SemaDecl.cpp revision 207632
1115013Smarcel//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2160157Smarcel//
3121642Smarcel//                     The LLVM Compiler Infrastructure
4121642Smarcel//
5121642Smarcel// This file is distributed under the University of Illinois Open Source
6121642Smarcel// License. See LICENSE.TXT for details.
7121642Smarcel//
8121642Smarcel//===----------------------------------------------------------------------===//
9121642Smarcel//
10121642Smarcel//  This file implements semantic analysis for declarations.
11115013Smarcel//
12121642Smarcel//===----------------------------------------------------------------------===//
13121642Smarcel
14121642Smarcel#include "Sema.h"
15121642Smarcel#include "SemaInit.h"
16121642Smarcel#include "Lookup.h"
17121642Smarcel#include "clang/AST/APValue.h"
18121642Smarcel#include "clang/AST/ASTConsumer.h"
19121642Smarcel#include "clang/AST/ASTContext.h"
20121642Smarcel#include "clang/AST/CXXInheritance.h"
21121642Smarcel#include "clang/AST/DeclTemplate.h"
22121642Smarcel#include "clang/AST/ExprCXX.h"
23121642Smarcel#include "clang/AST/StmtCXX.h"
24121642Smarcel#include "clang/Parse/DeclSpec.h"
25115013Smarcel#include "clang/Parse/ParseDiagnostic.h"
26115013Smarcel#include "clang/Parse/Template.h"
27115013Smarcel#include "clang/Basic/PartialDiagnostic.h"
28115013Smarcel#include "clang/Basic/SourceManager.h"
29115013Smarcel#include "clang/Basic/TargetInfo.h"
30115013Smarcel// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31115013Smarcel#include "clang/Lex/Preprocessor.h"
32115013Smarcel#include "clang/Lex/HeaderSearch.h"
33115013Smarcel#include "llvm/ADT/Triple.h"
34115013Smarcel#include <algorithm>
35115013Smarcel#include <cstring>
36115013Smarcel#include <functional>
37115013Smarcelusing namespace clang;
38115013Smarcel
39115013Smarcel/// getDeclName - Return a pretty name for the specified decl if possible, or
40115013Smarcel/// an empty string if not.  This is used for pretty crash reporting.
41115013Smarcelstd::string Sema::getDeclName(DeclPtrTy d) {
42115013Smarcel  Decl *D = d.getAs<Decl>();
43115013Smarcel  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44115013Smarcel    return DN->getQualifiedNameAsString();
45129059Smarcel  return "";
46115013Smarcel}
47115013Smarcel
48115013SmarcelSema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49115013Smarcel  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50115013Smarcel}
51115013Smarcel
52115013Smarcel/// \brief If the identifier refers to a type name within this scope,
53129059Smarcel/// return the declaration of that type.
54115013Smarcel///
55115013Smarcel/// This routine performs ordinary name lookup of the identifier II
56115013Smarcel/// within the given scope, with optional C++ scope specifier SS, to
57115013Smarcel/// determine whether the name refers to a type. If so, returns an
58115013Smarcel/// opaque pointer (actually a QualType) corresponding to that
59115013Smarcel/// type. Otherwise, returns NULL.
60115013Smarcel///
61115013Smarcel/// If name lookup results in an ambiguity, this routine will complain
62115013Smarcel/// and then return NULL.
63115013SmarcelSema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64129059Smarcel                                Scope *S, CXXScopeSpec *SS,
65115013Smarcel                                bool isClassName,
66115013Smarcel                                TypeTy *ObjectTypePtr) {
67115013Smarcel  // Determine where we will perform name lookup.
68129059Smarcel  DeclContext *LookupCtx = 0;
69115013Smarcel  if (ObjectTypePtr) {
70129059Smarcel    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71129059Smarcel    if (ObjectType->isRecordType())
72115013Smarcel      LookupCtx = computeDeclContext(ObjectType);
73115013Smarcel  } else if (SS && SS->isNotEmpty()) {
74115013Smarcel    LookupCtx = computeDeclContext(*SS, false);
75115013Smarcel
76115013Smarcel    if (!LookupCtx) {
77115013Smarcel      if (isDependentScopeSpecifier(*SS)) {
78115013Smarcel        // C++ [temp.res]p3:
79160163Smarcel        //   A qualified-id that refers to a type and in which the
80115013Smarcel        //   nested-name-specifier depends on a template-parameter (14.6.2)
81160163Smarcel        //   shall be prefixed by the keyword typename to indicate that the
82160163Smarcel        //   qualified-id denotes a type, forming an
83115013Smarcel        //   elaborated-type-specifier (7.1.5.3).
84115013Smarcel        //
85115013Smarcel        // We therefore do not perform any name lookup if the result would
86115013Smarcel        // refer to a member of an unknown specialization.
87160157Smarcel        if (!isClassName)
88115013Smarcel          return 0;
89115013Smarcel
90115013Smarcel        // We know from the grammar that this name refers to a type, so build a
91115013Smarcel        // DependentNameType node to describe the type.
92115013Smarcel        return CheckTypenameType(ETK_None,
93115013Smarcel                                 (NestedNameSpecifier *)SS->getScopeRep(),
94115013Smarcel                                 II, SS->getRange()).getAsOpaquePtr();
95115013Smarcel      }
96115013Smarcel
97115013Smarcel      return 0;
98115013Smarcel    }
99115013Smarcel
100160157Smarcel    if (!LookupCtx->isDependentContext() &&
101160157Smarcel        RequireCompleteDeclContext(*SS, LookupCtx))
102160157Smarcel      return 0;
103115013Smarcel  }
104115013Smarcel
105115013Smarcel  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106115013Smarcel  // lookup for class-names.
107115013Smarcel  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108115013Smarcel                                      LookupOrdinaryName;
109115013Smarcel  LookupResult Result(*this, &II, NameLoc, Kind);
110115013Smarcel  if (LookupCtx) {
111115013Smarcel    // Perform "qualified" name lookup into the declaration context we
112115013Smarcel    // computed, which is either the type of the base of a member access
113115013Smarcel    // expression or the declaration context associated with a prior
114115013Smarcel    // nested-name-specifier.
115115013Smarcel    LookupQualifiedName(Result, LookupCtx);
116115013Smarcel
117115013Smarcel    if (ObjectTypePtr && Result.empty()) {
118115013Smarcel      // C++ [basic.lookup.classref]p3:
119129059Smarcel      //   If the unqualified-id is ~type-name, the type-name is looked up
120115013Smarcel      //   in the context of the entire postfix-expression. If the type T of
121115013Smarcel      //   the object expression is of a class type C, the type-name is also
122115013Smarcel      //   looked up in the scope of class C. At least one of the lookups shall
123115013Smarcel      //   find a name that refers to (possibly cv-qualified) T.
124115013Smarcel      LookupName(Result, S);
125115013Smarcel    }
126129059Smarcel  } else {
127115013Smarcel    // Perform unqualified name lookup.
128115013Smarcel    LookupName(Result, S);
129115013Smarcel  }
130115013Smarcel
131115013Smarcel  NamedDecl *IIDecl = 0;
132115013Smarcel  switch (Result.getResultKind()) {
133115013Smarcel  case LookupResult::NotFound:
134115013Smarcel  case LookupResult::NotFoundInCurrentInstantiation:
135115013Smarcel  case LookupResult::FoundOverloaded:
136115013Smarcel  case LookupResult::FoundUnresolvedValue:
137115013Smarcel    Result.suppressDiagnostics();
138115013Smarcel    return 0;
139115013Smarcel
140160157Smarcel  case LookupResult::Ambiguous:
141160157Smarcel    // Recover from type-hiding ambiguities by hiding the type.  We'll
142115013Smarcel    // do the lookup again when looking for an object, and we can
143115013Smarcel    // diagnose the error then.  If we don't do this, then the error
144129059Smarcel    // about hiding the type will be immediately followed by an error
145115013Smarcel    // that only makes sense if the identifier was treated like a type.
146115013Smarcel    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147115013Smarcel      Result.suppressDiagnostics();
148115013Smarcel      return 0;
149115013Smarcel    }
150115013Smarcel
151115013Smarcel    // Look to see if we have a type anywhere in the list of results.
152129059Smarcel    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153115013Smarcel         Res != ResEnd; ++Res) {
154115013Smarcel      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155115013Smarcel        if (!IIDecl ||
156115013Smarcel            (*Res)->getLocation().getRawEncoding() <
157115013Smarcel              IIDecl->getLocation().getRawEncoding())
158115013Smarcel          IIDecl = *Res;
159115013Smarcel      }
160115013Smarcel    }
161129059Smarcel
162115013Smarcel    if (!IIDecl) {
163115013Smarcel      // None of the entities we found is a type, so there is no way
164115013Smarcel      // to even assume that the result is a type. In this case, don't
165115013Smarcel      // complain about the ambiguity. The parser will either try to
166115013Smarcel      // perform this lookup again (e.g., as an object name), which
167115013Smarcel      // will produce the ambiguity, or will complain that it expected
168115013Smarcel      // a type name.
169115013Smarcel      Result.suppressDiagnostics();
170160163Smarcel      return 0;
171115013Smarcel    }
172115013Smarcel
173160163Smarcel    // We found a type within the ambiguous lookup; diagnose the
174160163Smarcel    // ambiguity and then return that type. This might be the right
175115013Smarcel    // answer, or it might not be, but it suppresses any attempt to
176160163Smarcel    // perform the name lookup again.
177115013Smarcel    break;
178115013Smarcel
179115013Smarcel  case LookupResult::Found:
180115013Smarcel    IIDecl = Result.getFoundDecl();
181115013Smarcel    break;
182115013Smarcel  }
183115013Smarcel
184115013Smarcel  assert(IIDecl && "Didn't find decl");
185115013Smarcel
186115013Smarcel  QualType T;
187115013Smarcel  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188115013Smarcel    DiagnoseUseOfDecl(IIDecl, NameLoc);
189115013Smarcel
190115013Smarcel    if (T.isNull())
191115013Smarcel      T = Context.getTypeDeclType(TD);
192115013Smarcel
193115013Smarcel    if (SS)
194160163Smarcel      T = getQualifiedNameType(*SS, T);
195115013Smarcel
196115013Smarcel  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197115013Smarcel    T = Context.getObjCInterfaceType(IDecl);
198115013Smarcel  } else if (UnresolvedUsingTypenameDecl *UUDecl =
199160157Smarcel               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
200160157Smarcel    // FIXME: preserve source structure information.
201160157Smarcel    T = Context.getDependentNameType(ETK_None,
202160157Smarcel                                     UUDecl->getTargetNestedNameSpecifier(),
203115013Smarcel                                     &II);
204115013Smarcel  } else {
205115013Smarcel    // If it's not plausibly a type, suppress diagnostics.
206115013Smarcel    Result.suppressDiagnostics();
207115013Smarcel    return 0;
208115013Smarcel  }
209115013Smarcel
210115013Smarcel  return T.getAsOpaquePtr();
211160157Smarcel}
212115013Smarcel
213160157Smarcel/// isTagName() - This method is called *for error recovery purposes only*
214115013Smarcel/// to determine if the specified name is a valid tag name ("struct foo").  If
215115013Smarcel/// so, this returns the TST for the tag corresponding to it (TST_enum,
216115013Smarcel/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
217129059Smarcel/// where the user forgot to specify the tag.
218115013SmarcelDeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
219115013Smarcel  // Do a tag name lookup in this scope.
220115013Smarcel  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
221115013Smarcel  LookupName(R, S, false);
222115013Smarcel  R.suppressDiagnostics();
223115013Smarcel  if (R.getResultKind() == LookupResult::Found)
224115013Smarcel    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
225129059Smarcel      switch (TD->getTagKind()) {
226115013Smarcel      case TagDecl::TK_struct: return DeclSpec::TST_struct;
227115013Smarcel      case TagDecl::TK_union:  return DeclSpec::TST_union;
228115013Smarcel      case TagDecl::TK_class:  return DeclSpec::TST_class;
229115013Smarcel      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
230115013Smarcel      }
231115013Smarcel    }
232115013Smarcel
233115013Smarcel  return DeclSpec::TST_unspecified;
234129059Smarcel}
235115013Smarcel
236115013Smarcelbool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
237115013Smarcel                                   SourceLocation IILoc,
238115013Smarcel                                   Scope *S,
239115013Smarcel                                   CXXScopeSpec *SS,
240115013Smarcel                                   TypeTy *&SuggestedType) {
241160163Smarcel  // We don't have anything to suggest (yet).
242115013Smarcel  SuggestedType = 0;
243115013Smarcel
244115013Smarcel  // There may have been a typo in the name of the type. Look up typo
245115013Smarcel  // results, in case we have something that we can suggest.
246115013Smarcel  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
247115013Smarcel                      NotForRedeclaration);
248115013Smarcel
249115013Smarcel  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
250115013Smarcel    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
251115013Smarcel      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
252115013Smarcel          !Result->isInvalidDecl()) {
253115013Smarcel        // We found a similarly-named type or interface; suggest that.
254115013Smarcel        if (!SS || !SS->isSet())
255115013Smarcel          Diag(IILoc, diag::err_unknown_typename_suggest)
256115013Smarcel            << &II << Lookup.getLookupName()
257115013Smarcel            << FixItHint::CreateReplacement(SourceRange(IILoc),
258115013Smarcel                                            Result->getNameAsString());
259115013Smarcel        else if (DeclContext *DC = computeDeclContext(*SS, false))
260115013Smarcel          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
261115013Smarcel            << &II << DC << Lookup.getLookupName() << SS->getRange()
262115013Smarcel            << FixItHint::CreateReplacement(SourceRange(IILoc),
263115013Smarcel                                            Result->getNameAsString());
264115013Smarcel        else
265115013Smarcel          llvm_unreachable("could not have corrected a typo here");
266115013Smarcel
267115013Smarcel        Diag(Result->getLocation(), diag::note_previous_decl)
268160157Smarcel          << Result->getDeclName();
269115013Smarcel
270115013Smarcel        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
271115013Smarcel        return true;
272115013Smarcel      }
273115013Smarcel    } else if (Lookup.empty()) {
274      // We corrected to a keyword.
275      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
276      Diag(IILoc, diag::err_unknown_typename_suggest)
277        << &II << Corrected;
278      return true;
279    }
280  }
281
282  if (getLangOptions().CPlusPlus) {
283    // See if II is a class template that the user forgot to pass arguments to.
284    UnqualifiedId Name;
285    Name.setIdentifier(&II, IILoc);
286    CXXScopeSpec EmptySS;
287    TemplateTy TemplateResult;
288    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult)
289        == TNK_Type_template) {
290      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
291      Diag(IILoc, diag::err_template_missing_args) << TplName;
292      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
293        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
294          << TplDecl->getTemplateParameters()->getSourceRange();
295      }
296      return true;
297    }
298  }
299
300  // FIXME: Should we move the logic that tries to recover from a missing tag
301  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
302
303  if (!SS || (!SS->isSet() && !SS->isInvalid()))
304    Diag(IILoc, diag::err_unknown_typename) << &II;
305  else if (DeclContext *DC = computeDeclContext(*SS, false))
306    Diag(IILoc, diag::err_typename_nested_not_found)
307      << &II << DC << SS->getRange();
308  else if (isDependentScopeSpecifier(*SS)) {
309    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
310      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
311      << SourceRange(SS->getRange().getBegin(), IILoc)
312      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
313    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
314  } else {
315    assert(SS && SS->isInvalid() &&
316           "Invalid scope specifier has already been diagnosed");
317  }
318
319  return true;
320}
321
322// Determines the context to return to after temporarily entering a
323// context.  This depends in an unnecessarily complicated way on the
324// exact ordering of callbacks from the parser.
325DeclContext *Sema::getContainingDC(DeclContext *DC) {
326
327  // Functions defined inline within classes aren't parsed until we've
328  // finished parsing the top-level class, so the top-level class is
329  // the context we'll need to return to.
330  if (isa<FunctionDecl>(DC)) {
331    DC = DC->getLexicalParent();
332
333    // A function not defined within a class will always return to its
334    // lexical context.
335    if (!isa<CXXRecordDecl>(DC))
336      return DC;
337
338    // A C++ inline method/friend is parsed *after* the topmost class
339    // it was declared in is fully parsed ("complete");  the topmost
340    // class is the context we need to return to.
341    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
342      DC = RD;
343
344    // Return the declaration context of the topmost class the inline method is
345    // declared in.
346    return DC;
347  }
348
349  if (isa<ObjCMethodDecl>(DC))
350    return Context.getTranslationUnitDecl();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366}
367
368/// EnterDeclaratorContext - Used when we must lookup names in the context
369/// of a declarator's nested name specifier.
370///
371void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
372  // C++0x [basic.lookup.unqual]p13:
373  //   A name used in the definition of a static data member of class
374  //   X (after the qualified-id of the static member) is looked up as
375  //   if the name was used in a member function of X.
376  // C++0x [basic.lookup.unqual]p14:
377  //   If a variable member of a namespace is defined outside of the
378  //   scope of its namespace then any name used in the definition of
379  //   the variable member (after the declarator-id) is looked up as
380  //   if the definition of the variable member occurred in its
381  //   namespace.
382  // Both of these imply that we should push a scope whose context
383  // is the semantic context of the declaration.  We can't use
384  // PushDeclContext here because that context is not necessarily
385  // lexically contained in the current context.  Fortunately,
386  // the containing scope should have the appropriate information.
387
388  assert(!S->getEntity() && "scope already has entity");
389
390#ifndef NDEBUG
391  Scope *Ancestor = S->getParent();
392  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
393  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
394#endif
395
396  CurContext = DC;
397  S->setEntity(DC);
398}
399
400void Sema::ExitDeclaratorContext(Scope *S) {
401  assert(S->getEntity() == CurContext && "Context imbalance!");
402
403  // Switch back to the lexical context.  The safety of this is
404  // enforced by an assert in EnterDeclaratorContext.
405  Scope *Ancestor = S->getParent();
406  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
407  CurContext = (DeclContext*) Ancestor->getEntity();
408
409  // We don't need to do anything with the scope, which is going to
410  // disappear.
411}
412
413/// \brief Determine whether we allow overloading of the function
414/// PrevDecl with another declaration.
415///
416/// This routine determines whether overloading is possible, not
417/// whether some new function is actually an overload. It will return
418/// true in C++ (where we can always provide overloads) or, as an
419/// extension, in C when the previous function is already an
420/// overloaded function declaration or has the "overloadable"
421/// attribute.
422static bool AllowOverloadingOfFunction(LookupResult &Previous,
423                                       ASTContext &Context) {
424  if (Context.getLangOptions().CPlusPlus)
425    return true;
426
427  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
428    return true;
429
430  return (Previous.getResultKind() == LookupResult::Found
431          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
432}
433
434/// Add this decl to the scope shadowed decl chains.
435void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
436  // Move up the scope chain until we find the nearest enclosing
437  // non-transparent context. The declaration will be introduced into this
438  // scope.
439  while (S->getEntity() &&
440         ((DeclContext *)S->getEntity())->isTransparentContext())
441    S = S->getParent();
442
443  // Add scoped declarations into their context, so that they can be
444  // found later. Declarations without a context won't be inserted
445  // into any context.
446  if (AddToContext)
447    CurContext->addDecl(D);
448
449  // Out-of-line definitions shouldn't be pushed into scope in C++.
450  // Out-of-line variable and function definitions shouldn't even in C.
451  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
452      D->isOutOfLine())
453    return;
454
455  // Template instantiations should also not be pushed into scope.
456  if (isa<FunctionDecl>(D) &&
457      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
458    return;
459
460  // If this replaces anything in the current scope,
461  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
462                               IEnd = IdResolver.end();
463  for (; I != IEnd; ++I) {
464    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
465      S->RemoveDecl(DeclPtrTy::make(*I));
466      IdResolver.RemoveDecl(*I);
467
468      // Should only need to replace one decl.
469      break;
470    }
471  }
472
473  S->AddDecl(DeclPtrTy::make(D));
474  IdResolver.AddDecl(D);
475}
476
477bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
478  return IdResolver.isDeclInScope(D, Ctx, Context, S);
479}
480
481static bool isOutOfScopePreviousDeclaration(NamedDecl *,
482                                            DeclContext*,
483                                            ASTContext&);
484
485/// Filters out lookup results that don't fall within the given scope
486/// as determined by isDeclInScope.
487static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
488                                 DeclContext *Ctx, Scope *S,
489                                 bool ConsiderLinkage) {
490  LookupResult::Filter F = R.makeFilter();
491  while (F.hasNext()) {
492    NamedDecl *D = F.next();
493
494    if (SemaRef.isDeclInScope(D, Ctx, S))
495      continue;
496
497    if (ConsiderLinkage &&
498        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
499      continue;
500
501    F.erase();
502  }
503
504  F.done();
505}
506
507static bool isUsingDecl(NamedDecl *D) {
508  return isa<UsingShadowDecl>(D) ||
509         isa<UnresolvedUsingTypenameDecl>(D) ||
510         isa<UnresolvedUsingValueDecl>(D);
511}
512
513/// Removes using shadow declarations from the lookup results.
514static void RemoveUsingDecls(LookupResult &R) {
515  LookupResult::Filter F = R.makeFilter();
516  while (F.hasNext())
517    if (isUsingDecl(F.next()))
518      F.erase();
519
520  F.done();
521}
522
523static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
524  if (D->isInvalidDecl())
525    return false;
526
527  if (D->isUsed() || D->hasAttr<UnusedAttr>())
528    return false;
529
530  // White-list anything that isn't a local variable.
531  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
532      !D->getDeclContext()->isFunctionOrMethod())
533    return false;
534
535  // Types of valid local variables should be complete, so this should succeed.
536  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
537
538    // White-list anything with an __attribute__((unused)) type.
539    QualType Ty = VD->getType();
540
541    // Only look at the outermost level of typedef.
542    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
543      if (TT->getDecl()->hasAttr<UnusedAttr>())
544        return false;
545    }
546
547    // If we failed to complete the type for some reason, don't
548    // diagnose the variable.
549    if (Ty->isIncompleteType())
550      return false;
551
552    if (const TagType *TT = Ty->getAs<TagType>()) {
553      const TagDecl *Tag = TT->getDecl();
554      if (Tag->hasAttr<UnusedAttr>())
555        return false;
556
557      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
558        if (!RD->hasTrivialConstructor())
559          return false;
560        if (!RD->hasTrivialDestructor())
561          return false;
562      }
563    }
564
565    // TODO: __attribute__((unused)) templates?
566  }
567
568  return true;
569}
570
571void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
572  if (S->decl_empty()) return;
573  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
574         "Scope shouldn't contain decls!");
575
576  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
577       I != E; ++I) {
578    Decl *TmpD = (*I).getAs<Decl>();
579    assert(TmpD && "This decl didn't get pushed??");
580
581    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
582    NamedDecl *D = cast<NamedDecl>(TmpD);
583
584    if (!D->getDeclName()) continue;
585
586    // Diagnose unused variables in this scope.
587    if (ShouldDiagnoseUnusedDecl(D) &&
588        S->getNumErrorsAtStart() == getDiagnostics().getNumErrors()) {
589      if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
590        Diag(D->getLocation(), diag::warn_unused_exception_param)
591          << D->getDeclName();
592      else
593        Diag(D->getLocation(), diag::warn_unused_variable)
594          << D->getDeclName();
595    }
596    // Remove this name from our lexical scope.
597    IdResolver.RemoveDecl(D);
598  }
599}
600
601/// \brief Look for an Objective-C class in the translation unit.
602///
603/// \param Id The name of the Objective-C class we're looking for. If
604/// typo-correction fixes this name, the Id will be updated
605/// to the fixed name.
606///
607/// \param IdLoc The location of the name in the translation unit.
608///
609/// \param TypoCorrection If true, this routine will attempt typo correction
610/// if there is no class with the given name.
611///
612/// \returns The declaration of the named Objective-C class, or NULL if the
613/// class could not be found.
614ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
615                                              SourceLocation IdLoc,
616                                              bool TypoCorrection) {
617  // The third "scope" argument is 0 since we aren't enabling lazy built-in
618  // creation from this context.
619  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
620
621  if (!IDecl && TypoCorrection) {
622    // Perform typo correction at the given location, but only if we
623    // find an Objective-C class name.
624    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
625    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
626        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
627      Diag(IdLoc, diag::err_undef_interface_suggest)
628        << Id << IDecl->getDeclName()
629        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
630      Diag(IDecl->getLocation(), diag::note_previous_decl)
631        << IDecl->getDeclName();
632
633      Id = IDecl->getIdentifier();
634    }
635  }
636
637  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
638}
639
640/// getNonFieldDeclScope - Retrieves the innermost scope, starting
641/// from S, where a non-field would be declared. This routine copes
642/// with the difference between C and C++ scoping rules in structs and
643/// unions. For example, the following code is well-formed in C but
644/// ill-formed in C++:
645/// @code
646/// struct S6 {
647///   enum { BAR } e;
648/// };
649///
650/// void test_S6() {
651///   struct S6 a;
652///   a.e = BAR;
653/// }
654/// @endcode
655/// For the declaration of BAR, this routine will return a different
656/// scope. The scope S will be the scope of the unnamed enumeration
657/// within S6. In C++, this routine will return the scope associated
658/// with S6, because the enumeration's scope is a transparent
659/// context but structures can contain non-field names. In C, this
660/// routine will return the translation unit scope, since the
661/// enumeration's scope is a transparent context and structures cannot
662/// contain non-field names.
663Scope *Sema::getNonFieldDeclScope(Scope *S) {
664  while (((S->getFlags() & Scope::DeclScope) == 0) ||
665         (S->getEntity() &&
666          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
667         (S->isClassScope() && !getLangOptions().CPlusPlus))
668    S = S->getParent();
669  return S;
670}
671
672void Sema::InitBuiltinVaListType() {
673  if (!Context.getBuiltinVaListType().isNull())
674    return;
675
676  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
677  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
678                                       LookupOrdinaryName, ForRedeclaration);
679  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
680  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
681}
682
683/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
684/// file scope.  lazily create a decl for it. ForRedeclaration is true
685/// if we're creating this built-in in anticipation of redeclaring the
686/// built-in.
687NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
688                                     Scope *S, bool ForRedeclaration,
689                                     SourceLocation Loc) {
690  Builtin::ID BID = (Builtin::ID)bid;
691
692  if (Context.BuiltinInfo.hasVAListUse(BID))
693    InitBuiltinVaListType();
694
695  ASTContext::GetBuiltinTypeError Error;
696  QualType R = Context.GetBuiltinType(BID, Error);
697  switch (Error) {
698  case ASTContext::GE_None:
699    // Okay
700    break;
701
702  case ASTContext::GE_Missing_stdio:
703    if (ForRedeclaration)
704      Diag(Loc, diag::err_implicit_decl_requires_stdio)
705        << Context.BuiltinInfo.GetName(BID);
706    return 0;
707
708  case ASTContext::GE_Missing_setjmp:
709    if (ForRedeclaration)
710      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
711        << Context.BuiltinInfo.GetName(BID);
712    return 0;
713  }
714
715  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
716    Diag(Loc, diag::ext_implicit_lib_function_decl)
717      << Context.BuiltinInfo.GetName(BID)
718      << R;
719    if (Context.BuiltinInfo.getHeaderName(BID) &&
720        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
721          != Diagnostic::Ignored)
722      Diag(Loc, diag::note_please_include_header)
723        << Context.BuiltinInfo.getHeaderName(BID)
724        << Context.BuiltinInfo.GetName(BID);
725  }
726
727  FunctionDecl *New = FunctionDecl::Create(Context,
728                                           Context.getTranslationUnitDecl(),
729                                           Loc, II, R, /*TInfo=*/0,
730                                           FunctionDecl::Extern,
731                                           FunctionDecl::None, false,
732                                           /*hasPrototype=*/true);
733  New->setImplicit();
734
735  // Create Decl objects for each parameter, adding them to the
736  // FunctionDecl.
737  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
738    llvm::SmallVector<ParmVarDecl*, 16> Params;
739    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
740      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
741                                           FT->getArgType(i), /*TInfo=*/0,
742                                           VarDecl::None, VarDecl::None, 0));
743    New->setParams(Params.data(), Params.size());
744  }
745
746  AddKnownFunctionAttributes(New);
747
748  // TUScope is the translation-unit scope to insert this function into.
