parameters into function prototype scope.
5982Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5983  const DeclSpec &DS = D.getDeclSpec();
5984
5985  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5986  VarDecl::StorageClass StorageClass = SC_None;
5987  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5988  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5989    StorageClass = SC_Register;
5990    StorageClassAsWritten = SC_Register;
5991  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5992    Diag(DS.getStorageClassSpecLoc(),
5993         diag::err_invalid_storage_class_in_func_decl);
5994    D.getMutableDeclSpec().ClearStorageClassSpecs();
5995  }
5996
5997  if (D.getDeclSpec().isThreadSpecified())
5998    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5999
6000  DiagnoseFunctionSpecifiers(D);
6001
6002  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6003  QualType parmDeclType = TInfo->getType();
6004
6005  if (getLangOptions().CPlusPlus) {
6006    // Check that there are no default arguments inside the type of this
6007    // parameter.
6008    CheckExtraCXXDefaultArguments(D);
6009
6010    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6011    if (D.getCXXScopeSpec().isSet()) {
6012      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6013        << D.getCXXScopeSpec().getRange();
6014      D.getCXXScopeSpec().clear();
6015    }
6016  }
6017
6018  // Ensure we have a valid name
6019  IdentifierInfo *II = 0;
6020  if (D.hasName()) {
6021    II = D.getIdentifier();
6022    if (!II) {
6023      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6024        << GetNameForDeclarator(D).getName().getAsString();
6025      D.setInvalidType(true);
6026    }
6027  }
6028
6029  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6030  if (II) {
6031    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6032                   ForRedeclaration);
6033    LookupName(R, S);
6034    if (R.isSingleResult()) {
6035      NamedDecl *PrevDecl = R.getFoundDecl();
6036      if (PrevDecl->isTemplateParameter()) {
6037        // Maybe we will complain about the shadowed template parameter.
6038        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6039        // Just pretend that we didn't see the previous declaration.
6040        PrevDecl = 0;
6041      } else if (S->isDeclScope(PrevDecl)) {
6042        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6043        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6044
6045        // Recover by removing the name
6046        II = 0;
6047        D.SetIdentifier(0, D.getIdentifierLoc());
6048        D.setInvalidType(true);
6049      }
6050    }
6051  }
6052
6053  // Temporarily put parameter variables in the translation unit, not
6054  // the enclosing context.  This prevents them from accidentally
6055  // looking like class members in C++.
6056  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6057                                    D.getSourceRange().getBegin(),
6058                                    D.getIdentifierLoc(), II,
6059                                    parmDeclType, TInfo,
6060                                    StorageClass, StorageClassAsWritten);
6061
6062  if (D.isInvalidType())
6063    New->setInvalidDecl();
6064
6065  assert(S->isFunctionPrototypeScope());
6066  assert(S->getFunctionPrototypeDepth() >= 1);
6067  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6068                    S->getNextFunctionPrototypeIndex());
6069
6070  // Add the parameter declaration into this scope.
6071  S->AddDecl(New);
6072  if (II)
6073    IdResolver.AddDecl(New);
6074
6075  ProcessDeclAttributes(S, New, D);
6076
6077  if (New->hasAttr<BlocksAttr>()) {
6078    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6079  }
6080  return New;
6081}
6082
6083/// \brief Synthesizes a variable for a parameter arising from a
6084/// typedef.
6085ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6086                                              SourceLocation Loc,
6087                                              QualType T) {
6088  /* FIXME: setting StartLoc == Loc.
6089     Would it be worth to modify callers so as to provide proper source
6090     location for the unnamed parameters, embedding the parameter's type? */
6091  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6092                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6093                                           SC_None, SC_None, 0);
6094  Param->setImplicit();
6095  return Param;
6096}
6097
6098void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6099                                    ParmVarDecl * const *ParamEnd) {
6100  // Don't diagnose unused-parameter errors in template instantiations; we
6101  // will already have done so in the template itself.
6102  if (!ActiveTemplateInstantiations.empty())
6103    return;
6104
6105  for (; Param != ParamEnd; ++Param) {
6106    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6107        !(*Param)->hasAttr<UnusedAttr>()) {
6108      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6109        << (*Param)->getDeclName();
6110    }
6111  }
6112}
6113
6114void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6115                                                  ParmVarDecl * const *ParamEnd,
6116                                                  QualType ReturnTy,
6117                                                  NamedDecl *D) {
6118  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6119    return;
6120
6121  // Warn if the return value is pass-by-value and larger than the specified
6122  // threshold.
6123  if (ReturnTy.isPODType(Context)) {
6124    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6125    if (Size > LangOpts.NumLargeByValueCopy)
6126      Diag(D->getLocation(), diag::warn_return_value_size)
6127          << D->getDeclName() << Size;
6128  }
6129
6130  // Warn if any parameter is pass-by-value and larger than the specified
6131  // threshold.
6132  for (; Param != ParamEnd; ++Param) {
6133    QualType T = (*Param)->getType();
6134    if (!T.isPODType(Context))
6135      continue;
6136    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6137    if (Size > LangOpts.NumLargeByValueCopy)
6138      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6139          << (*Param)->getDeclName() << Size;
6140  }
6141}
6142
6143ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6144                                  SourceLocation NameLoc, IdentifierInfo *Name,
6145                                  QualType T, TypeSourceInfo *TSInfo,
6146                                  VarDecl::StorageClass StorageClass,
6147                                  VarDecl::StorageClass StorageClassAsWritten) {
6148  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6149  if (getLangOptions().ObjCAutoRefCount &&
6150      T.getObjCLifetime() == Qualifiers::OCL_None &&
6151      T->isObjCLifetimeType()) {
6152
6153    Qualifiers::ObjCLifetime lifetime;
6154
6155    // Special cases for arrays:
6156    //   - if it's const, use __unsafe_unretained
6157    //   - otherwise, it's an error
6158    if (T->isArrayType()) {
6159      if (!T.isConstQualified()) {
6160        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6161          << TSInfo->getTypeLoc().getSourceRange();
6162      }
6163      lifetime = Qualifiers::OCL_ExplicitNone;
6164    } else {
6165      lifetime = T->getObjCARCImplicitLifetime();
6166    }
6167    T = Context.getLifetimeQualifiedType(T, lifetime);
6168  }
6169
6170  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6171                                         Context.getAdjustedParameterType(T),
6172                                         TSInfo,
6173                                         StorageClass, StorageClassAsWritten,
6174                                         0);
6175
6176  // Parameters can not be abstract class types.
6177  // For record types, this is done by the AbstractClassUsageDiagnoser once
6178  // the class has been completely parsed.
6179  if (!CurContext->isRecord() &&
6180      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6181                             AbstractParamType))
6182    New->setInvalidDecl();
6183
6184  // Parameter declarators cannot be interface types. All ObjC objects are
6185  // passed by reference.
6186  if (T->isObjCObjectType()) {
6187    Diag(NameLoc,
6188         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6189    New->setInvalidDecl();
6190  }
6191
6192  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6193  // duration shall not be qualified by an address-space qualifier."
6194  // Since all parameters have automatic store duration, they can not have
6195  // an address space.
6196  if (T.getAddressSpace() != 0) {
6197    Diag(NameLoc, diag::err_arg_with_address_space);
6198    New->setInvalidDecl();
6199  }
6200
6201  return New;
6202}
6203
6204void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6205                                           SourceLocation LocAfterDecls) {
6206  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6207
6208  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6209  // for a K&R function.
6210  if (!FTI.hasPrototype) {
6211    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6212      --i;
6213      if (FTI.ArgInfo[i].Param == 0) {
6214        llvm::SmallString<256> Code;
6215        llvm::raw_svector_ostream(Code) << "  int "
6216                                        << FTI.ArgInfo[i].Ident->getName()
6217                                        << ";\n";
6218        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6219          << FTI.ArgInfo[i].Ident
6220          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6221
6222        // Implicitly declare the argument as type 'int' for lack of a better
6223        // type.
6224        AttributeFactory attrs;
6225        DeclSpec DS(attrs);
6226        const char* PrevSpec; // unused
6227        unsigned DiagID; // unused
6228        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6229                           PrevSpec, DiagID);
6230        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6231        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6232        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6233      }
6234    }
6235  }
6236}
6237
6238Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6239                                         Declarator &D) {
6240  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6241  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6242  Scope *ParentScope = FnBodyScope->getParent();
6243
6244  Decl *DP = HandleDeclarator(ParentScope, D,
6245                              MultiTemplateParamsArg(*this),
6246                              /*IsFunctionDefinition=*/true);
6247  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6248}
6249
6250static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6251  // Don't warn about invalid declarations.
6252  if (FD->isInvalidDecl())
6253    return false;
6254
6255  // Or declarations that aren't global.
6256  if (!FD->isGlobal())
6257    return false;
6258
6259  // Don't warn about C++ member functions.
6260  if (isa<CXXMethodDecl>(FD))
6261    return false;
6262
6263  // Don't warn about 'main'.
6264  if (FD->isMain())
6265    return false;
6266
6267  // Don't warn about inline functions.
6268  if (FD->isInlined())
6269    return false;
6270
6271  // Don't warn about function templates.
6272  if (FD->getDescribedFunctionTemplate())
6273    return false;
6274
6275  // Don't warn about function template specializations.
6276  if (FD->isFunctionTemplateSpecialization())
6277    return false;
6278
6279  bool MissingPrototype = true;
6280  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6281       Prev; Prev = Prev->getPreviousDeclaration()) {
6282    // Ignore any declarations that occur in function or method
6283    // scope, because they aren't visible from the header.
6284    if (Prev->getDeclContext()->isFunctionOrMethod())
6285      continue;
6286
6287    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6288    break;
6289  }
6290
6291  return MissingPrototype;
6292}
6293
6294void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6295  // Don't complain if we're in GNU89 mode and the previous definition
6296  // was an extern inline function.
6297  const FunctionDecl *Definition;
6298  if (FD->isDefined(Definition) &&
6299      !canRedefineFunction(Definition, getLangOptions())) {
6300    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6301        Definition->getStorageClass() == SC_Extern)
6302      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6303        << FD->getDeclName() << getLangOptions().CPlusPlus;
6304    else
6305      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6306    Diag(Definition->getLocation(), diag::note_previous_definition);
6307  }
6308}
6309
6310Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6311  // Clear the last template instantiation error context.
6312  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6313
6314  if (!D)
6315    return D;
6316  FunctionDecl *FD = 0;
6317
6318  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6319    FD = FunTmpl->getTemplatedDecl();
6320  else
6321    FD = cast<FunctionDecl>(D);
6322
6323  // Enter a new function scope
6324  PushFunctionScope();
6325
6326  // See if this is a redefinition.
6327  if (!FD->isLateTemplateParsed())
6328    CheckForFunctionRedefinition(FD);
6329
6330  // Builtin functions cannot be defined.
6331  if (unsigned BuiltinID = FD->getBuiltinID()) {
6332    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6333      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6334      FD->setInvalidDecl();
6335    }
6336  }
6337
6338  // The return type of a function definition must be complete
6339  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6340  QualType ResultType = FD->getResultType();
6341  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6342      !FD->isInvalidDecl() &&
6343      RequireCompleteType(FD->getLocation(), ResultType,
6344                          diag::err_func_def_incomplete_result))
6345    FD->setInvalidDecl();
6346
6347  // GNU warning -Wmissing-prototypes:
6348  //   Warn if a global function is defined without a previous
6349  //   prototype declaration. This warning is issued even if the
6350  //   definition itself provides a prototype. The aim is to detect
6351  //   global functions that fail to be declared in header files.
6352  if (ShouldWarnAboutMissingPrototype(FD))
6353    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6354
6355  if (FnBodyScope)
6356    PushDeclContext(FnBodyScope, FD);
6357
6358  // Check the validity of our function parameters
6359  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6360                           /*CheckParameterNames=*/true);
6361
6362  // Introduce our parameters into the function scope
6363  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6364    ParmVarDecl *Param = FD->getParamDecl(p);
6365    Param->setOwningFunction(FD);
6366
6367    // If this has an identifier, add it to the scope stack.
6368    if (Param->getIdentifier() && FnBodyScope) {
6369      CheckShadow(FnBodyScope, Param);
6370
6371      PushOnScopeChains(Param, FnBodyScope);
6372    }
6373  }
6374
6375  // Checking attributes of current function definition
6376  // dllimport attribute.
6377  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6378  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6379    // dllimport attribute cannot be directly applied to definition.
6380    // Microsoft accepts dllimport for functions defined within class scope.
6381    if (!DA->isInherited() &&
6382        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6383      Diag(FD->getLocation(),
6384           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6385        << "dllimport";
6386      FD->setInvalidDecl();
6387      return FD;
6388    }
6389
6390    // Visual C++ appears to not think this is an issue, so only issue
6391    // a warning when Microsoft extensions are disabled.
6392    if (!LangOpts.Microsoft) {
6393      // If a symbol previously declared dllimport is later defined, the
6394      // attribute is ignored in subsequent references, and a warning is
6395      // emitted.