749  // FIXME: This is hideous. We need to teach PushOnScopeChains to
750  // relate Scopes to DeclContexts, and probably eliminate CurContext
751  // entirely, but we're not there yet.
752  DeclContext *SavedContext = CurContext;
753  CurContext = Context.getTranslationUnitDecl();
754  PushOnScopeChains(New, TUScope);
755  CurContext = SavedContext;
756  return New;
757}
758
759/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
760/// same name and scope as a previous declaration 'Old'.  Figure out
761/// how to resolve this situation, merging decls or emitting
762/// diagnostics as appropriate. If there was an error, set New to be invalid.
763///
764void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
765  // If the new decl is known invalid already, don't bother doing any
766  // merging checks.
767  if (New->isInvalidDecl()) return;
768
769  // Allow multiple definitions for ObjC built-in typedefs.
770  // FIXME: Verify the underlying types are equivalent!
771  if (getLangOptions().ObjC1) {
772    const IdentifierInfo *TypeID = New->getIdentifier();
773    switch (TypeID->getLength()) {
774    default: break;
775    case 2:
776      if (!TypeID->isStr("id"))
777        break;
778      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
779      // Install the built-in type for 'id', ignoring the current definition.
780      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
781      return;
782    case 5:
783      if (!TypeID->isStr("Class"))
784        break;
785      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
786      // Install the built-in type for 'Class', ignoring the current definition.
787      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
788      return;
789    case 3:
790      if (!TypeID->isStr("SEL"))
791        break;
792      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
793      // Install the built-in type for 'SEL', ignoring the current definition.
794      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
795      return;
796    case 8:
797      if (!TypeID->isStr("Protocol"))
798        break;
799      Context.setObjCProtoType(New->getUnderlyingType());
800      return;
801    }
802    // Fall through - the typedef name was not a builtin type.
803  }
804
805  // Verify the old decl was also a type.
806  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
807  if (!Old) {
808    Diag(New->getLocation(), diag::err_redefinition_different_kind)
809      << New->getDeclName();
810
811    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
812    if (OldD->getLocation().isValid())
813      Diag(OldD->getLocation(), diag::note_previous_definition);
814
815    return New->setInvalidDecl();
816  }
817
818  // If the old declaration is invalid, just give up here.
819  if (Old->isInvalidDecl())
820    return New->setInvalidDecl();
821
822  // Determine the "old" type we'll use for checking and diagnostics.
823  QualType OldType;
824  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
825    OldType = OldTypedef->getUnderlyingType();
826  else
827    OldType = Context.getTypeDeclType(Old);
828
829  // If the typedef types are not identical, reject them in all languages and
830  // with any extensions enabled.
831
832  if (OldType != New->getUnderlyingType() &&
833      Context.getCanonicalType(OldType) !=
834      Context.getCanonicalType(New->getUnderlyingType())) {
835    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
836      << New->getUnderlyingType() << OldType;
837    if (Old->getLocation().isValid())
838      Diag(Old->getLocation(), diag::note_previous_definition);
839    return New->setInvalidDecl();
840  }
841
842  // The types match.  Link up the redeclaration chain if the old
843  // declaration was a typedef.
844  // FIXME: this is a potential source of wierdness if the type
845  // spellings don't match exactly.
846  if (isa<TypedefDecl>(Old))
847    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
848
849  if (getLangOptions().Microsoft)
850    return;
851
852  if (getLangOptions().CPlusPlus) {
853    // C++ [dcl.typedef]p2:
854    //   In a given non-class scope, a typedef specifier can be used to
855    //   redefine the name of any type declared in that scope to refer
856    //   to the type to which it already refers.
857    if (!isa<CXXRecordDecl>(CurContext))
858      return;
859
860    // C++0x [dcl.typedef]p4:
861    //   In a given class scope, a typedef specifier can be used to redefine
862    //   any class-name declared in that scope that is not also a typedef-name
863    //   to refer to the type to which it already refers.
864    //
865    // This wording came in via DR424, which was a correction to the
866    // wording in DR56, which accidentally banned code like:
867    //
868    //   struct S {
869    //     typedef struct A { } A;
870    //   };
871    //
872    // in the C++03 standard. We implement the C++0x semantics, which
873    // allow the above but disallow
874    //
875    //   struct S {
876    //     typedef int I;
877    //     typedef int I;
878    //   };
879    //
880    // since that was the intent of DR56.
881    if (!isa<TypedefDecl >(Old))
882      return;
883
884    Diag(New->getLocation(), diag::err_redefinition)
885      << New->getDeclName();
886    Diag(Old->getLocation(), diag::note_previous_definition);
887    return New->setInvalidDecl();
888  }
889
890  // If we have a redefinition of a typedef in C, emit a warning.  This warning
891  // is normally mapped to an error, but can be controlled with
892  // -Wtypedef-redefinition.  If either the original or the redefinition is
893  // in a system header, don't emit this for compatibility with GCC.
894  if (getDiagnostics().getSuppressSystemWarnings() &&
895      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
896       Context.getSourceManager().isInSystemHeader(New->getLocation())))
897    return;
898
899  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
900    << New->getDeclName();
901  Diag(Old->getLocation(), diag::note_previous_definition);
902  return;
903}
904
905/// DeclhasAttr - returns true if decl Declaration already has the target
906/// attribute.
907static bool
908DeclHasAttr(const Decl *decl, const Attr *target) {
909  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
910    if (attr->getKind() == target->getKind())
911      return true;
912
913  return false;
914}
915
916/// MergeAttributes - append attributes from the Old decl to the New one.
917static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
918  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
919    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
920      Attr *NewAttr = attr->clone(C);
921      NewAttr->setInherited(true);
922      New->addAttr(NewAttr);
923    }
924  }
925}
926
927/// Used in MergeFunctionDecl to keep track of function parameters in
928/// C.
929struct GNUCompatibleParamWarning {
930  ParmVarDecl *OldParm;
931  ParmVarDecl *NewParm;
932  QualType PromotedType;
933};
934
935
936/// getSpecialMember - get the special member enum for a method.
937Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
938  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
939    if (Ctor->isCopyConstructor())
940      return Sema::CXXCopyConstructor;
941
942    return Sema::CXXConstructor;
943  }
944
945  if (isa<CXXDestructorDecl>(MD))
946    return Sema::CXXDestructor;
947
948  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
949  return Sema::CXXCopyAssignment;
950}
951
952/// canREdefineFunction - checks if a function can be redefined. Currently,
953/// only extern inline functions can be redefined, and even then only in
954/// GNU89 mode.
955static bool canRedefineFunction(const FunctionDecl *FD,
956                                const LangOptions& LangOpts) {
957  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
958          FD->isInlineSpecified() &&
959          FD->getStorageClass() == FunctionDecl::Extern);
960}
961
962/// MergeFunctionDecl - We just parsed a function 'New' from
963/// declarator D which has the same name and scope as a previous
964/// declaration 'Old'.  Figure out how to resolve this situation,
965/// merging decls or emitting diagnostics as appropriate.
966///
967/// In C++, New and Old must be declarations that are not
968/// overloaded. Use IsOverload to determine whether New and Old are
969/// overloaded, and to select the Old declaration that New should be
970/// merged with.
971///
972/// Returns true if there was an error, false otherwise.
973bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
974  // Verify the old decl was also a function.
975  FunctionDecl *Old = 0;
976  if (FunctionTemplateDecl *OldFunctionTemplate
977        = dyn_cast<FunctionTemplateDecl>(OldD))
978    Old = OldFunctionTemplate->getTemplatedDecl();
979  else
980    Old = dyn_cast<FunctionDecl>(OldD);
981  if (!Old) {
982    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
983      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
984      Diag(Shadow->getTargetDecl()->getLocation(),
985           diag::note_using_decl_target);
986      Diag(Shadow->getUsingDecl()->getLocation(),
987           diag::note_using_decl) << 0;
988      return true;
989    }
990
991    Diag(New->getLocation(), diag::err_redefinition_different_kind)
992      << New->getDeclName();
993    Diag(OldD->getLocation(), diag::note_previous_definition);
994    return true;
995  }
996
997  // Determine whether the previous declaration was a definition,
998  // implicit declaration, or a declaration.
999  diag::kind PrevDiag;
1000  if (Old->isThisDeclarationADefinition())
1001    PrevDiag = diag::note_previous_definition;
1002  else if (Old->isImplicit())
1003    PrevDiag = diag::note_previous_implicit_declaration;
1004  else
1005    PrevDiag = diag::note_previous_declaration;
1006
1007  QualType OldQType = Context.getCanonicalType(Old->getType());
1008  QualType NewQType = Context.getCanonicalType(New->getType());
1009
1010  // Don't complain about this if we're in GNU89 mode and the old function
1011  // is an extern inline function.
1012  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1013      New->getStorageClass() == FunctionDecl::Static &&
1014      Old->getStorageClass() != FunctionDecl::Static &&
1015      !canRedefineFunction(Old, getLangOptions())) {
1016    Diag(New->getLocation(), diag::err_static_non_static)
1017      << New;
1018    Diag(Old->getLocation(), PrevDiag);
1019    return true;
1020  }
1021
1022  // If a function is first declared with a calling convention, but is
1023  // later declared or defined without one, the second decl assumes the
1024  // calling convention of the first.
1025  //
1026  // For the new decl, we have to look at the NON-canonical type to tell the
1027  // difference between a function that really doesn't have a calling
1028  // convention and one that is declared cdecl. That's because in
1029  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1030  // because it is the default calling convention.
1031  //
1032  // Note also that we DO NOT return at this point, because we still have
1033  // other tests to run.
1034  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1035  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1036  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1037  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1038  if (OldTypeInfo.getCC() != CC_Default &&
1039      NewTypeInfo.getCC() == CC_Default) {
1040    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1041    New->setType(NewQType);
1042    NewQType = Context.getCanonicalType(NewQType);
1043  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1044                                     NewTypeInfo.getCC())) {
1045    // Calling conventions really aren't compatible, so complain.
1046    Diag(New->getLocation(), diag::err_cconv_change)
1047      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1048      << (OldTypeInfo.getCC() == CC_Default)
1049      << (OldTypeInfo.getCC() == CC_Default ? "" :
1050          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1051    Diag(Old->getLocation(), diag::note_previous_declaration);
1052    return true;
1053  }
1054
1055  // FIXME: diagnose the other way around?
1056  if (OldType->getNoReturnAttr() &&
1057      !NewType->getNoReturnAttr()) {
1058    NewQType = Context.getNoReturnType(NewQType);
1059    New->setType(NewQType);
1060    assert(NewQType.isCanonical());
1061  }
1062
1063  if (getLangOptions().CPlusPlus) {
1064    // (C++98 13.1p2):
1065    //   Certain function declarations cannot be overloaded:
1066    //     -- Function declarations that differ only in the return type
1067    //        cannot be overloaded.
1068    QualType OldReturnType
1069      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1070    QualType NewReturnType
1071      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1072    if (OldReturnType != NewReturnType) {
1073      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1074      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1075      return true;
1076    }
1077
1078    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1079    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1080    if (OldMethod && NewMethod) {
1081      // Preserve triviality.
1082      NewMethod->setTrivial(OldMethod->isTrivial());
1083
1084      bool isFriend = NewMethod->getFriendObjectKind();
1085
1086      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1087        //    -- Member function declarations with the same name and the
1088        //       same parameter types cannot be overloaded if any of them
1089        //       is a static member function declaration.
1090        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1091          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1092          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1093          return true;
1094        }
1095
1096        // C++ [class.mem]p1:
1097        //   [...] A member shall not be declared twice in the
1098        //   member-specification, except that a nested class or member
1099        //   class template can be declared and then later defined.
1100        unsigned NewDiag;
1101        if (isa<CXXConstructorDecl>(OldMethod))
1102          NewDiag = diag::err_constructor_redeclared;
1103        else if (isa<CXXDestructorDecl>(NewMethod))
1104          NewDiag = diag::err_destructor_redeclared;
1105        else if (isa<CXXConversionDecl>(NewMethod))
1106          NewDiag = diag::err_conv_function_redeclared;
1107        else
1108          NewDiag = diag::err_member_redeclared;
1109
1110        Diag(New->getLocation(), NewDiag);
1111        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1112
1113      // Complain if this is an explicit declaration of a special
1114      // member that was initially declared implicitly.
1115      //
1116      // As an exception, it's okay to befriend such methods in order
1117      // to permit the implicit constructor/destructor/operator calls.
1118      } else if (OldMethod->isImplicit()) {
1119        if (isFriend) {
1120          NewMethod->setImplicit();
1121        } else {
1122          Diag(NewMethod->getLocation(),
1123               diag::err_definition_of_implicitly_declared_member)
1124            << New << getSpecialMember(OldMethod);
1125          return true;
1126        }
1127      }
1128    }
1129
1130    // (C++98 8.3.5p3):
1131    //   All declarations for a function shall agree exactly in both the
1132    //   return type and the parameter-type-list.
1133    // attributes should be ignored when comparing.
1134    if (Context.getNoReturnType(OldQType, false) ==
1135        Context.getNoReturnType(NewQType, false))
1136      return MergeCompatibleFunctionDecls(New, Old);
1137
1138    // Fall through for conflicting redeclarations and redefinitions.
1139  }
1140
1141  // C: Function types need to be compatible, not identical. This handles
1142  // duplicate function decls like "void f(int); void f(enum X);" properly.
1143  if (!getLangOptions().CPlusPlus &&
1144      Context.typesAreCompatible(OldQType, NewQType)) {
1145    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1146    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1147    const FunctionProtoType *OldProto = 0;
1148    if (isa<FunctionNoProtoType>(NewFuncType) &&
1149        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1150      // The old declaration provided a function prototype, but the
1151      // new declaration does not. Merge in the prototype.
1152      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1153      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1154                                                 OldProto->arg_type_end());
1155      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1156                                         ParamTypes.data(), ParamTypes.size(),
1157                                         OldProto->isVariadic(),
1158                                         OldProto->getTypeQuals(),
1159                                         false, false, 0, 0,
1160                                         OldProto->getExtInfo());
1161      New->setType(NewQType);
1162      New->setHasInheritedPrototype();
1163
1164      // Synthesize a parameter for each argument type.
1165      llvm::SmallVector<ParmVarDecl*, 16> Params;
1166      for (FunctionProtoType::arg_type_iterator
1167             ParamType = OldProto->arg_type_begin(),
1168             ParamEnd = OldProto->arg_type_end();
1169           ParamType != ParamEnd; ++ParamType) {
1170        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1171                                                 SourceLocation(), 0,
1172                                                 *ParamType, /*TInfo=*/0,
1173                                                 VarDecl::None, VarDecl::None,
1174                                                 0);
1175        Param->setImplicit();
1176        Params.push_back(Param);
1177      }
1178
1179      New->setParams(Params.data(), Params.size());
1180    }
1181
1182    return MergeCompatibleFunctionDecls(New, Old);
1183  }
1184
1185  // GNU C permits a K&R definition to follow a prototype declaration
1186  // if the declared types of the parameters in the K&R definition
1187  // match the types in the prototype declaration, even when the
1188  // promoted types of the parameters from the K&R definition differ
1189  // from the types in the prototype. GCC then keeps the types from
1190  // the prototype.
1191  //
1192  // If a variadic prototype is followed by a non-variadic K&R definition,
1193  // the K&R definition becomes variadic.  This is sort of an edge case, but
1194  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1195  // C99 6.9.1p8.
1196  if (!getLangOptions().CPlusPlus &&
1197      Old->hasPrototype() && !New->hasPrototype() &&
1198      New->getType()->getAs<FunctionProtoType>() &&
1199      Old->getNumParams() == New->getNumParams()) {
1200    llvm::SmallVector<QualType, 16> ArgTypes;
1201    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1202    const FunctionProtoType *OldProto
1203      = Old->getType()->getAs<FunctionProtoType>();
1204    const FunctionProtoType *NewProto
1205      = New->getType()->getAs<FunctionProtoType>();
1206
1207    // Determine whether this is the GNU C extension.
1208    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1209                                               NewProto->getResultType());
1210    bool LooseCompatible = !MergedReturn.isNull();
1211    for (unsigned Idx = 0, End = Old->getNumParams();
1212         LooseCompatible && Idx != End; ++Idx) {
1213      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1214      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1215      if (Context.typesAreCompatible(OldParm->getType(),
1216                                     NewProto->getArgType(Idx))) {
1217        ArgTypes.push_back(NewParm->getType());
1218      } else if (Context.typesAreCompatible(OldParm->getType(),
1219                                            NewParm->getType())) {
1220        GNUCompatibleParamWarning Warn
1221          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1222        Warnings.push_back(Warn);
1223        ArgTypes.push_back(NewParm->getType());
1224      } else
1225        LooseCompatible = false;
1226    }
1227
1228    if (LooseCompatible) {
1229      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1230        Diag(Warnings[Warn].NewParm->getLocation(),
1231             diag::ext_param_promoted_not_compatible_with_prototype)
1232          << Warnings[Warn].PromotedType
1233          << Warnings[Warn].OldParm->getType();
1234        Diag(Warnings[Warn].OldParm->getLocation(),
1235             diag::note_previous_declaration);
1236      }
1237
1238      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1239                                           ArgTypes.size(),
1240                                           OldProto->isVariadic(), 0,
1241                                           false, false, 0, 0,
1242                                           OldProto->getExtInfo()));
1243      return MergeCompatibleFunctionDecls(New, Old);
1244    }
1245
1246    // Fall through to diagnose conflicting types.
1247  }
1248
1249  // A function that has already been declared has been redeclared or defined
1250  // with a different type- show appropriate diagnostic
1251  if (unsigned BuiltinID = Old->getBuiltinID()) {
1252    // The user has declared a builtin function with an incompatible
1253    // signature.
1254    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1255      // The function the user is redeclaring is a library-defined
1256      // function like 'malloc' or 'printf'. Warn about the
1257      // redeclaration, then pretend that we don't know about this
1258      // library built-in.
1259      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1260      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1261        << Old << Old->getType();
1262      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1263      Old->setInvalidDecl();
1264      return false;
1265    }
1266
1267    PrevDiag = diag::note_previous_builtin_declaration;
1268  }
1269
1270  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1271  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1272  return true;
1273}
1274
1275/// \brief Completes the merge of two function declarations that are
1276/// known to be compatible.
1277///
1278/// This routine handles the merging of attributes and other
1279/// properties of function declarations form the old declaration to
1280/// the new declaration, once we know that New is in fact a
1281/// redeclaration of Old.
1282///
1283/// \returns false
1284bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1285  // Merge the attributes
1286  MergeAttributes(New, Old, Context);
1287
1288  // Merge the storage class.
1289  if (Old->getStorageClass() != FunctionDecl::Extern &&
1290      Old->getStorageClass() != FunctionDecl::None)
1291    New->setStorageClass(Old->getStorageClass());
1292
1293  // Merge "pure" flag.
1294  if (Old->isPure())
1295    New->setPure();
1296
1297  // Merge the "deleted" flag.
1298  if (Old->isDeleted())
1299    New->setDeleted();
1300
1301  if (getLangOptions().CPlusPlus)
1302    return MergeCXXFunctionDecl(New, Old);
1303
1304  return false;
1305}
1306
1307/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1308/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1309/// situation, merging decls or emitting diagnostics as appropriate.
1310///
1311/// Tentative definition rules (C99 6.9.2p2) are checked by
1312/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1313/// definitions here, since the initializer hasn't been attached.
1314///
1315void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1316  // If the new decl is already invalid, don't do any other checking.
1317  if (New->isInvalidDecl())
1318    return;
1319
1320  // Verify the old decl was also a variable.
1321  VarDecl *Old = 0;
1322  if (!Previous.isSingleResult() ||
1323      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1324    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1325      << New->getDeclName();
1326    Diag(Previous.getRepresentativeDecl()->getLocation(),
1327         diag::note_previous_definition);
1328    return New->setInvalidDecl();
1329  }
1330
1331  MergeAttributes(New, Old, Context);
1332
1333  // Merge the types
1334  QualType MergedT;
1335  if (getLangOptions().CPlusPlus) {
1336    if (Context.hasSameType(New->getType(), Old->getType()))
1337      MergedT = New->getType();
1338    // C++ [basic.link]p10:
1339    //   [...] the types specified by all declarations referring to a given
1340    //   object or function shall be identical, except that declarations for an
1341    //   array object can specify array types that differ by the presence or
1342    //   absence of a major array bound (8.3.4).
1343    else if (Old->getType()->isIncompleteArrayType() &&
1344             New->getType()->isArrayType()) {
1345      CanQual<ArrayType> OldArray
1346        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1347      CanQual<ArrayType> NewArray
1348        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1349      if (OldArray->getElementType() == NewArray->getElementType())
1350        MergedT = New->getType();
1351    } else if (Old->getType()->isArrayType() &&
1352             New->getType()->isIncompleteArrayType()) {
1353      CanQual<ArrayType> OldArray
1354        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1355      CanQual<ArrayType> NewArray
1356        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1357      if (OldArray->getElementType() == NewArray->getElementType())
1358        MergedT = Old->getType();
1359    }
1360  } else {
1361    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1362  }
1363  if (MergedT.isNull()) {
1364    Diag(New->getLocation(), diag::err_redefinition_different_type)
1365      << New->getDeclName();
1366    Diag(Old->getLocation(), diag::note_previous_definition);
1367    return New->setInvalidDecl();
1368  }
1369  New->setType(MergedT);
1370
1371  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1372  if (New->getStorageClass() == VarDecl::Static &&
1373      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1374    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1375    Diag(Old->getLocation(), diag::note_previous_definition);
1376    return New->setInvalidDecl();
1377  }
1378  // C99 6.2.2p4:
1379  //   For an identifier declared with the storage-class specifier
1380  //   extern in a scope in which a prior declaration of that
1381  //   identifier is visible,23) if the prior declaration specifies
1382  //   internal or external linkage, the linkage of the identifier at
1383  //   the later declaration is the same as the linkage specified at
1384  //   the prior declaration. If no prior declaration is visible, or
1385  //   if the prior declaration specifies no linkage, then the
1386  //   identifier has external linkage.
1387  if (New->hasExternalStorage() && Old->hasLinkage())
1388    /* Okay */;
1389  else if (New->getStorageClass() != VarDecl::Static &&
1390           Old->getStorageClass() == VarDecl::Static) {
1391    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1392    Diag(Old->getLocation(), diag::note_previous_definition);
1393    return New->setInvalidDecl();
1394  }
1395
1396  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1397
1398  // FIXME: The test for external storage here seems wrong? We still
1399  // need to check for mismatches.
1400  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1401      // Don't complain about out-of-line definitions of static members.
1402      !(Old->getLexicalDeclContext()->isRecord() &&
1403        !New->getLexicalDeclContext()->isRecord())) {
1404    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1405    Diag(Old->getLocation(), diag::note_previous_definition);
1406    return New->setInvalidDecl();
1407  }
1408
1409  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1410    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1411    Diag(Old->getLocation(), diag::note_previous_definition);
1412  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1413    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1414    Diag(Old->getLocation(), diag::note_previous_definition);
1415  }
1416
1417  // C++ doesn't have tentative definitions, so go right ahead and check here.
1418  const VarDecl *Def;
1419  if (getLangOptions().CPlusPlus &&
1420      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1421      (Def = Old->getDefinition())) {
1422    Diag(New->getLocation(), diag::err_redefinition)
1423      << New->getDeclName();
1424    Diag(Def->getLocation(), diag::note_previous_definition);
1425    New->setInvalidDecl();
1426    return;
1427  }
1428
1429  // Keep a chain of previous declarations.
1430  New->setPreviousDeclaration(Old);
1431
1432  // Inherit access appropriately.
1433  New->setAccess(Old->getAccess());
1434}
1435
1436/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1437/// no declarator (e.g. "struct foo;") is parsed.
1438Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1439  // FIXME: Error on auto/register at file scope
1440  // FIXME: Error on inline/virtual/explicit
1441  // FIXME: Warn on useless __thread
1442  // FIXME: Warn on useless const/volatile
1443  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1444  // FIXME: Warn on useless attributes
1445  Decl *TagD = 0;
1446  TagDecl *Tag = 0;
1447  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1448      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1449      DS.getTypeSpecType() == DeclSpec::TST_union ||
1450      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1451    TagD = static_cast<Decl *>(DS.getTypeRep());
1452
1453    if (!TagD) // We probably had an error
1454      return DeclPtrTy();
1455
1456    // Note that the above type specs guarantee that the
1457    // type rep is a Decl, whereas in many of the others
1458    // it's a Type.
1459    Tag = dyn_cast<TagDecl>(TagD);
1460  }
1461
1462  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1463    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1464    // or incomplete types shall not be restrict-qualified."
1465    if (TypeQuals & DeclSpec::TQ_restrict)
1466      Diag(DS.getRestrictSpecLoc(),
1467           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1468           << DS.getSourceRange();
1469  }
1470
1471  if (DS.isFriendSpecified()) {
1472    // If we're dealing with a class template decl, assume that the
1473    // template routines are handling it.
1474    if (TagD && isa<ClassTemplateDecl>(TagD))
1475      return DeclPtrTy();
1476    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1477  }
1478
1479  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1480    // If there are attributes in the DeclSpec, apply them to the record.
1481    if (const AttributeList *AL = DS.getAttributes())
1482      ProcessDeclAttributeList(S, Record, AL);
1483
1484    if (!Record->getDeclName() && Record->isDefinition() &&
1485        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1486      if (getLangOptions().CPlusPlus ||
1487          Record->getDeclContext()->isRecord())
1488        return BuildAnonymousStructOrUnion(S, DS, Record);
1489
1490      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1491        << DS.getSourceRange();
1492    }
1493
1494    // Microsoft allows unnamed struct/union fields. Don't complain
1495    // about them.
1496    // FIXME: Should we support Microsoft's extensions in this area?
1497    if (Record->getDeclName() && getLangOptions().Microsoft)
1498      return DeclPtrTy::make(Tag);
1499  }
1500
1501  if (!DS.isMissingDeclaratorOk() &&
1502      DS.getTypeSpecType() != DeclSpec::TST_error) {
1503    // Warn about typedefs of enums without names, since this is an
1504    // extension in both Microsoft an GNU.
1505    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1506        Tag && isa<EnumDecl>(Tag)) {
1507      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1508        << DS.getSourceRange();
1509      return DeclPtrTy::make(Tag);
1510    }
1511
1512    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1513      << DS.getSourceRange();
1514  }
1515
1516  return DeclPtrTy::make(Tag);
1517}
1518
1519/// We are trying to inject an anonymous member into the given scope;
1520/// check if there's an existing declaration that can't be overloaded.
1521///
1522/// \return true if this is a forbidden redeclaration
1523static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1524                                         Scope *S,
1525                                         DeclContext *Owner,
1526                                         DeclarationName Name,
1527                                         SourceLocation NameLoc,
1528                                         unsigned diagnostic) {
1529  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1530                 Sema::ForRedeclaration);
1531  if (!SemaRef.LookupName(R, S)) return false;
1532
1533  if (R.getAsSingle<TagDecl>())
1534    return false;
1535
1536  // Pick a representative declaration.
1537  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1538  if (PrevDecl && Owner->isRecord()) {
1539    RecordDecl *Record = cast<RecordDecl>(Owner);
1540    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1541      return false;
1542  }
1543
1544  SemaRef.Diag(NameLoc, diagnostic) << Name;
1545  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1546
1547  return true;
1548}
1549
1550/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1551/// anonymous struct or union AnonRecord into the owning context Owner
1552/// and scope S. This routine will be invoked just after we realize
1553/// that an unnamed union or struct is actually an anonymous union or
1554/// struct, e.g.,
1555///
1556/// @code
1557/// union {
1558///   int i;
1559///   float f;
1560/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1561///    // f into the surrounding scope.x
1562/// @endcode
1563///
1564/// This routine is recursive, injecting the names of nested anonymous
1565/// structs/unions into the owning context and scope as well.
1566bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1567                                               RecordDecl *AnonRecord) {
1568  unsigned diagKind
1569    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1570                            : diag::err_anonymous_struct_member_redecl;
1571
1572  bool Invalid = false;
1573  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1574                               FEnd = AnonRecord->field_end();
1575       F != FEnd; ++F) {
1576    if ((*F)->getDeclName()) {
1577      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1578                                       (*F)->getLocation(), diagKind)) {
1579        // C++ [class.union]p2:
1580        //   The names of the members of an anonymous union shall be
1581        //   distinct from the names of any other entity in the
1582        //   scope in which the anonymous union is declared.
1583        Invalid = true;
1584      } else {
1585        // C++ [class.union]p2:
1586        //   For the purpose of name lookup, after the anonymous union
1587        //   definition, the members of the anonymous union are
1588        //   considered to have been defined in the scope in which the
1589        //   anonymous union is declared.
1590        Owner->makeDeclVisibleInContext(*F);
1591        S->AddDecl(DeclPtrTy::make(*F));
1592        IdResolver.AddDecl(*F);
1593      }
1594    } else if (const RecordType *InnerRecordType
1595                 = (*F)->getType()->getAs<RecordType>()) {
1596      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1597      if (InnerRecord->isAnonymousStructOrUnion())
1598        Invalid = Invalid ||
1599          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1600    }
1601  }
1602
1603  return Invalid;
1604}
1605
1606/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1607/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1608/// illegal input values are mapped to VarDecl::None.
1609/// If the input declaration context is a linkage specification
1610/// with no braces, then Extern is mapped to None.
1611static VarDecl::StorageClass
1612StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1613                                      DeclContext *DC) {
1614  switch (StorageClassSpec) {
1615  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1616  case DeclSpec::SCS_extern:
1617    // If the current context is a C++ linkage specification
1618    // having no braces, then the keyword "extern" is properly part
1619    // of the linkage specification itself, rather than being
1620    // the written storage class specifier.
1621    return (DC && isa<LinkageSpecDecl>(DC) &&
1622            !cast<LinkageSpecDecl>(DC)->hasBraces())
1623      ? VarDecl::None : VarDecl::Extern;
1624  case DeclSpec::SCS_static:         return VarDecl::Static;
1625  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1626  case DeclSpec::SCS_register:       return VarDecl::Register;
1627  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1628    // Illegal SCSs map to None: error reporting is up to the caller.
1629  case DeclSpec::SCS_mutable:        // Fall through.
1630  case DeclSpec::SCS_typedef:        return VarDecl::None;
1631  }
1632  llvm_unreachable("unknown storage class specifier");
1633}
1634
1635/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1636/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1637/// illegal input values are mapped to FunctionDecl::None.
1638/// If the input declaration context is a linkage specification
1639/// with no braces, then Extern is mapped to None.
1640static FunctionDecl::StorageClass
1641StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1642                                           DeclContext *DC) {
1643  switch (StorageClassSpec) {
1644  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1645  case DeclSpec::SCS_extern:
1646    // If the current context is a C++ linkage specification
1647    // having no braces, then the keyword "extern" is properly part
1648    // of the linkage specification itself, rather than being
1649    // the written storage class specifier.
1650    return (DC && isa<LinkageSpecDecl>(DC) &&
1651            !cast<LinkageSpecDecl>(DC)->hasBraces())
1652      ? FunctionDecl::None : FunctionDecl::Extern;
1653  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1654  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1655    // Illegal SCSs map to None: error reporting is up to the caller.
1656  case DeclSpec::SCS_auto:           // Fall through.
1657  case DeclSpec::SCS_mutable:        // Fall through.
1658  case DeclSpec::SCS_register:       // Fall through.
1659  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1660  }
1661  llvm_unreachable("unknown storage class specifier");
1662}
1663
1664/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1665/// anonymous structure or union. Anonymous unions are a C++ feature
1666/// (C++ [class.union]) and a GNU C extension; anonymous structures
1667/// are a GNU C and GNU C++ extension.
1668Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1669                                                  RecordDecl *Record) {
1670  DeclContext *Owner = Record->getDeclContext();
1671
1672  // Diagnose whether this anonymous struct/union is an extension.
1673  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1674    Diag(Record->getLocation(), diag::ext_anonymous_union);
1675  else if (!Record->isUnion())
1676    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1677
1678  // C and C++ require different kinds of checks for anonymous
1679  // structs/unions.
1680  bool Invalid = false;
1681  if (getLangOptions().CPlusPlus) {
1682    const char* PrevSpec = 0;
1683    unsigned DiagID;
1684    // C++ [class.union]p3:
1685    //   Anonymous unions declared in a named namespace or in the
1686    //   global namespace shall be declared static.
1687    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1688        (isa<TranslationUnitDecl>(Owner) ||
1689         (isa<NamespaceDecl>(Owner) &&
1690          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1691      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1692      Invalid = true;
1693
1694      // Recover by adding 'static'.
1695      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1696                             PrevSpec, DiagID);
1697    }
1698    // C++ [class.union]p3:
1699    //   A storage class is not allowed in a declaration of an
1700    //   anonymous union in a class scope.
1701    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1702             isa<RecordDecl>(Owner)) {
1703      Diag(DS.getStorageClassSpecLoc(),
1704           diag::err_anonymous_union_with_storage_spec);
1705      Invalid = true;
1706
1707      // Recover by removing the storage specifier.
1708      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1709                             PrevSpec, DiagID);
1710    }
1711
1712    // C++ [class.union]p2:
1713    //   The member-specification of an anonymous union shall only
1714    //   define non-static data members. [Note: nested types and
1715    //   functions cannot be declared within an anonymous union. ]
1716    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1717                                 MemEnd = Record->decls_end();
1718         Mem != MemEnd; ++Mem) {
1719      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1720        // C++ [class.union]p3:
1721        //   An anonymous union shall not have private or protected
1722        //   members (clause 11).
1723        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1724          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1725            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1726          Invalid = true;
1727        }
1728      } else if ((*Mem)->isImplicit()) {
1729        // Any implicit members are fine.
1730      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1731        // This is a type that showed up in an
1732        // elaborated-type-specifier inside the anonymous struct or
1733        // union, but which actually declares a type outside of the
1734        // anonymous struct or union. It's okay.
1735      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1736        if (!MemRecord->isAnonymousStructOrUnion() &&
1737            MemRecord->getDeclName()) {
1738          // This is a nested type declaration.
1739          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1740            << (int)Record->isUnion();
1741          Invalid = true;
1742        }
1743      } else {
1744        // We have something that isn't a non-static data
1745        // member. Complain about it.
1746        unsigned DK = diag::err_anonymous_record_bad_member;
1747        if (isa<TypeDecl>(*Mem))
1748          DK = diag::err_anonymous_record_with_type;
1749        else if (isa<FunctionDecl>(*Mem))
1750          DK = diag::err_anonymous_record_with_function;
1751        else if (isa<VarDecl>(*Mem))
1752          DK = diag::err_anonymous_record_with_static;
1753        Diag((*Mem)->getLocation(), DK)
1754            << (int)Record->isUnion();
1755          Invalid = true;
1756      }
1757    }
1758  }
1759
1760  if (!Record->isUnion() && !Owner->isRecord()) {
1761    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1762      << (int)getLangOptions().CPlusPlus;
1763    Invalid = true;
1764  }
1765
1766  // Mock up a declarator.
1767  Declarator Dc(DS, Declarator::TypeNameContext);
1768  TypeSourceInfo *TInfo = 0;
1769  GetTypeForDeclarator(Dc, S, &TInfo);
1770  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1771
1772  // Create a declaration for this anonymous struct/union.
1773  NamedDecl *Anon = 0;
1774  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1775    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1776                             /*IdentifierInfo=*/0,
1777                             Context.getTypeDeclType(Record),
1778                             TInfo,
1779                             /*BitWidth=*/0, /*Mutable=*/false);
1780    Anon->setAccess(AS_public);
1781    if (getLangOptions().CPlusPlus) {
1782      FieldCollector->Add(cast<FieldDecl>(Anon));
1783      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1784        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1785    }
1786  } else {
1787    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1788    assert(SCSpec != DeclSpec::SCS_typedef &&
1789           "Parser allowed 'typedef' as storage class VarDecl.");
1790    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1791    if (SCSpec == DeclSpec::SCS_mutable) {
1792      // mutable can only appear on non-static class members, so it's always
1793      // an error here
1794      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1795      Invalid = true;
1796      SC = VarDecl::None;
1797    }
1798    SCSpec = DS.getStorageClassSpecAsWritten();
1799    VarDecl::StorageClass SCAsWritten
1800      = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1801
1802    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1803                           /*IdentifierInfo=*/0,
1804                           Context.getTypeDeclType(Record),
1805                           TInfo, SC, SCAsWritten);
1806  }
1807  Anon->setImplicit();
1808
1809  // Add the anonymous struct/union object to the current
1810  // context. We'll be referencing this object when we refer to one of
1811  // its members.
1812  Owner->addDecl(Anon);
1813
1814  // Inject the members of the anonymous struct/union into the owning
1815  // context and into the identifier resolver chain for name lookup
1816  // purposes.
1817  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1818    Invalid = true;
1819
1820  // Mark this as an anonymous struct/union type. Note that we do not
1821  // do this until after we have already checked and injected the
1822  // members of this anonymous struct/union type, because otherwise
1823  // the members could be injected twice: once by DeclContext when it
1824  // builds its lookup table, and once by
1825  // InjectAnonymousStructOrUnionMembers.
1826  Record->setAnonymousStructOrUnion(true);
1827
1828  if (Invalid)
1829    Anon->setInvalidDecl();
1830
1831  return DeclPtrTy::make(Anon);
1832}
1833
1834
1835/// GetNameForDeclarator - Determine the full declaration name for the
1836/// given Declarator.
1837DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1838  return GetNameFromUnqualifiedId(D.getName());
1839}
1840
1841/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1842DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1843  switch (Name.getKind()) {
1844    case UnqualifiedId::IK_Identifier:
1845      return DeclarationName(Name.Identifier);
1846
1847    case UnqualifiedId::IK_OperatorFunctionId:
1848      return Context.DeclarationNames.getCXXOperatorName(
1849                                              Name.OperatorFunctionId.Operator);
1850
1851    case UnqualifiedId::IK_LiteralOperatorId:
1852      return Context.DeclarationNames.getCXXLiteralOperatorName(
1853                                                               Name.Identifier);
1854
1855    case UnqualifiedId::IK_ConversionFunctionId: {
1856      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1857      if (Ty.isNull())
1858        return DeclarationName();
1859
1860      return Context.DeclarationNames.getCXXConversionFunctionName(
1861                                                  Context.getCanonicalType(Ty));
1862    }
1863
1864    case UnqualifiedId::IK_ConstructorName: {
1865      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1866      if (Ty.isNull())
1867        return DeclarationName();
1868
1869      return Context.DeclarationNames.getCXXConstructorName(
1870                                                  Context.getCanonicalType(Ty));
1871    }
1872
1873    case UnqualifiedId::IK_ConstructorTemplateId: {
1874      // In well-formed code, we can only have a constructor
1875      // template-id that refers to the current context, so go there
1876      // to find the actual type being constructed.
1877      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1878      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1879        return DeclarationName();
1880
1881      // Determine the type of the class being constructed.
1882      QualType CurClassType = Context.getTypeDeclType(CurClass);
1883
1884      // FIXME: Check two things: that the template-id names the same type as
1885      // CurClassType, and that the template-id does not occur when the name
1886      // was qualified.
1887
1888      return Context.DeclarationNames.getCXXConstructorName(
1889                                       Context.getCanonicalType(CurClassType));
1890    }
1891
1892    case UnqualifiedId::IK_DestructorName: {
1893      QualType Ty = GetTypeFromParser(Name.DestructorName);
1894      if (Ty.isNull())
1895        return DeclarationName();
1896
1897      return Context.DeclarationNames.getCXXDestructorName(
1898                                                           Context.getCanonicalType(Ty));
1899    }
1900
1901    case UnqualifiedId::IK_TemplateId: {
1902      TemplateName TName
1903        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1904      return Context.getNameForTemplate(TName);
1905    }
1906  }
1907
1908  assert(false && "Unknown name kind");
1909  return DeclarationName();
1910}
1911
1912/// isNearlyMatchingFunction - Determine whether the C++ functions
1913/// Declaration and Definition are "nearly" matching. This heuristic
1914/// is used to improve diagnostics in the case where an out-of-line
1915/// function definition doesn't match any declaration within
1916/// the class or namespace.
1917static bool isNearlyMatchingFunction(ASTContext &Context,
1918                                     FunctionDecl *Declaration,
1919                                     FunctionDecl *Definition) {
1920  if (Declaration->param_size() != Definition->param_size())
1921    return false;
1922  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1923    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1924    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1925
1926    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1927                                        DefParamTy.getNonReferenceType()))
1928      return false;
1929  }
1930
1931  return true;
1932}
1933
1934/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1935/// declarator needs to be rebuilt in the current instantiation.
1936/// Any bits of declarator which appear before the name are valid for
1937/// consideration here.  That's specifically the type in the decl spec
1938/// and the base type in any member-pointer chunks.
1939static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1940                                                    DeclarationName Name) {
1941  // The types we specifically need to rebuild are:
1942  //   - typenames, typeofs, and decltypes
1943  //   - types which will become injected class names
1944  // Of course, we also need to rebuild any type referencing such a
1945  // type.  It's safest to just say "dependent", but we call out a
1946  // few cases here.
1947
1948  DeclSpec &DS = D.getMutableDeclSpec();
1949  switch (DS.getTypeSpecType()) {
1950  case DeclSpec::TST_typename:
1951  case DeclSpec::TST_typeofType:
1952  case DeclSpec::TST_typeofExpr:
1953  case DeclSpec::TST_decltype: {
1954    // Grab the type from the parser.
1955    TypeSourceInfo *TSI = 0;
1956    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
1957    if (T.isNull() || !T->isDependentType()) break;
1958
1959    // Make sure there's a type source info.  This isn't really much
1960    // of a waste; most dependent types should have type source info
1961    // attached already.
1962    if (!TSI)
1963      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
1964
1965    // Rebuild the type in the current instantiation.
1966    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
1967    if (!TSI) return true;
1968
1969    // Store the new type back in the decl spec.
1970    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
1971    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
1972    break;
1973  }
1974
1975  default:
1976    // Nothing to do for these decl specs.
1977    break;
1978  }
1979
1980  // It doesn't matter what order we do this in.
1981  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
1982    DeclaratorChunk &Chunk = D.getTypeObject(I);
1983
1984    // The only type information in the declarator which can come
1985    // before the declaration name is the base type of a member
1986    // pointer.
1987    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
1988      continue;
1989
1990    // Rebuild the scope specifier in-place.
1991    CXXScopeSpec &SS = Chunk.Mem.Scope();
1992    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
1993      return true;
1994  }
1995
1996  return false;
1997}
1998
1999Sema::DeclPtrTy
2000Sema::HandleDeclarator(Scope *S, Declarator &D,
2001                       MultiTemplateParamsArg TemplateParamLists,
2002                       bool IsFunctionDefinition) {
2003  DeclarationName Name = GetNameForDeclarator(D);
2004
2005  // All of these full declarators require an identifier.  If it doesn't have
2006  // one, the ParsedFreeStandingDeclSpec action should be used.
2007  if (!Name) {
2008    if (!D.isInvalidType())  // Reject this if we think it is valid.
2009      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2010           diag::err_declarator_need_ident)
2011        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2012    return DeclPtrTy();
2013  }
2014
2015  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2016  // we find one that is.
2017  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2018         (S->getFlags() & Scope::TemplateParamScope) != 0)
2019    S = S->getParent();
2020
2021  DeclContext *DC = CurContext;
2022  if (D.getCXXScopeSpec().isInvalid())
2023    D.setInvalidType();
2024  else if (D.getCXXScopeSpec().isSet()) {
2025    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2026    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2027    if (!DC) {
2028      // If we could not compute the declaration context, it's because the
2029      // declaration context is dependent but does not refer to a class,
2030      // class template, or class template partial specialization. Complain
2031      // and return early, to avoid the coming semantic disaster.
2032      Diag(D.getIdentifierLoc(),
2033           diag::err_template_qualified_declarator_no_match)
2034        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2035        << D.getCXXScopeSpec().getRange();
2036      return DeclPtrTy();
2037    }
2038
2039    bool IsDependentContext = DC->isDependentContext();
2040
2041    if (!IsDependentContext &&
2042        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2043      return DeclPtrTy();
2044
2045    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2046      Diag(D.getIdentifierLoc(),
2047           diag::err_member_def_undefined_record)
2048        << Name << DC << D.getCXXScopeSpec().getRange();
2049      D.setInvalidType();
2050    }
2051
2052    // Check whether we need to rebuild the type of the given
2053    // declaration in the current instantiation.
2054    if (EnteringContext && IsDependentContext &&
2055        TemplateParamLists.size() != 0) {
2056      ContextRAII SavedContext(*this, DC);
2057      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2058        D.setInvalidType();
2059    }
2060  }
2061
2062  NamedDecl *New;
2063
2064  TypeSourceInfo *TInfo = 0;
2065  QualType R = GetTypeForDeclarator(D, S, &TInfo);
2066
2067  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2068                        ForRedeclaration);
2069
2070  // See if this is a redefinition of a variable in the same scope.
2071  if (!D.getCXXScopeSpec().isSet()) {
2072    bool IsLinkageLookup = false;
2073
2074    // If the declaration we're planning to build will be a function
2075    // or object with linkage, then look for another declaration with
2076    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2077    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2078      /* Do nothing*/;
2079    else if (R->isFunctionType()) {
2080      if (CurContext->isFunctionOrMethod() ||
2081          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2082        IsLinkageLookup = true;
2083    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2084      IsLinkageLookup = true;
2085    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2086             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2087      IsLinkageLookup = true;
2088
2089    if (IsLinkageLookup)
2090      Previous.clear(LookupRedeclarationWithLinkage);
2091
2092    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2093  } else { // Something like "int foo::x;"
2094    LookupQualifiedName(Previous, DC);
2095
2096    // Don't consider using declarations as previous declarations for
2097    // out-of-line members.
2098    RemoveUsingDecls(Previous);
2099
2100    // C++ 7.3.1.2p2:
2101    // Members (including explicit specializations of templates) of a named
2102    // namespace can also be defined outside that namespace by explicit
2103    // qualification of the name being defined, provided that the entity being
2104    // defined was already declared in the namespace and the definition appears
2105    // after the point of declaration in a namespace that encloses the
2106    // declarations namespace.
2107    //
2108    // Note that we only check the context at this point. We don't yet
2109    // have enough information to make sure that PrevDecl is actually
2110    // the declaration we want to match. For example, given:
2111    //
2112    //   class X {
2113    //     void f();
2114    //     void f(float);
2115    //   };
2116    //
2117    //   void X::f(int) { } // ill-formed
2118    //
2119    // In this case, PrevDecl will point to the overload set
2120    // containing the two f's declared in X, but neither of them
2121    // matches.
2122
2123    // First check whether we named the global scope.
2124    if (isa<TranslationUnitDecl>(DC)) {
2125      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2126        << Name << D.getCXXScopeSpec().getRange();
2127    } else {
2128      DeclContext *Cur = CurContext;
2129      while (isa<LinkageSpecDecl>(Cur))
2130        Cur = Cur->getParent();
2131      if (!Cur->Encloses(DC)) {
2132        // The qualifying scope doesn't enclose the original declaration.
2133        // Emit diagnostic based on current scope.
2134        SourceLocation L = D.getIdentifierLoc();
2135        SourceRange R = D.getCXXScopeSpec().getRange();
2136        if (isa<FunctionDecl>(Cur))
2137          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2138        else
2139          Diag(L, diag::err_invalid_declarator_scope)
2140            << Name << cast<NamedDecl>(DC) << R;
2141        D.setInvalidType();
2142      }
2143    }
2144  }
2145
2146  if (Previous.isSingleResult() &&
2147      Previous.getFoundDecl()->isTemplateParameter()) {
2148    // Maybe we will complain about the shadowed template parameter.
2149    if (!D.isInvalidType())
2150      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2151                                          Previous.getFoundDecl()))
2152        D.setInvalidType();
2153
2154    // Just pretend that we didn't see the previous declaration.
2155    Previous.clear();
2156  }
2157
2158  // In C++, the previous declaration we find might be a tag type
2159  // (class or enum). In this case, the new declaration will hide the
2160  // tag type. Note that this does does not apply if we're declaring a
2161  // typedef (C++ [dcl.typedef]p4).
2162  if (Previous.isSingleTagDecl() &&
2163      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2164    Previous.clear();
2165
2166  bool Redeclaration = false;
2167  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2168    if (TemplateParamLists.size()) {
2169      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2170      return DeclPtrTy();
2171    }
2172
2173    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2174  } else if (R->isFunctionType()) {
2175    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2176                                  move(TemplateParamLists),
2177                                  IsFunctionDefinition, Redeclaration);
2178  } else {
2179    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2180                                  move(TemplateParamLists),
2181                                  Redeclaration);
2182  }
2183
2184  if (New == 0)
2185    return DeclPtrTy();
2186
2187  // If this has an identifier and is not an invalid redeclaration or
2188  // function template specialization, add it to the scope stack.
2189  if (Name && !(Redeclaration && New->isInvalidDecl()))
2190    PushOnScopeChains(New, S);
2191
2192  return DeclPtrTy::make(New);
2193}
2194
2195/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2196/// types into constant array types in certain situations which would otherwise
2197/// be errors (for GCC compatibility).
2198static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2199                                                    ASTContext &Context,
2200                                                    bool &SizeIsNegative) {
2201  // This method tries to turn a variable array into a constant
2202  // array even when the size isn't an ICE.  This is necessary
2203  // for compatibility with code that depends on gcc's buggy
2204  // constant expression folding, like struct {char x[(int)(char*)2];}
2205  SizeIsNegative = false;
2206
2207  QualifierCollector Qs;
2208  const Type *Ty = Qs.strip(T);
2209
2210  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2211    QualType Pointee = PTy->getPointeeType();
2212    QualType FixedType =
2213        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2214    if (FixedType.isNull()) return FixedType;
2215    FixedType = Context.getPointerType(FixedType);
2216    return Qs.apply(FixedType);
2217  }
2218
2219  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2220  if (!VLATy)
2221    return QualType();
2222  // FIXME: We should probably handle this case
2223  if (VLATy->getElementType()->isVariablyModifiedType())
2224    return QualType();
2225
2226  Expr::EvalResult EvalResult;
2227  if (!VLATy->getSizeExpr() ||
2228      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2229      !EvalResult.Val.isInt())
2230    return QualType();
2231
2232  llvm::APSInt &Res = EvalResult.Val.getInt();
2233  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2234    // TODO: preserve the size expression in declarator info
2235    return Context.getConstantArrayType(VLATy->getElementType(),
2236                                        Res, ArrayType::Normal, 0);
2237  }
2238
2239  SizeIsNegative = true;
2240  return QualType();
2241}
2242
2243/// \brief Register the given locally-scoped external C declaration so
2244/// that it can be found later for redeclarations
2245void
2246Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2247                                       const LookupResult &Previous,
2248                                       Scope *S) {
2249  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2250         "Decl is not a locally-scoped decl!");
2251  // Note that we have a locally-scoped external with this name.
2252  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2253
2254  if (!Previous.isSingleResult())
2255    return;
2256
2257  NamedDecl *PrevDecl = Previous.getFoundDecl();
2258
2259  // If there was a previous declaration of this variable, it may be
2260  // in our identifier chain. Update the identifier chain with the new
2261  // declaration.
2262  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2263    // The previous declaration was found on the identifer resolver
2264    // chain, so remove it from its scope.
2265    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2266      S = S->getParent();
2267
2268    if (S)
2269      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2270  }
2271}
2272
2273/// \brief Diagnose function specifiers on a declaration of an identifier that
2274/// does not identify a function.
2275void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2276  // FIXME: We should probably indicate the identifier in question to avoid
2277  // confusion for constructs like "inline int a(), b;"
2278  if (D.getDeclSpec().isInlineSpecified())
2279    Diag(D.getDeclSpec().getInlineSpecLoc(),
2280         diag::err_inline_non_function);
2281
2282  if (D.getDeclSpec().isVirtualSpecified())
2283    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2284         diag::err_virtual_non_function);
2285
2286  if (D.getDeclSpec().isExplicitSpecified())
2287    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2288         diag::err_explicit_non_function);
2289}
2290
2291NamedDecl*
2292Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2293                             QualType R,  TypeSourceInfo *TInfo,
2294                             LookupResult &Previous, bool &Redeclaration) {
2295  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2296  if (D.getCXXScopeSpec().isSet()) {
2297    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2298      << D.getCXXScopeSpec().getRange();
2299    D.setInvalidType();
2300    // Pretend we didn't see the scope specifier.
2301    DC = CurContext;
2302    Previous.clear();
2303  }
2304
2305  if (getLangOptions().CPlusPlus) {
2306    // Check that there are no default arguments (C++ only).
2307    CheckExtraCXXDefaultArguments(D);
2308  }
2309
2310  DiagnoseFunctionSpecifiers(D);
2311
2312  if (D.getDeclSpec().isThreadSpecified())
2313    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2314
2315  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2316  if (!NewTD) return 0;
2317
2318  // Handle attributes prior to checking for duplicates in MergeVarDecl
2319  ProcessDeclAttributes(S, NewTD, D);
2320
2321  // Merge the decl with the existing one if appropriate. If the decl is
2322  // in an outer scope, it isn't the same thing.
2323  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2324  if (!Previous.empty()) {
2325    Redeclaration = true;
2326    MergeTypeDefDecl(NewTD, Previous);
2327  }
2328
2329  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2330  // then it shall have block scope.
2331  QualType T = NewTD->getUnderlyingType();
2332  if (T->isVariablyModifiedType()) {
2333    FunctionNeedsScopeChecking() = true;
2334
2335    if (S->getFnParent() == 0) {
2336      bool SizeIsNegative;
2337      QualType FixedTy =
2338          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2339      if (!FixedTy.isNull()) {
2340        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2341        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2342      } else {
2343        if (SizeIsNegative)
2344          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2345        else if (T->isVariableArrayType())
2346          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2347        else
2348          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2349        NewTD->setInvalidDecl();
2350      }
2351    }
2352  }
2353
2354  // If this is the C FILE type, notify the AST context.
2355  if (IdentifierInfo *II = NewTD->getIdentifier())
2356    if (!NewTD->isInvalidDecl() &&
2357        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2358      if (II->isStr("FILE"))
2359        Context.setFILEDecl(NewTD);
2360      else if (II->isStr("jmp_buf"))
2361        Context.setjmp_bufDecl(NewTD);
2362      else if (II->isStr("sigjmp_buf"))
2363        Context.setsigjmp_bufDecl(NewTD);
2364    }
2365
2366  return NewTD;
2367}
2368
2369/// \brief Determines whether the given declaration is an out-of-scope
2370/// previous declaration.
2371///
2372/// This routine should be invoked when name lookup has found a
2373/// previous declaration (PrevDecl) that is not in the scope where a
2374/// new declaration by the same name is being introduced. If the new
2375/// declaration occurs in a local scope, previous declarations with
2376/// linkage may still be considered previous declarations (C99
2377/// 6.2.2p4-5, C++ [basic.link]p6).
2378///
2379/// \param PrevDecl the previous declaration found by name
2380/// lookup
2381///
2382/// \param DC the context in which the new declaration is being
2383/// declared.
2384///
2385/// \returns true if PrevDecl is an out-of-scope previous declaration
2386/// for a new delcaration with the same name.
2387static bool
2388isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2389                                ASTContext &Context) {
2390  if (!PrevDecl)
2391    return 0;
2392
2393  if (!PrevDecl->hasLinkage())
2394    return false;
2395
2396  if (Context.getLangOptions().CPlusPlus) {
2397    // C++ [basic.link]p6:
2398    //   If there is a visible declaration of an entity with linkage
2399    //   having the same name and type, ignoring entities declared
2400    //   outside the innermost enclosing namespace scope, the block
2401    //   scope declaration declares that same entity and receives the
2402    //   linkage of the previous declaration.
2403    DeclContext *OuterContext = DC->getLookupContext();
2404    if (!OuterContext->isFunctionOrMethod())
2405      // This rule only applies to block-scope declarations.