6396      Diag(FD->getLocation(),
6397           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6398        << FD->getName() << "dllimport";
6399    }
6400  }
6401  return FD;
6402}
6403
6404/// \brief Given the set of return statements within a function body,
6405/// compute the variables that are subject to the named return value
6406/// optimization.
6407///
6408/// Each of the variables that is subject to the named return value
6409/// optimization will be marked as NRVO variables in the AST, and any
6410/// return statement that has a marked NRVO variable as its NRVO candidate can
6411/// use the named return value optimization.
6412///
6413/// This function applies a very simplistic algorithm for NRVO: if every return
6414/// statement in the function has the same NRVO candidate, that candidate is
6415/// the NRVO variable.
6416///
6417/// FIXME: Employ a smarter algorithm that accounts for multiple return
6418/// statements and the lifetimes of the NRVO candidates. We should be able to
6419/// find a maximal set of NRVO variables.
6420static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6421  ReturnStmt **Returns = Scope->Returns.data();
6422
6423  const VarDecl *NRVOCandidate = 0;
6424  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6425    if (!Returns[I]->getNRVOCandidate())
6426      return;
6427
6428    if (!NRVOCandidate)
6429      NRVOCandidate = Returns[I]->getNRVOCandidate();
6430    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6431      return;
6432  }
6433
6434  if (NRVOCandidate)
6435    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6436}
6437
6438Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6439  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6440}
6441
6442Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6443                                    bool IsInstantiation) {
6444  FunctionDecl *FD = 0;
6445  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6446  if (FunTmpl)
6447    FD = FunTmpl->getTemplatedDecl();
6448  else
6449    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6450
6451  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6452  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6453
6454  if (FD) {
6455    FD->setBody(Body);
6456    if (FD->isMain()) {
6457      // C and C++ allow for main to automagically return 0.
6458      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6459      FD->setHasImplicitReturnZero(true);
6460      WP.disableCheckFallThrough();
6461    } else if (FD->hasAttr<NakedAttr>()) {
6462      // If the function is marked 'naked', don't complain about missing return
6463      // statements.
6464      WP.disableCheckFallThrough();
6465    }
6466
6467    // MSVC permits the use of pure specifier (=0) on function definition,
6468    // defined at class scope, warn about this non standard construct.
6469    if (getLangOptions().Microsoft && FD->isPure())
6470      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6471
6472    if (!FD->isInvalidDecl()) {
6473      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6474      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6475                                             FD->getResultType(), FD);
6476
6477      // If this is a constructor, we need a vtable.
6478      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6479        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6480
6481      ComputeNRVO(Body, getCurFunction());
6482    }
6483
6484    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6485  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6486    assert(MD == getCurMethodDecl() && "Method parsing confused");
6487    MD->setBody(Body);
6488    if (Body)
6489      MD->setEndLoc(Body->getLocEnd());
6490    if (!MD->isInvalidDecl()) {
6491      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6492      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6493                                             MD->getResultType(), MD);
6494    }
6495  } else {
6496    return 0;
6497  }
6498
6499  // Verify and clean out per-function state.
6500  if (Body) {
6501    // C++ constructors that have function-try-blocks can't have return
6502    // statements in the handlers of that block. (C++ [except.handle]p14)
6503    // Verify this.
6504    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6505      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6506
6507    // Verify that that gotos and switch cases don't jump into scopes illegally.
6508    // Verify that that gotos and switch cases don't jump into scopes illegally.
6509    if (getCurFunction()->NeedsScopeChecking() &&
6510        !dcl->isInvalidDecl() &&
6511        !hasAnyUnrecoverableErrorsInThisFunction())
6512      DiagnoseInvalidJumps(Body);
6513
6514    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6515      if (!Destructor->getParent()->isDependentType())
6516        CheckDestructor(Destructor);
6517
6518      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6519                                             Destructor->getParent());
6520    }
6521
6522    // If any errors have occurred, clear out any temporaries that may have
6523    // been leftover. This ensures that these temporaries won't be picked up for
6524    // deletion in some later function.
6525    if (PP.getDiagnostics().hasErrorOccurred() ||
6526        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6527      ExprTemporaries.clear();
6528      ExprNeedsCleanups = false;
6529    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6530      // Since the body is valid, issue any analysis-based warnings that are
6531      // enabled.
6532      ActivePolicy = &WP;
6533    }
6534
6535    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6536    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6537  }
6538
6539  if (!IsInstantiation)
6540    PopDeclContext();
6541
6542  PopFunctionOrBlockScope(ActivePolicy, dcl);
6543
6544  // If any errors have occurred, clear out any temporaries that may have
6545  // been leftover. This ensures that these temporaries won't be picked up for
6546  // deletion in some later function.
6547  if (getDiagnostics().hasErrorOccurred()) {
6548    ExprTemporaries.clear();
6549    ExprNeedsCleanups = false;
6550  }
6551
6552  return dcl;
6553}
6554
6555/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6556/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6557NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6558                                          IdentifierInfo &II, Scope *S) {
6559  // Before we produce a declaration for an implicitly defined
6560  // function, see whether there was a locally-scoped declaration of
6561  // this name as a function or variable. If so, use that
6562  // (non-visible) declaration, and complain about it.
6563  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6564    = LocallyScopedExternalDecls.find(&II);
6565  if (Pos != LocallyScopedExternalDecls.end()) {
6566    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6567    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6568    return Pos->second;
6569  }
6570
6571  // Extension in C99.  Legal in C90, but warn about it.
6572  if (II.getName().startswith("__builtin_"))
6573    Diag(Loc, diag::warn_builtin_unknown) << &II;
6574  else if (getLangOptions().C99)
6575    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6576  else
6577    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6578
6579  // Set a Declarator for the implicit definition: int foo();
6580  const char *Dummy;
6581  AttributeFactory attrFactory;
6582  DeclSpec DS(attrFactory);
6583  unsigned DiagID;
6584  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6585  (void)Error; // Silence warning.
6586  assert(!Error && "Error setting up implicit decl!");
6587  Declarator D(DS, Declarator::BlockContext);
6588  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6589                                             0, 0, true, SourceLocation(),
6590                                             SourceLocation(),
6591                                             EST_None, SourceLocation(),
6592                                             0, 0, 0, 0, Loc, Loc, D),
6593                DS.getAttributes(),
6594                SourceLocation());
6595  D.SetIdentifier(&II, Loc);
6596
6597  // Insert this function into translation-unit scope.
6598
6599  DeclContext *PrevDC = CurContext;
6600  CurContext = Context.getTranslationUnitDecl();
6601
6602  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6603  FD->setImplicit();
6604
6605  CurContext = PrevDC;
6606
6607  AddKnownFunctionAttributes(FD);
6608
6609  return FD;
6610}
6611
6612/// \brief Adds any function attributes that we know a priori based on
6613/// the declaration of this function.
6614///
6615/// These attributes can apply both to implicitly-declared builtins
6616/// (like __builtin___printf_chk) or to library-declared functions
6617/// like NSLog or printf.
6618///
6619/// We need to check for duplicate attributes both here and where user-written
6620/// attributes are applied to declarations.
6621void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6622  if (FD->isInvalidDecl())
6623    return;
6624
6625  // If this is a built-in function, map its builtin attributes to
6626  // actual attributes.
6627  if (unsigned BuiltinID = FD->getBuiltinID()) {
6628    // Handle printf-formatting attributes.
6629    unsigned FormatIdx;
6630    bool HasVAListArg;
6631    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6632      if (!FD->getAttr<FormatAttr>())
6633        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6634                                                "printf", FormatIdx+1,
6635                                               HasVAListArg ? 0 : FormatIdx+2));
6636    }
6637    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6638                                             HasVAListArg)) {
6639     if (!FD->getAttr<FormatAttr>())
6640       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6641                                              "scanf", FormatIdx+1,
6642                                              HasVAListArg ? 0 : FormatIdx+2));
6643    }
6644
6645    // Mark const if we don't care about errno and that is the only
6646    // thing preventing the function from being const. This allows
6647    // IRgen to use LLVM intrinsics for such functions.
6648    if (!getLangOptions().MathErrno &&
6649        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6650      if (!FD->getAttr<ConstAttr>())
6651        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6652    }
6653
6654    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6655      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6656    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6657      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6658  }
6659
6660  IdentifierInfo *Name = FD->getIdentifier();
6661  if (!Name)
6662    return;
6663  if ((!getLangOptions().CPlusPlus &&
6664       FD->getDeclContext()->isTranslationUnit()) ||
6665      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6666       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6667       LinkageSpecDecl::lang_c)) {
6668    // Okay: this could be a libc/libm/Objective-C function we know
6669    // about.
6670  } else
6671    return;
6672
6673  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6674    // FIXME: NSLog and NSLogv should be target specific
6675    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6676      // FIXME: We known better than our headers.
6677      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6678    } else
6679      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6680                                             "printf", 1,
6681                                             Name->isStr("NSLogv") ? 0 : 2));
6682  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6683    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6684    // target-specific builtins, perhaps?
6685    if (!FD->getAttr<FormatAttr>())
6686      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6687                                             "printf", 2,
6688                                             Name->isStr("vasprintf") ? 0 : 3));
6689  }
6690}
6691
6692TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6693                                    TypeSourceInfo *TInfo) {
6694  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6695  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6696
6697  if (!TInfo) {
6698    assert(D.isInvalidType() && "no declarator info for valid type");
6699    TInfo = Context.getTrivialTypeSourceInfo(T);
6700  }
6701
6702  // Scope manipulation handled by caller.
6703  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6704                                           D.getSourceRange().getBegin(),
6705                                           D.getIdentifierLoc(),
6706                                           D.getIdentifier(),
6707                                           TInfo);
6708
6709  // Bail out immediately if we have an invalid declaration.
6710  if (D.isInvalidType()) {
6711    NewTD->setInvalidDecl();
6712    return NewTD;
6713  }
6714
6715  // C++ [dcl.typedef]p8:
6716  //   If the typedef declaration defines an unnamed class (or
6717  //   enum), the first typedef-name declared by the declaration
6718  //   to be that class type (or enum type) is used to denote the
6719  //   class type (or enum type) for linkage purposes only.
6720  // We need to check whether the type was declared in the declaration.
6721  switch (D.getDeclSpec().getTypeSpecType()) {
6722  case TST_enum:
6723  case TST_struct:
6724  case TST_union:
6725  case TST_class: {
6726    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6727
6728    // Do nothing if the tag is not anonymous or already has an
6729    // associated typedef (from an earlier typedef in this decl group).
6730    if (tagFromDeclSpec->getIdentifier()) break;
6731    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6732
6733    // A well-formed anonymous tag must always be a TUK_Definition.
6734    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6735
6736    // The type must match the tag exactly;  no qualifiers allowed.
6737    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6738      break;
6739
6740    // Otherwise, set this is the anon-decl typedef for the tag.
6741    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6742    break;
6743  }
6744
6745  default:
6746    break;
6747  }
6748
6749  return NewTD;
6750}
6751
6752
6753/// \brief Determine whether a tag with a given kind is acceptable
6754/// as a redeclaration of the given tag declaration.
6755///
6756/// \returns true if the new tag kind is acceptable, false otherwise.
6757bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6758                                        TagTypeKind NewTag, bool isDefinition,
6759                                        SourceLocation NewTagLoc,
6760                                        const IdentifierInfo &Name) {
6761  // C++ [dcl.type.elab]p3:
6762  //   The class-key or enum keyword present in the
6763  //   elaborated-type-specifier shall agree in kind with the
6764  //   declaration to which the name in the elaborated-type-specifier
6765  //   refers. This rule also applies to the form of
6766  //   elaborated-type-specifier that declares a class-name or
6767  //   friend class since it can be construed as referring to the
6768  //   definition of the class. Thus, in any
6769  //   elaborated-type-specifier, the enum keyword shall be used to
6770  //   refer to an enumeration (7.2), the union class-key shall be
6771  //   used to refer to a union (clause 9), and either the class or
6772  //   struct class-key shall be used to refer to a class (clause 9)
6773  //   declared using the class or struct class-key.
6774  TagTypeKind OldTag = Previous->getTagKind();
6775  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
6776    if (OldTag == NewTag)
6777      return true;
6778
6779  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6780      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6781    // Warn about the struct/class tag mismatch.
6782    bool isTemplate = false;
6783    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6784      isTemplate = Record->getDescribedClassTemplate();
6785
6786    if (!ActiveTemplateInstantiations.empty()) {
6787      // In a template instantiation, do not offer fix-its for tag mismatches
6788      // since they usually mess up the template instead of fixing the problem.
6789      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6790        << (NewTag == TTK_Class) << isTemplate << &Name;
6791      return true;
6792    }
6793
6794    if (isDefinition) {
6795      // On definitions, check previous tags and issue a fix-it for each
6796      // one that doesn't match the current tag.
6797      if (Previous->getDefinition()) {
6798        // Don't suggest fix-its for redefinitions.