2406      return false;
2407    else {
2408      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2409      if (PrevOuterContext->isRecord())
2410        // We found a member function: ignore it.
2411        return false;
2412      else {
2413        // Find the innermost enclosing namespace for the new and
2414        // previous declarations.
2415        while (!OuterContext->isFileContext())
2416          OuterContext = OuterContext->getParent();
2417        while (!PrevOuterContext->isFileContext())
2418          PrevOuterContext = PrevOuterContext->getParent();
2419
2420        // The previous declaration is in a different namespace, so it
2421        // isn't the same function.
2422        if (OuterContext->getPrimaryContext() !=
2423            PrevOuterContext->getPrimaryContext())
2424          return false;
2425      }
2426    }
2427  }
2428
2429  return true;
2430}
2431
2432static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2433  CXXScopeSpec &SS = D.getCXXScopeSpec();
2434  if (!SS.isSet()) return;
2435  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2436                       SS.getRange());
2437}
2438
2439NamedDecl*
2440Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2441                              QualType R, TypeSourceInfo *TInfo,
2442                              LookupResult &Previous,
2443                              MultiTemplateParamsArg TemplateParamLists,
2444                              bool &Redeclaration) {
2445  DeclarationName Name = GetNameForDeclarator(D);
2446
2447  // Check that there are no default arguments (C++ only).
2448  if (getLangOptions().CPlusPlus)
2449    CheckExtraCXXDefaultArguments(D);
2450
2451  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2452  assert(SCSpec != DeclSpec::SCS_typedef &&
2453         "Parser allowed 'typedef' as storage class VarDecl.");
2454  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
2455  if (SCSpec == DeclSpec::SCS_mutable) {
2456    // mutable can only appear on non-static class members, so it's always
2457    // an error here
2458    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2459    D.setInvalidType();
2460    SC = VarDecl::None;
2461  }
2462  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2463  VarDecl::StorageClass SCAsWritten
2464    = StorageClassSpecToVarDeclStorageClass(SCSpec, DC);
2465
2466  IdentifierInfo *II = Name.getAsIdentifierInfo();
2467  if (!II) {
2468    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2469      << Name.getAsString();
2470    return 0;
2471  }
2472
2473  DiagnoseFunctionSpecifiers(D);
2474
2475  if (!DC->isRecord() && S->getFnParent() == 0) {
2476    // C99 6.9p2: The storage-class specifiers auto and register shall not
2477    // appear in the declaration specifiers in an external declaration.
2478    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2479
2480      // If this is a register variable with an asm label specified, then this
2481      // is a GNU extension.
2482      if (SC == VarDecl::Register && D.getAsmLabel())
2483        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2484      else
2485        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2486      D.setInvalidType();
2487    }
2488  }
2489  if (DC->isRecord() && !CurContext->isRecord()) {
2490    // This is an out-of-line definition of a static data member.
2491    if (SC == VarDecl::Static) {
2492      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2493           diag::err_static_out_of_line)
2494        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2495    } else if (SC == VarDecl::None)
2496      SC = VarDecl::Static;
2497  }
2498  if (SC == VarDecl::Static) {
2499    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2500      if (RD->isLocalClass())
2501        Diag(D.getIdentifierLoc(),
2502             diag::err_static_data_member_not_allowed_in_local_class)
2503          << Name << RD->getDeclName();
2504    }
2505  }
2506
2507  // Match up the template parameter lists with the scope specifier, then
2508  // determine whether we have a template or a template specialization.
2509  bool isExplicitSpecialization = false;
2510  if (TemplateParameterList *TemplateParams
2511        = MatchTemplateParametersToScopeSpecifier(
2512                                  D.getDeclSpec().getSourceRange().getBegin(),
2513                                                  D.getCXXScopeSpec(),
2514                        (TemplateParameterList**)TemplateParamLists.get(),
2515                                                   TemplateParamLists.size(),
2516                                                  /*never a friend*/ false,
2517                                                  isExplicitSpecialization)) {
2518    if (TemplateParams->size() > 0) {
2519      // There is no such thing as a variable template.
2520      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2521        << II
2522        << SourceRange(TemplateParams->getTemplateLoc(),
2523                       TemplateParams->getRAngleLoc());
2524      return 0;
2525    } else {
2526      // There is an extraneous 'template<>' for this variable. Complain
2527      // about it, but allow the declaration of the variable.
2528      Diag(TemplateParams->getTemplateLoc(),
2529           diag::err_template_variable_noparams)
2530        << II
2531        << SourceRange(TemplateParams->getTemplateLoc(),
2532                       TemplateParams->getRAngleLoc());
2533
2534      isExplicitSpecialization = true;
2535    }
2536  }
2537
2538  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2539                                   II, R, TInfo, SC, SCAsWritten);
2540
2541  if (D.isInvalidType())
2542    NewVD->setInvalidDecl();
2543
2544  SetNestedNameSpecifier(NewVD, D);
2545
2546  if (D.getDeclSpec().isThreadSpecified()) {
2547    if (NewVD->hasLocalStorage())
2548      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2549    else if (!Context.Target.isTLSSupported())
2550      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2551    else
2552      NewVD->setThreadSpecified(true);
2553  }
2554
2555  // Set the lexical context. If the declarator has a C++ scope specifier, the
2556  // lexical context will be different from the semantic context.
2557  NewVD->setLexicalDeclContext(CurContext);
2558
2559  // Handle attributes prior to checking for duplicates in MergeVarDecl
2560  ProcessDeclAttributes(S, NewVD, D);
2561
2562  // Handle GNU asm-label extension (encoded as an attribute).
2563  if (Expr *E = (Expr*) D.getAsmLabel()) {
2564    // The parser guarantees this is a string.
2565    StringLiteral *SE = cast<StringLiteral>(E);
2566    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2567  }
2568
2569  // Diagnose shadowed variables before filtering for scope.
2570  if (!D.getCXXScopeSpec().isSet())
2571    CheckShadow(S, NewVD, Previous);
2572
2573  // Don't consider existing declarations that are in a different
2574  // scope and are out-of-semantic-context declarations (if the new
2575  // declaration has linkage).
2576  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2577
2578  // Merge the decl with the existing one if appropriate.
2579  if (!Previous.empty()) {
2580    if (Previous.isSingleResult() &&
2581        isa<FieldDecl>(Previous.getFoundDecl()) &&
2582        D.getCXXScopeSpec().isSet()) {
2583      // The user tried to define a non-static data member
2584      // out-of-line (C++ [dcl.meaning]p1).
2585      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2586        << D.getCXXScopeSpec().getRange();
2587      Previous.clear();
2588      NewVD->setInvalidDecl();
2589    }
2590  } else if (D.getCXXScopeSpec().isSet()) {
2591    // No previous declaration in the qualifying scope.
2592    Diag(D.getIdentifierLoc(), diag::err_no_member)
2593      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2594      << D.getCXXScopeSpec().getRange();
2595    NewVD->setInvalidDecl();
2596  }
2597
2598  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2599
2600  // This is an explicit specialization of a static data member. Check it.
2601  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2602      CheckMemberSpecialization(NewVD, Previous))
2603    NewVD->setInvalidDecl();
2604
2605  // attributes declared post-definition are currently ignored
2606  if (Previous.isSingleResult()) {
2607    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2608    if (Def && (Def = Def->getDefinition()) &&
2609        Def != NewVD && D.hasAttributes()) {
2610      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2611      Diag(Def->getLocation(), diag::note_previous_definition);
2612    }
2613  }
2614
2615  // If this is a locally-scoped extern C variable, update the map of
2616  // such variables.
2617  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2618      !NewVD->isInvalidDecl())
2619    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2620
2621  return NewVD;
2622}
2623
2624/// \brief Diagnose variable or built-in function shadowing.  Implements
2625/// -Wshadow.
2626///
2627/// This method is called whenever a VarDecl is added to a "useful"
2628/// scope.
2629///
2630/// \param S the scope in which the shadowing name is being declared
2631/// \param R the lookup of the name
2632///
2633void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2634  // Return if warning is ignored.
2635  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2636    return;
2637
2638  // Don't diagnose declarations at file scope.  The scope might not
2639  // have a DeclContext if (e.g.) we're parsing a function prototype.
2640  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2641  if (NewDC && NewDC->isFileContext())
2642    return;
2643
2644  // Only diagnose if we're shadowing an unambiguous field or variable.
2645  if (R.getResultKind() != LookupResult::Found)
2646    return;
2647
2648  NamedDecl* ShadowedDecl = R.getFoundDecl();
2649  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2650    return;
2651
2652  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2653
2654  // Only warn about certain kinds of shadowing for class members.
2655  if (NewDC && NewDC->isRecord()) {
2656    // In particular, don't warn about shadowing non-class members.
2657    if (!OldDC->isRecord())
2658      return;
2659
2660    // TODO: should we warn about static data members shadowing
2661    // static data members from base classes?
2662
2663    // TODO: don't diagnose for inaccessible shadowed members.
2664    // This is hard to do perfectly because we might friend the
2665    // shadowing context, but that's just a false negative.
2666  }
2667
2668  // Determine what kind of declaration we're shadowing.
2669  unsigned Kind;
2670  if (isa<RecordDecl>(OldDC)) {
2671    if (isa<FieldDecl>(ShadowedDecl))
2672      Kind = 3; // field
2673    else
2674      Kind = 2; // static data member
2675  } else if (OldDC->isFileContext())
2676    Kind = 1; // global
2677  else
2678    Kind = 0; // local
2679
2680  DeclarationName Name = R.getLookupName();
2681
2682  // Emit warning and note.
2683  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2684  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2685}
2686
2687/// \brief Check -Wshadow without the advantage of a previous lookup.
2688void Sema::CheckShadow(Scope *S, VarDecl *D) {
2689  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2690                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2691  LookupName(R, S);
2692  CheckShadow(S, D, R);
2693}
2694
2695/// \brief Perform semantic checking on a newly-created variable
2696/// declaration.
2697///
2698/// This routine performs all of the type-checking required for a
2699/// variable declaration once it has been built. It is used both to
2700/// check variables after they have been parsed and their declarators
2701/// have been translated into a declaration, and to check variables
2702/// that have been instantiated from a template.
2703///
2704/// Sets NewVD->isInvalidDecl() if an error was encountered.
2705void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2706                                    LookupResult &Previous,
2707                                    bool &Redeclaration) {
2708  // If the decl is already known invalid, don't check it.
2709  if (NewVD->isInvalidDecl())
2710    return;
2711
2712  QualType T = NewVD->getType();
2713
2714  if (T->isObjCInterfaceType()) {
2715    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2716    return NewVD->setInvalidDecl();
2717  }
2718
2719  // Emit an error if an address space was applied to decl with local storage.
2720  // This includes arrays of objects with address space qualifiers, but not
2721  // automatic variables that point to other address spaces.
2722  // ISO/IEC TR 18037 S5.1.2
2723  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2724    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2725    return NewVD->setInvalidDecl();
2726  }
2727
2728  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2729      && !NewVD->hasAttr<BlocksAttr>())
2730    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2731
2732  bool isVM = T->isVariablyModifiedType();
2733  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2734      NewVD->hasAttr<BlocksAttr>() ||
2735      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2736      // However, this turns on the scope checker for everything with a variable
2737      // which may impact compile time.  See if we can find a better solution
2738      // to this, perhaps only checking functions that contain gotos in C++?
2739      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2740    FunctionNeedsScopeChecking() = true;
2741
2742  if ((isVM && NewVD->hasLinkage()) ||
2743      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2744    bool SizeIsNegative;
2745    QualType FixedTy =
2746        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2747
2748    if (FixedTy.isNull() && T->isVariableArrayType()) {
2749      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2750      // FIXME: This won't give the correct result for
2751      // int a[10][n];
2752      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2753
2754      if (NewVD->isFileVarDecl())
2755        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2756        << SizeRange;
2757      else if (NewVD->getStorageClass() == VarDecl::Static)
2758        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2759        << SizeRange;
2760      else
2761        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2762        << SizeRange;
2763      return NewVD->setInvalidDecl();
2764    }
2765
2766    if (FixedTy.isNull()) {
2767      if (NewVD->isFileVarDecl())
2768        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2769      else
2770        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2771      return NewVD->setInvalidDecl();
2772    }
2773
2774    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2775    NewVD->setType(FixedTy);
2776  }
2777
2778  if (Previous.empty() && NewVD->isExternC()) {
2779    // Since we did not find anything by this name and we're declaring
2780    // an extern "C" variable, look for a non-visible extern "C"
2781    // declaration with the same name.
2782    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2783      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2784    if (Pos != LocallyScopedExternalDecls.end())
2785      Previous.addDecl(Pos->second);
2786  }
2787
2788  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2789    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2790      << T;
2791    return NewVD->setInvalidDecl();
2792  }
2793
2794  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2795    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2796    return NewVD->setInvalidDecl();
2797  }
2798
2799  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2800    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2801    return NewVD->setInvalidDecl();
2802  }
2803
2804  if (!Previous.empty()) {
2805    Redeclaration = true;
2806    MergeVarDecl(NewVD, Previous);
2807  }
2808}
2809
2810/// \brief Data used with FindOverriddenMethod
2811struct FindOverriddenMethodData {
2812  Sema *S;
2813  CXXMethodDecl *Method;
2814};
2815
2816/// \brief Member lookup function that determines whether a given C++
2817/// method overrides a method in a base class, to be used with
2818/// CXXRecordDecl::lookupInBases().
2819static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2820                                 CXXBasePath &Path,
2821                                 void *UserData) {
2822  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2823
2824  FindOverriddenMethodData *Data
2825    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2826
2827  DeclarationName Name = Data->Method->getDeclName();
2828
2829  // FIXME: Do we care about other names here too?
2830  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2831    // We really want to find the base class constructor here.
2832    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2833    CanQualType CT = Data->S->Context.getCanonicalType(T);
2834
2835    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2836  }
2837
2838  for (Path.Decls = BaseRecord->lookup(Name);
2839       Path.Decls.first != Path.Decls.second;
2840       ++Path.Decls.first) {
2841    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2842      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2843        return true;
2844    }
2845  }
2846
2847  return false;
2848}
2849
2850/// AddOverriddenMethods - See if a method overrides any in the base classes,
2851/// and if so, check that it's a valid override and remember it.
2852void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2853  // Look for virtual methods in base classes that this method might override.
2854  CXXBasePaths Paths;
2855  FindOverriddenMethodData Data;
2856  Data.Method = MD;
2857  Data.S = this;
2858  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2859    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2860         E = Paths.found_decls_end(); I != E; ++I) {
2861      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2862        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2863            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2864            !CheckOverridingFunctionAttributes(MD, OldMD))
2865          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2866      }
2867    }
2868  }
2869}
2870
2871NamedDecl*
2872Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2873                              QualType R, TypeSourceInfo *TInfo,
2874                              LookupResult &Previous,
2875                              MultiTemplateParamsArg TemplateParamLists,
2876                              bool IsFunctionDefinition, bool &Redeclaration) {
2877  assert(R.getTypePtr()->isFunctionType());
2878
2879  DeclarationName Name = GetNameForDeclarator(D);
2880  FunctionDecl::StorageClass SC = FunctionDecl::None;
2881  switch (D.getDeclSpec().getStorageClassSpec()) {
2882  default: assert(0 && "Unknown storage class!");
2883  case DeclSpec::SCS_auto:
2884  case DeclSpec::SCS_register:
2885  case DeclSpec::SCS_mutable:
2886    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2887         diag::err_typecheck_sclass_func);
2888    D.setInvalidType();
2889    break;
2890  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2891  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2892  case DeclSpec::SCS_static: {
2893    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2894      // C99 6.7.1p5:
2895      //   The declaration of an identifier for a function that has
2896      //   block scope shall have no explicit storage-class specifier
2897      //   other than extern
2898      // See also (C++ [dcl.stc]p4).
2899      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2900           diag::err_static_block_func);
2901      SC = FunctionDecl::None;
2902    } else
2903      SC = FunctionDecl::Static;
2904    break;
2905  }
2906  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2907  }
2908
2909  if (D.getDeclSpec().isThreadSpecified())
2910    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2911
2912  bool isFriend = D.getDeclSpec().isFriendSpecified();
2913  bool isInline = D.getDeclSpec().isInlineSpecified();
2914  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2915  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2916
2917  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2918  FunctionDecl::StorageClass SCAsWritten
2919    = StorageClassSpecToFunctionDeclStorageClass(SCSpec, DC);
2920
2921  // Check that the return type is not an abstract class type.
2922  // For record types, this is done by the AbstractClassUsageDiagnoser once
2923  // the class has been completely parsed.
2924  if (!DC->isRecord() &&
2925      RequireNonAbstractType(D.getIdentifierLoc(),
2926                             R->getAs<FunctionType>()->getResultType(),
2927                             diag::err_abstract_type_in_decl,
2928                             AbstractReturnType))
2929    D.setInvalidType();
2930
2931  // Do not allow returning a objc interface by-value.
2932  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2933    Diag(D.getIdentifierLoc(),
2934         diag::err_object_cannot_be_passed_returned_by_value) << 0
2935      << R->getAs<FunctionType>()->getResultType();
2936    D.setInvalidType();
2937  }
2938
2939  bool isVirtualOkay = false;
2940  FunctionDecl *NewFD;
2941
2942  if (isFriend) {
2943    // C++ [class.friend]p5
2944    //   A function can be defined in a friend declaration of a
2945    //   class . . . . Such a function is implicitly inline.
2946    isInline |= IsFunctionDefinition;
2947  }
2948
2949  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2950    // This is a C++ constructor declaration.
2951    assert(DC->isRecord() &&
2952           "Constructors can only be declared in a member context");
2953
2954    R = CheckConstructorDeclarator(D, R, SC);
2955
2956    // Create the new declaration
2957    NewFD = CXXConstructorDecl::Create(Context,
2958                                       cast<CXXRecordDecl>(DC),
2959                                       D.getIdentifierLoc(), Name, R, TInfo,
2960                                       isExplicit, isInline,
2961                                       /*isImplicitlyDeclared=*/false);
2962  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2963    // This is a C++ destructor declaration.
2964    if (DC->isRecord()) {
2965      R = CheckDestructorDeclarator(D, SC);
2966
2967      NewFD = CXXDestructorDecl::Create(Context,
2968                                        cast<CXXRecordDecl>(DC),
2969                                        D.getIdentifierLoc(), Name, R,
2970                                        isInline,
2971                                        /*isImplicitlyDeclared=*/false);
2972      NewFD->setTypeSourceInfo(TInfo);
2973
2974      isVirtualOkay = true;
2975    } else {
2976      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2977
2978      // Create a FunctionDecl to satisfy the function definition parsing
2979      // code path.
2980      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2981                                   Name, R, TInfo, SC, SCAsWritten, isInline,
2982                                   /*hasPrototype=*/true);
2983      D.setInvalidType();
2984    }
2985  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2986    if (!DC->isRecord()) {
2987      Diag(D.getIdentifierLoc(),
2988           diag::err_conv_function_not_member);
2989      return 0;
2990    }
2991
2992    CheckConversionDeclarator(D, R, SC);
2993    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2994                                      D.getIdentifierLoc(), Name, R, TInfo,
2995                                      isInline, isExplicit);
2996
2997    isVirtualOkay = true;
2998  } else if (DC->isRecord()) {
2999    // If the of the function is the same as the name of the record, then this
3000    // must be an invalid constructor that has a return type.
3001    // (The parser checks for a return type and makes the declarator a
3002    // constructor if it has no return type).
3003    // must have an invalid constructor that has a return type
3004    if (Name.getAsIdentifierInfo() &&
3005        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3006      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3007        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3008        << SourceRange(D.getIdentifierLoc());
3009      return 0;
3010    }
3011
3012    bool isStatic = SC == FunctionDecl::Static;
3013
3014    // [class.free]p1:
3015    // Any allocation function for a class T is a static member
3016    // (even if not explicitly declared static).
3017    if (Name.getCXXOverloadedOperator() == OO_New ||
3018        Name.getCXXOverloadedOperator() == OO_Array_New)
3019      isStatic = true;
3020
3021    // [class.free]p6 Any deallocation function for a class X is a static member
3022    // (even if not explicitly declared static).
3023    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3024        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3025      isStatic = true;
3026
3027    // This is a C++ method declaration.
3028    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3029                                  D.getIdentifierLoc(), Name, R, TInfo,
3030                                  isStatic, SCAsWritten, isInline);
3031
3032    isVirtualOkay = !isStatic;
3033  } else {
3034    // Determine whether the function was written with a
3035    // prototype. This true when:
3036    //   - we're in C++ (where every function has a prototype),
3037    //   - there is a prototype in the declarator, or
3038    //   - the type R of the function is some kind of typedef or other reference
3039    //     to a type name (which eventually refers to a function type).
3040    bool HasPrototype =
3041       getLangOptions().CPlusPlus ||
3042       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3043       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3044
3045    NewFD = FunctionDecl::Create(Context, DC,
3046                                 D.getIdentifierLoc(),
3047                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3048                                 HasPrototype);
3049  }
3050
3051  if (D.isInvalidType())
3052    NewFD->setInvalidDecl();
3053
3054  SetNestedNameSpecifier(NewFD, D);
3055
3056  // Set the lexical context. If the declarator has a C++
3057  // scope specifier, or is the object of a friend declaration, the
3058  // lexical context will be different from the semantic context.
3059  NewFD->setLexicalDeclContext(CurContext);
3060
3061  // Match up the template parameter lists with the scope specifier, then
3062  // determine whether we have a template or a template specialization.
3063  FunctionTemplateDecl *FunctionTemplate = 0;
3064  bool isExplicitSpecialization = false;
3065  bool isFunctionTemplateSpecialization = false;
3066  if (TemplateParameterList *TemplateParams
3067        = MatchTemplateParametersToScopeSpecifier(
3068                                  D.getDeclSpec().getSourceRange().getBegin(),
3069                                  D.getCXXScopeSpec(),
3070                           (TemplateParameterList**)TemplateParamLists.get(),
3071                                                  TemplateParamLists.size(),
3072                                                  isFriend,
3073                                                  isExplicitSpecialization)) {
3074    if (TemplateParams->size() > 0) {
3075      // This is a function template
3076
3077      // Check that we can declare a template here.
3078      if (CheckTemplateDeclScope(S, TemplateParams))
3079        return 0;
3080
3081      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3082                                                      NewFD->getLocation(),
3083                                                      Name, TemplateParams,
3084                                                      NewFD);
3085      FunctionTemplate->setLexicalDeclContext(CurContext);
3086      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3087    } else {
3088      // This is a function template specialization.
3089      isFunctionTemplateSpecialization = true;
3090
3091      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3092      if (isFriend && isFunctionTemplateSpecialization) {
3093        // We want to remove the "template<>", found here.
3094        SourceRange RemoveRange = TemplateParams->getSourceRange();
3095
3096        // If we remove the template<> and the name is not a
3097        // template-id, we're actually silently creating a problem:
3098        // the friend declaration will refer to an untemplated decl,
3099        // and clearly the user wants a template specialization.  So
3100        // we need to insert '<>' after the name.
3101        SourceLocation InsertLoc;
3102        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3103          InsertLoc = D.getName().getSourceRange().getEnd();
3104          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3105        }
3106
3107        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3108          << Name << RemoveRange
3109          << FixItHint::CreateRemoval(RemoveRange)
3110          << FixItHint::CreateInsertion(InsertLoc, "<>");
3111      }
3112    }
3113
3114    // FIXME: Free this memory properly.
3115    TemplateParamLists.release();
3116  }
3117
3118  // C++ [dcl.fct.spec]p5:
3119  //   The virtual specifier shall only be used in declarations of
3120  //   nonstatic class member functions that appear within a
3121  //   member-specification of a class declaration; see 10.3.
3122  //
3123  if (isVirtual && !NewFD->isInvalidDecl()) {
3124    if (!isVirtualOkay) {
3125       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3126           diag::err_virtual_non_function);
3127    } else if (!CurContext->isRecord()) {
3128      // 'virtual' was specified outside of the class.
3129      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3130        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3131    } else {
3132      // Okay: Add virtual to the method.
3133      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3134      CurClass->setMethodAsVirtual(NewFD);
3135    }
3136  }
3137
3138  // C++ [dcl.fct.spec]p6:
3139  //  The explicit specifier shall be used only in the declaration of a
3140  //  constructor or conversion function within its class definition; see 12.3.1
3141  //  and 12.3.2.
3142  if (isExplicit && !NewFD->isInvalidDecl()) {
3143    if (!CurContext->isRecord()) {
3144      // 'explicit' was specified outside of the class.
3145      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3146           diag::err_explicit_out_of_class)
3147        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3148    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3149               !isa<CXXConversionDecl>(NewFD)) {
3150      // 'explicit' was specified on a function that wasn't a constructor
3151      // or conversion function.
3152      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3153           diag::err_explicit_non_ctor_or_conv_function)
3154        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3155    }
3156  }
3157
3158  // Filter out previous declarations that don't match the scope.
3159  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3160
3161  if (isFriend) {
3162    // DC is the namespace in which the function is being declared.
3163    assert((DC->isFileContext() || !Previous.empty()) &&
3164           "previously-undeclared friend function being created "
3165           "in a non-namespace context");
3166
3167    // For now, claim that the objects have no previous declaration.
3168    if (FunctionTemplate) {
3169      FunctionTemplate->setObjectOfFriendDecl(false);
3170      FunctionTemplate->setAccess(AS_public);
3171    }
3172    NewFD->setObjectOfFriendDecl(false);
3173    NewFD->setAccess(AS_public);
3174  }
3175
3176  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3177      !CurContext->isRecord()) {
3178    // C++ [class.static]p1:
3179    //   A data or function member of a class may be declared static
3180    //   in a class definition, in which case it is a static member of
3181    //   the class.
3182
3183    // Complain about the 'static' specifier if it's on an out-of-line
3184    // member function definition.
3185    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3186         diag::err_static_out_of_line)
3187      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3188  }
3189
3190  // Handle GNU asm-label extension (encoded as an attribute).
3191  if (Expr *E = (Expr*) D.getAsmLabel()) {
3192    // The parser guarantees this is a string.
3193    StringLiteral *SE = cast<StringLiteral>(E);
3194    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3195  }
3196
3197  // Copy the parameter declarations from the declarator D to the function
3198  // declaration NewFD, if they are available.  First scavenge them into Params.
3199  llvm::SmallVector<ParmVarDecl*, 16> Params;
3200  if (D.getNumTypeObjects() > 0) {
3201    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3202
3203    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3204    // function that takes no arguments, not a function that takes a
3205    // single void argument.
3206    // We let through "const void" here because Sema::GetTypeForDeclarator
3207    // already checks for that case.
3208    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3209        FTI.ArgInfo[0].Param &&
3210        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3211      // Empty arg list, don't push any params.
3212      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3213
3214      // In C++, the empty parameter-type-list must be spelled "void"; a
3215      // typedef of void is not permitted.
3216      if (getLangOptions().CPlusPlus &&
3217          Param->getType().getUnqualifiedType() != Context.VoidTy)
3218        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3219      // FIXME: Leaks decl?
3220    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3221      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3222        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3223        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3224        Param->setDeclContext(NewFD);
3225        Params.push_back(Param);
3226
3227        if (Param->isInvalidDecl())
3228          NewFD->setInvalidDecl();
3229      }
3230    }
3231
3232  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3233    // When we're declaring a function with a typedef, typeof, etc as in the
3234    // following example, we'll need to synthesize (unnamed)
3235    // parameters for use in the declaration.
3236    //
3237    // @code
3238    // typedef void fn(int);
3239    // fn f;
3240    // @endcode
3241
3242    // Synthesize a parameter for each argument type.
3243    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3244         AE = FT->arg_type_end(); AI != AE; ++AI) {
3245      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
3246                                               D.getIdentifierLoc(), 0,
3247                                               *AI,
3248                                         Context.getTrivialTypeSourceInfo(*AI,
3249                                                          D.getIdentifierLoc()),
3250                                               VarDecl::None,
3251                                               VarDecl::None, 0);
3252      Param->setImplicit();
3253      Params.push_back(Param);
3254    }
3255  } else {
3256    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3257           "Should not need args for typedef of non-prototype fn");
3258  }
3259  // Finally, we know we have the right number of parameters, install them.
3260  NewFD->setParams(Params.data(), Params.size());
3261
3262  // If the declarator is a template-id, translate the parser's template
3263  // argument list into our AST format.
3264  bool HasExplicitTemplateArgs = false;
3265  TemplateArgumentListInfo TemplateArgs;
3266  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3267    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3268    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3269    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3270    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3271                                       TemplateId->getTemplateArgs(),
3272                                       TemplateId->NumArgs);
3273    translateTemplateArguments(TemplateArgsPtr,
3274                               TemplateArgs);
3275    TemplateArgsPtr.release();
3276
3277    HasExplicitTemplateArgs = true;
3278
3279    if (FunctionTemplate) {
3280      // FIXME: Diagnose function template with explicit template
3281      // arguments.
3282      HasExplicitTemplateArgs = false;
3283    } else if (!isFunctionTemplateSpecialization &&
3284               !D.getDeclSpec().isFriendSpecified()) {
3285      // We have encountered something that the user meant to be a
3286      // specialization (because it has explicitly-specified template
3287      // arguments) but that was not introduced with a "template<>" (or had
3288      // too few of them).
3289      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3290        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3291        << FixItHint::CreateInsertion(
3292                                   D.getDeclSpec().getSourceRange().getBegin(),
3293                                                 "template<> ");
3294      isFunctionTemplateSpecialization = true;
3295    } else {
3296      // "friend void foo<>(int);" is an implicit specialization decl.
3297      isFunctionTemplateSpecialization = true;
3298    }
3299  } else if (isFriend && isFunctionTemplateSpecialization) {
3300    // This combination is only possible in a recovery case;  the user
3301    // wrote something like:
3302    //   template <> friend void foo(int);
3303    // which we're recovering from as if the user had written:
3304    //   friend void foo<>(int);
3305    // Go ahead and fake up a template id.
3306    HasExplicitTemplateArgs = true;
3307    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3308    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3309  }
3310
3311  // If it's a friend (and only if it's a friend), it's possible
3312  // that either the specialized function type or the specialized
3313  // template is dependent, and therefore matching will fail.  In
3314  // this case, don't check the specialization yet.
3315  if (isFunctionTemplateSpecialization && isFriend &&
3316      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3317    assert(HasExplicitTemplateArgs &&
3318           "friend function specialization without template args");
3319    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3320                                                     Previous))
3321      NewFD->setInvalidDecl();
3322  } else if (isFunctionTemplateSpecialization) {
3323    if (CheckFunctionTemplateSpecialization(NewFD,
3324                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3325                                            Previous))
3326      NewFD->setInvalidDecl();
3327  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3328    if (CheckMemberSpecialization(NewFD, Previous))
3329      NewFD->setInvalidDecl();
3330  }
3331
3332  // Perform semantic checking on the function declaration.
3333  bool OverloadableAttrRequired = false; // FIXME: HACK!
3334  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3335                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3336
3337  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3338          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3339         "previous declaration set still overloaded");
3340
3341  NamedDecl *PrincipalDecl = (FunctionTemplate
3342                              ? cast<NamedDecl>(FunctionTemplate)
3343                              : NewFD);
3344
3345  if (isFriend && Redeclaration) {
3346    AccessSpecifier Access = AS_public;
3347    if (!NewFD->isInvalidDecl())
3348      Access = NewFD->getPreviousDeclaration()->getAccess();
3349
3350    NewFD->setAccess(Access);
3351    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3352
3353    PrincipalDecl->setObjectOfFriendDecl(true);
3354  }
3355
3356  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3357      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3358    PrincipalDecl->setNonMemberOperator();
3359
3360  // If we have a function template, check the template parameter
3361  // list. This will check and merge default template arguments.
3362  if (FunctionTemplate) {
3363    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3364    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3365                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3366             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3367                                                : TPC_FunctionTemplate);
3368  }
3369
3370  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3371    // Fake up an access specifier if it's supposed to be a class member.
3372    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3373      NewFD->setAccess(AS_public);
3374
3375    // An out-of-line member function declaration must also be a
3376    // definition (C++ [dcl.meaning]p1).
3377    // Note that this is not the case for explicit specializations of
3378    // function templates or member functions of class templates, per
3379    // C++ [temp.expl.spec]p2.
3380    if (!IsFunctionDefinition && !isFriend &&
3381        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3382      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3383        << D.getCXXScopeSpec().getRange();
3384      NewFD->setInvalidDecl();
3385    } else if (!Redeclaration &&
3386               !(isFriend && CurContext->isDependentContext())) {
3387      // The user tried to provide an out-of-line definition for a
3388      // function that is a member of a class or namespace, but there
3389      // was no such member function declared (C++ [class.mfct]p2,
3390      // C++ [namespace.memdef]p2). For example:
3391      //
3392      // class X {
3393      //   void f() const;
3394      // };
3395      //
3396      // void X::f() { } // ill-formed
3397      //
3398      // Complain about this problem, and attempt to suggest close
3399      // matches (e.g., those that differ only in cv-qualifiers and
3400      // whether the parameter types are references).
3401      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3402        << Name << DC << D.getCXXScopeSpec().getRange();
3403      NewFD->setInvalidDecl();
3404
3405      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3406                        ForRedeclaration);
3407      LookupQualifiedName(Prev, DC);
3408      assert(!Prev.isAmbiguous() &&
3409             "Cannot have an ambiguity in previous-declaration lookup");
3410      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3411           Func != FuncEnd; ++Func) {
3412        if (isa<FunctionDecl>(*Func) &&
3413            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3414          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3415      }
3416    }
3417  }
3418
3419  // Handle attributes. We need to have merged decls when handling attributes
3420  // (for example to check for conflicts, etc).
3421  // FIXME: This needs to happen before we merge declarations. Then,
3422  // let attribute merging cope with attribute conflicts.
3423  ProcessDeclAttributes(S, NewFD, D);
3424
3425  // attributes declared post-definition are currently ignored
3426  if (Redeclaration && Previous.isSingleResult()) {
3427    const FunctionDecl *Def;
3428    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3429    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3430      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3431      Diag(Def->getLocation(), diag::note_previous_definition);
3432    }
3433  }
3434
3435  AddKnownFunctionAttributes(NewFD);
3436
3437  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3438    // If a function name is overloadable in C, then every function
3439    // with that name must be marked "overloadable".
3440    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3441      << Redeclaration << NewFD;
3442    if (!Previous.empty())
3443      Diag(Previous.getRepresentativeDecl()->getLocation(),
3444           diag::note_attribute_overloadable_prev_overload);
3445    NewFD->addAttr(::new (Context) OverloadableAttr());
3446  }
3447
3448  // If this is a locally-scoped extern C function, update the
3449  // map of such names.
3450  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3451      && !NewFD->isInvalidDecl())
3452    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3453
3454  // Set this FunctionDecl's range up to the right paren.
3455  NewFD->setLocEnd(D.getSourceRange().getEnd());
3456
3457  if (FunctionTemplate && NewFD->isInvalidDecl())
3458    FunctionTemplate->setInvalidDecl();
3459
3460  if (FunctionTemplate)
3461    return FunctionTemplate;
3462
3463
3464  // Keep track of static, non-inlined function definitions that
3465  // have not been used. We will warn later.
3466  // FIXME: Also include static functions declared but not defined.
3467  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3468      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3469      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3470      && !NewFD->hasAttr<ConstructorAttr>()
3471      && !NewFD->hasAttr<DestructorAttr>())
3472    UnusedStaticFuncs.push_back(NewFD);
3473
3474  return NewFD;
3475}
3476
3477/// \brief Perform semantic checking of a new function declaration.
3478///
3479/// Performs semantic analysis of the new function declaration
3480/// NewFD. This routine performs all semantic checking that does not
3481/// require the actual declarator involved in the declaration, and is
3482/// used both for the declaration of functions as they are parsed
3483/// (called via ActOnDeclarator) and for the declaration of functions
3484/// that have been instantiated via C++ template instantiation (called
3485/// via InstantiateDecl).
3486///
3487/// \param IsExplicitSpecialiation whether this new function declaration is
3488/// an explicit specialization of the previous declaration.
3489///
3490/// This sets NewFD->isInvalidDecl() to true if there was an error.
3491void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3492                                    LookupResult &Previous,
3493                                    bool IsExplicitSpecialization,
3494                                    bool &Redeclaration,
3495                                    bool &OverloadableAttrRequired) {
3496  // If NewFD is already known erroneous, don't do any of this checking.
3497  if (NewFD->isInvalidDecl())
3498    return;
3499
3500  if (NewFD->getResultType()->isVariablyModifiedType()) {
3501    // Functions returning a variably modified type violate C99 6.7.5.2p2
3502    // because all functions have linkage.
3503    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3504    return NewFD->setInvalidDecl();
3505  }
3506
3507  if (NewFD->isMain())
3508    CheckMain(NewFD);
3509
3510  // Check for a previous declaration of this name.
3511  if (Previous.empty() && NewFD->isExternC()) {
3512    // Since we did not find anything by this name and we're declaring
3513    // an extern "C" function, look for a non-visible extern "C"
3514    // declaration with the same name.
3515    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3516      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3517    if (Pos != LocallyScopedExternalDecls.end())
3518      Previous.addDecl(Pos->second);
3519  }
3520
3521  // Merge or overload the declaration with an existing declaration of
3522  // the same name, if appropriate.
3523  if (!Previous.empty()) {
3524    // Determine whether NewFD is an overload of PrevDecl or
3525    // a declaration that requires merging. If it's an overload,
3526    // there's no more work to do here; we'll just add the new
3527    // function to the scope.
3528
3529    NamedDecl *OldDecl = 0;
3530    if (!AllowOverloadingOfFunction(Previous, Context)) {
3531      Redeclaration = true;
3532      OldDecl = Previous.getFoundDecl();
3533    } else {
3534      if (!getLangOptions().CPlusPlus) {
3535        OverloadableAttrRequired = true;
3536
3537        // Functions marked "overloadable" must have a prototype (that
3538        // we can't get through declaration merging).
3539        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3540          Diag(NewFD->getLocation(),
3541               diag::err_attribute_overloadable_no_prototype)
3542            << NewFD;
3543          Redeclaration = true;
3544
3545          // Turn this into a variadic function with no parameters.
3546          QualType R = Context.getFunctionType(
3547                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3548                     0, 0, true, 0, false, false, 0, 0,
3549                     FunctionType::ExtInfo());
3550          NewFD->setType(R);
3551          return NewFD->setInvalidDecl();
3552        }
3553      }
3554
3555      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3556      case Ovl_Match:
3557        Redeclaration = true;
3558        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3559          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3560          Redeclaration = false;
3561        }
3562        break;
3563
3564      case Ovl_NonFunction:
3565        Redeclaration = true;
3566        break;
3567
3568      case Ovl_Overload:
3569        Redeclaration = false;
3570        break;
3571      }
3572    }
3573
3574    if (Redeclaration) {
3575      // NewFD and OldDecl represent declarations that need to be
3576      // merged.
3577      if (MergeFunctionDecl(NewFD, OldDecl))
3578        return NewFD->setInvalidDecl();
3579
3580      Previous.clear();
3581      Previous.addDecl(OldDecl);
3582
3583      if (FunctionTemplateDecl *OldTemplateDecl
3584                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3585        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3586        FunctionTemplateDecl *NewTemplateDecl
3587          = NewFD->getDescribedFunctionTemplate();
3588        assert(NewTemplateDecl && "Template/non-template mismatch");
3589        if (CXXMethodDecl *Method
3590              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3591          Method->setAccess(OldTemplateDecl->getAccess());
3592          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3593        }
3594
3595        // If this is an explicit specialization of a member that is a function
3596        // template, mark it as a member specialization.
3597        if (IsExplicitSpecialization &&
3598            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3599          NewTemplateDecl->setMemberSpecialization();
3600          assert(OldTemplateDecl->isMemberSpecialization());
3601        }
3602      } else {
3603        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3604          NewFD->setAccess(OldDecl->getAccess());
3605        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3606      }
3607    }
3608  }
3609
3610  // Semantic checking for this function declaration (in isolation).
3611  if (getLangOptions().CPlusPlus) {
3612    // C++-specific checks.
3613    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3614      CheckConstructor(Constructor);
3615    } else if (CXXDestructorDecl *Destructor =
3616                dyn_cast<CXXDestructorDecl>(NewFD)) {
3617      CXXRecordDecl *Record = Destructor->getParent();
3618      QualType ClassType = Context.getTypeDeclType(Record);
3619
3620      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3621      // type is dependent? Both gcc and edg can handle that.
3622      if (!ClassType->isDependentType()) {
3623        DeclarationName Name
3624          = Context.DeclarationNames.getCXXDestructorName(
3625                                        Context.getCanonicalType(ClassType));
3626        if (NewFD->getDeclName() != Name) {
3627          Diag(NewFD->getLocation(), diag::err_destructor_name);
3628          return NewFD->setInvalidDecl();
3629        }
3630      }
3631
3632      Record->setUserDeclaredDestructor(true);
3633      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3634      // user-defined destructor.
3635      Record->setPOD(false);
3636
3637      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3638      // declared destructor.
3639      // FIXME: C++0x: don't do this for "= default" destructors
3640      Record->setHasTrivialDestructor(false);
3641    } else if (CXXConversionDecl *Conversion
3642               = dyn_cast<CXXConversionDecl>(NewFD)) {
3643      ActOnConversionDeclarator(Conversion);
3644    }
3645
3646    // Find any virtual functions that this function overrides.
3647    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3648      if (!Method->isFunctionTemplateSpecialization() &&
3649          !Method->getDescribedFunctionTemplate())
3650        AddOverriddenMethods(Method->getParent(), Method);
3651    }
3652
3653    // Additional checks for the destructor; make sure we do this after we
3654    // figure out whether the destructor is virtual.
3655    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3656      if (!Destructor->getParent()->isDependentType())
3657        CheckDestructor(Destructor);
3658
3659    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3660    if (NewFD->isOverloadedOperator() &&
3661        CheckOverloadedOperatorDeclaration(NewFD))
3662      return NewFD->setInvalidDecl();
3663
3664    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3665    if (NewFD->getLiteralIdentifier() &&
3666        CheckLiteralOperatorDeclaration(NewFD))
3667      return NewFD->setInvalidDecl();
3668
3669    // In C++, check default arguments now that we have merged decls. Unless
3670    // the lexical context is the class, because in this case this is done
3671    // during delayed parsing anyway.
3672    if (!CurContext->isRecord())
3673      CheckCXXDefaultArguments(NewFD);
3674  }
3675}
3676
3677void Sema::CheckMain(FunctionDecl* FD) {
3678  // C++ [basic.start.main]p3:  A program that declares main to be inline
3679  //   or static is ill-formed.
3680  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3681  //   shall not appear in a declaration of main.
3682  // static main is not an error under C99, but we should warn about it.
3683  bool isInline = FD->isInlineSpecified();
3684  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3685  if (isInline || isStatic) {
3686    unsigned diagID = diag::warn_unusual_main_decl;
3687    if (isInline || getLangOptions().CPlusPlus)
3688      diagID = diag::err_unusual_main_decl;
3689
3690    int which = isStatic + (isInline << 1) - 1;
3691    Diag(FD->getLocation(), diagID) << which;
3692  }
3693
3694  QualType T = FD->getType();
3695  assert(T->isFunctionType() && "function decl is not of function type");
3696  const FunctionType* FT = T->getAs<FunctionType>();
3697
3698  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3699    // TODO: add a replacement fixit to turn the return type into 'int'.
3700    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3701    FD->setInvalidDecl(true);
3702  }
3703
3704  // Treat protoless main() as nullary.
3705  if (isa<FunctionNoProtoType>(FT)) return;
3706
3707  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3708  unsigned nparams = FTP->getNumArgs();
3709  assert(FD->getNumParams() == nparams);
3710
3711  bool HasExtraParameters = (nparams > 3);
3712
3713  // Darwin passes an undocumented fourth argument of type char**.  If
3714  // other platforms start sprouting these, the logic below will start
3715  // getting shifty.
3716  if (nparams == 4 &&
3717      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3718    HasExtraParameters = false;
3719
3720  if (HasExtraParameters) {
3721    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3722    FD->setInvalidDecl(true);
3723    nparams = 3;
3724  }
3725
3726  // FIXME: a lot of the following diagnostics would be improved
3727  // if we had some location information about types.
3728
3729  QualType CharPP =
3730    Context.getPointerType(Context.getPointerType(Context.CharTy));
3731  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3732
3733  for (unsigned i = 0; i < nparams; ++i) {
3734    QualType AT = FTP->getArgType(i);
3735
3736    bool mismatch = true;
3737
3738    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3739      mismatch = false;
3740    else if (Expected[i] == CharPP) {
3741      // As an extension, the following forms are okay:
3742      //   char const **
3743      //   char const * const *
3744      //   char * const *
3745
3746      QualifierCollector qs;
3747      const PointerType* PT;
3748      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3749          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3750          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3751        qs.removeConst();
3752        mismatch = !qs.empty();
3753      }
3754    }
3755
3756    if (mismatch) {
3757      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3758      // TODO: suggest replacing given type with expected type
3759      FD->setInvalidDecl(true);
3760    }
3761  }
3762
3763  if (nparams == 1 && !FD->isInvalidDecl()) {
3764    Diag(FD->getLocation(), diag::warn_main_one_arg);
3765  }
3766}
3767
3768bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3769  // FIXME: Need strict checking.  In C89, we need to check for
3770  // any assignment, increment, decrement, function-calls, or
3771  // commas outside of a sizeof.  In C99, it's the same list,
3772  // except that the aforementioned are allowed in unevaluated
3773  // expressions.  Everything else falls under the
3774  // "may accept other forms of constant expressions" exception.
3775  // (We never end up here for C++, so the constant expression
3776  // rules there don't matter.)
3777  if (Init->isConstantInitializer(Context))
3778    return false;
3779  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3780    << Init->getSourceRange();
3781  return true;
3782}
3783
3784void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3785  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3786}
3787
3788/// AddInitializerToDecl - Adds the initializer Init to the
3789/// declaration dcl. If DirectInit is true, this is C++ direct
3790/// initialization rather than copy initialization.
3791void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3792  Decl *RealDecl = dcl.getAs<Decl>();
3793  // If there is no declaration, there was an error parsing it.  Just ignore
3794  // the initializer.
3795  if (RealDecl == 0)
3796    return;
3797
3798  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3799    // With declarators parsed the way they are, the parser cannot
3800    // distinguish between a normal initializer and a pure-specifier.
3801    // Thus this grotesque test.
3802    IntegerLiteral *IL;
3803    Expr *Init = static_cast<Expr *>(init.get());
3804    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3805        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3806      CheckPureMethod(Method, Init->getSourceRange());
3807    else {
3808      Diag(Method->getLocation(), diag::err_member_function_initialization)
3809        << Method->getDeclName() << Init->getSourceRange();
3810      Method->setInvalidDecl();
3811    }
3812    return;
3813  }
3814
3815  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3816  if (!VDecl) {
3817    if (getLangOptions().CPlusPlus &&
3818        RealDecl->getLexicalDeclContext()->isRecord() &&
3819        isa<NamedDecl>(RealDecl))
3820      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3821        << cast<NamedDecl>(RealDecl)->getDeclName();
3822    else
3823      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3824    RealDecl->setInvalidDecl();
3825    return;
3826  }
3827
3828  // A definition must end up with a complete type, which means it must be
3829  // complete with the restriction that an array type might be completed by the
3830  // initializer; note that later code assumes this restriction.
3831  QualType BaseDeclType = VDecl->getType();
3832  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3833    BaseDeclType = Array->getElementType();
3834  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3835                          diag::err_typecheck_decl_incomplete_type)) {
3836    RealDecl->setInvalidDecl();
3837    return;
3838  }
3839
3840  // The variable can not have an abstract class type.
3841  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3842                             diag::err_abstract_type_in_decl,
3843                             AbstractVariableType))
3844    VDecl->setInvalidDecl();
3845
3846  const VarDecl *Def;
3847  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3848    Diag(VDecl->getLocation(), diag::err_redefinition)
3849      << VDecl->getDeclName();
3850    Diag(Def->getLocation(), diag::note_previous_definition);
3851    VDecl->setInvalidDecl();
3852    return;
3853  }
3854
3855  // Take ownership of the expression, now that we're sure we have somewhere
3856  // to put it.
3857  Expr *Init = init.takeAs<Expr>();
3858  assert(Init && "missing initializer");
3859
3860  // Capture the variable that is being initialized and the style of
3861  // initialization.
3862  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3863
3864  // FIXME: Poor source location information.
3865  InitializationKind Kind
3866    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3867                                                   Init->getLocStart(),
3868                                                   Init->getLocEnd())
3869                : InitializationKind::CreateCopy(VDecl->getLocation(),
3870                                                 Init->getLocStart());
3871
3872  // Get the decls type and save a reference for later, since
3873  // CheckInitializerTypes may change it.
3874  QualType DclT = VDecl->getType(), SavT = DclT;
3875  if (VDecl->isBlockVarDecl()) {
3876    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3877      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3878      VDecl->setInvalidDecl();
3879    } else if (!VDecl->isInvalidDecl()) {
3880      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3881      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3882                                          MultiExprArg(*this, (void**)&Init, 1),
3883                                                &DclT);
3884      if (Result.isInvalid()) {
3885        VDecl->setInvalidDecl();
3886        return;
3887      }
3888
3889      Init = Result.takeAs<Expr>();
3890
3891      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3892      // Don't check invalid declarations to avoid emitting useless diagnostics.
3893      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3894        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3895          CheckForConstantInitializer(Init, DclT);
3896      }
3897    }
3898  } else if (VDecl->isStaticDataMember() &&
3899             VDecl->getLexicalDeclContext()->isRecord()) {
3900    // This is an in-class initialization for a static data member, e.g.,
3901    //
3902    // struct S {
3903    //   static const int value = 17;
3904    // };
3905
3906    // Attach the initializer
3907    VDecl->setInit(Init);
3908
3909    // C++ [class.mem]p4:
3910    //   A member-declarator can contain a constant-initializer only
3911    //   if it declares a static member (9.4) of const integral or
3912    //   const enumeration type, see 9.4.2.
3913    QualType T = VDecl->getType();
3914    if (!T->isDependentType() &&
3915        (!Context.getCanonicalType(T).isConstQualified() ||
3916         !T->isIntegralType())) {
3917      Diag(VDecl->getLocation(), diag::err_member_initialization)
3918        << VDecl->getDeclName() << Init->getSourceRange();
3919      VDecl->setInvalidDecl();
3920    } else {
3921      // C++ [class.static.data]p4:
3922      //   If a static data member is of const integral or const
3923      //   enumeration type, its declaration in the class definition
3924      //   can specify a constant-initializer which shall be an
3925      //   integral constant expression (5.19).
3926      if (!Init->isTypeDependent() &&
3927          !Init->getType()->isIntegralType()) {
3928        // We have a non-dependent, non-integral or enumeration type.
3929        Diag(Init->getSourceRange().getBegin(),
3930             diag::err_in_class_initializer_non_integral_type)
3931          << Init->getType() << Init->getSourceRange();
3932        VDecl->setInvalidDecl();
3933      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3934        // Check whether the expression is a constant expression.
3935        llvm::APSInt Value;
3936        SourceLocation Loc;
3937        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3938          Diag(Loc, diag::err_in_class_initializer_non_constant)
3939            << Init->getSourceRange();
3940          VDecl->setInvalidDecl();
3941        } else if (!VDecl->getType()->isDependentType())
3942          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3943      }
3944    }
3945  } else if (VDecl->isFileVarDecl()) {
3946    if (VDecl->getStorageClass() == VarDecl::Extern &&
3947        (!getLangOptions().CPlusPlus ||
3948         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
3949      Diag(VDecl->getLocation(), diag::warn_extern_init);
3950    if (!VDecl->isInvalidDecl()) {
3951      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3952      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3953                                          MultiExprArg(*this, (void**)&Init, 1),
3954                                                &DclT);
3955      if (Result.isInvalid()) {
3956        VDecl->setInvalidDecl();
3957        return;
3958      }
3959
3960      Init = Result.takeAs<Expr>();
3961    }
3962
3963    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3964    // Don't check invalid declarations to avoid emitting useless diagnostics.
3965    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3966      // C99 6.7.8p4. All file scoped initializers need to be constant.
3967      CheckForConstantInitializer(Init, DclT);
3968    }
3969  }
3970  // If the type changed, it means we had an incomplete type that was
3971  // completed by the initializer. For example:
3972  //   int ary[] = { 1, 3, 5 };
3973  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3974  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3975    VDecl->setType(DclT);
3976    Init->setType(DclT);
3977  }
3978
3979  Init = MaybeCreateCXXExprWithTemporaries(Init);
3980  // Attach the initializer to the decl.
3981  VDecl->setInit(Init);
3982
3983  if (getLangOptions().CPlusPlus) {
3984    // Make sure we mark the destructor as used if necessary.
3985    QualType InitType = VDecl->getType();
3986    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3987      InitType = Context.getBaseElementType(Array);
3988    if (const RecordType *Record = InitType->getAs<RecordType>())
3989      FinalizeVarWithDestructor(VDecl, Record);
3990  }
3991
3992  return;
3993}
3994
3995/// ActOnInitializerError - Given that there was an error parsing an
3996/// initializer for the given declaration, try to return to some form
3997/// of sanity.
3998void Sema::ActOnInitializerError(DeclPtrTy dcl) {
3999  // Our main concern here is re-establishing invariants like "a
4000  // variable's type is either dependent or complete".
4001  Decl *D = dcl.getAs<Decl>();
4002  if (!D || D->isInvalidDecl()) return;
4003
4004  VarDecl *VD = dyn_cast<VarDecl>(D);
4005  if (!VD) return;
4006
4007  QualType Ty = VD->getType();
4008  if (Ty->isDependentType()) return;
4009
4010  // Require a complete type.
4011  if (RequireCompleteType(VD->getLocation(),
4012                          Context.getBaseElementType(Ty),
4013                          diag::err_typecheck_decl_incomplete_type)) {
4014    VD->setInvalidDecl();
4015    return;
4016  }
4017
4018  // Require an abstract type.
4019  if (RequireNonAbstractType(VD->getLocation(), Ty,
4020                             diag::err_abstract_type_in_decl,
4021                             AbstractVariableType)) {
4022    VD->setInvalidDecl();
4023    return;
4024  }
4025
4026  // Don't bother complaining about constructors or destructors,
4027  // though.
4028}
4029
4030void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4031                                  bool TypeContainsUndeducedAuto) {
4032  Decl *RealDecl = dcl.getAs<Decl>();
4033
4034  // If there is no declaration, there was an error parsing it. Just ignore it.
4035  if (RealDecl == 0)
4036    return;
4037
4038  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4039    QualType Type = Var->getType();
4040
4041    // C++0x [dcl.spec.auto]p3
4042    if (TypeContainsUndeducedAuto) {
4043      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4044        << Var->getDeclName() << Type;
4045      Var->setInvalidDecl();
4046      return;
4047    }
4048
4049    switch (Var->isThisDeclarationADefinition()) {
4050    case VarDecl::Definition:
4051      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4052        break;
4053
4054      // We have an out-of-line definition of a static data member
4055      // that has an in-class initializer, so we type-check this like
4056      // a declaration.
4057      //
4058      // Fall through
4059
4060    case VarDecl::DeclarationOnly:
4061      // It's only a declaration.
4062
4063      // Block scope. C99 6.7p7: If an identifier for an object is
4064      // declared with no linkage (C99 6.2.2p6), the type for the
4065      // object shall be complete.
4066      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4067          !Var->getLinkage() && !Var->isInvalidDecl() &&
4068          RequireCompleteType(Var->getLocation(), Type,
4069                              diag::err_typecheck_decl_incomplete_type))
4070        Var->setInvalidDecl();
4071
4072      // Make sure that the type is not abstract.
4073      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4074          RequireNonAbstractType(Var->getLocation(), Type,
4075                                 diag::err_abstract_type_in_decl,
4076                                 AbstractVariableType))
4077        Var->setInvalidDecl();
4078      return;
4079
4080    case VarDecl::TentativeDefinition:
4081      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4082      // object that has file scope without an initializer, and without a
4083      // storage-class specifier or with the storage-class specifier "static",
4084      // constitutes a tentative definition. Note: A tentative definition with
4085      // external linkage is valid (C99 6.2.2p5).