6799        return true;
6800      }
6801
6802      bool previousMismatch = false;
6803      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
6804           E(Previous->redecls_end()); I != E; ++I) {
6805        if (I->getTagKind() != NewTag) {
6806          if (!previousMismatch) {
6807            previousMismatch = true;
6808            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
6809              << (NewTag == TTK_Class) << isTemplate << &Name;
6810          }
6811          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
6812            << (NewTag == TTK_Class)
6813            << FixItHint::CreateReplacement(I->getInnerLocStart(),
6814                                            NewTag == TTK_Class?
6815                                            "class" : "struct");
6816        }
6817      }
6818      return true;
6819    }
6820
6821    // Check for a previous definition.  If current tag and definition
6822    // are same type, do nothing.  If no definition, but disagree with
6823    // with previous tag type, give a warning, but no fix-it.
6824    const TagDecl *Redecl = Previous->getDefinition() ?
6825                            Previous->getDefinition() : Previous;
6826    if (Redecl->getTagKind() == NewTag) {
6827      return true;
6828    }
6829
6830    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6831      << (NewTag == TTK_Class)
6832      << isTemplate << &Name;
6833    Diag(Redecl->getLocation(), diag::note_previous_use);
6834
6835    // If there is a previous defintion, suggest a fix-it.
6836    if (Previous->getDefinition()) {
6837        Diag(NewTagLoc, diag::note_struct_class_suggestion)
6838          << (Redecl->getTagKind() == TTK_Class)
6839          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6840                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
6841    }
6842
6843    return true;
6844  }
6845  return false;
6846}
6847
6848/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6849/// former case, Name will be non-null.  In the later case, Name will be null.
6850/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6851/// reference/declaration/definition of a tag.
6852Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6853                     SourceLocation KWLoc, CXXScopeSpec &SS,
6854                     IdentifierInfo *Name, SourceLocation NameLoc,
6855                     AttributeList *Attr, AccessSpecifier AS,
6856                     MultiTemplateParamsArg TemplateParameterLists,
6857                     bool &OwnedDecl, bool &IsDependent,
6858                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6859                     TypeResult UnderlyingType) {
6860  // If this is not a definition, it must have a name.
6861  assert((Name != 0 || TUK == TUK_Definition) &&
6862         "Nameless record must be a definition!");
6863  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6864
6865  OwnedDecl = false;
6866  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6867
6868  // FIXME: Check explicit specializations more carefully.
6869  bool isExplicitSpecialization = false;
6870  bool Invalid = false;
6871
6872  // We only need to do this matching if we have template parameters
6873  // or a scope specifier, which also conveniently avoids this work
6874  // for non-C++ cases.
6875  if (TemplateParameterLists.size() > 0 ||
6876      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6877    if (TemplateParameterList *TemplateParams
6878          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6879                                                TemplateParameterLists.get(),
6880                                                TemplateParameterLists.size(),
6881                                                    TUK == TUK_Friend,
6882                                                    isExplicitSpecialization,
6883                                                    Invalid)) {
6884      if (TemplateParams->size() > 0) {
6885        // This is a declaration or definition of a class template (which may
6886        // be a member of another template).
6887
6888        if (Invalid)
6889          return 0;
6890
6891        OwnedDecl = false;
6892        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6893                                               SS, Name, NameLoc, Attr,
6894                                               TemplateParams, AS,
6895                                           TemplateParameterLists.size() - 1,
6896                 (TemplateParameterList**) TemplateParameterLists.release());
6897        return Result.get();
6898      } else {
6899        // The "template<>" header is extraneous.
6900        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6901          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6902        isExplicitSpecialization = true;
6903      }
6904    }
6905  }
6906
6907  // Figure out the underlying type if this a enum declaration. We need to do
6908  // this early, because it's needed to detect if this is an incompatible
6909  // redeclaration.
6910  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6911
6912  if (Kind == TTK_Enum) {
6913    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6914      // No underlying type explicitly specified, or we failed to parse the
6915      // type, default to int.
6916      EnumUnderlying = Context.IntTy.getTypePtr();
6917    else if (UnderlyingType.get()) {
6918      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6919      // integral type; any cv-qualification is ignored.
6920      TypeSourceInfo *TI = 0;
6921      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6922      EnumUnderlying = TI;
6923
6924      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6925
6926      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6927        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6928          << T;
6929        // Recover by falling back to int.
6930        EnumUnderlying = Context.IntTy.getTypePtr();
6931      }
6932
6933      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6934                                          UPPC_FixedUnderlyingType))
6935        EnumUnderlying = Context.IntTy.getTypePtr();
6936
6937    } else if (getLangOptions().Microsoft)
6938      // Microsoft enums are always of int type.
6939      EnumUnderlying = Context.IntTy.getTypePtr();
6940  }
6941
6942  DeclContext *SearchDC = CurContext;
6943  DeclContext *DC = CurContext;
6944  bool isStdBadAlloc = false;
6945
6946  RedeclarationKind Redecl = ForRedeclaration;
6947  if (TUK == TUK_Friend || TUK == TUK_Reference)
6948    Redecl = NotForRedeclaration;
6949
6950  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6951
6952  if (Name && SS.isNotEmpty()) {
6953    // We have a nested-name tag ('struct foo::bar').
6954
6955    // Check for invalid 'foo::'.
6956    if (SS.isInvalid()) {
6957      Name = 0;
6958      goto CreateNewDecl;
6959    }
6960
6961    // If this is a friend or a reference to a class in a dependent
6962    // context, don't try to make a decl for it.
6963    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6964      DC = computeDeclContext(SS, false);
6965      if (!DC) {
6966        IsDependent = true;
6967        return 0;
6968      }
6969    } else {
6970      DC = computeDeclContext(SS, true);
6971      if (!DC) {
6972        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6973          << SS.getRange();
6974        return 0;
6975      }
6976    }
6977
6978    if (RequireCompleteDeclContext(SS, DC))
6979      return 0;
6980
6981    SearchDC = DC;
6982    // Look-up name inside 'foo::'.
6983    LookupQualifiedName(Previous, DC);
6984
6985    if (Previous.isAmbiguous())
6986      return 0;
6987
6988    if (Previous.empty()) {
6989      // Name lookup did not find anything. However, if the
6990      // nested-name-specifier refers to the current instantiation,
6991      // and that current instantiation has any dependent base
6992      // classes, we might find something at instantiation time: treat
6993      // this as a dependent elaborated-type-specifier.
6994      // But this only makes any sense for reference-like lookups.
6995      if (Previous.wasNotFoundInCurrentInstantiation() &&
6996          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6997        IsDependent = true;
6998        return 0;
6999      }
7000
7001      // A tag 'foo::bar' must already exist.
7002      Diag(NameLoc, diag::err_not_tag_in_scope)
7003        << Kind << Name << DC << SS.getRange();
7004      Name = 0;
7005      Invalid = true;
7006      goto CreateNewDecl;
7007    }
7008  } else if (Name) {
7009    // If this is a named struct, check to see if there was a previous forward
7010    // declaration or definition.
7011    // FIXME: We're looking into outer scopes here, even when we
7012    // shouldn't be. Doing so can result in ambiguities that we
7013    // shouldn't be diagnosing.
7014    LookupName(Previous, S);
7015
7016    if (Previous.isAmbiguous() &&
7017        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7018      LookupResult::Filter F = Previous.makeFilter();
7019      while (F.hasNext()) {
7020        NamedDecl *ND = F.next();
7021        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7022          F.erase();
7023      }
7024      F.done();
7025    }
7026
7027    // Note:  there used to be some attempt at recovery here.
7028    if (Previous.isAmbiguous())
7029      return 0;
7030
7031    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7032      // FIXME: This makes sure that we ignore the contexts associated
7033      // with C structs, unions, and enums when looking for a matching
7034      // tag declaration or definition. See the similar lookup tweak
7035      // in Sema::LookupName; is there a better way to deal with this?
7036      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7037        SearchDC = SearchDC->getParent();
7038    }
7039  } else if (S->isFunctionPrototypeScope()) {
7040    // If this is an enum declaration in function prototype scope, set its
7041    // initial context to the translation unit.
7042    SearchDC = Context.getTranslationUnitDecl();
7043  }
7044
7045  if (Previous.isSingleResult() &&
7046      Previous.getFoundDecl()->isTemplateParameter()) {
7047    // Maybe we will complain about the shadowed template parameter.
7048    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7049    // Just pretend that we didn't see the previous declaration.
7050    Previous.clear();
7051  }
7052
7053  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7054      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7055    // This is a declaration of or a reference to "std::bad_alloc".
7056    isStdBadAlloc = true;
7057
7058    if (Previous.empty() && StdBadAlloc) {
7059      // std::bad_alloc has been implicitly declared (but made invisible to
7060      // name lookup). Fill in this implicit declaration as the previous
7061      // declaration, so that the declarations get chained appropriately.
7062      Previous.addDecl(getStdBadAlloc());
7063    }
7064  }
7065
7066  // If we didn't find a previous declaration, and this is a reference
7067  // (or friend reference), move to the correct scope.  In C++, we
7068  // also need to do a redeclaration lookup there, just in case
7069  // there's a shadow friend decl.
7070  if (Name && Previous.empty() &&
7071      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7072    if (Invalid) goto CreateNewDecl;
7073    assert(SS.isEmpty());
7074
7075    if (TUK == TUK_Reference) {
7076      // C++ [basic.scope.pdecl]p5:
7077      //   -- for an elaborated-type-specifier of the form
7078      //
7079      //          class-key identifier
7080      //
7081      //      if the elaborated-type-specifier is used in the
7082      //      decl-specifier-seq or parameter-declaration-clause of a
7083      //      function defined in namespace scope, the identifier is
7084      //      declared as a class-name in the namespace that contains
7085      //      the declaration; otherwise, except as a friend
7086      //      declaration, the identifier is declared in the smallest
7087      //      non-class, non-function-prototype scope that contains the
7088      //      declaration.
7089      //
7090      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7091      // C structs and unions.
7092      //
7093      // It is an error in C++ to declare (rather than define) an enum
7094      // type, including via an elaborated type specifier.  We'll
7095      // diagnose that later; for now, declare the enum in the same
7096      // scope as we would have picked for any other tag type.
7097      //
7098      // GNU C also supports this behavior as part of its incomplete
7099      // enum types extension, while GNU C++ does not.
7100      //
7101      // Find the context where we'll be declaring the tag.
7102      // FIXME: We would like to maintain the current DeclContext as the
7103      // lexical context,
7104      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7105        SearchDC = SearchDC->getParent();
7106
7107      // Find the scope where we'll be declaring the tag.
7108      while (S->isClassScope() ||
7109             (getLangOptions().CPlusPlus &&
7110              S->isFunctionPrototypeScope()) ||
7111             ((S->getFlags() & Scope::DeclScope) == 0) ||
7112             (S->getEntity() &&
7113              ((DeclContext *)S->getEntity())->isTransparentContext()))
7114        S = S->getParent();
7115    } else {
7116      assert(TUK == TUK_Friend);
7117      // C++ [namespace.memdef]p3:
7118      //   If a friend declaration in a non-local class first declares a
7119      //   class or function, the friend class or function is a member of
7120      //   the innermost enclosing namespace.
7121      SearchDC = SearchDC->getEnclosingNamespaceContext();
7122    }
7123
7124    // In C++, we need to do a redeclaration lookup to properly
7125    // diagnose some problems.
7126    if (getLangOptions().CPlusPlus) {
7127      Previous.setRedeclarationKind(ForRedeclaration);
7128      LookupQualifiedName(Previous, SearchDC);
7129    }
7130  }
7131
7132  if (!Previous.empty()) {
7133    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7134
7135    // It's okay to have a tag decl in the same scope as a typedef
7136    // which hides a tag decl in the same scope.  Finding this
7137    // insanity with a redeclaration lookup can only actually happen
7138    // in C++.
7139    //
7140    // This is also okay for elaborated-type-specifiers, which is
7141    // technically forbidden by the current standard but which is
7142    // okay according to the likely resolution of an open issue;
7143    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7144    if (getLangOptions().CPlusPlus) {
7145      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7146        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7147          TagDecl *Tag = TT->getDecl();
7148          if (Tag->getDeclName() == Name &&
7149              Tag->getDeclContext()->getRedeclContext()
7150                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7151            PrevDecl = Tag;
7152            Previous.clear();
7153            Previous.addDecl(Tag);
7154            Previous.resolveKind();
7155          }
7156        }
7157      }
7158    }
7159
7160    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7161      // If this is a use of a previous tag, or if the tag is already declared
7162      // in the same scope (so that the definition/declaration completes or
7163      // rementions the tag), reuse the decl.
7164      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7165          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7166        // Make sure that this wasn't declared as an enum and now used as a
7167        // struct or something similar.