4086      if (!Var->isInvalidDecl()) {
4087        if (const IncompleteArrayType *ArrayT
4088                                    = Context.getAsIncompleteArrayType(Type)) {
4089          if (RequireCompleteType(Var->getLocation(),
4090                                  ArrayT->getElementType(),
4091                                  diag::err_illegal_decl_array_incomplete_type))
4092            Var->setInvalidDecl();
4093        } else if (Var->getStorageClass() == VarDecl::Static) {
4094          // C99 6.9.2p3: If the declaration of an identifier for an object is
4095          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4096          // declared type shall not be an incomplete type.
4097          // NOTE: code such as the following
4098          //     static struct s;
4099          //     struct s { int a; };
4100          // is accepted by gcc. Hence here we issue a warning instead of
4101          // an error and we do not invalidate the static declaration.
4102          // NOTE: to avoid multiple warnings, only check the first declaration.
4103          if (Var->getPreviousDeclaration() == 0)
4104            RequireCompleteType(Var->getLocation(), Type,
4105                                diag::ext_typecheck_decl_incomplete_type);
4106        }
4107      }
4108
4109      // Record the tentative definition; we're done.
4110      if (!Var->isInvalidDecl())
4111        TentativeDefinitions.push_back(Var);
4112      return;
4113    }
4114
4115    // Provide a specific diagnostic for uninitialized variable
4116    // definitions with incomplete array type.
4117    if (Type->isIncompleteArrayType()) {
4118      Diag(Var->getLocation(),
4119           diag::err_typecheck_incomplete_array_needs_initializer);
4120      Var->setInvalidDecl();
4121      return;
4122    }
4123
4124   // Provide a specific diagnostic for uninitialized variable
4125   // definitions with reference type.
4126   if (Type->isReferenceType()) {
4127     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4128       << Var->getDeclName()
4129       << SourceRange(Var->getLocation(), Var->getLocation());
4130     Var->setInvalidDecl();
4131     return;
4132   }
4133
4134    // Do not attempt to type-check the default initializer for a
4135    // variable with dependent type.
4136    if (Type->isDependentType())
4137      return;
4138
4139    if (Var->isInvalidDecl())
4140      return;
4141
4142    if (RequireCompleteType(Var->getLocation(),
4143                            Context.getBaseElementType(Type),
4144                            diag::err_typecheck_decl_incomplete_type)) {
4145      Var->setInvalidDecl();
4146      return;
4147    }
4148
4149    // The variable can not have an abstract class type.
4150    if (RequireNonAbstractType(Var->getLocation(), Type,
4151                               diag::err_abstract_type_in_decl,
4152                               AbstractVariableType)) {
4153      Var->setInvalidDecl();
4154      return;
4155    }
4156
4157    const RecordType *Record
4158      = Context.getBaseElementType(Type)->getAs<RecordType>();
4159    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4160        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4161      // C++03 [dcl.init]p9:
4162      //   If no initializer is specified for an object, and the
4163      //   object is of (possibly cv-qualified) non-POD class type (or
4164      //   array thereof), the object shall be default-initialized; if
4165      //   the object is of const-qualified type, the underlying class
4166      //   type shall have a user-declared default
4167      //   constructor. Otherwise, if no initializer is specified for
4168      //   a non- static object, the object and its subobjects, if
4169      //   any, have an indeterminate initial value); if the object
4170      //   or any of its subobjects are of const-qualified type, the
4171      //   program is ill-formed.
4172      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4173    } else {
4174      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4175      InitializationKind Kind
4176        = InitializationKind::CreateDefault(Var->getLocation());
4177
4178      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4179      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4180                                              MultiExprArg(*this, 0, 0));
4181      if (Init.isInvalid())
4182        Var->setInvalidDecl();
4183      else if (Init.get())
4184        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4185    }
4186
4187    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4188      FinalizeVarWithDestructor(Var, Record);
4189  }
4190}
4191
4192Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4193                                                   DeclPtrTy *Group,
4194                                                   unsigned NumDecls) {
4195  llvm::SmallVector<Decl*, 8> Decls;
4196
4197  if (DS.isTypeSpecOwned())
4198    Decls.push_back((Decl*)DS.getTypeRep());
4199
4200  for (unsigned i = 0; i != NumDecls; ++i)
4201    if (Decl *D = Group[i].getAs<Decl>())
4202      Decls.push_back(D);
4203
4204  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4205                                                   Decls.data(), Decls.size()));
4206}
4207
4208
4209/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4210/// to introduce parameters into function prototype scope.
4211Sema::DeclPtrTy
4212Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4213  const DeclSpec &DS = D.getDeclSpec();
4214
4215  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4216  VarDecl::StorageClass StorageClass = VarDecl::None;
4217  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4218  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4219    StorageClass = VarDecl::Register;
4220    StorageClassAsWritten = VarDecl::Register;
4221  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4222    Diag(DS.getStorageClassSpecLoc(),
4223         diag::err_invalid_storage_class_in_func_decl);
4224    D.getMutableDeclSpec().ClearStorageClassSpecs();
4225  }
4226
4227  if (D.getDeclSpec().isThreadSpecified())
4228    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4229
4230  DiagnoseFunctionSpecifiers(D);
4231
4232  // Check that there are no default arguments inside the type of this
4233  // parameter (C++ only).
4234  if (getLangOptions().CPlusPlus)
4235    CheckExtraCXXDefaultArguments(D);
4236
4237  TypeSourceInfo *TInfo = 0;
4238  TagDecl *OwnedDecl = 0;
4239  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4240
4241  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4242    // C++ [dcl.fct]p6:
4243    //   Types shall not be defined in return or parameter types.
4244    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4245      << Context.getTypeDeclType(OwnedDecl);
4246  }
4247
4248  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4249  IdentifierInfo *II = D.getIdentifier();
4250  if (II) {
4251    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4252                   ForRedeclaration);
4253    LookupName(R, S);
4254    if (R.isSingleResult()) {
4255      NamedDecl *PrevDecl = R.getFoundDecl();
4256      if (PrevDecl->isTemplateParameter()) {
4257        // Maybe we will complain about the shadowed template parameter.
4258        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4259        // Just pretend that we didn't see the previous declaration.
4260        PrevDecl = 0;
4261      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4262        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4263        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4264
4265        // Recover by removing the name
4266        II = 0;
4267        D.SetIdentifier(0, D.getIdentifierLoc());
4268        D.setInvalidType(true);
4269      }
4270    }
4271  }
4272
4273  // Temporarily put parameter variables in the translation unit, not
4274  // the enclosing context.  This prevents them from accidentally
4275  // looking like class members in C++.
4276  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4277                                    TInfo, parmDeclType, II,
4278                                    D.getIdentifierLoc(),
4279                                    StorageClass, StorageClassAsWritten);
4280
4281  if (D.isInvalidType())
4282    New->setInvalidDecl();
4283
4284  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4285  if (D.getCXXScopeSpec().isSet()) {
4286    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4287      << D.getCXXScopeSpec().getRange();
4288    New->setInvalidDecl();
4289  }
4290
4291  // Add the parameter declaration into this scope.
4292  S->AddDecl(DeclPtrTy::make(New));
4293  if (II)
4294    IdResolver.AddDecl(New);
4295
4296  ProcessDeclAttributes(S, New, D);
4297
4298  if (New->hasAttr<BlocksAttr>()) {
4299    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4300  }
4301  return DeclPtrTy::make(New);
4302}
4303
4304ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4305                                  TypeSourceInfo *TSInfo, QualType T,
4306                                  IdentifierInfo *Name,
4307                                  SourceLocation NameLoc,
4308                                  VarDecl::StorageClass StorageClass,
4309                                  VarDecl::StorageClass StorageClassAsWritten) {
4310  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4311                                         adjustParameterType(T), TSInfo,
4312                                         StorageClass, StorageClassAsWritten,
4313                                         0);
4314
4315  // Parameters can not be abstract class types.
4316  // For record types, this is done by the AbstractClassUsageDiagnoser once
4317  // the class has been completely parsed.
4318  if (!CurContext->isRecord() &&
4319      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4320                             AbstractParamType))
4321    New->setInvalidDecl();
4322
4323  // Parameter declarators cannot be interface types. All ObjC objects are
4324  // passed by reference.
4325  if (T->isObjCInterfaceType()) {
4326    Diag(NameLoc,
4327         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4328    New->setInvalidDecl();
4329  }
4330
4331  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4332  // duration shall not be qualified by an address-space qualifier."
4333  // Since all parameters have automatic store duration, they can not have
4334  // an address space.
4335  if (T.getAddressSpace() != 0) {
4336    Diag(NameLoc, diag::err_arg_with_address_space);
4337    New->setInvalidDecl();
4338  }
4339
4340  return New;
4341}
4342
4343void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4344                                           SourceLocation LocAfterDecls) {
4345  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4346         "Not a function declarator!");
4347  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4348
4349  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4350  // for a K&R function.
4351  if (!FTI.hasPrototype) {
4352    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4353      --i;
4354      if (FTI.ArgInfo[i].Param == 0) {
4355        llvm::SmallString<256> Code;
4356        llvm::raw_svector_ostream(Code) << "  int "
4357                                        << FTI.ArgInfo[i].Ident->getName()
4358                                        << ";\n";
4359        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4360          << FTI.ArgInfo[i].Ident
4361          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4362
4363        // Implicitly declare the argument as type 'int' for lack of a better
4364        // type.
4365        DeclSpec DS;
4366        const char* PrevSpec; // unused
4367        unsigned DiagID; // unused
4368        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4369                           PrevSpec, DiagID);
4370        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4371        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4372        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4373      }
4374    }
4375  }
4376}
4377
4378Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4379                                              Declarator &D) {
4380  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4381  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4382         "Not a function declarator!");
4383  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4384
4385  if (FTI.hasPrototype) {
4386    // FIXME: Diagnose arguments without names in C.
4387  }
4388
4389  Scope *ParentScope = FnBodyScope->getParent();
4390
4391  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4392                                  MultiTemplateParamsArg(*this),
4393                                  /*IsFunctionDefinition=*/true);
4394  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4395}
4396
4397static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4398  // Don't warn about invalid declarations.
4399  if (FD->isInvalidDecl())
4400    return false;
4401
4402  // Or declarations that aren't global.
4403  if (!FD->isGlobal())
4404    return false;
4405
4406  // Don't warn about C++ member functions.
4407  if (isa<CXXMethodDecl>(FD))
4408    return false;
4409
4410  // Don't warn about 'main'.
4411  if (FD->isMain())
4412    return false;
4413
4414  // Don't warn about inline functions.
4415  if (FD->isInlineSpecified())
4416    return false;
4417
4418  // Don't warn about function templates.
4419  if (FD->getDescribedFunctionTemplate())
4420    return false;
4421
4422  // Don't warn about function template specializations.
4423  if (FD->isFunctionTemplateSpecialization())
4424    return false;
4425
4426  bool MissingPrototype = true;
4427  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4428       Prev; Prev = Prev->getPreviousDeclaration()) {
4429    // Ignore any declarations that occur in function or method
4430    // scope, because they aren't visible from the header.
4431    if (Prev->getDeclContext()->isFunctionOrMethod())
4432      continue;
4433
4434    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4435    break;
4436  }
4437
4438  return MissingPrototype;
4439}
4440
4441Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4442  // Clear the last template instantiation error context.
4443  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4444
4445  if (!D)
4446    return D;
4447  FunctionDecl *FD = 0;
4448
4449  if (FunctionTemplateDecl *FunTmpl
4450        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4451    FD = FunTmpl->getTemplatedDecl();
4452  else
4453    FD = cast<FunctionDecl>(D.getAs<Decl>());
4454
4455  // Enter a new function scope
4456  PushFunctionScope();
4457
4458  // See if this is a redefinition.
4459  // But don't complain if we're in GNU89 mode and the previous definition
4460  // was an extern inline function.
4461  const FunctionDecl *Definition;
4462  if (FD->getBody(Definition) &&
4463      !canRedefineFunction(Definition, getLangOptions())) {
4464    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4465    Diag(Definition->getLocation(), diag::note_previous_definition);
4466  }
4467
4468  // Builtin functions cannot be defined.
4469  if (unsigned BuiltinID = FD->getBuiltinID()) {
4470    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4471      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4472      FD->setInvalidDecl();
4473    }
4474  }
4475
4476  // The return type of a function definition must be complete
4477  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4478  QualType ResultType = FD->getResultType();
4479  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4480      !FD->isInvalidDecl() &&
4481      RequireCompleteType(FD->getLocation(), ResultType,
4482                          diag::err_func_def_incomplete_result))
4483    FD->setInvalidDecl();
4484
4485  // GNU warning -Wmissing-prototypes:
4486  //   Warn if a global function is defined without a previous
4487  //   prototype declaration. This warning is issued even if the
4488  //   definition itself provides a prototype. The aim is to detect
4489  //   global functions that fail to be declared in header files.
4490  if (ShouldWarnAboutMissingPrototype(FD))
4491    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4492
4493  if (FnBodyScope)
4494    PushDeclContext(FnBodyScope, FD);
4495
4496  // Check the validity of our function parameters
4497  CheckParmsForFunctionDef(FD);
4498
4499  bool ShouldCheckShadow =
4500    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4501
4502  // Introduce our parameters into the function scope
4503  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4504    ParmVarDecl *Param = FD->getParamDecl(p);
4505    Param->setOwningFunction(FD);
4506
4507    // If this has an identifier, add it to the scope stack.
4508    if (Param->getIdentifier() && FnBodyScope) {
4509      if (ShouldCheckShadow)
4510        CheckShadow(FnBodyScope, Param);
4511
4512      PushOnScopeChains(Param, FnBodyScope);
4513    }
4514  }
4515
4516  // Checking attributes of current function definition
4517  // dllimport attribute.
4518  if (FD->getAttr<DLLImportAttr>() &&
4519      (!FD->getAttr<DLLExportAttr>())) {
4520    // dllimport attribute cannot be applied to definition.
4521    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4522      Diag(FD->getLocation(),
4523           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4524        << "dllimport";
4525      FD->setInvalidDecl();
4526      return DeclPtrTy::make(FD);
4527    }
4528
4529    // Visual C++ appears to not think this is an issue, so only issue
4530    // a warning when Microsoft extensions are disabled.
4531    if (!LangOpts.Microsoft) {
4532      // If a symbol previously declared dllimport is later defined, the
4533      // attribute is ignored in subsequent references, and a warning is
4534      // emitted.
4535      Diag(FD->getLocation(),
4536           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4537        << FD->getNameAsCString() << "dllimport";
4538    }
4539  }
4540  return DeclPtrTy::make(FD);
4541}
4542
4543Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4544  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4545}
4546
4547Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4548                                              bool IsInstantiation) {
4549  Decl *dcl = D.getAs<Decl>();
4550  Stmt *Body = BodyArg.takeAs<Stmt>();
4551
4552  FunctionDecl *FD = 0;
4553  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4554  if (FunTmpl)
4555    FD = FunTmpl->getTemplatedDecl();
4556  else
4557    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4558
4559  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4560
4561  if (FD) {
4562    FD->setBody(Body);
4563    if (FD->isMain()) {
4564      // C and C++ allow for main to automagically return 0.
4565      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4566      FD->setHasImplicitReturnZero(true);
4567      WP.disableCheckFallThrough();
4568    }
4569
4570    if (!FD->isInvalidDecl())
4571      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4572
4573    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4574      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4575
4576    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4577  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4578    assert(MD == getCurMethodDecl() && "Method parsing confused");
4579    MD->setBody(Body);
4580    MD->setEndLoc(Body->getLocEnd());
4581    if (!MD->isInvalidDecl())
4582      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4583  } else {
4584    Body->Destroy(Context);
4585    return DeclPtrTy();
4586  }
4587
4588  // Verify and clean out per-function state.
4589
4590  // Check goto/label use.
4591  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4592       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4593    LabelStmt *L = I->second;
4594
4595    // Verify that we have no forward references left.  If so, there was a goto
4596    // or address of a label taken, but no definition of it.  Label fwd
4597    // definitions are indicated with a null substmt.
4598    if (L->getSubStmt() != 0)
4599      continue;
4600
4601    // Emit error.
4602    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4603
4604    // At this point, we have gotos that use the bogus label.  Stitch it into
4605    // the function body so that they aren't leaked and that the AST is well
4606    // formed.
4607    if (Body == 0) {
4608      // The whole function wasn't parsed correctly, just delete this.
4609      L->Destroy(Context);
4610      continue;
4611    }
4612
4613    // Otherwise, the body is valid: we want to stitch the label decl into the
4614    // function somewhere so that it is properly owned and so that the goto
4615    // has a valid target.  Do this by creating a new compound stmt with the
4616    // label in it.
4617
4618    // Give the label a sub-statement.
4619    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4620
4621    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4622                               cast<CXXTryStmt>(Body)->getTryBlock() :
4623                               cast<CompoundStmt>(Body);
4624    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4625                                          Compound->body_end());
4626    Elements.push_back(L);
4627    Compound->setStmts(Context, Elements.data(), Elements.size());
4628  }
4629
4630  if (Body) {
4631    // C++ constructors that have function-try-blocks can't have return
4632    // statements in the handlers of that block. (C++ [except.handle]p14)
4633    // Verify this.
4634    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4635      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4636
4637    // Verify that that gotos and switch cases don't jump into scopes illegally.
4638    // Verify that that gotos and switch cases don't jump into scopes illegally.
4639    if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
4640      DiagnoseInvalidJumps(Body);
4641
4642    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4643      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4644                                             Destructor->getParent());
4645
4646    // If any errors have occurred, clear out any temporaries that may have
4647    // been leftover. This ensures that these temporaries won't be picked up for
4648    // deletion in some later function.
4649    if (PP.getDiagnostics().hasErrorOccurred())
4650      ExprTemporaries.clear();
4651    else if (!isa<FunctionTemplateDecl>(dcl)) {
4652      // Since the body is valid, issue any analysis-based warnings that are
4653      // enabled.
4654      QualType ResultType;
4655      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4656        ResultType = FD->getResultType();
4657      }
4658      else {
4659        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4660        ResultType = MD->getResultType();
4661      }
4662      AnalysisWarnings.IssueWarnings(WP, dcl);
4663    }
4664
4665    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4666  }
4667
4668  if (!IsInstantiation)
4669    PopDeclContext();
4670
4671  PopFunctionOrBlockScope();
4672
4673  // If any errors have occurred, clear out any temporaries that may have
4674  // been leftover. This ensures that these temporaries won't be picked up for
4675  // deletion in some later function.
4676  if (getDiagnostics().hasErrorOccurred())
4677    ExprTemporaries.clear();
4678
4679  return D;
4680}
4681
4682/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4683/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4684NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4685                                          IdentifierInfo &II, Scope *S) {
4686  // Before we produce a declaration for an implicitly defined
4687  // function, see whether there was a locally-scoped declaration of
4688  // this name as a function or variable. If so, use that
4689  // (non-visible) declaration, and complain about it.
4690  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4691    = LocallyScopedExternalDecls.find(&II);
4692  if (Pos != LocallyScopedExternalDecls.end()) {
4693    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4694    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4695    return Pos->second;
4696  }
4697
4698  // Extension in C99.  Legal in C90, but warn about it.
4699  if (II.getName().startswith("__builtin_"))
4700    Diag(Loc, diag::warn_builtin_unknown) << &II;
4701  else if (getLangOptions().C99)
4702    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4703  else
4704    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4705
4706  // Set a Declarator for the implicit definition: int foo();
4707  const char *Dummy;
4708  DeclSpec DS;
4709  unsigned DiagID;
4710  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4711  Error = Error; // Silence warning.
4712  assert(!Error && "Error setting up implicit decl!");
4713  Declarator D(DS, Declarator::BlockContext);
4714  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4715                                             0, 0, false, SourceLocation(),
4716                                             false, 0,0,0, Loc, Loc, D),
4717                SourceLocation());
4718  D.SetIdentifier(&II, Loc);
4719
4720  // Insert this function into translation-unit scope.
4721
4722  DeclContext *PrevDC = CurContext;
4723  CurContext = Context.getTranslationUnitDecl();
4724
4725  FunctionDecl *FD =
4726 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4727  FD->setImplicit();
4728
4729  CurContext = PrevDC;
4730
4731  AddKnownFunctionAttributes(FD);
4732
4733  return FD;
4734}
4735
4736/// \brief Adds any function attributes that we know a priori based on
4737/// the declaration of this function.
4738///
4739/// These attributes can apply both to implicitly-declared builtins
4740/// (like __builtin___printf_chk) or to library-declared functions
4741/// like NSLog or printf.
4742void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4743  if (FD->isInvalidDecl())
4744    return;
4745
4746  // If this is a built-in function, map its builtin attributes to
4747  // actual attributes.
4748  if (unsigned BuiltinID = FD->getBuiltinID()) {
4749    // Handle printf-formatting attributes.
4750    unsigned FormatIdx;
4751    bool HasVAListArg;
4752    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4753      if (!FD->getAttr<FormatAttr>())
4754        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4755                                               HasVAListArg ? 0 : FormatIdx+2));
4756    }
4757
4758    // Mark const if we don't care about errno and that is the only
4759    // thing preventing the function from being const. This allows
4760    // IRgen to use LLVM intrinsics for such functions.
4761    if (!getLangOptions().MathErrno &&
4762        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4763      if (!FD->getAttr<ConstAttr>())
4764        FD->addAttr(::new (Context) ConstAttr());
4765    }
4766
4767    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4768      FD->setType(Context.getNoReturnType(FD->getType()));
4769    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4770      FD->addAttr(::new (Context) NoThrowAttr());
4771    if (Context.BuiltinInfo.isConst(BuiltinID))
4772      FD->addAttr(::new (Context) ConstAttr());
4773  }
4774
4775  IdentifierInfo *Name = FD->getIdentifier();
4776  if (!Name)
4777    return;
4778  if ((!getLangOptions().CPlusPlus &&
4779       FD->getDeclContext()->isTranslationUnit()) ||
4780      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4781       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4782       LinkageSpecDecl::lang_c)) {
4783    // Okay: this could be a libc/libm/Objective-C function we know
4784    // about.
4785  } else
4786    return;
4787
4788  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4789    // FIXME: NSLog and NSLogv should be target specific
4790    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4791      // FIXME: We known better than our headers.
4792      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4793    } else
4794      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4795                                             Name->isStr("NSLogv") ? 0 : 2));
4796  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4797    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4798    // target-specific builtins, perhaps?
4799    if (!FD->getAttr<FormatAttr>())
4800      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4801                                             Name->isStr("vasprintf") ? 0 : 3));
4802  }
4803}
4804
4805TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4806                                    TypeSourceInfo *TInfo) {
4807  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4808  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4809
4810  if (!TInfo) {
4811    assert(D.isInvalidType() && "no declarator info for valid type");
4812    TInfo = Context.getTrivialTypeSourceInfo(T);
4813  }
4814
4815  // Scope manipulation handled by caller.
4816  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4817                                           D.getIdentifierLoc(),
4818                                           D.getIdentifier(),
4819                                           TInfo);
4820
4821  if (const TagType *TT = T->getAs<TagType>()) {
4822    TagDecl *TD = TT->getDecl();
4823
4824    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4825    // keep track of the TypedefDecl.
4826    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4827      TD->setTypedefForAnonDecl(NewTD);
4828  }
4829
4830  if (D.isInvalidType())
4831    NewTD->setInvalidDecl();
4832  return NewTD;
4833}
4834
4835
4836/// \brief Determine whether a tag with a given kind is acceptable
4837/// as a redeclaration of the given tag declaration.
4838///
4839/// \returns true if the new tag kind is acceptable, false otherwise.
4840bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4841                                        TagDecl::TagKind NewTag,
4842                                        SourceLocation NewTagLoc,
4843                                        const IdentifierInfo &Name) {
4844  // C++ [dcl.type.elab]p3:
4845  //   The class-key or enum keyword present in the
4846  //   elaborated-type-specifier shall agree in kind with the
4847  //   declaration to which the name in theelaborated-type-specifier
4848  //   refers. This rule also applies to the form of
4849  //   elaborated-type-specifier that declares a class-name or
4850  //   friend class since it can be construed as referring to the
4851  //   definition of the class. Thus, in any
4852  //   elaborated-type-specifier, the enum keyword shall be used to
4853  //   refer to an enumeration (7.2), the union class-keyshall be
4854  //   used to refer to a union (clause 9), and either the class or
4855  //   struct class-key shall be used to refer to a class (clause 9)
4856  //   declared using the class or struct class-key.
4857  TagDecl::TagKind OldTag = Previous->getTagKind();
4858  if (OldTag == NewTag)
4859    return true;
4860
4861  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4862      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4863    // Warn about the struct/class tag mismatch.
4864    bool isTemplate = false;
4865    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4866      isTemplate = Record->getDescribedClassTemplate();
4867
4868    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4869      << (NewTag == TagDecl::TK_class)
4870      << isTemplate << &Name
4871      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4872                              OldTag == TagDecl::TK_class? "class" : "struct");
4873    Diag(Previous->getLocation(), diag::note_previous_use);
4874    return true;
4875  }
4876  return false;
4877}
4878
4879/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4880/// former case, Name will be non-null.  In the later case, Name will be null.
4881/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4882/// reference/declaration/definition of a tag.
4883Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4884                               SourceLocation KWLoc, CXXScopeSpec &SS,
4885                               IdentifierInfo *Name, SourceLocation NameLoc,
4886                               AttributeList *Attr, AccessSpecifier AS,
4887                               MultiTemplateParamsArg TemplateParameterLists,
4888                               bool &OwnedDecl, bool &IsDependent) {
4889  // If this is not a definition, it must have a name.
4890  assert((Name != 0 || TUK == TUK_Definition) &&
4891         "Nameless record must be a definition!");
4892
4893  OwnedDecl = false;
4894  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4895
4896  // FIXME: Check explicit specializations more carefully.
4897  bool isExplicitSpecialization = false;
4898  if (TUK != TUK_Reference) {
4899    if (TemplateParameterList *TemplateParams
4900          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4901                        (TemplateParameterList**)TemplateParameterLists.get(),
4902                                              TemplateParameterLists.size(),
4903                                                    TUK == TUK_Friend,
4904                                                    isExplicitSpecialization)) {
4905      if (TemplateParams->size() > 0) {
4906        // This is a declaration or definition of a class template (which may
4907        // be a member of another template).
4908        OwnedDecl = false;
4909        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4910                                               SS, Name, NameLoc, Attr,
4911                                               TemplateParams,
4912                                               AS);
4913        TemplateParameterLists.release();
4914        return Result.get();
4915      } else {
4916        // The "template<>" header is extraneous.
4917        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4918          << ElaboratedType::getNameForTagKind(Kind) << Name;
4919        isExplicitSpecialization = true;
4920      }
4921    }
4922
4923    TemplateParameterLists.release();
4924  }
4925
4926  DeclContext *SearchDC = CurContext;
4927  DeclContext *DC = CurContext;
4928  bool isStdBadAlloc = false;
4929  bool Invalid = false;
4930
4931  RedeclarationKind Redecl = ForRedeclaration;
4932  if (TUK == TUK_Friend || TUK == TUK_Reference)
4933    Redecl = NotForRedeclaration;
4934
4935  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4936
4937  if (Name && SS.isNotEmpty()) {
4938    // We have a nested-name tag ('struct foo::bar').
4939
4940    // Check for invalid 'foo::'.
4941    if (SS.isInvalid()) {
4942      Name = 0;
4943      goto CreateNewDecl;
4944    }
4945
4946    // If this is a friend or a reference to a class in a dependent
4947    // context, don't try to make a decl for it.
4948    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4949      DC = computeDeclContext(SS, false);
4950      if (!DC) {
4951        IsDependent = true;
4952        return DeclPtrTy();
4953      }
4954    } else {
4955      DC = computeDeclContext(SS, true);
4956      if (!DC) {
4957        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
4958          << SS.getRange();
4959        return DeclPtrTy();
4960      }
4961    }
4962
4963    if (RequireCompleteDeclContext(SS, DC))
4964      return DeclPtrTy::make((Decl *)0);
4965
4966    SearchDC = DC;
4967    // Look-up name inside 'foo::'.