7168        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7169                                          TUK == TUK_Definition, KWLoc,
7170                                          *Name)) {
7171          bool SafeToContinue
7172            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7173               Kind != TTK_Enum);
7174          if (SafeToContinue)
7175            Diag(KWLoc, diag::err_use_with_wrong_tag)
7176              << Name
7177              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7178                                              PrevTagDecl->getKindName());
7179          else
7180            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7181          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7182
7183          if (SafeToContinue)
7184            Kind = PrevTagDecl->getTagKind();
7185          else {
7186            // Recover by making this an anonymous redefinition.
7187            Name = 0;
7188            Previous.clear();
7189            Invalid = true;
7190          }
7191        }
7192
7193        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7194          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7195
7196          // All conflicts with previous declarations are recovered by
7197          // returning the previous declaration.
7198          if (ScopedEnum != PrevEnum->isScoped()) {
7199            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7200              << PrevEnum->isScoped();
7201            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7202            return PrevTagDecl;
7203          }
7204          else if (EnumUnderlying && PrevEnum->isFixed()) {
7205            QualType T;
7206            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7207                T = TI->getType();
7208            else
7209                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7210
7211            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7212              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7213                   diag::err_enum_redeclare_type_mismatch)
7214                << T
7215                << PrevEnum->getIntegerType();
7216              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7217              return PrevTagDecl;
7218            }
7219          }
7220          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7221            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7222              << PrevEnum->isFixed();
7223            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7224            return PrevTagDecl;
7225          }
7226        }
7227
7228        if (!Invalid) {
7229          // If this is a use, just return the declaration we found.
7230
7231          // FIXME: In the future, return a variant or some other clue
7232          // for the consumer of this Decl to know it doesn't own it.
7233          // For our current ASTs this shouldn't be a problem, but will
7234          // need to be changed with DeclGroups.
7235          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7236               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7237            return PrevTagDecl;
7238
7239          // Diagnose attempts to redefine a tag.
7240          if (TUK == TUK_Definition) {
7241            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7242              // If we're defining a specialization and the previous definition
7243              // is from an implicit instantiation, don't emit an error
7244              // here; we'll catch this in the general case below.
7245              if (!isExplicitSpecialization ||
7246                  !isa<CXXRecordDecl>(Def) ||
7247                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7248                                               == TSK_ExplicitSpecialization) {
7249                Diag(NameLoc, diag::err_redefinition) << Name;
7250                Diag(Def->getLocation(), diag::note_previous_definition);
7251                // If this is a redefinition, recover by making this
7252                // struct be anonymous, which will make any later
7253                // references get the previous definition.
7254                Name = 0;
7255                Previous.clear();
7256                Invalid = true;
7257              }
7258            } else {
7259              // If the type is currently being defined, complain
7260              // about a nested redefinition.
7261              const TagType *Tag
7262                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7263              if (Tag->isBeingDefined()) {
7264                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7265                Diag(PrevTagDecl->getLocation(),
7266                     diag::note_previous_definition);
7267                Name = 0;
7268                Previous.clear();
7269                Invalid = true;
7270              }
7271            }
7272
7273            // Okay, this is definition of a previously declared or referenced
7274            // tag PrevDecl. We're going to create a new Decl for it.
7275          }
7276        }
7277        // If we get here we have (another) forward declaration or we
7278        // have a definition.  Just create a new decl.
7279
7280      } else {
7281        // If we get here, this is a definition of a new tag type in a nested
7282        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7283        // new decl/type.  We set PrevDecl to NULL so that the entities
7284        // have distinct types.
7285        Previous.clear();
7286      }
7287      // If we get here, we're going to create a new Decl. If PrevDecl
7288      // is non-NULL, it's a definition of the tag declared by
7289      // PrevDecl. If it's NULL, we have a new definition.
7290
7291
7292    // Otherwise, PrevDecl is not a tag, but was found with tag
7293    // lookup.  This is only actually possible in C++, where a few
7294    // things like templates still live in the tag namespace.
7295    } else {
7296      assert(getLangOptions().CPlusPlus);
7297
7298      // Use a better diagnostic if an elaborated-type-specifier
7299      // found the wrong kind of type on the first
7300      // (non-redeclaration) lookup.
7301      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7302          !Previous.isForRedeclaration()) {
7303        unsigned Kind = 0;
7304        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7305        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7306        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7307        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7308        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7309        Invalid = true;
7310
7311      // Otherwise, only diagnose if the declaration is in scope.
7312      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7313                                isExplicitSpecialization)) {
7314        // do nothing
7315
7316      // Diagnose implicit declarations introduced by elaborated types.
7317      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7318        unsigned Kind = 0;
7319        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7320        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7321        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7322        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7323        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7324        Invalid = true;
7325
7326      // Otherwise it's a declaration.  Call out a particularly common
7327      // case here.
7328      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7329        unsigned Kind = 0;
7330        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7331        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7332          << Name << Kind << TND->getUnderlyingType();
7333        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7334        Invalid = true;
7335
7336      // Otherwise, diagnose.
7337      } else {
7338        // The tag name clashes with something else in the target scope,
7339        // issue an error and recover by making this tag be anonymous.
7340        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7341        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7342        Name = 0;
7343        Invalid = true;
7344      }
7345
7346      // The existing declaration isn't relevant to us; we're in a
7347      // new scope, so clear out the previous declaration.
7348      Previous.clear();
7349    }
7350  }
7351
7352CreateNewDecl:
7353
7354  TagDecl *PrevDecl = 0;
7355  if (Previous.isSingleResult())
7356    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7357
7358  // If there is an identifier, use the location of the identifier as the
7359  // location of the decl, otherwise use the location of the struct/union
7360  // keyword.
7361  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7362
7363  // Otherwise, create a new declaration. If there is a previous
7364  // declaration of the same entity, the two will be linked via
7365  // PrevDecl.
7366  TagDecl *New;
7367
7368  bool IsForwardReference = false;
7369  if (Kind == TTK_Enum) {
7370    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7371    // enum X { A, B, C } D;    D should chain to X.
7372    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7373                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7374                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7375    // If this is an undefined enum, warn.
7376    if (TUK != TUK_Definition && !Invalid) {
7377      TagDecl *Def;
7378      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7379        // C++0x: 7.2p2: opaque-enum-declaration.
7380        // Conflicts are diagnosed above. Do nothing.
7381      }
7382      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7383        Diag(Loc, diag::ext_forward_ref_enum_def)
7384          << New;
7385        Diag(Def->getLocation(), diag::note_previous_definition);
7386      } else {
7387        unsigned DiagID = diag::ext_forward_ref_enum;
7388        if (getLangOptions().Microsoft)
7389          DiagID = diag::ext_ms_forward_ref_enum;
7390        else if (getLangOptions().CPlusPlus)
7391          DiagID = diag::err_forward_ref_enum;
7392        Diag(Loc, DiagID);
7393
7394        // If this is a forward-declared reference to an enumeration, make a
7395        // note of it; we won't actually be introducing the declaration into
7396        // the declaration context.
7397        if (TUK == TUK_Reference)
7398          IsForwardReference = true;
7399      }
7400    }
7401
7402    if (EnumUnderlying) {
7403      EnumDecl *ED = cast<EnumDecl>(New);
7404      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7405        ED->setIntegerTypeSourceInfo(TI);
7406      else
7407        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7408      ED->setPromotionType(ED->getIntegerType());
7409    }
7410
7411  } else {
7412    // struct/union/class
7413
7414    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7415    // struct X { int A; } D;    D should chain to X.
7416    if (getLangOptions().CPlusPlus) {
7417      // FIXME: Look for a way to use RecordDecl for simple structs.
7418      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7419                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7420
7421      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7422        StdBadAlloc = cast<CXXRecordDecl>(New);
7423    } else
7424      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7425                               cast_or_null<RecordDecl>(PrevDecl));
7426  }
7427
7428  // Maybe add qualifier info.
7429  if (SS.isNotEmpty()) {
7430    if (SS.isSet()) {
7431      New->setQualifierInfo(SS.getWithLocInContext(Context));
7432      if (TemplateParameterLists.size() > 0) {
7433        New->setTemplateParameterListsInfo(Context,
7434                                           TemplateParameterLists.size(),
7435                    (TemplateParameterList**) TemplateParameterLists.release());
7436      }
7437    }
7438    else
7439      Invalid = true;
7440  }
7441
7442  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7443    // Add alignment attributes if necessary; these attributes are checked when
7444    // the ASTContext lays out the structure.
7445    //
7446    // It is important for implementing the correct semantics that this
7447    // happen here (in act on tag decl). The #pragma pack stack is
7448    // maintained as a result of parser callbacks which can occur at
7449    // many points during the parsing of a struct declaration (because
7450    // the #pragma tokens are effectively skipped over during the
7451    // parsing of the struct).
7452    AddAlignmentAttributesForRecord(RD);
7453
7454    AddMsStructLayoutForRecord(RD);
7455  }
7456
7457  // If this is a specialization of a member class (of a class template),
7458  // check the specialization.
7459  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7460    Invalid = true;
7461
7462  if (Invalid)
7463    New->setInvalidDecl();
7464
7465  if (Attr)
7466    ProcessDeclAttributeList(S, New, Attr);
7467
7468  // If we're declaring or defining a tag in function prototype scope
7469  // in C, note that this type can only be used within the function.
7470  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7471    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7472
7473  // Set the lexical context. If the tag has a C++ scope specifier, the
7474  // lexical context will be different from the semantic context.
7475  New->setLexicalDeclContext(CurContext);
7476
7477  // Mark this as a friend decl if applicable.
7478  // In Microsoft mode, a friend declaration also acts as a forward
7479  // declaration so we always pass true to setObjectOfFriendDecl to make
7480  // the tag name visible.
7481  if (TUK == TUK_Friend)
7482    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7483                               getLangOptions().Microsoft);
7484
7485  // Set the access specifier.
7486  if (!Invalid && SearchDC->isRecord())
7487    SetMemberAccessSpecifier(New, PrevDecl, AS);
7488
7489  if (TUK == TUK_Definition)
7490    New->startDefinition();
7491
7492  // If this has an identifier, add it to the scope stack.
7493  if (TUK == TUK_Friend) {
7494    // We might be replacing an existing declaration in the lookup tables;
7495    // if so, borrow its access specifier.
7496    if (PrevDecl)
7497      New->setAccess(PrevDecl->getAccess());
7498
7499    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7500    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7501    if (Name) // can be null along some error paths
7502      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7503        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7504  } else if (Name) {
7505    S = getNonFieldDeclScope(S);
7506    PushOnScopeChains(New, S, !IsForwardReference);
7507    if (IsForwardReference)
7508      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7509
7510  } else {
7511    CurContext->addDecl(New);
7512  }
7513
7514  // If this is the C FILE type, notify the AST context.
7515  if (IdentifierInfo *II = New->getIdentifier())
7516    if (!New->isInvalidDecl() &&
7517        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7518        II->isStr("FILE"))
7519      Context.setFILEDecl(New);
7520
7521  OwnedDecl = true;
7522  return New;
7523}
7524
7525void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7526  AdjustDeclIfTemplate(TagD);
7527  TagDecl *Tag = cast<TagDecl>(TagD);
7528
7529  // Enter the tag context.
7530  PushDeclContext(S, Tag);
7531}
7532
7533void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7534                                           SourceLocation FinalLoc,
7535                                           SourceLocation LBraceLoc) {
7536  AdjustDeclIfTemplate(TagD);
7537  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7538
7539  FieldCollector->StartClass();
7540
7541  if (!Record->getIdentifier())
7542    return;
7543
7544  if (FinalLoc.isValid())
7545    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7546
7547  // C++ [class]p2:
7548  //   [...] The class-name is also inserted into the scope of the
7549  //   class itself; this is known as the injected-class-name. For
7550  //   purposes of access checking, the injected-class-name is treated
7551  //   as if it were a public member name.
7552  CXXRecordDecl *InjectedClassName
7553    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7554                            Record->getLocStart(), Record->getLocation(),
7555                            Record->getIdentifier(),
7556                            /*PrevDecl=*/0,
7557                            /*DelayTypeCreation=*/true);
7558  Context.getTypeDeclType(InjectedClassName, Record);
7559  InjectedClassName->setImplicit();
7560  InjectedClassName->setAccess(AS_public);
7561  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7562      InjectedClassName->setDescribedClassTemplate(Template);
7563  PushOnScopeChains(InjectedClassName, S);
7564  assert(InjectedClassName->isInjectedClassName() &&
7565         "Broken injected-class-name");
7566}
7567
7568void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7569                                    SourceLocation RBraceLoc) {
7570  AdjustDeclIfTemplate(TagD);
7571  TagDecl *Tag = cast<TagDecl>(TagD);
7572  Tag->setRBraceLoc(RBraceLoc);
7573
7574  if (isa<CXXRecordDecl>(Tag))
7575    FieldCollector->FinishClass();
7576
7577  // Exit this scope of this tag's definition.
7578  PopDeclContext();
7579
7580  // Notify the consumer that we've defined a tag.
7581  Consumer.HandleTagDeclDefinition(Tag);
7582}
7583
7584void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7585  AdjustDeclIfTemplate(TagD);
7586  TagDecl *Tag = cast<TagDecl>(TagD);
7587  Tag->setInvalidDecl();
7588
7589  // We're undoing ActOnTagStartDefinition here, not
7590  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7591  // the FieldCollector.
7592
7593  PopDeclContext();
7594}
7595
7596// Note that FieldName may be null for anonymous bitfields.
7597bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7598                          QualType FieldTy, const Expr *BitWidth,
7599                          bool *ZeroWidth) {
7600  // Default to true; that shouldn't confuse checks for emptiness
7601  if (ZeroWidth)
7602    *ZeroWidth = true;
7603
7604  // C99 6.7.2.1p4 - verify the field type.
7605  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7606  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7607    // Handle incomplete types with specific error.
7608    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7609      return true;
7610    if (FieldName)
7611      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7612        << FieldName << FieldTy << BitWidth->getSourceRange();
7613    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7614      << FieldTy << BitWidth->getSourceRange();
7615  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7616                                             UPPC_BitFieldWidth))
7617    return true;
7618
7619  // If the bit-width is type- or value-dependent, don't try to check
7620  // it now.
7621  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7622    return false;
7623
7624  llvm::APSInt Value;
7625  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7626    return true;
7627
7628  if (Value != 0 && ZeroWidth)
7629    *ZeroWidth = false;
7630
7631  // Zero-width bitfield is ok for anonymous field.
7632  if (Value == 0 && FieldName)
7633    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7634
7635  if (Value.isSigned() && Value.isNegative()) {
7636    if (FieldName)
7637      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7638               << FieldName << Value.toString(10);
7639    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7640      << Value.toString(10);
7641  }
7642
7643  if (!FieldTy->isDependentType()) {
7644    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7645    if (Value.getZExtValue() > TypeSize) {
7646      if (!getLangOptions().CPlusPlus) {
7647        if (FieldName)
7648          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7649            << FieldName << (unsigned)Value.getZExtValue()
7650            << (unsigned)TypeSize;
7651
7652        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7653          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7654      }
7655
7656      if (FieldName)
7657        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7658          << FieldName << (unsigned)Value.getZExtValue()
7659          << (unsigned)TypeSize;
7660      else
7661        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7662          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7663    }
7664  }
7665
7666  return false;
7667}
7668
7669/// ActOnField - Each field of a C struct/union is passed into this in order
7670/// to create a FieldDecl object for it.
7671Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7672                       Declarator &D, ExprTy *BitfieldWidth) {
7673  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7674                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7675                               /*HasInit=*/false, AS_public);
7676  return Res;
7677}
7678
7679/// HandleField - Analyze a field of a C struct or a C++ data member.
7680///
7681FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7682                             SourceLocation DeclStart,
7683                             Declarator &D, Expr *BitWidth, bool HasInit,
7684                             AccessSpecifier AS) {
7685  IdentifierInfo *II = D.getIdentifier();
7686  SourceLocation Loc = DeclStart;
7687  if (II) Loc = D.getIdentifierLoc();
7688
7689  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7690  QualType T = TInfo->getType();
7691  if (getLangOptions().CPlusPlus) {
7692    CheckExtraCXXDefaultArguments(D);
7693
7694    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7695                                        UPPC_DataMemberType)) {
7696      D.setInvalidType();
7697      T = Context.IntTy;
7698      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7699    }
7700  }
7701
7702  DiagnoseFunctionSpecifiers(D);
7703
7704  if (D.getDeclSpec().isThreadSpecified())
7705    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7706
7707  // Check to see if this name was declared as a member previously
7708  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7709  LookupName(Previous, S);
7710  assert((Previous.empty() || Previous.isOverloadedResult() ||
7711          Previous.isSingleResult())
7712    && "Lookup of member name should be either overloaded, single or null");
7713
7714  // If the name is overloaded then get any declaration else get the single result
7715  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7716    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7717
7718  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7719    // Maybe we will complain about the shadowed template parameter.
7720    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7721    // Just pretend that we didn't see the previous declaration.
7722    PrevDecl = 0;
7723  }
7724
7725  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7726    PrevDecl = 0;
7727
7728  bool Mutable
7729    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7730  SourceLocation TSSL = D.getSourceRange().getBegin();
7731  FieldDecl *NewFD
7732    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
7733                     TSSL, AS, PrevDecl, &D);
7734
7735  if (NewFD->isInvalidDecl())
7736    Record->setInvalidDecl();
7737
7738  if (NewFD->isInvalidDecl() && PrevDecl) {
7739    // Don't introduce NewFD into scope; there's already something
7740    // with the same name in the same scope.
7741  } else if (II) {
7742    PushOnScopeChains(NewFD, S);
7743  } else
7744    Record->addDecl(NewFD);
7745
7746  return NewFD;
7747}
7748
7749/// \brief Build a new FieldDecl and check its well-formedness.
7750///
7751/// This routine builds a new FieldDecl given the fields name, type,
7752/// record, etc. \p PrevDecl should refer to any previous declaration
7753/// with the same name and in the same scope as the field to be
7754/// created.
7755///
7756/// \returns a new FieldDecl.
7757///
7758/// \todo The Declarator argument is a hack. It will be removed once
7759FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7760                                TypeSourceInfo *TInfo,
7761                                RecordDecl *Record, SourceLocation Loc,
7762                                bool Mutable, Expr *BitWidth, bool HasInit,
7763                                SourceLocation TSSL,
7764                                AccessSpecifier AS, NamedDecl *PrevDecl,
7765                                Declarator *D) {
7766  IdentifierInfo *II = Name.getAsIdentifierInfo();
7767  bool InvalidDecl = false;
7768  if (D) InvalidDecl = D->isInvalidType();
7769
7770  // If we receive a broken type, recover by assuming 'int' and
7771  // marking this declaration as invalid.
7772  if (T.isNull()) {
7773    InvalidDecl = true;
7774    T = Context.IntTy;
7775  }
7776
7777  QualType EltTy = Context.getBaseElementType(T);
7778  if (!EltTy->isDependentType() &&
7779      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7780    // Fields of incomplete type force their record to be invalid.
7781    Record->setInvalidDecl();
7782    InvalidDecl = true;
7783  }
7784
7785  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7786  // than a variably modified type.
7787  if (!InvalidDecl && T->isVariablyModifiedType()) {
7788    bool SizeIsNegative;
7789    llvm::APSInt Oversized;
7790    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7791                                                           SizeIsNegative,
7792                                                           Oversized);
7793    if (!FixedTy.isNull()) {
7794      Diag(Loc, diag::warn_illegal_constant_array_size);
7795      T = FixedTy;
7796    } else {
7797      if (SizeIsNegative)
7798        Diag(Loc, diag::err_typecheck_negative_array_size);
7799      else if (Oversized.getBoolValue())
7800        Diag(Loc, diag::err_array_too_large)
7801          << Oversized.toString(10);
7802      else
7803        Diag(Loc, diag::err_typecheck_field_variable_size);
7804      InvalidDecl = true;
7805    }
7806  }
7807
7808  // Fields can not have abstract class types
7809  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7810                                             diag::err_abstract_type_in_decl,
7811                                             AbstractFieldType))
7812    InvalidDecl = true;
7813
7814  bool ZeroWidth = false;
7815  // If this is declared as a bit-field, check the bit-field.
7816  if (!InvalidDecl && BitWidth &&
7817      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7818    InvalidDecl = true;
7819    BitWidth = 0;
7820    ZeroWidth = false;
7821  }
7822
7823  // Check that 'mutable' is consistent with the type of the declaration.
7824  if (!InvalidDecl && Mutable) {
7825    unsigned DiagID = 0;
7826    if (T->isReferenceType())
7827      DiagID = diag::err_mutable_reference;
7828    else if (T.isConstQualified())
7829      DiagID = diag::err_mutable_const;
7830
7831    if (DiagID) {
7832      SourceLocation ErrLoc = Loc;
7833      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7834        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7835      Diag(ErrLoc, DiagID);
7836      Mutable = false;
7837      InvalidDecl = true;
7838    }
7839  }
7840
7841  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7842                                       BitWidth, Mutable, HasInit);
7843  if (InvalidDecl)
7844    NewFD->setInvalidDecl();
7845
7846  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7847    Diag(Loc, diag::err_duplicate_member) << II;
7848    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7849    NewFD->setInvalidDecl();
7850  }
7851
7852  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7853    if (Record->isUnion()) {
7854      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7855        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7856        if (RDecl->getDefinition()) {
7857          // C++ [class.union]p1: An object of a class with a non-trivial
7858          // constructor, a non-trivial copy constructor, a non-trivial
7859          // destructor, or a non-trivial copy assignment operator
7860          // cannot be a member of a union, nor can an array of such
7861          // objects.
7862          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7863            NewFD->setInvalidDecl();
7864        }
7865      }
7866
7867      // C++ [class.union]p1: If a union contains a member of reference type,
7868      // the program is ill-formed.
7869      if (EltTy->isReferenceType()) {
7870        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7871          << NewFD->getDeclName() << EltTy;
7872        NewFD->setInvalidDecl();
7873      }
7874    }
7875  }
7876
7877  // FIXME: We need to pass in the attributes given an AST
7878  // representation, not a parser representation.
7879  if (D)
7880    // FIXME: What to pass instead of TUScope?
7881    ProcessDeclAttributes(TUScope, NewFD, *D);
7882
7883  // In auto-retain/release, infer strong retension for fields of
7884  // retainable type.
7885  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
7886    NewFD->setInvalidDecl();
7887
7888  if (T.isObjCGCWeak())
7889    Diag(Loc, diag::warn_attribute_weak_on_field);
7890
7891  NewFD->setAccess(AS);
7892  return NewFD;
7893}
7894
7895bool Sema::CheckNontrivialField(FieldDecl *FD) {
7896  assert(FD);
7897  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7898
7899  if (FD->isInvalidDecl())
7900    return true;
7901
7902  QualType EltTy = Context.getBaseElementType(FD->getType());
7903  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7904    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7905    if (RDecl->getDefinition()) {
7906      // We check for copy constructors before constructors
7907      // because otherwise we'll never get complaints about
7908      // copy constructors.
7909
7910      CXXSpecialMember member = CXXInvalid;
7911      if (!RDecl->hasTrivialCopyConstructor())
7912        member = CXXCopyConstructor;
7913      else if (!RDecl->hasTrivialDefaultConstructor())
7914        member = CXXDefaultConstructor;
7915      else if (!RDecl->hasTrivialCopyAssignment())
7916        member = CXXCopyAssignment;
7917      else if (!RDecl->hasTrivialDestructor())
7918        member = CXXDestructor;
7919
7920      if (member != CXXInvalid) {
7921        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
7922          // Objective-C++ ARC: it is an error to have a non-trivial field of
7923          // a union. However, system headers in Objective-C programs
7924          // occasionally have Objective-C lifetime objects within unions,
7925          // and rather than cause the program to fail, we make those
7926          // members unavailable.
7927          SourceLocation Loc = FD->getLocation();
7928          if (getSourceManager().isInSystemHeader(Loc)) {
7929            if (!FD->hasAttr<UnavailableAttr>())
7930              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
7931                                  "this system field has retaining ownership"));
7932            return false;
7933          }
7934        }
7935
7936        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7937              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7938        DiagnoseNontrivial(RT, member);
7939        return true;
7940      }
7941    }
7942  }
7943
7944  return false;
7945}
7946
7947/// DiagnoseNontrivial - Given that a class has a non-trivial
7948/// special member, figure out why.
7949void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7950  QualType QT(T, 0U);
7951  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7952
7953  // Check whether the member was user-declared.
7954  switch (member) {
7955  case CXXInvalid:
7956    break;
7957
7958  case CXXDefaultConstructor:
7959    if (RD->hasUserDeclaredConstructor()) {
7960      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7961      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7962        const FunctionDecl *body = 0;
7963        ci->hasBody(body);
7964        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7965          SourceLocation CtorLoc = ci->getLocation();
7966          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7967          return;
7968        }
7969      }
7970
7971      assert(0 && "found no user-declared constructors");
7972      return;
7973    }
7974    break;
7975
7976  case CXXCopyConstructor:
7977    if (RD->hasUserDeclaredCopyConstructor()) {
7978      SourceLocation CtorLoc =
7979        RD->getCopyConstructor(0)->getLocation();
7980      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7981      return;
7982    }
7983    break;
7984
7985  case CXXMoveConstructor:
7986    if (RD->hasUserDeclaredMoveConstructor()) {
7987      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
7988      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7989      return;
7990    }
7991    break;
7992
7993  case CXXCopyAssignment:
7994    if (RD->hasUserDeclaredCopyAssignment()) {
7995      // FIXME: this should use the location of the copy
7996      // assignment, not the type.