4968    LookupQualifiedName(Previous, DC);
4969
4970    if (Previous.isAmbiguous())
4971      return DeclPtrTy();
4972
4973    if (Previous.empty()) {
4974      // Name lookup did not find anything. However, if the
4975      // nested-name-specifier refers to the current instantiation,
4976      // and that current instantiation has any dependent base
4977      // classes, we might find something at instantiation time: treat
4978      // this as a dependent elaborated-type-specifier.
4979      if (Previous.wasNotFoundInCurrentInstantiation()) {
4980        IsDependent = true;
4981        return DeclPtrTy();
4982      }
4983
4984      // A tag 'foo::bar' must already exist.
4985      Diag(NameLoc, diag::err_not_tag_in_scope)
4986        << Kind << Name << DC << SS.getRange();
4987      Name = 0;
4988      Invalid = true;
4989      goto CreateNewDecl;
4990    }
4991  } else if (Name) {
4992    // If this is a named struct, check to see if there was a previous forward
4993    // declaration or definition.
4994    // FIXME: We're looking into outer scopes here, even when we
4995    // shouldn't be. Doing so can result in ambiguities that we
4996    // shouldn't be diagnosing.
4997    LookupName(Previous, S);
4998
4999    // Note:  there used to be some attempt at recovery here.
5000    if (Previous.isAmbiguous())
5001      return DeclPtrTy();
5002
5003    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5004      // FIXME: This makes sure that we ignore the contexts associated
5005      // with C structs, unions, and enums when looking for a matching
5006      // tag declaration or definition. See the similar lookup tweak
5007      // in Sema::LookupName; is there a better way to deal with this?
5008      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5009        SearchDC = SearchDC->getParent();
5010    }
5011  }
5012
5013  if (Previous.isSingleResult() &&
5014      Previous.getFoundDecl()->isTemplateParameter()) {
5015    // Maybe we will complain about the shadowed template parameter.
5016    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5017    // Just pretend that we didn't see the previous declaration.
5018    Previous.clear();
5019  }
5020
5021  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5022      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5023    // This is a declaration of or a reference to "std::bad_alloc".
5024    isStdBadAlloc = true;
5025
5026    if (Previous.empty() && StdBadAlloc) {
5027      // std::bad_alloc has been implicitly declared (but made invisible to
5028      // name lookup). Fill in this implicit declaration as the previous
5029      // declaration, so that the declarations get chained appropriately.
5030      Previous.addDecl(StdBadAlloc);
5031    }
5032  }
5033
5034  // If we didn't find a previous declaration, and this is a reference
5035  // (or friend reference), move to the correct scope.  In C++, we
5036  // also need to do a redeclaration lookup there, just in case
5037  // there's a shadow friend decl.
5038  if (Name && Previous.empty() &&
5039      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5040    if (Invalid) goto CreateNewDecl;
5041    assert(SS.isEmpty());
5042
5043    if (TUK == TUK_Reference) {
5044      // C++ [basic.scope.pdecl]p5:
5045      //   -- for an elaborated-type-specifier of the form
5046      //
5047      //          class-key identifier
5048      //
5049      //      if the elaborated-type-specifier is used in the
5050      //      decl-specifier-seq or parameter-declaration-clause of a
5051      //      function defined in namespace scope, the identifier is
5052      //      declared as a class-name in the namespace that contains
5053      //      the declaration; otherwise, except as a friend
5054      //      declaration, the identifier is declared in the smallest
5055      //      non-class, non-function-prototype scope that contains the
5056      //      declaration.
5057      //
5058      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5059      // C structs and unions.
5060      //
5061      // It is an error in C++ to declare (rather than define) an enum
5062      // type, including via an elaborated type specifier.  We'll
5063      // diagnose that later; for now, declare the enum in the same
5064      // scope as we would have picked for any other tag type.
5065      //
5066      // GNU C also supports this behavior as part of its incomplete
5067      // enum types extension, while GNU C++ does not.
5068      //
5069      // Find the context where we'll be declaring the tag.
5070      // FIXME: We would like to maintain the current DeclContext as the
5071      // lexical context,
5072      while (SearchDC->isRecord())
5073        SearchDC = SearchDC->getParent();
5074
5075      // Find the scope where we'll be declaring the tag.
5076      while (S->isClassScope() ||
5077             (getLangOptions().CPlusPlus &&
5078              S->isFunctionPrototypeScope()) ||
5079             ((S->getFlags() & Scope::DeclScope) == 0) ||
5080             (S->getEntity() &&
5081              ((DeclContext *)S->getEntity())->isTransparentContext()))
5082        S = S->getParent();
5083    } else {
5084      assert(TUK == TUK_Friend);
5085      // C++ [namespace.memdef]p3:
5086      //   If a friend declaration in a non-local class first declares a
5087      //   class or function, the friend class or function is a member of
5088      //   the innermost enclosing namespace.
5089      SearchDC = SearchDC->getEnclosingNamespaceContext();
5090    }
5091
5092    // In C++, we need to do a redeclaration lookup to properly
5093    // diagnose some problems.
5094    if (getLangOptions().CPlusPlus) {
5095      Previous.setRedeclarationKind(ForRedeclaration);
5096      LookupQualifiedName(Previous, SearchDC);
5097    }
5098  }
5099
5100  if (!Previous.empty()) {
5101    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5102
5103    // It's okay to have a tag decl in the same scope as a typedef
5104    // which hides a tag decl in the same scope.  Finding this
5105    // insanity with a redeclaration lookup can only actually happen
5106    // in C++.
5107    //
5108    // This is also okay for elaborated-type-specifiers, which is
5109    // technically forbidden by the current standard but which is
5110    // okay according to the likely resolution of an open issue;
5111    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5112    if (getLangOptions().CPlusPlus) {
5113      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5114        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5115          TagDecl *Tag = TT->getDecl();
5116          if (Tag->getDeclName() == Name &&
5117              Tag->getDeclContext()->getLookupContext()
5118                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5119            PrevDecl = Tag;
5120            Previous.clear();
5121            Previous.addDecl(Tag);
5122          }
5123        }
5124      }
5125    }
5126
5127    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5128      // If this is a use of a previous tag, or if the tag is already declared
5129      // in the same scope (so that the definition/declaration completes or
5130      // rementions the tag), reuse the decl.
5131      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5132          isDeclInScope(PrevDecl, SearchDC, S)) {
5133        // Make sure that this wasn't declared as an enum and now used as a
5134        // struct or something similar.
5135        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5136          bool SafeToContinue
5137            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
5138               Kind != TagDecl::TK_enum);
5139          if (SafeToContinue)
5140            Diag(KWLoc, diag::err_use_with_wrong_tag)
5141              << Name
5142              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5143                                              PrevTagDecl->getKindName());
5144          else
5145            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5146          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5147
5148          if (SafeToContinue)
5149            Kind = PrevTagDecl->getTagKind();
5150          else {
5151            // Recover by making this an anonymous redefinition.
5152            Name = 0;
5153            Previous.clear();
5154            Invalid = true;
5155          }
5156        }
5157
5158        if (!Invalid) {
5159          // If this is a use, just return the declaration we found.
5160
5161          // FIXME: In the future, return a variant or some other clue
5162          // for the consumer of this Decl to know it doesn't own it.
5163          // For our current ASTs this shouldn't be a problem, but will
5164          // need to be changed with DeclGroups.
5165          if (TUK == TUK_Reference || TUK == TUK_Friend)
5166            return DeclPtrTy::make(PrevTagDecl);
5167
5168          // Diagnose attempts to redefine a tag.
5169          if (TUK == TUK_Definition) {
5170            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5171              // If we're defining a specialization and the previous definition
5172              // is from an implicit instantiation, don't emit an error
5173              // here; we'll catch this in the general case below.
5174              if (!isExplicitSpecialization ||
5175                  !isa<CXXRecordDecl>(Def) ||
5176                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5177                                               == TSK_ExplicitSpecialization) {
5178                Diag(NameLoc, diag::err_redefinition) << Name;
5179                Diag(Def->getLocation(), diag::note_previous_definition);
5180                // If this is a redefinition, recover by making this
5181                // struct be anonymous, which will make any later
5182                // references get the previous definition.
5183                Name = 0;
5184                Previous.clear();
5185                Invalid = true;
5186              }
5187            } else {
5188              // If the type is currently being defined, complain
5189              // about a nested redefinition.
5190              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5191              if (Tag->isBeingDefined()) {
5192                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5193                Diag(PrevTagDecl->getLocation(),
5194                     diag::note_previous_definition);
5195                Name = 0;
5196                Previous.clear();
5197                Invalid = true;
5198              }
5199            }
5200
5201            // Okay, this is definition of a previously declared or referenced
5202            // tag PrevDecl. We're going to create a new Decl for it.
5203          }
5204        }
5205        // If we get here we have (another) forward declaration or we
5206        // have a definition.  Just create a new decl.
5207
5208      } else {
5209        // If we get here, this is a definition of a new tag type in a nested
5210        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5211        // new decl/type.  We set PrevDecl to NULL so that the entities
5212        // have distinct types.
5213        Previous.clear();
5214      }
5215      // If we get here, we're going to create a new Decl. If PrevDecl
5216      // is non-NULL, it's a definition of the tag declared by
5217      // PrevDecl. If it's NULL, we have a new definition.
5218
5219
5220    // Otherwise, PrevDecl is not a tag, but was found with tag
5221    // lookup.  This is only actually possible in C++, where a few
5222    // things like templates still live in the tag namespace.
5223    } else {
5224      assert(getLangOptions().CPlusPlus);
5225
5226      // Use a better diagnostic if an elaborated-type-specifier
5227      // found the wrong kind of type on the first
5228      // (non-redeclaration) lookup.
5229      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5230          !Previous.isForRedeclaration()) {
5231        unsigned Kind = 0;
5232        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5233        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5234        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5235        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5236        Invalid = true;
5237
5238      // Otherwise, only diagnose if the declaration is in scope.
5239      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5240        // do nothing
5241
5242      // Diagnose implicit declarations introduced by elaborated types.
5243      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5244        unsigned Kind = 0;
5245        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5246        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5247        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5248        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5249        Invalid = true;
5250
5251      // Otherwise it's a declaration.  Call out a particularly common
5252      // case here.
5253      } else if (isa<TypedefDecl>(PrevDecl)) {
5254        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5255          << Name
5256          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5257        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5258        Invalid = true;
5259
5260      // Otherwise, diagnose.
5261      } else {
5262        // The tag name clashes with something else in the target scope,
5263        // issue an error and recover by making this tag be anonymous.
5264        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5265        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5266        Name = 0;
5267        Invalid = true;
5268      }
5269
5270      // The existing declaration isn't relevant to us; we're in a
5271      // new scope, so clear out the previous declaration.
5272      Previous.clear();
5273    }
5274  }
5275
5276CreateNewDecl:
5277
5278  TagDecl *PrevDecl = 0;
5279  if (Previous.isSingleResult())
5280    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5281
5282  // If there is an identifier, use the location of the identifier as the
5283  // location of the decl, otherwise use the location of the struct/union
5284  // keyword.
5285  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5286
5287  // Otherwise, create a new declaration. If there is a previous
5288  // declaration of the same entity, the two will be linked via
5289  // PrevDecl.
5290  TagDecl *New;
5291
5292  if (Kind == TagDecl::TK_enum) {
5293    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5294    // enum X { A, B, C } D;    D should chain to X.
5295    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5296                           cast_or_null<EnumDecl>(PrevDecl));
5297    // If this is an undefined enum, warn.
5298    if (TUK != TUK_Definition && !Invalid)  {
5299      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5300                                              : diag::ext_forward_ref_enum;
5301      Diag(Loc, DK);
5302    }
5303  } else {
5304    // struct/union/class
5305
5306    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5307    // struct X { int A; } D;    D should chain to X.
5308    if (getLangOptions().CPlusPlus) {
5309      // FIXME: Look for a way to use RecordDecl for simple structs.
5310      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5311                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5312
5313      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5314        StdBadAlloc = cast<CXXRecordDecl>(New);
5315    } else
5316      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5317                               cast_or_null<RecordDecl>(PrevDecl));
5318  }
5319
5320  // Maybe add qualifier info.
5321  if (SS.isNotEmpty()) {
5322    NestedNameSpecifier *NNS
5323      = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5324    New->setQualifierInfo(NNS, SS.getRange());
5325  }
5326
5327  if (Kind != TagDecl::TK_enum) {
5328    // Handle #pragma pack: if the #pragma pack stack has non-default
5329    // alignment, make up a packed attribute for this decl. These
5330    // attributes are checked when the ASTContext lays out the
5331    // structure.
5332    //
5333    // It is important for implementing the correct semantics that this
5334    // happen here (in act on tag decl). The #pragma pack stack is
5335    // maintained as a result of parser callbacks which can occur at
5336    // many points during the parsing of a struct declaration (because
5337    // the #pragma tokens are effectively skipped over during the
5338    // parsing of the struct).
5339    if (unsigned Alignment = getPragmaPackAlignment())
5340      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5341  }
5342
5343  // If this is a specialization of a member class (of a class template),
5344  // check the specialization.
5345  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5346    Invalid = true;
5347
5348  if (Invalid)
5349    New->setInvalidDecl();
5350
5351  if (Attr)
5352    ProcessDeclAttributeList(S, New, Attr);
5353
5354  // If we're declaring or defining a tag in function prototype scope
5355  // in C, note that this type can only be used within the function.
5356  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5357    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5358
5359  // Set the lexical context. If the tag has a C++ scope specifier, the
5360  // lexical context will be different from the semantic context.
5361  New->setLexicalDeclContext(CurContext);
5362
5363  // Mark this as a friend decl if applicable.
5364  if (TUK == TUK_Friend)
5365    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5366
5367  // Set the access specifier.
5368  if (!Invalid && SearchDC->isRecord())
5369    SetMemberAccessSpecifier(New, PrevDecl, AS);
5370
5371  if (TUK == TUK_Definition)
5372    New->startDefinition();
5373
5374  // If this has an identifier, add it to the scope stack.
5375  if (TUK == TUK_Friend) {
5376    // We might be replacing an existing declaration in the lookup tables;
5377    // if so, borrow its access specifier.
5378    if (PrevDecl)
5379      New->setAccess(PrevDecl->getAccess());
5380
5381    DeclContext *DC = New->getDeclContext()->getLookupContext();
5382    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5383    if (Name) // can be null along some error paths
5384      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5385        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5386  } else if (Name) {
5387    S = getNonFieldDeclScope(S);
5388    PushOnScopeChains(New, S);
5389  } else {
5390    CurContext->addDecl(New);
5391  }
5392
5393  // If this is the C FILE type, notify the AST context.
5394  if (IdentifierInfo *II = New->getIdentifier())
5395    if (!New->isInvalidDecl() &&
5396        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5397        II->isStr("FILE"))
5398      Context.setFILEDecl(New);
5399
5400  OwnedDecl = true;
5401  return DeclPtrTy::make(New);
5402}
5403
5404void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5405  AdjustDeclIfTemplate(TagD);
5406  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5407
5408  // Enter the tag context.
5409  PushDeclContext(S, Tag);
5410}
5411
5412void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5413                                           SourceLocation LBraceLoc) {
5414  AdjustDeclIfTemplate(TagD);
5415  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5416
5417  FieldCollector->StartClass();
5418
5419  if (!Record->getIdentifier())
5420    return;
5421
5422  // C++ [class]p2:
5423  //   [...] The class-name is also inserted into the scope of the
5424  //   class itself; this is known as the injected-class-name. For
5425  //   purposes of access checking, the injected-class-name is treated
5426  //   as if it were a public member name.
5427  CXXRecordDecl *InjectedClassName
5428    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5429                            CurContext, Record->getLocation(),
5430                            Record->getIdentifier(),
5431                            Record->getTagKeywordLoc(),
5432                            Record);
5433  InjectedClassName->setImplicit();
5434  InjectedClassName->setAccess(AS_public);
5435  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5436      InjectedClassName->setDescribedClassTemplate(Template);
5437  PushOnScopeChains(InjectedClassName, S);
5438  assert(InjectedClassName->isInjectedClassName() &&
5439         "Broken injected-class-name");
5440}
5441
5442// Traverses the class and any nested classes, making a note of any
5443// dynamic classes that have no key function so that we can mark all of
5444// their virtual member functions as "used" at the end of the translation
5445// unit. This ensures that all functions needed by the vtable will get
5446// instantiated/synthesized.
5447static void
5448RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5449                                      SourceLocation Loc) {
5450  // We don't look at dependent or undefined classes.
5451  if (Record->isDependentContext() || !Record->isDefinition())
5452    return;
5453
5454  if (Record->isDynamicClass()) {
5455    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
5456
5457    if (!KeyFunction)
5458      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5459                                                                   Loc));
5460
5461    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
5462        && Record->getLinkage() == ExternalLinkage)
5463      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
5464  }
5465  for (DeclContext::decl_iterator D = Record->decls_begin(),
5466                               DEnd = Record->decls_end();
5467       D != DEnd; ++D) {
5468    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5469      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5470  }
5471}
5472
5473void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5474                                    SourceLocation RBraceLoc) {
5475  AdjustDeclIfTemplate(TagD);
5476  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5477  Tag->setRBraceLoc(RBraceLoc);
5478
5479  if (isa<CXXRecordDecl>(Tag))
5480    FieldCollector->FinishClass();
5481
5482  // Exit this scope of this tag's definition.
5483  PopDeclContext();
5484
5485  if (isa<CXXRecordDecl>(Tag) && !Tag->getLexicalDeclContext()->isRecord())
5486    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5487                                          RBraceLoc);
5488
5489  // Notify the consumer that we've defined a tag.
5490  Consumer.HandleTagDeclDefinition(Tag);
5491}
5492
5493void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5494  AdjustDeclIfTemplate(TagD);
5495  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5496  Tag->setInvalidDecl();
5497
5498  // We're undoing ActOnTagStartDefinition here, not
5499  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5500  // the FieldCollector.
5501
5502  PopDeclContext();
5503}
5504
5505// Note that FieldName may be null for anonymous bitfields.
5506bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5507                          QualType FieldTy, const Expr *BitWidth,
5508                          bool *ZeroWidth) {
5509  // Default to true; that shouldn't confuse checks for emptiness
5510  if (ZeroWidth)
5511    *ZeroWidth = true;
5512
5513  // C99 6.7.2.1p4 - verify the field type.
5514  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5515  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5516    // Handle incomplete types with specific error.
5517    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5518      return true;
5519    if (FieldName)
5520      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5521        << FieldName << FieldTy << BitWidth->getSourceRange();
5522    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5523      << FieldTy << BitWidth->getSourceRange();
5524  }
5525
5526  // If the bit-width is type- or value-dependent, don't try to check
5527  // it now.
5528  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5529    return false;
5530
5531  llvm::APSInt Value;
5532  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5533    return true;
5534
5535  if (Value != 0 && ZeroWidth)
5536    *ZeroWidth = false;
5537
5538  // Zero-width bitfield is ok for anonymous field.
5539  if (Value == 0 && FieldName)
5540    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5541
5542  if (Value.isSigned() && Value.isNegative()) {
5543    if (FieldName)
5544      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5545               << FieldName << Value.toString(10);
5546    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5547      << Value.toString(10);
5548  }
5549
5550  if (!FieldTy->isDependentType()) {
5551    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5552    if (Value.getZExtValue() > TypeSize) {
5553      if (!getLangOptions().CPlusPlus) {
5554        if (FieldName)
5555          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5556            << FieldName << (unsigned)Value.getZExtValue()
5557            << (unsigned)TypeSize;
5558
5559        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5560          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5561      }
5562
5563      if (FieldName)
5564        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5565          << FieldName << (unsigned)Value.getZExtValue()
5566          << (unsigned)TypeSize;
5567      else
5568        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5569          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5570    }
5571  }
5572
5573  return false;
5574}
5575
5576/// ActOnField - Each field of a struct/union/class is passed into this in order
5577/// to create a FieldDecl object for it.
5578Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5579                                 SourceLocation DeclStart,
5580                                 Declarator &D, ExprTy *BitfieldWidth) {
5581  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5582                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5583                               AS_public);
5584  return DeclPtrTy::make(Res);
5585}
5586
5587/// HandleField - Analyze a field of a C struct or a C++ data member.
5588///
5589FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5590                             SourceLocation DeclStart,
5591                             Declarator &D, Expr *BitWidth,
5592                             AccessSpecifier AS) {
5593  IdentifierInfo *II = D.getIdentifier();
5594  SourceLocation Loc = DeclStart;
5595  if (II) Loc = D.getIdentifierLoc();
5596
5597  TypeSourceInfo *TInfo = 0;
5598  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5599  if (getLangOptions().CPlusPlus)
5600    CheckExtraCXXDefaultArguments(D);
5601
5602  DiagnoseFunctionSpecifiers(D);
5603
5604  if (D.getDeclSpec().isThreadSpecified())
5605    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5606
5607  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5608                                         ForRedeclaration);
5609
5610  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5611    // Maybe we will complain about the shadowed template parameter.
5612    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5613    // Just pretend that we didn't see the previous declaration.
5614    PrevDecl = 0;
5615  }
5616
5617  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5618    PrevDecl = 0;
5619
5620  bool Mutable
5621    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5622  SourceLocation TSSL = D.getSourceRange().getBegin();
5623  FieldDecl *NewFD
5624    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5625                     AS, PrevDecl, &D);
5626
5627  if (NewFD->isInvalidDecl())
5628    Record->setInvalidDecl();
5629
5630  if (NewFD->isInvalidDecl() && PrevDecl) {
5631    // Don't introduce NewFD into scope; there's already something
5632    // with the same name in the same scope.
5633  } else if (II) {
5634    PushOnScopeChains(NewFD, S);
5635  } else
5636    Record->addDecl(NewFD);
5637
5638  return NewFD;
5639}
5640
5641/// \brief Build a new FieldDecl and check its well-formedness.
5642///
5643/// This routine builds a new FieldDecl given the fields name, type,
5644/// record, etc. \p PrevDecl should refer to any previous declaration
5645/// with the same name and in the same scope as the field to be
5646/// created.
5647///
5648/// \returns a new FieldDecl.
5649///
5650/// \todo The Declarator argument is a hack. It will be removed once
5651FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5652                                TypeSourceInfo *TInfo,
5653                                RecordDecl *Record, SourceLocation Loc,
5654                                bool Mutable, Expr *BitWidth,
5655                                SourceLocation TSSL,
5656                                AccessSpecifier AS, NamedDecl *PrevDecl,
5657                                Declarator *D) {
5658  IdentifierInfo *II = Name.getAsIdentifierInfo();
5659  bool InvalidDecl = false;
5660  if (D) InvalidDecl = D->isInvalidType();
5661
5662  // If we receive a broken type, recover by assuming 'int' and
5663  // marking this declaration as invalid.
5664  if (T.isNull()) {
5665    InvalidDecl = true;
5666    T = Context.IntTy;
5667  }
5668
5669  QualType EltTy = Context.getBaseElementType(T);
5670  if (!EltTy->isDependentType() &&
5671      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5672    InvalidDecl = true;
5673
5674  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5675  // than a variably modified type.
5676  if (!InvalidDecl && T->isVariablyModifiedType()) {
5677    bool SizeIsNegative;
5678    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5679                                                           SizeIsNegative);
5680    if (!FixedTy.isNull()) {
5681      Diag(Loc, diag::warn_illegal_constant_array_size);
5682      T = FixedTy;
5683    } else {
5684      if (SizeIsNegative)
5685        Diag(Loc, diag::err_typecheck_negative_array_size);
5686      else
5687        Diag(Loc, diag::err_typecheck_field_variable_size);
5688      InvalidDecl = true;
5689    }
5690  }
5691
5692  // Fields can not have abstract class types
5693  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5694                                             diag::err_abstract_type_in_decl,
5695                                             AbstractFieldType))
5696    InvalidDecl = true;
5697
5698  bool ZeroWidth = false;
5699  // If this is declared as a bit-field, check the bit-field.
5700  if (!InvalidDecl && BitWidth &&
5701      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5702    InvalidDecl = true;
5703    DeleteExpr(BitWidth);
5704    BitWidth = 0;
5705    ZeroWidth = false;
5706  }
5707
5708  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5709                                       BitWidth, Mutable);
5710  if (InvalidDecl)
5711    NewFD->setInvalidDecl();
5712
5713  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5714    Diag(Loc, diag::err_duplicate_member) << II;
5715    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5716    NewFD->setInvalidDecl();
5717  }
5718
5719  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5720    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5721
5722    if (!T->isPODType())
5723      CXXRecord->setPOD(false);
5724    if (!ZeroWidth)
5725      CXXRecord->setEmpty(false);
5726
5727    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5728      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5729
5730      if (!RDecl->hasTrivialConstructor())
5731        CXXRecord->setHasTrivialConstructor(false);
5732      if (!RDecl->hasTrivialCopyConstructor())
5733        CXXRecord->setHasTrivialCopyConstructor(false);
5734      if (!RDecl->hasTrivialCopyAssignment())
5735        CXXRecord->setHasTrivialCopyAssignment(false);
5736      if (!RDecl->hasTrivialDestructor())
5737        CXXRecord->setHasTrivialDestructor(false);
5738
5739      // C++ 9.5p1: An object of a class with a non-trivial
5740      // constructor, a non-trivial copy constructor, a non-trivial
5741      // destructor, or a non-trivial copy assignment operator
5742      // cannot be a member of a union, nor can an array of such
5743      // objects.
5744      // TODO: C++0x alters this restriction significantly.
5745      if (Record->isUnion()) {
5746        // We check for copy constructors before constructors
5747        // because otherwise we'll never get complaints about
5748        // copy constructors.
5749
5750        CXXSpecialMember member = CXXInvalid;
5751        if (!RDecl->hasTrivialCopyConstructor())
5752          member = CXXCopyConstructor;
5753        else if (!RDecl->hasTrivialConstructor())
5754          member = CXXConstructor;
5755        else if (!RDecl->hasTrivialCopyAssignment())
5756          member = CXXCopyAssignment;
5757        else if (!RDecl->hasTrivialDestructor())
5758          member = CXXDestructor;
5759
5760        if (member != CXXInvalid) {
5761          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5762          DiagnoseNontrivial(RT, member);
5763          NewFD->setInvalidDecl();
5764        }
5765      }
5766    }
5767  }
5768
5769  // FIXME: We need to pass in the attributes given an AST
5770  // representation, not a parser representation.
5771  if (D)
5772    // FIXME: What to pass instead of TUScope?
5773    ProcessDeclAttributes(TUScope, NewFD, *D);
5774
5775  if (T.isObjCGCWeak())
5776    Diag(Loc, diag::warn_attribute_weak_on_field);
5777
5778  NewFD->setAccess(AS);
5779
5780  // C++ [dcl.init.aggr]p1:
5781  //   An aggregate is an array or a class (clause 9) with [...] no
5782  //   private or protected non-static data members (clause 11).
5783  // A POD must be an aggregate.
5784  if (getLangOptions().CPlusPlus &&
5785      (AS == AS_private || AS == AS_protected)) {
5786    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5787    CXXRecord->setAggregate(false);
5788    CXXRecord->setPOD(false);
5789  }
5790
5791  return NewFD;
5792}
5793
5794/// DiagnoseNontrivial - Given that a class has a non-trivial
5795/// special member, figure out why.
5796void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5797  QualType QT(T, 0U);
5798  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5799
5800  // Check whether the member was user-declared.
5801  switch (member) {
5802  case CXXInvalid:
5803    break;
5804
5805  case CXXConstructor:
5806    if (RD->hasUserDeclaredConstructor()) {
5807      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5808      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5809        const FunctionDecl *body = 0;
5810        ci->getBody(body);
5811        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5812          SourceLocation CtorLoc = ci->getLocation();
5813          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5814          return;
5815        }
5816      }
5817
5818      assert(0 && "found no user-declared constructors");
5819      return;
5820    }
5821    break;
5822
5823  case CXXCopyConstructor:
5824    if (RD->hasUserDeclaredCopyConstructor()) {
5825      SourceLocation CtorLoc =
5826        RD->getCopyConstructor(Context, 0)->getLocation();
5827      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5828      return;
5829    }
5830    break;
5831
5832  case CXXCopyAssignment:
5833    if (RD->hasUserDeclaredCopyAssignment()) {
5834      // FIXME: this should use the location of the copy
5835      // assignment, not the type.