7997      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7998      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7999      return;
8000    }
8001    break;
8002
8003  case CXXMoveAssignment:
8004    if (RD->hasUserDeclaredMoveAssignment()) {
8005      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8006      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8007      return;
8008    }
8009    break;
8010
8011  case CXXDestructor:
8012    if (RD->hasUserDeclaredDestructor()) {
8013      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8014      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8015      return;
8016    }
8017    break;
8018  }
8019
8020  typedef CXXRecordDecl::base_class_iterator base_iter;
8021
8022  // Virtual bases and members inhibit trivial copying/construction,
8023  // but not trivial destruction.
8024  if (member != CXXDestructor) {
8025    // Check for virtual bases.  vbases includes indirect virtual bases,
8026    // so we just iterate through the direct bases.
8027    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8028      if (bi->isVirtual()) {
8029        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8030        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8031        return;
8032      }
8033
8034    // Check for virtual methods.
8035    typedef CXXRecordDecl::method_iterator meth_iter;
8036    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8037         ++mi) {
8038      if (mi->isVirtual()) {
8039        SourceLocation MLoc = mi->getSourceRange().getBegin();
8040        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8041        return;
8042      }
8043    }
8044  }
8045
8046  bool (CXXRecordDecl::*hasTrivial)() const;
8047  switch (member) {
8048  case CXXDefaultConstructor:
8049    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8050  case CXXCopyConstructor:
8051    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8052  case CXXCopyAssignment:
8053    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8054  case CXXDestructor:
8055    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8056  default:
8057    assert(0 && "unexpected special member"); return;
8058  }
8059
8060  // Check for nontrivial bases (and recurse).
8061  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8062    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8063    assert(BaseRT && "Don't know how to handle dependent bases");
8064    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8065    if (!(BaseRecTy->*hasTrivial)()) {
8066      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8067      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8068      DiagnoseNontrivial(BaseRT, member);
8069      return;
8070    }
8071  }
8072
8073  // Check for nontrivial members (and recurse).
8074  typedef RecordDecl::field_iterator field_iter;
8075  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8076       ++fi) {
8077    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8078    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8079      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8080
8081      if (!(EltRD->*hasTrivial)()) {
8082        SourceLocation FLoc = (*fi)->getLocation();
8083        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8084        DiagnoseNontrivial(EltRT, member);
8085        return;
8086      }
8087    }
8088
8089    if (EltTy->isObjCLifetimeType()) {
8090      switch (EltTy.getObjCLifetime()) {
8091      case Qualifiers::OCL_None:
8092      case Qualifiers::OCL_ExplicitNone:
8093        break;
8094
8095      case Qualifiers::OCL_Autoreleasing:
8096      case Qualifiers::OCL_Weak:
8097      case Qualifiers::OCL_Strong:
8098        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8099          << QT << EltTy.getObjCLifetime();
8100        return;
8101      }
8102    }
8103  }
8104
8105  assert(0 && "found no explanation for non-trivial member");
8106}
8107
8108/// TranslateIvarVisibility - Translate visibility from a token ID to an
8109///  AST enum value.
8110static ObjCIvarDecl::AccessControl
8111TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8112  switch (ivarVisibility) {
8113  default: assert(0 && "Unknown visitibility kind");
8114  case tok::objc_private: return ObjCIvarDecl::Private;
8115  case tok::objc_public: return ObjCIvarDecl::Public;
8116  case tok::objc_protected: return ObjCIvarDecl::Protected;
8117  case tok::objc_package: return ObjCIvarDecl::Package;
8118  }
8119}
8120
8121/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8122/// in order to create an IvarDecl object for it.
8123Decl *Sema::ActOnIvar(Scope *S,
8124                                SourceLocation DeclStart,
8125                                Decl *IntfDecl,
8126                                Declarator &D, ExprTy *BitfieldWidth,
8127                                tok::ObjCKeywordKind Visibility) {
8128
8129  IdentifierInfo *II = D.getIdentifier();
8130  Expr *BitWidth = (Expr*)BitfieldWidth;
8131  SourceLocation Loc = DeclStart;
8132  if (II) Loc = D.getIdentifierLoc();
8133
8134  // FIXME: Unnamed fields can be handled in various different ways, for
8135  // example, unnamed unions inject all members into the struct namespace!
8136
8137  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8138  QualType T = TInfo->getType();
8139
8140  if (BitWidth) {
8141    // 6.7.2.1p3, 6.7.2.1p4
8142    if (VerifyBitField(Loc, II, T, BitWidth)) {
8143      D.setInvalidType();
8144      BitWidth = 0;
8145    }
8146  } else {
8147    // Not a bitfield.
8148
8149    // validate II.
8150
8151  }
8152  if (T->isReferenceType()) {
8153    Diag(Loc, diag::err_ivar_reference_type);
8154    D.setInvalidType();
8155  }
8156  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8157  // than a variably modified type.
8158  else if (T->isVariablyModifiedType()) {
8159    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8160    D.setInvalidType();
8161  }
8162
8163  // Get the visibility (access control) for this ivar.
8164  ObjCIvarDecl::AccessControl ac =
8165    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8166                                        : ObjCIvarDecl::None;
8167  // Must set ivar's DeclContext to its enclosing interface.
8168  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
8169  ObjCContainerDecl *EnclosingContext;
8170  if (ObjCImplementationDecl *IMPDecl =
8171      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8172    if (!LangOpts.ObjCNonFragileABI2) {
8173    // Case of ivar declared in an implementation. Context is that of its class.
8174      EnclosingContext = IMPDecl->getClassInterface();
8175      assert(EnclosingContext && "Implementation has no class interface!");
8176    }
8177    else
8178      EnclosingContext = EnclosingDecl;
8179  } else {
8180    if (ObjCCategoryDecl *CDecl =
8181        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8182      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8183        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8184        return 0;
8185      }
8186    }
8187    EnclosingContext = EnclosingDecl;
8188  }
8189
8190  // Construct the decl.
8191  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8192                                             DeclStart, Loc, II, T,
8193                                             TInfo, ac, (Expr *)BitfieldWidth);
8194
8195  if (II) {
8196    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8197                                           ForRedeclaration);
8198    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8199        && !isa<TagDecl>(PrevDecl)) {
8200      Diag(Loc, diag::err_duplicate_member) << II;
8201      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8202      NewID->setInvalidDecl();
8203    }
8204  }
8205
8206  // Process attributes attached to the ivar.
8207  ProcessDeclAttributes(S, NewID, D);
8208
8209  if (D.isInvalidType())
8210    NewID->setInvalidDecl();
8211
8212  // In ARC, infer 'retaining' for ivars of retainable type.
8213  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8214    NewID->setInvalidDecl();
8215
8216  if (II) {
8217    // FIXME: When interfaces are DeclContexts, we'll need to add
8218    // these to the interface.
8219    S->AddDecl(NewID);
8220    IdResolver.AddDecl(NewID);
8221  }
8222
8223  return NewID;
8224}
8225
8226/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8227/// class and class extensions. For every class @interface and class
8228/// extension @interface, if the last ivar is a bitfield of any type,
8229/// then add an implicit `char :0` ivar to the end of that interface.
8230void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
8231                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
8232  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8233    return;
8234
8235  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8236  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8237
8238  if (!Ivar->isBitField())
8239    return;
8240  uint64_t BitFieldSize =
8241    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8242  if (BitFieldSize == 0)
8243    return;
8244  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
8245  if (!ID) {
8246    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8247      if (!CD->IsClassExtension())
8248        return;
8249    }
8250    // No need to add this to end of @implementation.
8251    else
8252      return;
8253  }
8254  // All conditions are met. Add a new bitfield to the tail end of ivars.
8255  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
8256  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
8257
8258  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
8259                              DeclLoc, DeclLoc, 0,
8260                              Context.CharTy,
8261                              Context.CreateTypeSourceInfo(Context.CharTy),
8262                              ObjCIvarDecl::Private, BW,
8263                              true);
8264  AllIvarDecls.push_back(Ivar);
8265}
8266
8267void Sema::ActOnFields(Scope* S,
8268                       SourceLocation RecLoc, Decl *EnclosingDecl,
8269                       Decl **Fields, unsigned NumFields,
8270                       SourceLocation LBrac, SourceLocation RBrac,
8271                       AttributeList *Attr) {
8272  assert(EnclosingDecl && "missing record or interface decl");
8273
8274  // If the decl this is being inserted into is invalid, then it may be a
8275  // redeclaration or some other bogus case.  Don't try to add fields to it.
8276  if (EnclosingDecl->isInvalidDecl()) {
8277    // FIXME: Deallocate fields?
8278    return;
8279  }
8280
8281
8282  // Verify that all the fields are okay.
8283  unsigned NumNamedMembers = 0;
8284  llvm::SmallVector<FieldDecl*, 32> RecFields;
8285
8286  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8287  bool ARCErrReported = false;
8288  for (unsigned i = 0; i != NumFields; ++i) {
8289    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8290
8291    // Get the type for the field.
8292    const Type *FDTy = FD->getType().getTypePtr();
8293
8294    if (!FD->isAnonymousStructOrUnion()) {
8295      // Remember all fields written by the user.
8296      RecFields.push_back(FD);
8297    }
8298
8299    // If the field is already invalid for some reason, don't emit more
8300    // diagnostics about it.
8301    if (FD->isInvalidDecl()) {
8302      EnclosingDecl->setInvalidDecl();
8303      continue;
8304    }
8305
8306    // C99 6.7.2.1p2:
8307    //   A structure or union shall not contain a member with
8308    //   incomplete or function type (hence, a structure shall not
8309    //   contain an instance of itself, but may contain a pointer to
8310    //   an instance of itself), except that the last member of a
8311    //   structure with more than one named member may have incomplete
8312    //   array type; such a structure (and any union containing,
8313    //   possibly recursively, a member that is such a structure)
8314    //   shall not be a member of a structure or an element of an
8315    //   array.
8316    if (FDTy->isFunctionType()) {
8317      // Field declared as a function.
8318      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8319        << FD->getDeclName();
8320      FD->setInvalidDecl();
8321      EnclosingDecl->setInvalidDecl();
8322      continue;
8323    } else if (FDTy->isIncompleteArrayType() && Record &&
8324               ((i == NumFields - 1 && !Record->isUnion()) ||
8325                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8326                 (i == NumFields - 1 || Record->isUnion())))) {
8327      // Flexible array member.
8328      // Microsoft and g++ is more permissive regarding flexible array.
8329      // It will accept flexible array in union and also
8330      // as the sole element of a struct/class.
8331      if (getLangOptions().Microsoft) {
8332        if (Record->isUnion())
8333          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8334            << FD->getDeclName();
8335        else if (NumFields == 1)
8336          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8337            << FD->getDeclName() << Record->getTagKind();
8338      } else if (getLangOptions().CPlusPlus) {
8339        if (Record->isUnion())
8340          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8341            << FD->getDeclName();
8342        else if (NumFields == 1)
8343          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8344            << FD->getDeclName() << Record->getTagKind();
8345      } else if (NumNamedMembers < 1) {
8346        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8347          << FD->getDeclName();
8348        FD->setInvalidDecl();
8349        EnclosingDecl->setInvalidDecl();
8350        continue;
8351      }
8352      if (!FD->getType()->isDependentType() &&
8353          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8354        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8355          << FD->getDeclName() << FD->getType();
8356        FD->setInvalidDecl();
8357        EnclosingDecl->setInvalidDecl();
8358        continue;
8359      }
8360      // Okay, we have a legal flexible array member at the end of the struct.
8361      if (Record)
8362        Record->setHasFlexibleArrayMember(true);
8363    } else if (!FDTy->isDependentType() &&
8364               RequireCompleteType(FD->getLocation(), FD->getType(),
8365                                   diag::err_field_incomplete)) {
8366      // Incomplete type
8367      FD->setInvalidDecl();
8368      EnclosingDecl->setInvalidDecl();
8369      continue;
8370    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8371      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8372        // If this is a member of a union, then entire union becomes "flexible".
8373        if (Record && Record->isUnion()) {
8374          Record->setHasFlexibleArrayMember(true);
8375        } else {
8376          // If this is a struct/class and this is not the last element, reject
8377          // it.  Note that GCC supports variable sized arrays in the middle of
8378          // structures.
8379          if (i != NumFields-1)
8380            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8381              << FD->getDeclName() << FD->getType();
8382          else {
8383            // We support flexible arrays at the end of structs in
8384            // other structs as an extension.
8385            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8386              << FD->getDeclName();
8387            if (Record)
8388              Record->setHasFlexibleArrayMember(true);
8389          }
8390        }
8391      }
8392      if (Record && FDTTy->getDecl()->hasObjectMember())
8393        Record->setHasObjectMember(true);
8394    } else if (FDTy->isObjCObjectType()) {
8395      /// A field cannot be an Objective-c object
8396      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8397      FD->setInvalidDecl();
8398      EnclosingDecl->setInvalidDecl();
8399      continue;
8400    }
8401    else if (!getLangOptions().CPlusPlus) {
8402      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8403        // It's an error in ARC if a field has lifetime.
8404        // We don't want to report this in a system header, though,
8405        // so we just make the field unavailable.
8406        // FIXME: that's really not sufficient; we need to make the type
8407        // itself invalid to, say, initialize or copy.
8408        QualType T = FD->getType();
8409        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8410        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8411          SourceLocation loc = FD->getLocation();
8412          if (getSourceManager().isInSystemHeader(loc)) {
8413            if (!FD->hasAttr<UnavailableAttr>()) {
8414              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8415                                "this system field has retaining ownership"));
8416            }
8417          } else {
8418            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8419          }
8420          ARCErrReported = true;
8421        }
8422      }
8423      else if (getLangOptions().ObjC1 &&
8424               getLangOptions().getGCMode() != LangOptions::NonGC &&
8425               Record && !Record->hasObjectMember()) {
8426        if (FD->getType()->isObjCObjectPointerType() ||
8427            FD->getType().isObjCGCStrong())
8428          Record->setHasObjectMember(true);
8429        else if (Context.getAsArrayType(FD->getType())) {
8430          QualType BaseType = Context.getBaseElementType(FD->getType());
8431          if (BaseType->isRecordType() &&
8432              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8433            Record->setHasObjectMember(true);
8434          else if (BaseType->isObjCObjectPointerType() ||
8435                   BaseType.isObjCGCStrong())
8436                 Record->setHasObjectMember(true);
8437        }
8438      }
8439    }
8440    // Keep track of the number of named members.
8441    if (FD->getIdentifier())
8442      ++NumNamedMembers;
8443  }
8444
8445  // Okay, we successfully defined 'Record'.
8446  if (Record) {
8447    bool Completed = false;
8448    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8449      if (!CXXRecord->isInvalidDecl()) {
8450        // Set access bits correctly on the directly-declared conversions.
8451        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8452        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8453             I != E; ++I)
8454          Convs->setAccess(I, (*I)->getAccess());
8455
8456        if (!CXXRecord->isDependentType()) {
8457          // Objective-C Automatic Reference Counting:
8458          //   If a class has a non-static data member of Objective-C pointer
8459          //   type (or array thereof), it is a non-POD type and its
8460          //   default constructor (if any), copy constructor, copy assignment
8461          //   operator, and destructor are non-trivial.
8462          //
8463          // This rule is also handled by CXXRecordDecl::completeDefinition().
8464          // However, here we check whether this particular class is only
8465          // non-POD because of the presence of an Objective-C pointer member.
8466          // If so, objects of this type cannot be shared between code compiled
8467          // with instant objects and code compiled with manual retain/release.
8468          if (getLangOptions().ObjCAutoRefCount &&
8469              CXXRecord->hasObjectMember() &&
8470              CXXRecord->getLinkage() == ExternalLinkage) {
8471            if (CXXRecord->isPOD()) {
8472              Diag(CXXRecord->getLocation(),
8473                   diag::warn_arc_non_pod_class_with_object_member)
8474               << CXXRecord;
8475            } else {
8476              // FIXME: Fix-Its would be nice here, but finding a good location
8477              // for them is going to be tricky.
8478              if (CXXRecord->hasTrivialCopyConstructor())
8479                Diag(CXXRecord->getLocation(),
8480                     diag::warn_arc_trivial_member_function_with_object_member)
8481                  << CXXRecord << 0;
8482              if (CXXRecord->hasTrivialCopyAssignment())
8483                Diag(CXXRecord->getLocation(),
8484                     diag::warn_arc_trivial_member_function_with_object_member)
8485                << CXXRecord << 1;
8486              if (CXXRecord->hasTrivialDestructor())
8487                Diag(CXXRecord->getLocation(),
8488                     diag::warn_arc_trivial_member_function_with_object_member)
8489                << CXXRecord << 2;
8490            }
8491          }
8492
8493          // Adjust user-defined destructor exception spec.
8494          if (getLangOptions().CPlusPlus0x &&
8495              CXXRecord->hasUserDeclaredDestructor())
8496            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8497
8498          // Add any implicitly-declared members to this class.
8499          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8500
8501          // If we have virtual base classes, we may end up finding multiple
8502          // final overriders for a given virtual function. Check for this
8503          // problem now.
8504          if (CXXRecord->getNumVBases()) {
8505            CXXFinalOverriderMap FinalOverriders;
8506            CXXRecord->getFinalOverriders(FinalOverriders);
8507
8508            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8509                                             MEnd = FinalOverriders.end();
8510                 M != MEnd; ++M) {
8511              for (OverridingMethods::iterator SO = M->second.begin(),
8512                                            SOEnd = M->second.end();
8513                   SO != SOEnd; ++SO) {
8514                assert(SO->second.size() > 0 &&
8515                       "Virtual function without overridding functions?");
8516                if (SO->second.size() == 1)
8517                  continue;
8518
8519                // C++ [class.virtual]p2:
8520                //   In a derived class, if a virtual member function of a base
8521                //   class subobject has more than one final overrider the
8522                //   program is ill-formed.
8523                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8524                  << (NamedDecl *)M->first << Record;
8525                Diag(M->first->getLocation(),
8526                     diag::note_overridden_virtual_function);
8527                for (OverridingMethods::overriding_iterator
8528                          OM = SO->second.begin(),
8529                       OMEnd = SO->second.end();
8530                     OM != OMEnd; ++OM)
8531                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8532                    << (NamedDecl *)M->first << OM->Method->getParent();
8533
8534                Record->setInvalidDecl();
8535              }
8536            }
8537            CXXRecord->completeDefinition(&FinalOverriders);
8538            Completed = true;
8539          }
8540        }
8541      }
8542    }
8543
8544    if (!Completed)
8545      Record->completeDefinition();
8546
8547    // Now that the record is complete, do any delayed exception spec checks
8548    // we were missing.
8549    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8550      const CXXDestructorDecl *Dtor =
8551              DelayedDestructorExceptionSpecChecks.back().first;
8552      if (Dtor->getParent() != Record)
8553        break;
8554
8555      assert(!Dtor->getParent()->isDependentType() &&
8556          "Should not ever add destructors of templates into the list.");
8557      CheckOverridingFunctionExceptionSpec(Dtor,
8558          DelayedDestructorExceptionSpecChecks.back().second);
8559      DelayedDestructorExceptionSpecChecks.pop_back();
8560    }
8561
8562  } else {
8563    ObjCIvarDecl **ClsFields =
8564      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8565    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8566      ID->setLocEnd(RBrac);
8567      // Add ivar's to class's DeclContext.
8568      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8569        ClsFields[i]->setLexicalDeclContext(ID);
8570        ID->addDecl(ClsFields[i]);
8571      }
8572      // Must enforce the rule that ivars in the base classes may not be
8573      // duplicates.
8574      if (ID->getSuperClass())
8575        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8576    } else if (ObjCImplementationDecl *IMPDecl =
8577                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8578      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8579      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8580        // Ivar declared in @implementation never belongs to the implementation.
8581        // Only it is in implementation's lexical context.
8582        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8583      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8584    } else if (ObjCCategoryDecl *CDecl =
8585                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8586      // case of ivars in class extension; all other cases have been
8587      // reported as errors elsewhere.
8588      // FIXME. Class extension does not have a LocEnd field.
8589      // CDecl->setLocEnd(RBrac);
8590      // Add ivar's to class extension's DeclContext.
8591      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8592        ClsFields[i]->setLexicalDeclContext(CDecl);
8593        CDecl->addDecl(ClsFields[i]);
8594      }
8595    }
8596  }
8597
8598  if (Attr)
8599    ProcessDeclAttributeList(S, Record, Attr);
8600
8601  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8602  // set the visibility of this record.
8603  if (Record && !Record->getDeclContext()->isRecord())
8604    AddPushedVisibilityAttribute(Record);
8605}
8606
8607/// \brief Determine whether the given integral value is representable within
8608/// the given type T.
8609static bool isRepresentableIntegerValue(ASTContext &Context,
8610                                        llvm::APSInt &Value,
8611                                        QualType T) {
8612  assert(T->isIntegralType(Context) && "Integral type required!");
8613  unsigned BitWidth = Context.getIntWidth(T);
8614
8615  if (Value.isUnsigned() || Value.isNonNegative()) {
8616    if (T->isSignedIntegerOrEnumerationType())
8617      --BitWidth;
8618    return Value.getActiveBits() <= BitWidth;
8619  }
8620  return Value.getMinSignedBits() <= BitWidth;
8621}
8622
8623// \brief Given an integral type, return the next larger integral type
8624// (or a NULL type of no such type exists).
8625static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8626  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8627  // enum checking below.
8628  assert(T->isIntegralType(Context) && "Integral type required!");
8629  const unsigned NumTypes = 4;
8630  QualType SignedIntegralTypes[NumTypes] = {
8631    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8632  };
8633  QualType UnsignedIntegralTypes[NumTypes] = {
8634    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8635    Context.UnsignedLongLongTy
8636  };
8637
8638  unsigned BitWidth = Context.getTypeSize(T);
8639  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8640                                                        : UnsignedIntegralTypes;
8641  for (unsigned I = 0; I != NumTypes; ++I)
8642    if (Context.getTypeSize(Types[I]) > BitWidth)
8643      return Types[I];
8644
8645  return QualType();
8646}
8647
8648EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8649                                          EnumConstantDecl *LastEnumConst,
8650                                          SourceLocation IdLoc,
8651                                          IdentifierInfo *Id,
8652                                          Expr *Val) {
8653  unsigned IntWidth = Context.Target.getIntWidth();
8654  llvm::APSInt EnumVal(IntWidth);
8655  QualType EltTy;
8656
8657  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8658    Val = 0;
8659
8660  if (Val) {
8661    if (Enum->isDependentType() || Val->isTypeDependent())
8662      EltTy = Context.DependentTy;
8663    else {
8664      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8665      SourceLocation ExpLoc;
8666      if (!Val->isValueDependent() &&
8667          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8668        Val = 0;
8669      } else {
8670        if (!getLangOptions().CPlusPlus) {
8671          // C99 6.7.2.2p2:
8672          //   The expression that defines the value of an enumeration constant
8673          //   shall be an integer constant expression that has a value
8674          //   representable as an int.
8675
8676          // Complain if the value is not representable in an int.
8677          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8678            Diag(IdLoc, diag::ext_enum_value_not_int)
8679              << EnumVal.toString(10) << Val->getSourceRange()
8680              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8681          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8682            // Force the type of the expression to 'int'.
8683            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8684          }
8685        }
8686
8687        if (Enum->isFixed()) {
8688          EltTy = Enum->getIntegerType();
8689
8690          // C++0x [dcl.enum]p5:
8691          //   ... if the initializing value of an enumerator cannot be
8692          //   represented by the underlying type, the program is ill-formed.
8693          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8694            if (getLangOptions().Microsoft) {
8695              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8696              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8697            } else
8698              Diag(IdLoc, diag::err_enumerator_too_large)
8699                << EltTy;
8700          } else
8701            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8702        }
8703        else {
8704          // C++0x [dcl.enum]p5:
8705          //   If the underlying type is not fixed, the type of each enumerator
8706          //   is the type of its initializing value:
8707          //     - If an initializer is specified for an enumerator, the
8708          //       initializing value has the same type as the expression.
8709          EltTy = Val->getType();
8710        }
8711      }
8712    }
8713  }
8714
8715  if (!Val) {
8716    if (Enum->isDependentType())
8717      EltTy = Context.DependentTy;
8718    else if (!LastEnumConst) {
8719      // C++0x [dcl.enum]p5:
8720      //   If the underlying type is not fixed, the type of each enumerator
8721      //   is the type of its initializing value:
8722      //     - If no initializer is specified for the first enumerator, the
8723      //       initializing value has an unspecified integral type.
8724      //
8725      // GCC uses 'int' for its unspecified integral type, as does
8726      // C99 6.7.2.2p3.
8727      if (Enum->isFixed()) {
8728        EltTy = Enum->getIntegerType();
8729      }
8730      else {
8731        EltTy = Context.IntTy;
8732      }
8733    } else {
8734      // Assign the last value + 1.
8735      EnumVal = LastEnumConst->getInitVal();
8736      ++EnumVal;
8737      EltTy = LastEnumConst->getType();
8738
8739      // Check for overflow on increment.
8740      if (EnumVal < LastEnumConst->getInitVal()) {
8741        // C++0x [dcl.enum]p5:
8742        //   If the underlying type is not fixed, the type of each enumerator
8743        //   is the type of its initializing value:
8744        //
8745        //     - Otherwise the type of the initializing value is the same as
8746        //       the type of the initializing value of the preceding enumerator
8747        //       unless the incremented value is not representable in that type,
8748        //       in which case the type is an unspecified integral type
8749        //       sufficient to contain the incremented value. If no such type
8750        //       exists, the program is ill-formed.
8751        QualType T = getNextLargerIntegralType(Context, EltTy);
8752        if (T.isNull() || Enum->isFixed()) {
8753          // There is no integral type larger enough to represent this
8754          // value. Complain, then allow the value to wrap around.