5836      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5837      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5838      return;
5839    }
5840    break;
5841
5842  case CXXDestructor:
5843    if (RD->hasUserDeclaredDestructor()) {
5844      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5845      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5846      return;
5847    }
5848    break;
5849  }
5850
5851  typedef CXXRecordDecl::base_class_iterator base_iter;
5852
5853  // Virtual bases and members inhibit trivial copying/construction,
5854  // but not trivial destruction.
5855  if (member != CXXDestructor) {
5856    // Check for virtual bases.  vbases includes indirect virtual bases,
5857    // so we just iterate through the direct bases.
5858    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5859      if (bi->isVirtual()) {
5860        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5861        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5862        return;
5863      }
5864
5865    // Check for virtual methods.
5866    typedef CXXRecordDecl::method_iterator meth_iter;
5867    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5868         ++mi) {
5869      if (mi->isVirtual()) {
5870        SourceLocation MLoc = mi->getSourceRange().getBegin();
5871        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5872        return;
5873      }
5874    }
5875  }
5876
5877  bool (CXXRecordDecl::*hasTrivial)() const;
5878  switch (member) {
5879  case CXXConstructor:
5880    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5881  case CXXCopyConstructor:
5882    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5883  case CXXCopyAssignment:
5884    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5885  case CXXDestructor:
5886    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5887  default:
5888    assert(0 && "unexpected special member"); return;
5889  }
5890
5891  // Check for nontrivial bases (and recurse).
5892  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5893    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5894    assert(BaseRT && "Don't know how to handle dependent bases");
5895    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5896    if (!(BaseRecTy->*hasTrivial)()) {
5897      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5898      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5899      DiagnoseNontrivial(BaseRT, member);
5900      return;
5901    }
5902  }
5903
5904  // Check for nontrivial members (and recurse).
5905  typedef RecordDecl::field_iterator field_iter;
5906  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5907       ++fi) {
5908    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5909    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5910      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5911
5912      if (!(EltRD->*hasTrivial)()) {
5913        SourceLocation FLoc = (*fi)->getLocation();
5914        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5915        DiagnoseNontrivial(EltRT, member);
5916        return;
5917      }
5918    }
5919  }
5920
5921  assert(0 && "found no explanation for non-trivial member");
5922}
5923
5924/// TranslateIvarVisibility - Translate visibility from a token ID to an
5925///  AST enum value.
5926static ObjCIvarDecl::AccessControl
5927TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5928  switch (ivarVisibility) {
5929  default: assert(0 && "Unknown visitibility kind");
5930  case tok::objc_private: return ObjCIvarDecl::Private;
5931  case tok::objc_public: return ObjCIvarDecl::Public;
5932  case tok::objc_protected: return ObjCIvarDecl::Protected;
5933  case tok::objc_package: return ObjCIvarDecl::Package;
5934  }
5935}
5936
5937/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5938/// in order to create an IvarDecl object for it.
5939Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5940                                SourceLocation DeclStart,
5941                                DeclPtrTy IntfDecl,
5942                                Declarator &D, ExprTy *BitfieldWidth,
5943                                tok::ObjCKeywordKind Visibility) {
5944
5945  IdentifierInfo *II = D.getIdentifier();
5946  Expr *BitWidth = (Expr*)BitfieldWidth;
5947  SourceLocation Loc = DeclStart;
5948  if (II) Loc = D.getIdentifierLoc();
5949
5950  // FIXME: Unnamed fields can be handled in various different ways, for
5951  // example, unnamed unions inject all members into the struct namespace!
5952
5953  TypeSourceInfo *TInfo = 0;
5954  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5955
5956  if (BitWidth) {
5957    // 6.7.2.1p3, 6.7.2.1p4
5958    if (VerifyBitField(Loc, II, T, BitWidth)) {
5959      D.setInvalidType();
5960      DeleteExpr(BitWidth);
5961      BitWidth = 0;
5962    }
5963  } else {
5964    // Not a bitfield.
5965
5966    // validate II.
5967
5968  }
5969  if (T->isReferenceType()) {
5970    Diag(Loc, diag::err_ivar_reference_type);
5971    D.setInvalidType();
5972  }
5973  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5974  // than a variably modified type.
5975  else if (T->isVariablyModifiedType()) {
5976    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5977    D.setInvalidType();
5978  }
5979
5980  // Get the visibility (access control) for this ivar.
5981  ObjCIvarDecl::AccessControl ac =
5982    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5983                                        : ObjCIvarDecl::None;
5984  // Must set ivar's DeclContext to its enclosing interface.
5985  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
5986  ObjCContainerDecl *EnclosingContext;
5987  if (ObjCImplementationDecl *IMPDecl =
5988      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5989    // Case of ivar declared in an implementation. Context is that of its class.
5990    EnclosingContext = IMPDecl->getClassInterface();
5991    assert(EnclosingContext && "Implementation has no class interface!");
5992  } else {
5993    if (ObjCCategoryDecl *CDecl =
5994        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5995      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
5996        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5997        return DeclPtrTy();
5998      }
5999    }
6000    EnclosingContext = EnclosingDecl;
6001  }
6002
6003  // Construct the decl.
6004  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6005                                             EnclosingContext, Loc, II, T,
6006                                             TInfo, ac, (Expr *)BitfieldWidth);
6007
6008  if (II) {
6009    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6010                                           ForRedeclaration);
6011    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6012        && !isa<TagDecl>(PrevDecl)) {
6013      Diag(Loc, diag::err_duplicate_member) << II;
6014      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6015      NewID->setInvalidDecl();
6016    }
6017  }
6018
6019  // Process attributes attached to the ivar.
6020  ProcessDeclAttributes(S, NewID, D);
6021
6022  if (D.isInvalidType())
6023    NewID->setInvalidDecl();
6024
6025  if (II) {
6026    // FIXME: When interfaces are DeclContexts, we'll need to add
6027    // these to the interface.
6028    S->AddDecl(DeclPtrTy::make(NewID));
6029    IdResolver.AddDecl(NewID);
6030  }
6031
6032  return DeclPtrTy::make(NewID);
6033}
6034
6035void Sema::ActOnFields(Scope* S,
6036                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6037                       DeclPtrTy *Fields, unsigned NumFields,
6038                       SourceLocation LBrac, SourceLocation RBrac,
6039                       AttributeList *Attr) {
6040  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6041  assert(EnclosingDecl && "missing record or interface decl");
6042
6043  // If the decl this is being inserted into is invalid, then it may be a
6044  // redeclaration or some other bogus case.  Don't try to add fields to it.
6045  if (EnclosingDecl->isInvalidDecl()) {
6046    // FIXME: Deallocate fields?
6047    return;
6048  }
6049
6050
6051  // Verify that all the fields are okay.
6052  unsigned NumNamedMembers = 0;
6053  llvm::SmallVector<FieldDecl*, 32> RecFields;
6054
6055  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6056  for (unsigned i = 0; i != NumFields; ++i) {
6057    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6058
6059    // Get the type for the field.
6060    Type *FDTy = FD->getType().getTypePtr();
6061
6062    if (!FD->isAnonymousStructOrUnion()) {
6063      // Remember all fields written by the user.
6064      RecFields.push_back(FD);
6065    }
6066
6067    // If the field is already invalid for some reason, don't emit more
6068    // diagnostics about it.
6069    if (FD->isInvalidDecl()) {
6070      EnclosingDecl->setInvalidDecl();
6071      continue;
6072    }
6073
6074    // C99 6.7.2.1p2:
6075    //   A structure or union shall not contain a member with
6076    //   incomplete or function type (hence, a structure shall not
6077    //   contain an instance of itself, but may contain a pointer to
6078    //   an instance of itself), except that the last member of a
6079    //   structure with more than one named member may have incomplete
6080    //   array type; such a structure (and any union containing,
6081    //   possibly recursively, a member that is such a structure)
6082    //   shall not be a member of a structure or an element of an
6083    //   array.
6084    if (FDTy->isFunctionType()) {
6085      // Field declared as a function.
6086      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6087        << FD->getDeclName();
6088      FD->setInvalidDecl();
6089      EnclosingDecl->setInvalidDecl();
6090      continue;
6091    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6092               Record && Record->isStruct()) {
6093      // Flexible array member.
6094      if (NumNamedMembers < 1) {
6095        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6096          << FD->getDeclName();
6097        FD->setInvalidDecl();
6098        EnclosingDecl->setInvalidDecl();
6099        continue;
6100      }
6101      // Okay, we have a legal flexible array member at the end of the struct.
6102      if (Record)
6103        Record->setHasFlexibleArrayMember(true);
6104    } else if (!FDTy->isDependentType() &&
6105               RequireCompleteType(FD->getLocation(), FD->getType(),
6106                                   diag::err_field_incomplete)) {
6107      // Incomplete type
6108      FD->setInvalidDecl();
6109      EnclosingDecl->setInvalidDecl();
6110      continue;
6111    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6112      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6113        // If this is a member of a union, then entire union becomes "flexible".
6114        if (Record && Record->isUnion()) {
6115          Record->setHasFlexibleArrayMember(true);
6116        } else {
6117          // If this is a struct/class and this is not the last element, reject
6118          // it.  Note that GCC supports variable sized arrays in the middle of
6119          // structures.
6120          if (i != NumFields-1)
6121            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6122              << FD->getDeclName() << FD->getType();
6123          else {
6124            // We support flexible arrays at the end of structs in
6125            // other structs as an extension.
6126            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6127              << FD->getDeclName();
6128            if (Record)
6129              Record->setHasFlexibleArrayMember(true);
6130          }
6131        }
6132      }
6133      if (Record && FDTTy->getDecl()->hasObjectMember())
6134        Record->setHasObjectMember(true);
6135    } else if (FDTy->isObjCInterfaceType()) {
6136      /// A field cannot be an Objective-c object
6137      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6138      FD->setInvalidDecl();
6139      EnclosingDecl->setInvalidDecl();
6140      continue;
6141    } else if (getLangOptions().ObjC1 &&
6142               getLangOptions().getGCMode() != LangOptions::NonGC &&
6143               Record &&
6144               (FD->getType()->isObjCObjectPointerType() ||
6145                FD->getType().isObjCGCStrong()))
6146      Record->setHasObjectMember(true);
6147    // Keep track of the number of named members.
6148    if (FD->getIdentifier())
6149      ++NumNamedMembers;
6150  }
6151
6152  // Okay, we successfully defined 'Record'.
6153  if (Record) {
6154    Record->completeDefinition();
6155  } else {
6156    ObjCIvarDecl **ClsFields =
6157      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6158    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6159      ID->setLocEnd(RBrac);
6160      // Add ivar's to class's DeclContext.
6161      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6162        ClsFields[i]->setLexicalDeclContext(ID);
6163        ID->addDecl(ClsFields[i]);
6164      }
6165      // Must enforce the rule that ivars in the base classes may not be
6166      // duplicates.
6167      if (ID->getSuperClass())
6168        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6169    } else if (ObjCImplementationDecl *IMPDecl =
6170                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6171      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6172      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6173        // Ivar declared in @implementation never belongs to the implementation.
6174        // Only it is in implementation's lexical context.
6175        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6176      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6177    } else if (ObjCCategoryDecl *CDecl =
6178                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6179      // case of ivars in class extension; all other cases have been
6180      // reported as errors elsewhere.
6181      // FIXME. Class extension does not have a LocEnd field.
6182      // CDecl->setLocEnd(RBrac);
6183      // Add ivar's to class extension's DeclContext.
6184      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6185        ClsFields[i]->setLexicalDeclContext(CDecl);
6186        CDecl->addDecl(ClsFields[i]);
6187      }
6188    }
6189  }
6190
6191  if (Attr)
6192    ProcessDeclAttributeList(S, Record, Attr);
6193}
6194
6195/// \brief Determine whether the given integral value is representable within
6196/// the given type T.
6197static bool isRepresentableIntegerValue(ASTContext &Context,
6198                                        llvm::APSInt &Value,
6199                                        QualType T) {
6200  assert(T->isIntegralType() && "Integral type required!");
6201  unsigned BitWidth = Context.getIntWidth(T);
6202
6203  if (Value.isUnsigned() || Value.isNonNegative())
6204    return Value.getActiveBits() < BitWidth;
6205
6206  return Value.getMinSignedBits() <= BitWidth;
6207}
6208
6209// \brief Given an integral type, return the next larger integral type
6210// (or a NULL type of no such type exists).
6211static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6212  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6213  // enum checking below.
6214  assert(T->isIntegralType() && "Integral type required!");
6215  const unsigned NumTypes = 4;
6216  QualType SignedIntegralTypes[NumTypes] = {
6217    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6218  };
6219  QualType UnsignedIntegralTypes[NumTypes] = {
6220    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6221    Context.UnsignedLongLongTy
6222  };
6223
6224  unsigned BitWidth = Context.getTypeSize(T);
6225  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6226                                            : UnsignedIntegralTypes;
6227  for (unsigned I = 0; I != NumTypes; ++I)
6228    if (Context.getTypeSize(Types[I]) > BitWidth)
6229      return Types[I];
6230
6231  return QualType();
6232}
6233
6234EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6235                                          EnumConstantDecl *LastEnumConst,
6236                                          SourceLocation IdLoc,
6237                                          IdentifierInfo *Id,
6238                                          ExprArg val) {
6239  Expr *Val = (Expr *)val.get();
6240
6241  unsigned IntWidth = Context.Target.getIntWidth();
6242  llvm::APSInt EnumVal(IntWidth);
6243  QualType EltTy;
6244  if (Val) {
6245    if (Enum->isDependentType() || Val->isTypeDependent())
6246      EltTy = Context.DependentTy;
6247    else {
6248      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6249      SourceLocation ExpLoc;
6250      if (!Val->isValueDependent() &&
6251          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6252        Val = 0;
6253      } else {
6254        if (!getLangOptions().CPlusPlus) {
6255          // C99 6.7.2.2p2:
6256          //   The expression that defines the value of an enumeration constant
6257          //   shall be an integer constant expression that has a value
6258          //   representable as an int.
6259
6260          // Complain if the value is not representable in an int.
6261          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6262            Diag(IdLoc, diag::ext_enum_value_not_int)
6263              << EnumVal.toString(10) << Val->getSourceRange()
6264              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6265          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6266            // Force the type of the expression to 'int'.
6267            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6268
6269            if (Val != val.get()) {
6270              val.release();
6271              val = Val;
6272            }
6273          }
6274        }
6275
6276        // C++0x [dcl.enum]p5:
6277        //   If the underlying type is not fixed, the type of each enumerator
6278        //   is the type of its initializing value:
6279        //     - If an initializer is specified for an enumerator, the
6280        //       initializing value has the same type as the expression.
6281        EltTy = Val->getType();
6282      }
6283    }
6284  }
6285
6286  if (!Val) {
6287    if (Enum->isDependentType())
6288      EltTy = Context.DependentTy;
6289    else if (!LastEnumConst) {
6290      // C++0x [dcl.enum]p5:
6291      //   If the underlying type is not fixed, the type of each enumerator
6292      //   is the type of its initializing value:
6293      //     - If no initializer is specified for the first enumerator, the
6294      //       initializing value has an unspecified integral type.
6295      //
6296      // GCC uses 'int' for its unspecified integral type, as does
6297      // C99 6.7.2.2p3.
6298      EltTy = Context.IntTy;
6299    } else {
6300      // Assign the last value + 1.
6301      EnumVal = LastEnumConst->getInitVal();
6302      ++EnumVal;
6303      EltTy = LastEnumConst->getType();
6304
6305      // Check for overflow on increment.
6306      if (EnumVal < LastEnumConst->getInitVal()) {
6307        // C++0x [dcl.enum]p5:
6308        //   If the underlying type is not fixed, the type of each enumerator
6309        //   is the type of its initializing value:
6310        //
6311        //     - Otherwise the type of the initializing value is the same as
6312        //       the type of the initializing value of the preceding enumerator
6313        //       unless the incremented value is not representable in that type,
6314        //       in which case the type is an unspecified integral type
6315        //       sufficient to contain the incremented value. If no such type
6316        //       exists, the program is ill-formed.
6317        QualType T = getNextLargerIntegralType(Context, EltTy);
6318        if (T.isNull()) {
6319          // There is no integral type larger enough to represent this
6320          // value. Complain, then allow the value to wrap around.
6321          EnumVal = LastEnumConst->getInitVal();
6322          EnumVal.zext(EnumVal.getBitWidth() * 2);
6323          Diag(IdLoc, diag::warn_enumerator_too_large)
6324            << EnumVal.toString(10);
6325        } else {
6326          EltTy = T;
6327        }
6328
6329        // Retrieve the last enumerator's value, extent that type to the
6330        // type that is supposed to be large enough to represent the incremented
6331        // value, then increment.
6332        EnumVal = LastEnumConst->getInitVal();
6333        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6334        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6335        ++EnumVal;
6336
6337        // If we're not in C++, diagnose the overflow of enumerator values,
6338        // which in C99 means that the enumerator value is not representable in
6339        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6340        // permits enumerator values that are representable in some larger
6341        // integral type.
6342        if (!getLangOptions().CPlusPlus && !T.isNull())
6343          Diag(IdLoc, diag::warn_enum_value_overflow);
6344      } else if (!getLangOptions().CPlusPlus &&
6345                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6346        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6347        Diag(IdLoc, diag::ext_enum_value_not_int)
6348          << EnumVal.toString(10) << 1;
6349      }
6350    }
6351  }
6352
6353  if (!EltTy->isDependentType()) {
6354    // Make the enumerator value match the signedness and size of the
6355    // enumerator's type.
6356    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6357    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6358  }
6359
6360  val.release();
6361  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6362                                  Val, EnumVal);
6363}
6364
6365
6366Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6367                                        DeclPtrTy lastEnumConst,
6368                                        SourceLocation IdLoc,
6369                                        IdentifierInfo *Id,
6370                                        SourceLocation EqualLoc, ExprTy *val) {
6371  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6372  EnumConstantDecl *LastEnumConst =
6373    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6374  Expr *Val = static_cast<Expr*>(val);
6375
6376  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6377  // we find one that is.
6378  S = getNonFieldDeclScope(S);
6379
6380  // Verify that there isn't already something declared with this name in this
6381  // scope.
6382  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6383                                         ForRedeclaration);
6384  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6385    // Maybe we will complain about the shadowed template parameter.
6386    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6387    // Just pretend that we didn't see the previous declaration.
6388    PrevDecl = 0;
6389  }
6390
6391  if (PrevDecl) {
6392    // When in C++, we may get a TagDecl with the same name; in this case the
6393    // enum constant will 'hide' the tag.
6394    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6395           "Received TagDecl when not in C++!");
6396    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6397      if (isa<EnumConstantDecl>(PrevDecl))
6398        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6399      else
6400        Diag(IdLoc, diag::err_redefinition) << Id;
6401      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6402      if (Val) Val->Destroy(Context);
6403      return DeclPtrTy();
6404    }
6405  }
6406
6407  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6408                                            IdLoc, Id, Owned(Val));
6409
6410  // Register this decl in the current scope stack.
6411  if (New) {
6412    New->setAccess(TheEnumDecl->getAccess());
6413    PushOnScopeChains(New, S);
6414  }
6415
6416  return DeclPtrTy::make(New);
6417}
6418
6419void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6420                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6421                         DeclPtrTy *Elements, unsigned NumElements,
6422                         Scope *S, AttributeList *Attr) {
6423  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6424  QualType EnumType = Context.getTypeDeclType(Enum);
6425
6426  if (Attr)
6427    ProcessDeclAttributeList(S, Enum, Attr);
6428
6429  if (Enum->isDependentType()) {
6430    for (unsigned i = 0; i != NumElements; ++i) {
6431      EnumConstantDecl *ECD =
6432        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6433      if (!ECD) continue;
6434
6435      ECD->setType(EnumType);
6436    }
6437
6438    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
6439    return;
6440  }
6441
6442  // TODO: If the result value doesn't fit in an int, it must be a long or long
6443  // long value.  ISO C does not support this, but GCC does as an extension,
6444  // emit a warning.
6445  unsigned IntWidth = Context.Target.getIntWidth();
6446  unsigned CharWidth = Context.Target.getCharWidth();
6447  unsigned ShortWidth = Context.Target.getShortWidth();
6448
6449  // Verify that all the values are okay, compute the size of the values, and
6450  // reverse the list.
6451  unsigned NumNegativeBits = 0;
6452  unsigned NumPositiveBits = 0;
6453
6454  // Keep track of whether all elements have type int.
6455  bool AllElementsInt = true;
6456
6457  for (unsigned i = 0; i != NumElements; ++i) {
6458    EnumConstantDecl *ECD =
6459      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6460    if (!ECD) continue;  // Already issued a diagnostic.
6461
6462    const llvm::APSInt &InitVal = ECD->getInitVal();
6463
6464    // Keep track of the size of positive and negative values.
6465    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6466      NumPositiveBits = std::max(NumPositiveBits,
6467                                 (unsigned)InitVal.getActiveBits());
6468    else
6469      NumNegativeBits = std::max(NumNegativeBits,
6470                                 (unsigned)InitVal.getMinSignedBits());
6471
6472    // Keep track of whether every enum element has type int (very commmon).
6473    if (AllElementsInt)
6474      AllElementsInt = ECD->getType() == Context.IntTy;
6475  }
6476
6477  // Figure out the type that should be used for this enum.
6478  // FIXME: Support -fshort-enums.
6479  QualType BestType;
6480  unsigned BestWidth;
6481
6482  // C++0x N3000 [conv.prom]p3:
6483  //   An rvalue of an unscoped enumeration type whose underlying
6484  //   type is not fixed can be converted to an rvalue of the first
6485  //   of the following types that can represent all the values of
6486  //   the enumeration: int, unsigned int, long int, unsigned long
6487  //   int, long long int, or unsigned long long int.
6488  // C99 6.4.4.3p2:
6489  //   An identifier declared as an enumeration constant has type int.
6490  // The C99 rule is modified by a gcc extension
6491  QualType BestPromotionType;
6492
6493  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6494
6495  if (NumNegativeBits) {
6496    // If there is a negative value, figure out the smallest integer type (of
6497    // int/long/longlong) that fits.
6498    // If it's packed, check also if it fits a char or a short.
6499    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6500      BestType = Context.SignedCharTy;
6501      BestWidth = CharWidth;
6502    } else if (Packed && NumNegativeBits <= ShortWidth &&
6503               NumPositiveBits < ShortWidth) {
6504      BestType = Context.ShortTy;
6505      BestWidth = ShortWidth;
6506    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6507      BestType = Context.IntTy;
6508      BestWidth = IntWidth;
6509    } else {
6510      BestWidth = Context.Target.getLongWidth();
6511
6512      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6513        BestType = Context.LongTy;
6514      } else {
6515        BestWidth = Context.Target.getLongLongWidth();
6516
6517        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6518          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6519        BestType = Context.LongLongTy;
6520      }
6521    }
6522    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6523  } else {
6524    // If there is no negative value, figure out the smallest type that fits
6525    // all of the enumerator values.
6526    // If it's packed, check also if it fits a char or a short.
6527    if (Packed && NumPositiveBits <= CharWidth) {
6528      BestType = Context.UnsignedCharTy;
6529      BestPromotionType = Context.IntTy;
6530      BestWidth = CharWidth;
6531    } else if (Packed && NumPositiveBits <= ShortWidth) {
6532      BestType = Context.UnsignedShortTy;
6533      BestPromotionType = Context.IntTy;
6534      BestWidth = ShortWidth;
6535    } else if (NumPositiveBits <= IntWidth) {
6536      BestType = Context.UnsignedIntTy;
6537      BestWidth = IntWidth;
6538      BestPromotionType
6539        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6540                           ? Context.UnsignedIntTy : Context.IntTy;
6541    } else if (NumPositiveBits <=
6542               (BestWidth = Context.Target.getLongWidth())) {
6543      BestType = Context.UnsignedLongTy;
6544      BestPromotionType
6545        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6546                           ? Context.UnsignedLongTy : Context.LongTy;
6547    } else {
6548      BestWidth = Context.Target.getLongLongWidth();
6549      assert(NumPositiveBits <= BestWidth &&
6550             "How could an initializer get larger than ULL?");
6551      BestType = Context.UnsignedLongLongTy;
6552      BestPromotionType
6553        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6554                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6555    }
6556  }
6557
6558  // Loop over all of the enumerator constants, changing their types to match
6559  // the type of the enum if needed.
6560  for (unsigned i = 0; i != NumElements; ++i) {
6561    EnumConstantDecl *ECD =
6562      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6563    if (!ECD) continue;  // Already issued a diagnostic.
6564
6565    // Standard C says the enumerators have int type, but we allow, as an
6566    // extension, the enumerators to be larger than int size.  If each
6567    // enumerator value fits in an int, type it as an int, otherwise type it the
6568    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6569    // that X has type 'int', not 'unsigned'.
6570
6571    // Determine whether the value fits into an int.
6572    llvm::APSInt InitVal = ECD->getInitVal();
6573
6574    // If it fits into an integer type, force it.  Otherwise force it to match
6575    // the enum decl type.
6576    QualType NewTy;
6577    unsigned NewWidth;
6578    bool NewSign;
6579    if (!getLangOptions().CPlusPlus &&
6580        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6581      NewTy = Context.IntTy;
6582      NewWidth = IntWidth;
6583      NewSign = true;
6584    } else if (ECD->getType() == BestType) {
6585      // Already the right type!
6586      if (getLangOptions().CPlusPlus)
6587        // C++ [dcl.enum]p4: Following the closing brace of an
6588        // enum-specifier, each enumerator has the type of its
6589        // enumeration.
6590        ECD->setType(EnumType);
6591      continue;
6592    } else {
6593      NewTy = BestType;
6594      NewWidth = BestWidth;
6595      NewSign = BestType->isSignedIntegerType();
6596    }
6597
6598    // Adjust the APSInt value.
6599    InitVal.extOrTrunc(NewWidth);
6600    InitVal.setIsSigned(NewSign);
6601    ECD->setInitVal(InitVal);
6602
6603    // Adjust the Expr initializer and type.
6604    if (ECD->getInitExpr())
6605      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6606                                                      CastExpr::CK_IntegralCast,
6607                                                      ECD->getInitExpr(),
6608                                                      CXXBaseSpecifierArray(),
6609                                                      /*isLvalue=*/false));
6610    if (getLangOptions().CPlusPlus)
6611      // C++ [dcl.enum]p4: Following the closing brace of an
6612      // enum-specifier, each enumerator has the type of its
6613      // enumeration.
6614      ECD->setType(EnumType);
6615    else
6616      ECD->setType(NewTy);
6617  }
6618
6619  Enum->completeDefinition(BestType, BestPromotionType);
6620}
6621
6622Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6623                                            ExprArg expr) {
6624  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6625
6626  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6627                                                   Loc, AsmString);
6628  CurContext->addDecl(New);
6629  return DeclPtrTy::make(New);
6630}
6631
6632void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6633                             SourceLocation PragmaLoc,
6634                             SourceLocation NameLoc) {
6635  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6636
6637  if (PrevDecl) {
6638    PrevDecl->addAttr(::new (Context) WeakAttr());
6639  } else {
6640    (void)WeakUndeclaredIdentifiers.insert(
6641      std::pair<IdentifierInfo*,WeakInfo>
6642        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6643  }
6644}
6645
6646void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6647                                IdentifierInfo* AliasName,
6648                                SourceLocation PragmaLoc,
6649                                SourceLocation NameLoc,
6650                                SourceLocation AliasNameLoc) {
6651  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6652                                    LookupOrdinaryName);
6653  WeakInfo W = WeakInfo(Name, NameLoc);
6654
6655  if (PrevDecl) {
6656    if (!PrevDecl->hasAttr<AliasAttr>())
6657      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6658        DeclApplyPragmaWeak(TUScope, ND, W);
6659  } else {
6660    (void)WeakUndeclaredIdentifiers.insert(
6661      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6662  }
6663}
6664