8755          EnumVal = LastEnumConst->getInitVal();
8756          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8757          ++EnumVal;
8758          if (Enum->isFixed())
8759            // When the underlying type is fixed, this is ill-formed.
8760            Diag(IdLoc, diag::err_enumerator_wrapped)
8761              << EnumVal.toString(10)
8762              << EltTy;
8763          else
8764            Diag(IdLoc, diag::warn_enumerator_too_large)
8765              << EnumVal.toString(10);
8766        } else {
8767          EltTy = T;
8768        }
8769
8770        // Retrieve the last enumerator's value, extent that type to the
8771        // type that is supposed to be large enough to represent the incremented
8772        // value, then increment.
8773        EnumVal = LastEnumConst->getInitVal();
8774        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8775        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8776        ++EnumVal;
8777
8778        // If we're not in C++, diagnose the overflow of enumerator values,
8779        // which in C99 means that the enumerator value is not representable in
8780        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8781        // permits enumerator values that are representable in some larger
8782        // integral type.
8783        if (!getLangOptions().CPlusPlus && !T.isNull())
8784          Diag(IdLoc, diag::warn_enum_value_overflow);
8785      } else if (!getLangOptions().CPlusPlus &&
8786                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8787        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8788        Diag(IdLoc, diag::ext_enum_value_not_int)
8789          << EnumVal.toString(10) << 1;
8790      }
8791    }
8792  }
8793
8794  if (!EltTy->isDependentType()) {
8795    // Make the enumerator value match the signedness and size of the
8796    // enumerator's type.
8797    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8798    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8799  }
8800
8801  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8802                                  Val, EnumVal);
8803}
8804
8805
8806Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8807                              SourceLocation IdLoc, IdentifierInfo *Id,
8808                              AttributeList *Attr,
8809                              SourceLocation EqualLoc, ExprTy *val) {
8810  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8811  EnumConstantDecl *LastEnumConst =
8812    cast_or_null<EnumConstantDecl>(lastEnumConst);
8813  Expr *Val = static_cast<Expr*>(val);
8814
8815  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8816  // we find one that is.
8817  S = getNonFieldDeclScope(S);
8818
8819  // Verify that there isn't already something declared with this name in this
8820  // scope.
8821  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8822                                         ForRedeclaration);
8823  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8824    // Maybe we will complain about the shadowed template parameter.
8825    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8826    // Just pretend that we didn't see the previous declaration.
8827    PrevDecl = 0;
8828  }
8829
8830  if (PrevDecl) {
8831    // When in C++, we may get a TagDecl with the same name; in this case the
8832    // enum constant will 'hide' the tag.
8833    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8834           "Received TagDecl when not in C++!");
8835    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8836      if (isa<EnumConstantDecl>(PrevDecl))
8837        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8838      else
8839        Diag(IdLoc, diag::err_redefinition) << Id;
8840      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8841      return 0;
8842    }
8843  }
8844
8845  // C++ [class.mem]p13:
8846  //   If T is the name of a class, then each of the following shall have a
8847  //   name different from T:
8848  //     - every enumerator of every member of class T that is an enumerated
8849  //       type
8850  if (CXXRecordDecl *Record
8851                      = dyn_cast<CXXRecordDecl>(
8852                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8853    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8854      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8855
8856  EnumConstantDecl *New =
8857    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8858
8859  if (New) {
8860    // Process attributes.
8861    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8862
8863    // Register this decl in the current scope stack.
8864    New->setAccess(TheEnumDecl->getAccess());
8865    PushOnScopeChains(New, S);
8866  }
8867
8868  return New;
8869}
8870
8871void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8872                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8873                         Decl **Elements, unsigned NumElements,
8874                         Scope *S, AttributeList *Attr) {
8875  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8876  QualType EnumType = Context.getTypeDeclType(Enum);
8877
8878  if (Attr)
8879    ProcessDeclAttributeList(S, Enum, Attr);
8880
8881  if (Enum->isDependentType()) {
8882    for (unsigned i = 0; i != NumElements; ++i) {
8883      EnumConstantDecl *ECD =
8884        cast_or_null<EnumConstantDecl>(Elements[i]);
8885      if (!ECD) continue;
8886
8887      ECD->setType(EnumType);
8888    }
8889
8890    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8891    return;
8892  }
8893
8894  // TODO: If the result value doesn't fit in an int, it must be a long or long
8895  // long value.  ISO C does not support this, but GCC does as an extension,
8896  // emit a warning.
8897  unsigned IntWidth = Context.Target.getIntWidth();
8898  unsigned CharWidth = Context.Target.getCharWidth();
8899  unsigned ShortWidth = Context.Target.getShortWidth();
8900
8901  // Verify that all the values are okay, compute the size of the values, and
8902  // reverse the list.
8903  unsigned NumNegativeBits = 0;
8904  unsigned NumPositiveBits = 0;
8905
8906  // Keep track of whether all elements have type int.
8907  bool AllElementsInt = true;
8908
8909  for (unsigned i = 0; i != NumElements; ++i) {
8910    EnumConstantDecl *ECD =
8911      cast_or_null<EnumConstantDecl>(Elements[i]);
8912    if (!ECD) continue;  // Already issued a diagnostic.
8913
8914    const llvm::APSInt &InitVal = ECD->getInitVal();
8915
8916    // Keep track of the size of positive and negative values.
8917    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8918      NumPositiveBits = std::max(NumPositiveBits,
8919                                 (unsigned)InitVal.getActiveBits());
8920    else
8921      NumNegativeBits = std::max(NumNegativeBits,
8922                                 (unsigned)InitVal.getMinSignedBits());
8923
8924    // Keep track of whether every enum element has type int (very commmon).
8925    if (AllElementsInt)
8926      AllElementsInt = ECD->getType() == Context.IntTy;
8927  }
8928
8929  // Figure out the type that should be used for this enum.
8930  QualType BestType;
8931  unsigned BestWidth;
8932
8933  // C++0x N3000 [conv.prom]p3:
8934  //   An rvalue of an unscoped enumeration type whose underlying
8935  //   type is not fixed can be converted to an rvalue of the first
8936  //   of the following types that can represent all the values of
8937  //   the enumeration: int, unsigned int, long int, unsigned long
8938  //   int, long long int, or unsigned long long int.
8939  // C99 6.4.4.3p2:
8940  //   An identifier declared as an enumeration constant has type int.
8941  // The C99 rule is modified by a gcc extension
8942  QualType BestPromotionType;
8943
8944  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8945  // -fshort-enums is the equivalent to specifying the packed attribute on all
8946  // enum definitions.
8947  if (LangOpts.ShortEnums)
8948    Packed = true;
8949
8950  if (Enum->isFixed()) {
8951    BestType = BestPromotionType = Enum->getIntegerType();
8952    // We don't need to set BestWidth, because BestType is going to be the type
8953    // of the enumerators, but we do anyway because otherwise some compilers
8954    // warn that it might be used uninitialized.
8955    BestWidth = CharWidth;
8956  }
8957  else if (NumNegativeBits) {
8958    // If there is a negative value, figure out the smallest integer type (of
8959    // int/long/longlong) that fits.
8960    // If it's packed, check also if it fits a char or a short.
8961    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8962      BestType = Context.SignedCharTy;
8963      BestWidth = CharWidth;
8964    } else if (Packed && NumNegativeBits <= ShortWidth &&
8965               NumPositiveBits < ShortWidth) {
8966      BestType = Context.ShortTy;
8967      BestWidth = ShortWidth;
8968    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8969      BestType = Context.IntTy;
8970      BestWidth = IntWidth;
8971    } else {
8972      BestWidth = Context.Target.getLongWidth();
8973
8974      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8975        BestType = Context.LongTy;
8976      } else {
8977        BestWidth = Context.Target.getLongLongWidth();
8978
8979        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8980          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8981        BestType = Context.LongLongTy;
8982      }
8983    }
8984    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8985  } else {
8986    // If there is no negative value, figure out the smallest type that fits
8987    // all of the enumerator values.
8988    // If it's packed, check also if it fits a char or a short.
8989    if (Packed && NumPositiveBits <= CharWidth) {
8990      BestType = Context.UnsignedCharTy;
8991      BestPromotionType = Context.IntTy;
8992      BestWidth = CharWidth;
8993    } else if (Packed && NumPositiveBits <= ShortWidth) {
8994      BestType = Context.UnsignedShortTy;
8995      BestPromotionType = Context.IntTy;
8996      BestWidth = ShortWidth;
8997    } else if (NumPositiveBits <= IntWidth) {
8998      BestType = Context.UnsignedIntTy;
8999      BestWidth = IntWidth;
9000      BestPromotionType
9001        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9002                           ? Context.UnsignedIntTy : Context.IntTy;
9003    } else if (NumPositiveBits <=
9004               (BestWidth = Context.Target.getLongWidth())) {
9005      BestType = Context.UnsignedLongTy;
9006      BestPromotionType
9007        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9008                           ? Context.UnsignedLongTy : Context.LongTy;
9009    } else {
9010      BestWidth = Context.Target.getLongLongWidth();
9011      assert(NumPositiveBits <= BestWidth &&
9012             "How could an initializer get larger than ULL?");
9013      BestType = Context.UnsignedLongLongTy;
9014      BestPromotionType
9015        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9016                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9017    }
9018  }
9019
9020  // Loop over all of the enumerator constants, changing their types to match
9021  // the type of the enum if needed.
9022  for (unsigned i = 0; i != NumElements; ++i) {
9023    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9024    if (!ECD) continue;  // Already issued a diagnostic.
9025
9026    // Standard C says the enumerators have int type, but we allow, as an
9027    // extension, the enumerators to be larger than int size.  If each
9028    // enumerator value fits in an int, type it as an int, otherwise type it the
9029    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9030    // that X has type 'int', not 'unsigned'.
9031
9032    // Determine whether the value fits into an int.
9033    llvm::APSInt InitVal = ECD->getInitVal();
9034
9035    // If it fits into an integer type, force it.  Otherwise force it to match
9036    // the enum decl type.
9037    QualType NewTy;
9038    unsigned NewWidth;
9039    bool NewSign;
9040    if (!getLangOptions().CPlusPlus &&
9041        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9042      NewTy = Context.IntTy;
9043      NewWidth = IntWidth;
9044      NewSign = true;
9045    } else if (ECD->getType() == BestType) {
9046      // Already the right type!
9047      if (getLangOptions().CPlusPlus)
9048        // C++ [dcl.enum]p4: Following the closing brace of an
9049        // enum-specifier, each enumerator has the type of its
9050        // enumeration.
9051        ECD->setType(EnumType);
9052      continue;
9053    } else {
9054      NewTy = BestType;
9055      NewWidth = BestWidth;
9056      NewSign = BestType->isSignedIntegerOrEnumerationType();
9057    }
9058
9059    // Adjust the APSInt value.
9060    InitVal = InitVal.extOrTrunc(NewWidth);
9061    InitVal.setIsSigned(NewSign);
9062    ECD->setInitVal(InitVal);
9063
9064    // Adjust the Expr initializer and type.
9065    if (ECD->getInitExpr() &&
9066        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9067      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9068                                                CK_IntegralCast,
9069                                                ECD->getInitExpr(),
9070                                                /*base paths*/ 0,
9071                                                VK_RValue));
9072    if (getLangOptions().CPlusPlus)
9073      // C++ [dcl.enum]p4: Following the closing brace of an
9074      // enum-specifier, each enumerator has the type of its
9075      // enumeration.
9076      ECD->setType(EnumType);
9077    else
9078      ECD->setType(NewTy);
9079  }
9080
9081  Enum->completeDefinition(BestType, BestPromotionType,
9082                           NumPositiveBits, NumNegativeBits);
9083}
9084
9085Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9086                                  SourceLocation StartLoc,
9087                                  SourceLocation EndLoc) {
9088  StringLiteral *AsmString = cast<StringLiteral>(expr);
9089
9090  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9091                                                   AsmString, StartLoc,
9092                                                   EndLoc);
9093  CurContext->addDecl(New);
9094  return New;
9095}
9096
9097void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9098                             SourceLocation PragmaLoc,
9099                             SourceLocation NameLoc) {
9100  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9101
9102  if (PrevDecl) {
9103    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9104  } else {
9105    (void)WeakUndeclaredIdentifiers.insert(
9106      std::pair<IdentifierInfo*,WeakInfo>
9107        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9108  }
9109}
9110
9111void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9112                                IdentifierInfo* AliasName,
9113                                SourceLocation PragmaLoc,
9114                                SourceLocation NameLoc,
9115                                SourceLocation AliasNameLoc) {
9116  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9117                                    LookupOrdinaryName);
9118  WeakInfo W = WeakInfo(Name, NameLoc);
9119
9120  if (PrevDecl) {
9121    if (!PrevDecl->hasAttr<AliasAttr>())
9122      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9123        DeclApplyPragmaWeak(TUScope, ND, W);
9124  } else {
9125    (void)WeakUndeclaredIdentifiers.insert(
9126      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9127  }
9128}
9129